Chapter 2 Contents of the Project

Chapter 2 Contents of the Project

2-1 Basic Concept of the Project

The forecast of national water demand and the water resources development plan of Macedonia were proposed in "The Study for Long Term Water Supply in the Republic of Macedonia up to 2025" in 1993. Based on this study, "Water Resources Development and Management Master Plan (M/P)" was formulated to propose specific projects in accordance with the development study conducted by Japanese assistance in 1999. The M/P consists of three phases. The goal of Phase 1, as a short-term plan, is to raise the national coverage of water supply from the present figure of 75% to 80% by the year 2005.

In the Project areas, the rate of population served of rural municipalities outside Skopje city are from 18% to 78%, on the contrary to 85% in Cair municipality in Skopje city. The statistics reveals that there are relatively many cases of water-borne disease in such areas. This implies poor hygienic condition in non-served villages. The delay in providing water supply facilities is remarkable in comparison with the progress in construction of other public infrastructures such as roads and power supply.

In order to improve the water supply situation mentioned above, the Project will set the objective of raising the rate of population served to more than 80% in target Municipalities (over 90% in Cair).

In order to achieve this objective, the Project will carry out the construction of water supply facilities in the target areas, which will improve the present water supply situation in the areas around Skopje city and will bring about the following effects of project execution.

- Safe water will be stably supplied to the residents in the Project areas (the rates of population served of the municipalities are 18 to 85 % at present while the planned target rate for each village is 100%).
- 2) It is expected that rate of water-borne disease infection will be decreased.

The Project will provide the materials, personnel and fund required for the construction of water supply facilities in villages in Skopje outskirts. The project design matrix (PDM) of the Project is shown as Table 2-1.

Table 2-1 Project Design Matrix (PDM)									
Narrative Summary	Indicator	Means of Verification	Important Assumption						
Overall Goal The living conditions are improved in the villages in Skopje outskirts. Project Purpose Safe and enough volume of water is supplied to the residents in Skopie outskirts.	 Population of the village Morbidity of water-borne disease Population served/ rate of population served Supply volume Water quality 	 Municipality Municipality, Ministry of Health (MOH) Municipality, PE PE PE, MOH PE 	 There is no change or influence in the socio-economy by conflict, etc. Other infrastructures, such as sewerage system, are improved. 						
Output 1. Water supply facilities are constructed at 20 target villages.	 Water quality Duration of water supply Construction facility 	Construction record	 O&M works are carried out continuously. Residents pay the house connection fee. 						
Activity 1. To construct water supply facilities at 20 target villages	Input Japanese Side [Material/equipment] Construction materials & equipment [Manpower] Engineer, skilled labor, labor [Cost] Construction cost	Macedonian Side [Material/equipment] Construction materials & equipment [Manpower] Engineer, skilled labor, labor [Cost] Construction cost, O&M cost	Budget for Macedonia side is approved. <u>Precondition</u>						

2-2 Basic Design of the Requested Japanese Assistance

2-2-1 Design Policy

(1) Basic Policy

The Project study areas were composed of 21 villages in seven municipalities. However, overlap with USAID was found in project components of Pobozje village in Cucer Sandevo municipality. As the result of coordination with Macedonian side, Pobozje was excluded from the Project. Accordingly, the Project areas are finally to be 20 villages in seven municipalities as shown in Table 2-2. The Project will construct water supply facilities for the areas. The planned facilities consist of intake facilities, pumping facilities, reservoir tanks and transmission and distribution pipelines. They together form a water supply system with house connections with water meter. The scope of Japanese Assistance is to construct the facilities up to the secondary distribution pipelines. Macedonian side, on the other hand, will construct house connection facilities (diversion cocks, water supply pipes, water meter). A part of the planned facilities has already been constructed by Macedonian side. Taking this into consideration, the scope of construction works by Japanese side will eventually cover the rest of the planned facilities that are not yet constructed.

Municipality	Village	Population in 2002		
Cucer Sandevo	Kuceviste	2,057 people		
Cair	Radisani	8,676 people		
	Goce Delcev	1,421 people		
Gazi Baba	Jurumleri	3,319 people		
	Kolonie Idrizovo	1,288 people		
	Idrizovo	2,384 people		
	Bujkovci	670 people		
Ilinden	Mrsevci	700 people		
IIIIdell	Miladinovci	1,500 people		
	Mralino	830 people		
	Ognjanci	1,255 people		
Petrovec	Petrovec	2,588 people		
Tenovec	Kjojlija	368 people		
	Rzanicino	939 people		
Studenicani	Cvetovo	826 people		
Studemean	Dolno Kolicani	1,516 people		
	Taor	169 people		
Zelenikovo	Pakosevo	246 people		
Zeieliikovo	Novo Selo	165 people		
	Strahojadica	251 people		
Seven municipalities	20 villages	31,168 people		

 Table 2-2
 The Target Area and Population

(2) Policy for Natural Conditions

The Project area is located in the low land zone in the Vardar river basin (elevation +220 to 230m) and the mountainous / hilly zone (elevation +500 to 1,000m) around Skopje city. Rich groundwater resource exists in the low land zone. In the mountainous / hilly zone, people depend mainly on the spring water and river-bed water. The soil conditions as a foundation of structures are good. However, in the case of excavation for distribution pipes in mountainous/ hilly areas where hard rock is expected, it is necessary to consider carefully the excavation method, either by manpower or by machinery.

The surrounding areas of Skopje city is the mountains with an elevation of 1,000-1,500m forming a basin, where the average annual precipitation is 400-500mm. The temperature varies remarkably throughout the year from 40°C in summer to -17°C in winter. Hence, the distribution reservoir should be covered with soil to be protected from such severe fluctuation of temperature. In addition, outdoor works in winter season (from December to January) should be considered carefully in the construction schedule, because it is too cold to carry out construction works in open air in the period.

(3) Policy for Social Conditions

Multi ethnic people live in Macedonia, such as Macedonian, Albanian, Turkish, Serbian, etc. Accordingly, their religion also varies; they are the Western Church, the Eastern Orthodox

Church, Islam, Judaism, etc. In Project implementation, such ethnic and religious consideration should be carefully taken. In this respect, religious holidays, local customs, etc. shall be considered according to the laws of Macedonia.

(4) Policy for Local Situation concerning Construction and Procurement

After the independence, the economic reform of Macedonia has progressed steadily due to the introduction of decentralization, market economy etc. The inflation rate was more than 100% in 1992 - 1994 immediately after the independence. However it stabilized at a level of around 5% in 2000 – 2001. Many kinds of goods, either imported or domestic, are traded more actively and are available in markets. The product standard is now mainly that of EU or ISO because Macedonia is economically under the strong influence of EU. Thus, the Project will employ mainly domestic products while considering the use of products from the third countries. This will help achieve both reasonable budgeting and assured quality of the Project.

There are four major construction companies in Macedonia, which were once the state owned companies during the era of former Yugoslavia and these companies have the experiences of construction works overseas. These companies will be utilized in principle in the Project. However, observing the concrete works done completed by some of these companies reveals that the quality of the work is not at a satisfactory level; the delay of schedule, improper finishing etc. are observed and their quality control and schedule control don't seem to be always satisfactory. Therefore, Japanese engineers will be posted at the site in order to control and manage quality and progress properly.

(5) Policy for Capability of Executing Agency for Management of O&M

PE (Public Communal Enterprise), which is the public service entity established by the council of each municipality, are in charge of operation and maintenance of water supply facilities. Most PEs in the Project area receive supports from international aid agencies or Skopje city water and sewerage PE about the methods for operation and maintenance. PEs were originally established for the purpose of managing public facilities such as water supply and sewerage, solid waste disposal, market place administration, public park maintenance etc. However, some of these tasks such as solid waste disposal and public park maintenance are not as profitable as they should be for an enterprise. The national policy for PE management is now directed to separation of the water supply and sewerage sector from others in order to strengthen the self-supporting accounting system of PEs and to manage the other sector by subsidy from Municipality. Thus, the water supply system shall be designed so as to minimize the operation and maintenance costs.

(6) Policy for grade establishment concerning facilities, machinery and materials

The facilities to be constructed by the Project are mainly transmission and distribution pipelines including intake and transmission pumps and water reservoir etc. For the piping materials, polyethylene pipe will be employed in principle for the following reasons.

- 1) They can meet the specification.
- 2) They are easily procured and low cost in comparison with ductile and steel piles because they are locally manufactured
- 3) They are workable and easy to handle.

Ground pumps have been produced domestically since the era of former Yugoslavia and can be imported from the Republic of Serbia and Montenegro or Croatia. However, these products of former Yugoslavian countries have lower pump efficiency compared to the EU counterparts, which will lead to consuming more electricity. For this reason, the pumps imported from EU countries are used in many cases at present. For submersible pumps, they are not produced domestically and they have to be imported from the third countries. For the existing wells, EU products, especially German products, are mainly used. The Project will procure, in principle, the pumps from EU countries considering the fact that those products are more efficient and consume less electricity and that they can be imported through local distributors that will provide sufficient after-sale service.

(7) Policy for construction / procurement methods

The best construction / procurement method shall be adopted taking into consideration of the access to construction sites of each facility and their soil conditions. Regarding Cvetovo system in Studenicani, the construction sites for the intake facilities and transmission pipelines are located inside beech forest, and construction of access road is required to transport the machineries. However, the villagers are requesting that cutting down of beech forest should be avoided as much as possible. Therefore, the excavation work for the intake facilities and transmission pipelines shall be done by manpower and the concrete works shall be also done by manpower. Even the cement and aggregate materials will be transported and mixed manually at site.

(8) Policy for construction period

The Project, from its designing to construction, will be implemented by the finance of the Government Bond Type $A^{\#1}$ (3 years), in which 2 years are dedicated to construction. In formulating a construction schedule, 2 months in winter (December and January) will be regarded as non-workable period.

^{#1} Government Bond Type A:

Two types of Exchange of Notes will be concluded. One is for the detailed design (1 year). The other is for construction (2 years).

(9) Use of the technical documents

Technical documents (T/D) have been prepared for the requested facilities, which is equivalent to "approved drawing and specifications" of Japan. The documents have information on population, water demand projection and basic design for the facilities. The Project will utilize T/D in such a way that facilities planning will be made on the basis of T/D in combination with the result of field surveys after both of them are fully reviewed.

(10) Policy for handling of existing water supply facilities

Some of the target villages already have water supply systems. In the Project, the facilities will either "be used as they are", "repair or rehabilitation" or "replaced", so as to enable economically and technically optimal plan.

	Table 2-3 Policy for Handling of Existing Facilities							
System	Existing facility	This Project	Remarks					
Kuceviste	Intake facility for river-bed water	Used as they are	Extend intake facility to enhance intake amount					
	Distribution reservoir	Repair of the body Replace pipes						
	Distribution pipeline	Replace and extend	Will not remove the existing pipelines					
Joint System of 3 municipalities	Two Wells	Used as they are Replace the vertical axis pump with submersible pump	Construct two more wells in accordance with the increase in amount of demand					
	Disinfection	The house is used as it is Removal of the existing facility and replace with larger capacity						
	Transmission and distribution pipelines	Used as they are	Part of the transmission pipelines will be renewed by Macedonian side after the Project					
Ilinden East	Distribution reservoir	Used as they are	A reservoir will be constructed by the Macedonian side after the Project					
	Distribution pipeline	Used as they are	Macedonian side will renew and expand on its own account after the Project					
Dolno Kolicani	Intake facility	Replace the existing pump facility						
	Distribution pipeline	Used as they are						

- - ·· · - · · -.....

(11) Policy for adaptation to future plans

In the case of the systems for which there is a future extension plan of the system by Macedonian side, the design should take into consideration of these future plans.

System	Future Expansion Plan by Macedonian side	Adaptation in the Project					
Kuceviste	Extension to Kucevaska Bara	Choosing appropriate diameter for distribution main for future extension					
Radisani	Additional pump facilities to extend supply area	Allocating a plot for future pump installation					
Ilinden East	Extension of supply area (extension of distribution pipelines)	Choosing appropriate diameter for transmission pipe considering the increased flow due to future extension					
	Construction of distribution reservoir	Allocating a plot for a pump installation due to future increase in flow.					
Cvetovo	Transmission facilities from No. 4 water source (pump, Transmission pipe)	Designing appropriate distribution reservoir and distribution pipelines to accommodate increased flow in future					

 Table 2-4
 Adaptation to Future Plans

2-2-2 Basic Plan

(1) Planned Target Year and Population

1) Planned target year

The project is a short-term project designed to cope with the urgent water demand under the scheme of Japan's Grant Aid cooperation. The project period is approximately 3 years starting from detailed design to the completion of construction. Since the Project is short-term, the target year of the Project will be year 2008 which is five years after the end of the basic design study. Longer-term plans to cope with future population increase shall be carried out by Macedonian side on its own account.

2) Target population

The population of the villages in 2002 was estimated based on the population from the village-based census in 1994, the population growth rate by municipality taken from the census in 2002 and on other information obtained from each municipality. Then, the population in 2008 was estimated based on the population and population growth rate in 2002 in consideration of the information from municipalities. The estimated population for each village in 2002 and 2008 is presented in Table 2-5. The population in the Project area in 2008 is 33,709 people and planned served population is 32,435 people.

	vinage ropulation (2002) and ridjected ropulation (2000)							
Municipality	Village	Population in 2002	Growth Rate	Population in 2008				
winnerpairty	village	(people)	(%)	(people)				
Cucer Sandevo	Kuceviste	2,057	1.0	2,183				
Cair	Radisani	8,676	1.8	9,656 ^{#1}				
	Goce Delcev	1,421	1.5	1,554				
Gazi Baba	Jurumleri	3,319	1.2	3,565				
Gazi Baba	Kolonie Idrizovo	1,288	1.2	1,384				
Ilinden	Idrizovo	2,384	1.2	2,561				
	Bujkovci	670	1.0	711				
Tl'a da a	Mrsevci	700	1.0	743				
Ilinden	Miladinovci	1,500	1.0	1,592				
	Mralino	830	1.0	881				
	Ognjanci	1,255	1.0	1,332				
Petrovec	Petrovec	2,588	1.0	2,748				
renovec	Kjojlija	368	1.0	391				
	Rzanicino	939	1.0	996				
C +	Cvetovo	826	1.0	877				
Studenicani	Dolno Kolicani	1,516	1.0	1,609				
	Taor	169	1.0	180				
Zelenikovo	Pakosevo	246	2.0	277				
Zelellikovo	Novo Selo	165	2.0	186				
	Strahojadica	251	2.0	283				
Total		31,168		33,709				

 Table 2-5
 Village Population (2002) and Projected Population (2008)

Note #1) The population in Cair is divided into 4,345 and 5,311 in high and low distribution areas respectively, by referring to the Technical Document.

For the calculation of the population in 2008 (P₂₀₀₈), the following formula was used.

 $P_{2008} = P_{2002} x (1 + k)^n$ where, P_{2002} : Population in 2002 k : Population growth rate n : 6 years (2008-2002)

(2) Planned Served Area and Water Supply System

1) Planned served area

The planned served areas are the 20 target villages. The Project aims to achieve the rate of population served to be 100% for all villages. Two villages, namely Kuceviste and Dolno Kolicani, use existing water supply facilities. Since the existing facilities of Kuceviste are aged and deteriorated, these facilities including intake, transmission and distribution facilities are to be renovated by the Project. As for Dolno Kolicani, the existing distribution system will be used as it is so that the planned served area by the Project is to be current non-served area. The existing and planned population served by village is shown in Table 2-6.

2) Water supply system

In water supply planning and facility designing, the Project area was divided into eight systems, as shown in Table 2-6, in consideration of water sources and geographical characteristics. Twelve villages in the three municipalities of Gazi Baba, Ilinden and Petrovec constitute a single water supply system whose water source is the groundwater of Jurumleri. According to the topographic differences of each served area, the system has been divided into two systems: the gravity flow system (Joint system of three municipalities composed of nine villages) and the booster pump system (Eastern Ilinden of three villages). The municipality of Zelenikovo plans to receive water from Skopje city water and sewerage PE and distribute the water to four villages. The system has been divided into two systems: three villages system with only extension of distribution pipes and Strahojadica system needing a booster pump system.

Municipality	Village	Population	Existing Facility (Year 2002)		Plan (Year	r 2008)	Water supply system
wunterparity	village	(Year 2008)	Population Served	Served Rate	Population Served	Served Rate	water suppry system
Cucer Sandevo	Kuceviste	2,183	1,000	46%	2183#1	100%	Kuceviste
Cair	Radisani	9,656	0	0%	9,656	100%	Radisani
Gazi Baba	Goce Delcev	1,554	0	0%	1,554	100%	Joint System
	Jurumleri	3,565	0	0%	3,565	100%	of three
	Kolonie Idrizovo	1,384	0	0%	1,384	100%	municipalities
	Idrizovo	2,561	0	0%	2,561	100%	
Petrovec	Ognjanci	1,332	0	0%	1,332	100%	
	Petrovec	2,748	0	0%	2,748	100%	
	Kjojlija	391	0	0%	391	100%	
	Rzanicino	996	0	0%	996	100%	
Ilinden	Mralino	881	0	0%	881	100%	
	Bujkovci	711	0	0%	711	100%	Ilinden East
	Mrsevci	743	0	0%	743	100%	
	Miladinovci	1,592	0	0%	1,592	100%	
Studenicani	Cvetovo	877	0	0%	877	100%	Cvetovo
	Dolno Kolicani	1,609	1,274	79%	335#2	100%	Dolno Kolicani
Zelenikovo	Taor	180	0	0%	180	100%	Zelenikovo three
	Pakosevo	277	0	0%	277	100%	villages
	Novo Selo	186	0	0%	186	100%	vinuges
	Strahojadica	283	0	0%	283	100%	Strahojadica
		33,709	2,274	7%	32,435	100%	

 Table 2-6
 The population served and rate of population served

Note

#1: Although there are existing facilities, renewal and expansion of the existing system is proposed by the Project,. The planned population served is that of the entire village including the population already served.

#2: Service population is divided into two, namely existing service population (1,274) and that in expansion area (335). The rate of population served in 2008 is calculated by adding those of the existing and expansion areas.

(3) Unit Water Demand

The water demand (Daily average amount) is determined based mainly on domestic water and it also includes public water. The water for livestock mentioned in Technical Documents (T/D) is not included in the water demand of the Project.

1) Domestic water

There is no unified national standard or criteria for unit water demand for domestic use in Macedonia. According to T/D, the unit domestic water demand is 150 L/c/d. However, the Project areas extend from the suburb of the capital to villages in mountain areas, each with different living conditions and different water consumptions. In consideration of this situation, four types of unit water demand (150, 145, 100 and 65 L/c/d) have been proposed by examining present water bill, water use condition at site and the result of the interview in the village survey. As the result, different unit water demand is applied to each village (see Table 2-7).

Unit water demand	Service Area (System)	Reason
150 L/c/d	Radisani Zelenikovo 3 villages Strahojadica	The municipality is neighboring Skopje city. The water supply in Skopje is 450 L/c/d (including industrial, commercial and leakage). The area has no large-scale industrial or commercial blocks. The water consumption in the service area is estimated to be 1/3 of that of Skopje excluding industrial, commercial and PE's own consumption (35%) plus leakage and other unaccountable water (30%).
145 L/c/d	Joint system of three municipalities Ilinden East	Calculated according to the present billing sheet of Ilinden PE.
100 L/c/d	Kuceviste Dolno Kolicani	The service area locates in the mountainside. According to village survey water consumption is 42 - 90L/c/d. A figure of 100L/c/d is considered reasonable.
65 L/c/d	Cvetovo	The service area locates in the mountainside. According to village survey water consumption is 27L/c/d. A figure of 65L/c/d is considered reasonable.

Table 2-7 Determination of Unit Water Demand

2) Other use

Other water uses to be included is public use, the water used in such places as schools, hospitals, offices, parks, etc. According to the actual water bill of Ilinden PE, around 30 % of domestic water consumption falls in the category of public use. Three types of unit water demand, namely 30, 20 and 10 % have been proposed in consideration of existence of public utilities (hospital, school etc.) and size of the villages (see Table 2-9).

(4) Peak Day Demand

In order to design intake facilities and distribution reservoirs, peak day demand was determined using the rate of leakage and peak day factor (daily average and seasonal maximum).

1) Leakage rate

Leakage rate is set to be 10% for newly constructed facilities under the Project. The maximum leakage rate for the existing system is 32%. Since more than half of the existing pipes will be renewed in the Project, the leakage rate of the whole system is set to be 20% in the case of the systems which are to be connected to an existing pipe network. Leakage volume (R m^3/d) is calculated as follows.

$$\mathbf{R} = \mathbf{Q} \times \mathbf{r} / (1 - \mathbf{r})$$

where,

Q: Water demand (m^3/d) ,

r: Leakage rate

2) Peak day factor

The peak day factors are set through verification of T/D value, design guideline value of Skopje city water and sewerage PE and examination on water source capacity of Cvetovo. The peak factor for each system is shown in Table 2-8.

Peak Day Factor	System	Reason
1.5	Kuceviste Joint system of 3 municipalities Ilinden east Dolno Kolicani Zelenikovo 3 villages Strahojadica	Actual record of Ilinden PE was analyzed. 1.5 is applied considering natural and social conditions.
1.3	Radisani	Radisani belongs to urban area and 1.3 is employed as the design guideline value of Skopje City Water and Sewerage PE.
1.0	Cvetovo	As the result of analysis on exploitable capacity and operation and maintenance cost, water sources which can be transmitted by gravity is proposed. Hence, 1.0 is employed.

Table 2-8 Peak Day Factor

2-1) Verification from Actual Record of Ilinden PE

In T/D, the peak day factor is planned to be 1.5. The value was reviewed by assessing the water bills of Ilinden PE and the peak day factor of 1.5 was verified as follows.

```
Maximum Annual Consumption (July to August): 220 L/c/d
Average Annual Consumption: 145 L/c/d
Accordingly,
220/145 = 1.51 ..... 1.5
```

Although the factor of 1.5 seems to be considerably large compared to those of Japan and other countries, it is regarded as reasonable taking into consideration of the local customs (watering in garden in summer, etc.) due to large difference in temperature between summer and winter.

2-2) Peak day factor for Radisani system

Radisani system covers the urban area of Skopje city and the system is operated and managed by Skopje city water and sewerage PE. For this system, the peak day factor of 1.3 is employed, that is set as a standard by the PE.

2-3) Peak day factor for Cvetovo system

For Cvetovo system (Studenicani), the proposed water sources planned in the T/D are four as shown in Figure 2-1. Among the four sources, three sources (from No.1 to 3) can supply water by gravity to the Reservoir. A pump system is required for No.4 water source which is located in the village. However, it is not feasible to use the No.4 source from the financial point of view, since the operation of the transmission pump will need electricity and the cost of O&M will be about twice as much compared to the gravity flow system. Thus, the facilities to be designed under the Project are only those of gravity flow system. Then the total intake amount in this case is 76 m³/day, and the peak day factor is calculated to be 1.0.

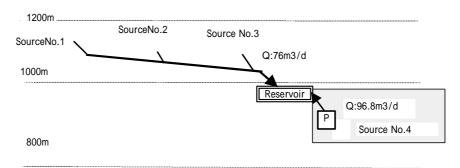


Figure 2-1 Water Sources of Cvetovo

3) Peak day demand of the joint system of three municipalities and Ilinden East

In the joint system of three municipalities and Ilinden East system, the proposed water supply system is planned as the expansion of the existing water supply system, by increasing the intake capacity of the existing water source in Jurumleri wellfield. In addition, further expansion of Ilinden east system is planned which will be executed by Macedonian side. Therefore, the peak day demand for the systems should be calculated based on water demand of the proposed project area, the existing served area and future expansion area.

In this way, the peak day demand has been calculated by multiplying the sum of average day demand and leakage amount by the peak day factor. The design water demand for each village is summarized in Table 2-9.

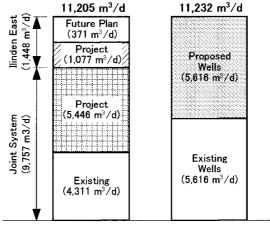
			-				- J -	-		
System	Village	Population Served	Unit Dema		Average Day Demand	Average Day Production				Production Capacity by System
		(2008)	Domestic (L/c/d)	Other (%)	Total (m ³ /d)	Leakage Rate (%)	Production (m ³ /d)	Peak Day Factor	Production (m ³ /d)	(m³/d)
Kuceviste	Kuceviste	2,183	100	30	284	20	355	1.5	532	532
Radisani	Radisani	9,656	150	30	1,883	10	2,092	1.3	2,720	2,720
Joint system	Goce Delcev	1,554	145	30	293	20	366	1.5	549	9,757
3 municipalities	Jurumleri	3,565	145	30	672	20	840	1.5	1,260	
-	K. Idrizovo	1,384	145	30	261	20	326	1.5	489	
	Idrizovo	2,561	145	30	483	20	603	1.5	905	
	Ognjanci	1,332	145	30	251	20	314	1.5	471	
	Petrovec	2,748	145	30	518	20	647	1.5	971	
	Kjojlija	391	145	30	74	20	92	1.5	138	
	Rzanicino	996	145	30	188	20	235	1.5	352	
	Mralino	881	145	30	166	20	208	1.5	311	
	Existing Area	12,197	145	30	2,299	20	2,874	1.5	4,311	
Ilinden East	Bujkovci	711	145	30	134	20	168	1.5	251	1,448
	Mrsevci	743	145	30	140	20	175	1.5	263	
	Miladinovci	1,592	145	30	300	20	375	1.5	563	
	Future Plan	1,051	145	30	198	20	248	1.5	371	
Studenicani	Cvetovo	877	65	20	68	10	76	1.0	76	76
	Dolno Kolicani	335	100	10	37	20	46	1.5	69	69
Zelenikovo	Taor	180	150	30	35	10	39	1.5	59	209
3 villages	Pakosevo	277	150	30	54	10	60	1.5	90	
	Novo Selo	186	150	30	36	10	40	1.5	60	
Strahojadica	Strahojadica	283	150	30	55	10	61	1.5	92	92

 Table 2-9
 Water Demand by Village

(5) Water Source Plan

1) Water Source Capacity

Intake capacity is designed based on the peak day demand.


1-1) Water supply from Skopje

For the system of Radisani, Zelenikovo three villages and Strahojadica, bulk water supply from the Skopje city water and sewerage PE is planned. The supplied water is treated (chlorination) by the PE and can be distributed as drinking water.

1-2) Jurumleri Intake facilities

The proposed water source for the Joint system of three municipalities and Ilinden east system is groundwater of Jurumleri in Gazi Baba. Planned intake facilities (wells) are located in the same wellfield as the existing ones. The planned intake capacity can be calculated to be 11,205 m³/day combing the proposed peak day demand of 6,523 m³/day, the existing water production of 4,311 m³/day and the planned expansion water volume of 371 m³/day.

Production capacity of the intake facility is to be $11,232 \text{ m}^3/\text{d}$ in total by constructing two new wells (capacity: 5,616 m³/d) in addition to the existing two wells (capacity: 5,616 m³/d).

Peak Day Demand Production Capacity

Figure 2-2 Peak Day Demand and Production Capacity for Joint System and Ilinden East System

1-3) Kuceviste, Dolno Kolicani, Cvetovo System

Individual water sources such as spring water and river-bed water are proposed for each of the systems of Cucer Sandevo and Studenicani municipalities, taking into account of the capacity of water sources, site conditions, etc.

2) Exploitable intake capacity

Examination of the exploitable capacity against design production demand is described below.

2-1) Kuceviste system (River-bed water)

According to a hydrological study report (2000), the river water flow of the proposed intake site recorded a minimum of 12 L/sec (August – September) and a maximum of 192 L/sec (April) during the period from 1975 to 1985. The flow measured in May 2003 is 136 L/sec (including irrigation use of 6 L/sec). The capacity of the existing intake facilities decreased to 2.7 L/sec due to clogging. Since thorough investigation is

required to renovate the buried existing facilities and it is costly for its effects, the use of the existing facilities without any repair is proposed to maintain the present capacity of 2.7 L/sec. To supplement the lack of intake capacity, additional intake facilities to draw river-bed water are proposed. Since, the village council demands some of the river water for irrigation, 50% of the minimum river water flow (6 L/sec) is exploitable for intake. The proposed intake facilities consist of screen pipes that are embedded along the river for river-bed water collection. Total production capacity is planned to be 8.7 L/sec (751 m³/d) including that of the existing intake facility of 2.7 L/sec.

2-2) Joint system / Ilinden east system (Jurumleri groundwater)

As the result of a pumping test carried out in May 2003 using the existing pump, the groundwater potential of the area is estimated to be at least 83,000 m³/day. The discharge capacity of the existing pumps is 32.5 L/sec for each of the two wells. The total discharge capacity of the intake will be 130 L/sec (32.5 x 4=11,232 m³/day) if additional two wells are installed. Although interference among the four wells is anticipated in this case, the degree of influence by the two new wells is expected to be as little as 20 to 30 cm. Therefore the interference, in this case, is negligible.

2-3) Cvetovo system (Spring water)

According to T/D, the total production capacity is planned to be 2.0 L/sec (from one site of the existing public fountain and three water sources in the mountains). The water flows measured at the four sites in May 2003 amount to 2.54 L/sec. Taking into account of interviews with local residents and of the fact that two sites are in beech forest, 20% of decline in water flow in dry season is expected. Accordingly, exploitable capacity is calculated to be 2.03 L/sec (176 m^3 /day). However, the elevation of the existing public fountain is lower than the proposed distribution reservoir, which requires a pump system to transfer water to the reservoir. It is considered unfeasible to use a booster pump from the financial point of view since the O&M cost is high. Therefore, the water source of the existing public fountain (capacity of 1.12 L/sec) should not be used. Accordingly, the only water sources in mountain where gravity flow system is secured will be employed to give a total production capacity of 0.91 L/sec.

2-4) Dolno Kolicani (Spring water)

The water flow from the proposed intake site (spring or river-bed water) measured in May 2003 was 1.88 L/sec. According to the interview with local residents, decline in water flow in dry season in 2001 was minor at the existing public fountain in the village, even though the overflow from the intake and the water of the stream near the intake dried up. Having examined the information from the local residents, the minimum water flow in dry season was estimated to be 0.8 L/sec. That is, the production capacity is set to be 0.8 L/sec. (69 m^3/d)

Design intake capacity and exploitable capacity is shown in Table 2-10.

Table 2-10 Design Intake Capacity and Exploitable Capacity by System								
System	Water Source	Intake Capacity	Exploitable Capacity	Remarks				
Kuceviste	River-bed water	532 m ³ /d	751 m ³ /d					
Radisani	Bulk water supply ^{#1}	2,720 m ³ /d	2,720 m ³ /d	High: 1,224 m ³ /d Low: 1,496 m ³ /d				
Joint System	Groundwater	9,757 m ³ /d ^{#2}	$11,232 \text{ m}^3/\text{d}$					
Ilinden East	Groundwater	1,448 m ³ /d ^{#3}	11,232 m /u					
Cvetovo	Spring water	76 m ³ /d	79 m ³ /d					
Dolno Kolicani	Spring water	69 m ³ /d	69 m ³ /d					
Zelenikovo 3 village	Bulk water supply ^{#1}	209 m ³ /d	301 m ³ /d					
Strahojadica	Bulk water supply ^{#1}	92 m ³ /d	501 III /u					

Table 2-10 Design Intake Capacity and Exploitable Capacity by System

Note: #1: Bulk water supply from Skopje city water and sewerage PE

#2: Including existing water production capacity of $4,311 \text{ m}^3/\text{d}$

#3: Including future expansion capacity of $371 \text{ m}^3/\text{d}$

3) Raw Water Quality

Water quality tests were conducted for water samples taken at each planned water source. The location of the samples and the test results are shown in Tables 2-11 and 2-12. The date of sampling is 23 May 2003.

Sample No.	Village	Water Source	Sampling Point
No.1	Kuceviste	River water	River
No.2	Kuceviste	River-bed water	Existing intake facility
No.3	Jurumleri	Groundwater	Existing intake (Well No.2)
No.4	Jurumleri	Groundwater	Existing intake (Well No.1)
No.5	Dolno Kolicani	Spring	Overflow water of the existing intake facility
No.6	Cvetovo	Spring	Source No. 4 (Existing intake facility in village)
No.7	Cvetovo	Spring	Source No. 1 (Spring in the forest of beech)
No.8	Cvetovo	Spring	Source No. 2 (Spring along the road)

 Table 2-11
 Water Sampling Point

	Table	5 2-12	Result	Suit of Water Quality Analysis			13	,			
	No.1	No.2	No.3	No.4	No.5	No.6	No.7	No.8	Standard		
Temperature (°C)	12.5	9.0	12.0	15.0	10.5	10.5	6.0	10.3	8 - 12		
Color (TCU)	5	-	-	-	-	-	-	-	10(15)		
Odor on 25°C	-	-	-	-	-	-	-	-	Nothing		
Taste on 12°C	-	-	-	-	-	-	-	-	Nothing		
Turbidity (mg/l)	-	-	-	-	-	-	-	-			
pH	7.60	7.60	7.58	7.82	7.50	7.29	7.15	7.13	6.8 - 8.5		
KMnO ₄ (mg/l)	3.4	2.8	1.3	1.3	2.5	2.5	3.1	1.3	8		
TDS (mg/l)	352	502	413	439	485	498	51.8	30.8	(1000)		
Electric Conductivity (ìS/cm)	348.9	510.9	429.9	448.3	492.0	520.2	52.91	25.34	500		
NH ₃ (mg/l)	-	-	-	-	-	-	-	-			
NO ₂ (mg/l)	-	-	-	-	-	-	-	-	3		
NO ₃ (mg/l)	-	1.36	3.16	4.97	1.36	5.42	0.9	-	50		
Cl (mg/l)	6	9	21	21	12	15	4	4	25(250)		
Fe (mg/l)	0.141	0.026	0.042	0.026	0.009	0.015	0.043	0.029	0.05(0.3)		
Mn (mg/l)	0.001	0.001	0.001	-	-	0.003	0.008	-	0.02(0.5)		
F (mg/l)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	1.0(1.5)		
Ca (mg/l)	77.2	108.1	81.0	77.2	104.2	92.6	4.97	3.06			
Mg (mg/l)	2.76	5.75	8.51	12.88	5.91	9.20	5.26	2.11	30		
Total Hardness (mg/l)	11.45	16.48	13.34	13.82	15.49	15.12	1.53	1.04			
Cabonate Hardness (mg/l)	10.64	15.12	11.48	11.48	14.56	14.28	1.4	0.98			
Cu (mg/l)	-	0.004	-	-	-	-	-	-	0.1(2)		
Zn (mg/l)	0.012	0.025	0.015	0.091	0.091	0.007	0.029	0.005	0.1(3)		
Pb (mg/l)	0.010	0.009	0.003	0.007	0.005	0.001	0.002	0.001	0.05(0.01)		
Cd (mg/l)	-	-	-	-	-	-	-	-	0.003		
Co (mg/l)	-	-	-	-	-	-	-	-			
Ni (mg/l)	-	1	-	-	-	-	-	-			
Cr ⁶⁺ (mg/l)	-	-	-	-	-	-	-	-			
Total Cr (mg/l)	-	-	-	-	-	-	-	-	0.05		
Sr (mg/l)	0.258	0.407	0.106	0.107	0.412	0.083	0.014	0.018			
As (mg/l)	0.00181	-	0.00051	-	-	-	-	-	0.05(0.01)		
Total colonies, spc.	-	16	-	-	100	150	50	-			
Coliform group,cfg.	240,000	50	-	-	20	16	161	-	0		

Table 2-12 Result of Water Quality Analysis

Note) The figure in the parenthesis under the "Standard" column shows WHO guideline.

- 3-1) Sample No.1 (Kuceviste river water): Ammonia is detected. Coliforms, and total iron exceed the water quality standard for drinking water
 - Excrement from livestock, etc. is assumed to have flowed into the river, causing ammonia and coliforms to be detected. The proposed intake facility is designed to intake river-bed water that is filtered through gravel and sand layers. In that case, these exceeding parameters can be expected to be reduced. In addition, the raw water is planned to be disinfected by the proposed chlorination system.
 - Although the total iron exceeds the domestic water quality standard, it satisfies the WHO drinking water quality standard and is regarded as acceptable. The iron exists in the form of ferrous iron and precipitates in water. The water sample of No.2, the same source as No.1, has lower content of iron that is within the standard since the raw water

is filtered by sand and gravel. Hence, the iron content of sample No.1 can be reduced to a satisfactory level when the water is taken as river-bed water due to filtration by sand and gravels.

3-2) Sample No.2 (Kuceviste river-bed water): Electric conductivity exceeds the standard value

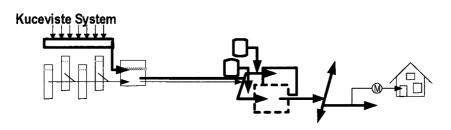
Electric conductivity of sample No.2 (river-bed water of Kuceviste) slightly exceeds the standard. The reason is assumed to be higher contents of organic matters and minerals. However, these organic matters and minerals are harmless to human. Coliforms can be treated by disinfection.

3-3) Sample No.6 (Cvetovo water source No.4): The same issues as sample No.2.

3-4) Sample No.7 (Cvetovo water source No.1): Coliforms exceed the standard value

- Coliform contamination can be treated by disinfection.

The results of the test descried above suggest that the water from all the sources (sampling points) can be used for drinking only with disinfection by chlorination.


(6) Facility Plan

The requested facilities by system are summarized in Table 2-13. Design principles are described thereafter.

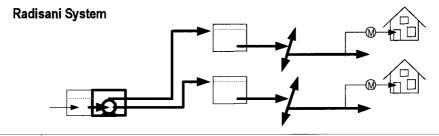
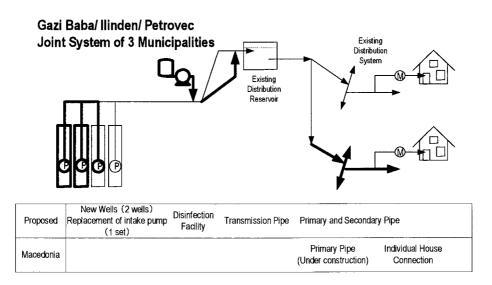
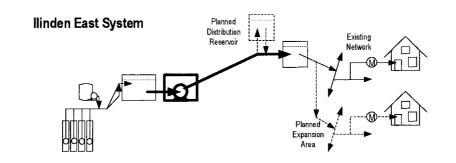

Table 2-13 Proposed Facility by System							
System	(a) Intake	(b) Disinfection	(c) Pump	(d) Reservoir	(e) Transmission / distribution pipe		
Kuceviste	(a-1)	(b-1)	-	(d-1)	(e-1)		
Radisani	-	-	(c-1)	-	(e-2)		
Joint system of 3 municipalities	(a-2)	(b-2)	-	-	(e-3)		
Ilinden East	-	-	(c-2)	-	(e-4)		
Cvetovo	(a-3)	(b-3)	-	(d-2)	(e-5)		
Dolno Kolicani	(a-4)	(b-4)	(c-3)	(d-3)	(e-6)		
Zelenikovo 3 villages	-	-	-	-	(e-7)		
Strahojadica	-	-	(c-4)	(d-4)	(e-8)		

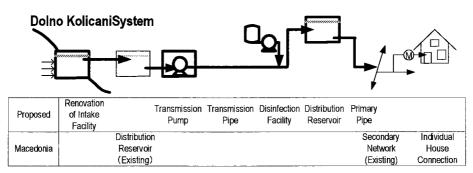
Table 2-13 Proposed Facility by System


(Note) Alphabet with numerical code denotes the heading number for the subsequent description for each facility

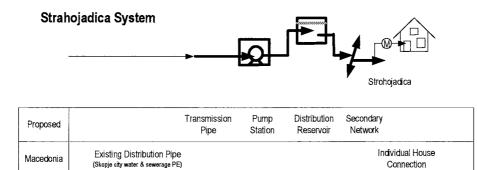


Proposed	Expansion of Intake Facility (Undercurrent water)	Transmission Pipe (Expansion)	Disinfection Facility	New Construction and Rehabilitation of Distribution Reservoir	Distribution Network
Macedonia					Individual House Connection

Proposed	Transmission Pump	Transmission Pipe (Higher / Lower Zones)	Secondary Ne (Higher / Lower	
Macedonia	Existing Distribution Reservoir (Skopje City Water & Sewerage PE	Transmission Pipe (Approx. 600m)	Distribution Reservoir (Completed)	Individual House Connection



Pro	posed	Pump Station	Transmission Pipe		
			New Distribution	Expansion of	Individual House
Mac	edonia		Reservoir	Secondary Network	Connection
			(under planning)	(under planning)	(Existing)



Proposed	Intake Facility (Spring)	Transmission Pipe	Disinfection Facility	Distribution Reservoir	Distribution Pipe	
Macedonia						Individual House Connection

Zelenikovo Three Villages System (Taor/ Pakosevo/ Novo Selo)

Proposed	Primary Pipe	Secondary Pipe
Macedonia	Existing Distribution Pipe (Skopje city water & sewerage PE)	Individual House Connection

(a) Intake Facility

Three types of water sources are proposed, namely river-bed water, groundwater and spring water. Description of the intake facilities are summarized below:

	System	Source	Description	Qty
(a-1)	Kuceviste	River-bed	Water collection pipe (PVC Screen Pipe: 400mm x 30m)	1 set
(a-1)		water		
	Loint System of		Deep well (Dia.: 600mm, Depth: 30m)	2 wells
(a-2)	Joint System of 3 Municipalities	Groundwater	Replacement of Pump (Same type as the existing	1 set
	5 Municipanties		submersible pump: 37kW)	
(a-3)	Cvetovo	Spring	Intake Catchment (Concrete)	3 nos
(a-4)	Dolno Kolicani	Spring	Intake Catchment (Concrete)	1 no

(a-1) Kuceviste Intake Facility

New facilities for river-bed water collection is proposed, since the existing intake facilities (2.7 L/sec) cannot satisfy the peak day demand (6.16 L/sec). The proposed intake capacity is 3.46 L/sec. The existing facility is proposed to be used as it is, as stable intake capacity is secured and no serious deficits have not been identified in the structure so far.

Table 2-14 Kuceviste Intake Facilities

Water source	River-bed water from the Kuceviste river
Intake point	Within the area of the existing intake facility (Approx. 40m×500m)
Design	299 m ³ /d (3.46 L/s)
production	=[Total flow: 6.16 L/s]-[Existing flow: 2.7 L/s]
Facility	Type: Underground collecting pipe system
	Collecting pipe: Screen pipe of PVC, DN400 mm, Opening rate 5%, L = 30.0 m
	Intake pipe (Connection of existing collecting chamber): PE of ND140mm (ID125mm), L =
	52.6m
	Transmission pipe (In the intake area): PE of ND110mm (ID100mm), L = 214.2m
	Accessories: Stop valve, Air release valve, Drain valve

Design of underground collecting pipe system

The system is designed based on Hydrogeological formulation of unconfined groundwater. According to the following calculation, with the use of the screen pipe (ND400mm x 30 m length, with opening rate 5%), the discharge capacity (Q) is 3.5 L/s.

$$Q = \frac{k(H^2 - h^2)\ell}{L} \sqrt{\frac{t + 0.5r}{h}} \sqrt[4]{\frac{2h - t}{h}}$$
Where
 $Q: Discharge capacity (m^3/s)$
 $k: Hydraulic conductivity, 0.01 m/s (From hydrological and hydrogeological data(#) of the site)$
 $L: Radius of influence, 50 m (estimated by site conditions)$
 $H: Actual groundwater level, 2.5 m (From hydrological and hydrogeological data(#) of the site)$
 $r: Radius of the underground pipe, 0.2 m (screen pipe for well, PVC 400mm, opening rate is more than 5%)$
 $h: Depth from static water level in the underground pipe to impermeable stratum, 1.9 m (Calculated by embedded
depth of the pipe and water level in the pipe)
 $t: Water depth of the underground pipe, 0.3 m (estimated to be the medium point of 200-400mm)$
 $l: Length of underground pipe, 30 m$$

(a-2) Intake Facilities of the Joint System of 3 municipalities

Two new intake wells are proposed, to complement the existing intake capacity of $5,616 \text{ m}^3/\text{day}$, to supply a total peak day demand of $11,206 \text{ m}^3/\text{day}$. Well structure and specifications of pumps will basically be the same as those of the existing facilities. The existing pump of well No.1, a vertical shaft type, are aged and subject to frequent failure. In addition, since groundwater level rises in rainy season and operating another pump to drain the water will cost electric power. Therefore, it is proposed that this pump be replaced with a submersible pump of the same type as No.2.

Source	Groundwater
Intake point	Existing intake area in Jurumleri
Design	5,590 m ³ /d
production	=[Peak day production (11,206 m ³ /d)]-[Capacity of existing facility (5,616 m ³ /d)]
Facility	Type: Deep well
	Structure: Diameter of well - 600mm, Diameter of screen pipe - 400mm, Depth - 30m,
	Construction - 2 wells
	Submergible pump: 37 kW x 3sets(1set for replacement)
	Transmission pipe (well – distribution main pipe): Diameter of PE -225 mm×265.4 m in length,
	Diameter 280mm×180.6 m in length

 Table 2-15
 Intake Facilities for the Joint System of Three Municipalities

(a-3) Cvetovo Intake Facility

There exists a public fountain in Cvetovo village that takes water from a spring. Three additional spring water sources are proposed in the Project. Intake facilities consist of a concrete chamber with perforated walls to take in water. The water is, then, transferred to the proposed distribution reservoir by gravity.

Source	Spring
Intake point	Three selected sites out of the ones mentioned in T/D. The sites where transmission by
	gravity have been selected.
Design production	$76 \text{ m}^{3}/\text{d}$
Facility	Concrete structure (Intake No.1:3 sets, intake No.2:1set, intake No.3:1 set)

Table 2-16 Facility for Cvetovo System

(a-4) Dolno Kolicani Intake Facility

There are three existing water sources for public water supply system in Dolno Kolicani. Among them, one source that supplies water to the public fountain in the village center is proposed to be renovated to supply water to the un-served area. (approximately 300 households)

	Table 2-17 Intake Facility for Doino Kolicani System
Source	Spring
Intake point	Existing source for the public tap in the center of village.
Design production	69 m ³ /d
Facility	Water collecting pit, concrete structure, 1 set

 Table 2-17
 Intake Facility for Dolno Kolicani System

(b) Disinfection Facility

Disinfection facilities are designed for every system that has its own water sources. Sodium hypochlorite is proposed as disinfectant because it is locally available, safe and easy to handle. Metering pump or drop type systems are proposed for chemical dosing. Appropriate system will be proposed, taking into account of site condition, dosing rate, etc.

	Table 2-16 Distinection Facility						
	System	Disinfectant	Dosing point (proposed)	Dosing system (proposed)	Operation (proposed)		
(b-1)	Kuceviste	Sodium hypochlorite	2 sets of reservoir tank inlet	Drop (2 sets)	Manual		
(b-2)	Joint system of three municipalities	Sodium hypochlorite	Inlet of transmission pipe	Diaphragm pump (4 sets)	Automatic interlock step control system with pump		
(b-3)	Cvetovo	Sodium hypochlorite	Reservoir tank inlet	Drop (1set)	Manual		
(b-4)	Dolno Kolicani	Sodium hypochlorite	Reservoir tank inlet	Drop (1set)	Manual		

 Table 2-18
 Disinfection Facility

(b-1) Kuceviste Disinfection Facility

New disinfection systems for both existing and new reservoirs are proposed at the inlet of the reservoirs. Since no raw water flow control is planned, constant dosing is done by drop type chlorination equipment.

	Table 2-19 Disinfection Facility for Kuceviste
Chlorine	Average: 1.0 mg/L, Maximum: 2.0 mg/L (setting of the dosing rate is controlled manually)
dosing rate	
Chemical	Sodium hypochlorite (effective chlorine concentration: 3% solution diluted from 12% solution
System	Drop type chlorinator, 2 sets
-	Ave. dosing capacity per set: 14.8 m ³ /h×1.0 mg-Cl ₂ /L / 3% / 1.03 kg/L / 2 = 0.24 L/h
	Max. dosing capacity per set : $22.2 \text{ m}^3/\text{h} \times 2.0 \text{ mg} - \text{Cl}_2/\text{L} / 3\% / 1.03 \text{ kg/L} / 2 = 1.44 \text{ L/h}$
Operation	Manual system

 Table 2-19
 Disinfection Facility for Kuceviste

(b-2) Disinfection Facility for Joint System of three municipalities

Existing disinfection system (liquid chlorine) is old and under-capacity to meet the proposed production capacity. A new system of sodium hypochlorite injection will be introduced by removing the existing one. Four metering pumps will be operated by step-wise control in accordance with the number of submersible pumps in operation. Two separate dosing points are proposed for the existing pipeline (of two wells) and for new pipeline (of two wells).

 Table 2-20
 Disinfection Facility for Joint System of Three Municipalities

Dosing rate	Average: 0.5 mg/L, Maximum: 1.0 mg/L (Setting of the dosing rate is controlled manually)					
Chemical	Sodium hypochlorite (effective chlorine concentration: 5% solution diluted from 12% solution)					
System	Measuring pump (Diaphragm pump)×4 set					
	Ave. dosing capacity: $117 \text{ m}^3/\text{h}$ (submersible pump discharge)×0.5 mg-Cl ₂ /L					
	/ 5% / 1.05 kg/L = 1.11 L/h					
	Max. dosing capacity: $117 \text{ m}^3/\text{h}(\text{submersible pump discharge}) \times 1.0 \text{ mg-Cl}_2/\text{L}$					
	/ 5% / 1.05 kg/L = 2.23 L/h					
Control	Automatic step-wise control linked with no. of submersible pump, (2sets of existing and new pump lines)					

(b-3) Cvetovo Disinfection Facility

Drop type chlorination equipment is proposed to be installed at the inlet of the planned distribution reservoir. Taking into account of absence of flow control of raw water, unavailability of power supply and small dosing rate, drop type system that doesn't require power source is proposed.

	Table 2-21 Disinfection Facility for Cvetovo					
Dosing rate	Average: 0.5 mg/L, Maximum: 1.0 mg/L (Setting of the dosing rate is controlled manually)					
Chemical	Sodium hypochlorite (effective chlorine concentration: 1% solution diluted from 12% solution					
System Drop type chlorinator, 1 set						
	Ave. dosing capacity: $3.17 \text{ m}^3/\text{h} \times 0.5 \text{mg} - \text{Cl}_2/\text{L} / 1\% / 1.01 \text{ kg/L} = 0.16 \text{ L/h}$					
	Max. dosing capacity: $3.17 \text{ m}^3/\text{h}\times 1.0 \text{ mg} \cdot \text{Cl}_2/\text{L} / 1\% / 1.01 \text{ kg/L} = 0.31 \text{ L/h}$					
Operation	Manual system					

 Table 2-21
 Disinfection Facility for Cvetovo

(b-4) Dolno Kolicani Disinfection System

Drop type chlorination equipment is proposed to be installed at the inlet of the proposed distribution reservoir. Taking into account of small dosing rate, drop type system that doesn't require power source is proposed.

	Table 2-22 Disinfection Facilities for Doino Kolicani					
Dosing rate	Average: 0.5 mg/L, Maximum: 1.0 mg/L (Setting of the dosing rate is controlled manually)					
Chemical	Sodium hypochlorite (effective chlorine concentration: 1% solution diluted from 12% solution)					
System						
	Ave. dosing capacity: $1.92 \text{ m}^3/\text{h} \times 0.5 \text{mg} - \text{Cl}_2/\text{L} / 1\% / 1.01 \text{ kg/L} = 0.10 \text{ L/h}$					
	Max. dosing capacity: $2.88 \text{ m}^3/\text{h} \times 1.0 \text{ mg} \cdot \text{Cl}_2/\text{L} / 1\% / 1.01 \text{ kg/L} = 0.29 \text{ L/h}$					
Operation	Manual system					

 Table 2-22
 Disinfection Facilities for Dolno Kolicani

(c) Transmission Pump Facility

Transmission pump facilities serve to transfer water to the distribution reservoir. The type of proposed pump is centrifugal pump in principle. Design specifications will be determined based on the discharge capacity, required pump head, etc. The number of pumps will be decided taking into account of the total capacity of the pumps to achieve an optimum efficiency in constant operation. At least one standby pump is required according to the Macedonian design standard, which will also be included in the plan.

System	Proposal specifications	Qty	Operation				
Radisani	Multistage centrifugal pump (High pressure area:18.5kW)	3 sets	Automatic control according to water level				
	Multistage centrifugal pump (Low pressure area:15kW)	3 sets	of reservoir tank				
Ilinden east	Multistage centrifugal pump (18.5 kW)	3 sets	Manual				
Dolno	Multistage centrifugal pump (2.2 kW)	2 sets	Automatic control according to water level				
Kolicani			of reservoir tank				
Strahojadica	Multistage centrifugal pump (4kW)	2 sets	Automatic control according to water level				
-			of reservoir tank, with automatic stop device				
			by primary pressure sensor of the pump				

Table 2-23Transmission pump

(c-1) Radisani Transmission Pump

The planned served area consists of high and low elevation zones. Two sets of transmission pumps are proposed to transmit water to the reservoirs in both low and high zones (under construction by Cair). The proposed pump station with pump facilities will be newly constructed in the site of existing pump station that supplies water to existing served area of Radisani urban settlement. According to T/D, space for installation of pumps have to be set aside in view of future expansion of the served area. Radio operation system of the pump is proposed in T/D. Since the transmission pipeline is long and some portions are already constructed by Cair, a radio operation system is considered more reasonable both economically and technically than installing control cable underground.

Total head	140 m (Actual head: 128 m, friction loss:12 m)			
Qty	3 sets (1 set for stand by)			
Discharge	30.6 m ³ /h ([Peak day water capacity: 1,224 m ³ /d] / [20 hours] / [2 sets])			
Туре	Multistage centrifugal pump with motor			
Motor output	18.5 kW			
Operation	Automatic operation by water level of reservoir tank			

Table 2-24 Transmission Pump for Radisani Higher Zone

Table 2-25 Transmission Pump for Radisani Lower Zone	Table 2-25	er Zone
--	------------	---------

Total head	70 m (Actual head: 63 m, Friction loss:7 m)
Qty	3 sets (1 set for stand by)
Discharge	37.4 m ³ /h ([Peak day production capacity: 1,496 m ³ /d] / [20 hours] / [2sets])
Туре	Multistage centrifugal pump with motor
Motor output	15 kW
Operation	Automatic operation by water level of reservoir tank

(c-2) Ilinden East Transmission Pump

A transmission system is planned to convey water from the existing Bnardzik Pump Station to the existing distribution reservoir (200 m^3) in the Ilinden East service area. For this system Macedonian side has a plan to construct a new distribution reservoir (500 m^3) and additional distribution pipe networks to expand the service area to three more villages on its own account. Therefore, the facilities to be constructed under the Project should be designed to allow for the future expansion plan. The same type of pumps should be used both for the proposed and future plans. The number of pumps proposed for the Project is three (including one for standby) and one more is proposed for future expansion. Land space should be appropriately allocated to the additional one pump to secure the future expansion. Manual operation method is proposed to control the pumps, on account of long transmission pipeline and absence of the future distribution reservoir.

Total head	167 m (Actual head: 152 m, friction loss: 15 m)					
Qty	3 sets (1 set for stand by, after expansion, the pump of 3 sets and 1 for standby)					
Discharge 24.1 m ³ /h						
-	([Peak day production capacity in future:1,448 m ³ /d] / [20 hours] / [3sets])					
Туре	Multistage centrifugal pump with motor					
Motor output	18.5 kW					
Operation	Manual					

Table 2-26 Transmission Pump for Ilinden East

Note)

- Production capacity of the Project (1,077 m³/d) can be discharged from two sets of pump by 22 hours operation

- Peak day production capacity in future: Total capacity of Ilinden East and future expansion

- Production capacity of the Project: The capacity for Ilinden east only.

(c-3) Dolno Kolicani Transmission Pump

A pump house is to be constructed beside the existing distribution reservoir in order to transmit water from the pump station to the proposed new reservoir. The operation of the pump is

proposed to be automatic On/Off system by water level of the distribution reservoir, through control cable.

	Table 2-27 Transmission Pump for Dolno Kolicani	
Total head	73 m (Actual head: 68 m, friction loss: 5 m)	
Qty	2 sets (1set for stand by)	
Discharge	3.45 m ³ /h ([Peak day production capacity: 69 m ³ /d] / [20 hours])	
Туре	Multistage centrifugal pump with motor	
Motor output	2.2 kW	
Operation	Automatic operation by water level of the reservoir tank.	

(c-4) Strahojadica Transmission Pump

The proposed plan is an expansion of the existing distribution system that receives water from Skopje city water and sewerage PE. Strahojadica area doesn't provide sufficient water pressure to transmit water to the planned reservoir. Thus, the water needs to be pressurized somewhere along the pipeline. According to the T/D of Macedonia, the pump is planned to be installed directly on the transmission pipeline. Therefore, auto-stop device with pressure detector at the inlet-pipe of the pump is proposed. The operation method is proposed to be automatic On/Off by water level detection of the distribution reservoir via control cable.

Table 2-28 **Transmission Pump for Strahojadica**

Total head	128 m (Actual head: 123 m, friction loss: 5 m)
Qty	2 sets (1 set for stand by)
Discharge	4.6 m ³ /h ([Peak day production capacity: 92 m ³ /d]÷[20 hours])
Туре	Multistage centrifugal pump with motor
Motor output	4 kW
Operation	Automatic operation by water level of the reservoir.

(d) **Distribution Reservoir**

The capacity of the distribution reservoirs is determined employing a normal retention time of six hours and additional storage amount for fire fighting. Structure of the reservoir is proposed to be of reinforced concrete because it is commonly employed and of which Macedonia has a lot of experience in construction. In order to avoid freezing in winter as well as to maintain water temperature in midsummer, the reservoir is placed half underground and is covered by soil blanket (approximately 80cm deep). In consideration of operation and maintenance, each reservoir will be equipped with a water-level-gauge and a cumulative flowmeter.

	System	Туре		Structure	Capacity	Qty	Accessories
(d-1)	Kuceviste	Rectangular, underground	Semi	Reinforced concrete	100 m ³ 100 m ³	1 (new) 1 (rehabilitation)	WLG, WFM ^{#1}
(d-2)	Cvetovo	Rectangular, underground	Semi	Reinforced concrete	100 m ³	1 tank	WLG, WFM ^{#1}
(d-3)	Dolno Kolicani	Rectangular, underground	Semi	Reinforced concrete	100 m ³	1 tank	WLG, WFM ^{#1}
(d-4)	Strahojadica	Rectangular, underground	Semi	Reinforced concrete	100 m ³	1 tank	WLG, WFM ^{#1}

Table 2-29 Distribution Reservoir

Note: #1 WLG (Water Level Gauge), WFM (Water Flow Meter)

	Population served	[1] Peak day production.	[2] Capacity for 6 hours ([1] x 6 / 24)	[3] Fire extinguish (1m ³ /min x 60min)	[4] Total capacity ([2]+[3])	[5] Design capacity
Kuceviste	2,183	532 m ³ /d	133.0 m ³	60 m ³	193.0 m ³	New 100 m ³ Exist 100 m ³
Cvetovo	877	$175 \text{ m}^{3}/\text{d}^{\#}$	43.8 m ³	60 m ³	103.8 m ³	100 m ³
Dolno Kolicani	335	69 m ³ /d	17.3 m ³	60 m ³	77.3 m ³	100 m ³
Strahojadica	283	92 m ³ /d	23.0 m ³	60 m ³	83.0 m ³	100 m ³

 Table 2-30
 Calculation of Reservoir Capacity

The reservoir tank capacity of Cvetovo includes future expansion capacity.

(d-1) Kuceviste Distribution Reservoir

A new distribution reservoir (100 m^3) is proposed to be constructed adjacent to the existing distribution reservoir (100 m^3) . The existing reservoir will be rehabilitated by repairing cracks and leakage, and by replacing pipes and valves, etc.

(d-2) Cvetovo Distribution Reservoir

A new reservoir is proposed to be constructed in the site described in T/D.

(d-3) Dolno Kolicani Distribution Reservoir

A new reservoir is proposed to be constructed in the site described in T/D.

(d-4) Strahojadica Distribution Reservoir

A new reservoir is proposed to be constructed in the site described in T/D.

(e) Transmission / Distribution Pipe

Pipe routes are planned and designed based on T/D and the result of field reconnaissance. The pipe length will be determined by referring to the drawings of the T/D in principal. However, its data for some target villages (such as Kuceviste, Petrovec, Rzanicino, Kjojlija and Dolno Kolicani) is too old to reflect the actual condition. Thus, it is impossible to obtain a reliable data on pipe routes and length. For this reason, pipe routing will be redesigned based on topographic maps of 1:2500 scale and on some information provided by Macedonian side. Diameters of the pipes presented in T/D will be reviewed and determined through hydraulic analysis based on the water demand projection.

System	Existing Conditions	Rehabilitation	Expansion
Kuceviste	Pipes are installed in the central area of the village, detailed information (year of embedment, specification) is unclear and pipes are highly deteriorated.	The existing transmission pipe between existing intake and reservoir tank (PVC 100mm) is utilized as it is. All the distribution pipes are rerouted. Existing pipe won't be removed.	Due to the expansion of the intake capacity, new pipeline is constructed along the existing transmission pipeline. The pipe network is expanded as service area is expanded.
Radisani	In part of the distribution pipe used to receive water from Radisani urban is completed.	The existing pipe network will be used as a part of the proposed new network for lower zone. (There's no existing pipe in higher zone)	The pipe material is Ductile Iron for the expansion area.
Joint system of 3 municipalities	There are completed part and under construction part of the primary pipe by Macedonian side. The secondary pipe is not construction yet.	-	Japanese side will construct after flange connection.
Ilinden East	There is no existing system.	-	The pipe diameter will be designed to allow for future expansion plan such as construction of additional reservoir carried out by Macedonian side.
Cvetovo	There is no existing system.	-	Transmission and distribution pipeline will be newly constructed.
Dolno Kolicani	There is existing piped water supply system. In addition to the public system, there are some individual piped system by using private water source.	The existing pipe network will be used as they are.	Transmission and primary distribution pipes are proposed to connect the existing network.
Zelenikovo 3 villages	Some part has already been completed by Macedonian side	The completed distribution pipeline will be utilized.	Pipes are newly installed for the rest of the planned area.
Strahojadica	There is no existing pipeline.	-	Transmission and distribution pipeline will be newly constructed.

Table 2-31Transmission and Distribution Pipe

In Macedonia, polyethylene pipe (PE pipe) of good quality in compliance with ISO standards is produced. Since it is resistant earthquake and freezing, and it has high workability and economic performances, MTC (Ministry of Transport and Communications) recommend the use of polyethylene pipe. Hence, PE pipe is proposed for the pipe material in principal in this Project. Meanwhile, in Ilinden East system where the water pressure becomes relatively high in the pipe, the

use of steel pipe will be considered. In Radisani system, ductile iron pipe (DI pipe) is basically employed since DI pipe is taken as the standard pipe material of Skopje city water and sewerage PE that is supposed to take over the operation and maintenance of the completed system.

System	Material			
All system other than the two below	PE pipe			
Ilinden East	Steel pipe			
Radisani	Ductile Cast Iron Pipe			

Table 2-32 Pipe material

According to Macedonian standard, soil covering depth is normally from 1.2 to 1.4 m and 0.8 m at minimum. In the Project, average covering depth of 1.2 m is adopted as standard and 0.8 m for rocky terrains in which working condition is not good. In the case of exposed pipes attached to a bridge etc., the pipes will be protected by insulation materials. In the case of embedding pipes in rocky terrains, sand bedding (10 cm) will be employed to protect the pipes.

Stop valves, air valves, drain valves, fire hydrants, etc. are to be designed in accordance with Macedonian standard by referring to T/D. Bulk water meter will be installed at the entrance of each village for the joint system of three municipalities and for the systems of Zelenikovo to enable flow measurement by district and leakage control.

(e-1) Kuceviste System

Kuceviste

Category	Material	Length (mm)	Length (m)
Transmission Pipe	PE	110	3,000.00
Distribution Pipe	PE	160	232.20
Distribution Pipe	PE	110	1,575.70
Distribution Pipe	PE	90	1,136.20
Distribution Pipe	PE	75	2,711.90
Distribution Pipe	PE	63	572.30

(e-2) Radisani System

Radisani Lower Zone

Category	Material	Length (mm)	Length (m)
Transmission Pipe	DIP	200	646.34
Distribution Pipe	DIP	150	910.93
Distribution Pipe	DIP	100	5,816.83

Radisani Higher Zone

Category	Material	Length (mm)	Length (m)
Transmission Pipe	DIP	200	1,430.80
Transmission Pipe	DIP	150	583.80
Distribution Pipe	DIP	150	2,201.32
Distribution Pipe	DIP	100	6,585.39
Distribution Pipe	DIP	80	2,435.00

(e-3) Joint System of Three Municipalities

Gazi Baba/ Ilinden/ Petrovec Joint System of Three Municipalities

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe Gazi Baba	PE	280	2,015.00
Distribution Pipe Ilinden	PE	280	2,313.00
Distribution Pipe Petrovec	PE	160	1,300.00

Jurumleri

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	160	1,607.45
Distribution Pipe	PE	140	655.09
Distribution Pipe	PE	110	2,929.56
Distribution Pipe	PE	90	6,003.59
Distribution Pipe	PE	63	342.60

Goce Delcev

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	140	711.54
Distribution Pipe	PE	110	2,171.28
Distribution Pipe	PE	90	3,703.08

Kolonie Idrizovo

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	125	28.00
Distribution Pipe	PE	110	2,624.26
Distribution Pipe	PE	90	1,818.30

Idrizovo

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	110	2,864.15
Distribution Pipe	PE	90	5,094.75

Mralino

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	90	3,258.95

Petrovec

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	110	1,511.00
Distribution Pipe	PE	90	2,722.00
Distribution Pipe	PE	75	5,799.00
Distribution Pipe	PE	63	2,591.00

Rzanicino

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	110	2,370.00
Distribution Pipe	PE	90	3,293.00

Ognjanci

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	110	725.00
Distribution Pipe	PE	90	3,620.00

Kjojlija

Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	90	1,530.00

(e-4) Ilinden East System

Ilinden East

Category	Material	Diameter (mm)	Length (m)
Transmission Pipe	SP	219	2,260.00
Transmission Pipe	PE	225	1,897.50
Transmission Pipe	PE	160	693.00

(e-5) Cvetovo System

Cvetovo

Category	Material	Diameter (mm)	Length (m)
Transmission Pipe	PE	63	825.00
Transmission Pipe	PE	75	2,940.00
Transmission Pipe	PE	75	1,160.00
Transmission Pipe	PE	75	270.00
Distribution Pipe	PE	90	151.00
Distribution Pipe	PE	90	941.60
Distribution Pipe	PE	65	259.30

(e-6) Dolno Kolicani System

Dolno Kolicani

Category	Material	Diameter (mm)	Length (m)
Transmission Pipe	PE	90	200.00
Distribution Pipe	PE	90	386.00
Distribution Pipe	PE	110	120.00

(e-7) Zelenikovo Three Villages System

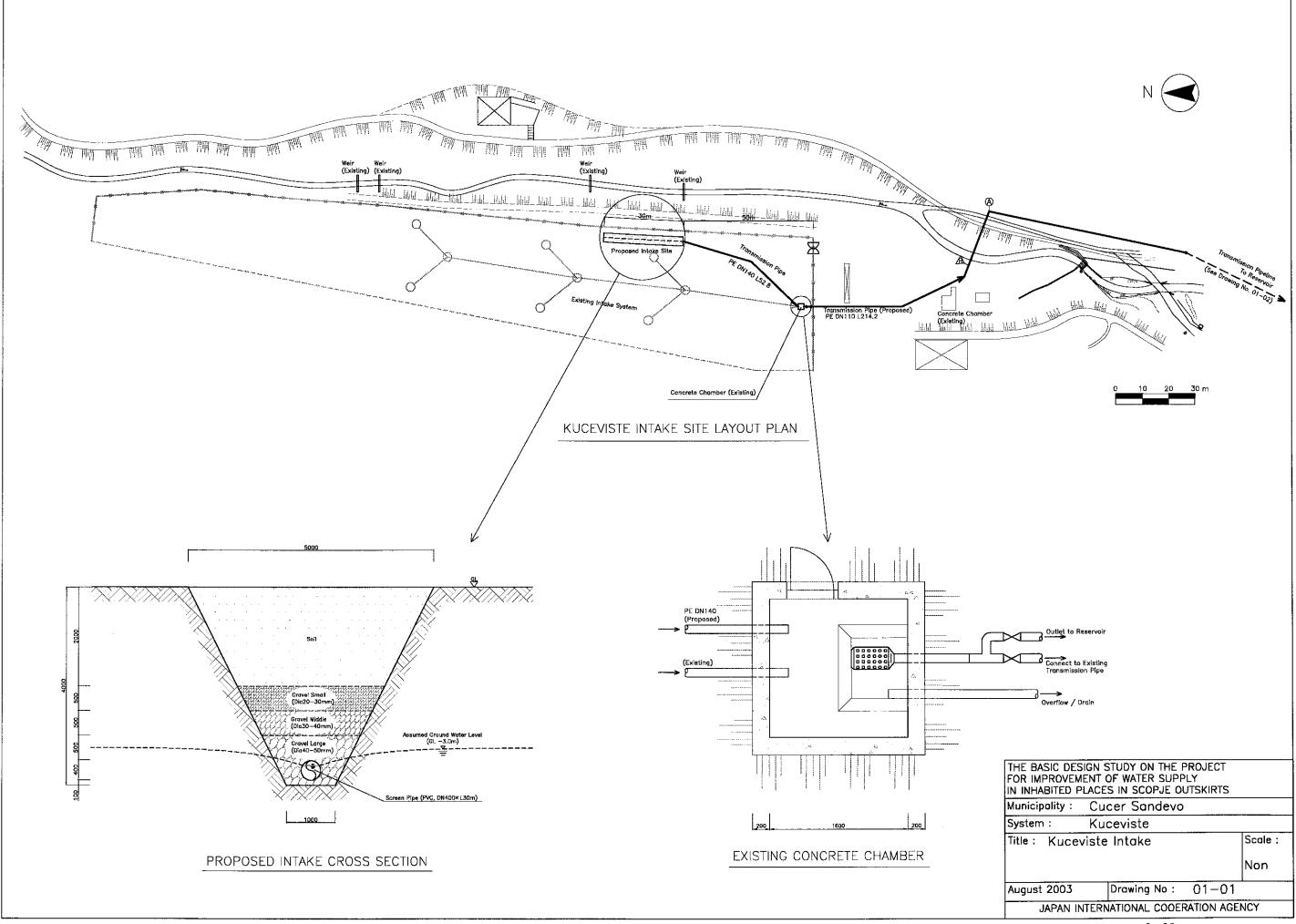
Taor

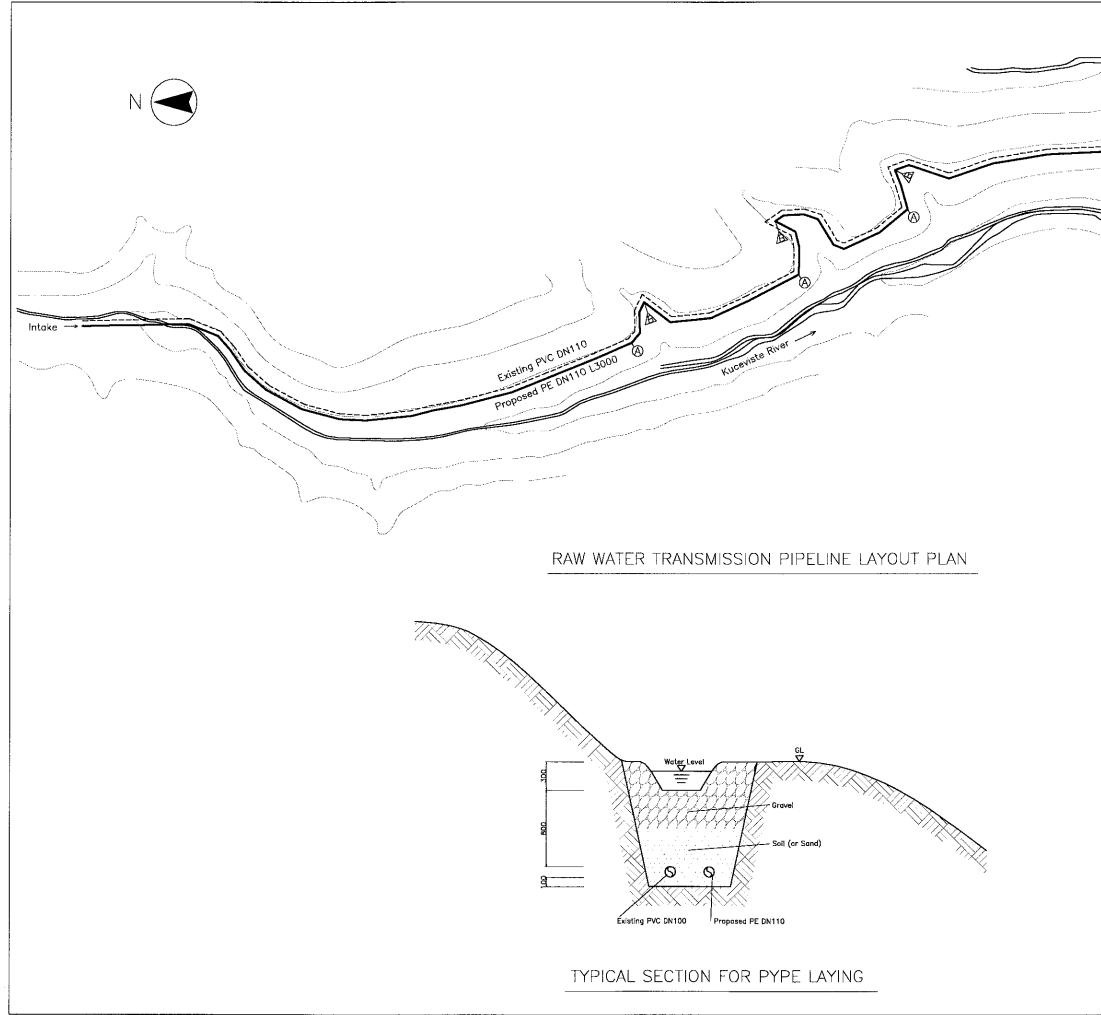
Category	Material	Diameter (mm)	Length (m)
Transmission Pipe	PE	110	320.00
Distribution Pipe	PE	110	55.00
Distribution Pipe	PE	90	1,180.00
Distribution Pipe	PE	75	70.00

Pakosevo & Novo Selo

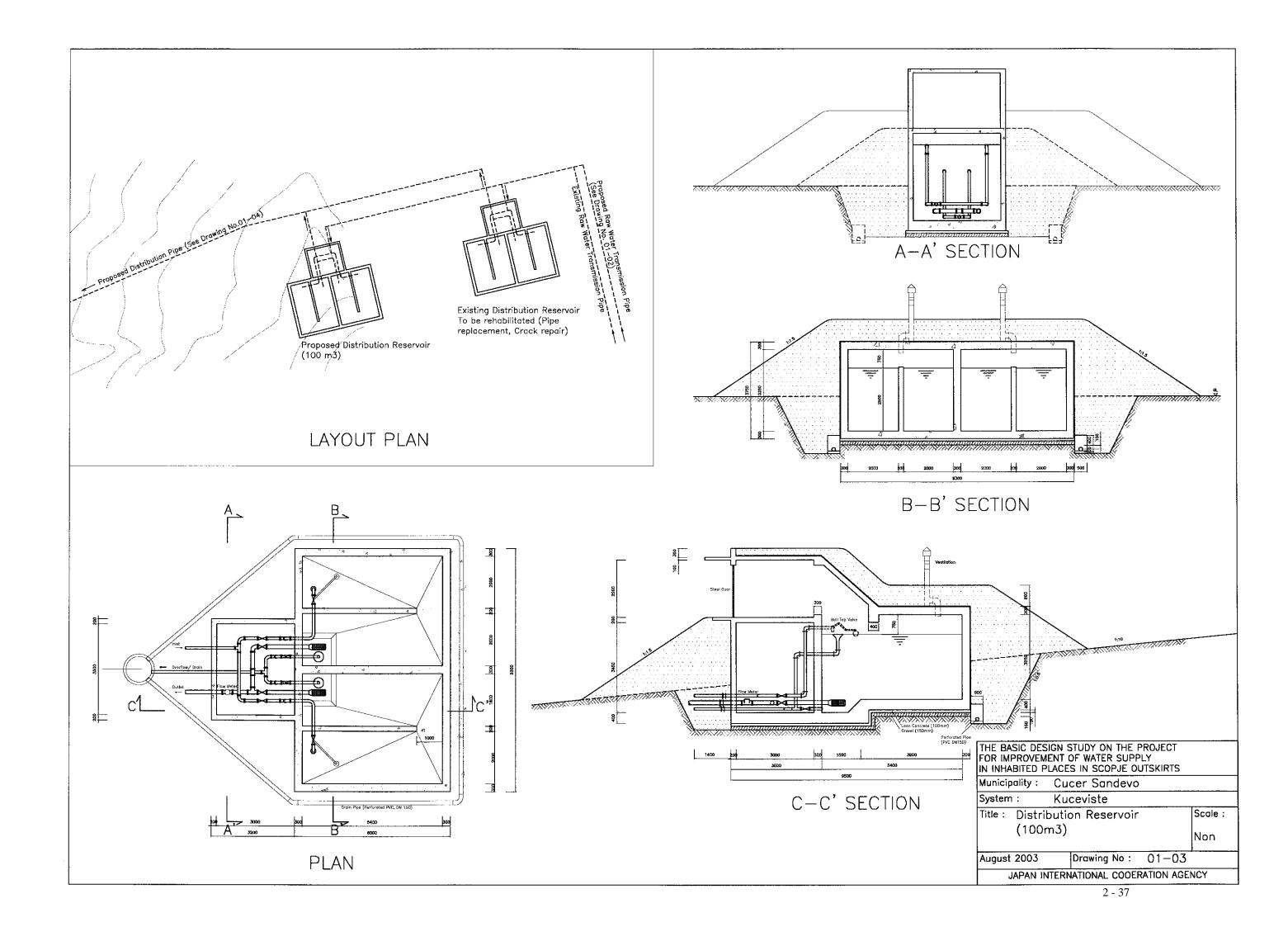
Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	160	2,345.00
Distribution Pipe	PE	110	2,335.00
Distribution Pipe	PE	90	255.17
Distribution Pipe	PE	63	1,798.57

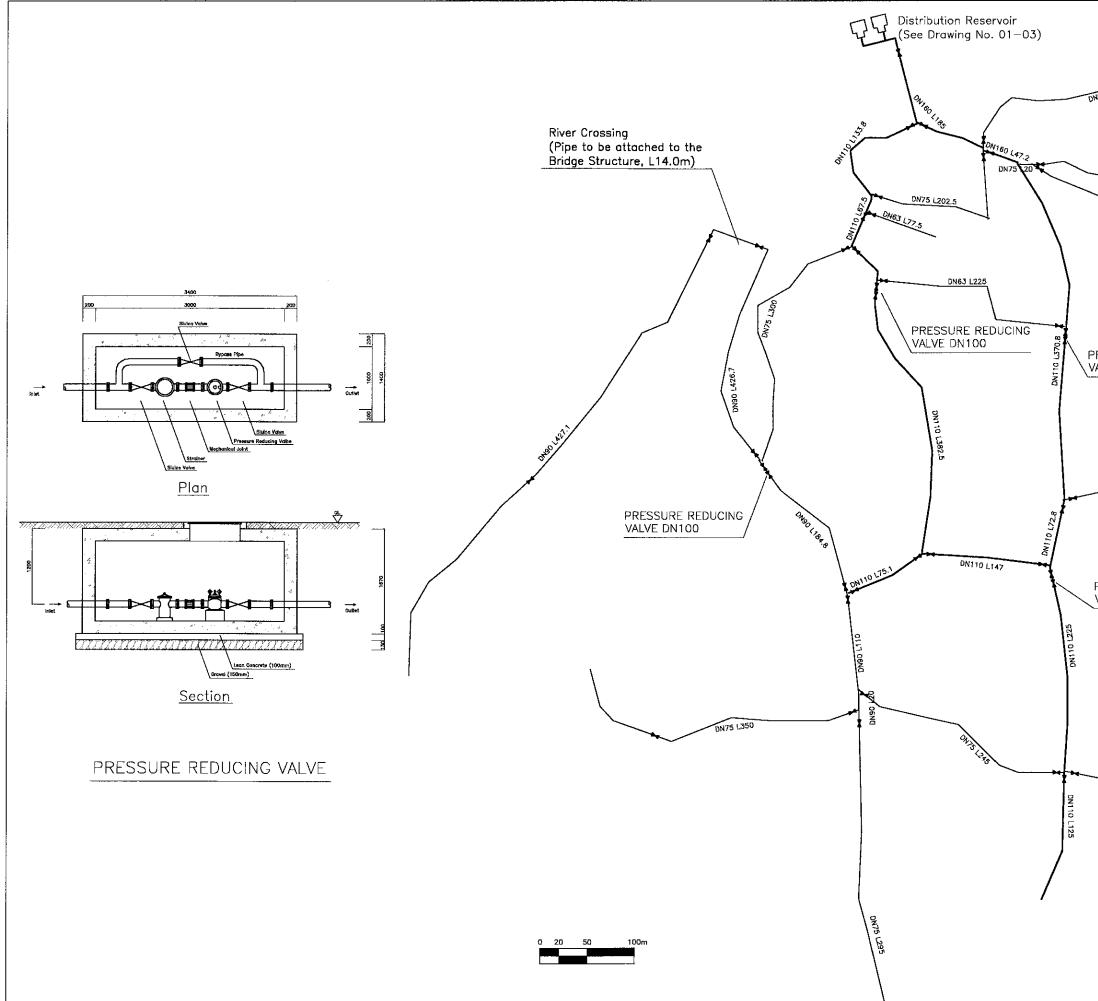
(e-8) Strahojadica System

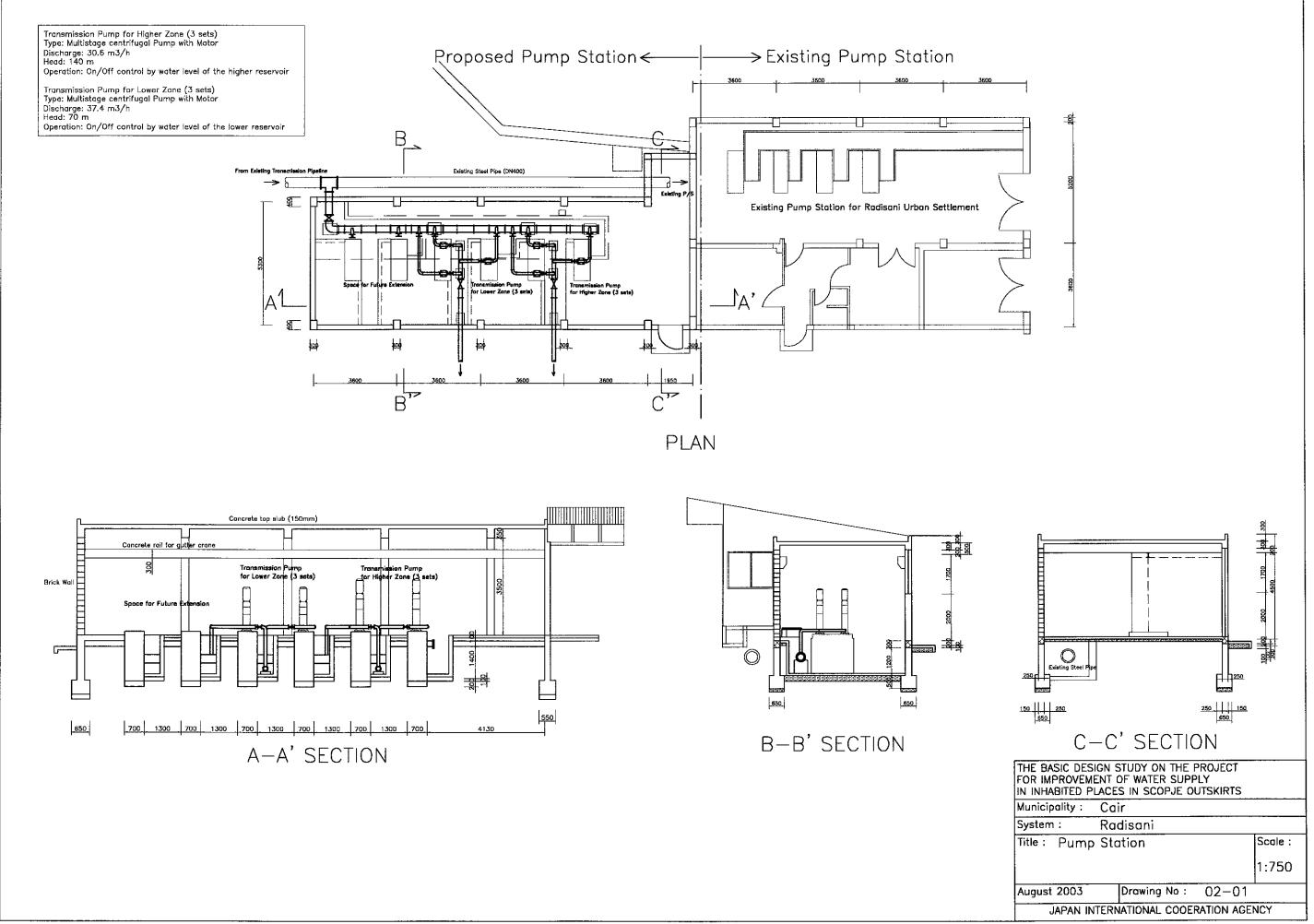

Strahojadica


Category	Material	Diameter (mm)	Length (m)
Distribution Pipe	PE	110	295.00
Distribution Pipe	PE	90	590.00
Distribution Pipe	PE	90	630.00
Distribution Pipe	PE	110	235.00
Distribution Pipe	PE	90	400.00
Distribution Pipe	PE	63	225.00

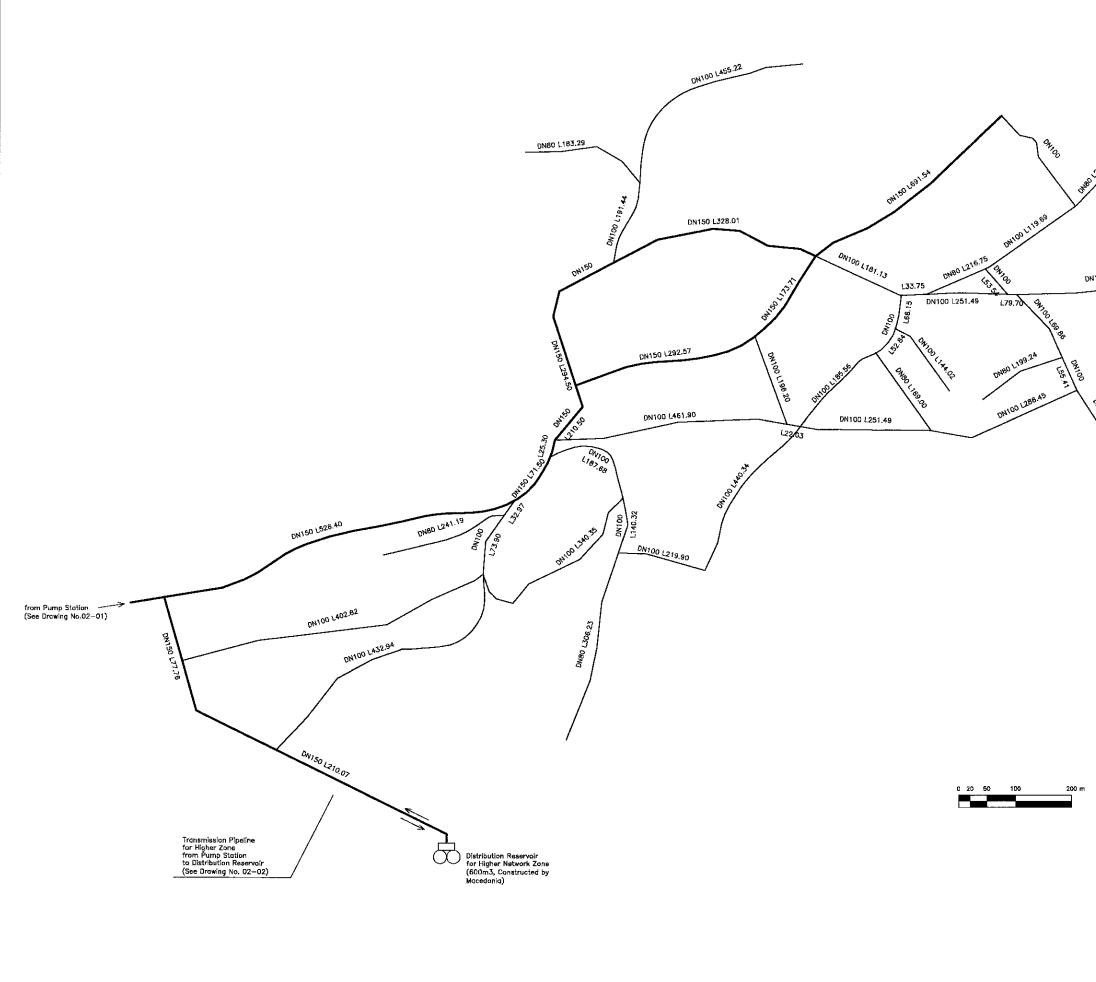
2-2-3 Basic Design Drawing


No.	Municipality	System	Title
01-01	Cucer Sandevo	Kuceviste	Kuceviste Intake
01-02	Cucer Sandevo	Kuceviste	Raw Water Transmission Pipeline
01-03	Cucer Sandevo	Kuceviste	Distribution Reservoir
01-04	Cucer Sandevo	Kuceviste	Distribution Network
02-01	Cair	Radisani	Pump Station
02-02	Cair	Radisani	Lower Zone
02-03	Cair	Radisani	Higher Zone
03-01	Gazi Baba	Joint System	Jurumleri Intake
03-02	Gazi Baba	Joint System	Disinfection Facility
03-03	Gazi Baba/ Ilinden/ Petrovec	Joint System	Primary Pipeline
03-04	Gazi Baba	Joint System	Goce Delcev Secondary Network
03-05	Gazi Baba	Joint System	Jurumleri Secondary Network
03-06	Gazi Baba	Joint System	Kolonie Idrizovo Secondary Network
03-07	Gazi Baba	Joint System	Idrizovo Secondary Network
03-08	Ilinden	Joint System	Mralino Secondary Network
03-09	Petrovec	Joint System	Petrovec Secondary Network
03-10	Petrovec	Joint System	Rzanichino Secondary Network
03-11	Petrovec	Joint System	Ognanci Secondary Network
03-12	Petrovec	Joint System	Kjojlija Secondary Network
04-01	Ilinden	Ilinden East	Ilinden East Pump Station
04-02	Ilinden	Ilinden East	Transmission Pipeline
05-01	Studenicani	Cvetovo	Intake Facility
05-02	Studenicani	Cvetovo	Transmission Facility
05-03	Studenicani	Cvetovo	Distribution Reservoir
05-04	Studenicani	Cvetovo	Distribution Network
06-01	Studenicani	Dolno Kolicani	Intake Facility
06-02	Studenicani	Dolno Kolicani	Pump Station
06-03	Studenicani	Dolno Kolicani	Transmission Facility
06-04	Studenicani	Dolno Kolicani	Distribution Reservoir
07-01	Zelenikovo	Zelenikovo Three Villages	Taor Secondary Network
07-02	Zelenikovo	Zelenikovo Three Villages	Pakosevo & Novo Selo Secondary Network
08-01	Zelenikovo	Strahojadica	Booster Pump Station
08-02	Zelenikovo	Strahojadica	Transmission/ Distribution Pipeline
08-03	Zelenikovo	Strahojadica	Distribution Reservoir

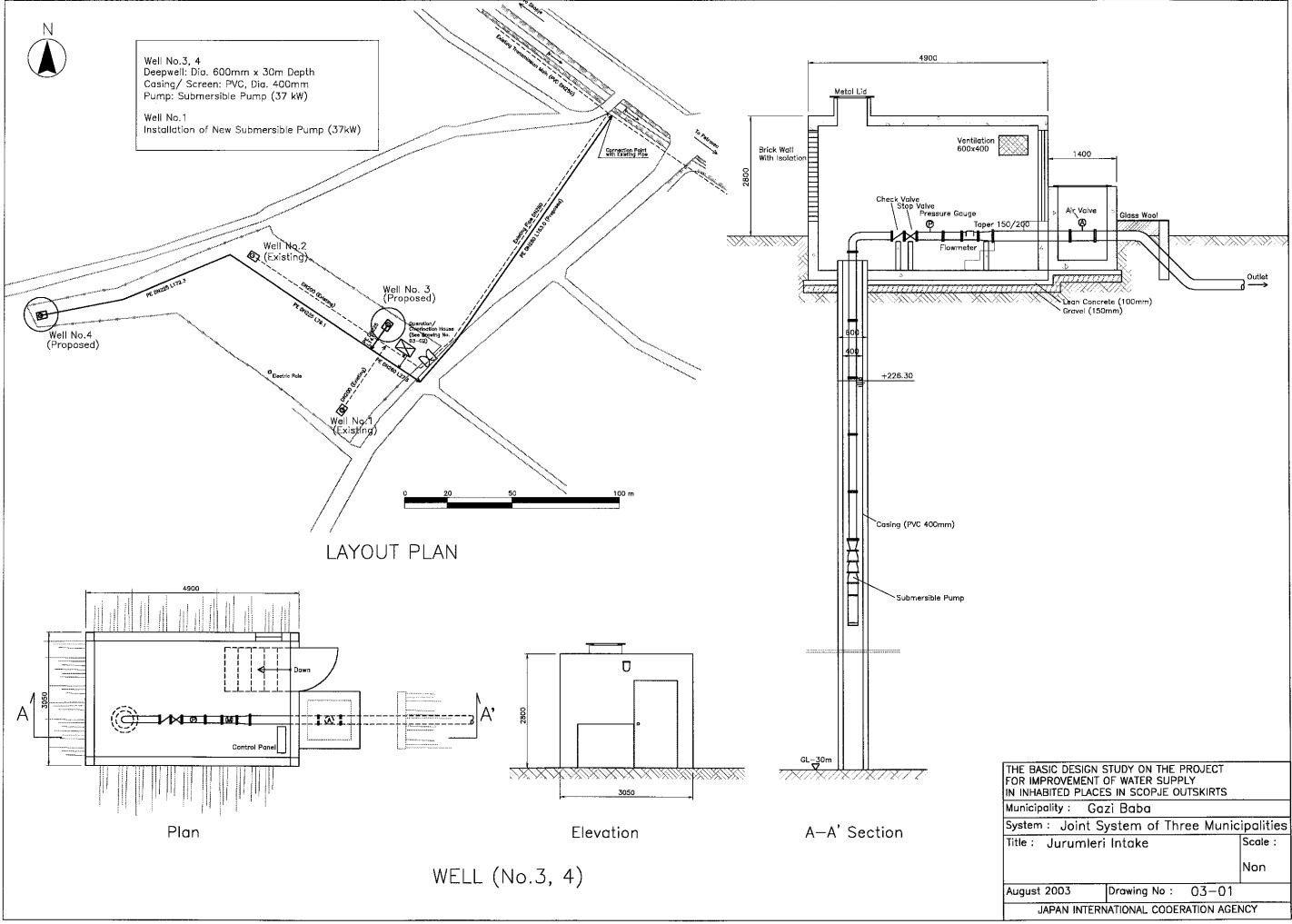

 Table 2-33
 Drawings of Basic Design



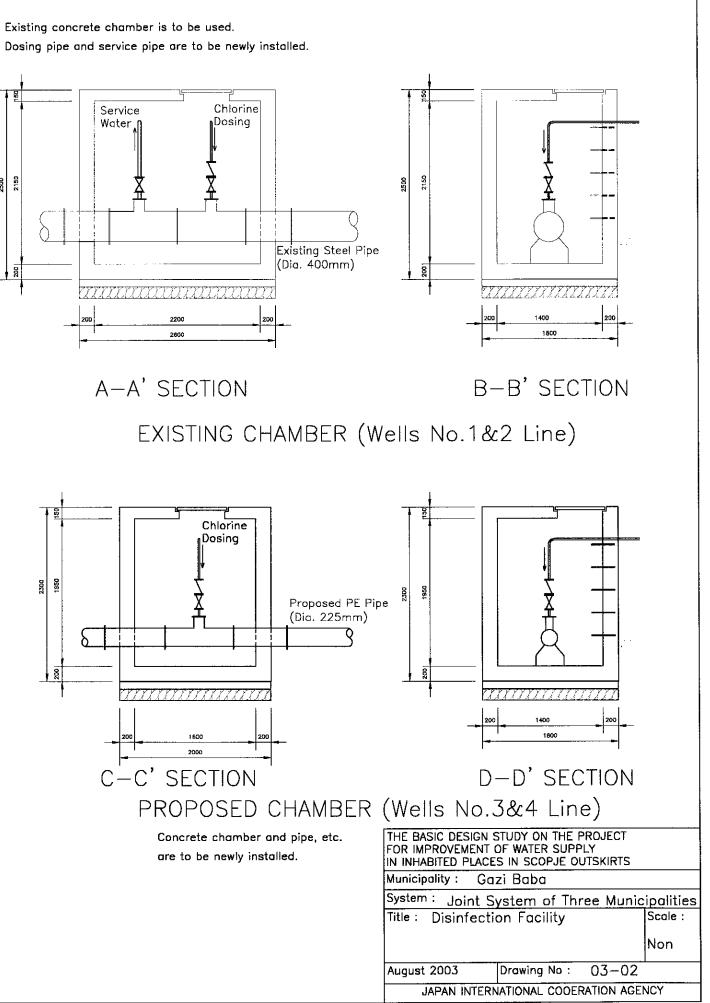
\sim	
	\leq
	$\sqrt{-}$
a market and the second se	N
	\sim
	~
	<./ ₩
525	
Proposed D	istribution
Reservoir (Drawing Na	
(Drawing Na	0.01-03)
	\sim
and the second	
	1
0 50 100 25	50 m
THE BASIC DESIGN STUDY ON THE PROJECT	
FOR IMPROVEMENT OF WATER SUPPLY	
IN INHABITED PLACES IN SCOPJE OUTSKIRTS	
Municipality : Cucer Sandevo	
System : Kuceviste	
Title : Raw Water Transmission	Scale :
Pipeline	Non
August 2003 Drawing No : 01-02	
JAPAN INTERNATIONAL COOERATION AGE	NOV

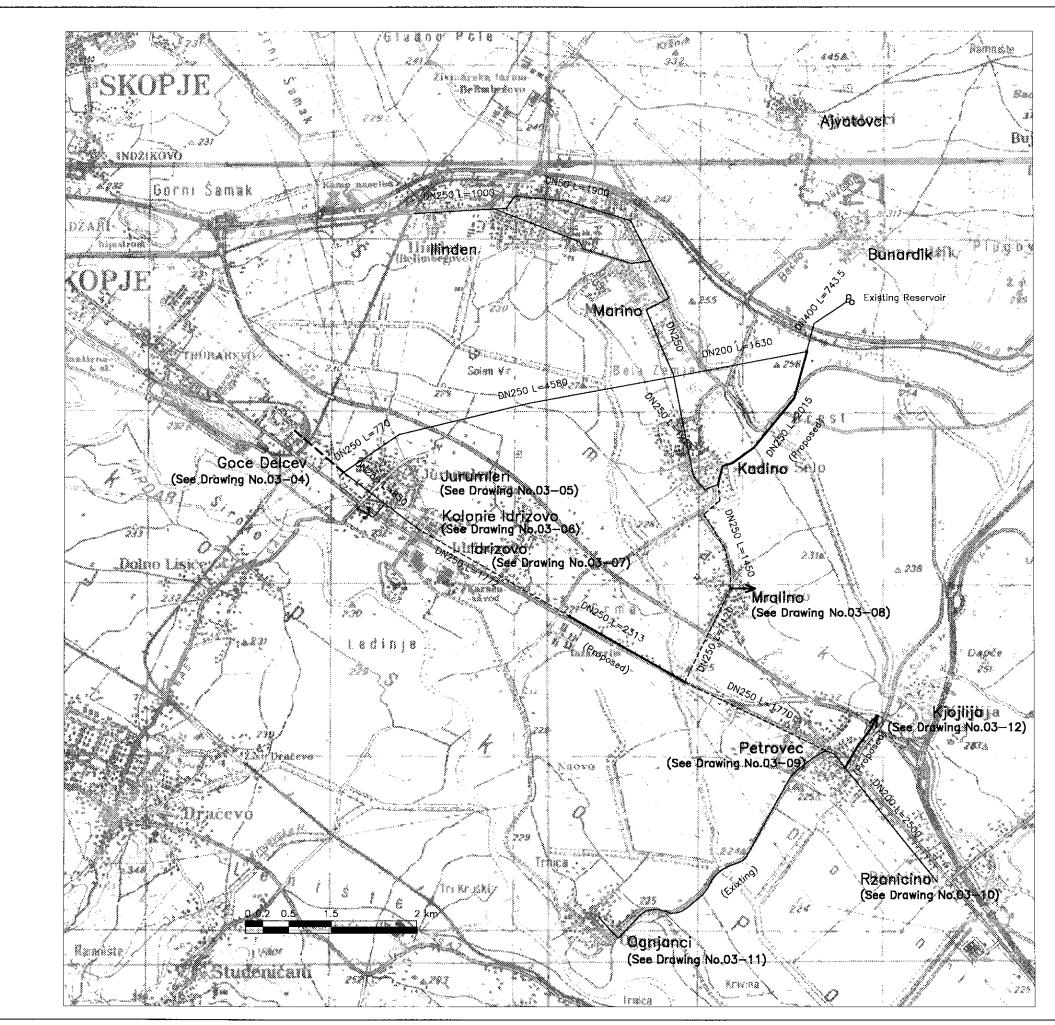


901260	
Con Star	
DN75 1200	
DN75 L145	
DN75 1400	
ST.	
DN75 L34	
DW75 1210 8	
ANTS.	
RESSURE REDUCING	
ALVE DN100	
DN75 L166.3	
PRESSURE REDUCING VALVE DN100	
0163	
DN63 (213.3	
THE BASIC DESIGN STUDY ON THE PROJECT	
FOR IMPROVEMENT OF WATER SUPPLY IN INHABITED PLACES IN SCOPJE OUTSKIRTS	
Municipality : Cucer Sandevo	
System : Kuceviste	
Title : Distribution Network	Scale :
	Non
August 2003 Drawing No : 01-04	
August 2003 [Drowing No : 01-04	
JAPAN INTERNATIONAL COOERATION AGE	NCY



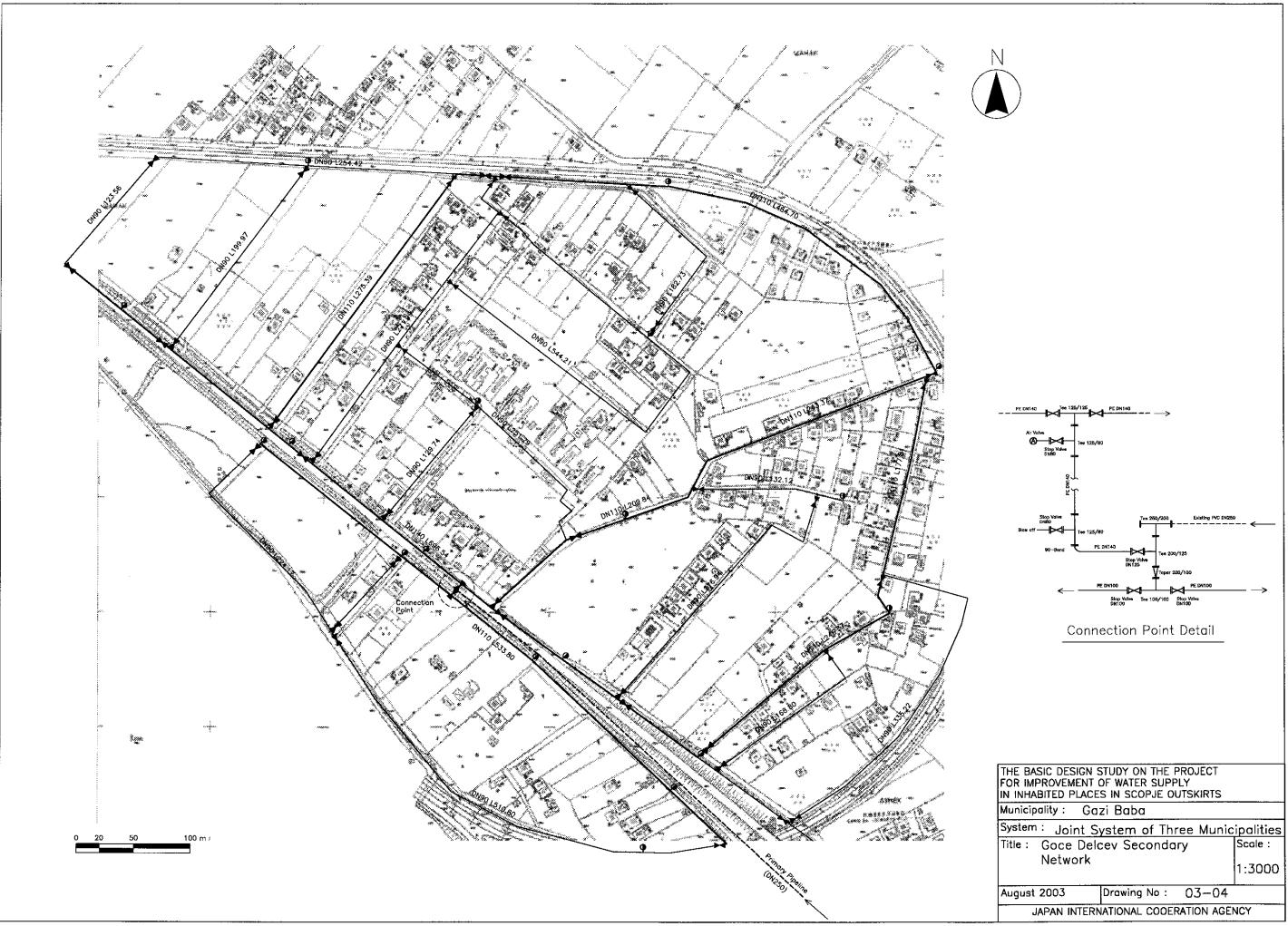
	N N
ent DN100 L874.40 DN100 L579.62	OR INO INO INO INO INO INO INO INO INO INO
Higher Networ	k Zone
(See Drawing	No.02–03)
300 m	Distribution Reservoir for Higher Network Zone (600 m3) Constructed by Macedonia
FOR IMPROVEMENT O	S IN SCOPJE OUTSKIRTS
Municipality : Cai System : Rac Title : Lower Zor	disani
-	Drawing No : 02–02 ATIONAL COOERATION AGENCY

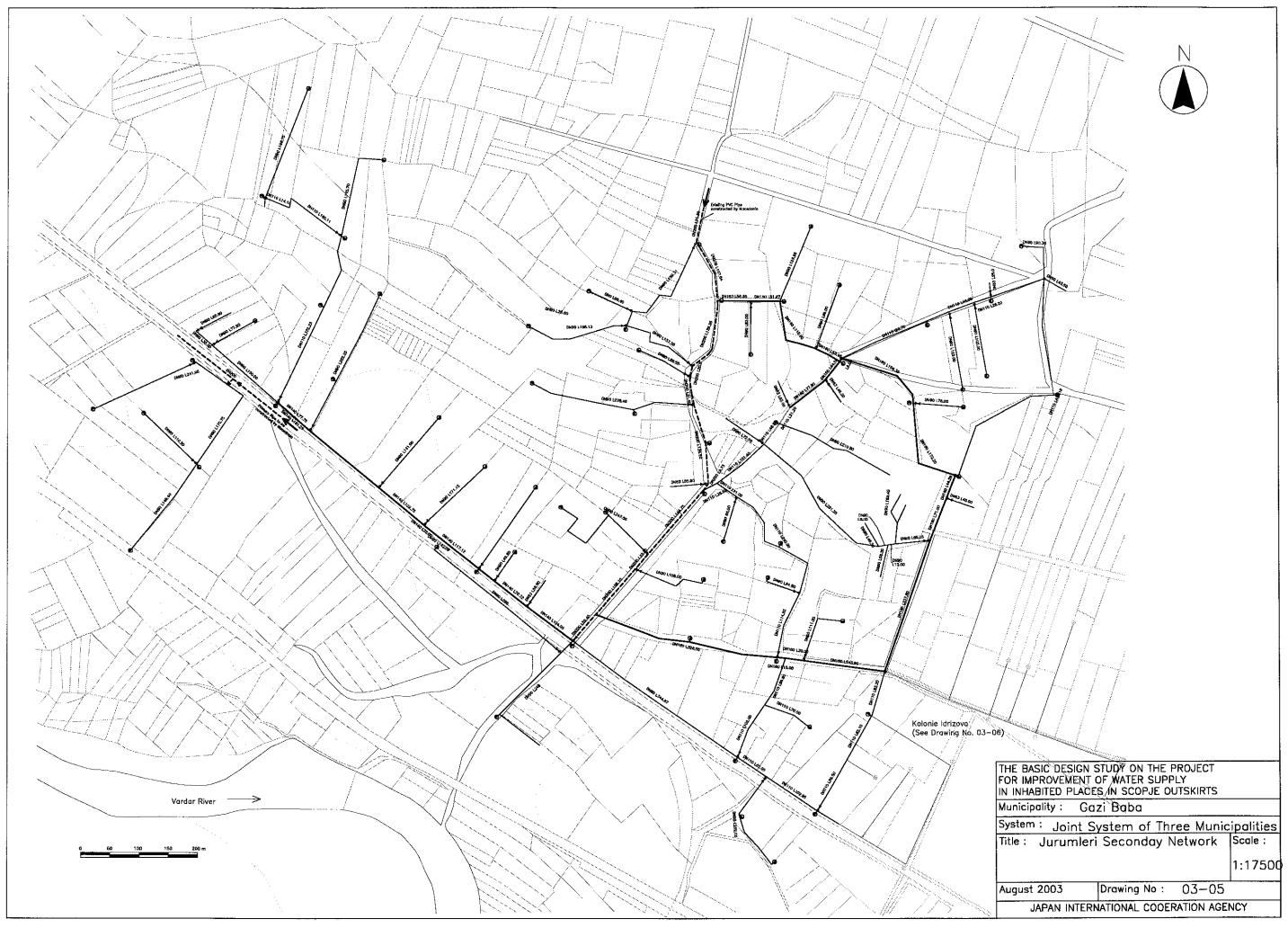

US IS	
0N80 L329.04	
1100 1239.57 19100 1239.57 DN100 DN100 DN100 DN100	
CEPT DONNO	
THE BASIC DESIGN STUDY ON THE PROJECT FOR IMPROVEMENT OF WATER SUPPLY IN INHABITED PLACES IN SCOPJE OUTSKIRTS	
Municipality : Cair	
System : Radisani	
Title : Higher Zone	Scale :
August 2003 Drawing No : 02-03	
JAPAN INTERNATIONAL COOERATION AGE	

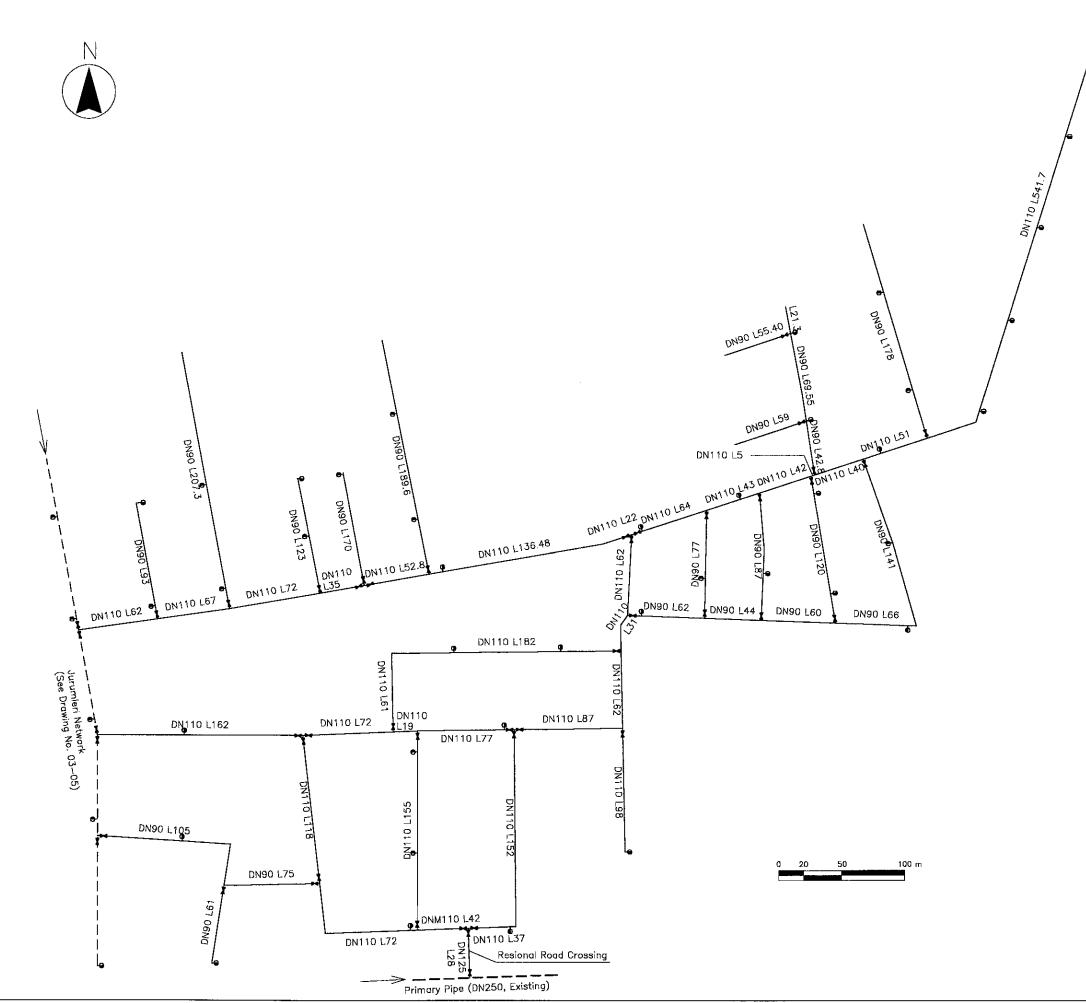


8500 1500 lo, Sodium Hypochlorite Dissolving STORAGE Tank Existing wall (to be removed) 5700 CHLORINATION ROOM jo jo 0 Diaphragm Pump (4 nos.) EXISTING BUILDING 4000 <u>_B</u> Existing C Chamber ervice Dosing Pipe From Wells No.1 & 2 To Distribution Reservoir Existing Steel ((Dia, 400mm) B Dosing Point Dosing Pipe 200 920 From Wells To Distribution 🖌 Reservoir Concrete Chambe Proposed PE Pipe (Dig. 225mm) n Dosing Point

PLAN

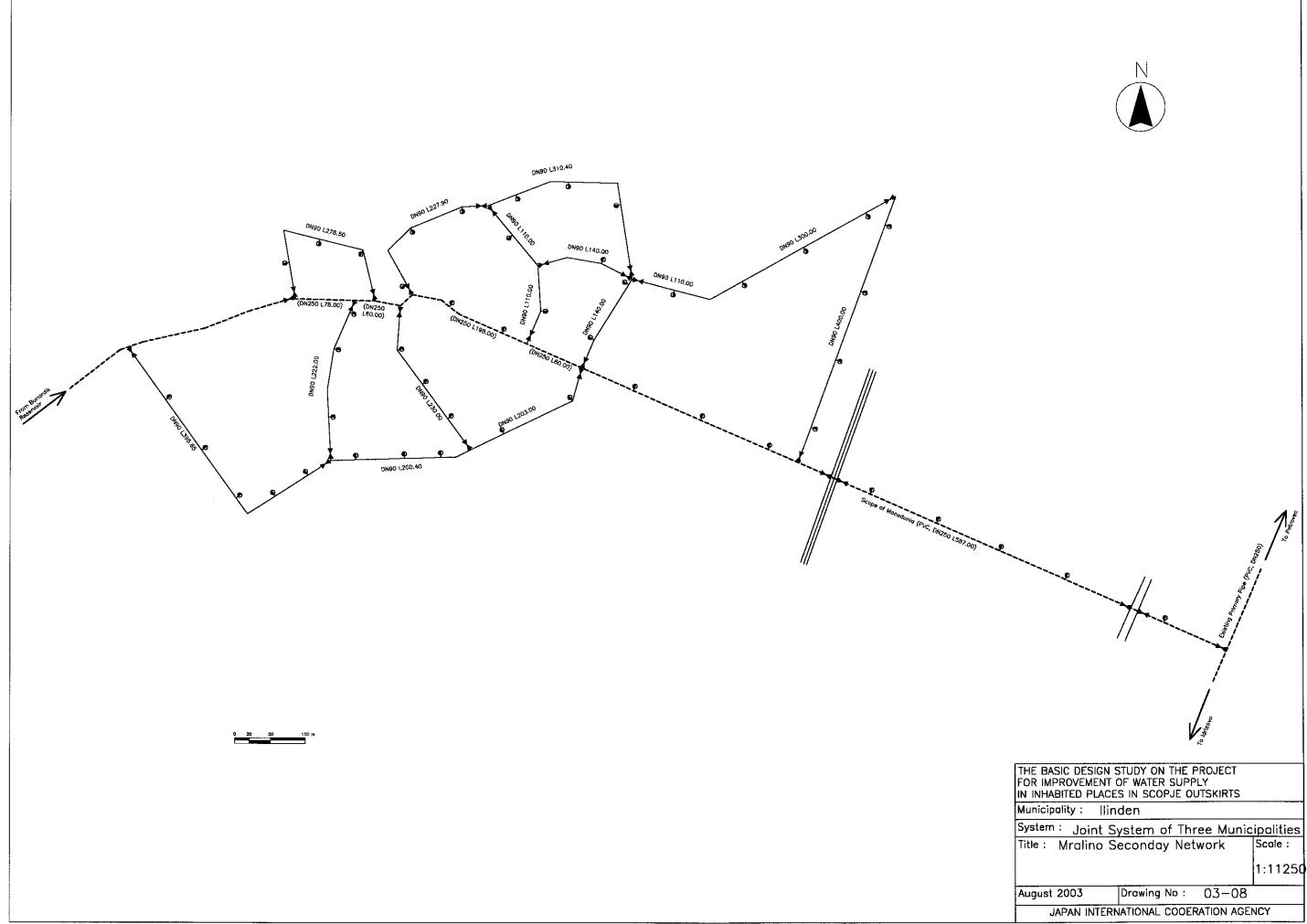

Chlorination System Disinfectant: Sodium Hypochlorite Dissolving Tank: 2 tanks Dosing Pump: Diaphragm Pumps (4 nos.) Dosing Point: 2 Points (Well No.1&2 Line, Wells No.3&4 Line) Control: Automatic control by operation of submersible pumps Building: Existing building is to be used. Equipment: Existing system would be removed and new system installed.

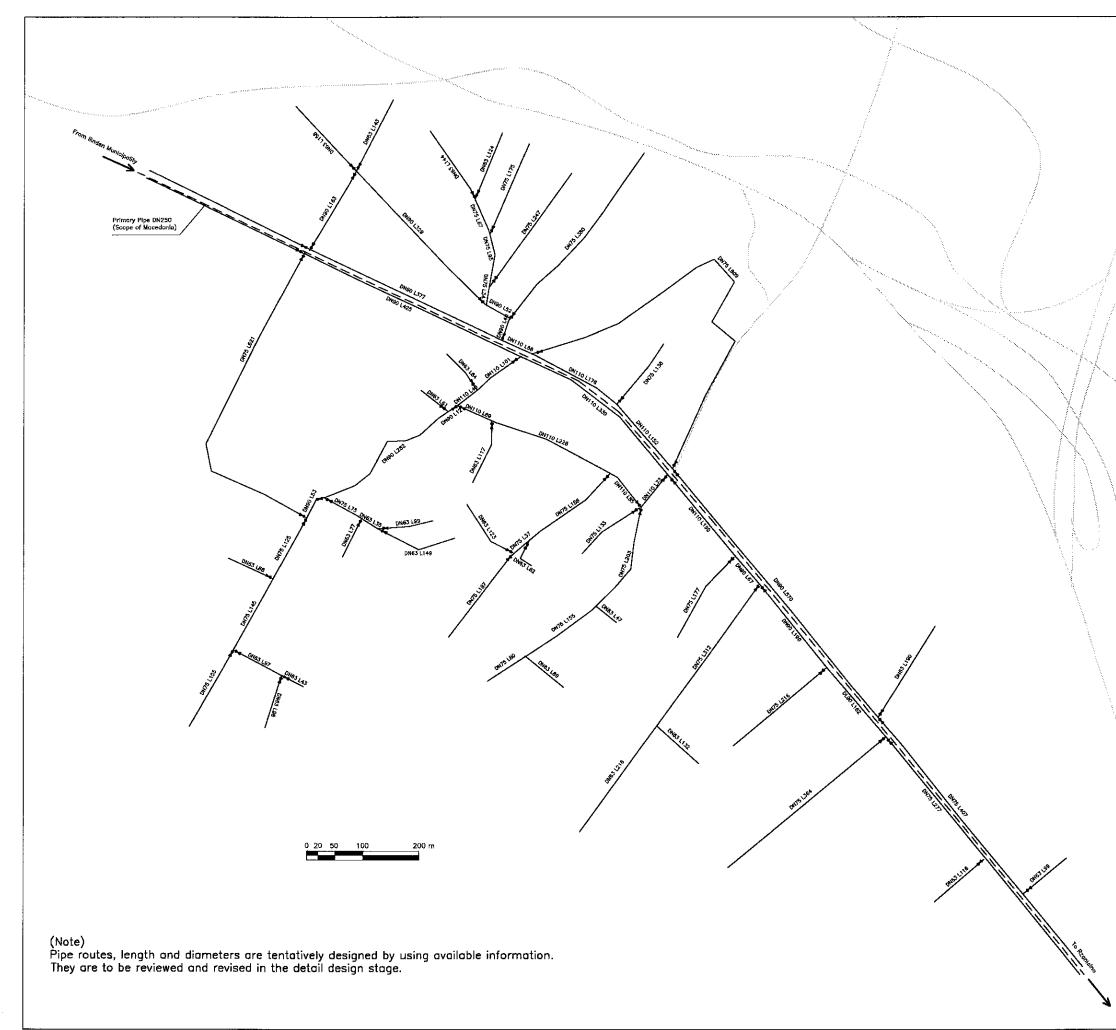


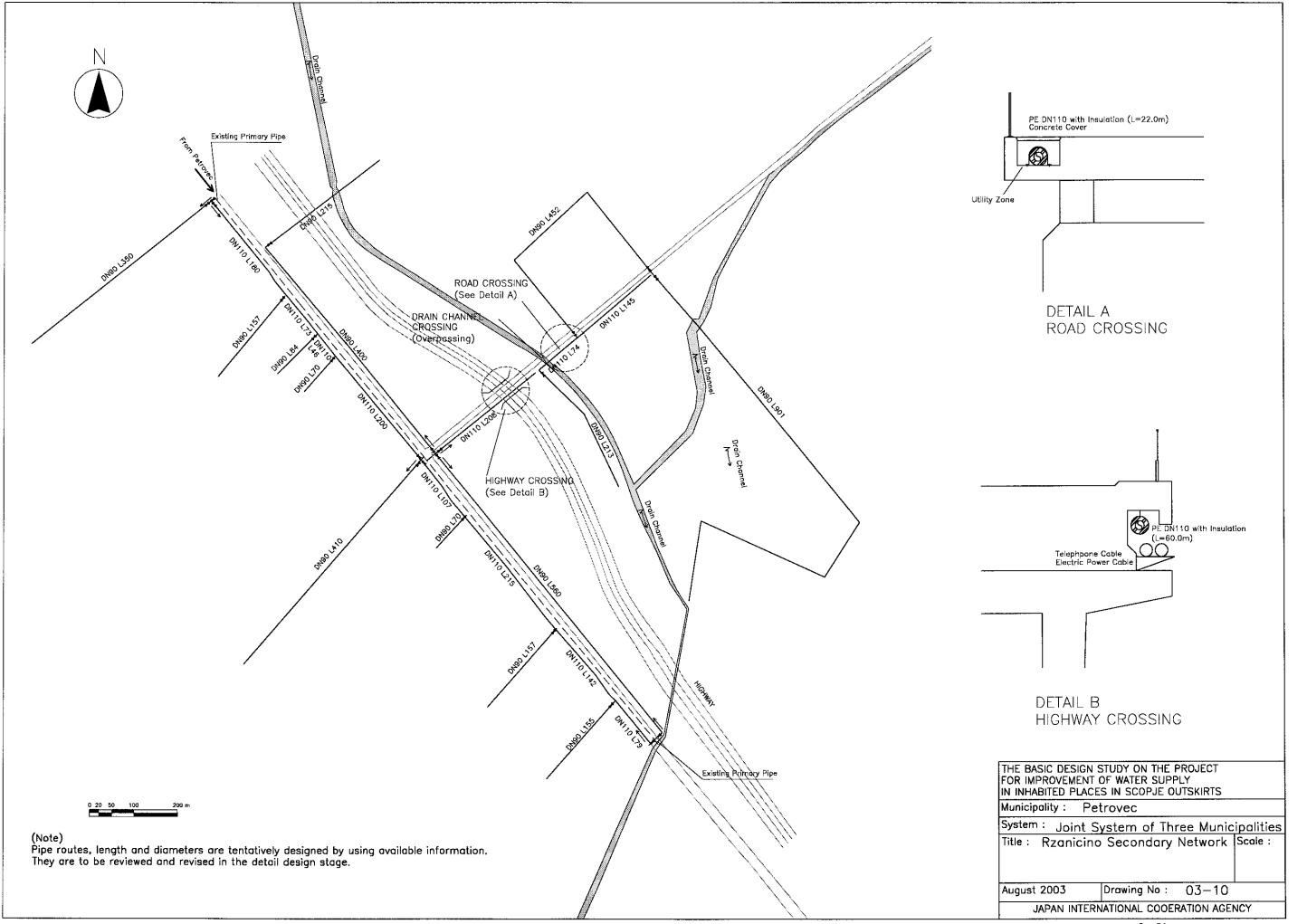


	Ν
V	Ŋ

FOR IMPROVEMENT	STUDY ON THE PROJECT OF WATER SUPPLY S IN SCOPJE OUTSKIRTS	
Municipality : Ga	zi Baba / Ilinden / P	etrovec
System : Joint System of Three Municipalities		
Title : Primary F	Pipeline	Scale :
August 2003	Drawing No: 03-03	
JAPAN INTERNATIONAL CODERATION AGENCY		






\bigwedge	
/• Idrizovo Network	
(See Drawing No.03-0	7)
	· _
/	>
Î	
1	ŀ
1	
1	
i	
1	
1	
I	
l t	
1	
i	
ł	
THE BASIC DESIGN STUDY ON THE PROJECT	
FOR IMPROVEMENT OF WATER SUPPLY IN INHABITED PLACES IN SCOPJE OUTSKIRTS	
Municipality : Gazi Baba	
System : Joint System of Three Munic	ipalities Scale :
^{Title} : Kolonie Idrisovo Seconday Network	scale :
INELWORK	
August 2003 Drawing No : 03-06	
JAPAN INTERNATIONAL COOERATION AGE	VCY
2 47	

·····
N
()
THE BASIC DESIGN STUDY ON THE PROJECT FOR IMPROVEMENT OF WATER SUPPLY IN INHABITED PLACES IN SCOPJE OUTSKIRTS
Municipality : Petrovec
System : Joint System of Three Municipalities Title : Petrovec Secondary Network Scale :
August 2003 Drawing No : 03-09
JAPAN INTERNATIONAL COOERATION AGENCY

