Appendix 13 Sample of Sand Flushing Operation

1. General Layout of Hydroelectric Power Facilities with Run-of-River-Type

The hydroelectric power facilities with run-of-river-type are generally composed of a weir, an intake, a de-silting basin, a waterway, a head tank/ regulating pond, penstock lines, a power station, a tailrace, etc. and their general layout is illustrated below.

As to the sand flushing operation, it is a major point to be suggested that the de-silting basin be facilitated so as to trap and settle foreign particles contained in water in the upstream of the headrace canal or the headrace tunnel and be designed to have sufficient transportation forces to flush out sediments.

Figure 1 Hydroelectric Power Facilities with Run-of-River-Type

2. Example of Hydroelectric Power Facilities with Run-of-River-Type

The layout of major hydraulic facilities for the Project for Rural Electrification in Aceh, Indonesia is shown in Figures 2 - 5. In reference to those figures and the above mentioned suggestion, it could be said that the hydraulic design for the Project for Rural Electrification in Aceh meets the suggestion and follows the conventional hydraulic design such as illustrated in Figure 1.

3. Comparison of Hydraulic Design between Project for Rural Electrification in Aceh and Zi Chaung Power Station

The layout of major hydraulic facilities for Zi Chaung Power Station is shown in Figures $6 \sim 12$. In comparison of the hydraulic design between Project for Rural Electrification in Aceh and Zi Chaung Power Station, remarkable differences and comments are summarized below.

No.	Structure	Aceh	Zi Chaung	Remarks
1	Sand flushing gate	Nil.	Upstream of	The sand flushing gate of Zi
	in intake		screen	Chaung is provided upstream of
				the intake gate, however it is in
				sub-critical flow. Consequently,
				the efficiency of transportation
				force to flush out cobble, gravel,
				sand, etc. will be so low (See
				Fig.9).
2	Location of	Upstream of	Downstream of	As to Zi Chaung, such a location
	de-silting basin	headrace canal	headrace canal	of de-silting basin as designed
				downstream of the headrace canal,
				i.e. upstream of the regulating
				pond causes sediments in the
				headrace canal and further erosion
				of the canal (See Fig. 6).
3	Transportation	Provided by a	Provided by a	Transportation force to flush out
	force to flush out	super-critical flow	steep headrace	sediment is given by use of a
	sediment	through the	canal just	super-critical force (See Fig. 4 for
		gradient of the	upstream of the	Aceh and Fig.12 & Photo for Zi
		canal, 1/50.	de-silting basin.	Chaung).

Figure 4 De-Silting Basin for the Project for Rural Electrification in Aceh

Nippon Koei / IEEJ Volume 6 Appendices to Manuals

PROFILE

Figure 5 Penstock for the Project for Rural Electrification in Aceh

Part 6-1 Appendix 13

Figure 7 Plan of Intake for Zi Chaung Power Station

Nippon Koei / IEEJ Volume 6 Appendices to Manuals

Appendix 14 Monitoring Data for Civil Works Structures of Zi Chaung Power Station

1. Monitoring Data of Discharge Measurement

No.	Location	Discharge (m ³ /s)	Leakage (m ³ /s)	Percentage (%)
1	Downstream face of 2 nd concrete cover about 100 m	1.74	-	
	downstream of intake			
2	Upstream face of the concrete cover about 200 m	<u>1.74</u>	-	
	downstream of intake			
3	Upstream of de-silting basin	1.35	-	
4	Just upstream of inlet of head pond	<u>1.21</u>	-	<u>69.5</u>
	(Available discharge of power generation)			
5	Water leakage to upstream of de-silting basin	-	0.39	22.4
6	Total of water leakage:	-	<u>0.53</u>	<u>30.5</u>
	(Water leakage to just upstream of inlet of head pond)			

Table 1 Summary of Discharge Measurement

Table 2	Calculation	of Discharge
---------	-------------	--------------

No.	Location	Velocity (m/sec)		Passage Area (m ²)		Discharge (m ²)		
		1+2	3+4	Ave.	1+2	3+4	Total	(m ³ /s)
1	Downstream face of 2 nd concrete cover about 100 m downstream of intake	1.35	1.34	1.35	0.635	0.657	1.29	1.74
2	Upstream face of concrete cover 200 m downstream of intake	1.32	1.40	1.36	0.646	0.633	1.28	1.74
3	Upstream of de-silting basin	0.884	0.774	0.829	0.820	0.805	1.63	1.35
4	Just upstream of inlet of head pond	0.399	0.429	0.414	1.46	1.45	2.91	1.21

Table 3 Data of Discharge Measurement at Downstream Face of 2nd Cover

No.	Sound**	Duration
1	9	21.20
2	9	21.25
3	9	20.97
Average	9	21.14

(1-5) Sound and duration at d_{1(2,8)}

Sound** Duration No. 22.34 (1-3) Water Depth of Velocity Measurement: 2 22.79 я 3 8 24.42 Average 7.67 23.18

2. CALCULATION:

(2-1) Velocity

Location	Ave	rage	N= S / T	V = 0.716N	Vmean
	Sound:	Duration:		- 0.001	
	S (nos.)	T (sec)	(nos./sec)	(m/sec)	(m/sec)
d _{1(0,2)}	9	21.14	2.13	1.52	1.35
d _{100.83}	7.67	23.18	1.65	1.18	1.00
d _{2(0,2)}	9.33	22.12	2.11	1.51	1.24
d _{20.80}	7.33	22.63	1.62	1.16	1.34

Note: **: 1 Sound: per 5 rotations

(2-2) F	low Pa	ssage	Anea:	

Passage	2a	d	d _R	Area
Block	(m)	(m)	(m)	(m ²)
@+@	0.985	0.645		0.635
()+®	0.985		0.667	0.657

Passage	V(man)	Area	Discharge
Block	(m/sec)	(m ²)	(m ³ /s)
0+0	1.35	0.635	0.857
3+0	1.34	0.657	0.880
Total		Q (m ⁸ /s) =	1.74

(1-6) Sound	s and duration	on at d ₂₀₁₂

No.	Sound**	Duration
1	10	23.13
2	9	21.77
3	9	21.47
Average	9.33	22.12

(1-7) Sound and duration at d_{20.00}

No.	Sound**	Duration
1	8	25.00
2	7	21.14
3	7	21.74
Average	7.33	22.63

Table 4 Data of Discharge Measurement at 200 m Down Stream of Intake

1. MEASURED DATA: (1-1) Length of Canal: L= 200.0 cm a= 50.0 cm

(1-2) Water Depth at Five (5) Locations: d_i = 65.9 cm d.= 63.3 cm

de= 63.2 cm dAVE = (65.9+63.3+63.2)/3= 64.1 (cm)

(1-3) Water Depth of Velocity Measurement: d_{AVE(0.2)}= 64.1 x 0.2= 12.8 cm d_{AVE(0.8)}= 64.1 cm x 0.8= 51.3 cm

(1-4) Sound and duration at d ₁₍₀₂₎							
No.	Sound**	Duration					
1	18	45.00					
2	20	45.00					
3	20	45.25					
4	20	45.28					
Average	19.5	45.13					

(1-5) Sound and duration at durate

No.	Sound**	Duration
1	14	45.69
2	14	47.49
3	14	44.60
4	14	45.32
Average	14	45.78

Instruction: - 0.001 (m.s.) T (sec) (nos./sec) (m/sec) (m/sec) 5 45.13 2.16 1.55 1.32 45.78 1.53 1.09 1.32 43.73 2.29 1.64 1.40	Ave	rage	N= S / T	V = 0.716N	Vmean
s.) T (sec) (nos./sec) (m/sec) (m/sec) 5 45.13 2.16 1.55 1.32 45.78 1.53 1.09 1.32 43.73 2.29 1.64 1.40	ndt	Duration:		- 0.001	
5 45.13 2.16 1.55 1.32 45.78 1.53 1.09 43.73 2.29 1.64 1.40	os.)	T (sec)	(nos./sec)	(m/sec)	(m/sec)
45.78 1.53 1.09 1.32 43.73 2.29 1.64 43.4 1.61 1.15 1.40	5	45.13	2.16	1.55	1.92
43.73 2.29 1.64 1.40	1	45.78	1.53	1.09	1.32
43.4 1.61 1.15)	43.73	2.29	1.64	1.40
43.4 1.01 1.10	1	43.4	1.61	1.15	1.40

Note: ": 1 Sound: per 5 rotations

(2-2) Flow Passage Area:

Sound: S (nos.)

19.5

14

20 14

2. CALCULATION: (2-1) Velocity Location

d100.20

d_{100.80}

d_{2(0.2)}

d_{200.0}

Passage	2a	dL	d,	d _R	d _{mean}	Area
Block	(m)	(m)	(m)	(m)	(m)	(m ²)
0+0	1	0.659	0.633		0.646	0.646
3+@	1		0.633	0.632	0.633	0.633

(1-6) Sound	and duration	on at d _{200.20}
No.	Sound**	Duration
1	20	42.90
2	20	45.13
3	20	43.00
4	20	43.90
Average	20	43.73

No.	Sound**	Duration
1	14	43.53
2	14	42.75
3	14	43.03
4	14	44.30
Average	14	43.40

(2-3) Disc	harge		
Passage	V _(mean)	Area	Discharg
Block	(m/sec)	(m ²)	(m ³ /s)
0+@	1.32	0.646	0.85
()+®	1.40	0.633	0.88
Total		$Q(m^3/s) =$	1.74

Table 5 Data of Discharge Measurement at Upstream of De-silting Basins

DATE: May 28, 2003 LOCATION: Just upstream of the inlet of de-silting basin

d_{210.0}= 81.5 cm x 0.8= 65.2 cm

2. CALCULATION:

No.	Location	1st Meas	easurement 2nd Measurement Avera		rage	N= S / T	Velocity	Vreeen		
		Sound**	Duration:	Sound**:	Duration:	Sound	Duration:	1	= 0.716N-0.001	
		S (nos.)	T (sec)	S (nos.)	T (sec)	S (nos.)	T (sec)	(nos./sec)	(m/sec)	(m/sec)
1	d _{1(0,2)}	11	42.00	10	40.80	10.5	41.40	1.27	0.909	
2	d _{1(0,0)}	10	42.00	10	41.53	10.0	41.77	1.20	0.859	0.884
3	d _{200.21}	10	43.50	10	46.47	10.0	44.99	1.11	0.795	
4	d200.81	10	49.00	10	46.37	10.0	47.69	1.05	0.752	0.774

Note: **: 1 Sound: per 5 rotations

(2-2) Flow	Passage A	Anea:						
Bkock No.	a (m)	d _L (m)	d ₁ (m)	d _e (m)	d ₂ (m)	d _R (m)	d _{mean} (m)	Area (m ²)
0	0.495	0.81	0.835				0.823	0.407
Ø	0.495		0.835	0.835			0.835	0.413
3	0.495			0.835	0.81		0.823	0.407
۲	0.495				0.81	0.8	0.805	0.398

(2-3) Disc	harge		
Passage	V _(mean)	Area	Discharge
Block	(m/sec)	(m ²)	(m^3/s)
0+@	0.884	0.820	0.725
@+@	0.774	0.805	0.623
Total		Q (m ³ /s) =	1.35

Table 6 Data of Discharge Measurement at Just Upstream Inlet of Head Pond

DATE: May 29, 2003

LOCATION: Just upstream of the inlet of head pond

(1-2) Water Depth at Five (5) Locations: d_L = 175 cm d_i = 175 cm d_i = 174 cm d_2 = 174 cm d_3 = 174 cm d_4 = 172 cm

 $\begin{array}{l} (1{\rm -3}) \mbox{ Water Depth of Velocity Measurement:} \\ d_{1(0,2)}{=}\ 175 \mbox{ om } x \ 0.2{=}\ 35.0 \mbox{ om} \\ d_{1(0,4)}{=}\ 175 \mbox{ om } x \ 0.8{=}\ 140.0 \mbox{ om} \\ d_{2(0,2)}{=}\ 174 \mbox{ om } x \ 0.2{=}\ 34.8 \mbox{ cm} \\ d_{2(0,6)}{=}\ 174 \mbox{ om } x \ 0.8{=}\ 139.2 \mbox{ om} \end{array}$

2. CALCULATION: (2-1) Velocity

1.E 1.7 YON	uny									
No.	Location	1st Mea:	surement	2nd Mea	surement	rement Average M		N= S / T	Velocity	Vman
		Sound**	Duration:	Sound**:	Duration:	Sound	Duration:		= 0.716N-0.001	
		S (nos.)	T (sec)	S (nos.)	T (sec)	S (nos.)	T (sec)	(nos./sec)	(m/sec)	(m/sec)
1	d _{100.20}	14	22.38	14	23.33	14	22.86	0.612	0.438	
2	d _{100.80}	13	25.59	13	26.27	13	25.93	0.501	0.359	0.399
3	d _{210.2)}	13	21.50	13	21.23	13	21.37	0.608	0.435	
4	danaa	14	24.05	14	23.37	14	23.71	0.590	0.422	0.429

Note: **: 1 Sound: per 1 rotation

(2-2) Flow Passage Area:

_					-				
ŧ	Bkock No.	a (m)	d _L (m)	d ₁ (m)	d _c (m)	d ₂ (m)	d _R (m)	d _{mean} (m)	Area (m ²)
Г	Ð	0.4175	1.75	1.75				1.75	0.731
E	0	0.4175		1.75	1.74			1.75	0.731
E	0	0.4175			1.74	1.74		1.74	0.726
Ľ	۲	0.4175				1.74	1.72	1.73	0.722

2-	-30	Disch	han	an-
	- M (Contractor of the second	1994	6.54

Passage Block	V _{(resent}) (m/sec)	Area (m²)	Discharge (m ³ /s)
©+@	0.399	1.46	0.583
@+@	0.429	1.46	0.626
Total		Q (m ³ /s) =	1.21

2. Monitoring Data of Sand Flushing

	Table 7 Result of Sleve Analysis for Sample-Sitt and Sample-Sand					
No	Name of	Sieve Analysis (%)				
INO.	Sample	Clay	Silt	Sand	Gravel	Total
1	Sample-Silt	20	54	26	0	100
2	Sample-Sand	8	18	73	1	100

Table 7 Result of Sieve Analysis for 'Sample-Silt' and 'Sample-Sand'

Table	8 Result	of Sieve	Analysis	for 'San	nple-Gravel'
Lable	o nesure		1 11 (1) 515	IOI Dun	

Sieve Size (mm)	Retaining (g)	Retaining (%)	Accumulation of Retaining (%)	Accumulation of Passing (%)
15.0	21.95	1.098	1.098	98.90
10.0	114.80	5.745	6.843	93.16
5.0	398.05	19.919	26.762	73.24
2.5	589.79	29.513	56.275	43.72
1.2	511.57	25.599	81.874	18.13
0.6	235.90	11.805	93.679	6.32
0.3	82.07	4.107	97.786	2.21
0.15	17.20	0.860	98.646	1.35
less than 0.15	27.06	1.354		
Total	1998.39			

Table 9 Percentage of Flushed Sand or Gravel in Total Flushed Material

No.	Name of Sample	Weight of	Total Weight of	Percentage of	
		Flushed Gravel or	Flushed Material	Gravel or Sand	
		Sand (g)	(g)	(%)	
1	Sample-Gravel	398.6	25530 ^{*1}	1.6	
2	Sample-Sand	1072.8	25530 ^{*1}	4.2	
Note: *1: Volume of basin: V= $x42.5^2/4X18 \text{ cm}^3 = 25530 \text{ cm}^3$					