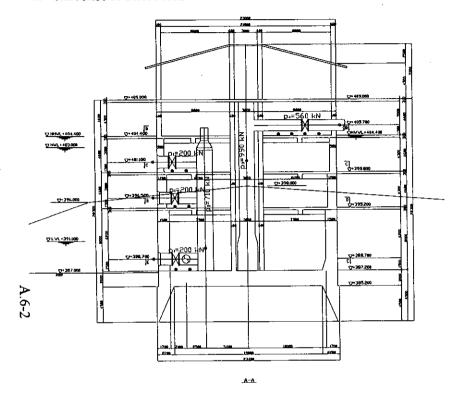
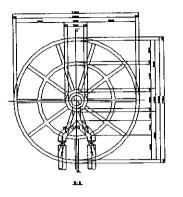
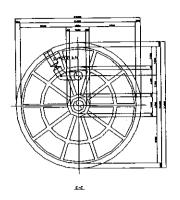
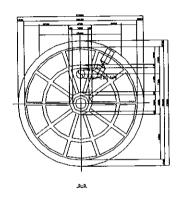
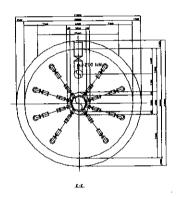
Appendix A-6

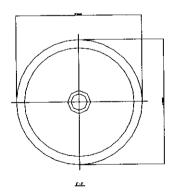

Structural Calculations for Intake Tower


CONTENTS


		PAGE
§ 1. GENERAL		A.6-2
1.1 SKETCHES OF STRUCTURE		A.6-3
1.2 SOIL CONDITIONS		A.6-3
1.3 LOADING CONDITIONS		A.6-3
1.4 MATERIALS		A.6-3
§ 2. DESIGN OF SECTION FOR MAIN FRAMES	,	A.6-3
2.1 SECTION I - $t=600$, $t=900 (+409.00 \sim +399)$.80)	A.6-3
2.2 SECTION II - $t=1,200 (+399.80 \sim +395.20)$		A.6-4
2.3 SECTION III - t= 1,500 (+395.20~)		A .6-7
§ 3. DESIGN OF FOUNDATIONS		A.6-10
§ 4. DESIGN OF BEAMS AND SLABS		A.6-14
4.1 DESIGN OF BEAMS		A.6-14
4.2 DESIGN OF SLABS		A.6-17
§ 5. DESIGN OF CENTRAL CORE		A .6-19
§ 6. DESIGN OF CUTTING EDGE		A.6-20
§ 7. CHECKING FOR STABILITY		A.6-21
7.1 STABILITY OF FLOATATION		A.6-21
7.2 STABILITY OF OVERTURNING		A.6-23
7.3 STABILITY OF SLIDING		A.6-25


1. GENERAL


1.1 SKETCHES OF STRUCTURE



1.2 SOIL CONDITIONS

Loam sandy (From GEOLOGICAL INVESTIGATIONS ON THE TERRITORY OF VYACHESLAVSKY RESERVOIR)

Coefficient of Earth Pressure at rest :K₀ = 0.50

$$: \gamma = 20.0 \text{ kN/m}^3 \text{ (wet)}$$

$$\gamma = 11.0 \text{ kN/m}^3 \text{ (in water)}$$

Internal Friction Angle $: \phi = 5^{\circ}$

$$c = 30.0 \text{ kN/m}^2$$

1.3 LOADING CONDITIONS

(1) Unit Weighit

Reinforced condrete

 $:\gamma_c = 24.0 \text{ kN/m}^3$

Concrete

 $= 23.0 \text{ kN/m}^3$

Water

$$\gamma_{w} = 10.0 \text{ kN/m}^{3}$$

(2) Dead Load

Superstructure

$$:w_{\parallel} = 2,200 \text{ kN}$$

Pipe (with Water)

= 200.0 kN (Intake Pipe) Support Nr.= 2

= 710.0 kN (Intake Header)

= 990.0 kN (Core)

= 560.0 kN (Discharge) Support Nr.= 7

Bridge

$$p_5 = 2,144 \text{ kN}$$

(3) Live Load

People and others (BF) : $w_i = 5.0 \text{ kN/m}^2$

Vehicle (1F)

:P = 200 kN

1.4 MATERIALS

(1) Concrete (σ_{ck} = 30 N/mm²)

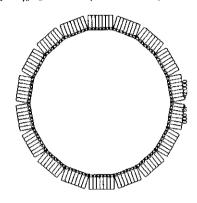
Design Compressive Strength $:\sigma'_{ed} = 23.1 \text{ N/mm}^2$

Modules of elasticity :E_c= 2.8 x 10⁴ N/mm²

Poisson's Ratio

$$v = \frac{1}{6} \approx 0.1667$$

(2) Reinforcement Bar (Grade365)


Modules of elasticity : $E_s = 2.0 \times 10^5 \text{ N/mm}^2$

2. DESIGN OF SECTION FOR MAIN FRAMES

2.1 SECTION I - t= 600, t= 900 (+409.00 - +399.80) Design for the HHWL (404.4m) at he level of +399.80 m.

(1) Water Pressure

$$p_w = \gamma_w h_w = 10.0 \text{ x } (404.40 - 399.80) = 42.0 \text{ kN/m}$$

(2) Stress resultant

$$N = p_w r = 42.0x24.00 = 1,008.0 \text{ kN/m}$$

(3) Proportioning of Section

$$N'_{oud} = 0.85 f'_{cd} A_c / \gamma_b$$

Where: N'oud : Axis Compressive Strength (N)

f'cd :Design Compressive Strength (= 23.1 N/mm²)

A_c :Sectional area of conctete (mm²)

:Member factor (1.3)

From above;

$$N'_{out} = 0.85 \times 23.1 \times (1,000 \times 900) / 1.3$$

= 13,593,4615 N/m

= 13,593.5 kN/m > N = 1,008.0 kN/m

Therefor re-bar is decided at minimum requirement.

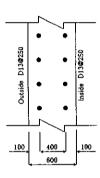
- (3) Minimum Re-bar Requirement
 Agaist axis load, 0.8% of sectional area of concrete.
- (4) From "Proportioning of Section", required sectional area of concrete A_{creq} is;

$$A_{creq} = \frac{Ng_b}{0.85f^2_{cd}} = \frac{(1,008.0x10^3)x1.3}{0.85x23.1} = 66,738.0 \text{ mm}^2 = 667.4 \text{ cm}^2$$

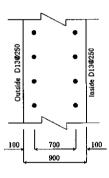
From above, Minimum re-bar requirement A_{sreq} is;

$$A_{sreq} = A_{creq} \times 0.8\% = 5.34 \text{ cm}^2 / \text{ m}$$

(5) Adopted


Outer
$$4 - D13@250 A_s = 5.068 cm^2 / m$$

Inner $4 - D13@250 A_s = 5.068 cm^2 / m$


Total $A_s = 10.136 \text{ cm}^2 / \text{m} > A_{sreq} = 5.34 \text{ cm}^2 / \text{m}$

t = 600(+409.0 - +404.4)

$$t = 900(+404.4 - +399.8)$$

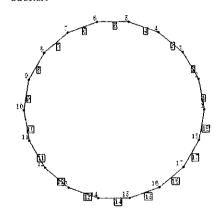
OK

(1) Member

- Material :Reinforced Cpncrete ($\gamma_{ck} = 30 \text{ N/mm}^2$)
- Modules of elasticity : $E_c = 2.8 \times 10^4 \text{ N/mm}^2 = 2.8 \times 10^7 \text{ kN/m}^2$
- · Parameters of Section (per m)

Thickness

t = 1.20 m


Sectional Area

 $:A = 1.20 \text{ m}^2/\text{m}$

Moment of Second Order: $I = 0.1440 \text{ m}^4 / \text{ m}$

(2) Structure Model

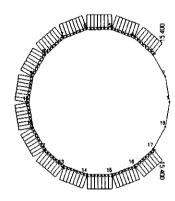
· Structure

· Data of Panel Point

Panel Point ID.	Coordinate X (m)	Coordinate Y (m)	Panel Point ID.	Coordinate X (m)	Coordinate Y (m)
i	10.9000	0.0000	10	- 10.9000	0.0000
2	10.2426	3.7280	11	- 10.2426	- 3.7280
3	8.3499	7.0064	12	- 8.3499	- 7.0064
4	5.4500	9.4397	13	- 5.4500	- 9.4397
5	1.8928	10.7344	14	- 1.8928	- 10.7344
6	- 1.8928	10.7344	15	1.8928	- 10.7344
7	- 5.4500	9.4397	16	5.4500	- 9.4397
8	- 8.3499	7.0064	17	8.3499	- 7.0064
9	- 10.2426	3.7280	18	10.2426	- 3.7280

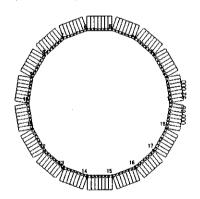
· Data of Member

Member ID.	Panel P	oint ID.	in-plane Joint Condition		out-of-plane Joint Condition	
	end i	end j	end i	end j	end i	end j
1	1	2	0	0	0	0
2	2	3	0	0	0	0
3	3	4	0	0	0	0
4	4	5	0	0	0	0
5	5	6	0	0	0	0
6	6	7	0	0	0	0
7	7	8	0	0	0	0
8	8	9	0	0	0	0
9	9	10	0	0	0	0
10	10	11	0	0	0	0
11	11	12	0	0	0	0
12	12	13	0	0	0	0
13	13	14	0	0	0	0
14	14	15	0	0	0	0
15	15	16	0	0	0	0
16	16	17	0	0	0	0
17	17	18	0	0	0	0
18	18	11_	0	0	0	0

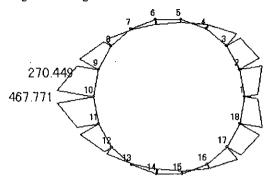

in-plane / out-of-planeJoint Condition: [0] Rigid Joint [1] Pin Joint

(3) Load

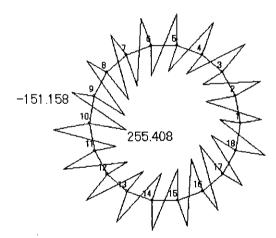
Earth Pressure at +395.20 m and Water Pressure at H.H.W.L


· Earth Pressure

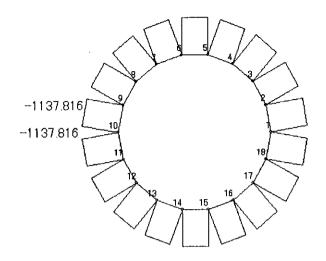
$$p = K_0 \gamma h = 0.50 \text{ x } 11.0 \text{ x } (398.00 - 395.20) = 15.4 \text{ kN/m}$$


· Water Pressure

$$p_w = \gamma_w h_w = 10.0 \text{ x } (404.40 - 395.20) = 92.0 \text{ kN/m}$$

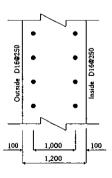


From 8. COMPUTER INPUTS AND OUTPUTS 8.1 'SECTION II'


· Bending Moment Diagram

· Shear Strength Diagram

· Axial Force Diagram



· DesignStress Resultant

Panel Point	M _{mex}	N _{mex}	Panel Point	Smax
ID.	(kN·m)	(kN)	ID.	(kN)
10	467.8	1,137.8	10	255.4

(5) Design of Section

Section		Wall	- 395.2			***	
F + 7 = + 1		Туре	Location (m)	Dia. (mm)	Number	Re-bar AreaAs (cm²)	
<u> </u> <u>*</u>		D1	0.100	16	4.000	7.944	
		D1	1.100	16	4.000	7.944	
			Total Re	e-bar A	rea Σ1	5.888	
		«Тур е	e》				
Beam Width bw (m)	1.0000		Reinforce		Заг		
Beam Height h (m)	1.2000		Concrete				
Ultimate Limit Bend.			ate Limi			2040.46	
Bending Moment	467.80	ı	.Stress M		,	3042.40 7399.84	
Md(kN·m)	1137.80	Axial	- Stress	•	,	18552.60	
Axial Force N'd(kN)	1157.00		ı	√oud(l	dN)	1.150	
		γi αί•Μ	d / Mud			0.177	=
Ultimate Limit · Shear		<u> </u>	ate Limi	t · Shea			
Shear Strength Vd(kN)	255,40		Stress	Vsd(1230.88	3
Web Width bw(cm)	100.00		n Stress			1230.88	
Effective Height d(cm)	110.00	" " " "		(N/mn		6.00)
Negate Moment		γi			_,	1.15	5
Mo(kN·m)	227.56	γi Vd	/ Vyd			0.239	< 1.0 OK
Bending Moment							
Md(kN·m)	467.80						
Serviceability Limit		Servi	ceability	Limit			
Bend.		Bend	-				
Bend. Moment (kN·m)		Crack	c Width (•			
(Permanent) Mpd	467.80			•	esign) wl		
(Variable) Mrd	0.00	l			ment) w2	0.154	1
Axial Force (kN)	1127 00	Allov	vable Cra	ck Wi		0.324	
(Permanent) N'pd	1137.80				wa w1/wa		="
(Variable) N'rd	0.00				w1/wa w2/wa		
		l			wa wa	v.44t) ~ 1.0 OK

3.3 SECTION III - t= 1,500 (+395.20 -)

(1) Member

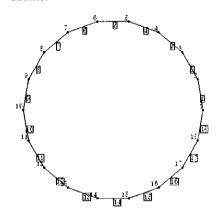
• Material :Reionforced Concrete (γ_{ck} = 30 N/mm²)

• Modules of elasticity $:E_c = 2.8 \times 10^4 \text{ N/mm}^2 = 2.8 \times 10^7 \text{ kN/m}^2$

· Parameters of Section (per m)

Thickness

: t = 1.50 m


Sectional Area

 $:A = 1.50 \text{ m}^2 / \text{ m}$

Moment of Second Order: I = 0.2813 m⁴/m

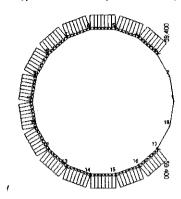
(2) Structure Model

· Structure

· Data of Panel Point

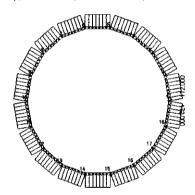
Panel Point ID.	Coordinate X (m)	Coordinate Y (m)	Panel Point ID.	Coordinate X (m)	Coordinate Y
1	10.7500	0.0000	10	- 10.7500	0.0000
2	10.1017	3.6767	11	- 10.1017	- 3.6767
3	8.2350	6.9100	12	- 8.2350	- 6.9100
4	5.3750	9.3098	13	- 5.3750	- 9.3098
5	1.8667	10.5867	14	- 1.8667	- 10.5867
6	- 1.8667	10.5867	15	1.8667	- 10.5867
7	- 5.3750	9.3098	16	5.3750	- 9.3098
8	- 8.2350	6.9100	17	8.2350	- 6.9100
9	- 10.1017	3.6767	18	10.1017	- 3.6767

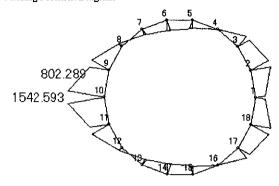
· Data of Member


Manahaa ID	Panel Point ID.		in-pla		out-of-plane Joint Condition	
Member ID.	$\overline{}$	4:1:		Joint Condition		
	end i	end j	end i	end j	end i	end j
1	1	2	0	0	0	0
2	2 3	3	0	0	0	0
3	3	4	0	0	0	0
4	4	5	0	0	0	0
5	5	6	0	0	0	0
6	6	7	0	0	0	0
7	7	8	0	0	0	0
8	8	9	0	0	0	0
9	9	10	0	0	0	0
10	10	11	0	0	0	0
Ħ	11	12	0	0	0	0
12	12	13	0	0	0	0
13	13	14	0	0	0	0
14	14	15	0	0	0	0
15	15	16	0	0	0	0
16	16	17	0	0	0	0
17	17	18	0	0	0	0
18	18	l i	0	Ö	lò	0

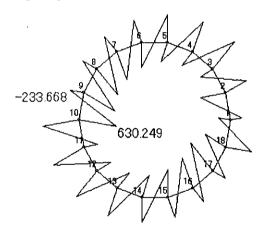
in-plane / out-of-planeJoint Condition: [0]Rigid Joint [1]Pin Joint

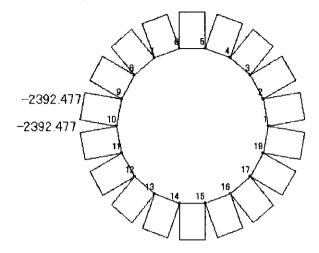
(3) Load


· Earth Pressure


$$P = K_0 \gamma h = 0.50 \text{ x } 11.0 \text{ x } (398.00 - 387.20) = 59.4 \text{ kN/m}$$

· Water Pressure

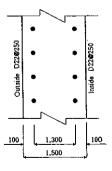

$$p_w = \gamma_w h_w = 10.0 \text{ x } (404.40 - 387.20) = 172.0 \text{ kN/m}$$



· Shear Strength Diagram

A.6-9

· Axial Force Diagram

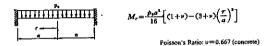


· DesignStress Resultant

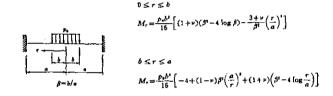
•	Doughbrook recoment							
	Panel Point ID.	M _{max} (kN·m)	N _{max} (kN)	Panel Point ID.	S _{max} (kN)			
	10	1,542.6	2,392.5	10	630.2			

(5) Design of Section

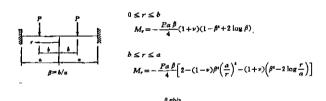
(5) Design of Section				
Section		Wall - 387.2		
<u> </u>		TypeLocation Dia. Number (m) (mm)	Re-bar AreaAs (cm²)	
		D1 0.100 22 4.000	15.484	
-		D1 1.400 22 4.000	15.484	
		Total Re-bar Area Σ 30).968	
		《Type》		
Beam Width bw (m) Beam Height h (m)	1.0000 1.5000	D:Reinforcement Bar 1:Concrete Depth		
Ultimate Limit · Bend.		Ultimate Limit · Bend.		
Bending Moment		Bend.Stress Mud(kN·m)	4301.47	
Md(kN·m)	1542.60	Axial - Stress N'ud(kN)	6671.38	
Axial Force N'd(kN)	2392.50	N'oud(kN)	23502.62	
` .		γi	1.150	- 1 0 077
		γi·Md/Mud	0.412	< 1.0 OK
Ultimate Limit Shear		Ultimate Limit · Shear		
Shear Strength Vd(kN)	630.20	Shear Stress Vsd(kN)	1566.58	
Web Width bw(cm)	100.00	Design Stress Vyd(kN)	1566.58	
Effective Height d(cm)	140.00	Fwcd (N/mm2)	6.00	
Negate Moment		γî	1.15	
Mo(kN·m)	598.13	γi Vd / Vyd	0.463	< 1.0 OK
Bending Moment Md(kN·m)	1542.60			
Serviceability Limit		Serviceability Limit Bend.		
Bend.		Crack Width (mm)		
Bend. Moment (kN·m)		(Design) w1	0.382	
(Permanent) Mpd	1542.60	(Permanent) w2	0.382	
(Variable) Mrd	0.00	Allowable Crack Width		
Axial Force (kN)		wa	0.400	
(Permanent) N'pd	2392.50	w1/wa	0.955	<1.0 OK
(Variable) N'rd	0.00	w2/wa	0.955	< 1.0 OK



3. DESIGN OF FOUNDATIONS


Design was done for circular slab fixed with Wall of caisson.

(1) Calculation formula


·Distrubuted Load -1

· Distributed Load -2

Line Load

Poisson's Ratio: v = 0.667 (concrete)

$$= 5.0$$

= 53.0 kN/m²

Total po

Line Load (Tower Wall: +408.7 - +387.2)

Total Load

Fropm 5. DESIGN OF CENTRAL CORE (1);

N = 10.343.1 kN

Tower Perimeter Length

$$U = \pi d = \pi \times 3.6 = 11.31 \text{ m}$$

Load

$$P = N/U = 10,343.1 / 11.31 = 914.5 \text{ kN/m}$$

·Distributed Load (Water in Core)

$$p_{\rm w}\!=\gamma_{\rm w}\,h_{\rm w}\!=10.0\;x\;20.0\equiv200.0\;kN/m^2$$

$$h_w = (+407.2) - (+387.2) = 20.0 \text{ m}$$

·Distributed Load (Uplift force)

HHWL

$$p_w = \gamma_w h_w = 10.0 \times 19.2 = 192.0 \text{ kN/m}^2$$

LWL

$$p_w = \gamma_w h_w = 10.0 \text{ x } 5.8 = 58.0 \text{ kN/m}^2$$

$$h_w = (+391.0) - (+385.2) = 5.8 \text{ m}$$

(3) Stress Resultant

1) Distributed Load (Dead Load + Live Load)

Perimeter Part

From (1) Calculation formula Distributed Load -1, Moment of Perimeter Part is (r= a= 10.0 m);

$$M_{a1} = \frac{p_0 \cdot a^2}{16} \cdot \left[(1+\nu) \cdot (3+\nu) \cdot \left(\frac{r}{a}\right)^2 \right]$$

$$= \frac{53.0 \times 10.0^2}{16} \times \left[(1+0.1667) \cdot (3+0.1667) \times \left(\frac{10.0}{10.0}\right)^2 \right]$$

$$= -662.5 \text{ kN·m/m}$$

· Shearing Force

$$S_{al} = \frac{p_0 \cdot A}{L} = \frac{53.0 \text{x} (\text{px} 10.0^2)}{2 \text{xpx} 10.0} = 265.0 \text{ kN/m}$$

·Central Part

From (1) Calculation formula Distributed Load -1, Moment of Central Part is (r=0.0m, a=10.0 m);

$$M_{01} = \frac{p_0 a^2}{16} \cdot \left[(1+\nu) \cdot (3+\nu) \cdot \left(\frac{r}{a}\right)^2 \right]$$

$$= \frac{53.0 \times 10.0^2}{16} \times \left[(1+0.1667) \cdot (3+0.1667) \times \left(\frac{0.0}{10.0}\right)^2 \right]$$

$$= 386.5 \text{ kN·m/m}$$

2) Line Load (Tower Wall: +408.7 - +387.2)

·Perimeter Part

From (1) Calculation formula Line Load, Moment of Perimeter Part is (r= a= 10.0 m);

$$M_{a2} = -\frac{Pa\beta}{4} \left[2 \cdot (1-\nu)\beta^2 \left(\frac{a}{r} \right)^2 \cdot (1+\nu) \left(\beta^2 \cdot 2\log \frac{r}{a} \right) \right]$$

$$= -\frac{914.5 \times 10.0 \times 0.18}{4} (2 - 0.027 - 0.038)$$

$$= -796.3 \text{ kN} \cdot \text{m/m}$$

$$\beta = \text{b/a} = 1.8 / 10.0 = 0.18$$

$$(1-\nu)\beta^2 \left(\frac{a}{r} \right)^2 = (1 - 0.1667) \times 0.18^2 \times \left(\frac{10.0}{10.0} \right)^2 = 0.027$$

$$(1+\nu) \left(\beta^2 \cdot 2\log \frac{r}{a} \right) = (1+0.1667) \times \left(0.18^2 \cdot 2 \times \log \frac{10.0}{10.0} \right) = 0.038$$

·Shearing Force

$$S_{a2} = \frac{P l}{L} = \frac{914.5 x (px3.6)}{2 x px 10.0} = 164.6 \text{ kN/m}$$

$$M_{02} = -\frac{Pa\beta}{4}(1+\nu)(1-\beta^2+2\log\beta)$$

$$= \frac{914.5\times10.0\times0.18}{4} \times 1.1667 \times (-0.522)$$

$$= 250.6 \text{ kN·m/m}$$

$$\beta = \text{b/a} = 1.8/10.0 = 0.18$$

$$1+\nu = 1+0.1667 = 1.1667$$

$$1-\beta^2+2\log\beta=1-0.18^2+2\log0.18=-0.522$$

3) Distributed Load (Water in Core)

· Perimeter Part

From (1) Calculation formula Distributed Load -2, Moment of Perimeter Part is (r= a= 10.0 m);

$$\begin{split} M_{a1} &= \frac{p_w b^2}{16} \cdot \left[-4 + (1 - \nu) \beta^2 \left(\frac{a}{r} \right)^2 + (1 + \nu) (\beta^2 - 4 \log_a^r) \right] \\ &= \frac{200.0 \times 1.5^2}{16} \times (-4 + 0.0187 + 0.0263) \\ &= -111.2 \text{ kN·m/m} \\ \beta &= b / a = 1.5 / 10.0 = 0.15 \\ &(1 - \nu) \beta^2 \left(\frac{a}{r} \right)^2 = (1 - 0.1667) \times 0.15^2 \times \left(\frac{10.0}{10.0} \right)^2 = 0.0187 \\ &(1 + \nu) \left(\beta^2 - 4 \log_a \frac{r}{a} \right) = (1 + 0.1667) \times \left(0.15^2 - 4 \log_a \frac{10.0}{10.0} \right) = 0.0263 \end{split}$$

· Shearing Force

$$S_{a1} = \frac{p_w A}{L} = \frac{200.0x(px1.5^2)}{2xpx10.0} = 0.20 \text{ kN/m}$$

· Central Part

From (1) Calculation formula Distributed Load -2, Moment of Central part is (r= 0.0m, a= 10.0 m);

$$M_{a1} = \frac{p_w b^2}{16} \cdot \left[(1+\nu)(\beta^2 - 4\log\beta) - \frac{3+\nu}{\beta^2} \left(\frac{r}{a}\right)^2 \right]$$

$$= \frac{200.0 \times 1.5^2}{16} \times (3.871 - 0.0)$$

$$= 1.1 \text{ kN} \cdot \text{m/m}$$

$$\beta = b/a = 1.5/10.0 = 0.15$$

$$(1+\nu)(\beta^2 - 4\log\beta) = (1+0.1667) \times (0.15^2 - 4 \times \log0.15) = 3.871$$

$$\frac{3+\nu}{\beta^2} \left(\frac{r}{a}\right)^2 = \frac{3+0.1667}{0.15^2} \left(\frac{0.0}{10.0}\right)^2 = 0.0$$

In case of HHWL

·Perimeter Part

From (1) Calculation formula Distributed load -1, Moment of Perimeter Part is (r= a= 10.0 m);

$$M_{ai} = \frac{p_w a^2}{16} \cdot \left[(1+\nu) - (3+\nu) \left(\frac{r}{a} \right)^2 \right]$$

$$= \frac{-192.0 \times 10.0^2}{16} \times \left[(1+0.1667) - (3+0.1667) \times \left(\frac{10.0}{10.0} \right)^2 \right]$$

$$= 2.400.0 \text{ kN·m/m}$$

·Shearing Force

$$S_{al} = \frac{p_w A}{L} = \frac{-192.0x(px10.0^2)}{2xpx10.0} = -960.0 \text{ kN/m}$$

· Central Par

From (1) Calculation formula Distributed Load -1, Moment of Central part is (r= 0.0m, a= 10.0 m);

$$M_{01} = \frac{p_w a^2}{16} \left[(1+v) - (3+v) \left(\frac{r}{a} \right)^2 \right]$$

$$= \frac{-192.0 \times 10.0^2}{16} \times \left[(1+0.1667) - (3+0.1667) \times \left(\frac{0.0}{10.0} \right)^2 \right]$$

$$= -1.400.0 \text{ kN} \cdot \text{m/m}$$

In case of LWL

Perimeter Part

From (1) Calculation formula Distributed load -1, Moment of Perimeter Part is (r= a= 10.0 m);

·Shearing Force

$$S_{ai} = \frac{p_w A}{L} = \frac{-58.0x(px10.0^2)}{2xpx10.0} = -290.0 \text{ kN/m}$$

· Central Par

From (1) Calculation formula Distributed Load -1, Moment of Central part is (r= 0.0m, a= 10.0 m);

$$M_{01} = \frac{p_{w} a^{2}}{16} \left[(1+\nu)-(3+\nu) \left(\frac{1}{a} \right)^{2} \right]$$

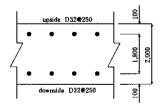
$$= \frac{-58.0 \times 10.0^{2}}{16} \times \left[(1+0.1667)-(3+0.1667) \times \left(\frac{0.0}{10.0} \right)^{2} \right]$$

$$= -422.9 \text{ kN} \cdot \text{m/m}$$

(4) Stress Resultant

Load		M	S (kN/m)	
	2000	Perimeter Part	Central part	S (kN/m)
	Distributed load (Dead+Live)	- 662.5	386.5	265.0
Load	Line Load (Tower wall)	- 796.3	1.1	0.2
(Downward)	Distributed load (Water in tower)	- 111.2	250.6	164.6
	Sub total	- 1570.0	638.2	429.8
Uplift	HHWL	2,400.0	- 1,400.0	- 960.0
(upward)	LWL	725.0	- 422.9	- 290.0
	Total	830.0	- 761.8	- 530.2
		- 845.0	215.3	139.8

DesignStress Resultant


 $M_{max} = -845.0 \text{ kN} \cdot \text{m} / \text{m}$

 $S_{max} = -530.2 \text{ kN/m}$

A.6-13

(5) Design of Section

Section		Base	
[-		Type Location (m) Dia. Number Re-bar AreaAs (cm²)	
		D1 0.100 32 4.000 31.768	
		D1 1.900 32 4.000 31.768	
==-		Total Re-bar Area Σ 63.536	
		《Type》	
Beam Width bw (m)	1.0000	D:Reinforcement Bar	
Beam Height h (m)	2.0000	1:Concrete Depth	
Ultimate Limit Bend.		Ultimate Limit Bend. Bend Stress Mud(kN+m) 2148.95	
Bending Moment	845.00	Dolla.bitcas Madu(Ki4 III)	
Md(kN·m)	111.00	TAME - DITESS IN ORIGINAL	
Axial Force N'd(kN)	111.00	11000(KI1)	
		0.450 1	0 OK
Ultimate Limit · Shear		At JANG / IAIGG	
	530.20	Ultimate Limit Shear Shear Stress Vsd(kN) 2126.07	
Shear Strength Vd(kN) Web Width bw(cm)	100.00	Shear Stress Vsd(kN) 2126.07 Design Stress Vyd(kN) 2126.07	
Effective Height d(cm)	190.00	Fwed (N/mm2) 6.00	
Negate Moment	1,50,00	γ _i 1.15	
Mo(kN·m)	37.00	1-	.0 OK
Bending Moment		, , , , , ,	
Md(kN·m)	845.00		
Serviceability Limit		Serviceability LimitBend.	
Bend.		Crack Width (mm)	
Bend, Moment (kN·m)		(Design) w1 0.444	
(Permanent) Mpd	845.00	(Permanent) w2 0.4 4 4	
(Variable) Mrd	0.00	Allowable Crack Width	
Axial Force (kN)		wa 0.500	
(Permanent) N'pd	111.00		0 OK
(Variable) N'rd	0.00	w2 / wa 0.888 < 1	0 OK

4. DESIGN OF BEAMS AND SLABS

4.1 DESIGN OF BEAMS

Design was done as a grillage structure with out-of-plane load.

4.1.1 Member

· Material

:Reionforced Concrete (σ_{ck} = 30 N/mm²)

· Modules of elasticity

 $E_c = 2.8 \times 10^4 \text{ N/mm}^2 = 2.8 \times 10^7 \text{ kN/m}^2$

· Parameters of Section

Member height

:H = 0.90 m

Member width

:B = 0.60 m (straight and ring beams)

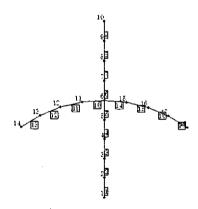
Sectional Area

 $:A = 0.54 \text{ m}^2/\text{ m}$

Moment of Second Order: $I = 0.0365 \text{ m}^4/\text{ m}$

4.1.2 Structure Model

· Bopundary Copndition


Joint with Outer Wall and Core

:Fixed Support

Joint with next beam

:Flexible Support

· Structure

· Data of Panel Point

Panel Point ID.	Coordinate X (m)	Coordinate Y (m)	Panel Point ID.	Coordinate X (m)	Coordinate Y
1	0.0000	2.1000	10	0.0000	10.6000
2	0.0000	3.0400	1 11]	- 1.0638	6.7163
] 3	0.0000	3.9800	12	- 2.1013	6.4672
4	0.0000	4.9200	13	- 3.0871	6.0588
5	0.0000	5.8600	14	- 3.9969	5.5013
6	0.0000	6.8000	15	1.0638	6.7163
1 7	0.0000	7.7500	16	2.1013	6,4672
8	0.0000	8.7000	17	3.0871	6.0588
9	0.0000	9.6500	18	3.9969	5.5013

· Data of Member

Member ID.	Panel P	oint ID.	in-pla		out-of-plane Joint Condition	
MICHIDES 115.	end i	end j	end i end j			end j
1	1	2	0	0	0	0
2	2	3	0	0	0	0
3	3	4	0] 0	0	0
4	4	5	0	0	0	0
5	5	6	0	0	0	0
6	6	7	0	0	0	0
7	7	8	0	0	0	0
8	8	9	0	0	0	0
9	9	10	0	0	0	0
10	6	11	0	0	0	0
11	11	12	0	0	0	0
12	12	13	0	0	0	0
13	13	14	0	0	0	0
14	6	15	0	0	0	0
15	15	16	0	0	0	0
16	16	17	0	0	0	0
17	17	18	0	0	0	0

in-plane / out-of-planeJoint Condition: [0] Rigid Joint [1] Pin Joint

· Spring constant

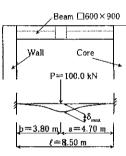
Panel Point ID.14 and 18 is examined assuming radius beam is elastic bearing.

Member length

: 1 = 8.50 m

Modules of elasticity

 $: E = 2.80 \times 10^7 \text{ kN/m}^2$ $: I = 0.0365 \text{ m}^4$


Moment of Second Order

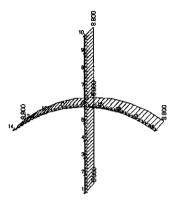
Maximum Displacement is applied with P= 100.0

$$\delta_{\text{max}} = \frac{2 \text{ P a}^3 \text{ b}^2}{3 \text{ E I (3 a+b)}^2}$$

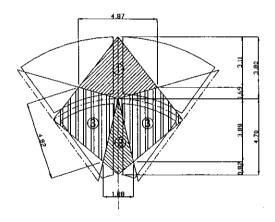
$$= \frac{2 \text{x} 100.0 \text{x} 4.70^3 \text{x} 3.80^2}{3 \text{x} (2.80 \text{x} 10^2) \text{x} 0.0365 \text{x} (3 \text{x} 4.70 + 3.80)^2}$$

$$= 3.050 \text{ x } 10^{-4} \text{ m}$$

Therefore;


$$K_{v} = \frac{P}{d_{max}} = \frac{100.0}{3.050 \times 10^{-4}} = 327,900 \text{ kN/m}$$

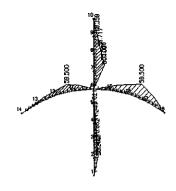
4.1.3 Load


· Beam Dead Load

A 0.30m part of Beam Height 0.90 m is accounted as load of slab.

$$w_1 = \gamma_c A = 24.0 \times \{0.60 \times (0.90 - 0.30)\} = 8.6 \text{ kN/m}$$

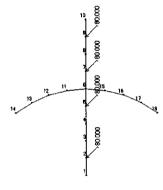
· Slab load and People Load

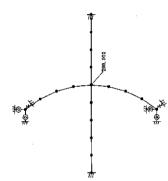


From above;

1: $w_{2l} = (\gamma_c \cdot t + w_l) 1 = (24.0 \times 0.30 + 5.0) \times 4.87 = 59.4 \text{ kN/m}$

2: w_{22} = (γ_c ·t+ w_i) 1 = (24.0 x 0.30+5.0) x 1.88= 22.9 kN/m


3: $w_{21} = (\gamma_c \cdot t + w_1) 1 = (24.0 \times 0.30 + 5.0) \times 4.82 = 58.8 \text{ kN/m}$



· Dead Load (BF)

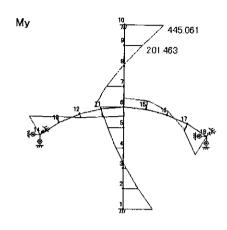
 $w_3 = p_5 / n = 560.0 / 7 = 80.0 \text{ kN}$

4.1.4 Combined Load

Case - 1:Dead Load + People Load + Dead Load

Case - 2:Dead Load + People Load + Vehicle Load

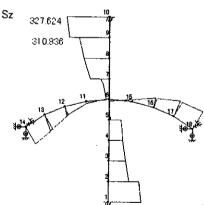
4.1.5 Stress Resultant

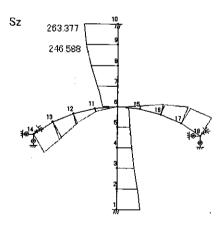

From 8. COMPUTER INPUTS AND OUTPUTS 8.3 'BEAMS';

· Bending Moment Diagram

Case - 1

Case - 2

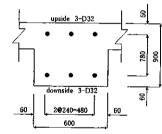



· Shear Strength Diagram

A.6-16

Case - 1

Case - 2



· DesignStress Resultant

Panel Point	M _{nax}	Panel Point	S _{max}
ID.	(kN·m)	ID.	(kN)
10	471.9	10	327.6

4.1.6 Design of Section

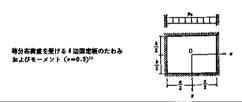
Section		Bean	1		-			
		Туре	Location (m)	Dia. (mm)	Number	Re-bar AreaAs (cm²)		
		D1	0.060	32	3.000	23.826		
		DI	0.840	32	3.000	23.826		
<u> </u>			Total Re	-bar Aı	rea Σ4	7.652		
·		«Тур	e))					
Beam Width bw (m)	0.6000	D:	Reinforce	ment I	Заг			
Beam Height h (m)	0.9000	1:Concrete Depth						
Ultimate Limit · Bend.	_	Ultim	ate Limit	·Bend				
Bending Moment		Bend	Stress M	ud(kN	m)	607.73		
Md(kN·m)	471.90	Axial - Stress N'ud(kN)				0.00		
Axial Force N'd(kN)	0.00			l'oud(k		9485.85		
		γi		,	•	1.150		
		γi·Mo	i / Mud			0.893	< 1.0 OK	
Ultimate Limit · Shear		Ultim	ate Limit	·Shear				
Shear Strength Vd(kN)	327.60	Shear	Stress	Vsd(l	άN)	939.95		
Web Width bw(cm)	60.00	Desig	n Stress			939.95		
Effective Height d(cm)	84.00	_	Fwcd			6.00		
Negate Moment		γi			•	1.15		
Mo(kN·m)	0.00	γi Vd	/ Vyd			0.401	< 1.0 OK	
Bending Moment Md(kN·m)	471.90							

Design was done by converting the slab surrounded by beams and walls to equivalent area rectangular slab with fixed peripheral edges.

4.2.1 Design of 1F Slab

(1) Calculation formula

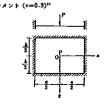
$$Mv_2 = \frac{(1-v_1 v_2) Mv_1 + (v_2-v_1) Mv_1}{1-v_1^2}$$


 $\sum_{i=1}^{n} \langle v_1, v_2 \rangle$: Poisson's Ratio ($v_1 = 0.3, v_2 = 0.1667$: Concrete)

Mv₂: Moment for Poisson's Ratio v₂ (kN m/m)

 Mv_1 : Moment for Poisson's Ratio v_1 (kN m/m)

Moment Calculation formula in case of Poisson's Ratio: v=0.3 is shown in Tables 4.2-1 and 4.2-2.


Table 4.2-1 Moment of Fixed Peripheral Edges Rectangular Slab with Uniform Load

bļa	(w) _{5=0.9=1}	係数	$(M_x)_{x=x/1,y=1}$	$(M_y)_{x=1,y=kr_0}$	$(M_x)_{x=1,y=1}$	$(M_p)_{x=p,p=q}$	保製
1.0	0.00126	₽,a¹ /D	-0.0513	-0.0513	0.0231	0.0231	P-a'
1.1	0.00150	p _a */D	-0.0581	-0.0538	0.0264	0.0231	P _a a*
1.2	0.00172	p,a*/D	-0.0639	-0.0554	0.0299	0.0228	p _a r
1.3	0.00191	P _t a ⁴ /D	-0.0687	-0.0563	0.0327	0.0222	2,03
1.4	0.00207	p ₀ a* D	-0.0726	-0.0568	0.0549	0.0212	p,a1
1.5	0.00220	p,a*ID	-0.0757	~0.0570	0.0368	0.0203	اعبره
1.6	0.00230	p,41/D	-0.0780	0,0571	0.0381	0.0193	p,a*
1.7	0,00238	p _a */D	-0.0799	-0.0571	0.0392	0.0182	P _* a ¹
1.8	0.00245	ρ,α*/D	-0.0812	-0.0571	0.0401	0.0174	₽,α'
1.9	0.00249	p _e ulD	-0.0823	-0.0571	0.0407	0.0165	Aa*
2.0	0.00254	p _t a ⁴ /D	0.0829	0.0571	0.0412	0.0158	P _e a ¹
to	0.00260	p,a*/D	0.0833	~0,0571	0.0417	0.0125	p _e a ¹

Table 4.2-2 Moment of Fixed Peripheral Edges Rectangular Slab with Concentrated Load

	集中常量を受ける	4辺国定板のたわみとモー.
<u>b</u>	(w) _{z=yee} =aPa*/D a	$(M_x)_{x=x/t,y=t} = \gamma P$
1.0	0.00560	-0.1257
1.2	0.00647	-0.1490
1.4	0.00691	-0.1604
1.6	0.00712	-0.1651
1.8	0.00720	-0.1667
2.0	0.00722	-0.1674
00	0.00725	-0.168

(2) Load

Distributed load

SlabDead Load w=
$$\gamma_c$$
 t= 24.0 x 0.30 = 7.2
Live Load w = 5.0
Total p₀ = 12.2 kN/m²

· Concentrated Load

Vehicle Load

P = 200.0 kN

(3) Stress Resultant

· Edge Length

Short edge :a = 3.50 m

Long edge :b =
$$\frac{6.05+3.86}{2}$$
 = 4.96 m

· Bending Moment

From (1) Calculation formula, Moment of short edge part is;

By Distributed load Moment: $M_1 = -0.0726 p_0 a^2$

By Concentrated load Moment: M₂ = -0.1604 P

Aspect ratio
$$\frac{b}{a} = \frac{4.96}{3.50} = 1.$$

Poisson's Ratio:v = 0.3

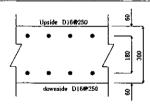
Therefore;

$$\begin{aligned} M_{0.3} &= (-0.0726 \ p_0 \ a^2) + (-0.1604 \ P) \\ &= -0.0726 \ x \ 12.2 \ x \ 3.50^2 - 0.1604 \ x \ 200.0 \\ &= -42.9 \ kN \cdot m \ / \ m \end{aligned}$$

Moment for v = 0.1667 (concrete) is;

$$M = \frac{(1-\nu_1 \ \nu_2) \cdot M\nu_1 + (\nu_2 - \nu_1) \cdot M\nu_1}{1-\nu_1^2}$$

$$= \frac{(1-0.1667 \times 0.3) \times 42.9 + (0.3-0.1667) \times 42.9}{1-0.1667^2}$$


$$= -47.8 \text{ kN·m/m}$$

· Shearing Force

$$S = \frac{p_0 A + P}{l} = \frac{12.2x(4.96x3.50) + 200.0}{2x(4.96 + 3.50)} = 24.3 \text{ kN/m}$$

(4) Design of Section

Section		Slab	- 1F				
		Туре	Location (m)	Dia. (mm)	Number	Re-bar AreaAs (cm²)	
	- 3 3	D1	0.060	16	4.000	7.944	
		D1	0.240	16	4.000	7.944	
			Total of R	e-bar /	Area Σ	15.888	
		«Тур	e»				
Beam Width bw (m)	1.0000	D:Reinforcement Bar					
Beam Height h (m)	0.3000	1:Concrete Depth					
Ultimate Limit Bend.		Ultim	ate Limit	·Bend	l.		
Bending Moment		Bend	.Stress 1	Mud(k	N·m)	67.98	
Md(kN·m)	47.80	Axial	- Stress	N'ud	(kN)	0.00	
Axial Force N'd(kN)	0.00			N'oud	(kN)	4972.71	
		γi				1.150	
		γi·M	d / Mud			0.809	< 1.0 OK
Ultimate Limit · Shear		Ultin	nate Limit	·Shea	г		
Shear Strength Vd(kN)	24.30	Shear	Stress	Vsd	(kN)	420.96	
Web Width bw(cm)	100.00	Desig	n Stress		i(kN)	420.96	
Effective Height d(cm)	24.00	Ì	F		Ŵmm²)	6.00	
Negate Moment		γi		`	,	1.15	
Mo(kN·m)	0.00	γi Vd	l / Vyd			0.066	< 1.0 OK
Bending Moment							
Md(kN·m)	47.80						

A.6-18

4.2.2 Design of BF Slab

- (1) Calculation formula Same as 4.2.1 Design of 1F Slab.
- (2) Load
 - · Distributed Load

Slab Dead Load
$$w = \gamma_c t = 24.0 \times 0.30 = 7.2$$
Live load $w = 5.0$
Total $p_0 = 12.2 \text{ kN/m}^2$

· Concentrated load

Pipe Load

P = 100.0 kN

- (3) Stress Resultant
 - Edge length

Short edge: a= 3.50 m

Long edge:
$$b = \frac{6.05 + 3.86}{2} = 4.96 \text{ m}$$

· Bending Moment

From (1) Calculation formula, Moment of short edge part is;

By Distributed load Moment: $M_1 = -0.0726 \cdot p_0 \cdot a^2$

By Concentrated load Moment: M₂ = -0.1604 · P

Aspect ratio
$$\frac{b}{a} = \frac{4.96}{3.50} = 1.4$$

Poisson's Ratio:v=0.3

Therefore;

$$M_{0.3} = (-0.0726 \cdot p_0 \cdot a^2) + (-0.1604 \cdot P)$$

= -0.0726 x 12.2 x 3.50² - 0.1604 x 100.0
= -26.9 kN·m/m

Moment for v = 0.1667 (concrete) is;

$$M = \frac{(1-\nu_1 \ \nu_2) \cdot M \nu_1 + (\nu_2 - \nu_1) \cdot M \nu_1}{1-\nu_1^2}$$

$$= -\frac{(1-0.1667 \times 0.3) \times 26.9 + (0.3-0.1667) \times 26.9}{1-0.1667^2}$$

$$= -30.0 \text{ kN} \cdot \text{m/m}$$

· Shearing Force

$$S = \frac{p_0 \text{ A+P}}{1} = \frac{12.2x(4.96x3.50) + 100.0}{2x(4.96+3.50)} = 18.4 \text{ kN/m}$$

(4) Decion of Section

Section		Slab -	- BF				
		Туре	Location (m)	Dia. (mm)	Number	Re-bar AreaAs (cm²)	
	98	DI	0.060	13	4.000	5.068	
	ı—— 1	D1	0.240	13	4.000	5.068	
		T	otal Re-b	ar Are	a Σ	10.136	
		(Тур	e»				
Beam Width bw (m)	1.0000		D:Reinforcement Bar				
Beam Height h (m)	0.3000	1:Concrete Depth					
Ultimate Limit Bend.		Ultim	nate Limit	Bend			
Bending Moment		Bend	.Stress M	ud(kN	·m)	45.14	
Md(kN·m)	30.00	Axia	- Stress	N'ud(k	N)	0.00	
Axial Force N'd(kN)	0.00		N	Voud(l	dN)	4811.21	
1		γi			•	1.150	
		γi·M	d / Mud			0.764	< 1.0 OK
Ultimate Limit · Shear		Ultin	nate Limit	Shea	r	*	
Shear Strength Vd(kN)	18.40	Shear	r Stress	Vsd(kN)	420.96	
Web Width bw(cm)	100.00	Desig	gn Stress	•	•	420.96	
Effective Height d(cm)	24.00	-		(N/mn		6.00	
Negate Moment		γi		,	•	1.15	
Mo(kN·m)	0.00	γi Vd	l / Vyd			0.050	< 1.0 OK
Bending Moment Md(kN·m)	30.00						

5. DESIGN OF CENTRAL CORE

Design is done for vertical force.

(1) Vertical Force

Loads of superstructure and slab are distributed with wall.

Loading Share
$$:A = \pi x \{(4.20+8.80)^2 - 4.20^2\} / 4 = 118.88 \text{ m}^2$$

Superstructure
$$P_1 = \frac{W_B}{A} \times A' = \frac{2,200}{(\pi \times 23.0^2/4)} \times 118.88$$
 = 629.4 kN

Core
$$P_2 = \gamma_c A h = 24.0 x {\pi x (4.20^2 - 3.00^2) / 4} x 21.50 = 3,550.4 kN$$

$$p_3 = 362.0 \text{ kN}$$

Slab and Live load

$$P_4 = (\gamma_c t + w_1) A' n = (24.0 \times 0.30 + 5.0) \times 118.88 \times 4 = 5,801.3 \text{ kN}$$

#H N = 10.343.1 kN

A=
$$(\pi \cdot d^2) / 4 = (\pi \cdot x \cdot 2.0^2) / 4 = 3.14 \text{ m}^2$$

b= $(+407.2) - (+387.2) = 20.0 \text{ m}$

$$W_w = (A h) \gamma_w = 3.14 \times 20.0 \times 10.0 = 628.0 \text{ kN}$$

$$p'_3 = p_3 - W_w = 990.0 - 628.0$$

= 362.0 kN

(2) Design of Section

$$N'_{out} = 0.85 \cdot f'_{cd} \cdot A_c / \gamma_b$$

From above,

N'_{oud} =
$$0.85 \times 23.1 \times {\pi \times (4,200^2 - 3,000^2)/4}/1.3$$

= $102,492,285.9 \text{ N}$
= $102,492.3 \text{ kN} > \text{N} = 10,343.1 \text{ kN}$

Therefore, minimum Re-bar Area is adopted.

(3) Minimum Re-bar Area

Required minimum re-bar area for axial force is 0.8% of concrete sectional area.

From (2) Design of Section, required sectional area A_{creq} is;

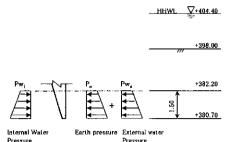
$$A_{\text{creq}} = \frac{N g_b}{0.85 \text{ f}_{cd}^*} = \frac{(10,802.0 \times 10^3) \times 1.3}{0.85 \times 23.1} = 715,182.1 \text{ mm}^2 = 7,151.8 \text{ cm}^2$$

Therefore, Wall thickness t_{creq} is;

$$t_{creq} = A_{creq} / L = 7,151.8 / (\pi \times 420) = 5.42 \text{ cm}$$

$$A_{\text{sreq}} = 100 \text{ x } t_{\text{creq}} \text{ x } 0.8\% = 4.33 \text{ cm}^2 / \text{ m}$$

Outside $4 - D13@250 A_s = 5.068 cm^2 / m$


Inside
$$4 - D13@250 \text{ A}_s = 5.068 \text{ cm}^2 / \text{ m}$$

 $\Sigma A_s = 10.136 \text{ cm}^2 / \text{m} > A_{sreq} = 4.33 \text{ cm}^2 / \text{m}$ Total

OK

6. DESIGN OF CUTTING EDGE

(1) Design Load

· Earth Pressure

$$P_o = K_o \gamma h$$

+382.2; $P_{o1} = 0.5 \times 11.0 \times (398.0 - 382.2) = 86.9 \text{ kN/m}^2$
+380.7; $P_{o2} = 0.5 \times 11.0 \times (398.0 - 380.7) = 95.2 \text{ kN/m}^2$

•External Water Pressure (HHWL: +404.4)

$$P_w = \gamma_w \ h_w$$

+382.2; $P_{wo1} = 10.0 \ x (404.4 - 382.2) = 222.0 \ kN/m^2$
+380.7; $P_{wo2} = 10.0 \ x (404.4 - 380.7) = 237.0 \ kN/m^2$

·Internal Water Pressure

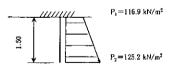
Assumin difference of water pressure is 3.0m; +382.2: $P_{wit} = P_{wol} - 10.0 \times 3.0 = 222.0 - 30.0 = 192.0 \text{ kN/m}^2$ +380.7: $P_{wi2} = P_{wo2} - 10.0 \times 3.0 = 237.0 - 30.0 = 207.0 \text{ kN/m}^2$

·Design Load

+382.2:
$$P_1 = P_{ot} + P_{wol} - P_{wil} = 86.9 + 222.0 - 192.0 = 116.9 \text{ kN/m}^2$$

+380.7: $P_2 = P_{o2} + P_{wo2} - P_{wi2} = 95.2 + 237.0 - 207.0 = 125.2 \text{ kN/m}^2$

(2) Stress Resultant


Calculated as a cuntilever;

$$M = \frac{L^2}{6} (2P_2 + P_1)$$

$$= \frac{1.5^2}{6} (2 \times 125.2 + 116.9) = 137.7 \text{ kN m/m}$$

$$S = \frac{L}{2} (P_1 + P_2) = \frac{1.5}{2} (125.2 + 116.2)$$

$$= 181.1 \text{ kN/m}$$

(3) Design of Section

Section		Cuttii	ng Edge				
	- 7	Туре	Location (m)	Dia.	Number	Re-bar Area As (cm²)	
	용	DI	0.060	22	4.000	15.484	
<u> </u>		DI	0.240	29	4.000	25.696	
		,	Total Re-	bar Ar	εα Σ	41.180	
		«Тур	e》				
Beam Width bw (m)	1.0000	D:1	Reinforce	ment I	Заг		
Beam Height h (m)	0.7300	1:0	Concrete I	Depth			
Ultimate Limit Bend.		Ultim	ate Limit	•Bend	l .		
Bending Moment Md(kN·m)	137.70	Bend	Stress M	ud(kN	·m)	513.92	
Axial Force N'd(kN)	0.00	Axial	- Stress 1	N'ud(k	N)	0.00	
			N	l'oud(l	dN)	14006.80	
		γi				1.150	
		γi·M	d/Mud			0.308	< 1.0 OK
Ultimate Limit · Shear	-	Ultin	ate Limit	•Shea			
Shear Strength Vd(kN)	181.10	Shear	Stress	Vsd()	kN)	704.96	
Web Width bw(cm)	100.00	Desig	n Stress	Vyd(kN)	704.96	
Effective Height d(cm)	63.00		Fwcd			6.49	
Negate Moment		γi		-		1.15	
Mo(kN·m)	0.00	γi Vđ	/ Vyd			0.295	< 1.0 OK
Bending Moment							
Md(kN·m)	137.70						

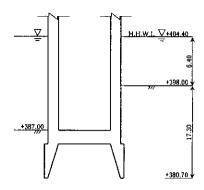
Outside D29@250 8

Inside D22@250

7. CHECKING FOR STABILITY

7.1 STABILITY OF FLOATATION Examined for HHWL.

(1)Applied Formula


$$F_s = \frac{P_V}{P_w} >= F_{sa} = 1.2$$

Where; F, :Safety factor

Pv:vertical force (kN)

Pw:buoyancy (kN)

Fsa: Allowable safty factor

(2) Buoyancy

$$P_w = h_w \times \gamma_w \times A$$

= $(404.40 - 380.70) \times 10.0 \times (\pi \times 23.40^2 / 4)$

= 101,922 kN

(3) Vertical Force

= 2,200 kN

Wall (+409.00 - +404.4)

 $P_2 = \gamma_c A h = 24.0 x \{ \pi x (23.00^2 - 21.80^2) / 4 \} x 4.60$

 $= 4.661 \, kN$

Wall (+404.40 - +399.8)

 $P_3 = \gamma_c A h = 24.0 x \{ \pi x (23.00^2 - 21.20^2) / 4 \} x 4.60$

= 6,898 kN

Wall (+399.80 - +395.20)

 $P_4 = \gamma_c A h = 24.0 x \{ \pi x (23.00^2 - 20.60^2) / 4 \} x 4.60$

= 9.073 kN

Wall (+395.20 - +387.20)

 $P_s = \gamma_c A h = 24.0 x \{ \pi x (23.00^2 - 20.00^2) / 4 \} x 8.00$

= 19,453 kN

Wall (Cutting Edge)

 $P_6 = \gamma_c V = 24.0 \times 341$

= 8,184 kN

 $v_1 = \frac{\pi D^2}{4} h = \pi \times 23.40^2 \times 4.5 / 4$

= 1,935.2 m³

Deduction $\Delta v_2 = \frac{\pi h}{3} \left(\frac{D^2}{4} + \frac{D}{2} \frac{d}{2} + \frac{d^2}{4} \right)$

= $\pi \times 4.5 \times (23.40^2/4+23.4 \times 19.0/4+19.0^2/4)/3 = -1,594.2 \text{ m}^3$ = 341.0 m³

Slab

 $P_7 = \gamma_c V = 24.0 \times 399.6$

= 9,590 kN

 $v_1 = \pi \times 21.8^2 / 4 \times 0.3$ $= 112.0 \text{ m}^3$

 $v_2 = \pi \times 21.2^2 / 4 \times 0.3$

 $= 105.9 \text{ m}^3$

 $v_3 = \pi \times 20.6^2 / 4 \times 0.3$ $= 100.0 \text{ m}^3$

 $v_4 = \pi \times 20.0^2 / 4 \times 0.3$ $= 94.2 \, \text{m}^3$ Σ٧ = 412.1 m³

Deduction $\Delta v = \pi \times 4.2^2 / 4 \times 0.3 \times 3 = 12.5 \text{ m}^3$

 $V = 412.1 - 12.5 = 399.6 \text{ m}^3$

Beam

 $P_8 = \gamma_c V = 24.0 \times (120.2 + 13.0)$

= 3,197 kN

Straight Beam

Average length = (21.8+21.2+20.6+20.0) / 4= 20.9m

Length L= 20.9 - 4.2= 16.7m

 $V_1 = 0.6 \times 0.6 \times 16.7 \times 5 \times 4 = 120.2 \text{ m}^3$

Ring Beam

Length $L = \pi D - n b = \pi \times 13.4 - 10 \times 0.6 = 36.1 m$

 $V_2 = 0.6 \times 0.6 \times 36.1 = 13.0 \text{ m}^3$

Base Slab

 $P_9 = \gamma_c A t = 24.0 \times (\pi \times 23.00^2 / 4) \times 2.00$

= 19,943 kN

Core (+408.70 - +387.20) h= 21.5m

 $P_{10} = \gamma_c A h = 24.0 x \{ \pi x (4.2^2 - 3.0^2) / 4 \} x 21.5$

= 3,501 kN

Adjustment Concrete (V= 1594.2 m³ from "Cutting Edge")

 $P_{11} = \gamma_c' V = 23.0 \times 1594.2$

= 36,667 kN

Bridge

P₁₂=

= 2,144 kN

Total P_{v}

= 125,511 kN

41

(4) Safety Factor

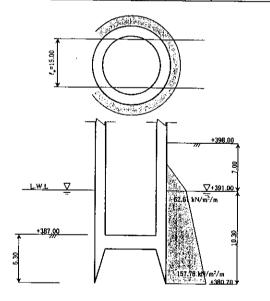
$$F_s = \frac{P_V}{P_w} = \frac{125,511}{101,922} = 1.23 > F_{sa} = 1.2$$

OK

$$e < \frac{B}{F_s}$$

where; e :point of action of loads resultant on base slab (m)

B:width of base slab (= 23.40 m)


F_s:safety factor (= 6)

(2) Load

· Earth Pressure

$$p_a = K_a \gamma h - 2 c \sqrt{K_a}$$

 $K_a = \tan^2(45 \deg_a - \phi/2)$

17 (4) (1)	eg ψ/ ₄	<u> </u>		
Elevation (m)	K,	γ (kN/m³)	h (m)	p _a (kN/m ² / m)
398.00			0.00	0.0
394.73		20.0	3.27	0.0
391.00	0.84	11.0	3.73	62.6
380.70		11.0	10.30	157.8

· Horizontal force by bridge

Friction force from support;

Load by Bridge

 $:P_5=2,144kN$

Friction coefficient of bridge support $:\beta=0.10$

Hoprizontal Force

$$P_{HB} = P_5 \times \beta$$

$$= 2,144 \times 0.1$$

$$= 214.4 \text{ kN}$$

· Moment resultant

Moment by Earth Pressure

 $M = \Sigma \{(p | h / 2) \} \}$ I_{m}

Elevation (m)	p_a $(kN/m^2/m)$	h (m)	(m)	L _w (m)	M (kN·m)
394.73	0.0	-	-	\	-
391.00	62.6	3.73	11.54	15.0	20,209.3
380.70	62.6	10.30	4.41	13.0	75.004.3
300,70	157.8	10.30	4.41		75,084.2
		otal			95,293.5

Moment by horizontal force of bridge

$$M_B = P_{HB} \times L_h = 214.4 \times 26.8 = 5,745.9 \text{ kN} \cdot \text{m}$$

Total Moment

· Vertical force

From "6.1 STABILITY OF FLOATATION (3) Vertical Force";

$$P_V = 125,511 \text{ kN}$$

$$P_w = (391.0 - 380.7) \times 10 \times (\pi \times 23.4^2 / 4)$$

$$=44,295 kN$$

$$= 81,216 \text{ kN}$$

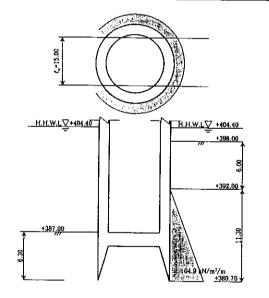
(3) Safety Check

e=
$$\frac{M}{P}$$
 = $\frac{101,039}{81,216}$ = 1.24 m < $\frac{B}{F_s}$ = $\frac{23.40}{6}$ = 3.90 m

$$e \leq \frac{B}{F_{\text{s}}}$$

where; e :point of action of loads resultant on base slab(m)

B:width of base slab (= 23.40 m)


F_s:safety factor (= 6)

(2) Load

· Earth Pressure

$$p_a = K_a \gamma h - 2 c \sqrt{K_a}$$

 $K_a = \tan^2(45 \text{ deg. } -\phi/2)$

		-,		
Elevation (m)	K,	γ (kN/m³)	h (m)	p _a (kN/m ² / m)
398.00			0.0	0.0
392.00	0.84	11.0	6.0	0.0
380.70			17.3	104.9

· Horizontal force by bridge From "7.2.1 Examination at LWL"; $P_{HB} = 214.4 \text{ kN}$

Moment by Earth Pressure

 $M=\Sigma\{(p h/2)\cdot L\} L_{\mathbf{w}}$

Elevation	p _a	h	L	L _w	М
(m)	(kN/m² / m)	(m)	(m)	(m)	(kN·m)
392.00	0.0	-	-	15.0	-
380.70	104.9	11.3	3.77	13.0	33,516.3
		計			33,516.3

Moment by Horizontal force of bridge

From "7.2.1 Examination at LWL";

$$M_{\rm B} = 5,745.9 \, \rm kN \cdot m$$

Total Moment

$$M = 33,516.3+5,745.9 = 39,262.2 \text{ kN} \cdot \text{m}$$

· Total Vertical force

From "7.1 STABILITY OF FLOATATION";

$$P_{V}$$
= 125,511 kN

$$P_w = 101,922 \text{ kN}$$

$$P = 125,511 - 101,922$$

$$= 23,589 \text{ kN}$$

(3) Safety Check

$$e = \frac{M}{P} = \frac{39,262}{23,589} = 1.66 \text{ m} < \frac{B}{F_s} = \frac{23.40}{6} = 3.90 \text{ m}$$

OK

Safety facter F_s > 1.5

Where H_u :Shering resistance force between base slab face and soil (kN)

A_r :Effective loading area (m²)

Pv : Vertical force on base slab accounting buoyancy (kN)

C :Asdhesion between base slab and soil (kN/m²)

 $\phi_{\rm B}$: Friction angle between base slab and soil (degree = 2 / 3 ϕ)

(2) Load

· Active Earth Pressure


From "6.2 STABILITY OF TURNOVER (2) Load";

Elevation (m)	p _a (kN/m ² / m)
394.73	0.0
391.00	62.6
380.70	157.8

$$P_{a1} = \frac{1}{2} \times 62.6 \times (394.73 - 391.0) = 116.7 \text{ kN/m}$$

$$P_{a2} = \frac{1}{2} \times (62.6 + 157.8) \times 10.3 = 1,135.1 \text{ kN/m}$$

$$P_a = 1,251.8 \times 15.0$$

= 18,777 kN

$$p_p = K_p \gamma h + 2 c \sqrt{K_p}$$

 $K_p = \tan^2(45 \deg + d / 2)$

Elevation (m)	K _p	γ (kN/m³)	h (m)	P _p (kN/m²/m)
387.0	1.19	11.0	0.00	65.5
380.7	1.19	11.0	6.30	147.9

$$P_p = \{(65.5+147.9) \times 6.30 / 2\} \times 23.0$$

= 15.461 kN

· Horizontal force by bridge

$$P_{HB} = 214.4 \text{ kN}$$

· Vertical Force Resultant

$$P_V = 125,511 \text{ kN}$$

$$P_w = 44,295 \text{ kN}$$

$$P_{v}' = 125,511 - 44,295$$

$$= 81,216 \text{ kN}$$

- (3) Safety check
 - · Resistant Shearing Force

H_u = c A_e+P_V' tan
$$\phi$$
_B
= 30.0 x (π x 23.40² / 4)+81,216 x tan(2 / 3 x 5)= 12,902+4,730
= 17,632 kN

· Safety Check

$$F_{s} = \frac{P_{p} + H_{u}}{P_{a} + P_{HB}} = \frac{15,461 + 17,632}{18,777 + 214} = 1.74 > F_{s} = 1.5$$
 OK

Where H_u :Shering resistance force between base slab face and soil (kN)

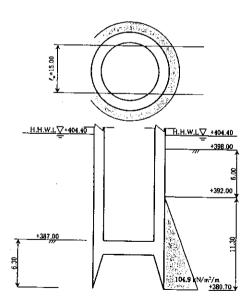
A_e :Effective loading area (m²)

Pv : Vertical force on base slab accounting buoyancy (kN)

C :Asdhesion between base slab and soil (kN/m²)

 $\phi_{\rm B}$: Friction angle between base slab and soil (degree = 2 / 3 ϕ)

(2) Load


· Active Earth Pressure

From "7.2.2 Examination at HHWL (2) Load";

Elevation (m)	p_a $(kN/m^2/m)$
398.00	0.0
392.00	0.0
380.70	104.9

$$P_a = \frac{1}{2} \times 104.9 \times 11.3 \times 15$$

$$= 8,890 \text{ kN}$$

· Passive Earth Pressure

From "7.3.1 Examination at LWL"

$$P_p = 15,461 \text{ kN}$$

· Vertical Force resultant

From "7.2.2 Examination at HHWL (2) Load";

$$P_V = 125,511 \text{ kN}$$

$$P_w = 101,922 \text{ kN}$$

$$P_{V}^{\dagger} = 125,511 - 101,922$$

$$= 23,589 kN$$

- (3) Safety Check
 - · Resistant Shearing Force

H_u = c A_e+P_v' tan
$$\phi_B$$

= 30.0 x (π x 23.40² / 4)+23,589 x tan(2 / 3 x 5)= 12,902+1,374
= 14.276 kN

· Safety Check

$$F_{s} = \frac{P_{p} + H_{u}}{P_{a} + P_{HB}} = \frac{15,461 + 14,276}{8,890 + 214} = 3.27 > F_{s} = 1.5$$
 OK