APPENDICES

Appendix-1		List		mero		co myuros mistaneu			<i>by</i> 1100		
N	37.11		Capa	city	Type of Turbin	Year of	Capit	al Cost (cu	urrent)		
No.	Village	Township		Unit		sioning	K. 1,000	US\$	kW Cost US\$/kW	Remark	
1	MONG NAUNG	KYAAY SI	20	kW	Crossflow	1984	500	10,000	500		
2	PAN OUNT	HSI SENG	10	kW	Crossflow	1984	250	5,000	500		
3	MONG PON	LOI LEM	20	kW	Crossflow	1985	500	10,000	500		
4	MONG PON	LOI LEM	20	kW	Kaplan	1989	1,620	18,000	900	Nyaung Kyao	
5	PIN DAWK	KENG TONG	20	kW	Crossflow	1986	500	1,000	50		
6	TI TAIN	TAUNGGYI	10	kW	Crossflow	1986	250	5,000	500		
7	PAN SAUK	HO PONE	7.5	kW	Crossflow	1987	270	4,500	600		
8	NAM KOKE	HO PONE	10	kW	Kaplan	1990	495	5,500	550	Monastery	
9	DADAH GYI	PIN DAYA	14	HP	Kaplan	1990	504	5,600	560	U Soe New (oil mill)	
10	DADAH GYI	PIN DAYA	15	HP	Kaplan	1990	540	6,000	560	U Aung Win (rice mill)	
11	DADAH GYI	PIN DAYA	16	HP	Kaplan	1991	576	6,400	560	U Than Pe (sugar mill)	
12	DADAH GYI	PIN DAYA	16	HP	Kaplan	1991	576	6,400	560	U Kyaw Kyaw (oil mill)	
13	OH KONE	KUT KAI	12	HP	Kaplan	1992	528	4,800	560	Rice mill (home lighting)	
14	MISSION SCHOOL	HSEN WI	12.5	kW	Kaplan	1992	688	6,250	500		
15	PONE TOON	HSEN WI	20	kW	Crossflow	1993	1,200	10,000	500	Owner Aik Yee	
16	38TH MILE	HSEN WI	7.5	kW	Crossflow	1993	450	3,750	500	Owner B.K. Duo	
17	HSEN WI	HSEN WI	50	kW	Francis	1994	3,000	25,000	500		
18	203 COMMAND	HSEN WI	10	kW	Kaplan	1995	600	5,000	500		
19	HOT SPRING	HSEN WI	10	kW	Kaplan	1995	600	5,000	500	Owner Mar Gum	
20	MONG KNOWN	MONG KUCK	15	kW	Kaplan	1995	900	7,500	500	Monastery	
21	WIN BO	KENG TONG	20	kW	Pelton	1996	1,200	10,000	500		
22	SAUNG HPOO	TAUNGGYI	75	kW	Francis	1996	4,500	37,500	500		
23	NAM BAY	TAUNGGYI	5	kW	Crossflow	2000	2,640	8,000	1,600		
24	P.N.O FARM	HSI SENG	15	kW	Crossflow	2000	2,475	7,500	500		
25	NAUNG BO	HSI SENG	5	kW	Crossflow	2001	1,050	3,000	600		
26	MONG SI	KUT KAI	10	kW	Kaplan	1999	1,584	4,800	480		
27	DAH MOE NYE	KUT KAI	10	kW	Kaplan	1999	1,584	4,800	480		
28	PAUNG SENG	KOO KANG	10	kW	Kaplan	2000	1,680	4,800	480		
29	LOI SAO	HSI SENG	5	kW	Crossflow	2000	1,050	3,000	600		
30	4TH MILE	HO PONE	16	HP	Crossflow	1989	768	6,400	560	Owner Htun Han	
31	NAM PA MU	PIN LAUNG	5	kW	Crossflow	1999	990	3,000	600	Owner Myint Oo	
32	SHWE PA SONE	BAHTOO	20	kW	Kaplan	1997	1,200	10,000	500		
33	Pin Bu	KYAW BA	15	kW	Crossflow	2001	2,450	7,000	470		
34	Thale U	NYAUNG SHWE	15	kW	Crossflow	2002	6,500	7,936	529		
35	Upper Nammye	TAUNGGYI	5	kW	Kaplan	2002	2,050	2,500	500		
36	Lower Nammye	TAUNGGYI	3	kW	Kaplan	2002					
37	Hon Po	TAUNGGYI	10	kW	Crossflow	2001	4,180	5,000	500		
38	Mai Te	HSI SENG	25	kW	Crossflow	2003	12,000	12,000	480		
39	Bone Shwe Pin	TAUNGGYI	30	kW	Crossflow	2003	12,500	12,500	417		
40	Nam Blin	PIN LAUNG	15	kW	Crossflow	2003	8,000	8,000	533		
41	Kyauk Ku	LAWK SAUK	5	kW	Propeller	2003	800	800	160	Power line is excluded	
(Plan	nning)				1						
42	Kyauktalone	HO PONE	125	kW	Francis	203					
43	Baw Lakae	KAYAH State	5	kW	Crossflow	2003	500	500	100	Distribution line is excluded	

Appendix-1 List of Micro and Pico Hydros Installed by NGO

Source: U Khun Kyaw, Rural Development and Hydroelectric Implementation Group, Taunggyi, Shan State

No.	Source of Energy	Features
1.	Geothermal Power	 The potential sites are limited although there are volcanoes and hot springs in Myanmar. A large scale and costly drilling investigations will be required for potential study. Not suitable for Village Schemes.
2.	Biogass Power	 High temperature fermentation - central processing type of biogas power generation technology is expensive. Not suitable for RE. About 1,000 units of biogas engines are generating electricity in Germany. Medium temperature fermentation - isolated processing type biogas technology are used for gas lighting and cooking widely in China and India and is considered prospective also in Myanmar. However, it is beyond the scope of the present Study for RE.
3.	RDF (Refuse Derived Fuel) Power	• As part of the urban environmental measures, this uses urban solid waste as fuel. Not suitable for RE.
4.	Wave Power	 Potential sites are limited to the western and peninsular coasts (average potential in Japan is reportedly 6 kW per meter of sea coast). In order to save high capital costs, installation onto breakwater etc. would be required. Not suitable for RE.
5.	Solar Heat Power	 Although there are solar tower type, solar pond type, etc., these are of large scale requiring advanced technology. Not suitable for RE. Use of solar water heater is practical and recommended.

Appendix-2 Features of Those Renewable Energy Not Dealt with in the Guidelines

出典:調査団

Appendix-3 Unit Husk Consumption of Rice Husk Gas Engine

Younetalin Village, Hinthada District, Ayeyarwady Division installed a RH-14 (140 HP) rice husk gas engine and 135 kVA generator of MIC in April 2001. It has been supplying power to 420 households for 5 hours a day from 18:00 to 23:00.

The unit husk consumption was roughly preliminarily in the two ways as described below:

5 baskets of husk = 1 gallon of diesel

According to MIC, the typical husk consumption may be said that 5 baskets of husk = 1 gallon of diesel.

1.	Electricity that 1 gallon of diesel oil can generate	10 kWh (standard of MEPE old diesel generators of 100 kW+, corresponds to efficiency at 20.5 % as (860 kcal/kWh x 10 kWh) / (4.546 l x 9,250 kcal/l). New diesel generator of 100 kW+ has efficiency of 32%.)
2	Unit consumption of husk	5 baskets @ 11 pounds @ 0.454 kg = 25 kg
3.	kWh consumption of husk	25 kg/10 kWh = 2.5 kg/kWh

15 baskets of husk per hour at Younetalin Village

1.	Daily husk consumption for 5 hour operation	60 baskets = 12 baskets/hour on an average
2.	Peak hourly husk consumption (MIC source)	15 basket @ 11 pounds @ 0.454 kg = 75 kg/hr
3.	Average power demand	(20 W lamps x 2 nos.) + 15 W electric appliance on average = 55 W
4.	Streetlights	20W x 40nos. = 0.8 kW
5.	Total power demand in the village	55W x 420 h.h. + 0.8 kW = 23.1 kW
6.	Power to be generated	23.1 kW x 1.05(5 % loss) = 24.3 kW
7.	kWh husk consumption	75 kg/hr / 24.3 kW = 3.1 kg/kWh

The first estimate of the kWh husk consumption is 2.5 kg/kWh and the second is 3.1 kg/kWh. These figures in China are reported to be 2.0-2.2 kg/kWh. The first estimate of 2.5 kg/kWh is tentatively adopted in the Guidelines for basic planning of the RE schemes by rice husk gas engine. If the actual consumption is 3.0 kg/kWh, the rice husk will be needed by 20 % more.

MIC has a plan to measure the kW consumption more accurately in late 2001.

Appendix-4 Necessary Rice Husk for Village Electrification

Necessary Rice Husk for Power Supply

Assuming one household uses three numbers of 20 W fluorescent lights and electric appliances equivalent to 15 W average consumption, household consumption becomes 75 W. For the convenience of the basic planning, it may be assumed that unit power consumption is 80 W per household including 5% loss of distribution.

With the assumed unit husk consumption rate at 2.5 kg/kWh of the rice husk gas engine (see Appendix-3), the required rice husk for daily power supply for 5 hours would be as shown in Table A4.1.

		Rice Husk Consumption						
No.	village Size	Da	Monthly					
	h.h.	baskets	kg	kg				
1	100	20	100	3,000				
2	200	40	200	6,000				
3	300	60	300	9,000				
4	400	80	400	12,000				
5	500	100	500	15,000				

Table A4.1 Required Husk for Power Supply by Gas Engine

Supply Hour at 5 hour/day

Source: JICA Study Team

Rice Husk Discharged from Village Rice-Mills

For example, assume a village size at 300 households (actual number of those who wish to receive power supply). Then, the daily rice husk consumption will be 300 kg (notice the same figure as the village size in the case of 5 hour power supply), and the monthly 9 tonnes.

In Myanmar the farmers keep paddy, after selling fixed amount to the Government, in his storage and sell it to the market depending on the market price. These paddy sold to the Government and market will be milled at medium to large scale rice-mills located near large cities or local towns and husks will be discharged there (not in the paddy cultivating region but near the consumption area).

On the other hand, the rice for self-consumption of the farmers will be milled from time to time at small scale village rice-mills mostly having a capacity of 2.5 tonnes/day and sometimes 10-15 tonnes/day. The rice husk produced from this milling will remain in the villages.

The amount of this village husk is estimated below:

•	Average family size	6 persons per family
•	Population in the village assumed	6 x 300 h.h. = 1,800
•	Per capita rice consumption	Average in Myanmar at 130 kg/yr = 0.36 kg/day
•	Total daily rice consumption in the village	0.36 kg/day x 1,800 = 650 kg/day
•	The paddy to produce this rice	$650 \text{ kg/day} \div 0.61 = 1,060 \text{ kg/day}$
•	The husk produced from this paddy	1,060 kg/day x 0.2 = 210 kg/day
•	Possible power supply hours per day with this husk	210 kg/day ÷ (300 h.h. x 0.080 kW x 1 hr x 2.5 kg/kWh) = 3.5 hours

Table A4.2	Power Potential of	Husks only	[,] from Village	Rice-Mills
14010 11112	I OWEL I OFEIHIMI OF	iiusiis oiny	muge	Ince mins

Source: JICA Study Team

As shown above, the husks produced from the village rice-mills through milling only for self consumption of the villagers have potential, if all the husks are used for power generation, to generate electricity for supply of 75 W (plus 5% loss) to each household for 3.5 hours a day. In other words, the husks only from the village rice-mills for self consumption are not sufficient for supplying power for 5 hours a day. Sources of rice husks should be sought also from outside the village.

Number of Village Rice-mills

As shown in Table A4.3, the village with 300 households would need 2-3 rice-mills of 2.5 tonnes/day capacity scale only for milling of the paddy for the villagers self consumption.

•	Operation months of 2.5 tonnes/day scale rice-mills	10 months a year except for September and October
•	Operation days of the rice-mills	30 days x 10 months x 50% = 150 days
•	Average rice production of one mill	2,500 kg/day x 12 hr/24 hr x 150 days/365 days = 514 kg/day
•	Nos. of required 2.5 tonnes/day scale rice-mills in the village	650 kg/day \div 514 kg/day/rice-mill = 1.3 nos. \rightarrow 2 rice-mills required.

 Table A4.3
 Number of Village Rice-Mills Required for Self Consumption

Source: JICA Study Team

Existing Uses of Rice Husk

There are various kinds of uses of the rice husks as listed below:

• Cooking: 12 baskets of husks per family per month, equivalent to 12 x 11 pounds x 0.454 kg/pound = 60 kg/month = 2.5 kg/kWh x 24 kWh = 80 W x 10 hr x 30 days.

The husk consumed for cooking is almost equivalent to that consumed for power generation of 80 W for 10 hours a day.

- Rice-mills, oil-mills, vermicelli drying factory, ice plant: rice husk gas engine is used as source of power and electricity for the plant. Some supply power also to the neighbouring households.
- Poultry: used for bedding materials and old ones are used as fertilizer.
- Brick, spirits distillery, pottery (water tanks): used as fuel for heating.
- Others (textile dying, some industry for heating, etc.)

In the case of rice-mills using husk gas engine as source of power, it consumes about one half of the husks produced. Accordingly, the greatest issue of the RE scheme with rice husk gas engine is to find and secure the source of husk supply nearby the village.

As biomass gas engine, it is theoretically possible to use, in addition to rice husk, wood chip, sawdust, comb of maize, aged rubber trees, etc. However, except for rice husk there is only one example of application of wood chip being used in a gold mine in Kachin State.

Appendix-5 Characteristics of Rural Area in Myanmar

(1) Rural Population

The population in Myanmar was 46,400,000 in 1997 and 75% lived in rural areaⁱ.

(2) Agriculture as Major Industry

The agriculture sector shared 34% of the GDP at constant value, followed by the trade sector at 20%, and the processing and manufacturing sector at $9\%^{1}$.

The processing and manufacturing sector showed a low growth rate at 0.2%/year in the last 10 years. The insufficient power supply has been one of the causes of this very low growth rateⁱⁱ.

(3) Population movement

Inflow of people into Yangon was recorded at 410,000, and 50,000 into Mandalay (labor force survey 1990). However, 500,000 people moved from urban to rural areas on the other hand. The ratio of urban and rural population has been almost unchanged. Such industrialization accompanied by the population movement from rural to urban areas as had been observed in the Asian countries in the past 20 years may have not taken place in Myanmarⁱⁱⁱ.

(4) Effect of Market Economy

In Myanmar the land belongs to the Government. The Government provides people with cultivating or utilizing rights of the farming land with registration. The people reportedly cannot sell such right or put it in pawn (*There is opposite information that people can sell and buy the right on the use of land*). However, the rental of such rights to other farmers was observed for short duration like within the dry season. For example, when the registered farmer has difficulty to implement the farming plan to follow the notices of the Government, he may lend his land temporarily to those who have necessary machines and fertilizer. These effects had been observed in the rural area after introduction of the change in the economic policy from the planned economy to the market economy in 1988^{iv}.

(5) Township Chairman as Core of Rural Administration

The township SPDC are controlled and managed by the district and or divisional PDC. The township SPDC manages the township including quarters and village tracts. The chairman of township PDC is the center of the rural administration. The chairman is on volunteer basis^v.

(6) Donation to Monastery

Villagers in Myanmar have deep religious minds. Based on the understanding that donation is the most virtuous thing in the human's life, people have habit to donate all the reserve to monastery or monk at the end of each year. They keep the reserve when they need contribution to a village project like repairing school building, reconstruction of houses got fired, etc. There may be social and cultural background in Myanmar that supports promotion of RE on a self-help basis with villagers' leadership and contribution both in financing and labor^{vi}.

(7) Average Education at Primary School

The Government implements the education system in three courses; Basic, Higher, and the Vocational Education. The Basic course starts from entering kindergarten at the age of 5 years, followed by 5 years of Primary School, 4 years for Middle, and 2 years for High School, resulting in a total of 11 years education. This is often referred to as 5-4-2 system. Those children who cannot attend Primary School may get education from private Monastic School system which is provided free of charge by monks at monasteries. Myanmar has preserved this education system since long years ago. There is a record showing 31 such schools were operated in 1867. The Ministry of Social Welfare, Relief and Resettlement provides night schools.

The 11 year education is referred to by continuous "Grade" from the First of Primary School to Tenth (first grade of High School). The Government provides the national examination called BEHS (Basic Education High School) to the students before graduation from High School. The students who passed the BEHS examination are graded "A" and are entitled to receive higher education at Universities or Institutes, and "B" to receive higher education for Teacher Training, Government Technical Institute, etc.

According to the Household Income and Expenditure Survey (1997), 70% of villagers completed Primary School, 16% not educated at all, 9% completed Middle School, and 3% completed High School. The ratio of higher education completed was at 1%, and vocational education at $0.2\%^{vii}$.

(8) Medical and Healthcare

The Government provides medical and healthcare services in three stages. The primary stage consists of state hospital (SH), rural health center (RHC), sub center (SC) under RHC, and maternal and child health center. The second stage consists of district hospital (DH) and township hospital (TH). The tertiary stage consists of general hospital and specialized hospital. The district hospital and township Hospital are the centers of rural medical and healthcare services. There are 1,402 RHCs nationwide, equivalent to 17 times the primary and secondary service facilities in urban areas. However, the number of RHC may be small compared with the number of Primary School estimated at around 26,000^{viii}.

(9) Income and Expenditure Levels

Monthly Income and Expenditure Survey was executed on 25,470 households nationwide including 45 townships both urban and rural in November 1997. The average monthly household income level was K13,006 for urban and K8,906 for rural. The average monthly household expenditure level was K15,266 for urban and K13,091 for rural. Countermeasures taken to fill the gap of the income and expenditure were not clear. In terms of the monthly rural household expenditure, Tanintharyi division was ranked at top at K19,041, followed by Shan State at K15,815, Kachin State at K15,494, and Kayin State at K14,947. All the top four states/divisions have international borders.

One of the characteristics of the expenditure is high Engel's coefficient; 68% in urban and 72% in rural^{ix}.

(10) Expenditure for Lighting and Heat

The average monthly household fuel and lighting expenditure was K638 or 4.9% of the total expenditure. That for urban was K736 or 4.8%. The fuel type for cooking in rural households was firewood at 93%, charcoal at 4%, and electricity at 1%. Lighting source of rural household was 18% by electricity, 32% by battery, and 50% by others⁹.

(11) Consumption Expenditure Level in 1999

CSO (Central Statistical Organization) of the Ministry of National Planning and Economic Development surveyed the monthly expenditure in 1999 on 3,240 urban and rural households in the six border townships. Though the surveyed townships were different from those surveyed in 1997, the expenditure was compared with the rural average of those states/division which the six townships belong to. The Engel's coefficient was at a similar level of 72%. The fuel and lighting expenditure was 1.6 point higher than the previous 5.0%. The expenditure figure was K27,107, being much higher than K15,015 in 1997¹.

(12) Income and Expenditure level in 2001

A village social survey was executed under the Study in order to get the latest data/information regarding the living conditions, villagers' needs for electricity, and their will for electrification. The survey was executed in May-June 2001. It was executed in Southern Shan, Northern Shan, and Kachin State.

The number of households surveyed is 1,348 in total comprising non-electrified (956) and electrified (392) households. Table A5.1 shows income and expenditure.

		(Units	: Kyat/year/household)
Items	Non-electrified	Electrified	Total
1. Income	266,329	380,447	289,440
2. Expenditure	226,756	310,269	243,670
3. Saving	39,572	70,178	45,771
4.Donation	10,213	15,346	11,253
5. Per Capita Expenditure	39,782	43,700	40,612

 Table A5.1
 Income, Expenditure, Saving, and Donation

Source: JICA Study Team

The income level in electrified villages was higher than that in non-electrified villages for all the three areas surveyed. It was K380,000 in electrified and K270,000 in non-electrified villages on an average, resulting in an overall average of K290,000 a year. The average per capita expenditure was K41,000 per year (K44,000 in electrified and K40,000 in non-electrified).

		-								
Object	Accessi	Step		Watt	Simul-	Watt		Watt	Simul-	Watt
	bility				taneous				taneous	
	ratio. %				use. %				use. %	
1 Household		1-1	a 3 Lights	90	100		a 3 Lights	90	15	
Shop South	07	1 1	h Dadia	10	20		h Dadia	10	15	
	0/		D. Kaulo	10	50		D. Radio	10	15	
Shan North	84		c. TV (60w)	30	85		c. TV (60w)	- 30	15	
Kachin	93		Ownership ratio				Ownership ratio			
Total (Un-Ele	87		50%				50%			
ctrified)			Total	130	90%	118	Total	130	15%	20
Total (Electri	02	1.2	1.1	120	00	110	1 1	120	1570	20
	92	1-2	1-1	150	90		1-1	150	15	
fied)			d. Rice Cooker	90	50		d. Rice Cooker	90	30	
Total	88		Ownership ratio				Ownership ratio			
			15%				15%			
			Total	220	70%	163	Total	220	20%	44
2 Dublic			Total	220	1070	105	Total	220	2070	
2. Fublic 2.1 Streat Light	100	1 1	Ow Tube 10/Dless	50	100	2 000				0
2.1 Street Light	100	1.4	ow Tube T0/Place	50	100	2,000	1 1 1 . 00 1 1 . 00	600	0	0
2.2 Temple	100	I. L	ight 20wTubex30	600	67		1. Light 20wTubex30	600	0	
		2. T	V 1x60w	60	50		2. TV 1x60w	60	0	
		3. F	an 4 x 60w	240	20		3. Fan 4 x 60w	240	50	
		4 R	efrigerator(100w)	100	50		4 Refrigerator(100w)	100	100	
		5 1	(C.1. 1KW	1 000	0		$5 \Lambda/C 1 \times 1 KW$	1 000	50	
		J. A		1,000	2004	500	J. A/C.IXIKW	1,000	50	720
			Total	2,000	30%	528	Total	2,000	40%	720
2.3 Hospital	100	1. 0	outer light				1.Outer light			
		20	0w Tube x 1	20	100		20w Tube x 1	20	0	
		2. Ir	mer light				2. Inner light			
		40	w Tube x 5rooms	200	50		Night demand x 50%	200	25	
		2 D	ofrigorator	200	50		2 Defrigerator	200	20	
		э. к		1.00	100		5. Reffigerator	1.00	100	
		13	30w x 1	130	100		130w x 1	130	100	
			Total	350	70%	250	Total	350	50%	180
2.4 Clinic	100	1.0	uter light				1.Outer light	20	0	
		20	0w Tube x 1	20	100					
		2. Ir	nner light				2. Inner light			
		40	w Tube v Arooms	160	50		Night demand x 50%	160	25	
		2 D	ofrigorator	100	50		2 Defrigerator	100	25	
		J. K		1.00	100			100	100	
		13	SOW X I	130	100		130w x 1	130	100	
			Total	310	70%	230	Total	310	50%	170
2.5 High	100	1.0	outer light	20			1.Outer light	20	0	
School		20	0w Tube x 1				-			
		2 Ir	mer light	5 760			2 Inner light	5 760	20	
		2. II	lass magne (26)	5,700			Esa alau du asiau dau	5,700	20	
			lass room (56)				For cloudy, rainy day			
		40	W Tube x 4 x 36				use: 5,760x20% use			
		3. H	lead Master room				(50days/250days/year)			
		40	w Tube x 1	40			3. Head Master room	40	20	
		4C	ony machine				4 Copy machine			
		20	00w x 1004	200			200m x 10%	200	10	
			00w X 1070	300			500w X 1076	300	10	
		5. C	computer room				5. Computer room	80	100	
		40)w x 2	80			40w x 2			
			Total	6,200	0%	0	Total	6,200	20%	1,270
2.6 Middle	100	1.0	uter light	20	1		1.Outer light	20	0	
School		20	0w Tube x 1				5			
Senoor		2 Ir	mer light	1 280			2 Inner light	1 280	20	
		2. 11		1,200				1,200	20	
		CI	ass room (8)				For cloudy, rainy day			
		40	W Tube x 4 x 8				1.280x20%	1		
		3 H	ead Master room				(50days/250days/year)	1		
		40)w Tube x 1	40			3. Head Master room	40	20	
		10	ony machine	300			A Conv machine	300	10	
		+ 0	0 - 100	500		1	Copy machine	500	10	
		30	JUW X 10%				500W X 10%	1		
1	1		Total	1.640	0%	0	Total	1.640	20%	290

Appendix-6 (1/2) Estimated Unit Power Demand

Source: JICA Study Team

Object	Accessi	Step		Watt	Simul-	Watt		Watt	Simul-	Watt
5	bility	-			taneous				taneous	
	ratio, %				use, %				use, %	
1. Household		1-1	a. 3 Lights	90	100		a. 3 Lights	90	15	
Shan South	87		b. Radio	10	30		b. Radio	10	15	
Shan North	84		c. TV (60w)	30	85		c. TV (60w)	30	15	
Kachin	93		Ownership ratio				Ownership ratio		_	
Total (Un-Ele	87		50%				50%			
ctrified)			Total	130	90%	118	Total	130	15%	20
Total (Electri-	92	1-2	1-1	130	90	-	1-1	130	15	-
fied)			d. Rice Cooker	90	50		d. Rice Cooker	90	30	
Total	88		Ownership ratio				Ownership ratio			
			15%				15%			
			Total	220	70%	163	Total	220	20%	44
2. Public	1		Totta		1070	100	1000	220	2070	
2.1 Street Light	100	1.4	0w Tube 10/Place	50	100	2.000				0
2.2 Temple	100	1. L	ight 20wTubex 30	600	67	2,000	1. Light 20wTubex 30	600	0	Ű
 i empre	100	2. T	V 1x60w	60	50		2. TV $1 \times 60 \text{w}$	60	Ő	
		3 E	$an 4 \times 60 w$	240	20		3 Fan $4 \times 60 w$	240	50	
		4 R	efrigerator(100w)	100	50		4 Refrigerator(100w)	100	100	
		-τ. Γ. 5 Δ	C·1v1KW	1 000	0		5 $\Delta/C \cdot 1 \times 1 KW$	1 000	50	
		5.11	Total	2,000	30%	528	Total	2,000	40%	720
2.3 Hospital	100	1.0	uter light	2,000	5070	520	1 Outer light	2,000	4070	720
2.5 1105pitai	100	1.0	Ow Tube v 1	20	100		20w Tube v 1	20	0	
		2 Ir	ow Tube A I	20	100		20w Tube X T	20	0	
		2. 11	mer light	200	50		2. Inner fight Night demand x 50%	200	25	
		2 D	ofrigorator	200	50		2 Defrigerator	200	23	
		J. K	Convex 1	120	100		120m v 1	120	100	
		15	Total	350	70%	250	Total	350	50%	180
2.4 Clinic	100	1.0	uter light	350	7070	250	1 Outer light	20	0	100
2.4 Clinic	100	1.0	Ow Tube v 1	20	100		1.Outer light	20	0	
		2 Ir	ow Tube A I	20	100		2 Inner light			
		2. 11	mer light	160	50		2. Inner fight Night demand x 50%	160	25	
		2 D	ofrigarator	100	50		2 Pafrigaretor	100	23	
		J. K	Conv v 1	120	100		120m v 1	120	100	
		15	Total	210	70%	220	Total	210	50%	170
25 High	100	1.0	10tai	20	7070	230	1 Outor light	20	0	170
2.5 fight	100	1.0	Ow Tube v 1	20			1.Outer light	20	0	
School		2	ow Tube X I	5 760			2 Innor light	5 760	20	
		2. II	liter light	5,700			Z. Inner fight	5,700	20	
			ass 100 III (50)				For cloudy, failing day 160° , 5.760 x 20%, 160°			
		2 U	and Master room				(50 days/250 days/voor)			
		э. п 40	w Tube v 1	40			(Jouays/2Jouays/year)	40	20	
		40	w Tube X T	40			4. Conv. mashing	40	20	
		4.C0	opy machine	200			4. Copy machine	200	10	
		50	UW X 10%	300			500w X 10%	300	10	
		5. C	omputer room	00			5. Computer room	80	100	
		40	W X Z	80	00/	0	40 W X Z	< 2 00	2004	1 070
0 () (') II	100	1.0	Total	6,200	0%	0		6,200	20%	1,270
2.6 Middle	100	1. 0	uter light	20			1.Outer light	20	0	
School		20	Jw Tube x T	1 200			A J J J	1 200	20	
		2. Ir	iner light	1,280			2. Inner light	1,280	20	
		Cl	ass room (8)				For cloudy, rainy day			
		40	w Tube x 4 x 8				1.280x20%			
		3 H	ead Master room				(50days/250days/year)			
		40	w Tube x 1	40			3. Head Master room	40	20	
		4 C	opy machine	300			4. Copy machine	300	10	
		30	0w x 10%				300w x 10%			
			Total	1,640	0%	0	Total	1,640	20%	290

Appendix-6 (2/2) Estimated Unit Power Demand

taneous use, %	
use, %	
0	
20	
0	
÷	
20%	65
2070	05
0	
0	
100	
100	
100	
100	
20	
30	
20	
20	005
30%	905
20	
20	
100	
50	
100	
30%	1,230
70%	4,900
80%	5,000
80%	7,000
80%	5,000
80%	5,000
80%	5,000
80%	5,000
80%	4,000
80%	7,000
80%	5,000
80%	4,000
80%	1.500
80%	5.000
80%	200
	20 0 20% 0 100 100 100 30% 20 20 100 30% 20 20 100 50 100 30% 20 30% 20 30% 20 30% 80% 80% 80% 80% 80% 80% 80% 8

Note: It is assumed 15% of household will have 600 W Rice Cooker certain years after electrification. For Namlan Village, 2 Saw Mills have total 4 machines at 20kW

Source: The Study Team

No.	Parameters	Criteria for Selction (Qualification)
1	Possibility of extension of distribution lines from Grid	L > 30 km or Grid has no extra power for RE> then by hydro
2	Possibility of power supply by rehabilitation of existing small hydros nearby	Not exist, or not possible to rehabilitate> then by new hydro
3	Length of new access road	L < 10 km
4	Length of road from site to target villages	L < 0 km
5	Number of households in the target villages	n > approximately 500
6	Installed capacity P _i	50 kW < P _i < 10,000 kW
7	Intake weir height	H < 15 m
8	Storage dam height	H < 50 m
9	Pond/reservoir surface area	A < 5 km ²
10	Headrace tunnel	L < 2,000 m
11	Headrace channel	L < 5,000 m
12	Penstock	L < 1,000 m
13	Design head of turbines	H _d < 500 m
14	Design discharge of one turbine	Q _d < 2.0 m ³ /s
15	Type of powerhouse	surface

Appendix-7 (1/4) Selection Criteria for RE by Small and Mini Hydros (>50 kW)

Souce: JICA Study Team.

No.	Parameters	Criteria for Selction (Qualification)
1	Possibility of extension of distribution lines from Grid	L > 10 km or Grid has no extra power for RE
2	Possibility of power supply by rehabilitation of existing small hydros nearby	Not exist, or not possible to rehabilitate
3	Length of new access road	L < 1 km
4	Length of road from site to target villages	L < 1 km, if it exceeds 1 km, costs of transmission lines will significantly increase.
5	Number of households in the target villages	n < 300-500
6	Installed capacity P _i	P _i < 50 kW
7	Design head of turbines	H _d < 30 m
8	Design discharge of one turbine	Preferably Q _d < 0.5 m ³ /s in general, refer to Design Manual-Village Hydros in Vol. 4 for required discharge by head and village size.

Appendix-7 (2/4) Selection Criteria for RE by Micro and Pico Hydros (<50 kW)

Souce: JICA Study Team.

No.	Parameters	Criteria for Selction (Qualification)
1	Possibility of extension of distribution lines from Grid	L > 1 km
2	Existence of ricemills or sawmills nearby	Not exists nearby except for small scale ones which cannot meet fuel requirement of Biomass Gas Engine
3	Existence of adequate hydro potential nearby	Not exists.
4	Accessibility to the target villages (road driving hours from Yangon, Mandalay, or other large urban centers nearby in the rainy season)	T > 3 hr or road not passable in the rainy season
5	Number of households in the target one village	n < approximately 100

Appendix-7 (3/4) Selection Criteria for RE by Solar-Wind BCS

Souce: JICA Study Team.

Appendix-7 (4/4) Selection Criteria for RE by Biomass Gas Engine

No.	Parameters	Criteria for Selction (Qualification)
1	Possibility of extension of distribution lines from Grid	L > 1 km or Grid has no extra power for RE
2	Existence of suitabe hydro potential nearby	Not exists.
3	Existence of ricemills or sawmills	Exists nearby and can meet the fuel requirement of Biomass Gas Engine
4	Number of households in the supply area	500 > n > 100, a village of smaller size would increase unit cost per household beyond affordable range.

Source: JICA Study Team.

Appendix-8 Common Issues of Battery Charging for Lighting and Recommended Parallel Charging

It is quite common that batteries are serially connected for charging at BCSs in Myanmar. However, this serial charging will deteriorate batteries. All of the batteries connected would have different conditions in charging impedance, state of remaining energy, and voltage capacity. Life expectancy of each battery is also different. A deteriorated battery has large impedance. When these batteries are charged under serial connection, some deteriorated batteries will be over-charged and the others will get insufficient power for charging. Repetition of the over-charging or under-charging will shorten the life of the batteries. Charging should be executed to the full charged revel.

Source: JICA Study Team

$$\mathbf{V}_{\text{total}} = \mathbf{V}_1 + \mathbf{V}_2 + \cdot \cdot \cdot + \mathbf{V}_n$$

 $= I_c \ x \ R_1 + \quad \bullet \quad \bullet \quad I_c \ x \ R_n$

where, V_{total} : Tatal voltage $V_1 \cdot \cdot V_n$: Battery voltage under charge I_c : Charging current $R_1 \cdot \cdot R_n$: Charging impedance of batteries

 I_c is common among the batteries serially connected. The impedance of a deteriorated battery is higher than rated impedance of normal battery. Mixing an over-used battery of large impedance (ex. R₄) in the serial connection will increase its charging voltage V₄ (= I_c x R₄) exceeding the allowable voltage, which leads to cause electrolysis of the battery water. Energy intended for charging is consumed for the electrolysis, and the charging current I_c of the system is reduced. Then, a longer time is needed for the charging of the other normal batteries. On the other hand, it drops the charging voltage of the other batteries V₁, V₂,..., as V_{total} is constant, and the charging finishes before these are fully charged (since charging at BCS is usually ended by time elapsed). Half-charging causes the education of lead on the electrode, which shorten the battery life.

To avoid these problems, all of the batteries of the same rated voltage, 12 V for example, should be connected in parallel as shown in Figure A8.2, where all the batteries are to be charged under the same voltage up to the fully charged voltage level. Batteries of different voltage should be separately charged. Otherwise the life of batteries will be significantly shortened.

Source: JICA Study Team

Figure A8.2 Recommended Parallel Connection for Battery Charging

Appendix-9 Forms for Interview Survey for RE with Solar-Wind Power

(1/2) Form for Demand Survey of Each Consumer

Type/Name of Consumer:

Date of survey:

Fill in features like family size for household, number of pupils for school, etc.

	Electric	Туре	Power	Number	Voltage	Daily Use	E (Wh/day)			
No.	Appliance	DC	W		V	hours	E (wn/day)			
	S		Α	В	С	D	AxBxD			
1	Lamp	FL	20	1	12	5	100			
2	Lamp	Bulb								
3	Lamp									
4	Radio	RadiCasse								
5	TV									
6										
7										
		Total Appli	aces No:	1	Total Power	: Use: (E)=	100			
2. Calcu	lation of B	attery Capac	city							
	Power Den	nand, Pd=	(E)/0.706/0).87=	163	Wh/day				
	Battery Vo	oltaga:		V=	12	Volt				
	Charging I	nterval:		Int=	days					
	Battery Ca	pacity: Bc=	Pd x Int/V/	/0.7=	78	Ah				
	Choose Ba	ttery Capaci	ty from her	e:	10, 20, 30, 50	Ah				
	Your Batter	y Capacity:	50	Ah x	2	Cells				
3. Now	Your powe	er consumpti	ion is estim	ated as	3.0	kWh/mont	h.			
So, You v	will have to pa	ay money of		15	Kyat every	month,				
since th	e unit charg	ge will be est	timated as	5	Kyat/kWh	(Note-3)				

Data Input Column

Automatic Calculation

Note: If nothing particular, please select appliances based on 12V, which is highly recommended, and economical. The selection of voltage other than 12V would be rather more expensive than that of 12V.

(2/2) Form for Village Summary

Sheet No: /

Village Name	

Township:_____

Total No of Household _____

		Power	Required N	os. of Batte	ries by Size	
No.	Name	Demand	S	Remarks		
		Wh/day	50Ah	30Ah		
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
Total fo	or Housholds Use:					
	Monastery					
	Primary School					
	Village Office					
	Clinic					
	Community Center					
Total fo	or Public Facilities Use:					
Grand 7	Fotal					

Appendix-10 Planning Sheets for RE by SHS

1	Name of Country	Sri Lanka	Indonesia	Nambia	Brazil		Bolivia	
2	Reported Year	Started from 1997	Started from 1997	Started from 1997	Started from 1995	Started from 1996	Started from 1998	Started form 2001
				SUSAID,		Government of		
3	Fund	GEF,RB	WB	Covernment, etc	GTZ/CEMIC	Spain	USAID	JICA
4	System Configuration							
				50W x 1 set, 100				
	1) PV Panel	50W x 1 set	50W x 1 set	W x 1 set	50W x 1 set	50 W x 1	53W x 1 set	50W x 1 set
	2) Battery	100Ah x 1set	70 Ah x 1 set	100 Ah x 1 set	100Ah x 1set	100 Ah x 1 set	100 Ah x 1 set	99.12Ah
	3) Controller	1 set	1 set	1set	1 set			1 set
	4) Lamp	10W x 7 sets				15W x 3 sets	7 W x 3 sets	15W x 3 sets
	5) Wall Sockets	8 sets						
	6) Internal Wiring	1 set for all above						
5	Way of Operation	Personal Ownership	Personal Ownershi	Personal Ownership	Rental to Users	Rental to Users	Personal Ownership	
6	Bank Loan System							
	1) Initial Installment	Rp 115.75 ^{*1}	US\$ 75-100	20% of capital cost			USD 90	Bs.600 ^{*3}
	2) Monthly Payments	Rp 13.89	up to US\$ 10	Payment to be finished		US\$ 2	None	Bs. 22
	3) Payment Months	36 Months	48 Months	within 5 years			None	
	4) Maintenance Cost	Included above						
	5) Monthly Rental Fee				US\$ 5			
	6) Payment Condition			Yearly interest at 5%			No interest	
7	Others							
	1) Total Repayment by Loan System	Rp 615.75		US\$ 892, USD 1,700		US\$ 700	US\$ 720	Bs.5300
	2) Cost of Lump-sum Payment	Rp 509.26						
		Direct Interview in	JEPEA Report,	JEPEA Report,	JEPEA Report,	JICA Report,	JICA Report,	JICA Report,
8	Data Source	October, 2001	March, 2001	March, 2001	March, 2001	September, 2001	September, 2001	September,2001

Table A10.1 Past Example of SHS Installations in Foreign Countries

*1 Japan Photovolatic Energy Association

*2 US\$1 = Rp 86.4 as of October 10, 2001

*3 US\$1 = Bs.5.98 as of September, 2001

	Calculation for Village of :									1
			Calculation Item							
		1.	Name of System Numbers	Unit		Power, W	Hour	No.	Wh/day	
bu			Village "Sample" 50) Sets	Lamp	20	5	1	100	
ma					Lamp				0	
De					Radio	5	5	1	25	
					Others	6	0		0	
					Total	*	*	2	125	
			Daily Total Power Demmand:	P _{DD}	125	Wh/day				
			Monthly Total Power Demand	P _{MD}	4.7	kWh/Mo	nth		(Note-4)	
		2.	Battery							
					Acid-lead	(A/L)	battery,	recyclable	e batteries	
		a)	Type of Battery		commonly	y used in M	Iyanmar	2		
	N	b)	Ah-Capacity Ah	Св	50	Ah				
ery.	acit	c)	Nominal Voltage	V.	12	Volt				
3att	àp	d)	Total Capacity of Battery Bank	Cm	600	Wh X	Nos of I	natterv		
	<u> </u>	e)	Charge discharge efficiency of L/A Pottory	VBB K	83%		1.05 01 0	Juniory		
cy		c) 6	La fariarita a pain at L/A Dattama	K3 V	05/0					
ien		1)	interiority against L/A Battery	KINF	85%					
ffic		g)	Total Efficiency of Charge-discharge	K _{total}	70.6%					
Ъ		h)	Circuit Loss Factor	K_4	0.87					
ter		i)	Interval of Battery Charge:	$\mathbf{D}_{\mathbf{A}}$	4	days				
Bat		j)	Depth of Discharge	B _{DOD}	70%					
tery iire	r,	k)	Required Capacity of Battery	C _{CB} ^{*1}	97.0	Ah			(Note-3)	
Bat	mne	1)	Nos of Battery	N _B	2	Cells				
		3.	Calculation of PV Array Capacity	-						١
L		a)	Unit Capacity of PV Panel	Ср	50	W				1
ors liai	>	b)	Conv. Efficiency of PV Panel	En	12.5%					
act	۲ ۲	c)	Area of PV Panel		0.4	m ²				
цд	Ĕ	d)	Imediation	п	4 35	111			(Note 1)	
g	uo	u) a)	Margin Factor for PV Capacity	к _М	4.55	ĸwn/m/da	ly .		(11010-1)	
dt o	diti	e) f)	Tomp Degradation Factor	IVI IZ	0.84					
rs ndec	00	"		к ₁	0.84	0.5				
per	ea	g)	Panel Contamination Factor	K ₂	1.00	0.9	, if nece	ssary	(Note-2)	needed
Fč de	an	h)	Other Loss Factor	K _M	0.90					for PV
		4.	Array Capacity							1
		a)	Calculated No of PV Module:	NP	2	Sheets				
		b)	Calculated PV Array capacity:	C _{PV} *2	100	W				
		5.	Durability of Battery							
		a)	Calculated Interval		4.12464	days				
		b)	Durability		OK					
		6.	Total Capacity							
		a)	No. of Household		50	househol	d			
		b)	Total Batteries used in the Village		100	Sets				1
		c)	Total PV Capacity for Village		5	kW				}
		a)	Total wind Turbine Capacity			KW X			(INOTE-5)	

*1 $C_{CB} = P_{DD} x D_A/V_N/(K_3 x K_{INF})/K_4/B_{DOD}$ *2 $C_{PV} = C_P * N_P = C_P x P_{DD} x M/1000/R_M/(K_3 x K_{INF})/K_4/K_1/K_2/K_M/E_P/A_P$ Note-1: Yearly Mean Irradiation Data of DOMH at Myitkyna (Max Note-2: If necessary, to be replaced with "0.9" in stead of "1.0" (Max: 5.60, Min: 3.25kWh/m2/day)

Note-3: Margin Factor(M) is not included here. If necessary, to be included.

Note-4: Margin Factor(M) is included here.

Note-5: For rough information, Wind Turbine Capacity to be estimated by referring Table A11.2 & Table A

Data of Ty	Data of Typical PV Panel Specification									
Output	Wp		50	52	54	56	60	64		
Efficiency	%		12.5	13.0%	13.5%	14.0%	12.3%	11.5%		
Area	m2		0.40	0.40	0.40	0.40	0.490	0.5583		
Manufactu	ire	Ν	Mono-S	ilicon Ty	pe		Kyosera	MSK		

Note for	Input:
	Data Input Column
	Coefficient, fixed
	Coefficient, variable
	Automatic Calculation

	Calculation Model: 50	housholds 20	W X	5 hr/da	1 set							
	Calculation Item	Case	Study									Notes and Calculation Form
1.	Village Facilities	Total Power Deman	Power Demand fo	or Public Fa	acilities furnish	ed with Lau	nps	and	Radio & Other	rs		
					Power Dura	tion No	Total		Pow	ver Duration	No Total	Note for Input:
1)	Power Demand for Public Facilities	s		_	W hour	day set	Wh/day		Load W	/ hour/day	set Wh/day	Data Input Column
a)	Primary School	215 wh/day	Primary School	Lamp	20	5	2 200		Radio	5 3	1 15	Coefficient, fixed
b)	Village Office	210 wh/day	Village Office	Lamp	20	3	3 180		Radio	5 3	2 30	Coefficient, variable
c)	Clinic	180 wh/day	Clinic	Lamp	20	3	2 120		Radio	5 3	4 60	Automatic Calculation
d)	Community Center	0 wh/day	Community Center	Lamp			0		Radio		0	
				Total			7 500		Tot	tal	7 105	
	Power Demmand for P-facilities	605 wh/day										
	No of allotted batteries	11 Batteries		Power De	mand for Hou	seholds						
					Power Dura	tion No	Total					
2)	Households Use	No. of Households:	: 50 HH		W hour	day set	Wh/day					
	Total Power Dmand	6250 wh/day		Lamp	20	5	1 100					
	No of allotted batteries	100 Batteries		Lamp			0					
				Cassette	5	5	1 25					
3)	Grand Total of Power Demand	6855 wh/day			Total	2	125					
	Total No of Batteries	111 Batteries			Domond	~	~ ^ ``		~			
2.	Battery				Demand	Battery	Cap & No		Ba	ttery Nos & Ca	apacity	
a)	Type of Battery	Recyclable Batterie	es commonly used in	n Myanmar	Objects Ah (Cap. Ah	Nos	Total No	Ah-Class	Nos	Wh Capacity	
b)	Ah-Capacity and Nos Ah	Ah	Calculation of Ba	ttery Capa	H/H	97 5	0 2	100) 30 Ah	0	0	(Note-3) (Note-4)
	Nos	Cells			P School 10	6.9 5) 4	4	40 Ah		0	
c)	Nominal Voltage	12 Volt			V Office	163 5) 4	4	50 Ah	111	66600	F22#F225
d)	Capacity	67 kWh		I	Clinic 1.	<u>.</u> .75) 3	3	3 75 Ah	0	0	=E23*E25
e)	Charge-discharge efficiency of L/A battery	83.0%			C Center	0			100 Ah	0	0	Degradation Factor
t)	Inferiority against L/A Battery	85.0%				Total		111	150 Ah			Assumption Factor
g)	Total Efficiency of Charge-discharg	70.6%							200 Ah		(71) XX	=E27*E28
h)	Circuit Loss Factor	0.87		l					Total	111	67 kWh	=ROUND(1-(1.5/12)*1.05,2)
t)	DOD	70%										
5.	Calculation of PV Array Capacity	7 4 XX										DV G A S A
a)	Unit Capacity of PV Panel	54 W	Data Sheet: PV Pa	anel Specif	ication	50 00	64					PV Caracteristic
D)	Conv. Efficiency of PV Panel	13.5%	Output wp	12.00/	54	56 60	64					PV Caracteristic
c)	Area of PV Panel	0.4 M2	Efficiency%	13.0%	13.5% 14	.0% 12.39	b 11.5%					PV Caracteristic
D)	Interval of Battery Charge:	4 days	Area m2	0.40	0.40 0	.40 0.490	0.5583					
c)	Irradiation	4.35 kWh/m ² /	Manufacture	Mono-Sili	con Type	Kyosera	MSK					Note-3
d)	Margin Factor for PV Capacity	1.25										Ocapacity Margin
e)	Temp Degradation Factor	0.84										Degradation Factor
f)	Other Loss Factor	0.90										Degradation Factor
4.	Array Capacity	(Total for BCS)	(BCS/Household)	(SHS/P So	chool) (SHS	/V Office)	(SHS/Clin	ic)	(SHS/C Center)	(Total for	BCS+SHS)	
a)	Calculated No of PV Module:	79 Sheets	72 Sheets	3	Sheets	3 Sheets	3	Sheets	0 Sheet	s 81	Sheets	Note-1
b)	Calculated PV Array capacity:	4.27 kW	3.89 kW	0.16	kW (0.16 kW	0.16	kŴ	0 kW	4.37	kW	=ROUND(E42*E33/1000,2)
5.	Durability of Battery for H/H		(Household)	(P School	(V O)	tice)	(Clinic)		(C Center)			
a)	Calculated Interval		4.12 days	4.80	days 4	.91 days	4.30	days	days			Note-2
b)	Durability		OK	OK	OK		OK					=IF(E46/\$E36>1,"OK","No Good")
	Note-1 · - ROUNDUP(E19*E3)	8/1000/E37/E29/E3	0/E39/E40/E34/E35	0)	Note-3 IF(I	こうえくちい 10*R	OUNDDOV	VN((K23	V(10+1)(0)(10*RC)	11NDDOWN($(\mathbf{K} 23/2/10\pm 1)(0))$	

Appendix-11 Planning Sheets for RE by Solar BCS

Note-2: =(Battery Capacity in use)x12x(DOD/100)/(Daily Power Demand)

N((K. +1),0))

Note-4: =1+ROUNDDOWN(K23/E23,0)

Table A11.1 Planning Sheet of Solar PV Array for BCS (Sample for 50 Households Village)

No	Itama	Items				Unit Price			
INO.	Items	specification			Kyat or Yen US\$			US\$	
(A)	BCS								
(1)	PV Array							7,562	
1)	PV Module	54W	79	set	30,000	Yen	60	4,740	
2)	Terminal Box		32	set	40,000	Yen	80	2,560	
3)	Arrester		77	pce	400	Yen	0.8	62	
4)	Array Structure	Wooden & Aluminum Structure	1	set	100.000	Kv	200	200	
					,		0	0	
(2)	Controll Units							4.920	
$\frac{(-)}{1a}$	Charging Controller	1P/4P-12V 20A Normal Ver	20	set	80,000	Yen	160	3 200	
$\frac{1a}{1b}$	Charging Controller	1P/4P-Variable V 20A	12	set	20,000	Yen	40	480	
$\frac{10}{1c}$	Charging Controller	4P/4P-Variable V 20A: Eco-Charge	3	set	200,000	Yen	400	1 200	
$\frac{10}{2}$	Management Board		1	set	200,000	Yen	40	40	
- 2)	Widitagement Dourd		1	500	20,000	101	0	0	
(3)	Domestic Utensils						0	7 149	
(3)	Mobile Battery	Pecyclable 12V 50Ah made in Mya	13/	sat	17.000	Kv	34	1 556	
$\frac{1a}{1b}$	Mobile Battery	Recyclable 12V, JOAn made-m-wrya	134	sei	21,000	Ky Ky	42	4,550	
$\frac{10}{2a}$	Lighting Kit	EL 20W	60	sat	6 500	Ky Ky	42	807	
$\frac{2a}{2b}$	Lighting Kit	FL 10W	09	sei	4,000	Ky Ky	15	097	
$\frac{20}{20}$	Lighting Kit	FL QW		sot	4,000	Ky Ky	7	0	
20)	Lighting Kit	FL-OW	0	set	3,300	Ку Ил	50	400	
3)	Radio for Public Use	No inclusion for personal use	8	set	25,000	Кy	30	400	
4)	Internal wiring Set		12	set	9,000	Ку	18	1,296	
5)	Others		1	set		КУ	0	0	
						Ку	0	0	
(4)	Construction Work							3,404	
1)	Erection Materials	015 500			255.000	17	711.0	1,428	
a)	Cable & Wire	817,500	1	set	355,900	Ку	/11.8	/12	
b)	Miscellaneous cabling	materials 262,500	1	set	114,300	Ky	228.6	229	
c)	Supportstructure & ba	sement 560,000	1	set	243,800	Ky	487.6	488	
2)	Workers	100	76	M-D	2,000	Ky	4	304	
3)	Foreman	Electrician 15	12	M-D	4,000	Ky	8	96	
4)	Manager	Engineer 15	12	M-D	9,000	Ky	18	216	
5)	Designer	Engineer 15	12	M-D	15,000	Ky	30	360	
6)	Transportation	1	1	set		Ky	1000	1,000	
							0	0	
(5)	Miscellaneous							0	
1)						Ky	0	0	
						Ky	0	0	
	Total Summation for I	Item A						23,035	
В	Battery Recycling Sho	pp							
(1)	Necessary utensils, too	ols, working tables., etc.						1,024	
1)	solar still		2	Set	80,000	Ky	160	320	
2)	lead mould		2	Set	10,000	Ky	20	40	
3)	lead nelting tool with	compressor & nozzel	2	Set	50,000	Ky	100	200	
4)	plates mounting jig se	t	2	Set	14,000	Ky	28	56	
5)	water tank		1	Set	18,000	Ky	36	36	
6)	acid soultion container	r	1	Set	12,000	Ky	24	24	
7)	workshop table		1	Set	70.000	Kv	140	140	
8)	plier, cutter & miscella	ineous tools	1	Set	20.000	Kv	40	40	
- 9)	tools and equipment s	helf	1	Set	50.000	Kv	100	100	
10)	hydrometer		1	Set	4,000	Kv	8	8	
$\frac{10}{11}$	thermometer		1	Set	1,500	Kv	3	3	
$\frac{11}{12}$	state of charge meter		1	Set	3 500	Kv	7	7	
13)	multimeter/tester		1	Set	25 000	Kv	50	50	
13)				500	23,000	Ky	0	0	
L						1×y	0	U	

Table A11.2 (1/2) Cost Estimate for Solar BCS (Sample for 50 Households Village)

NT	T.				nos. Unit Unit Price			Price
NO.	Items	Specification			Kyat or Y	'en	US\$	US\$
(2)	Provision of all parts a	and materials for recycling			•			230
1)	lead raw materials (50	sets) 16,000	1	Lot	9,200	Ky	18.4	18
2)	electrolite	9.000	1	Lot	5.200	Kv	10.4	10
3)	seperater	2,000	1	Lot	1 200	Kv	2.4	2
4)	standard lead plate	54,000	1	Lot	31 100	Kv	62.2	62
5)	empty hattery	35,000	1	Lot	20,200		40.4	40
6)	hattery can & cover	3,500	1	Lot	20,200		4 2	40
7)	spare cabinet	75,000	1	Lot	43 100		86.2	86
$\frac{7}{8}$	miscellaneous	5,000	1	Lot	2 900		5.8	6
0)	miscenaneous	5,000	1	LOI	2,900		5.8	0
(3)	Others for repairing							0
1)	Operator	10%				Ky	0	0
2)						Ky	0	0
	Total Summation for I	tem B						1,254
~								
С	Shop with Stock Roon	1						
(1)	Necessary utensils, too	ols, working tables., etc.				Ky		200
	**Please specify here.	**	1	Set			0	0
							0	0
(2)	Provision of all EL lan	nne alactric/alactronic parts and mater	iole			K _V		122
(2)	PTOVISION OF AN FL TAN	54W		sot	20,000	Ny	60	122
$\frac{1}{2}$	Torminal Day	S4W =ROUNDUP(Calc_BCS!E3		set	40,000	Ven	80	120
2)	A master	=ROUNDUP(Calc_BCS!E3	1	Set D'a	40,000	Yen	80	80
3)	Arrester	$= ROUNDUP(Calc_BCS!E39*N10*(1+N2))$	2	PS	400	ren	0.8	1.60
	Charging Controller	1P/4P-12V, 20A Normal Ver.	1	set	80,000	Yen	160	160
	Charging Controller	1P/4P-Variable V, 20A	1	set	20,000	Yen	40	40
	Charging Controller	4P/4P-Variable V, 20A: Eco-Charge	1	set	200,000	Yen	400	400
	Mobile Battery	Recyclable 12V, 50Ah made-in-Mya	1	set	17,000	Ку	34	238
	Mobile Battery	Recyclable 12V, 75Ah	0		21,000	Ky	42	0
	Lighting Kit	FL-20W	4	set	6,500	Ky	13	52
	Lighting Kit	FL-10W	0		4,000	Ky		
	Lighting Kit	FL-8W	0	set	3,500	Ky	7	0
	Radio for Public Use	No inclusion for personal use	1	set	25,000	Ky	50	50
	Internal Wiring Set		4	set	9,000	Ку	18	72
(3)	Others						0	0
(3)	Total Summation for I	tom C					0	322
	Total Summation for I							322
D	Building	2 Rooms: one for Charging Room, and	other fo	or BRS	Sp Room			
(1)	Charging Room	36 m2	1		1,250,000	Ky	2500	2,500
		Total Area: 6x6m2	36		47	U\$/1	m2	1,692
	Unit Cost 47	=ROUNDUP(61.43/(64/9.3)^0.2,0)					0	0
(2)	BRSp Room	36 m2	1		1,250,000	Ky	2500	2,500
. ,		Total Area: 6x6m2	36		47	U\$/1	m2	1,692
	Unit Cost 47	=ROUNDUP(61.43/(64/9.3)^0.2,0)					0	0
(3)	Shop with Stock Roon	18 m2 6x3m2	1		625,000	Kv	1250	1.250
	1	Total Area: 6x6m2	18		54	U\$/1	m2	972
	Unit Cost 54	=ROUNDUP(61.43/(d113/9.3)^0.2,0))				0	0
	Total Summation for I	tem D						4,356
E	Management Work							
$(\overline{1})$	Consulting		60	M-D	35,000	Ky	70	4,200
(2)	Travelling Cost		3	set		Ky	300	900
(3)	Documetation		1	set	1,000,000	Ky	2000	2,000
(4)	On-site training work		1	set	1,500,000	Ky	3000	3,000
	Total Summation for I	tem D						10,100
	Crond Total familier 1	montation of D CS True 1						20.077
	Grand Total for imple	memation of B CS, Type-1						39,067

 Table A11.2 (2/2)
 Cost Estimate for Solar BCS (Sample for 50 Households Village)

Appendix-12 Planning Sheets for RE by Wind Power BCS

Table A12.1 Mean Wind Speed and Required Number of Wind Turbine-Generator

Table A12.2 Examples of Estimated Power Outputs from Small Wind Tu
--

										(Uni	t: kWh/	Month)
No	Type of Wind Turbine		Monthly Mean Wind Velocity									
140		2.7m/s	3.1m/s	3.6m/s	4.0m/s	4.5m/s	4.9m/s	5.4m/s	5.8m/s	6.3m/s	6.7m/s	7.2m/s
1.	Whisper 600	11	20	32	47	63	82	102	122	143	164	183
2.	Whisper H900	11	20	32	47	65	86	109	134	160	187	214
3.	Whisper 1000	19	34	54	78	105	136	156	204	238	273	305
4.	Whisper H1500	18	34	54	79	108	143	181	223	265	312	357
5.	Whisper 3000	56	102	162	233	316	408	507	611	715	818	916
6.	Whisper H4500	54	100	161	236	325	428	543	668	800	936	1070

Data Source: Iwanaka Denki Seisakusyo, Sagamihara city, Japan

Note: Use Table A10.2 for planning of battery.

Appendix-13 Suppliers and Contractors in Construction Industry in Myanmar Market

No.	Resources	Consultants/Maker/Supplier							
1.	Topo-survey	Concordia International, Yangon, Tel. (1)544 824							
2.	Geological investigations, assessment	U Sann Lwin, Consulting Engineering Geologist, Professor Emeritus, Yangon University							
3.	Investigation,	U Khun Kyaw, REAM							
	planning, and design of small hydro	Aung Pyi Tun Construction Ltd., Yangon, Tel. (1)663 608							
	Construction	National Engineering & Planning Services (NEPS), Yangon, Tel. (1) 705 197							
	Pico turbine/ generator	Emerald Green Co-op Ltd., Tel. 662 417, 546 174							
		ECODEV, Yangon, Tel. (1) 222 048							
4.	Planning of rice husk gas engine, solar and	Renewable Energy Association Myanmar (REAM), Yangon, Tel. (1) 292 012							
	wind power	Karamosia International, Yangon, Tel. (1) 662 777							
5.	Supply of materials	Shaheen Co.,Ltd (Yangon), Tel (95 - 1) 590199							
	(cement, reinforcing bars concrete pipes	Madina (Mandalay), Tel (95 - 2) 25453, 35085							
	timbers, etc.)	Ko Myo Win (Shwe Innwa), Tel (95 - 2) 28113, 31640							
6.	Gates, screens,	Triangle Link Engineering Co., Ltd., Yangon, Tel. (1) 558 176							
	penstock pipes	U Khun Kyaw, REAM							
		Sein Pann Industrial Production Co-op Ltd., Mandalay, Tel. (2) 88423							
		Taing Kyaw Engineering & Construction Co., Ltd., Tel. (2) 88627							
7.	Transformers	Soe Electric & Machinery Co., Ltd., Yangon, Tel. (1) 590 255							
		Yangon Transformer and Electrical Co.,Ltd, Tel (95 - 1) 511765, 514305							
8.	Concrete poles for distribution lines	Sin Phyu Taw Co.,Ltd. (Mandalay), Tel. (95 - 2) 88529, Fax. (95 - 2) 53416							
		There are many factories in Yangon.							
9.	Construction equipment	Myanmar Tractors, Yangon, Tel. (1) 541 717							
10.	Fuel oil, lubricant oil	Olympic Co., Ltd., Yangon, Tel. (1) 211 430							
11.	Erection of distribution lines	Myanma Electric Light Co-operative Society Ltd. (MELC), Yangon, Tel. (1) 227 678, There are many private companies.							
		U Ye Neing, Lashio, Tel. 082-21344							
12.	Manufacturing of rice husk gas engine	Myanmar Inventors Cooperative Ltd., Yangon, Tel. (1) 666 763							

Source: JICA Study Team

Appendix-14 LIST of Myanmar Laws Relating To Environment

Administrative Sector

- 1. The Territorial Sea and Maritime Zones Law, 1977
- 2. The Emergency Provisions Act, 1950
- 3. The Essential Supplies and Services Act, 1947
- 4. The Police Act, 1945
- 5. The Poisons Act, 1919
- 6. The Explosive Substances Act, 1908
- 7. The Towns Act, 1907
- 8. The Village Act, 1907
- 9. The Yangon Police Act, 1899
- 10. The Explosives Act, 1887
- 11. The Penal Code, 1861 of Offences Affecting the Public Health, Safety, Convenience, Decency and Morals.

Agriculture and Irrigation Sector

- 12. The Plant Pest Quarantine Law, 1993
- 13. The Pesticide Law, 1990
- 14. The Embankment Act, 1909

Culture Sector

15. The Protection and Preservation of Cultural Heritage Region Law, 1998

City Development Sector

- 16. The Development Committees Law, 1993
- 17. The Mandalay City Development Law, 1992
- 18. The City of Yangon Development Law, 1990
- 19. (Amended in 1995 and again in 1996)
- 20. The Underground Water Act, 1930
- 21. The Water Power Act, 1927
- 22. The City of Yangon Municipal Act, 1922
- 23. (The Law Amending the City of Yangon Municipal Act, 1991)
- 24. The Yangon Water-works Act, 1885

Finance & Revenue Sector

25. The Myanmar Insurance Law, 1993

Forestry Sector

- 26. The Protection of Wild Life and Wild Plants and Conservation of Natural Areas Law, 1994
- 27. The Forest Law, 1992

<u>Health Sector</u>

- 28. The National Food Law, 1997
- 29. The Traditional Drug Law, 1996
- 30. The Prevention and Control of Communicable Diseases Law, 1995
- 31. The National Drug Law, 1992
- 32. The Union of Myanmar Public Health Law, 1972

Hotels and Tourism Sector

33. The Myanmar Hotel and Tourism Law, 1993

Industrial Sector

- 34. The Private Industrial Enterprise Law, 1990
- 35. The Factories Act, 1951
- 36. The Oilfield (Workers and Welfare) Act, 1951
- 37. The Petroleum Act, 1934
- 38. The Oilfields Act, 1918

Livestock and Fisheries Sector

- 39. The Animal Health and Development Law, 1993
- 40. The Freshwater Fisheries Law, 1992
- 41. The Myanma Marine Fisheries Law, 1990
- 42. (The Law Amending the Myanma Marine Fisheries Law, 1993)
- 43. The Law Relating to Aquaculture, 1989
- 44. The Law Relating to the Fishing Rights of Foreign Fishing Vessels, 1989
- 45. (The Law Amending the Law Relating to the Fishing Rights of Foreign Fishing Vessels, 1993)

Mining Sector

- 46. The Myanmar Gemstone Law, 1995
- 47. The Myanmar Pearl Law, 1995
- 48. The Myanmar Mines Law, 1994
- 49. The Salt Enterprise Law, 1992
- 50. The Land Acquisition (Mines) Act, 1885

Science and Technology Sector

51. The Science and Technology Development Law, 1994

Transportation Sector

- 52. The Highways Law, 2000
- 53. The Motor Vehicles Law, 1964
- 54. (The Law Amending the Motor Vehicles Law of 1964 enacted in 1989)
- 55. The Myanmar Aircraft Act, 1934
- 56. The Inland Steam Vessels Act, 1917
- 57. The Ports Act, 1908
- 58. The Defile Traffic act, 1907
- 59. The Yangon Port Act, 1905
- 60. The Canal Act, 1905
- 61. The Obstruction in Fairways Act, 1881

Source: Compiled by JICA Study Team

List of References

- ⁱ "Statistical Yearbook 2000", (CSO)
- ⁱⁱ Reports of U Aung, U Kyaw Min Htun, and Professor U Myat Thein in "Industrial Development in Myanmar: Prospects and Challenges" edited by T. Kudo, Institute of Developing Economics and Japan External Trade Organization, 2001
- ⁱⁱⁱ T. Kudo, "Myanmar", (Overseas Vocational Training Association, 1998, in Japanese)
- ^{iv} A. Takahashi, "Agricultural Economy in Modern Myanmar" (Tokyo University Press, 2000, in Japanese)
- ^v "Myanmar Facts and Figures" (Ministry of Information, 2000) and field survey by the Study Team
- ^{vi} Field survey by the Study Team, and Y. Yamaguchi (Former Japanese Ambassador in Myanmar), "Real Myanmar" (Keisou-Shobou, 1998, in Japanese)
- ^{vii} "Statistical Profile of Children and Women in Myanmar 1997" (CSO), "Statistical Yearbook 2000" (CSO), "JDI-ECFA Report" 1995, T. Kudo, "Myanmar", (Overseas Vocational Training Association, 1998, in Japanese), T. Saito and L. K. Kiong "Statistics on the Burmese Economy The 19th and 20th Century" (Institute of Southeast Asian Studies, 1999), and "Report of 1997 Household Income and Expenditure Survey" (CSO)
- "Statistical Profile of Children and Women in Myanmar 1997" (CSO), "Statistical Yearbook 2000" (CSO), and "ODA-Door to Future implemented in Asia" Association for Promotion of International Cooperation (2000 in Japanese)
- ^{ix} "Report of 1997 Household Income and Expenditure Survey" (CSO)