Appendix A-4

Design Calculations for Water Supply Works

I . Capacity Caluculation for W.T.P Capacity = 100,000cu m/day

Item	-		Tota	l System	
Planned Flow	Q =	100,000 cu m/c			
A TABLECO PIOW	 	100,000 Cu M/t	iay	4.6	ter Filter
Plant Canacity	0-	106 200 00 001	ior.		
Plant Capacity (Daily Max)	Q =	105,300 cu m/c		-	cu m/day
(Daily Max)	-	4,388 cu m/l			cu m/hour
	_	73.1 cu m/1			cu m/min
	=	1.22 cu m/s	iec	1.16	cu m/sec
1.W.T.Ricilities					
(1) Distribution Chamber	Q=	210,000 cu m/c	lay	146	cu m/min
Туре	Rectangular				
Desige Criteria					
Retention Time	T >			2.0	min
Number of units	No.			1	units
Dimensions	Lm	x W m x	D m	x N	units
	10.0	10.2	6.0	1	
Volume	V =			612.0	cu m
Retention Time	$T_1 =$			4.2	min
(2) Receiving Well	Q=	105,300 cu m/d	lay		
Туре	Rectangular				
Desige Criteria					
Retention Time	T >			1.5	min
Number of units	No.			2	units
Dimensions	Lm	x W m x	D m	x N	units
	7.0	4.2	6.0	2	
Volume	V =			176.4	cu m
Retention Time	$T_1 =$			2.4	min
			12.35		
(2)' Mixing Chamber Type	Square, Gravit	105,300 cu m/d	ay.	2.500) 5- 6.50 ° 2.60	
1 ype Desige Criteria	oquare, Gravit	y Piuw Mixing			
Retention Time	T=			1 - 5	min
Number of units	No.				units
Dimensions	L m	x Wm x	D m	_	units
Pamensions	4.2	4.2	4.3	x N 2	шигэ
Unit Effective Volume	UV =	4,4	4.3	_	eu m/unit
Total Volume	TV =			151.7	
Retention Time	$T_{i} =$				cu m min
G - Value	G =				sec-1 > 100sec-1
G - Value				113	200-1 ~ 100300+1
(3) Flocculator	Q=	105,300 cu m/d	av .		
Туре		rizontal Zigzag Flov		· · · ·	
Desige Criteria	3 , 3-	-88 - 10			
Retention Time	T=			20 - 40	min
Required Volume	. V=	1,463 cu m	to	2,925	
Unit Flow	q =	-			cu m/min/basin
Number of basin	N=			6	basins
Dimensions Step 1	W m	x Lm x	D mil	Channel	
•	9.0	1.2	3.7	2	
Step 2	W m			Channel	
	9.0	1.5	3.7	2	
i				_	

Item		Total System
Step 3	W m	x L m x D m of Channel
	9.0	2.3 3.7 2
Unit of Volume	Step 1	79.9 cu m/unit
	Step 2	99.9 cu m/unit
	Step 3	153.2 cu m/unit
	Volume/unit	333.0 cu m/unit
Effective Volume	V =	1,998 cu m
Retention Time	$T_1 =$	27.3 minutes
G - Value	G =	60 sec-1 > $10 \sim 75$ sec-1
GT- Value	GT=	98,030 < 23,000~210,000
	-	Unit flow 0.203cum/sec
	1	Head loss 0.6m
		Dencity of water 1000kg/m3
•		Volume of units 333cum/unit
	u = `	Viscosity of liquid 1x10 ⁻³ kg/m ^{· Sec}
(4) Sedimentation Basin	<u> </u> 	103,700 cu m/day
Туре		Horizontal Flow
Desige Criteria		
Unit Flow	q =	720 cu m/hr/basin
Retention Time	T =	2.5 hours
Surface Load	a =	15 - 30 mm/min
Hor. Flow Velocity	v <	0.40 m/min
L/W Ratio	L/W =	3 - 8 times
Depth	D =	3 - 4 m
	Depth of 30 cm	n or more is provided for sludge settlement.
Number of Basin	N=	6 basins
Dimensions		Wm x Lmx Dm
		9 50 4.0
Effective Volume	V =	1,800 cu m/basin
Retention Time	$T_1 =$	2.5 hours
L/W Ratio	L/W =	5.6
Surface Load	a =	26.7 mm/min
Hor. Flow Velocity	v =	0.33 m/min
Overflow Weir	Load =	350 cu m/m/day
Trough Length	L =	49 m or longer
Number of troughs	No.	6 troughs
Dimensions		Lm x N
Takal I a 4b		4.2 6
Total Length	L=	50.4 m > 49m
Sludge Removal	Cable-operated	d underwater bogie sludge collector
(5) Rapid Sand Filter	Q=	103,700 cu m/day
Туре	Down Flow, Sir	
Number of nuits	No.	12 units 2 unit stand-by
Unit Flow	q =	8,642 cu m/day/unit
DesigeCriteria	. و	
Filtration Rate	$\mathbf{Fr} =$	120 - 144 m/day
Effective Filter Area per U	A =	73.1 sq m
Dimensions		Wm x Lm x units
		5.8 12.6 12
	A =	73.1 sq m/unit
Filtration Rate	Fr =	118 m/day (12units)

Item		Total System	
Filtration Rate	Fr'=	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m/day (10units)
During washing	2 units out of 10 are washing		•
Filter Washing		,	
Frequency	Once a day for each filter		
Rate	Surface Washing	rate = 0.15	cu m/sq m/min
1			min
	Backwashing		cu m/sq m/min
	Dack washing		min
		uuration – 7	IIIIII
Water Amount	Surface Washing	$V_{S} = 54.8$	cu m/unit
for washing	Backwashing		cu m/unit
			cu m/unit
for Total Units	Total Amount for Washing	4,341	cu m/day (Back Wash 3,700cu m/day)
	Percentage for Planned Flov		% (Back Wash Only=3.5%)
			, () () () () () () () () () (
(6) Chlorination Mixing Cha	Q= 100,000	cu m/day	
Location	at the Inlet of the Distribution	n Reservoir	
Criteria			
Contact Time	T=	5	minutes
Required Volume	V =	347	cu m
Number of Unit	No.		unit
Dimensions	Lm x W m	•	units
	48.0 3.0	2.8	wants
Effective Volume	V =		cu m
Retention Time	,		min
Retention Time	T_i =	5.5	11111
(7) Distribution Reservoir	(Existing) Q 100,000	cu m/day	
Criteria			
Retention Time	T >	8.0	hours
Required Volume	V =	57,667	cu m
Number of Unit		3	units
Dimension	Lm x Wm	x Dm x N	units
!	64.0 64.0	5.0 3	
Effective Volume	V =	61,440	cu m
Retention Time	T₁=		hours
	•		
(8) Total Water Loss	Sedimentation1,600+Filter3,700	=5,300cu m 5.0	%
2. WTP Drainage Kacilites	And the second s		the state of the s
(1) Design Criteria			
	Annual Ave	Hight Turbidity	Low Turbidity
Treated water Volume	87,750 cu m/day	105,300 cu m/day	87,750
Turbidity (deg)		30	3
Alum Feeding rate (mg/l)	7.5	30	1
Solid Volume s(t-Ds/day)	0.58	4.40	0.23
Generated Sludg (S.B)	0.3 %	0.3 %	0.3
(S.T.T)	2 %	4 %	2
Sludge Volume (S.B)	193 eu m/day	1,468 cu m/day	77
(S.T.T)	29 cu m/day	110 cu m/day	11.6
	B.S : Sedimentation Basin,		er Tank
	$A : So = Q \times [k \times (T_1 - T_2) + B \times$: 156/666]x10 ⁻⁶	
	Q= Treated Water		
	-	te of Turbidity and SS	=1.2 (0.8~1.5)
	T ₁ = Turbidity of R	•	V 1 - 2
	T ₂ = Turbidity after		
	B= Alum Feeding		
	~	}	ľ

Item				Total	System	
		Total number	-	drawal hopp		units and sludge will be luration is 60sec/times
		Accoding to th	-	pipe capacity	, sludge	withdrawal volume is
			vithdrawal vol		-	Osecx24unitsx24times/day
			al Sludge Con		•.	
			itorementioned ion Basin was d			concentration of sludge
		in Sedimentati W =	on basın was o 0.3 '		i lollows;	,
			0)	70		
(1) Back-wash Drain	age Bas	in de la compa				
Туре			Horizontal Flo	w		
Volume per Filter		Q1 =				cum
Volume per Filter	(New)	Q2 =				cum
Required Volume		V=				cum (30%Plus)
Number of Unit		N =				units (1 unit stand-by)
Dimension		Lm	x Wm	х D m		units
		34.5	12.4	3.0	1	
Effective Volume		V1 =			1,283	3 cum > 1,242cum
Return Pump		to receiving w	ell			
Pump Type		Sluge pump w	ith suction scr	ew		
Pump Capacity		Pump Capacit	y shall be suffi	cient to retui	n the ba	ck-washing water per 1 unit of fil
		up to raw wate	er receiving we	ell in 1hour.		
		m3	minuts	m3/min	units	3
	Q=	1,283	60	10.7	3	(1 unit stand-by)
			m3/min	m	kw	•
i i	P=	0.163	10.7	17.0	47	' =' 55kw
Sludge Pump		to Słudge Thio	ckener Tank			
Pump Type	;	Horizontal sha	ift non-clog typ	e sludge pun	np	:
Pump Capacity		Pump Capacit	y shall be suffi	cient to send	the back	-washing water sludge with volun
		valent to the ca	apacity of 1 un	it of Sludge	Thickene	er Tank in 1hour.
		m3	minuts	m3/min	units	
	Q =	201	60	3.3	2	(1unit stand-by)
			m3/min	m	kw	·
	P=	0.163	3.3	7.0	11.4	=' 15kw
(2) Sludge Thickener	Tank		1 - 1 - 1 - 1 - 1 - 1			
Type	* wing	Circular				
Required Area		Adopting the s	oild loading		20.0	kgDS/day
]		A=				sq m/unit
Number of Unit		No.				units
Required Volume	①	High turbidity	7 day storag	V=		cu m/tank
		Low turbidity		V=		cu m/tank
Dimensions (circul		Diameter	Depth			
(,	18.0	3.5			SNIP
Unit Effective Volu	ıme	UV=	2.2		890	cum > 867cum
Total Volume		TV=			1,780	
1	ì	A 1			~,100	

Item			Total	System	
Check (Concentration2%	Low turbidity	sludge			day > 150day
Check (Concentration4%					day > 7day
Surface Area	$A_1 =$	y shudge			sq m >221sq m/unit
	1	alvadas			
Check (Sond loading	Low turbidity	•			<20kgDS/sq m/day
	Hight turbidit	y sludge		17.3	<20kgDS/sq m/day
<i>a</i> , , , , ,					
Sludge Pump	to Sludge dry	_			
Pump Type	Horizontal sha			-	
Pump Capacity					ge Thickener Tank with volume e
	valent to the c	apacity of Slud	ge drying be	ed in 2 da	ys(one day 6 hours)
	m2	m	m3/min	units	
Q=	900	0.5	1.3	2	(1 unit stand-by)
		m3/min	m	kw	
P=	0.163	1.3	8.0	4.9	= 5.5kw
					,
(3) Sludge Drying Bed					
Туре	Rectangular,				
Cycle Time	All beds are of		ı year.		
Required Area	Adopting the s	oild loading		20.0	kgDS/sq m/time
	A=			5,293	sq m
Number of Unit	No.			6	units
Dimensions	Lm	x W m	x D m	cu m	
	45.0	20.0	1.0	900	
Effective Area	sq m	units			
Total Area=	900.0	6.0		5,400	sq m > 5,293m2
Check					< 20kgDS/sq m/time
	<u> </u>				·
(4) Drying Cake Yard	The state of the s			or other of the Step	
Type	Rectangular, 1	Horizontal Flov	V		
Number of Unit	No.			1	units
Dimensions			Lm	W m	
			30.0	20.0	
Effective Area	A =			600	sq m
Effective Volume	V =				cum/year
(5) Discharge Pool			Tolkin d		20 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Туре	Rectangular, H				
Required Volume	S.T.T 2,550m3/	day + S.D.B 45	0m3/day	3,000	m3/day
Retention Time	T=			8	hour
Required Volume	V =			1,000	cu m
Number of Unit	No.		•	2	units
Dimensions	Lm	x Wmx	H m	units	
	34.5	11.8	3.0	2	(1unit stand-by)
Effective Volume	$\mathbf{V}_1 =$				cum > 1,000cum
	•			•	
Sludge Pump	to WWTP man	hole]
Pump Type	Horizontal shaf	t non-clog type	sludge pun	ıp	Ĭ
					upernatant of 3,000m3 in one day
	m3	minuts	m3/min	units	· · · · · · · · · · · · · · · · · · ·
Q=	3,000	1,440	2.1		(1unit stand-by)
`	•	m3/min	m	kw	
P=	0.163	2.1	8.0		5.5kw
					·
· .					

II. Treatment Facilities for Sludge and Back-washing Water

1. Design Criteria upon Capacity Calculation

1.1 Design Turbidity

As design turbidity upon capacity calculation, four times of annual average turbidity will be applied. Since annual average turbidity in 2002 was degree, 3 degree in recent four years, 30 degree will be adopted as design turbidity.

1.2 Design Solid Volume and Sludge Volume

Design solid volume and sludge volume is tabulated in Table 1.1.

Table 1.1 Design Solid Volume and Sludge Volume

	Treated Water Volume (m³/day)	Turbidity (deg)	Alum Injection Rate (mg/L)	Solid Volume s (t-Ds/day)	Generated Sludge	Sludge Concentration (%)	Sludge Volume (m³/day)
Annual	87,750	5.0	7.5	0.58	S.B. Sludge	0.3	193
Average Turbidity	67,730	(3.0)	(4.74)	0.38	S.T.T. Sludge	2.0	29
In case of High	105,300	30	30.0	4.40	S.B. Sludge	0.3	1,468
Turbidity	105,500	(29)	(19.5)	4.40	S.T.T. Sludge	4.0	110
In case of Low	87,750	3.0	1.0	0.23	S.B. Sludge	0.3	77
Turbidity	07,750	(2.7)	(1.0)	0.25	S.T.T. Sludge	2.0	11.6

Note) S.B.: Sedimentation Basin, S.T.T.: Sludge Thickener Tank

() Actual operational rate.

1) So = Q x [k x (T_1-T_2) +B x 156/666] x 10^{-6}

Q: Treated Water Volume

k: Conversion rate of Turbidity and SS = 1.2 $(0.8 \sim 1.5)$

T₁: Turbidity of Raw Water

 T_2 : Turbidity after sedimentation = 1

B: Alum Injection Rate

2) Withdrawal Sludge Volume

Total number of sludge withdrawal hopper is 24 units and sludge will be withdrawn 24 times

in a day. Sludge withdrawal duration is 60 sec/time.

According to the withdrawal pipe capacity, sludge withdrawal volume is $q = 0.046 \text{ m}^3/\text{sec}$.

$$(\phi 250 \text{mm}, I=2.3 \text{m}/440 \text{m}=0.0052, Q=4.036 \text{ m}^3/\text{day}=0.046 \text{ m}^3/\text{sec.})$$

Daily sludge withdrawal volume = 0.046m³/sec x 60 min x 24 times/day x 24 units

 $= 1,600 \text{ m}^3/\text{day}$

3) Withdrawal Sludge Concentration

Based on the aforementioned calculation results, concentration of sludge in Sedimentation Basin was calculated as follows;

$$W = 4.4t$$
-DS/d x 1/1,600 m³/day x 100 = 0.3%

2. Capacity Calculation

2.1 Back-washing Drainage Basin

This tank will receive the back-washing water from Rapid Sand Filter and return the treated water to Raw Water Receiving Well. Necessary tank capacity shall be back-washing water volume per filter, adding 30% of that volume as allowance.

Back-washing drainage volume per filter (Existing WTP)

Back-washing $0.8 \text{ m}^3/\text{m}^2/\text{min } \times 106 \text{ m}^2/\text{filter } \times 7\text{min } \times 1 \text{ unit} = 594 \text{ m}^3$

Back-washing drainage volume per filter (New WTP)

Surface washing $0.15 \text{ m}^3/\text{m}^2/\text{min } \times 73.1 \text{ m}^2/\text{filter } \times 5 \text{ min } \times 1 \text{ unit} = 54.8 \text{ m}^3$

Back-washing $0.6 \text{ m}^3/\text{m}^2/\text{min x } 73.1\text{m}^2/\text{filter x } 7\text{min x } 1 \text{ unit} = 307 \text{ m}^3$

Sub Total = 361.8m³

Total $594 + 361.8 = 955.8 \text{ m}^3$

Accounting 30% of allowance, 1,242 m³ shall be adopted.

Dimension : W 12.4 m x L 34.5 m x H 3.0 m

No. of Units : 2 units (1 unit stand-by)

Capacity: 1,283 m³/unit x 2units

2.2.1 Return Pump (to Receiving Well)

Capacity: Pump capacity shall be sufficient to return the back-washing water per 1 unit of filter up to receiving well in 1 hours.

$$Q=1,283 \text{ m}^3/60 \text{min} = 10.7 \text{m}^3/\text{min} \times 3 \text{ units} \quad (1 \text{ unit stand by})$$

$$P = 0.163 \times 10.7 \text{m}^3/\text{min} \times 17 \text{m}/0.75 \times 1.2 = 55 \text{kw}$$

2.2.2 Sludge Pump (to Sludge Thickener Tank)

Capacity: Pump capacity shall be sufficient to send the back-washing water sludge with volume valent to the capacity of 1 unit of Sludge Thickener tank in 1 hours.

Q=201 m³/60min =
$$3.3$$
m³/min x 2 units (1 unit stand by)

$$P = 0.163 \times 3.3 \text{m}^3/\text{min} \times 8\text{m}/0.75 \times 1.2 = 15\text{kw}$$

2.3 Sludge Thickener Tank

This tank will store the sludge from Sedimentation Basin. Thickened sludge will be sent to Sludge Drying Bed.

Necessary Area: Adopting the solid loading of 20kgDS/m²/day;

$$A=4.4 kgDS/day \times 1/20 kgDS/d=220 m^2/tank$$

Necessary Capacity: 2 units of thickener tank will be needed. According to the following capacity calculation methods, larger capacity will be adopted.

a) Capacity equivalent to 7 days' storage volume against high turbidity sludge, concentration is 4 %;

$$4.4 \text{ t} - DS/day \times 1/0.04 \times 7 \text{ day} = 771 \text{ m}^3/tank$$

b) Capacity equivalent to 2.5 months' (150 days) storage volume against low turbidity sludge, concentration is 2 %

$$0.23 \text{ t -DS/day x } 1/0.02 \text{ x } 75 \text{day} = 867 \text{m}^3/\text{tank}$$

Therefore, tank capacity shall be 890m³/tank.

Dimension: Inner diameter 18.0m x effective depth 3.5 m

(Surface Area 254m²/tank)

Capacity:
$$890\text{m}^3 \times 2 \text{ tanks} = 1,780 \text{ m}^3$$

Check: In case of low turbidity sludge (concentration is 2 %)

 $t = 1,780 \text{m}^3/11.6 \text{m}^3/\text{day} = 154 \text{day} > 150 \text{day}$ OK

In case of high turbidity sludge (concentration is 4 %)

 $t = 1,780 \text{m}^3/110 \text{ m}^3/\text{day} = 16 \text{day} > 7 \text{day}$ OK

Surface Area: $A = 254m^2/tank$

Check (Solid Loading):

In case of low turbidity sludge

 $t = 230 \text{kgDS/day/}254 \text{m}^2/\text{tank} = 0.9 \text{kgDS/m}^2/\text{day} < 20 \text{ kgDS/m}^2/\text{day}$

In case of high turbidity sludge

 $t = 4,400 \text{kgDS/day/} 254 \text{m}^2/\text{tank} = 17.3 \text{kgDS/m}^2/\text{day} < 20 \text{ kgDS/m}^2/\text{day}$

2.3.1 Return Pump (to Sludge Drying Bed)

Type: Horizontal Shaft Non-clog Type Sludge Pump

Design Sludge Volume: Pump capacity shall be sufficient to send the thickened sludge with volume equivalent to the capacity of 1 unit of sludge drying bed in 2 days (1 day 6 hours)

 $Q = 900 \text{m}^2 \times 0.5 \text{ m/}12 \text{ hrs } \times 60 \text{ min} = 1.3 \text{m}^3/\text{min} \times 2 \text{ units (1 unit stand by)}$

 $P = 0.163 \times 1.3 \text{ m}^3/\text{min } \times 8 \text{ m}/0.4 \times 1.2 = 5.5 \text{kW}$

2.4 Sludge Drying Bed

Solid loading of 20 kgDS/m²/time is applied on Sludge Drying Bed. All beds are operated 2 times a year.

Necessary Area:

 $211,700 \text{kgDS/year} \times 1/20 \text{ kgDS/m}^2/\text{time} \times 1/2 \text{ times} = 5,293 \text{m}^2$

Dimension:

20.0 m x 45.0 m x 1.0 m (Effective Area 900m²)

Number of Beds:

6 beds

Capacity:

 $900 \text{ m}^2/\text{bed x } 6 \text{ beds} = 5,400 \text{ m}^2 < 5,293 \text{m}^2$

2.5 Sludge Cake Yard

This yard will store the dried sludge cake removed from sludge drying bed temporally before transportation by truck.

Dimension:

 $20 \text{ m} \times 30 \text{ m} = 600 \text{ m}^2$

Number of Yard:

1 unit

Capacity:

 $600 \text{m}^2 \text{ x} 0.5 \text{ m} = 300 \text{m} 3 > 212 \text{ m}^3/\text{year}$

 $(0.58t-DS/day \times 365days = 212m^3/year)$

2.6 Discharging Pool

Discharging pool will store the supernatant of sludge thickener tank and sludge drying bed.

Necessary Capacity: Sludge Thickener Tank 2,550m³ + Sludge Drying Bed 450m³ = 3,000m³

Retention time

8hr $(3,000 \text{ m}^3 \text{ x } 8/24=1,000 \text{ m}^3/\text{tank})$

Dimension

11.8 m x 34.5m x 3.0m

No. of Tank

2 tanks (1 unit stand by)

Capacity

 $1,221 \text{ m}^3/\text{tank} > 1,000 \text{ m}^3/\text{tank}$

2.6.1 Sludge Pump: (to WWTP manhole)

Pump Type: Horizontal Shaft Non-clog Type Sludge Pump

Design Capacity: Pump capacity shall be sufficient to pump stored supernatant of 3,000 m³ in one day.

 $Q = 3,000 \text{m}^3/24 \text{ hr x } 60 \text{ min} = 2.1 \text{m}^3/\text{min x 2units}$ (1unit stand-by)

 $P = 0.163 \times 2.1 \text{m}^3/\text{min} \times 8.0 \text{m}/0.75 \times 1.2 = 5.5 \text{kW}$

2.7 Water loss

Total Water loss: Sedimentation sludge 1,600m³+Back-wash water3,700 m³=5,300 m³

Percentage = $5,300 \text{m}^3/105,300 \text{ m}^3/\text{day} = 5\%$

Appendix A-5

Hydraulic Calculations for Water Treatment Plant

Hydraulic Calculation for Water Treatment Plant

0. Design condition

0.1 Water supply volume

Item		Water supp	ly volume		Remark
	Qsd	Qsh	Qsm	Qss	
	(m³/day)	(m³/hr)	_(m³/min)	(m³/sec)	
This project	100,000	4,167	69.44	1.157	
Existing	100,000	4,167	69.44	1.157	
Total	200,000	8,334	138.88	2.314	

0.2 Water treatment volume

A.5-1

Item		Qtd	:	
	Exist	This Project	Total	Remark
	(m³/day)	(m³/day)	(m³/day)	
Water supply volume	100,000	100,000	200,000	
Water volume consumed in WTP	5,000	5,000	10,000	5 %
Total	105,000	105,000	210,000	7
	≒ 105,000	= 105,000	⇒ 210,000	

Water treatment volume	Qtd (m³/day)	Qth (m³/hr)	Qtm (m³/min)	Qts (m³/sec)	Remarks
This Project	105,000	4,375	72.92	1.215	
Total	210,000	8,750	145.83	2.431	Distribution chamber

- Distribution chamber
- 1.1 Design Condition

1.1.1 Design flow

Total flow ${\rm Qtd}=$ 210,000 ${\rm m}^3/{\rm day}$ Unit number ${\rm N}=$ 1 chamber

Unit design flow Qud= 210,000 m³/day/chamber

Qus= 2.4306 m³/sec/chamber

1.1.2 Design water level

Water level at inlet

363.40 m

1.2 Head loss calculation

1.2.1 Baffle wall

Applied formula:

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameters		
Opening ratio	Ro	9.9 %
Width	w	10.2 m
Height	Н	7.4 m
Velocity coefficient	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	Vo	0.3253 m/sec
Head loss	h	$1/C^2 \times V^2/(2g) = 0.015 \text{ m}$
		Say 0.02 m

Water level after baffle wall

363.38 m

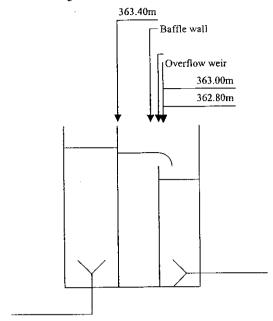
1.2.2 Suppressed-rectangular weir

Applied formula:

Q=C×H×h^{3/2}

C=1.785+(0.00295/h+0.237×h/H)×(1+ ϵ)

 ϵ =0 (H =< 1.0m)


 $\epsilon = 0.55 \times (H-1.0) (H>1.0m)$

Item	Symbol	Design	ied Value	
Parameters				
Weir width	Ww		3.00 m	
Weir height	Hw		7.00 m	
Weir number	N	2 weirs		
Calculation				
Unit flow	Qud	Qudw/N=	105,000 m ³ /day/weir	
Correction coefficient	€		3.3000	
Flow index	С		1.87267	
Calculated flow	Qc		$1.2155 \text{ m}^3/\text{sec}$	
Absolute error		Qus-Qc	$0.0002 \text{ m}^3/\text{sec}$	
Overflow depth	h _o	Refer to "Overflow weir"	0.3604	
Overflow depth		Say	0.36 m	
Clearance	h _{fb}		0.22 m	
Head loss	h	h _o +h _{fb} =	0.58 m	

Water level after Weir Weir level 362.80 m

...ok *

1.2.3 Water level drawing

2. Distribution Chamber - Receiving Well

2.1 Design Condition

2.1.1 Design flow

Total flow Qtd= $105,000 \text{ m}^3/\text{day}$ Unit number 1 line Unit Design flow Qud= $105,000 \text{ m}^3/\text{day}$ Qus= $1.2153 \text{ m}^3/\text{sec}$

(2) Design water level

Distribution Chamber 362.80 m

2.2 Head loss calculation

2.2.1 Connection pipeline

Applied formula:

 $h_i = I \times L$

I=10.666×C^{1.85}×D^{-4.87}×Q^{1.8} Hazen-Williams formula

1.5-

 $h_s = f_i \times v^2/(2g)$

Item	Symbol	D	esign value
Parameters			
Diameter	D		1,200 mm
Length	L		80.0 m
Velocity coefficient	С		130
Gravity acceleration	g		9.81 m/sec ²
Calculation			
Average velocity	v	:	1.0746 m/sec
Friction loss	h _f	Refer to "Pipeline"	0.062 m
Shape loss	h _s	Refer to "Pipeline"	0.130 m
Sum	h _p	h _f +h,=	0.192 m
		Sa	y 0.19 m
Clearance	h _{fb}		0.31 m
Head loss	h	h _p +h _{fb} =	0.50 m
	1	h _p +h _{fb} =	

Water level after connection pipeline

362.30 m

3. Receiving Well

3.1 Design condition

3.1.1 Design flow

Total flow $O(td=105,000 \text{ m}^3/\text{day})$ Unit number $O(td=105,000 \text{ m}^3/\text{day})$ Unit design flow $O(td=105,000 \text{ m}^3/\text{day})$ $O(td=105,000 \text{ m}^3/\text{day})$

3.1.2 Design water level

Distribution Pipeline

362.30 m

3.2 Head loss calculation

3.2.1 Baffle wall

Applied formula:

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Desi	gn value
Parameters			
Opening ratio	Ro		19.6 %
Width	w		4.2 m
Height	н		6.0 m
Velocity coefficient	С		0.6
Gravity acceleration	g		9.81 m/sec ²
Average velocity at opening	v	Qus/(W×H×Ro)=	0.1230 m/sec
Calculation			
Head loss	h	$1/C^2 \times V^2/(2g) =$	0.002 m
		App	0.00 m

Water level after baffle wall

362.30 m

4. Coagulation Basin

Design condition 4.1

Design flow 4.1.1

> 105,000 m³/day Design flow Qtd= Unit number N= 2 basins 52,500 m3/day/basin Unit design flow Qud=

0.6076 m³/sec/basin Qus=

4.1.2 Design water level

> Receiving Well 362.30 m

4.2 Head loss calculation

Suppressed-rectangular weir 4.2.1

Applied formula:

O=C×H×h^{3/2}

C=1.785+(0.00295/h+0.237×h/H)×(1+ ϵ)

 ϵ =0 (H =< 1.0m)

A.5-4

 ϵ = 0.55×(H-1.0) (H>1.0m)

Item	Symbol	Designed Value
Parameters		
Width	Ww	4.20 m
Height	Hw	5.30 m

Item	Symbol	Design	ed Value
Calculation			
Correction coefficient	E		2.3650
Velocity coefficient	С		1.86696
Calculated flow	Qc		$0.6078 \text{ m}^3/\text{sec}$
Absolute error		Qus-Qc=	$0.0002 \text{ m}^3/\text{sec}$
Overflow depth	h _o	refer to "Overflow weir"	0.1818 m
		Say	0.18 m
Clearance	h_{ℓ}		0.72 m
Head loss	h	h _o +h _i =	0.90 m

Water level after Weir

361.40 m

Weir level

362.10 m

...OK

4.2.2 Outlet orifice

Applied formula

 $h=I/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameter		
Width	Wo	1.00 m
Height	Но	1.00 m
Velocity coefficient	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	v	Qus/(Wo×Ho)= 0.6076 m/sec
Head loss	h	Qus/(Wo×Ho)= 0.6076 m/sec $1/C^2 \times v^2/(2g)$ = 0.052 m
		Say 0.05 m

Water level after outlet orifice

361.35 m

5.	Flocculation Basin				
5.1	Design condition				
5.1.1	Design flow				
	Total flow			Qtd=	105,000 m ³ /day
	Unit number			N=	6 basins
	Unit flow			Qud=	17,500 m³/day/basin
				Qus=	0.2025 m ³ /sec/basin
5.1.2	Design water level				
	Coagulation Basin				361.35 m
5.2	Head loss calculation				
5.2.1	Inlet channel				
	Required flow	Route	a-b	Rab=	3 basins
			b-c	Rbc=	2 basins
Ä			c-d	Rcd≕	1 basin
5-5	Route design flow	Route	a-b	Qrsab=	0.6075 m ³ /sec
			b-c	Qrsbc=	$0.4050 \text{ m}^3/\text{sec}$

c-d

 $0.2025 \text{ m}^3/\text{sec}$

Qrscd=

Applied formula:

 $h=L/v^2/(C^2/R)$ $C^2=R^{1/3}/n^2$

Munning's formula

Item	Symbol	Design value
Parameters		
Distance each section	La-b	5.90 m
	Lb-c	9.60 m
	Lc-d	9.60 m
Channel width	Wa-b	2.00 m
	Wb-c	2.00 m
	Wc-d	2.00 m
Channel height	Ha-b	4.35 m
	Hb-c	4.35 m
	Hc-d	4.35 m
	Hd-e	4.35 m
roughness coefficient	n	0.015
gravity acceleration	g	9.81 m√sec²
Calculation		
Average velocity	Va-b	0.0698 m/sec
	Vb-c	0.0466 m/sec
	Vc-d	0.0233 m/sec
Head loss	ha-b	$L/v^2/(C^2/R) = 0.000 \text{ m}$
	hb-c	$L/v^2/(C^2/R) = 0.000 \text{ m}$
	hc-d	$L/v^2/(C^2/R) = 0.000 \text{ m}$
	Sum	0.000 m
		Say 0.00 m

Water level at downstream side

361.35 m

5.2.2 Inlet orifice

Applied formula

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameters		
Width	Wo	. 0.60 m
Height	Но	0.60 m
Flow index	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	v	Qus/(Wo×Ho)= 0.5625 m/sec $1/C^2 \times v^2/(2g)$ = 0.045 m
Head loss	h	$1/C^2 \times v^2/(2g) = 0.045 \text{ m}$
•		Say 0.05 m

Water level after outlet orifice

361.30 m

A.5-6

5.2.3 Flocculation baffle wall

Refer to Section 5.3

Head loss

0.503 m

Say

0.50 m

Water level after 6th baffle wall

360.80 m

5.2.4 Outlet baffle wall

Applied formula

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameters		
Opening ratio	Ro	6.0 %
Width	w	9.0 m
Height	H	4.0 m
Flow index	C	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		·
Average velocity at opening	v	Qrs/(W×H×Ro)= 0.0938 m/sec
Head loss	h	$Qrs/(W \times H \times Ro) = 0.0938 \text{ m/sec}$ $1/C^2 \times V^2/(2g) = 0.001 \text{ m}$
		Say 0.00 m

Water level after Outlet baffle wall

360.80 m

5.3 Flocculation baffle wall (zigzag flow)

5.3.1 Design Condition

5.3.1.1 Total flow

Qtd=

105,000 m³/day

Qts=

1.215 m³/sec

Unit number

6 basins

Unit flow

17,500 m³/day/basin

Qud= Qus=

0.2025 m³/sec/basin

5.3.1.2 Design water level

Water level at inlet point

361.30 m

-5.3.2 Head loss calculation

Applied formula

 $G = [\rho \times g \times h_T/(\mu \times Tr; GT = 23,000 - 210,000]$

 $h_T = \mu \times V \times G^2 / (\rho \times g \times Q)$

h_T=ho+hc

n_T=nc

ho=fo×vo²/(2g) hc=L×n²×vc²/R^{4/3}

5.3.2.1 Parameters

Item	Symbol	Unit	Formula	1st stage	2nd stage	3rd stage	Total
Flow	Qus	m³/sec		0.2025	0.2025	0.2025	
Channel width	Wc	m		1.20	1.50	2.30	
Channel depth	Dc	m		9.00	9.00	9.00	
Bottom level	Hb	m			0.00	0.00	
Baffle wall depth	Db	m		0.15	0.15	0.15	
Divided number	N	-		7	7	7	
Primary channel width	Wpr	m		2.55	1.30	1.30	
Intermediate channel width	Wi	m		1.10	1.10	1.10	
Post channel width	Wpo	m		1.30	1.30	1.30	
Upstream end water depth	Dwu	m		361.300	360.901	360.822	
Downstream end water depth	Dwb	m		360.901	360.822	360.797	
Average water depth	Dwa	m		361.101	360.862	360.810	
Designed average water depth	Dw	m		4.00	3.76	3.71	
Downstream end water level	Lw	m	Hb+Dwb=	360.901	360.822	360.797	
Flow index	С	-		0.6	0.6	0.6	
Roughness coefficient	n	-		0.015	0.015	0.015	
Gravity acceleration	g	m/sec ²		9.81	9.81	9.81	
Volume	V	m³		71.88	84.60	128.89	285.37
Retention times	Trm	min		5.92	6.96	10.61	23.49

Trs sec	355	418	637 1,410
---------	-----	-----	-----------

5.3.2.2 Head loss calculation

Item	Symbol	Unit	Formula	1st stage	2nd stage	3rd stage	Total
Head loss at Baffle	1						
Baffle number	N	-		11	12	12	l
Open width	Wo	m		0.10	0.25	0.45	
Velocity	vo	m/sec	Qus/(Wor×Dw)=	0.506	0.215	0.121	
Friction coefficient	fo	-	1/C ² =	2.78	2.78	2.78	
Head loss	ho	m	fo×vo²/(2g)=	0.399	0.079	0.025	
Head loss at channel						i. <u> </u>	
Length	Lc	m		14.75	17.25	21.45	
Hydraulic radius	Rc	m		0.4835	0.4798	0.4790	
Velocity	vc	m/sec		0.046	0.0490	0.0496	
Head loss	hc	m	$L \times n^2 \times vc^2/R^{4/3} =$	0.000	0.000	0.000	
Total head loss	h _T	m		0.399	0.079	0.025	0.503
G value, GT value							
Water temperature : 0 °C							
Density of water	ρ	kg/m³		999.9	999.9	999.9	
viscosity	μ	10 ⁻³ kg/m/sec		1.792	1.792	1.792	
G value	G_0	sec	[ρ×g×h ₇ /(μ×Trs)] ^{1/2}	78	32	15	44
GT value	GT_0	-	$G_0 \times Trs$	27,690	13,376	9,555	62,040
Water temperature : 20 °C							
Density of water	ρ	kg/m³		998.2	998.2	998.2	
viscosity	μ	10 ⁻³ kg/m/sec		1.002	1.002	1.002	
G value	G ₂₀	sec-1	[ρ×g×h _T /(μ×Trs)] ^{1/2}	105	43	20	59
GT value	GT ₂₀	-	G ₂₀ ×Trs	37,275	17,974	12,740	83,190

6. Sedimentation Basin

6.1 Design condition

6.1.1 Design flow

Total flow Qtd= $105,000 \text{ m}^3/\text{day}$

Qds= $1.2153 \text{ m}^3/\text{sec}$

Unit number Ro= 6 basins
Unit flow Qud= 17,500 m³/day/basin

Qus = $0.2025 \text{ m}^3/\text{sec/basin}$

6.1.2 Design water level

Flocculation Basin 360.80 m

6.2 Head loss calculation

6.2.1 Inlet baffle wall

Applied formula:

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameters		
Opening ratio	Ro	17.7 %
Width	w	9.0 m
Height	н	4.0 m
Velocity coefficient	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	v	$Qus/(W\times H\times Ro) = 0.0318 \text{ m/sec}$
Head loss	h	Qus/(W×H×Ro)= 0.0318 m/sec $1/C^2 \times v^2/(2g)$ = 0.000 m
		Say 0.00 m

Water level after inlet baffle wall

360.80 m

6.2.2

1st Intermediate baffle wall

Applied formula:

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameters		
Opening ratio	Ps	17.7 %
Width	w	9.0 m
Height	Н	4.0 m
Velocity coefficient	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	v	Qus/(W×H×Ro)= 0.0318 m/sec
Head loss	h	Qus/(W×H×Ro)= 0.0318 m/sec $1/C^2 \times v^2/(2g)$ = 0.000 m
		Say 0.00 m

Water level after 1st intermediate baffle wall

360.80 m

6.2.3 2nd Intermediate baffle wall

Applied formula:

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value		
Parameters				
Opening ratio	Ps	17.7 %		
Width	W	9.0 m		
Height	Н	4.0 m		
Velocity coefficient	С	0.6		
Gravity acceleration	g	9.81 m/sec ²		
Calculation				
Average velocity at opening	v	$Qus/(W\times H\times Ro)= 0.0318 \text{ m/sec}$		
Head loss	h	Qus/(W×H×Ro)= 0.0318 m/sec $1/C^2 \times v^2/(2g)$ = 0.000 m		
		Say 0.00 m		

Water level after 2nd intermediate baffle wall

360.80 m

A.5-9

6.2.4 Outlet baffle wall

Applied formula:

$$h = 1/C^2 \times v^2/(2g)$$

Item	Symbol	Design value
Parameters		
Opening ratio	Ps	17.7 %
Width	w`	9.0 m
Height	Н	4.0 m
Velocity coefficient	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	v	Qus/(W×H×Ro)= 0.0318 m/sec
Head loss	h	Qus/(W×H×Ro)= 0.0318 m/sec $1/C^2 \times v^2/(2g)$ = 0.000 m
		Say 0.00 m

Water level after Outlet baffle wall

360.80 m

A.5-10

6.2.5 Outlet trough

Applied formula:

Thomas-Camp formula

 $h=(2hc^2+(hc-iL/3)^2)^{1/2}-2/3\times iL$

Item	Symbol	Design value	
Parameters			
Trough length	Lt	4.20 m	
Trough width	Wt	0.35 m	
Trough height	Ht	0.35 m	
Trough number	N '	6 troughs	
Collecting orifice diameter	Do	40 mm	
Collecting orifice interval	Io	150 mm	
Orifice number	No	Lt/(Io/1000)= 56 orifices/troug	
Velocity coefficient	С	0.6	
Coefficient	α	1.1	
Gravity acceleration	g	9.81 m/sec ²	
Inclination of Trough	i	0 ‰	

Item	Symbol	Desig	gn value
Calculation	_		
(a) Head loss at orifice			
Overflow per a trough	Qot	Qus/Nt=	0.0338 m3/sec/trough
Overflow per a orifice	Qoh	Qot/No=	6.0357 ×10 ⁻⁴ m ³ /sec/orifice
Outlet velocity per a orifice	vo	Qoh/(3.14/4×(Do×10 ⁻³) ²)=	0.4805 m/sec/orifice
Head loss at orifice	ho	$1/C^2 \times vo^2/(2g) =$	0.033 m
		Say	0.03 m
(b) Head loss at collecting trough			
Critical depth at downstream	hc	$(\alpha \times \text{Qot}^2/(g \times \text{Wt}^2))^{1/3} =$	0.102 m
end		Say	0.10 m
Water depth at upstream end	hu	(2hc ² +(hc-i×Lt/3) ²) ^{1/2} -2/3×i	L t
		=	0.177 m
		Say	0.18 m

Orifice level (Ho)= Water level at Post baffle wall - ho= 360.77 m Bottom level of trough (Htb)= Ho-(hu+htfb) 360.50 m Clearance of collecting trough (htfb)= 0.09 m Water level at upstream end of trough = Htb+hu= 360.68 m Water level at downstream end of trough = Htb+hc= 360.60 m Upper level of Trough (Htu) = Htb+Ht= 360.85 m Outlet channel clearance depth (Hoccd)= 0.30 m Water level at upstream end of outlet channel =Htb-Hoccd= 360.20 m

6.2.6 Outlet channel

Applied formula:

It shall be calculated as a open channel flow with side inflow (inlet angle is 90 degree). Water depth (h), at x meter from downstream side with continuously a side inflow, expresses " $dx^2/dh=x^2/h-(g/b^2/(\alpha/q^2)\times h^2)$ ". Therefore, $f(h)=g\times Wc^2/(2\alpha\times q^2)\times h^3-C\times h+x^2=0$

Item	Symbol	Design value		
Parameters		•		·
Outlet channel length	Lc	57.00 m		
Outlet channel width	Wc		2.00 m	
Outlet channel bottom level			355.80 m	
Coefficient	α		1.1	
Gravity acceleration	g		9.81 m/sec	2
Calculation				
Inlet flow from side	q	Qrs/L=	$0.0213 \text{ m}^3/\text{sec}$	c/m
Outlet channel water depth				
(downstream end)	Hc		4.40 m	
Water depth at x meter from	f(h)	$g\times Wc^2/(2\alpha\times q^2)\times h^3-C\times h+x^2$		
downstream end		$= 39,313.99 \text{ h}^3-\text{C}\times\text{h}+\text{x}^2(\text{a})$		h+x²(a)
Water depth at downstream end				
(x=0)	h(0)		4.400 m	
Coefficient	С	(a)	761,857.26	(b)
Water depth at upstream end				
(x = Lc)	h(Lc)	(a),(b)	4.402 m	
Head loss	h	h(0)-h(Bc)=	0.002	
		Say	0.00 m	

Water level at downstream side of outlet canal

360.20 m

7.	Sedimentation Basin - Rapid Sa	and Filter			
7.1	Condition				
7.1.1	Design flow				
	Total flow			Qtd=	105,000 m ³ /day
	Route number				1 route
	Route flow	•		Qrd=	105,000 m³/day/route
				Qrs=	1.2153 m ³ /sec/route
7.1.2	Design water level				
	Water level at downstream	end of outlet	channel		360.20 m
7.2	Head loss calculation				
7.2.1	Distribution channel				
	Required flow for filter	Section	a-b	Na-b=	12 filters
			b-c	Nb-c≔	6 filters
A.3-12	.		c-d	Nc-d	5 filters
Į	• •		d-e	Nd-e	4 filters
	•		e-f	Ne-f	3 filters
			f-g	Nf-g=	2 filters
			g-h	Ng-h=	1 filter
	Each section flow	Section	a-b	Qsa-b=	$1.2153 \text{ m}^3/\text{sec}$
			b-c	Qsb-c≃	$0.6077 \text{ m}^3/\text{sec}$
			c-d	Qsc-d=	0.5064 m ³ /sec
			d-e	Qsd-e=	$0.4051 \text{ m}^3/\text{sec}$
				Qse-f≕	$0.3038 \text{ m}^3/\text{sec}$
	•		f-g	Qsf-g≔	$0.2026 \text{ m}^3/\text{sec}$
			g-h	Qsg-h=	$0.1013 \text{ m}^3/\text{sec}$
	Applied formula :	h=L/v²/(C C²=R ^{1/3} /n		Munning t	formula

Item	Symbol	Design value
Parameter		
Length each section	La-b	18.40 m
	Lb-c	9.75 m
	Lc-d	9.60 m
	Ld-e	8.15 m
	Le-f	8.15 m
	Lf-g	8.15 m
	Lg-h	8.15 m
Channel width	Wa-b	2.00 m
	Wb-c	. 2.00 m
	Wc-d	2.00 m
	Wd-e	2.00 m
	We-f	2.00 m
	Wf-g	2.00 m
	Wg-h	2.00 m
Channel height	Ha-b	1.70 m
	Hb-c	1.70 m
	Hc-d	1.70 m
·	Hd-e	1.70 m
	He-f	1.70 m
	Hf-g	1.70 m
	Hg-h	1.70 m
Roughness coefficient	n	0.015
Gravity acceleration	g	9.81 m/sec ²

Item	Symbol		Des	ign value	
Calculation					
Average velocity	Va-b			0.3574	m/sec
	Vb-c			0.1787	m/sec
	Vc-d			0.1489	m/sec
	Vd-e			0.1191	m/sec
	Ve-f			0.0894	m/sec
	Vf-g			#DIV/0!	m/sec
	Vg-h			0.0298	m/sec
Head loss	ha-b	$L/v^2/(C^2/R)=$		0.000	m
	hb-c	$L/v^2/(C^2/R)=$		0.000	m
	hc-d	$L/v^2/(C^2/R)=$		0.000	m
	hd-e	$L/v^2/(C^2/R) =$		0.000	m
	he-f	$L/v^2/(C^2/R)=$		0.000	m
	hf-g	$L/v^2/(C^2/R)=$		#DIV/0!	m
	hg-h	$L/v^2/(C^2/R)=$		0.000	m
No.	Sum			0.000	m
			Say	0.00	m

Water level at downstream side

360.20 m

7.2.2 Inlet part head loss

Filter number		12 filters
Simaltanious backwash filter number		l filter
Suspended filter number at backwashing period		l filt er
Operated filter number under backwashing process		10 filters
Unit flow	Qud=	10,500 m ³ /day
	Qus=	$0.1215 \text{ m}^3/\text{sec}$

a) Inlet siphon

Design flow

Section a-b

Qusa-b=

 $0.1215 \text{ m}^3/\text{sec}$

Applied formula:

 $h=L/v^2/(C^2/R)$ $C^2=R^{1/3}/n^2$

Munning formula

Item	Symbol		Design value
Parameters			
Length	La-b		4.22 m
Width	Wa-b		0.65 m
Height	Ha-b		0.30 m
Inlet friction coefficient	fi		1.0
Outlet friction coefficient	fo		1.0
Roughness coefficient	n		0.015
Gravity acceleration	g		9.81 m/sec ²
Calculation			
Average velocity	va-b		0.6075 m/sec
Head loss by siphon channel	hc	$L/v^2/(C^2/R)=$	0.000
Inlet head loss	hi	$fi \times v^2/(2g) =$	0.019 m
Outlet head loss	ho	$fo \times v^2/(2g) =$	0.019 m
Sum	hs	hc+hi+ho=	0.038 m
			Say 0.04 m
Clearance	h _{fb}		0.04 m
Head loss	h	hs+h _{th} =	0.08 m

Water level at downstream side

360.12 m

b) Inlet weir

Applied formula:

Q=C×H×h^{3/2}

C=1.785+(0.00295/h+0.237×h/H)×(1+ ϵ)

 $\epsilon = 0 \ (H = < 1.0m)$

 ϵ = 0.55×(H-1.0) (H>1.0m)

Item	Symbol	Designed Value	
Parameters			
Width	Ww	1.50 m	
Height	Hw	1.50 m	
Calculation			
Correction coefficient	ε	0.2750	
Flow index	, c	1.84028	
Calculated flow	Qc	0.1216 m ³ /s	ec
Absolute error		Qus-Qc= 0.0000 m ³ /s	ec
Overflow depth	h _o	Refer to "Overflow weir" 0.1247	
>		Say 0.12 m	
Clearance Head loss	h _{fb}	0.25 m	
Head loss	h	$h_0 + h_{fb} = 0.37 \text{ m}$	

Water level after Weir Weir level

359.75 m 360.00 m

...ОК.

c) Inlet pipeline

Applied formula:

 $h_f = I \times L$

 $I=10.666\times C^{1.85}\times D^{-4.87}\times Q^{1.85}$

Hazen-Williams formula

 $h_s = f_i \times v^2/(2g)$

Item	Symbol	De	sign value
Parameters			· •••
Diameter	D		500 mm
Length	L		4.0 m
Velocity coefficient	С		130
Gravity acceleration	g		9.81 m/sec ²
Calculation			
Average velocity in pipe	v		0.9305 m/sec
Head loss at straight	h _f	Refer to "Pipeline"	0.003 m
Head loss by shape	h _s	Refer to "Pipeline"	0.034 m
Sum of head loss	h _p	h _f +h _s =	0.037 m
•		Say	0.04 m
Clearance	h _{fb}		0.01 m
Head loss	h	$h_p + h_{fb} =$	0.05 m

Water level after connection pipeline 359.70 m ...OK Filter HWL 359.70 m

8. Rapid sand filter

8.1 Condition

8.1.1 Design flow

Total flow	Qtd=	105,000 m³/day
Filter number		12 filters
Simultaneous backwash filter number		1 filter
Suspended filter number at backwashing period	•	1 filter
11.0		

Inlet flow to each filter shall be calculated at the backwashing period.

Operated filter number under backwash proces	Operated	filter	number	under	backwash	process
--	----------	--------	--------	-------	----------	---------

10 filters

Unit flow

Qud= $10,500 \text{ m}^3/\text{day}$

Qus = $0.1215 \text{ m}^3/\text{sec}$

8.1.2 Design water level

G	
High water level	359.70 m
Effective water depth	3.80 m
Filter surface level	355.90 m

8.2 Head loss calculation

a) Initial head loss by filter media

Applied formul h= $\Sigma(0.178\times C_D/g\times Lv^2/\epsilon^4\times \alpha/\beta\times L/D)$

Fair-Hatch Formula

 $Re = \rho_F \times D \times Lv/\mu$

C_D: 24/Re

(Re<1)

 $24/Re + 3/Re^{1/2} + 0.34$

(Re>=1)

Calculated at temperature = 15°

ltem	Symbol		Designed Value
Parameters			
Width	\mathbf{w}_{t}	1	5.8 m
Length	L _f		12.6 m
Filter area	Ar	W _f ×L _f =	73.08 m ²
Density	$ ho_{ m F}$		$1,000 \text{ kg/m}^3$
Viscosity	μ	•	1.002 10 ⁻³ kg/m/sec
Gravity acceleration	g		9.81 m/sec ²
Filtration velocity	Lv	Qus/A _f =	0.0017 m/sec

a-1) Head loss by filter media

Filter media

İ	Filter	HMD	Depth	Re number	Coefficient	Porosity	Shape coefficient	Head loss
Į		D(10 ⁻³ m)	L(m)	Re	C _D	€	α/β	h(m)
L	Sand	0.60	0.700	1.018	26.8890	0.35	5.5	0.603
	HMD : Harmor	nic mean diam	eter				Sum(h1)	0.603

a-2) Head loss by gravel

Calculated head loss as same as filter media

Filter	HMD	Depth	Re number	Coefficient	Porosity	Shape coefficient	Head loss
	D(10 ⁻³ m)	L(m)	Re	C_D	€	ο/β	h(m)
1st Gravel	2.0	0.100	3.3932	9.0416	0.35	5.5	0.009
2nd Gravel	5.0	0.100	8.4830	4.1992	0.35	5.5	0.002
3rd Gravel	9.0	0.100	15.2695	2.6795	0.35	5.5	0.001
4th Gravel	16.0	0.100	27.1457	1.7999	0.35	5.5	0.000
IMD : Harmor	nic mean diame	ter			· · · · · · · · · · · · · · · · · · ·	Sum(h2)	0.012

b) Under drain

b-1) Collecting orifice

Applied formula $h=1/C^2\times v^2/(2g)$

Item	Symbol		Design value
Parameters			
Channel length	Lc	İ	12.60 m
Channel number	Nc		16 channels
Collecting orifice diameter	Do		12 mm
Collecting orifice interval	lo		75 mm
Orifice number	No		1,008 pieces/channel
Orifice area	Ao		0.11 m ² /channel
Velocity coefficient	С		0.6
gravity acceleration	g		9.81 m/sec ²
Calculation			
Average velocity at orifice	v	Qus/(Ao×Nc)=	0.0690 m/sec/orifice
Head loss	h3	$Qus/(Ao \times Nc) = 1/C^2 \times v^2/(2g) =$	0.001 m

b-2) Underdrain channel

Applied formula:

 $h=L/v^2/(C^2/R)$

Munning's formula

 $C^2 = R^{1/3}/n^2$

Item	Symbol		Design value
Parameters			
Number	Nc		16 channels
Length	Lc		13.2 m
Width	Wc		0.20 m
Height	Hc		0.24 m
Roughness coefficient	п		0.015
Calculation			
Unit section area	A	Nc×Wc=	0.048 m^2
Wetted perimeter	S	(Wc+Hc)×2=	0.88 m
Hydraulic radius	R	A/S=	0.0545 m
Average velocity	v	Qus/A=	0.1582 m/sec
>	C ²	$R^{1/3}/n^2=$	1685.0637
Head loss	h4	$L/v^2/(C^2/R)=$	0.017 m

b-3) Underdrain outlet opening

Applied formula:

 $h=f\times v^2/(2g)$

Item	Symbol		Design value
Parameters			*
Gate width	Wg		2.40 m
Gate height	Hg	· ·	0.24 m
Number	N		2 openings
Inlet friction coefficient	fi		0.5
Outlet friction coefficient	fo		1.0
Gravity acceleration	g		9.81 m/sec ²
Calculation			
Average velocity at Gate	v	Qus/(Wg×Hg×N)=	0.1055 m/sec
Inlet head loss	hi	$f_i \times v_i^2/(2g) =$	0.000 m
Outlet head loss	ho	$fo \times v^2/(2g) =$	0.001 m
Head loss	h5	hi+ho=	0.001 m

b-4) Outlet gate

Applied formula:

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol		Design value	
Parameters				
Width	Wg		0.60 m	
Height	Hg		0.60 m	
Number	N		2 gates	
Velocity coefficient	С		0.6	
Gravity acceleration	g		9.81 m/sec ²	
Calculation				
Average velocity at opening	v	Qus/(Wg×Hg×N)=	0.1688 m/sec	
Head loss	h6	$1/C^2 \times v^2/(2g) =$	0.004 m	

Total	h=h1+h2+h3+h4+h5+h6=		0.638 m	
		Say	0.64 m	
Initial effectiv	ve head loss		1.16 m	
Water level a	t outlet of rapid sand filter		357.90 m	OK

- 9. Rapid sand filtration (Backwash process)
- 9.1 Design condition
- 9.1.1 Design Flow 0.60 m³/m²/min Maximum backwash flow Qbm≔ Coefficient œ 1.0 73.08 m² Filter area Af= 0.7308 m³/sec Design flow (Qbm×α×Af/60) Qus= Qud= 63,141 m³/day 0.0100 m/sec Backwash velocity Lvb≕
- 9.1.2 Design water level

Inlet Channel 357.90 m

1-C.4

9.2 Head loss calculation

9.2.1 Backwash inlet gate

Applied formula $h=f\times v^2/(2g)$

Item	Symbol		Design value		
Parameters					
Gate width	Wg		0.60 m		
Gate height	Hg	1	0.60 m		
Number	N		2 gates		
Inlet friction coefficient	fi		0.5		
Outlet friction coefficient	fo		1.0		
Gravity acceleration	g		9.81 m/sec ²		
Calculation					
Average velocity at Gate	v	$Qus/(Wg\times Hg\times N)=$	1.0150 m/sec		
Inlet head loss	hi	$fi \times vi^2/(2g) =$	0.026 m		
Outlet head loss	ho	$fo \times v^2/(2g) =$	0.053 m		
Sum	h1	hi+ho=	0.079 m		

Under drain and Filter media 9.2.2

1) Underdrain inlet opening

Applied formula

 $h=f\times v^2/(2g)$

Item	Symbol	Design value		
Parameters			· · · · · · · · · · · · · · · · · · ·	
Opening width	Wg		2.40 m	
Opening height	Hg		0.24 m	
Number	N		2 openings	
Inlet friction coefficient	fi		0.5	
Outlet friction coefficient	fo		1.0	
Gravity acceleration	g	9.81 m/sec ²		
Calculation			•	
Average velocity at Gate	v	Qus/(Wg×Hg×N)=	0.6344 m/sec	
Inlet head loss	hi	$fi \times vi^2/(2g) =$	0.010 m	
Outlet head loss	ho	$fo \times v^2/(2g) =$	0.021 m	
Sum	h2	hi+ho=	0.031 m	

2) Underdrain channel

Applied formula:

h=fi× v^2 /(2g) h=L× v^2 /(C²/R) C²⁼R^{1/3}/n²

Item	Symbol		Design value
Parameters			-
Channel length	Lc		12.60 m
Channel Width	Wc		0.20 m
Channel Height	Hc		0.24 m
Number	N	· ·	16 channels
Equivalent length	Le	Lc/2=	6.30 m
Inlet friction coefficient	fi		0.5
Roughness coefficient	n		0.015
Gravity acceleration	g		9.81 m/sec ²
Calculation			
Section area	Α	We×Hc=	0.048 m^2
Wetted perimeter	s	(Wc×Hc)×2=	0.88 m
Hydraulic radius	R	A/R=	0.0545 m
Average velocity	v	Qus/(A×N)=	0.9516 m/sec
Inlet head loss	hi	$fi \times v^2/(2g) =$	0.023 m
Inside channel head loss	hc	$C^{2}=R^{1/3}/n^2=$	1685.06
		$Le\times v^2/(C^2/R)=$	0.000 m
Sum	h3	hi+hc=	0.023 m

3) Collecting orifice

Applied formula

Item	Symbol		Design value
Parameters			
Channel length	Lc		12.60 m
Channel number	Nc	1	16 channels
Collecting orifice diameter	Do		12 mm
Collecting orifice interval	Io		75 mm
Orifice number	No		1,008 pieces/channel
Orifice area per a channel	Ao	$3.14/4 \times Do^2 \times No=$	0.114 m ² /channel
Velocity coefficient	С		0.6
Gravity acceleration	g	:	9.81 m/sec ²
Calculation			
Average velocity at opening	v	Qus/(Ao×Nc)=	0.4007 m/sec
Head loss	h4	$Qus/(Ao \times Nc) = 1/C^2 \times v^2/(2g) =$	0.023 m
L		<u> </u>	

4) Gravel

 $h = \Sigma(0.178 \times C_D/g \times Lv^2/\epsilon^4 \times \alpha/\beta \times L/D)$ Applied formula:

Fair-Hatch formula

 $Re = \rho F \times D \times Lv/\mu$

C_D: 24/Re

(Re<1)

 $24/Re + 3/Re^{1/2} + 0.34$

(Re>=1)

Item	Symbol	Designed Value
Parameters		-
Density of water	ρF	$1,000.0 \text{ kg/m}^3$
Viscosity	μ	0.001 kg/m/sec
Gravity acceleration	g	9.81 m/sec ²
Back wash velocity	Lv	0.0100 m/sec

Filter	HMD	Depth	Re number	Coefficient	Porosity	Shape coefficient	Head loss
	D(10 ⁻³ m)	L(m)	Re	C _D	ϵ	α/β	h(m)
1st Gravel	2.0	0.100	20.00	2.2108	0.35	5.5	0.074
2nd Gravel	5.0	0.100	50.00	1.2443	0.35	5.5	0.017
3rd Gravel	9.0	0.100	90.00	0.9229	0.35	5.5	0.007
4th Gravel	16.0	0.100	160.00	0.7272	0.35	5.5	0.003
HMD : Harmon	nic mean diam	eter				Sum(h5)	0.101

5) Filter media

Applied formula: $h=L(1-\epsilon)(\rho s-\rho_F)/1,000$

Item	Symbol	Designed Value	
Parameters			
Filter layer depth	L	0.70 m	
Porosity	ε	0.35	
Dencity of sand	$ ho_{\rm s}$	2,600 kg/m ³	
Dencity of water	$ ho_{ m F}$	1,000 kg/m³	
Calculation			
Head loss	h6	$L(1-\epsilon)(\rho_s-\rho_F)/1,000=$ 0.728 m	

Sum	h=h1+h2+h3+h4+h5+h6=		0.984 m	
		Say	0.98 m	
Water level	1		356.92 m	ОК
n Trough upp	per level + Critical depth for drain =		356.72 m	

9.2.3 Backwash water drain trough

Filter layer surface level

355.90 m

Distance between filter surface and trough upper level

0.80 m

Trough upper level

356.70 m

1) Collecting trough inlet

Calculate as overflow weir.

Applied formula:

Q=C×H×h^{3/2}

C=1.785+(0.00295/h+0.237×h/H)×(1+ ϵ)

 ϵ =0 (H =< 1.0m)

 ϵ = 0.55×(H-1.0) (H>1.0m)

Item	Symbol	Designed Value
Parameters		
Trough length	Lt	6.05 m
Trough width	Lw	0.50 m
Trough height	Lh	0.35 m
Trough number	N	10 troughs
Distance between Filter surface level and Trough upper side level	w	0.80 m
Inlet flow	Qts	Qus/(N×2)= $0.0365 \text{ m}^3/\text{sec/side}$
Calculation		
Correction coefficient	€	0.0000
Flow index	С	1.92919
Calculated flow	Qc	0.0365
Absolute error		Qc-Qts= 0.0000 m ³ /sec
Overflow depth	h1	refer to "Over flow weir" 0.0214
		Say 0.02 m

Weir inlet water level

356.72 m

Drain Channel upper level

356.85 m

...OK

2) Collecting trough

Applied formula:

 $hc = (\alpha \times Q^2/(g \times Wt^2))^{1/3}$

Thomas-Camp formula

Freefall at bottom stream end

Item	Symbol	Desi	gned Value
Parameters			
Trough length	Lt		6.05 m
Trough width	Wt		0.50 m
Trough height	Ht	1	0.35 m
Trough number	Ln		10 troughs
coefficient	α		1.1
Gravity acceleration	g		9.81 m/sec^2
Inclination of trough	i		0.0 ‰
Calculation			
Unit Trough flow	Q	Qus/N=	0.0731 m ³ /sec/trough
Critical depth	he	$(\alpha \times Q^2 / (g \times Wt^2))^{1/3} =$	0.134 m
▶		App	0.13 m
Water depth at upstream end	d hu	$(2hc^2 + (hc - iL/3)^2)^{1/2} - 2/3$	$3 \times iL$
.21		=	0.232 m
		Say	0.23 m
Clearance			0.34 m

Trough bottom level = Trough top level - trough depth =	356.35 m
Trough upstream end water level = Trough bottom level + upstream end water depth =	356.58 m
Trough downstream end water level = Trough bottom level + hc =	356.48 m
Drainage channel unstream end water level = Trough hottom level - Clearance =	356.01 m

3) Drainage channel

Applied formula:

It shall be calculated as a open channel flow with side inflow (inlet angle is 90 degree). Water depth (h), at x meter from downstream side with continuously a side inflow, expresses " $dx^2/dh=x^2/h-(g/b^2/(c/q^2)\times h^2)$ ". Therefore, $f(h)=g\times Wc^2/(2c/q^2)\times h^3-C\times h+x^2=0$

Item	Symbol		De:	sign value	
Parameters					
Drainage channel length	Lc			13.55 m	
Drainage channel width	Вс			1.5 m	
Drainage channel water depth	Hc			1.41 m	
Drainage channel Bottom level				354.60 m	
Coefficient	α			1.1	
Gravity acceleration	g	9.81 m/sec ²			
Calculation					
Inlet flow from side	, q	Qrs/L		0.0539 m ³ /sec	/m
Water depth at distance(x)	f(h)	g×Wc²/(2α×q	2)× h^{3} -C× h + x^{2}		
			=	3,453.44 h ³ -C×	1+x²(a)
Water depth at downst	ŀ	ļ			
(x=0)	h (0)			1.410 m	
Coefficient	С	(a)	6,996.00		(b)
Water depth at upstream end					
(x = Lc)	h(Lc)	(a),(b)		1.423 m	
Head loss	h	h(0)-h(Bc)=		0.013	
			Say	0.01 m	

Downstream end water level = Upstream end water level - h =

4) Outlet siphon

Applied formula:

 $h=L/v^2/(C^2/R)$

Munning's formula

 $C^2=R^{1/3}/n^2$

	Item	Symbol	1	Design value
Pa	rameters			
	Length	La-b		13.55 m
	Width	Wa-b		0.75 m
	Depth	Ha-b		0.90 m
	Inlet friction coefficient	fi		0.9
	Outlet friction coefficient	fo		0.7
	Roughness coefficient	n		0.015
	Gravity acceleration	g		9.81 m/sec ²
Ca	Mculation			
	Average velocity	va-b		1.0747 m/sec
	Head loss by syhon channel	hc	$L/v^2/(C^2/R) =$	0.001 m
	Inlet head loss	hi	$f_i \times v_i^2/(2g) =$	0.053 m
Þ	Outlet head loss	ho	$fo \times v^2/(2g) =$	0.041 m
A.5-22	Sum	hs		0.095 m
13				Say 0.10 m
	Clearance	h _{fb}		0.00 m
	Head loss	h	hs+h _{fb} =	0.10 m

Water level after siphon

355.90 m

9.2.4 Drainage channel

1) Channel

Applied formula:

 $h=L/v^2/(C^2/R)$

Munning's formula

 $C^2=R^{1/3}/n^2$

Item	Symbol	I	Design value
Parameters			
Length	La-b		18.40 m
	Lb-c		10.00 m
Channel width	Wa-b		2.80 m
	Wb-c		2.00 m
Channel Bottom Level	Hba-b		354.40 m
	Hbb-c		354.40 m
Channel height	Ha-b		1.50 m
	Нъ-с		1.50 m
Roughness coefficient	· n		0.015
Gravity acceleration	g		9.81 m/sec ²
Calculation			·
Average velocity	va-b		0.1744 m/sec
	vb-c		0.2444 m/sec
Head loss	ha-b	$L/v^2/(C^2/R)=$	0.000 m
	hb-c	$L/v^2/(C^2/R)=$ $L/v^2/(C^2/R)=$	0.000 m
Sum	h1		0.000 m
		Say	0.00 ma

2) Suppressed-rectangular weir

Applied formula:

Q=C×H×h^{3/2}

C=1.785+(0.00295/h+0.237×h/H)×(1+ ϵ)

 ϵ =0 (H =< 1.0m)

 ϵ = 0.55×(H-1.0) (H>1.0m)

Item	Symbol	Designe	d Value
Parameters			
Width	w		2.00 m
Height	Н		1.20 m
Calculation			
Correction coefficient	ε		0.1100
Velocity coefficient	С	1	.86858
Calculated flow	Qc		0.7308 m ³ /sec
Absolute error		Qc-Qus=	0.0000 m ³ /sec
Overflow depth	. h _w	Refer to "Overflow weir"	0.3369
		Say	0.34 m
Clearance	h _{fb}		0.10 m
.5 -23	h2	$h_w + h_{tb} =$	0.44 m

Sum	h=h1+h2=	0.44 m
Water lev	el after Weir	355.46 m
Weir leve	l	355.60 m

10. Rapid Sand Filter - Chlorination Basin

10.1 Design condition

10.1.1 Design flow

g /-		
Total flow	Qtd=	100,000 m ³ /day
	Qts=	$1.1574 \text{ m}^3/\text{sec}$
Filter number		12 filters
Backwashing filter number		l filter
Suspended filter number at backwashing period		l filter
Operated filter number under backwashing process		10 filter
Unit flow	Qud=	10,000.0 m ³ /day/filter
	Qus≔	0.1157 ma ³ /sec/filter

357.90 m

10.1.2 Design water level

Outlet end of Rapid sand Filter

10.2 Head loss calculation

10.2.1 Outlet channel

Section flow	Section a-b	Qsa-b=	0.2315 m ³ /sec
	b-c	Qsb-c=	$0.4630 \text{ m}^3/\text{sec}$
	c-d	Qsc-d=	$0.6944 \text{ m}^3/\text{sec}$
	d-e	Qsd-e=	$0.8102 \text{ m}^3/\text{sec}$
	e-f	Qse-f=	1.0417 m ³ /sec
	for	Osf-o=	1 2731 m ³ /sec

Applied formula:

$$h = L / v^2 / (C^2/R)$$

Munning's formula

$C^2 = R^{1/3}/n^2$

Item	Symbol	Design value	_
Parameters			
Length	La-b	10.00 m	
	Lb-c	10.00 m	
	Lc-d	10.00 m	
>	Ld-e	10.00 m	
A.5-24	Le-f	10.00 m	
4	Lf-g	10.00 m	
Section area	Aa-b	10.29 m	
	Ab-c	10.29 m	
	Ac-d	10.29 m	
	Ad-e	10.29 m	
	Ae-f	10.29 m	
	Af-g	10.29 m	
Wetted perimeter	Sa-b	12.00 m	
	Sb-c	12.00 m	
	Sc-d	12.00 m	
	Sd-e	12.00 m	
	Se-f	12.00 m	
	Sf-g	12.00 m	
Roughness coefficient	n	0.015	
Gravity acceleration	g	9.81 m/sec ²	

Item	Symbol	Des	sign value
Calculation			
Average velocity	va-b		0.0225 m/sec
	vb-c		0.0450 m/sec
	vc-d		0.0675 m/sec
	vd-e		0.0787 m/sec
	ve-f		0.1012 m/sec
	vf-g		0.1237 m/sec
Head loss	ha-b	$L/v^2/(C^2/R) =$	0.000 m
	hb-c	$L/v^2/(C^2/R) =$	0.000 m
	he-d	$L/v^2/(C^2/R) =$	0.000 m
	hd-e	$L/v^2/(C^2/R) =$	0.000 m
	he-f	$L/v^2/(C^2/R) =$	0.000 m
	hf-g	$L/v^2/(C^2/R) =$	0.000 m
	Sum		0.000 m
		Say	0.00 m

Water level at downstream end of channel

357.90 m

10.2.2 Outlet weir at end of Rapid sand filter

Weir type

Suppressed-rectangular weir

Applied formula:

O=C×H×h^{3/2}

 $C=1.785+(0.00295/h+0.237\times h/H)\times(1+\epsilon)$

 ϵ =0 (H =< 1.0m)

 ϵ = 0.55×(H-1.0) (H>1.0m)

ltem	Symbol	Designed Value	
Parameters			
Width	Ww	1.50 m	
Height	Hw	3.10 m	
Number	N	10 weirs	
Calculation			
Unit flow	Qus	Qds/N= 0.1157 m ³ /sec/weir	
Correction coefficient	E	1.1550	
Flow index	С	1.85287	
Calculated flow	Qc	0.1519 m ³ /sec	
Absolute error		Qus-Qc= 0.0362 m ³ /sec	
Absolute error Overflow depth	h _o	refer to "Overflow weir" 0.1440	
(A		Say 0.14 m	
Clearance	h _{fb}	• 0.26 m	
Head loss	h	$h_0 + h_{fb} = 0.40 \text{ m}$	

Water level after Weir	357.50 m	
Weir level	357.76 m	OK

10.2.3 Outlet channel

Applied formula:

 $h=L/v^2/(C^2/R)$ $C^2=R^{1/3}/n^2$ Munning's formula

Item	Symbol	Design value
Parameters		
Length	La-b	31.80 m
Width	Wa-b	2.45 m
Height	Ha-b	2.90 m
Roughness coefficient	n	0.015
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity	va-b	0.1630 m/sec
Head loss	ha-b	$L/v^2/(C^2/R) = 0.000 \text{ m}$
		Say 0.00 m

Water level at downstream end

357.50 m

10.2.4 Outlet orifice

Applied formula

 $h=1/C^2 \times v^2/(2g)$

Item	Symbol	Design value
Parameters		
Width	Wo	3.00 m
Height	Ho	2.70 m
Velocity coefficient	С	0.6
Gravity acceleration	g	9.81 m/sec ²
Calculation		
Average velocity at opening	v	Qds/(Wo×Ho)= 0.1429 m/sec
Head loss	h	Qds/(Wo×Ho)= 0.1429 m/sec $1/C^2 \times v^2/(2g)$ = 0.003 m
		say 0.00 m

Water level after outlet orifice

357.50 m

11. Chrolination Basin

11.1 Design condition

11.1.1 Design flow

Total flow $Qdd= 105,000 \text{ m}^3/\text{day}$ Unit number 1 channel Design unit flow $Qud= 105,000 \text{ m}^3/\text{day/channel}$

Qus= 1.2153 m³/sec/channel

(2) Design water level

Inlet end of Chrolination Basin 357

357.50 m

11.2 Head loss calculation

11.2.1 Channel

A.5-26

Applied formula:

 $hc=L\times v^2/(Cc^2/R)$

Munning's formula

 $Cc^2 = R^{1/3}/n^2$ ht=ft×v²/(2g)

Item	Symbol	Design value	
Parameters			
Width	w	3.00 m	
Channel width	Wc	3.80 m	
Length	L	48.00 m	
Wall depth of baffle wall	DЪ	0.20 m	
Turn number	Nt	12	
Channel bottom level	Hcb	354.40 m	
Opening width	Wo	1.00 m	
Velocity coefficient	С	0.6	
Loss coefficient by turn	ft	$1/C^2 = 2.8$	
Roughness coefficient	n	0.015	
Gravity accelaration	g	9.81 m/sec ²	

Item	Symbol	<u></u>	Desi	ign value
Calculation				
Upstream water depth	Dwu			3.100 m
Downstream water depth	Dwd			2.815 m
Average water depth	Dwa			2.958 m
Design average water depth	Ddw			2.98 m
Average velocity at opening	vt			0.4078 m/sec
Average velocity at channel	vc			0.1073 m/sec
Section area	Α			11.32 m ²
Wetted perimeter	S			9.76 m
Hydraulic radius	R			1.1598 m
Channel length	L			50.00 m
	Cc ²	R ^{1/3} /n ²⁼		4,669.59
Head loss by turn	ht	$N \times ft \times vt^2/(2g) =$		0.285 m
Head loss by channel	hc	$L/v^2/(Cc^2/R)=$		0.000 m
	Sum			0.285 m
	h		Say	0.29 m
Clearance	h _{fb}			0.01 m
Head loss	ħ			0.30 m

Water level at downstream end of channel

357.20 m

11.2.2 Outlet orifice

Applied formula $h=1/C^2 \times v^2/(2g)$

Symbol	Design value
-	
Wo	3.00 m
Но	2.70 m
С	0.6
g	9.81 m/sec ²
v	Qus/(Wo×Ho)= 0.1500 m/sec
h	Qus/(Wo×Ho)= 0.1500 m/sec $1/C^2 \times v^2/(2g)$ = 0.003 m
	Say 0.00 m
	Wo Ho C g

Water level after outlet orifice

357.20 m

12. Chrolination Basin - Distribution Reservoir

12.1 Design condition

12.1.1 Design flow

Total flow	Qtd=	105,000 m ³ /day
Route number		1 route
Design flow per a route	Qrd=	105,000 m ³ /day/route
	Qrs=	1.2153 m ³ /sec/route

12.1.2 Design water level

Outle end of Chlorination Basin

357.20 m

12.2 Head loss calculation

12.2.1 Connection pipeline

Applied formulary:

h,≔l×L

A.5-27

 $I = 10.666 \times C^{1.85} \times D^{-4.87} \times Q^{1.85}$

Hazen-Williams formulary

 $h_s = ft \times v^2/(2g)$

Item	Symbol	Design value	
Coefficient			
Diameter	D		1,200 mm
Length	L		14.0 m
Velocity coefficient	С		110
Gravity acceleration	g		9.81 m/sec ²
Calculation			
Average velocity	V		0.9305 m/sec
Friction loss	h _f	Refer to "Pipeline"	0.019 m
Shape loss	h _s	Refer to "Pipeline"	0.092 m
Sum	h _p	h _s +h _i =	0.111 m
		Say	0.11 m
Clearance	h _e		0.09 m
Total	h	$h_p + h_c =$	0.20 m

Water level after connection pipeline Distribution Reservoir HWL

357.00 m

...OK

357.00 m

Sedimentation Basin - Thickener

13.1 Design condition

13.1.1 Design flow

13.

Drainage flow		$2,200 \text{ m}^3/\text{day}$
Drainage period		48 times/day
Drainage time		10 min
Route number	•	l route
Design flow per time	Qus=	0.0764 m ³ /sec/time
	Qud=	6,601 m ³ /day/time

13.1.2 Design water level

Sedimentation Basin LWL-500	356.80 m
Thickener HWL+500	354.50 m

13.2 Head loss calculation

13.2.1 Drainage pipeline

Applied formular:

Hazen-Williams

h=10.666×C^{-1.85}×D^{-4.87}×Q^{1.85}×L

Item	Symbol		Design value
Coefficient			
Diameter	D	Da-b	250 mm
Length	L	La-b	440.0 m
Flow index	C		110
Gravity accerelation	g		9.81 m/sec ²
Calculation			
Average velocity	v		0.932 m/sec
Friction loss	h_f		2.244 m
Shape loss	h _s		0.000 m
Sum	h	$h_t + h_s =$	2.244 m

Outlet water level

354.500

...OK

14. Rapid Sand Filter - Wash Drain Basin

14.1 Design condition

14.1.1 Design flow

Unit Drainage flow

63,141 m3/day/time

0.7308 m3/sec/time

14.1.2 Design Water Level

Backwash drainage channel

355.46 m 353.80 m

Washing Drain Basin HWL

14.2 Head loss calculation

14.2.1 Drainage pipeline

> Applied formular:

Hazen-Williams

 $h=10.666\times C^{1.85}\times D^{-4.87}\times O^{1.85}\times L$

A.5-28

Item	Symbol		Des	sign value	
Coefficient					
Diameter	D	Da-b		1,000 mm	
Length	L	La-b		30.0 m	
Flow index	С			110	
Gravity accerelation	g			9.81 m/sec ²	
Calculation					
Average velocity	ν			1.520 m/sec	
Friction loss	$h_{\rm f}$			0.770 m	
Shape loss	h _s			0.000 m	
Sum	h	h _f +h _s =		0.770 m	
			App	0.77 m	

Outlet water level

354.69 m

...OK

15. Washing Drain Basin - Distribution Basin

15.1 Design Condition

15.1.1 Design Flow

 $\begin{array}{ccc} \text{Distribution flow} & & 1,284 \text{ m}^3\text{/time} \\ \text{Distribution time} & & 60 \text{ min} \\ \text{Unit number} & & 1 \text{ line} \end{array}$

Unit number
Unit flow

Qus=

0.3567 m³/sec

Qud=

30,819 m³/day

15.1.2 Design Water Level

Washing Drain Basin LWL Distribution Basin HWL 349.50 m 363.40 m

15.2 Head Loss Calculation

15.2.1 Pipeline

Applied formular:

Hazen-Williams

 $h=10.666\times C^{1.85}\times D^{-4.87}\times Q^{1.85}\times L$

Item	Symbol	De	sign value
Coefficient			
Diameter	D	Da-b	600 mm
Length	L	La-b	615.0 m
Flow index	С		110
Gravity accerelation	g		9.81 m/sec ²
Calculation			
Average velocity	v		0.641 m/sec
Friction loss	h _f		0.554 na
Shape loss	h _s		0.000 m
Pump loss	h _p		3.000 m
Sum	h	h _f +h _s +h _p =	0.554 m
		App	3.55 m

Required pump head

19.000 m

Outlet water level

364.947 m

. . . OK

16. Thickener - Dischrage Pool

Design Condition 16.1

16.1.1 Design Flow

> Inlet flow into Thickener Outlet flow to Sludge Drying Bed

Outlet flow to Discharge Pool

Unit number

Unit flow

Qud= Qus=

 $1,300.0 \text{ m}^3/\text{day}$

0.0150 m³/sec

2,200 m³/day

1,300 m³/day

1 line

 $900 \text{ m}^3/\text{day}$

16.1.2 Design Water Level

Thickener HWL

Discharge Pool HWL

353.30 m 350.50 m

16.2 Head loss Calculation

16.2.1 A.5-29 Pipeline

Applied formular:

Hazen-Williams

 $h=10.666\times C^{-1.85}\times D^{-4.87}\times O^{1.85}\times L$

Item	Symbol	Design value				
Coefficient						
Diameter	D	Da-b	200 mm			
Length	L	La-b	60.0 m			
Flow index	С		130 -			
Gravity accerelation	g		9.81 m/sec ²			
Calculation						
Average velocity	v	Refer to "Pipeline"	0.478 m/sec			
Friction loss	h _f	Refer to "Pipeline"	0.084 m			
Shape loss	h _s	Refer to "Pipeline"	0.022 m			
Pump loss	h _p		3.000 m			
Sum	h	$h_l + h_s + h_p =$	3.106 m			

Required pump head

Inlet water level at Discharge Pool

8.500 m

358.694 m

...OK

Thickener - Sludge Drying Bed

17.1 Design Condition

17.1.1 Design Flow

Required Sludge Flow

Design Sludge Flow per time

Pump operation time

900 m³/day 12 hr/day

1,800 m³/day Qrd $0.0208 \text{ m}^3/\text{sec}$ Qrs

Design Water Level 17.1.2

Thickener LWL

350.50 m

Sludge Drying Bed WL

363.40 m

17.2 Head loss Calculation

17.2.1 Pipeline

Applied formular:

Hazen-Williams

 $h=10.666\times C^{-1.85}\times D^{-4.87}\times Q^{1.85}\times L$

Item	Symbol	Design value				
Coefficient						
Diameter	D	Da-b	200 mm			
Length	L	La-b	60.0 m			
Flow index	С		130			
Gravity accerelation	g		9.81 m/sec ²			
Calculation .						
Average velocity	v		1.783 m/sec			
Friction loss	\mathbf{h}_{f}	Refer to "Pipeline"	1.373 m			
Shape loss	h_s	Refer to "Pipeline"	0.251 m			
Pump loss	h_p		3.000 m			
Sum	h	$h_f + h_s + h_p =$	4.624 m			
		App	4.62 m			

Required pump head

20.00 m

Inlet water level at Sludge Drying Bed

365.88 m

...OK

Sludge Drying Bed - Discharge Pool

18.1 Design Condition

18.1.1 Design Flow

450 m³/day Total flow 1 line Unit number 450 m³/day Unit flow Qud= 0.0052 m³/sec Qus=

18.1.2 Design Water Level

> Sludge Drying Bed WL 351.00 m 350.50 m Discharge Pool HWL

18.2 Head loss Calculation

18.2.1 Pipeline

Applied formular:

Hazen-Williams

h=10.666×C^{-1.85}×D^{-4.87}×Q^{1.85}×L

A.5-30

Item	Symbol	Design value				
Coefficient						
Diameter	D	Da-b	200 mm			
Length	L	La-b	60.0 m			
Flow index	С		130			
Gravity accerelation	g		9.81 m/sec ²			
Calculation						
Average velocity	v	Refer to "Pipeline"	0.166 m/sec			
Friction loss	h _f	Refer to "Pipeline"	0.012 m			
Shape loss	h _s	Refer to "Pipeline"	0.001 m			
Sum	h	h _f +h _s =	0.013 m			
		Арр	0.01 m			

Inlet water level at Discharge Pool

350.99 m

...OK

19. Discharge Pool - Manhole

Design Condition 19.1

19.1.1 Design Flow

> 3,000 m3/day Total flow 1 line Unit number $3,000 \text{ m}^3/\text{day}$ Qud= Unit flow 0.0347 m³/sec Qus=

19.1.2 Design Water Level

> 347.50 m Discharge Pool LWL 350.00 m Manhole WL

Head loss Calculation 19.2

19.2.1 Pipeline

Applied formular:

Hazen-Williams

 $h = 10.666 \times C^{-1.85} \times D^{-4.87} \times Q^{1.85} \times L$

			sign value
D	Da-b		200 mm
L	La-b		25.0 m
С			110
g			9.81 m/sec ²
٧			1.100 m/sec
h_{ℓ}			0.028 m
h _s			0.000 m
h _p			3.000 mg
h	h _f +h _s +h _p =		3.028 m
		Арр	3.03 m
	L C g	L La-b C g v h _f h _s h _p	L La-b C g v h _r h _s h _p h h _f +h _s +h _p =

Required pump head

Inlet water level at Discharge Pool

8.000 ma 352.47 m

...OK

Head loss at pipeline

h=|×L Hazen-Williams formula |=10.666×C^{1.85}×D^{-1.87}×Q^{1.85} Applied formula

Distribution Chamber - Receiving Well 1.

1.1 Designed flow

Section	Flow
A-B	105,000 m ³ /day

1.2 Head loss calculation

Friction	loss					C=	130 9.81	m/sec²		
			Flo	w	Pipe Diameter	Length	Velocity of		Head loss	
រែក	terface / Sec	ction	Q		D	L	ν	1	h	Remarks
			(m³/sec)	_(m³/dav)	(mm)	(m)	(m/sec)	(%)	(m)	
	A									
A		В	1.2153	105,000.0	φ 1,200	80.0	1.0746	0.7731	0.062	
	В		1					•		
Sub-tota					1					
Route	A-B					80.0			0.062	

			D	iameter	Number	Friction	Quantity		Velocity	Head loss	
	Items			D	N	f	Q		v	h	Remarks
				(mm)	(-)		(m³/sec)	(m³/day)	(m/sec)	(m)	
A-B			φ	1,200			1.2153	105,000.0	1.0746		
	Inlet		φ	1,200]	0.250	1.2153	105,000.0	1.0746	0.015	
•	Bend	90°	φ	1,200	2	0.260	1.2153	105,000.0	1.0746	0.031	
		} J°1/4	φ	1,200	2	0.026	1.2153	105,000.0	1.0746	0.003	
	Distributio	×ф1200	φ	1,200	1	0.060	1.2153	105,000.0	1.0746	0.004	
	Valve	Gate	φ	1,200	1	0.300	1.2153	105,000.0	1.0746	0.018	Ful) open
	Outlet		φ	1,200	1	1.000	1.2153	105,000.0	1.0746	0.059	
	Sum									0.130	
Sub-total											•
Route	A-B									0.130	
				Total	Friction loss	+ shape loss				0.192	

Applied formula

h=l×L Hazen-Williams formula i=10.666×C^{1 85}×D^{-4,87}×Q^{1,85}

61

- inlet pipeline (Rapid sand filter) 2.
- 2.1 Design Flow

Section	Flow
A-B	10,500 m ³ /day

2.2 Head loss calculation

(i) Friction loss					C= g=	130 9.81	m/sec²		
interface	/ Section	Flor Q (m³/sec)	w (m²/day)	Pipe Diameter D (mm)	Length L (m)	Velocity v (m/sec)	Hydraulic gradient I (%)	Head loss h (m)	Remarks
A	В	0.1215				0.6188		0.003	
Sub-total Route A-B					4.0			0.003	

(2) Shape Loss

lien	Items		meler D	Number	Friction	Qua	nti1y	Velocity v	Head loss	Remarks
			าก)	(-)		(m³/sec)	(ITP ³ /day)	(m/sec)	(m)	
A-B		6	500			0.1215	10,500.0	0.6188		
inlet		14	500	1	0.500	0.1215	10,500.0	0.6189	0.010	
Bend	90°	ø	500	1	0.220	0.1215	10,500.0	0.6189	0.004	
Outlet		φ	500	ì	1.000	0.1215	10,500.0	0.6189	0.020	
Sum									0.034	
Sub-total										
Coute A-B		1							0.034	
		T	ota)	Friction loss	+ shape loss				0.037	

Interface / Section

3.1 Design flow

Section	Flow
A-B	105,000.0 m ³ /day

3.2 Head loss calculation

(I) Friction loss

			C=	130		٠	
			g≒	9.81	m/sec ²		
Flo	w	Pipe Diameter	Length	Velocity	Hydraulic gradient	Head loss	
Q		D	L	ν	1	h	Remarks
(m³/sec)	(m /day)	(mm)	(m)	(m/sec)	(%)	(m)	
1.2153	105,000.0	φ 1,200	25.0	1.0746	0.7731	0.019	
	1	Ī	- 1				
;			25.0			0.019	

Route (2) Shape Loss

Sub-total

Items	D		Number F	Friction f	Quantity Q		Velocity v	Head loss	Remarks
	(m	rs)	(-)		(m³/sec)	(m³/day)	(m/sec)	(m)	
A-B_	φ	1,2001			1.2153	105,000.0	1.0746		
Inlei	φ	1,200	1	0.250	1.2153			0.015	
Valve Gate	ø	1,200	1	0.300	1.2153	105,000.0	1.0746	0.018	Full Open
Outlet	φ	1,200	I	1.000	1.2153	105,000.0	1.0746		
Sum						1		0.092	

Head loss at pipeline

h=t×t. Hazen-Williams formula l=10.666×C^{1.85}×D^{-4.87}×Q^{1.25}

63

Sedimentation Basin - Thickener

4.) Design Flo

K	JW		
	Section	Flow	
i	A-B	6,601.0	m³/day

	Head Joss calculation								
1)	Friction loss				C=	130		2**	9.81 m/sec ²
		Flow		Pipe Diameter	Length	Velocity	Hydraulic gradient	Head loss	
	Interface / Section	Q	!	i D		į v	1 1	h	Remarks
		(m³/sec) (r	n ³ /day)	(mm)	(m)	(m/sec)	(%)	(m)	
	A								
	A . B	0.0764	6,601.0	φ 150	140.0	4.3234	115.7083	16.199	
	В.				i				
4	Sub-total								
- 1	Route A-B	1	i		140.0			14 180	

Konte	A-B			<u>_</u>			140.01	1		16.199	9
Shape L	-056										
			D	iameter	Number	Friction	Qua	ntity	Velocity	Head loss	
	Items		1	D	N	ſ		2	v	h	Remarks
				(mm)	. (-)		(m³/sec)	(m³/day)	(m/sec)	(m)	
A-B			4	150			0.0764	6,601.0	4.3234		
	Inlet		6	150		0.250	0.0764	6,601.0	4.3234	0.238	
	Suddenly	expansion	ø	150	Ö	0.000	0.0764	6,601.0	4.3234	0.000	
	Suddeniy	reduction	φ	150	0	0.000	0.0764	6,601.0	4.3234	0.000	
	Graduall	y expansion	9	150	0	0.000	0.0764	6,601.0	4.3234	0.000	
		y reduction	φ	150	0	0.000	0.0764	6,601.0	4.3234	0.000	
	Bend	90°	φ	150	4	0.000	0.0764	6,601.0	4.3234	0.000	
		45°	φ	150	Ö	0.000	0.0764	6.601.0	4.3234	0.000	
		22"1/2	φ	150	0	0.000	0.0764	6,601.0	4.3234	0.000	
		11°1/4	φ.	150	0	0.000	0.0764	6,601.0	4.3234	0.000	
	Elbow	90°	φ.	150	0	0.986	0.0764	6,601.0	4.3234	0.000	
		45°	φi	150	0	0.183	0.0764	6,601.0	4.3234	0.000	
		22°1/2	φ:	150	0	0.039	0.0764	6,601.0	4.3234	0.000	
		1)*1/4	φ,	150	. 0	0.009	0.0764	6,601.0	4.3234	0.000	
	Distribut		ф:	! 50	. 0		0.0764	6,601.0	4.3234	0.000	
	Combina	tion	ø	150	0.		0.0764	6,601.0	4.3234	0.000	
	Valve	Gate	φ	150	3	1.000	0.0764	6,601.0	4.3234	2.858	Full Open
		Check	φ.	150	0	0.500	0.0764	6,601.0	4.3234	0.000	
	Outlet		φ	150	1	1.000	0.0764	6,601.0	4.3234	0.953	
	Sum									4.049	
Sub-total Coute	A-B									4.049	
			1	otal F	riction loss	- chane loca				20.248	

h=l×L Hazen-Williams formula l=10.666×C^{3.85}×D^{4.87}×Q^{1.85}

A.5-32

- Sedimentation Basin Washing Drain Basin
- Design flow

Sectio	п.	Flow	
A-B		63,141	m³/day

5.2 Head loss calculation

(1) Friction loss

Interface / Section		Flo	W	Pipe Diameter D	Length L	Velocity v	m/sec* Hydraulic gradient	Head loss	Remarks	
			(m³/sec)	(m³/day)	(mm)	(m)	(m/sec)	(‰)	(m)	
	A									
Α	-	В	0.7308	63,141.0	φ 1,000	30.0	0.9305	0.7332	0.022	
L	В									
Sub-total	1									
Route	A-B		j			30.0			0.022	

(2) Shape Loss

			Di	arneter	Number	Friction	Quar	ntity	Velocity	Head loss	
	kems			D ; N		N 1 _	Q j		v	l h	Remarks
<u> </u>			(пип)	(-) i		(m ³ /sec)	(m³/day), l	(m/sec)	(m)	
			4_								
A-B			φ	1,000	1		0.7308	63,141.0	0.9305		
	Injet		φi	1,000	1	0.250	0.7308	63,141.0	0.9305	0.011	
	Bend	90°	φ l	1,000	2]	0.240	0.7308	63,141.0	0.9305	0.021	
	Valve	Gate	φ	1,000	-	0.300	0.7308	63,141.0	0.9305	0.013	Full open
L	Outlet		φ:	1,000		1.000	0.7308	63,141.0	0.9305	0.044	
	Sum									0.089	
Sub-total											
Route	A-B		1							0.089	
				Total	Friction loss	+ shape loss				0.111	

Head loss at pipeline

Applied formula

h=l×L Hazen-Williams formula [=10.666×C^{1.85}×D^{-4.87}×Q^{1.85}

65

- 6. Rapid Sand Filter - Wash Drain Basin
- 6.1 Design Flow

Section	Flow
A-B	63,141 m ³ /day

Head loss calculation

(1) Friction loss

130

			Flo	w		Pipe	g= Length	9.81 Velocity	m/sec ² Hydraulic	Head loss	
Int	erface / Se	ction	Q (m³/sec)	(m³/day)	Diameter D (mm)		L (m)	v (m/sec)	gradient I (‰)	h (m)	Remarks
	Α.		(iii racc)	(III /Qay)	-	(3.5.5)	(111)	(110300)	(706)	1411	
A	-	В	0.7308	63,141.0	φ	1,000	30.0	0.9305	0.7332	0.022	
	В										
Sub-total			ĺ			į					
Route	A-B		1			İ	30.0			0.022	

(2) Shape Loss

	liems		Number	mber Friction	Qua	ntity	Velocity	Head loss	
l			N	ļ f	l Q		v	h i	Remarks
			i (-)		(m³/sec)	(m³/day)	(m/sec)	(m)	
A-B		φ 1,00	o .		0.7308	63,141.0	0.9305		
	inlet	φ 1,00	0 1	0.250	0.7308	63,141.0	0.9305	0.011	
	Bend 90°	φ 1,00	0 1	0.240	0.7308	63,141.0	0.9305	0.011	
	Outlet	ф 1,00	0 1	1.000	0.7308	63,141.0	0.9305	0.044	
	Sum							0.066	
Sub-total									•
Route	A-B	_ L						0.066	
		Tota}	Friction los	s + shape loss				0.088	

Head loss at pipeline

- Wash Drain Basin Distribution Chamber
- Design Flow

. 1049	
Section	Flow
500000	
A.P.	30 240 0 3/4
73-62	50,2 толо 111 /Дау

7.2 Head loss calculation

(1)	Friction	loss					C=	130	<u>F</u>	9.81	m/sec ²
				Flo	w	Pipe Diameter	Length	Velocity	Hydraulic gradient	Head loss	
	lnı	erface / Se	ction	Q		D	L	v	- 1	h	Remarks
				(m /sec)	(m³/day)	(mm)	(m)	(m/sec)	(%)	(m)	
i	l	A			i		1				
	_ A		В	0.3500	30,240.0	φ 500	250.0	1.7825	5.4922	1.373	
		В									
	Sub-total										
	Route	A-B			J		250.0			1,373	
2)	Shape Lo	220									

Quantity Velocity Head loss Items D N Q. (m/sec) 1.7825 A-B 0.3500 30,240.0 0.3500 30,240.0 0.3500 30,240.0 6 0.040 0.250 1.7825 Suddenly expansion φ Suddenly reduction φ Gradually expansion φ 0.000 0.000 1.7825 500 500 500 500 500 0.3500 30,240.0 0.3500 30,240.0 0.000 0.000 1.782 0.000
 Gradually reduction
 φ

 Bend
 90°
 φ

 45°
 φ
 0.000 0.3500 30,240.0 0.220 0.3500 30,240.0 1.7825 0.000 φ φ D.3500 30,240.0 0.000 0.3500 30,240.0 0.3500 30,240.0 0.000 0.06 1.7825 500 500 11°1/4 0.018 1.7825 Elbow 90° 0.3500 30,240.0 0.3500 30,240.0 0.986 0.000 ø 500 0.183 1.7825 0.000 500 500 500 22°1/2 0.039 0.3500 30,240.0 0.000 11°1/4 0.3500 30,240.0 0.3500 30,240.0 φ 1.7825 1.7825 0.009 0.000 Distribution 0.000 0.3500 30,240.0 0.3500 30,240.0 0.3500 30,240.0 0.3500 30,240.0 Combination 500 1.7825 0.300 0.049 Full open 1.7825 0.000 1.7825 0.162 Sub-total Route

Total Friction loss + shape loss
h=1×L Hazen-Williams formule
l=10.666×C^{1.85}×D^{4.87}×O^{1.85} Applied formula

67

: 68

Thickener - Sludge Drying Bed

Design Flow

Γ	Section	Flow
Ĺ	A-B	1,800.0 m ³ /day

Head loss calculation (1)

1)	Friction loss			_	C=	130		9.81	m/sec ²
		Flo	₩	Pipe Diameter	Length	Velocity	Hydraulic gradient		
	Interface / Section	Q (m³/sec)	(m³/day)	D (mm)	L (v	1	h	Remarks
1		(in/sec)	(m'/day)	(11031)	(m)	(m/sec)	(‰)	(m)	
	^								
	A - B	0.0208	1,800.0	φ 200	60.0	0.6621	2.5681	0.154	
1	В								
	Sub-total								
	Route A-B		i		60.0			0.154	

Shape L	.055		_								
			D	iameter	Number	Friction	Qua	ntity	Velocity	Head loss	1
	ltems			D.	N	f			v	h	Remarks
	···-·			(11111)	(-)		(m³/spc)	(m³/day)	(m/sec)	(m)	<u> </u>
A-B			φ	200			0.0208	1,800.0	0.6621		
	inlet		φ	200	1	0.250	0.0208	1,800.0	0.6621	0.006	
	Suddenly e		φ	200	0	0.000	0.0208	1,800.0	0.6621	0.000	
	Suddenly n		φ	200	0	0.000	0.0208	1,800.0	0.6621	0.000	
	Gradually e		φ	200	. 0	0.000	0.0208	1,800.0	0.6621	0.000	<u> </u>
	Gradually r		φ	200	0	0.000	0.0208	1,800.0	0.6621	0.000	
		90°	φ	200	4	0.170	0.0208	1,800.0	0.6621	0.015	
		15°	φ	200	. 0	0.084	0.0208	1,800.0	0.6621	0.000	
		2°1/2	φ	200	0	0.048	0.0208	1,800.0	0.6621	0.000	
		1°1/4	ø	200	0	0.016	0.0208	1,800.0	0.6621	0.000	
	Elbow 9	90°	φ	200	0	0.986	U.0208	1,800.0	0.6621	0.000	
	4	15°	φ	200	. 0	0.183	0.0208	1,800.0	0.6621	0.000	
		Z°1/2	φ !	200	Ö,	0.039	0.0208	1,800.0	0.6621	0.000	
		1°1/4	φ.	200	0	0.009	0.0208	1,800.0	0.6621	0.000	
	Distribution		φ;	200	0		0.0208	1,800.0	0.6621	0.000	
	Combinatio	n	φŀ	200	0		0.0208	1,800.0	0.6621	0.000	
	Valve (iate	φ.	200	3	1.000	0.0208;	1,800.0	0.6621		Full open
	C	heck	ø i	200	0	0.500	0.0208	1,800.0	0.662)	0.000	, an apon
	Outlet		φ:	200	1	1.000	0.0208	1.800.0	0.6621	0.022	
	Sum						2.5200	1,500.01	3.3021	0.110	
รับช-เอเลโ					***	***************************************				3.110	
Route	A-B									0.110	
				(ota) F	riction loss	+ shape loss				0.264	

h=1×L Hazen-Williams formula I=10.666×C^{1.85}×D^{-4.87}×Q^{1.85} Applied formula

Thickener - Discharge Pool

Design Flow

Section	Flow	
A-B	1,300	m³/day

Friction	220					C=	130	g=	9.81	m/sec ²
			Flo	W	Pipe Diameter	Length	Velocity	Hydraulic gradient	Head loss	
ໂກເ	Interface / Section				D	1 6	v	1	h	Remarks
			(m³/sec)	(m³/day)	(mm)	(m)	(m/sec)	(%)	(m)	
	A	-								
Α	•	В	0.0150	1,300.0	φ 20	60.0	0.4775	1.4027	0.084	
	В									
Sub-total						1				
Route	A-B]			60.0			0.084	

Shape L	085	_								
i		D	iameter	Number	Friction	Qua	ntity	Velocity	Head loss	
	ltems	İ	D	N	f	(v	þ	Remarks
	·	_	(របរា)	(-)		(m³/sec)	(m³/day)	(m/sec)	(m)	
A+B		φ	200			0.0150	1,300.0	0.4775		
	inlet	φ	200	1	0.250	0.0150	1,300.0	0.4775	0.003	
	Suddenly expansion	φ	200	0	0.000	0.0150	1,300.0	0.4775	0.000	}
	Suddenly reduction	φ.	200	0	0.000	0.0150	1,300.0	0.4775	0.000	
	Gradually expansion	ф	200	0	0.000	0.0150	1,300.0	0.4775	0.000	1
	Gradually reduction	φ	200	0	0.000	0.0150	1,300.0	0.4775	0.000	
	Bend 90°	Ġ	200	2	9.170	0.0150	1,300.0	0.4775	0.004	
	45*	\$	200	0	0.084	0.0150	1,300.0	0.4775	0.000	
	22°1/2	φ	200	0	0.048	0.0150	1,300.0	0.4775	0.000	
L	11°1/4	φ	200	0	0.016	0.0150	1,300.0	0.4775	0.000	
	Elbow 90°	φ	200	0	0.986	0.0150	1,300.01	0.4775	0.000	
	45°	φ	200	0	0.183	0.0150	1,300.01	0.4775	0.000	
	22°1/2	φ	200	0	0.039	0.0150	1,300.0	0.4775	0.000	
	!1°1/4	φ	200	0	0.009	0.0150	1,300.0	0.4775	0.000	
L	Distribution	φ	200	0		0.0150	1,300.0	0.4775	0.000	
	Combination	Φ.	200	0		0.0150	1,300.0	0.4775	0.000	
	Valve Gate	φ.	200	1	0.300	0.0150	1,300.0	0.4775		Full open
	Check	φ	200	0	0.500	0.0150	1,300.0	0.4775	0.000	
	Outlet	φ	200	1	1.000	0.0150	1,300.0	0.4775	0.012	
	Sum						.,,		0.022	
Sub-total			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-		•••	5.022	
Route	A-B								0.022	
			Total :	Friction loss	+ shape loss				0.106	

h=l×L Hazen-Williams formula i=10.666×C^{1.85}×D^{-1.87}×Q^{1.85}

69

10.

Sludge Drying Bed - Discharge Pool

10.1 Design Flow

0 m³/day

Head loss calculation

(1)	Friction	ı loss						C≔	130	g≖	9.81	m/sec ²
				Flo	w		Pipe ameter	Length	Velocity	Hydraulic : gradient	Head loss	
	l lr	nterface / Se	ection	, Q		ĺ	D	L	٧	I	ħ	Remarks
				(m³/sec)	(m³/day)	_ {	mm)	(m)	(m/sec)	(%)	(m)	
i		A										
		•	В	0.0052	450.0	φ	200	60.0	0.1655	0.1976	0.012	
		B		1. 1		$\overline{}$						
	Sub-total	1				-						
	Route	A-B						60.0			0.012	

Shape L	280									
		D	ameter	Number	Friction	Quar	tity	Velocity	Head loss	
	Items		D i	N	ſ	Q	2	ν	h i	Remarks
	····-		(mm)	(-)		(m³/sec)	$(m^3/4)^{-1}$	(m/sec)	(m)	
A-B		φ	200	i		0.0052	450.0	0.1655		
	inlet	φ	200	Ï	0.250	0.0052	450.0	0.1655	0.000	Ţ
	Suddenly expansion	ϕ	200	0	0.000	0.0052	450.0	0.1655	0.000	
	Suddenly reduction	φ	200	0	0.000	0.0052	450.0	0.1655	0.000	
	Gradually expansion	φ !	200	0	0.000	0.0052	450.0	0.1655	0.000	-
	Gradually reduction	ϕ	200	0	0.000	0.0052	450.0	0.1655	0.000	
	Bend 90°	φį	200	i	G.170	0.0052]	450.0	0.1655	0.000	
	45°	φį	200	0	0.084	0.0052	450.0	0.1655	0.000	
	22°1/2	φ	200	0	0.048	0.0052	450.0	0.1655	0.000	
	1191/4	φĺ	200	0	0.016	0.0052	450.0	0.1655	0.000	
	Elbow 90°	ø	200	O	0.986	0.0052	450.0	0.1655	0.000	
	45°	φ	200	0	0.183	0.0052	450.0	0.1655	0.000	
	22°1/2	φ	200	0	0.039	0.0052	450.0	0.1655	0.000	-
	11*1/4	φ:	200	0	0.009	0.0052	450.0	0.1655	0.000	
	Distribution	ø !	200	0		0.0052	450.0	0.1655	0.000	
	Combination	φ	200	0		0.0052	450.0	0.1655	0.000	
	Valve Gate	φ.	200		0.300	0.0052	450.0	0.1655	0.000	Full open
	Check	ф	200	0	0.500	0.0052	450.0	0.1655	0.000	
	Outlet	φ!	200	- 1	1.000	0.0052	450.0	0.1655	0.007	
	Sum								0.001	
ob-total										
Route	A-B								0.001	
		7	Total I	riction loss	+ shape loss	•			0.013	

h=I×L Hazen-Williams formula I=10.666×C^{1.85}×D^{-1.87}×Q^{1.85}

A.5-35

-14	, w	
	Section	Flow
	A-B	1,290 m ³ /day

(1) Friction Pipe Diameter D (mm) Hydraulic gradient Q 0.083

(2)

Sub-total

		Di	ameter	Number	Friction	Quar	ntity	Velocity	Head loss	
	Items	l	D	Ŋ	ſ	Q)	v	h	Remarks
			(mm)	(-)		(m³/sec)	(m^3/d)	(m/sec)	(m)	
A-B		φ	200	"		0.0149	1,290.0	0.4743		
	Inlet	φi	200)	0.250	0.0149	1,290.0	0.4743	0.003	
	Suddenly expansion	φį	200	0	0.000	0.0149	1,290.0	0.4743	0.000	
	Suddenly reduction	φ,	200	0	0.000	0.0149	1,290.0	0.4743	0.000	
	Gradually expansion	0	200	0	0.000	0.0149	1,290.0	0.4743	0.000	
	Gradually reduction	φį	200	0:	0.000	0.0149	1,290.0	0.4743	0.000	
	Bend 90°	ø	200	1	0.170	0.0149	1,290.0	0.4743	0.002	
	45°	ф	200	0	0.084	0.0149	1,290.0	0.4743	0.000	
	22*1/2	ø	200	0	0.048	0.0149	1,290.0	0.4743	0.000	
	11°1/4	φ	200	0:	0.016	0.0149	1,290.0	0.4743	0.000	
	Elbow 90°	φ	200	0	0.986	0.0149	1,290.0	0.4743	0.000	
	45°	φ	200	Ō	0.183	0.0149	1,290.0	0.4743	0.000	
	22°1/2	φ	200	0	0.039	0.0149	1,290.0	0.4743	0.000	
	11º1/4	φ	200	0	0.009	0.0149	1,290.0	0.4743	0.000	
	Distribution	φ	200	Ö		0.0149	1,290.0	0.4743	0.000	
	Combination	φ	200	0		0.0149	1,290.0	0.4743	0.000	
	Valve Gate	φ	200	0	0.300	0.0149	1,290.0	0.4743	0.000	Full open
	Check	φ	200	0	0.500	0.0149	1,290.0	0.4743	0.000	
	Outlet	φ	200		1.000	0.0149	1,290.0	0.4743	0.011	
	Sum	L							0.016	
ıb-total		!								
oute	A-B								0.016	
			Total :	Friction loss	+ shape loss				0.099	

71

0.000 Œ 4,148.26 4,148.26 ڻ

> 0.015 0.015

0.0698

0.8131 0.8131

10.70

4.35 4.35

5.90 9.60

0.6075 0.4050 0.2025

ပ္ ဝ A-B

2.00

8.70 8.70

(m/sec)

(H

(E)

E T

(m)

Œ

Œ

(m³/sec)

0

n : rough coefficient

(1) Coagulation Basin - Flocculation Basin

W: Channel width

v : velocity

L : Channel length

h: head loss

C2-R1/3/n2

0.00 4,148.26 0.015 0.0466 10.70

(2) Rapid Sand Filter Distribution channel

0.00 0.000 0.000 0.00 0.000 0.00 #DIV/0! Œ 3,809.25 3,809.25 3,809.25 3,809.25 3,809.25 ئ 0.015 0.015 0.015 0.015 0.015 0.015 0.3574 0.1489 0.0894 0.0298 0.1787 i0/AIQ# 0.6296 0.0000 0.6296 0.6296 0.6296 0.6296 Έ 5.40 2.00 5.40 3.40 3.40 07 1 1.70 2 Ē 2.00 2.00 2.00 18.40 9.60 8.15 8.15 9.75 8.15 $\tilde{\mathbf{E}}$ 1.2153 0.5064 0.4051 0.6077 0.1013 (m³/sec) 0.2026 P.G 유 당 문 문 G-H A-B A.5-36

0.083

(3) Rapid sand filter inlet siphon

0.000 0.00 Ē 2,098.75 ڻ 0.1215 (m³/sec) A-B Sum

			Į	
-		0.015	!	
۸	(m/sec)	0.6075		
æ	(m)	0.1053		
S	(m)	1.90		
Y	(m)	0.20		
Ξ	(m)	0.30		
*	(E)	0.65		
.ı	(m)	4.22		

Head loss at open channel

h=L×v²/(C²/R) : Munning formula

Applied formula:

В. Head loss at open channel

Applied formula:

 $h=L\times v^2/(C^2/R)$

: Munning formula

 $C^{2m}R^{1/3}/n^2$ h : head loss

L: Channel length

v : velocity

W: Channel width n : rough coefficient

(4) Filtered water outlet channel

Section	Q	L	W	н	A	s	R	ν	п	C ²	h
	(m ¹ /sec)	(m)	(m)	(m)	(m²)	(m)	(m)	(m/sec)	l		(m)
A-B	0.2315	10.00	-	-	10.29	12.00	0.8575	0.0225	0.015	4,222.43	0.000
B-C	0.463	10.00	-	-	10.29	12.00	0.8575	0.0450	0.015	4,222.43	0.000
C-D	0.6944	10.00	-	-	10.29	12.00	0.8575	0.0675	0.015	4,222.43	0.000
D-E	0.8102	10.00	-	-	10.29	12.00	0.8575	0.0787	0.015	4,222.43	0.000
E-F	1.0417	10.00	-	ļ. "	10.29	12.00	0.8575	0.1012	0.015	4,222.43	0.000
F-G	1.2731	10.00	-	ļ	10.29	12.00	0.8575	0.1237	0.015	4,222.43	0.000
Sum								·—·· !,	······································	k	0.000

> ^{(5) (}	Chlorin	ation Basin	contact cha	nnel								
5-37	Section	Q	L	w	н		s	R	v	n	C ²	h
	Section	(m³/sec)	(m)	(m)	(m)	(m ²)	(m)	(m)	(m/sec)		1	(m)
L	A-B	1.1574	31.80	2.45	2.90	7.10	10.70	0.6636	0.1630	0.015	3,876.62	0.000
l	Sum		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							0.000

(6) Backwash outlet siphon

Section	Q	L	w	Н	Α	s	R	v	n	- C ²	h
	(m³/sec)	(m)	(m)	(m)	(m²)	(m)	(m)	(m/sec)			(m)
A-B	0.7308	13.55	0.75	0.90	0.68	3.30	0.2061	1.0747	0.015	2,625.29	0.001
Sum										······································	0.001

(7) Backwash drainage channel

	Q	L	w	Н	Α	s	R	ν	n	C²	h
	(m³/sec)	(m)	(m)	(m)	(m²)	(m)	(m)	(m/sec)			(m)
A-B	0.731	18.40	2.80	1.50	4.19	5.79	0.7237	0.1744	0.015	3,990.28	0.000
B-C	0.731	10.00	2.00	1.50	2.99	4.99	0.5992	0.2444	0.015	3,746.92	0.000
Sum		•	***************************************								0.000

Suppressed-rectangular weir

Ishihara-Ida Formula

 $Q=C\times B\times h^{3/2}$

C=1.785+(0.00295/h+0.237×h/W)×(1+ ϵ)

 $\epsilon : \epsilon = 0 \text{ (W} = < 1.0 \text{m)}$

 ϵ =0.55×(W-1.0) (W>1.0m)

W: Weir width

H: Height from bottom to top of weir

h: Overflow depth

Distribution Chamber

Q=	105,000	m³/day
Ų	103,000	m /dav

Input

-				шраг				
	Design Flow	Weir Width	Weir Height	Overflow Water depth	Adjustment Coefficient	Flow Index	Calculated Flow	Equation
	Qd	W	H	h	E	С	Qс	Qc-Qd
	m³/sec	m	m	m			m³/sec	m³/sec
	1.2153	3.00	7.00	0.3600	3.3000	1.87265	1.2135	-0.0018
	1.2153	3.00	7.00	0.3601	3.3000	1.87265	1.2140	-0.0013
	1.2153	3.00	7.00	0.3602	3.3000	1.87266	1.2145	-0.0008
	1.2153	3.00	7.00	0.3603	3.3000	1.87266	1.2150	-0.0003
	1.2153	3.00	7.00	0.3604	3.3000	1.87267	1.2155	0.0002
	1.2153	3.00	7.00	0.3605	3.3000	1.87267	1.2160	0.0007
ı	1.2153	3.00	7.00	0.3606	3.3000	1.87268	1.2165	0.0013
l	1.2153	3.00	7.00	0.3607	3.3000	1.87268	1.2170	0.0018
	1.2153	3.00	7.00	0.3608	3.3000	1.87269	1.2175	0.0023
	1:2153	3.00	7.00	0.3609	3.3000	1.87269	1.2181	0.0028

Coagulant basin

Q=_	52,500	m ³ /day

			Input				
Design Flow	Weir Width	Weir Height	Overflow Water depth		Flow Index	Calculated Flow	Equation
Qd	W	H	h	€	С	Qс	Qc-Qd
m³/sec	m	m	m			m³/sec	m³/sec
0.6076	4.20	5.30	0.1810	2.3650	1.86708	0.6039	-0.0038
0.6076	4.20	5.30	0.1811	2.3650	1.86706	0.6043	-0.0033
0.6076	4.20	5.30	0.1812	2.3650	1.86705	0.6048	-0.0028
0.6076	4.20	5.30	0.1813	2.3650	1.86703	0.6053	-0.0023
0.6076	4.20	5.30	0.1814	2.3650	1.86702	0.6058	-0.0018
0.6076	4.20	5.30	0.1815	2.3650	1.86700	0.6063	-0.0013
0.6076	4.20	5.30	0.1816	2.3650	1.86699	0.6068	-0.0008
0.6076	4.20	5.30	0.1817	2.3650	1.86697	0.6073	-0.0003
0.6076	4.20	5.30	0.1818	2.3650	1.86696	0.6078	0.0002
0.6076	4.20	5.30	0.1819	2.3650	1.86694	0.6083	0.0007

 $Q=C\times B\times h^{3/2}$

 $C=1.785+(0.00295/h+0.237\times h/W)\times (1+\epsilon)$

 $\epsilon : \epsilon = 0 \text{ (W=<1.0m)}$

 ϵ =0.55×(W-1.0) (W>1.0m)

W: Weir width

H: Height from bottom to top of weir

h: Overflow depth

Rapid sand filter inlet weir

Q= 10,500 m³/day

Input

Design Flow	Weir Width	Weir Height	Overflow Water depth	Adjustment Coefficient	Flow Index	Calculated Flow	Equation
Qd	w	Н	h	€	С	Qc	Qc-Qd
m³/sec	m	m	m			m³/sec	m³/sec
0.1215	1.50	1.50	0.1240	0.2750	1.84031	0.1205	-0.0010
0.1215	1.50	1.50	0.1241	0.2750	1.84031	0.1207	-0.0008
0.1215	1.50	1.50	0.1242	0.2750	1.84030	0.1208	-0.0007
0.1215	1.50	1.50	0.1243	0.2750	1.84030	0.1210	-0.0006
0.1215	1.50	1.50	0.1244	0.2750	1.84030	0.1211	-0.0004
0.1215	1.50	1.50	0.1245	0.2750	1.84029	0.1213	-0.0003
0.1215	1.50	1.50	0.1246	0.2750	1.84029	0.1214	-0.0001
0.1215	1.50	1.50	0.1247	0.2750	1.84028	0.1216	0.0000
0.1215	1.50	1.50	0.1248	0.2750	1.84028	0.1217	0.0002
0.1215	1.50	1.50	0.1249	0.2750	1.84028	0.1218	0.0003

Rapid sand filter outlet weir

 $Q = 0.1157 \text{ m}^3/\text{sec/wair}$

Input

								_
Design Flow	Weir Width	Weir Height	Overflow Water depth	Adjustment Coefficient	Flow Index	Calculated Flow	Equation	•
Qd	w	Н	h	€	С	Qc	Qc-Qd	l
m³/sec	m	m	m			m³/sec	m ³ /sec	
0.1157	1.50	3.10	0.1435	1.1550	1.85294	0.1511	0.0354	l
0.1157	1.50	3.10	0.1436	1.1550	1.85293	0.1512	0.0355	ı
0.1157	1.50	3.10	0.1437	1.1550	1.85291	0.1514	0.0357	ı
0.1157	1.50	3.10	0.1438	1.1550	1.85290	0.1516	0.0359	l
0.1157	1.50	3.10	0.1439	1.1550	1.85289	0.1517	0.0360	l
0.1157	1.50	3.10	0.1440	1.1550	1.85287	0.1519	0.0362	l
0.1157	1.50	3.10	0.1441	1.1550	1.85286	0.1520	0.0363	l
0.1157	1.50	3.10	0.1442	1.1550	1.85284	0.1522	0.0365	ĺ
0.1157	1.50	3.10	0.1443	1.1550	1.85283	0.1523	0.0366	l
0.1157	1.50	3.10	0.1444	1.1550	1.85282	0.1525	0.0368	

 $Q=C\times B\times h^{3/2}$

C=1.785+(0.00295/h+0.237×h/W)×(1+ ϵ)

 $\epsilon : \epsilon = 0 \text{ (W=<1.0m)}$

 ϵ =0.55×(W-1.0) (W>1.0m)

W: Weir width

H: Height from bottom to top of weir

h: Overflow depth

Backwash outlet trough

 $Q= 0.0365 \text{ m}^3/\text{sec/side}$

Input

			Diput				
Design Flow	Weir Width	Weir Height	Overflow Water depth	Adjustment Coefficient	Flow Index	Calculated Flow	Equation
Qd	w	H	h	E	С	Qc	Qc-Qd
m ³ /sec	m	m	m			m³/sec	m³/sec
0.0365	6.05	0.80	0.0210	0.0000	1.93170	0.0356	-0.0009
0.0365	6.05	0.80	0.0211	0.0000	1.93106	0.0358	-0.0007
0.0365	6.05	0.80	0.0212	0.0000	1.93043	0.0361	-0.0004
0.0365	6.05	0.80	0.0213	0.0000	1.92981	0.0363	-0.0002
0.0365	6.05	0.80	0.0214	0.0000	1.92919	0.0365	0.0000
0.0365	6.05	0.80	0.0215	0.0000	1.92858	0.0368	0.0003
0.0365	6.05	0.80	0.0216	0.0000	1.92797	0.0370	0.0005
0.0365	6.05	0.80	0.0217	0.0000	1.92737	0.0373	0.0008
0.0365	6.05	0.80	0.0218	0.0000	1.92678	0.0375	0.0010
0.0365	6.05	0.80	0.0219	0.0000	1.92619	0.0378	0.0013

Backwash drainage channel

 $Q = 0.7308 \text{ m}^3/\text{sec}$

Input

			mput				
Design Flow	Weir Width	Weir Height	Overflow Water depth	Adjustment Coefficient	Flow Index	Calculated Flow	Equation
Qd	w	H	h	£	С	Qc	Qc-Qd
m³/sec	m	m	m			m³/sec	m³/sec
0.7308	2.00	1.20	0.3365	0.1100	1.86850	0.7295	-0.0013
0.7308	2.00	1.20	0.3366	0.1100	1.86852	0.7298	-0.0010
0.7308	2.00	1.20	0.3367	0.1100	1.86854	0.7301	-0.0007
0.7308	2.00	1.20	0.3368	0.1100	1.86856	0.7305	-0.0003
0.7308	2.00	1.20	0.3369	0.1100	1.86858	0.7308	0.0000
0.7308	2.00	1.20	0.3370	0.1100	1.86860	0.7311	0.0003
0.7308	2.00	1.20	0.3371	0.1100	1.86861	0.7315	0.0007
0.7308	2.00	1.20	0.3372	0.1100	1.86863	0.7318	0.0010
0.7308	2.00	1.20	0.3373	0.1100	1.86865	0.7321	0.0013
0.7308	2.00	1.20	0.3374	0.1100	1.86867	0.7325	0.0017