THE STUDY ON SUSTAINABLE GROUNDWATER DEVELOPMENT FOR BOGOTA PLAIN IN THE REPUBLIC OF COLOMBIA

FINAL REPORT SUPPORTING REPORT

PART 2

ENVIRONMENTAL FIELD SURVEY

Final Report (Supporting Report)

Part 2 Environmental Field Survey

Table of Contents

	Р	age
List of Reposts.		•• i
Table of Contents		• ii
List of Tables and Figures		• iii

Page

CHAPTER 1	CONTAMINATION SOURCES OF GROUNDWATER ······ 2-1
CHAPTER 2	LAND SUBSIDENCE ······ 2-6
CHAPTER 3	QUALITY OF RIVER WATER AND RIVER-BED MATERIAL*** 2-6

List of Tables and Figures

	(Pag	ge)
Table-1.1	Generating Sources on the Ground Surface in the Basin · · · · · · · · 2	2-3
Table-1.2	N and S from Surface 22	2-3
Table-1.3	Stocks in Saturated Zone 22	2-4
Table-1.4	Summary of Calculation 22	2-5
Table-4.1	Result of analysis of Bogota River · · · · · · · · · · · · · · · · · · ·	2-5
Table-4.2	Water Analysis of Bogota River at TIBITOC Purification Unit	2-6

PART - 2 ENVIRONMENTAL FIELD SURVEY

CHAPTER 1 Contamination Sources of Groundwater

The groundwater quality in Bogotá plain is characterized with widely extended, highly concentrated NH_4 -N and H_2S . It appears to be a very exceptional case of groundwater, hard to find same cases in other countries.

Regarding to a cause of this exceptional quality, first of all, we have to doubt the contaminations might come from ground surface by extensive human activities, such as a flow out of nitrogenous fertilizer, an infiltration of domestic, industrial and livestock wastes, because contaminations of the kinds has been commonly experienced all over the world. If the contamination has been occurred in limited places in the plain, above reasoning would be considerably persuasive and has a good possibility. However, the case of Bogotá plain is that, a widely extended contamination in groundwater has been confirmed, so that a huge amount of contaminants has been certainly stocked underground. Accordingly, without a quantitative approach to the relation between contaminants generated on the surface and stocked contaminants in the groundwater, we can't jump at the first reasoning.

Following description is, at first, to guess the amount of nitrogen and sulfur that generate on the surface and infiltrate into subsoil, second, to guess the amount of stocked N and S in underground and finally, to compare both amounts to give an obvious evidence that contaminants generated on the surface are too small and can't be a major source of stocked contaminants of the saturated zone.

(1) A procedure of estimation

A procedure of estimation will be illustrated in Figure-1.1.

Figure-1.1 The Estimation Procedure of Generation, Infiltration and Stock of N and S

(2) Data for estimation

Generating sources on the ground surface in the basin is listed in Table-1.1. N and S generating from ground surface is listed in Table-1.1. Stocks in saturated zone are listed in Table-1.2.

Basin	Total area (ha)	Crop area (ha)	Flower farm area (ha)	Population (person)	Cattle (head)	Factory
Bogota(1)	175	16.74	1		154	
Soacha R	12,740	1,219	125	270,217	8,749	
Bogota(2)	11,136	1,065	110	5,232,730	4,378	
Subachoque R(1)	3,103	297	31		814	
Bojaca R	21,546	2,062	212	171,874	10,896	
Subachoque R(2)	40,251	3,852	397	304,083	27,405	
Tunjuelito	38,305	3,665	377	5,205,790	14,447	
Bogota(3)	53,120	5,083	524	5,324,909	15,450	
Chicu R	13,298	1,273	131	5,113,493	6,255	
Bogota(4)	6,232	596	61	5,020,467	2,477	
Neusaca R	19,394	1,856	191	5,179,688	10,942	
Bogota(5)	10,430	998	102		6,006	
Teusaca R	34,922	3,342	344		27,855	
Bogota(6)	6,609	632	65		2,525	
Neusa R	42,906	4,106	423		24,958	
Bogota(7)	17,366	1,662	171	132,857	10,252	
Tomine R	36,697	3,512	362		26,603	
Bogota(8)	10,263	982	101		8,566	
Sisga R	15,196	1,454	150		9,520	
Bogota(9)	27,153	2,598	268		23,202	

 Table-1.1
 Generating Sources on the Ground Surface in the Basin

Note: Flower farms has no possibility of the flow out of contaminations, because of closed cycle system.

Basin	Ν	N from	N discharged by	Total N	S	S from	S	Total S
	(Fertilization /	domestic	cattle	discharged	(Fertilization /	domestic	discharged	discharge
	infiltration)	wastewater		in ground	Flow out)	waste	from cattle	d in
	,	(Generation		water		water		ground
		(Generation		water		water		ground
		/ flow out)						water
Bogota(1)	167,400 / 16,740	289	7,700 / 385					
Soacha R	121,900 / 12,190	2,892	437,450 / 21,872	36,954	17,442	0	0	17,442
Bogota(2)	106,500 / 10,650	47,604	218,900 / 10,945	69,199	32,662	0	0	32,662
Suba R(1)	29,700 / 2,970	132	40,700 / 2,035					
Bojaca R	206,200 / 20,620	10,536	544,800 / 27,240	58,396	27,562	0	0	27,562
Suba R(2)	285,200 / 28,520	9,288	1,370,250 / 68,512	116,320	54,903	0	0	54,903
Tunjuelito	366,500 / 36,650	111,872	722,350 / 36,117	184,639	87,149	0	0	87,149
Bogota(3)	508,300 / 50,830	0	772,500 / 38,625	89,455	42,222	0	0	42,222
Chicu R	127,300 / 12,730	3,240	322,750 / 16,137	32,107	15,154	0	0	15,154
Bogota(4)	59,600 / 5,960	12,292	123,850 / 67,192	24,444	11,537	0	0	11,537
Neusaca R	185,600 / 18,560	3,456	547,100 / 27,350	24,751	11,682	0	0	11,682
Bogota(5)	99,800 / 9,980	24,804	300,300 / 15,015					
Teusaca R	334,200 / 33,420	12,590	1,392,750 / 69,637	115,647	54,585	0	0	54,584
Bogota(6)	63,200 / 6,320	9,348	126,250 / 6,312					
Neusa R	410,400 / 41,040	3,456	1,247,900 / 62,395	106,891	50,452	0	0	50,452
Bogota(7)	166,200 / 16,620	3,240	512,600 / 25,630	45,490	21,471	0	0	21,471
Tomine R	351,200 / 35,120	1,440	1,330,150 / 66,507					
Bogota(8)	98,200 / 9,820	1,032	428,300 / 21,415					
Sisga R	145,400 / 14,540	660	476,000 / 23,800					
Bogota(9)	259,800 / 25,980	2,496	1,160,100 / 58,005	86,481	40,819	0	0	40,819

Table-1.1N and S from Surface

Assumption:

(1) Average Fertilization 100 kg-N/ha

(2) Infiltrating Fertilizer 10% of Fertilization

(3) Generation Rate of Domestic wastewater, rural 60 l/c/d

(4) N Contents in Sewer 40mg/l

(5) Infiltration in subsoil urban=0 Rural= 10%

 $(6) \ N \ from \ cattle: Dung \ 125g-N/head/d \qquad Urine \ 76g-N/head/d \qquad Total \ N \ , 50kg/head/year$

(7) Infiltration of cattle waste: 5% of total

(8) S in (NH4)2SO4 : 41kg of N in 100kg of(NH4)2SO4 , S accompanied with N: 41x23.6/20.5=47.2kg

		1 abie - 1.2	Stocks III C		t	
	Total area	Thickness of	Void ratio	Net water storage	Total-N	H ₂ S - S
Basin	(ha)	saturated zone	(%)	$(1000M^3)$	Conc./N Stock	conc. / Stock
		(m)			$(g/m^3)/kg$	(g/m ³)/kg
Bogota(1)	175					
Soacha R	12,740	69	0.4	3,516,240	0.615 / 2,173,036	1.84 / 6,094,776
Bogota(2)	11,136	69	0.4	3,073,536	3.78 / 11,611,819	1.32 / 3,823,484
Subachoque R(1)	3,103					
Bojaca R	21,546	69	0.4	5,946,696	2.14 / 12,779,449	2.20 / 12,310,850
Subachoque R(2)	40,251	69	0.4	11,109,276	3.29 / 36,582,845	2.04 / 21,325,810
Tunjuelito	38,305	69	0.4	10,572,180	6.25 / 66,076,125	2.03 / 20,155,501
Bogota(3)	53,120	93	0.4	19,760,640	4.91 / 97,024,742	1.52 / 28,114,369
Chicu R	13,298	93	0.4	4,946,856	2.23 / 11,031,488	1.75 / 8,164,855
Bogota(4)	6,232	93	0.4	2,318,304	4.57 / 10,594,649	1.60 / 3,499,164
Neusaca R	19,394	69	0.4	5,352,744	3.52 / 18,841,158	1.42 / 7,152,443
Bogota(5)	10,430					
Teusaca R	34,922	40	0.4	5,587,520	6.79 / 37,939,260	1.81 / 9,571,977
Bogota(6)	6,609					
Neusa R	42,906	106	0.4	18,192,144	3.52 / 64,036,346	1.27 / 21,655,291
Bogota(7)	17,366	106	0.4	7,363,184	3.43 / 25,255,721	1.38 / 9,540,895
Tomine R	36,697					
Bogota(8)	10,263					
Sisga R	15,196					
Bogota(9)	27,153	134	0.4	14,554,008	1.32 / 19,211,290	2.67 / 36,593,899

 Table-1.2
 Stocks in Saturated Zone

Assumption:

- (1) Thickness of saturated zone is assumed, at least the distance from the top of the first sand layer to the bottom of the last sand layer that is recorded on test boring logs
- (2) Average 40% of void ratio
- (3) Storage water in the saturated zone is , at least, (1)x(2)

(3) The result of trial calculation

We have selected 13 basins that have water analysis data, out of total 20 basins. The result of the trial calculation supports our consideration mentioned before, namely contaminants come from surface is too small in quantity to explain existing large accumulation in underground.

The summery of trial calculation indicates that, for total 13 basins, based on estimated generation rate of N and S on the surface and estimated accumulation of N and S in the groundwater, to achieve the accumulation by the generation rate, it requires 417 years for N and 402 years for S.

The trial calculation conducted by the Study team is based on several assumptions. It will be required a re-calculation based on more reliable data and assumption, but, in spite of re-calculation, the conclusion might be certain, from first to last. Stepped calculation is shown in the supporting report with basic data and assumption. The summarized results are shown in Table-1.3.

Basin	N from surface (kg /y)	Accumulated N in saturated zone (kg)	Virtual years for accumulation (y)	S from surface (kg/y)	Accumulated S in saturated zone (kg)	Virtual years for accumulation (y)
Bogota(1)						
Soacha R	36,954	2,173,036	58	17,442	6,094,776	358
Bogota(2)	69,199	11,611,819	168	32,662	3,823,484	119
SubachoqueR(1)						
Bojaca R	58,396	12,779,449	220	27,562	12,310,850	455
Subachoque R(2)	116,320	36,582,815	315	54,903	21,325,810	387
Tunjuelito	184,639	66,076,125	359	87,149	20,155,501	231
Bogota(3)	89,455	97,024,742	1,090	42,222	28,114,369	669
Chicu R	32,107	11,031,488	344	15,154	8,164,855	594
Bogota(4)	24,444	10,594,649	441	11,537	3,499,164	318
Neusaca R	24,751	18,841,658	785	11,682	7,152,443	650
Bogota(5)						
Teusaca R	115,647	37,939,260	329	54,585	9,571,977	176
Bogota(6)						
Neusa R	106,891	64,036,346	604	50,452	21,655,291	433
Bogota(7)	45,490	25,255,721	561	21,471	9,540,895	454
Tomine R						
Bogota(8)						
Sisga R						
Bogota(9)	66,481	19,211,290	223	40,819	36,593,899	914
Total		413,161,428	417		188,003,314	402

Table-1.3Summary of Calculation

CHAPTER 2 Land Subsidence

Subsidence of surface land is occasionally referred in relation with excessive withdrawal of groundwater in Bogotá Plain and so called subsidence that can be observed in limited spots in Bogotá D.C. will be classified into following 3 cases.

- i) "Waves" and cracks on the paved road
- ii) Cracks on wall and floor of houses and buildings
- iii) Land sink in parks and the likes with no upper load

As a matter of fact, "exposure" of well casing, which suggests just subsidence of ground around the well, is not observed anywhere. We shouldn't make any decisive conclusion at present, before detail observation and analysis is performed in this field. However, for the time being, following reasoning would be possible.

(a) Soft ground, with rich contents of clay and silt and poor bearing capacity of less than 3 tons, is widely extended in the study area. Thus, earth filling and installing structures on the ground, if any, may cause consolidation settlement in superficial soil zone (in superficial zone).

(b) The construction of housing or building on the ground of poor bearing capacity, without enough foundation work, might cause consolidation settlement by above load.

(c) However, consolidation settlement in the deep soil zone owing to excessive withdrawal of groundwater is not ever confirmed.

Since the water balance in the basin is not expected to be inclining on deficit side, the occurrence of subsidence relating to groundwater is hard to believe. However, according to a statistical analysis conducted by the study team, the lowering of water table in the basin is observed. Consequently, long-term observation and analysis of the subsidence (consolidation or elastic) related to the withdrawal of groundwater is most required.

CHAPTER 3 Quality of River Water and River-Bed Material

The Study Team carried out environmental survey. This result is summarized in Table-4.1 to 4.2.

	NH ₄ -N	NO ₃ -N	NO ₂ -N	T-N	Cl	SO_4	H_2S	Cu	Cr	Fe	Mn	TCU	Dissolved
	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	Mg/l	µg/l	µg/l	Mg/l	µg/l		O _{2,} mg/l
Origin	n.d	0.1	6	6.1	0.2	2	2	1	1.5	0.2	4.8	20	7.8
Choconta	0.01	0.31	6	6.32	11.7	2	4	1	34	0.2	23	90	7.8
Before Tibitoc	0.74	0.24	14	15	6.75	2	2	4.9	1.7	0.5	28	120	2.6
Amarillo	n.d	0.86	51	51.9	19.2	2	2	5.1	1.6	0.3	30	70	1.4
Tunjuero	21.7	0.12	6	27.8	38.7	23.5	6	5.2	19	1.28	71	120	0.8
Allcachin	1.59	0.66	39	41.25	24.9	2.64	4	1	2.8	0.52	63	70	2.3
Vargas	21.7	0.1	6	27.8	3.55	2	8	2.5	6.2	0.68	81	200	0.4

Table-4.1 Result of analysis of Bogota River

	D.O, mg/l	TCU	T-Fe, mg/l	No ₃ -N,mg/l	Mn, µg/l
TOCANCIPA					
Jan.	3.81	66	1.73	0.4	0.03
Apr	3.31	91	1.7	0.6	0.051
Jul	4.04	58	1.94	0.53	0.02
Oct	4.26	64	1.58	0.5	0.029
BOCA TOMA(S)					
Jan.	3.18	66	1.77	0.31	
Apr	3.57	90	2.05	0.69	
Jul	3.83	63	1.99	0.54	
Oct	3.66	66	1.66	0.58	
BOCA TOMA(N)					
Jan.	3.45	62	1.93	0.45	0.37
Apr	3.94	85	2.05	0.83	0.038
Jul	3.83	64	2.03	0.54	0.027
Oct	4.11	67	1.53	0.46	0.46

 Table-4.2
 Water Analysis of Bogota River at TIBITOC Purification Unit