Part-F

Water Conveyance and Treatment Plant

Part-F WATER CONVEYANCE AND TREATMENT PLANT

Table of Contents

			Page
F1	Introd	luction	F-1
F2	Water	Conveyance Facilities	F-2
	F2.1	General	F-2
	F2.2	Design Discharge	F-2
	F2.3	Waterway Profile Design	F-2
	F2.4	General Features of the Proposed Waterways	F-3
F3	Water	Treatment Plant	F-5
	F3.1	Proposed Site	F-5
	F3.2	Raw Water Quality and Water Treatment Process	F-5
	F3.3	Preliminary Plant Design	F-6
F4	Trans	mission and Distribution Facilities	F-9
	F4.1	Transmission Mains and Delivery Facilities	F-9
	F4.2	Preliminary Plan of Distribution Trunk Mains in MWSS's Service Area	
		-	F-10

List of Tables

		Page
Table F2.1	General Features of Proposed Waterways	FT-1
Table F3.1	Water Quality of Raw/Treated Water at La Mesa No.1	Water
	Treatment Plant	FT-2
Table F3.2	Design criteria and Dimension of Water Treatment Plant 1,820	MLD
	and 910 MLD	FT-3
Table F4.1	Hydraulic Analysis Jubction Result at 9:00 (910 MLD)	FT-5
Table F4.2	Hydraulic Analysis Pipe Result at 9:00 (910 MLD)	FT-6
Table F4.3	Hydraulic Analysis Jubction Result at 9:00 (1,820 MLD)	FT-8
Table F4.4	Hydraulic Analysis Pipe Result at 9:00 (1,820 MLD)	FT-9
Table F4.5	Hydraulic Analysis Jubction Result at 9:00 (3,640 MLD)	FT-11
Table F4.6	Hydraulic Analysis Pipe Result at 9:00 (3,640 MLD)	FT-12
Table F4.7	Staged Implementation Plan of Primary Distribution Main	FT-14

List of Figures

Page

Figure F1.1	General Layout of Development Plans	FF-1
Figure F2.1	General Layout and Profile of Kaliwa-Angono Water Conveyance	
e	Route	FF-2
Figure F4.1	Existing Distribution Primary Main	FF-3
Figure F4.2	Staged Layout Plan of Distribution Primary Mains	FF-4

Part-F: WATER CONVEYANCE AND TREATMENT PLANT

F1 Introduction

This Study examines three water conveyance lines proposed in the plan formulation of alternative development scenarios, which are as shown below¹.

- Laiban-Taytay Waterway: from Laiban Reservoir to Taytay Service Reservoir (under Development Scenarios A and F)
- Kaliwa-Angono* Waterway: from the Kaliwa River (at Kaliwa Low Dam No.2 site) to Angono Service Reservoir (Development Scenarios B to G)
- Laiban-Angono* Waterway: from Kaliwa River (at Laiban Low Dam site) to Angono Service Reservoir (Development Scenario H)
 - Note: * Place of service reservoir. In F/S, the word of 'Taytay' is used. The location of reservoir is remains same.

Laiban-Angono Waterway, was additionally studied in home office work in Japan based on a request in the Steering Committee Meeting held in August 2001. Laiban-Taytay Waterway has been studied at the detailed design level and the definite features are presented in the previous report (Ref. MWS III Project Review Report, 1997). Hence, this Chapter mainly describes the water conveyance lines and treatment plants for the remains.

Figure F1.1 shows the general layout plan of the three waterways, including alternative waterway routes examined for the Kaliwa-Angono Waterway (See Section F2 below).

¹ The definite location and route of waterway facilities were finally determined in the feasibility study stage due to the reasons of topographic and geological conditions observed at the sites, and new findings during the socond field investigation. The final waterway route is shown in Figure 7.1 of Chapter 7 of Volume IV, Main Report of Feasibility Study.

F2 Water Conveyance Facilities

F2.1 General

The water conveyance facilities consist of an intake, tunnels, pipelines, a powerhouse, a valve house for hollow-jet valves, a water treatment plant and receiving service reservoirs². Table F2.1 shows the general features of the three waterways: Laiban-Taytay Waterway, Kaliwa-Angono Waterway and Laiban-Angono Waterway, proposed in the Development Scenarios A, B and H, respectively.

For the Kaliwa-Angono waterway, three (3) alternative routes were compared and the Waterway Route B-1c was selected to be least costly (see Section E5.4 in Part-E of this Supporting Report). The following describe the proposed features of Route B-1c, assuming the case of Development Scenario B as a representative case.

Figure F2.1 shows the proposed route and profile of the Kaliwa-Angono Waterway (Route B1-c).

F2.2 Design Discharge

Kaliwa-Angono waterway system envisages constructing two waterways in twostaged development.

The 1st waterway will be constructed to feed water of 1,500 MLD ($17.4 \text{ m}^3/\text{sec}$) in terms of daily average water quantity. In the first stage, however, water source is the Kaliwa natural runoff taken at the Kaliwa Low Dam site, which is 6.4 m³/sec (equivalent to 550 MLD) representing a 90% dependable discharge available at the site. After the Agos Dam is completed, the tunnel will feed water at the full capacity.

The 2nd waterway will also feed 1,500 MLD in daily average water quantity.

The design discharge of each waterway is set at 21.0 m^3 /sec (equivalent to 1,820 MLD), taking account of the day peak factor of 1.21 as follows:

 $Q_{max} = Q_f x \ MDF = 17.4 \ m^3/sec \ x \ 1.21 = 21.0 \ m^3/sec$ Where, Q_{max} : Design discharge (or maximum discharge) for water conveyance facilities (m³/sec) Q_f : Average discharge for water supply (m³/sec)

MDF: Day peak factor, taken as 1.21 following the figure adopted in the recent review of the MWSP III Project

F2.3 Waterway Profile Design

The size of tunnel and pipeline to be laid is determined to have sufficient discharge capacity for design discharge mentioned above. Then, the hydraulic longitudinal profile of waterway including the water levels at structures (e.g. water treatment

² Major water conveyance facilities are also finally determined in the feasibility study stage. The facilities are mentioned in Section 7.1 of Chapter 7 of Volume IV, Main Report of Feasibility Study.

plant, powerhouse, etc.) were determined based on hydraulic loss head calculation. The head loss due to friction in the tunnel and pipeline is calculated using the following William-Hazen formula as follows:

$$H_L = 10.67 \cdot C^{-1.85} \cdot D^{-4.87} \cdot Q^{1.85} \cdot L$$

Where, H_L : Head loss due to friction in waterway

C: Coefficient of roughness, C=110

- D: Internal diameter of tunnel or pipeline (m)
- Q: Design discharge (m^3/sec)
- L: Length of tunnel or pipeline (m)

The design water level of the Angono service reservoir is set at EL. 72 m, which represents the lowest water level required to ensure the distribution of water to the service areas, principally by gravity. Therefore, water level at Angono service reservoir is set as the starting point of the calculation. Hydraulic loss head calculation was made by an equation shown below:

$WL_u = W$	$T_d + H_L$	$+H_O$
Where,	WL _u :	Water level at upstream structure (EL.m)
	WL _d :	Water level at downstream structure (EL.m)
	H _L :	Head loss due to friction in pipeline or tunnel between
		the downstream and upstream structures (m)
	H _O :	Head loss due to other losses, such as bending loss, etc.
		(m)

In the calculation above, WL_u is set at the LWL (low water level) proposed at the upstream structure, while WL_d is the HWL (high water level) designed for the downstream structure.

The head loss due to friction and other loss is calculated at 12.2m between the Angono service reservoir and water treatment plant (L=9,300m, 5,700m tunnel + 3,600m pipeline), and at 1.1m between water treatment plant and Pantay power station/valve house (L=800m, channel and pipeline).

F2.4 General Features of the Proposed Waterways

The tunnel section in Kaliwa-Angono waterway will pass through geological zones of Maybangain Formation, Kinabuan and Barenas-Baito formation as described in Part-D of this Supporting Report. The geology appears suitable for using TBM (tunnel boring machine) for tunneling. In consideration of rock class and limited construction time, construction of the tunnel will be carried out by means of combination of TBM and NATM with 3 adits as shown below³:

³ As already mentioned in Section F1 in Part-F of this Supporting Report, the location and route of water way facilities were determined in the feasibility study stage, and the final waterway route is shown in Figure 7.1 of Chapter 7 of Volume IV, Main Report of Feasibility Study.

The pipeline will be basically installed along the existing road connecting Antipolo city and Riza village, passing through a variety of areas such as forest and shrubs, paddy field, upland farm, residential land and shoulder of the existing road. Land use along the proposed pipeline was measured on 1:15,000 aerial photographs taken in year 2000. The length by land use category is shown below:

Area	Forest and shrubs	paddy field	upland farm	residential land	Shoulder of road	
Length (m)	863	302	57	122	2530	

Construction of pipelines and water treatment plant involves the relocation of some households. The resettlement issue along the water conveyance route is described in Part-H of this Supporting Report.

F3 Water Treatment Plant

F3.1 Proposed Site

Water treatment plant site has been selected by examining 1/50,000 map and aerial photographs, and conducting field visit to the site. In selecting the site, the following factors were taken into consideration:

- Availability of required area
- Topographical features
- Geotechnical conditions
- Availability of canal(s) for release of excess water discharged from the plant

The proposed site for the Kaliwa-Angono Waterway is situated in the boundary of municipality of Morong and Teresa, about 3 km east of Antipolo. The site is located nearby the provincial road connecting Riza and Antipolo. The site is very close to a small stream (unnamed on 1/50,000 map), which flows down to San Gabriel, Plenza and further to San Juan on the coast of the Laguna Lake. Aerial distance from the treatment plant site to the proposed Angono service reservoir is approximately 9 km. The area consists of mixture of farm land, uncultivated land and hilly areas, with about 10 to 20 houses/buildings at scattered locations. The land is presumably privately owned. The plan envisages acquiring a land of 70 ha, including the land required for future second stage development.

The elevation of the area ranges from EL. 90-100 m in relatively flat area to EL. 120 m on the hills, generally descending gently to the southward. Construction of the plant yard will require several million m^3 of earth works.

F3.2 Raw Water Quality and Water Treatment Process

According to the study of the Manila Water Supply III Project (MWSP III), water quality of the Kaliwa river (samples collected in 1981 to 1983) is summarized as follows:

- i) Color reading ranging from 5 to 1000 color units
- ii) Iron content ranging from 0.05 to 3.5 mg/l
- iii) Alkalinity ranging from 100 to 200 mg/l as CaCO₃
- iv) Hardness appears to be moderate with a low of around 70 and a high of about 100 mg/l as CaCO₃
- v) pH from 7.8 to 8.4
- vi) Turbidity from a low of 0.2 to a maximum in excess of 420 turbidity units, with a mean of 3 NTU
- vii) Pesticides and herbicides show no detectable level
- viii) Total organic carbon (TOC) varying from 0.6 to 5.9 mg/l

Further, the said report describes that additional sampling during 1985 and 1986 gave similar results for the turbidity, i.e. 3 NTU as the mean turbidity, with the 80th percentile of samples at 10 NTU. The condition of the catchment area can be described as still good and unpolluted.

Likewise, in this Study, water quality analysis was carried out for river water of one sample collected from each of the Kaliwa, Kanan and Agos Rivers. Their analysis results are shown in Table C3.3 in Part-C.

Water quality of the said rivers shows that concentration of health-related inorganic constituents such as arsenic, cadmium, chromium, cyanide, fluoride, lead, mercury and nitrate are very low and below the detectable limits. BOD₅, COD, KMnO₄ and ammonium, which are indicators of contamination, also show low level.

From the viewpoint of water treatment, color, turbidity, pH, alkalinity, iron, manganese, etc. of the Agos River water are at almost same level as those of La Mesa Dam water. Table F3.1 shows raw water and treated water quality of La Mesa No.1 Water Treatment Plant in August 2000 and March 2001.

Compared the water quality of the Agos River with water quality at the existing WTPs in Metro Manila, the conventional water treatment process adopted at La Mesa No.1/Balara No.2 WTP can also be employed for the Agos River water. Even higher Iron contents seen in the samples can be easily removed by employing the conventional unit process (coagulation/flocculation, horizontal flow sedimentation and rapid sand filtration). In addition, the direct filtration may be applicable for water of low turbidity during the dry season. For safety, feeding apparatus of activated carbon may need to be equipped to keep up with unexpected water contamination in the future.

F3.3 Preliminary Plant Design¹⁾

(1) Design Principles

Preliminary computation and conceptual design are prepared for the first stage development of the proposed water treatment facilities (1,820 MLD in capacity, out of the ultimate capacity of 3,640 MLD).

For determination of design capacity of the treatment facilities, water loss within the yard of treatment plant is planned to be minimal as much as possible. Wash water from the filters is returned to receiving well, and sludge from sedimentation basin is thickened and supernatant water also returned to receiving well through filter wash water storage. Thus, water loss at treatment process, which is generally assumed at 3 to 5% of raw water volume, is negligible.

The treatment process units are selected and designed in view of economic construction and easy operation and maintenance aspects. Simple structures will bring flexibility to the variation of raw water quality and unpredictable constraints on operation and maintenance works. As for coagulant, poly aluminum chloride (PAC) is recommendable, since its performance shows much more advantages improving floc density/settling velocity through the experience world widely. Further, applying PAC for water treatment does not require coagulant aid such as poly-electrolytes.

¹⁾ Preliminary plant design of the WTP was modified during F/S stage (Phase II), taking account of the site conditions of topographic condition and land availability as well as required cost.

The design of unit process has been carried out with due consideration of functionally appropriate layout and environmental aspects.

(2) Layout of major facilities

Layout of treatment plant facilities is arranged within the proposed site of about 75 ha as shown in Figure F3.1. Whereas, the proposed facilities at the ultimate stage (for additional 1,820 MLD) is planned to be aligned in the adjacent area. Sludge drying beds are planned so as to enable easy discharging of supernatant water to a nearby stream.

(3) Flow diagram of the system

The proposed water treatment system is planned for the maximum day demand of 1,820 MLD in the first stage. Figure F3.2 gives the flow diagram required to compute and determine the capacity of each process unit in the system. Sludge in the sedimentation basin will be separated at the sludge thickeners and subsequent supernatant water is returned to the receiving well together with wash water generated in the filter.

- (4) Major facilities
 - (a) Receiving well

The structure is a reinforced concrete rectangular type with dimensions of 11 m(W), 11 m(L) and 5 m(D) for the first unit of 910 MLD. Another unit will be constructed in the subsequent stage in accordance with increase of water demand in Metro Manila.

(b) Mixing chamber

The rapid mixing chamber is located following the receiving well. The structure is of reinforced concrete and parallel twin rectangular channel type. The structural dimensions are 6 m (W), 10 m (L) and 5 m (D). Two (2) units of chamber are required for the 1st stage. Hydraulic jump will be used for mixing energy to avoid the use of mechanical and electric equipment.

(c) Flocculation basin

The flocculation basin consists of 3 reinforced concrete channels. G-values are designed to grow flocs gradually within 60 to 20 sec. To attain sufficient mixing energy, mechanical flocculator or baffled wall shall be provided. The retention time is planned for 20 minutes. Width, length and depth of the flocculation basin are 4 m, 36 m and 4 m, respectively. Eight (8) units of the basin are required for the 1st stage.

(d) Sedimentation basin

Due to comparatively good condition of raw water throughout year with 3 NTU turbidity in average, horizontal flow sedimentation is selected. To save the volume of basin as well as improve settling performance, plate settler may be equipped. The structure of the basin is a reinforced concrete type with dimensions of 12 m (W), 40 m (L) and 4.5 m (D). For the sludge

removal, a cable-operated under water bogie or flight chain sludge collector is equipped to remove sludge effectively and to save manpower.

(e) Rapid sand filter

The filter is of a constant rate and dual media type, having 24 filter units consisting of 150 m² each. Filter basin is located immediately after the sedimentation basin connected by the channels. The filter is planned to be operated at a filtration rate of 250 m/day. The filter media comprises anthracite and sand. Backwashing and surface washing rates are set at 0.75 m/min and 0.15 m/min, respectively.

(f) Clear water basin

Filtered water is conveyed by two connection pipes of 3,000mm in diameter to the clear water basin located downstream of the filter basin. The structure is of reinforced concrete construction (beam type). Dimension of the structure is 44m (W), 88m (L) and 5m (D). Two (2) units of basin are required at the 1st stage.

(g) Backwash wastes returning tank

The backwash wastes retuning tank consists of 2 units of 25.0 m (Dia.) x 4.2 m (D) cylinder tanks. The structure is a reinforced concrete type provided with recycling pump system to return backwash wastes to the receiving well.

(h) Sludge thickening tank

Sludge thickening tank consists of 4 units of 27.5 m (W) x 27.5 m (L) x 5 m (D) tanks. The structure is a reinforced concrete type provided with outlet gallery. The thickened sludge is pumped to the sludge drying bed.

(i) Sludge drying bed

Sludge drying beds are provided adjacent to the nearby small streams. On the basis of the computation of sludge volume, five (5) beds are provided to dry up sludge. The structure of drying beds is a reinforced concrete type with dimensions of 36 m(W), 88 m(L) and 1 m(D).

Design criteria and dimension of major facilities for the first unit (910 MLD) and the two units (1,820 MLD) are summarized in Table F3.2.

F4 Transmission and Distribution Facilities

F4.1 Transmission Mains and Delivery Facilities

(1) Transmission Mains

Proposed route of transmission pipe for the 1st stage between the water treatment plant and Angono service reservoir is shown in Figure F2.1. Transmission trunk main comprises pipeline and tunnel. A total length is about 9.3 km (3.6 km of embedded pipeline and 5.7 km of tunnel). At the junction of tunnel and pipeline, a pump station to deliver water to Antipolo area will be constructed.

Design flow capacity of trunk main is 21.0 m^3 /sec to meet the maximum daily water demand as stated earlier. The proposed diameter of the pipe is 3,400 mm so that the water therein flows at a maximum velocity of 2.32 m/sec.

(2) Taytay Service Reservoir²⁾

Storage capacity of service reservoir (to act as distribution reservoir) is designed to have an eight (8) to twenty-four (24)-hour retention volume. It is desirable that storage facilities have as large capacity as possible for ensuring the safety of water supply in the case of stoppage of supply from upstream facility. However, the facilities should be planned taking into account the factors of the site condition and structural requirements as well as stage-wise development according to the increase of water supply.

Under the condition of the proposed site, storage capacity is proposed to be $360,000 \text{ m}^3$ (180,000 m³ each for the 1st and 2nd stage) as an effective volume, which is equivalent to about 6-hour retention volume. HWL and LWL of the reservoir are preliminarily set at EL.72 m and EL.66 m, respectively, taking account of the altitudes of the service area ranging generally between EL.5m and EL.50m. The exception is Antipolo area with ground elevations of higher than 200 m, to which water is planned to be pumped up.

The service reservoir is proposed to be located at moderately gentle hill in Taytay area. Structural dimensions of one unit of reservoir are 75 m (Width) x 210 m (Length) x 6 m (Effective depth). A total of 360,000 m³ for the 1st and 2nd stages may be the maximum size that can be constructed at the proposed site. Additional two units (180,000 m³ each for 3rd and final stage) shall be constructed in the adjacent area at the ultimate stage according to increase of water demand.

The off-take point for delivering to the water distributors is planned to be at this Angono service reservoir.

(3) Antipolo Pump Station and Service Reservoir³⁾

With regard to Antipolo area, a large volume of water supply is anticipated due to high population growth rate and high service coverage scheduled under the existing

²⁾ Structural dimensions of Taytay Service Reservoir were modified during F/S stage (Phase-II)

³⁾ Structural dimensions of Antipolo Pump Station and Service Reservoir were modified during F/S stage (Phase-II)

Concession Agreement. In this Study, required volume of water supply for Antipolo area using new water source is assumed to be about 90 MLD in 2015, 340 MLD in 2020 and 680 MLD in 2025. Regarding water supply system, pumping system is a requisite for delivery of water due to high altitude of the service area situated at more than EL. 200 m. Required facilities are a pump station, a transmission pipe and a service reservoir.

Pump station is planned at the junction of tunnel and transmission pipe from water treatment plant. The pump house accommodates the required units of booster pump up to year 2020. Specifications of a pump are $0.99 \text{ m}^3/\text{min}$ in capacity, 205 m in pumping head, and 2,500 kW in motor power. Required number of pump unit is two (2) for year 2015, five (5) for 2020 and ten (10) for 2025, including two (2) stand-by units, respectively. Thus, expansion of pump station will be needed towards year 2025. In addition, countermeasure against water hammer is a requisite. The possible solution is a provision of air vessel at suction part and surge tank at delivery part.

While, service reservoir with a capacity of $30,000 \text{ m}^3$ to meet water demand for year 2015 is proposed to be located at EL. 260 m on a moderately gentle hill of Antipolo plateau. Structural dimensions are 51 m (Width) x 72 m (Length) x 6 m (Effective depth). After 2015, additional service reservoirs (30,000 m³ x 2 units for year 2020 and 30,000 m³ x 3 units for year 2025) are required in order to meet rapid increase of water demand.

Transmission main with a diameter of 1,600 mm and a length of 3 km is planned to be installed at the 1st stage and another transmission main of the same size at final stage.

F4.2 Preliminary Plan of Distribution Trunk Mains in MWSS's Service Area

(1) Existing Distribution Trunk Mains

Existing distribution mains are presently utilized for water supply from Balara and La Mesa WTPs.

It is presumed that total length of the existing distribution trunk mains, diameter of 600 mm to 3,000 mm, is about 250 km within the service area as of 1994. Figure F4.1 shows the location of the existing trunk mains. Some of the existing trunk mains are to be used for water supply from the new water treatment plant. In particular, the existing trunk mains along EDSA and Ortigas Avenue are considered to form the boundary between the service areas supplied from the Balara WTPs and the proposed new WTP.

(2) Preliminary Plan of New Distribution Trunk Mains

Service area to be supplied from proposed Angono service reservoir is planned to cover the southwestern part (Cavite area), southern part (Muntinlupa area) and southeastern part (Rizal towns).

Figure F4.2 presents a staged layout plan of distribution trunk mains together with related facilities (water treatment plant, service reservoir, booster pump and

transmission main). A total length of distribution trunk mains is estimated to be about 120 km. This Study contemplates that the new distribution trunk mains be installed in three stages as mentioned below and hydraulic analysis in each stage is shown in Tables F4.1 to F4.6.

(a) First stage to meet 910 MLD

A 4,000 mm diameter distribution trunk main from the proposed Taytay service reservoir and two trunk mains with a diameter of 3,400 mm, which will be installed for Taytay-Cainta-Pasig route and Taytay-Pateros-Taguig route to connect with the existing primary main at Pasig and Taguig, are first to be installed. Further, 3,200 mm of pipe is planned to augment the supply capacity of the existing primary main (diameter of 450 to 1,200 mm) supplying Pasig-Makati-Pasay area. As for Cavite area, 700 to 1,500 mm of trunk mains shall be installed to connect with the existing 1,300 mm at Bacoor. For the Antipolo area, a 1,000 mm diameter primary main from the service reservoir is planned.

(b) Second stage to meet 1,820 MLD

In the 2nd stage, trunk mains of 900-2,200 mm diameter are planned between Taguig-Muntinlupa and Pasay-Paranaque-Las Pinas to augment supply capacity to meet a total of 1,820 MLD in the service area.

(c) Final stage to meet 3,640 MLD

In the final stage, bulk water supply is planned for the southeastern part, such as Cardona-Moron-Baras-Tanay-Pililla and Jala-Jala, by extending the trunk mains with a diameter of 350 to 1,500 mm. To meet full development of water supply, additional trunk mains with diameter of 3,400 to 4,000 mm are planned for Taytay service reservoir-Taytay-Pasig route.

(3) Preliminary Cost Estimate for New Distribution Trunk Mains

Required cost for new distribution trunk mains, including small diameter pipes delivering water to Teresa, was estimated on the basis of the following assumptions:

- (a) Specification of the pipe is referred to the MWSS's standards. For the pipes with a diameter of more than 700 mm, steel pipes with epoxy lining and coal tar enamel coating with asbestos felt wrapping are used. Likewise, for the pipes with diameters of 500 mm to 600 mm, steel pipes of cement mortar lining and coating are utilized. While, for the pipes with small diameter of 250 mm, PVC pipe is used.
- (b) The construction costs of the pipes with diameter of 250 mm to 3,000 mm including their laying costs are estimated at current price level referring to the prices in the previous contracts of the MWSS projects. Cost estimation for the pipes with large diameter of 3,200 mm to 4,200

mm was made based on correlation between pipe diameter and the above unit costs for pipes with diameters of 250 mm to 3,000 mm.

- (c) Costs for breaking and restoration of roadways are considered for pipe installation. Type of road is assumed to be of 250 mm thick concrete-paved, which is the majority of road construction in Metro Manila.
- (d) Costs for other items such as valves, valve chamber, etc. are assumed at 20% of pipe material and pipe-laying cost.

Based on the above, the estimated cost by stage is summarized in Table F4.7. A total cost of about13.2 billion Pesos (US\$ 254 million equivalent) will be required for the installation works of distribution trunk mains.

Tables

.

.

Item	Laiban-Taytay Waterway (Waterway Route A)	Kaliwa-Angono Waterway (Waterway Route B-1c)	Laiban-Angono Waterway (Waterway Route H)
Waterway Design (1st waterway)	Daily average volume.: 1,830 MLD Daily peak capacity: 2,210 MLD	Daily average volume: 1,500 MLD Daily peak capacity: 1,800 MLD	Daily average volume:1,500 MLD Daily peak capacity: 1,800 MLD
Waterway Design (2nd waterway)	Daily average volume.: 3,310 MLD Daily peak capacity: 4,005 MLD	Daily average volume: 1,500 MLD Daily peak capacity: 1,800 MLD	Daily average volume:1,920 MLD Daily peak capacity: 2,320 MLD
Total Length	23.3 km	38.1 km	32.5 km
Gross Head	Intake MOL– Taytay S.R. = 155.5 m	Intake MOL-Angono S.R. = 61.0 m	Intake MOL-Angono S.R. = 131.0 m
Design Discharge	25.6 m ³ /sec (1st waterway) 46.4 m ³ /sec (2nd waterway)	21.0 m ³ /sec (1st waterway) 21.0m ³ /sec (2nd waterway)	21.0 m ³ /sec (1st waterway) 26.9 m ³ /sec (2nd waterway)
Intake	A multilevel intake structure feeding flow of 27.5 m^3 /sec. After completion of the Kanan transbasin tunnel, Intake No.2 feeding additional 46.0 m ³ /sec will be added	An intake structure at Kaliwa Low Dam site, initially feeding 9.9 m^3 /sec and subsequently 21.0 m^3 /sec after the Agos Dam completed. Expanded to 42.0 m^3 /sec in the ultimate stage	An intake structure at Laiban Low Dam site, initially feeding 3.9 m^3 /sec and subsequently 21.0 m^3 /sec after the Agos Dam completed. Expanded to 47.9 m^3 /sec in the ultimate stage
Waterway	Tunnel No.1: 7.5 km, 3.2-2.7 m dia. A concrete-lined tunnel is basically selected except the downstream 400m part, where tunnel is to be steel-lined.	Tunnel No.1: 28.0 km, 3.5 m dia. First 24 km to be concrete-lined tunnel. A part of the last 4 km section to be steel lined, say a half section, depending on geology and ground coverage	Tunnel No.1: 14.3 km, 3.2 m dia. Steel-lined is not designed, but may be needed depending on geology and ground coverage.
	Pipeline No.1: 4.0 km, 3.2 m dia Pipeline No.1 connects the tunnel No.1 and No.2 and is laid along the Payana River.	geology and ground coverage.	
	Tunnel No.2: 1.8 km, 2.7 m dia. A 1.8 km steel-lined tunnel connects pipeline No.1 and powerplant.		
Powerhouse	30 MW installed capacity with 2 units of Francis turbine. During low demand period, excess water discharged to nearby creeks, where topographic and geotechnical survey of the creek bed will be necessary to determine appropriate riverbed protection measures.	12 MW installed capacity with one unit of turbine, to be built after Agos Dam is completed and high head water level is available. Power generation has to be suspended during period of low effective head when Agos reservoir water level is low. No powerplant in initial phase (Kaliwa Low Dam stage).	22.4 MW installed capacity with two units of turbine, to be built after Kanan No.2 Dam is completed and large amount of discharge is available. No powerplant in initial phase (without Kanan No.2 Dam stage).
Channel/Pipeline	Concrete lined channel of approx. 400 m	Channel/Pipeline of 0.8 km connecting	Pipeline No.1: 1.2 km, 3.1 m dia.
	long connecting power plant and w 11	powerplant and with	Tunnel No.2: 2.6 km, 3.1 m dia.
			Pipeline No.2: 1.3 km, 3.1 m dia.
Water Treatment Plant (WTP)	2,400 MLD in total capacity (3 units of 800 MLD), while daily average production is 1,900 MLD.	1.820 MLD in total capacity (2 units of 910 MLD) in the first stage with first waterway where daily average production is 1,500 MLD. Ultimately, 3,600 MLD in capacity (3,000 MLD average) with two waterways.	1.820 MLD in total capacity (2 units of 910 MLD) in the first stage with first waterway where daily average production is 1,500 MLD. Ultimately, 4,160 MLD in capacity (3,420 MLD average) with two waterways.
Waterway	Pipeline No.2: 5.0 km, 3.2 m dia.	Pipeline No.1: 3.6 km, 3.4 m dia.	Pipeline No.3: 1.7 km, 3.2 m dia.
			Tunnel No.2: 0.5 km, 3.2 m dia.
	Tunnel No.3 : 5.0 km, 3.6 m dia. Concrete-lined , non-pressure type	Tunnel No.2: 5.7 km, 3.4 m dia. Steel lined	Pipeline No.4: 5.2 km, 3.2 m dia.
	······································		Tunnel No.2: 5.7 km, 3.2 m dia.
Service Reservoir	120 ML capacity in 20,000 m^2 pond located at hills in Taytay area. Since only small stream flow is available, some measures should be considered to spill out excess reservoir water safely in case of need.	380 ML capacity in $60,000 \text{ m}^2$ pond. Located on hills in Angono area. Measures for excess water to be considered.	- Same with the left column -

Table F2.1 General Features of Proposed Waterways

Item		August 2000			March 2001			
		Average	Max.	Min.	Average	Max.	Min.	
Tempareture	Raw water	23.5	25	21.7	24.1	25.9	23.1	
(^{0}C)	Treated	24.5	26.7	22.4	25	26.4	23.4	
Turbidity	Raw water	29.3	101	8.01	8.95	73.7	1.68	
(NTU)	Treated	1.72	2.26	1.21	0.96	2.19	0.59	
ъЦ	Raw water	7.62	7.78	7.47	7.53	7.87	7.37	
рп	Treated	7.07	7.34	6.9	7.22	7.49	7.02	
Color	Raw water	29.2	99.1	10.8	9.97	41.2	5	
Color	Treated	5	5	5	5	5	5	
Iron	Raw water	0.36	1.41	0.06	0.14	1.14	0.02	
(mg/l)	Treated	0.02	0.1	0	0.02	0.04	0.01	
Residual Clorine	Raw water	-	-	-	-	-	-	
(mg/l)	Treated	1.28	1.35	1.17	1.19	1.36	0.98	
Alkalinity	Raw water	46.7	54	40	43.1	56	24	
(mg/l)	Treated	36.3	48	28	36.5	46	22	
Bicarbonate	Raw water	57	65.8	48.8	52.6	68.3	29.2	
(mg/l)	Treated	44.3	58.5	34.1	44.5	56.1	26.8	
Acidity	Raw water	6	8	2	7.23	12	4	
(mg/l)	Treated	7.94	18	4	7.1	12	4	
Free Carbonic Acid	Raw water	5.28	7.04	1.76	6.36	10.5	3.52	
(mg/l)	Treated	6.98	15.8	3.52	6.25	10.5	3.52	
Chloride (Cl ⁻)	Raw water	4.39	6	3	4.23	8	2	
(mg/l)	Treated	5.77	9	2	4.48	9	2	
Total Hardness	Raw water	59.8	74	44	66.4	78	54	
(mg/l)	Treated	60	70	44	63.9	76	46	
Calcium Hardness	Raw water	39.4	46	26	43	54	28	
(mg/l)	Treated	38.1	48	25	40.9	52	30	
Total Manganese	Raw water	0.26	0.93	0.04	0.1	0.63	0.02	
(mg/l)	Treated	0.02	0.04	0	0.01	0.05	0	
Manganaga	Raw water	0.02	0.05	0	0.01	0.04	0	
(mg/l)	Treated	-	-	-	-	-	-	
Calcium (Ca ²⁺)	Raw water	15.7	18.4	10.4	17.2	21.6	11.2	
(mg/l)	Treated	15.2	19.2	10.4	16.3	20.8	12	
Magnecium (Mg ²⁺)	Raw water	4.97	8.26	1.94	5.69	7.78	2.92	
(mg/l)	Treated	5.3	8.26	2.43	5.58	7.78	3.4	
Electric Conductivity	Raw water	126	138	100	129	139	102	
(US/cm)	Treated	132	143	110	133	140	102	
TDS	Raw water	59.9	66	48	61.1	65	47	
(mg/l)	Treated	62.5	69	52	62.7	67	49	

Table F3.1 Water Quality of Raw/Treated Water at La Mesa No.1 Water Treatment Plant

(Source) La Mesa No.1 Water Treatment Plant, MWSI

Item	Total System (2 Units)	First Unit			
Planned Flow	O = 1.820.000 cu.m/day	O = 910.000 cu.m/day			
	Treatment Nominal Capacity	Treatment Nominal Capacity			
Plant Capacity	O = 1.820,000 cu.m/day 1.800,000 cu.m/day	O = 910,000 cu.m/day 900,000 cu.m/day			
(Daily Max)	= 75,000 cu.m/hour 75,000 cu.m/hour	= 37,500 cu.m/hour 37,500 cu.m/hour			
	= 1,250.0 cu.m/min 1,250.0 cu.m/min	= 625.0 cu.m/min 625.0 cu.m/min			
	= 20.83 cu.m/sec 20.83 cu.m/sec	= 10.42 cu.m/sec 10.42 cu.m/sec			
(1) Receiving Well					
Criteria	Retention Time $T = 1.0 \text{ min}$	Retention Time $T = 1.0 \text{ min}$			
Dimension	Rectangular 2 units	Rectangular 1 units			
	Wm xLm xDm x units	Wm xLm xDm x units			
	11 11 5 2	11 11 5 1			
(2) Mixing Chamber	Detention Time Te 1.5 min	Detention Time T 1.6 min			
Chiena	Retention Time $I - I - 5$ min				
Dimension	Rectangular A units	Rectangular 2 units			
Dimension	W m x L m x D m x units	W m x L m x D m x units			
	100 60 50 4	100 60 50 2			
		10.0 0.0 0.0 2			
Mixing	Hydraulic jump	Hvdraulic jump			
0	Junna Jult	5			
(3) Flocculation Basin					
Criteria	Retention Time $T = 20 - 40 \min$	Retention Time $T = 20 - 40 \text{ min}$			
	Required Volume $V = 25,000$ cu.m to	Required Volume $V = 12,500$ cu.m to			
	50,000 cu.m	25,000 cu.m			
Dimension	16 units	8 units			
Step 1	W m x L m x D m x No. of Channel	W m x L m x D m x No. of Channel			
	4.0 30.0 4.0 1	4.0 36.0 4.0 1			
Step 2	W m x L m x D m x No. of Channel	W m x L m x D m x No. of Channel			
	4.0 30.0 4.0 1	4.0 36.0 4.0 1			
Step 3	W m x L m x D m x No. of Channel	W m x L m x D m x No. of Channel			
	4.0 30.0 4.0 1	4.0 36.0 4.0 1			
Mining	Markania-14laanulata-/hadmulia minina	Markanian flagoulater/kadrantia mining			
Mixing	Mechanical flocculator/hydraulic mixing	Mechanical flocculator/hydraulic mixing			
(4) Sedimentation Basin					
Type	Rectangular, Horizontal Flow with Plate Settler	Rectangular, Horizontal Flow with Plate Settler			
51					
Unit Flow	q = 4,688 cu.m/hr/basin	q = 4,688 cu.m/hr/basin			
Criteria	Retention Time $T1 > 1.0$ hours	Retention Time $T1 > 1.0$ hours			
	Surface Load $a = 4 - 9 \text{ mm/min}$	Surface Load $a = 4 - 9 \text{ mm/min}$			
	Hori. Flow Velocity $v < 0.6 \text{ m/min}$	Hori. Flow Velocity $v < 0.6 \text{ m/min}$			
	L/W Ratio $L/W = 3-8$ times	L/W Ratio $L/W = 3-8$ times			
	Effective Depth $D = 3 - 4 \text{ m}$	Effective Depth $D = 3 - 4 \text{ m}$			
	Depth of 50 cm of more is provided for studge settlement. Determine Time in Plate Settler $T_2 = 202.40$ min	Depin of 30 cm of more is provided for studge settlement. P_{1} and P_{2}			
	Retention Time in Flate Settler $12 - 20^{-40}$ min	Referition Time in Flate Settler $12 - 20^{-40}$ min			
Dimension	No. 16 basins	No. 8 basins			
Dimension	W m x L m x D m x channels x basins	Wm x L m x D m x channels x basins			
	12 40 45 3 16	12 40 45 3 8			
Plate Settler	Height of Plate Settler $H = 3.0 \text{ m}$	Height of Plate Settler $H = 3.0 \text{ m}$			
	Spaces between Plates $P = 100 \text{ mm}$	Spaces between Plates $P = 100 \text{ mm}$			
	Effective Settling Ratio $r = 17.32$	Effective Settling Ratio $r = 17.32$			
	Dimensions of Whole Plate Settler Unit	Dimensions of Whole Plate Settler Unit			
	W m x L m x D m x channels x basins	W m x L m x D m x channels x basins			
	11.9 20.0 3.0 3 16	9.9 20.0 3.0 3 8			
Sludge Removal	Cable-operated underwater bogie/chain-flight type sludge collector	Cable-operated underwater bogie/chain-flight type sludge collector			
	Water Contents of Drained Sludge	Water Contents of Drained Sludge			
	(with wash-out water)	(with wash-out water)			
	w = 99.8 %	W = 99.8 %			
	Fraguency of Cleaning	Frequency of Cleaning			
	Continuous	Continuous			
(5) Rapid Sand Filter		1			
Type	Down flow, dual dedia	Down flow, dual dedia			
No.	48 units (wash 4 units)	24 units (wash 2 unit)			
Unit Flow	q = 37,500 cu.m/day/unit	q = 37,500 cu.m/day/unit			

Table F3.2 Design Criteria and Dimension of Water Treatment Plant 1,820 MLD and 910 MLD (1/2)

Item	Total System	(2 Units)			First Unit	t	
Criteria	Filtration Rate Fi	= 200 - 240	m/day	Filtration Rate	Fr =	200 - 240	m/day
		= 8.3 - 10.0	m/hour		=	8.3 - 10.0	m/hour
	Filter Area per Unit A	≦ 150	sa m	Filter Area per Unit	A≦	150	sa m
			- 1				- 1
Dimension	Wm xIm xunits			Wm xL	m x units		
Dimension	15 10	18		10	15 24		
	$\Lambda = 150$ as m/unit	+0		A -	150 ag m/unit		
E'14 (*	R = 150 sq m/um			A –	150 sq m/um		
Filtration Rate	Fr = 250 m/day			Fr =	250 m/day		
Filtration Rate	Fr = 2/3 m/day			Fr'=	2/3 m/day		
during washing	4 units out of 48 are washing			2 unit out of 24 is w	ashing		
Filters for Backwashing	1 filters/grou	ıp			1 filters/group		
Frequency	Once a day for each filter			Once a day for each	filter		
Rate	Surface Washing rate	= 0.15	m3/m2/min	Surface Washing	rate =	0.15	m3/m2/min
	duration	= 5.0) min		duration =	5.0) min
	Backwashing rate	= 0.75	m3/m2/min	Backwashing	rate =	0.75	m3/m2/min
	duration	= 8.0) min	U U	duration =	8.0) min
(6) Chlorination Channel							
Location	at the Inlet of the Clear Water Reserve	oir		at the Inlet of the C	lear Water Reservoir		
Criteria	Contact Time	> 5	minutes	Contact Time	T >	5	minutes
Criteria		- U	minutes	Contact Thire	1 -	-	minutes
Paguirad Valuma	V - 6 250 au m			V -	2 125 au m		
Required volume	v – 0,230 cu.m			v —	3,125 Cu.III		
D' '	N. 4			NT.	2		
Dimension	No. 4 units			NO.	2 units		
	Wm xLm xDm	x units		Wm xL	m xDm	x units	
	4.6 88 4	.0 4	ł	4.6	88 4.0	2	
(7) Clear Water Reservoir							
Criteria	Retention Time T	> 1	hours	Retention Time	T >	1	hours
Required Volume	V = 75,000 cu.m			V =	37,500 cu.m		
Dimension	No. 2 units			No.	1 units		
	Wm xLm xDm	x conpart.	x units	Wm xL	m x D m	x conpart.	x units
	44 88	5 2	2 2	. 44	88 5	2	. 1
(8) Backwash Wastewater	Storage Tank						
Retention Time		2 hours			2 1	hours	
Frequency of Wash	Once a day	48 filters/day		Once a day	24	filters/day	
Required Volume	V = 40	50 cu m		V =	2 025	cu m	
required volume	• -,0	Jo cu.m		*	2,025	cu.m	
No	N = 2 units			N -	1 unite		
No.	$\mathbf{N} = 2$ units			Dia an D			
Dimension		2					
	25 4.2	2		25	4.2 1		
(0) 01 1 T1 1 T	1						
(9) Sludge Thickening Tan	K T		(24.40)		T 041		(24.40)
Req'd Retention Time	1 r =	24 hours	(24-48)		1r = 241	hours	(24-48)
No.	N =	8 units			N = 4	units	
Dimension	Wm xLm xDm	x units		Wm xL	m x D m	x units	
	27.5 27.5 5	.0 8	;	27.5	27.5 5.0	4	Ļ
(10) Sludge Drying Bed							
Water Contents of	W	= 96.0) %		w =	96.0)%
Thickened Sludge							
Dimension	Rectangular	8 units + 2 unit		Rectangular	4 1	units + 1 unit	
	Wm xLm xDm	x units		Wm xI	m x D m	x units	
	40 75 1	0 10)	40	75 10		
	10 15 1	10		07	,5 1.0		
	1			1			

Table F3.2 Design Criteria and Dimension of Water Treatment Plant 1,820 MLD and 910 MLD (2/2)

		Domand	Demand	Calculated	Pasidual
Label	Elevation (m)		Calculated	Hydraulic	Residual
	~ /	(Ml/d)	(M1/d)	Grade (m)	Pressure (m)
Antipolo	200	43.27	71.40	255.49	55.46
Bacoor 1	5	17.30	28.55	66.25	61.22
Bacoor 2	5	17.30	28.55	65.40	60.37
Cainta	20	26.68	44.02	65.07	45.05
Cavite City	2	17.07	17.07	54.16	52.14
J-1	60	0.00	0.00	87 44	27.43
I-2	5	0.00	0.00	70.15	65.12
1-5	20	36.55	60.30	64.89	44.87
J-6	20	36.55	60.30	64.57	44.55
J-0 I 8	20	0.00	0.00	64.74	54 72
J-0 I 15	10	0.00	0.00	57.07	55.04
J-13 I 17	2	0.00	0.00	63 10	61.07
J-1/	2 5	0.00	0.00	62.47	59.44
J-19 1 20	5	0.00	0.00	03.47	59.44
J-20	5	0.00	0.00	63.60	58.57
J-22	5	0.00	0.00	60.60	55.57
J-23	5	0.00	0.00	65.45	60.42
J-24	10	0.00	0.00	66.04	56.01
J-25	10	0.00	0.00	64.74	54.72
J-26	20	36.55	60.30	33.13	13.12
J-27	20	36.55	60.30	42.30	22.29
J-28	20	0.00	0.00	67.39	47.37
J-29	10	0.00	0.00	67.31	57.28
J-30	10	0.00	0.00	67.44	57.41
J-31	10	0.00	0.00	67.94	57.91
J-34	15	0.00	0.00	67.38	52.35
J-35	20	28.18	46.50	68.38	48.36
J-36	20	0.00	0.00	67.38	47.36
J-37	20	0.00	0.00	66.37	46.34
J-38	5	0.00	0.00	68.27	63 24
I-39	20	0.00	0.00	67.99	47 97
I-40	10	0.00	0.00	68 51	58.48
J-42	60	43 27	-43 27	45 37	-14 62
J-46	10	0.00	0.00	63.23	53.20
J-40 J-48	60	43 27	43.27	87.40	27.39
Kawit	2	12.27	12.76	58.18	56.15
Las Dinas 1	5	52.78	87.08	57.75	52 72
Las Fillas I	10	52.78	87.08	57.75	52.12
Las Fillas Z	10	32.70	07.00	64.60	57.43
imus Malaati	10	10.83	10.83	04.09	54.00 24.99
Makati	50 10	30.55	60.30	64.89	54.88
Muntiniupa	10	0.30	0.50	08.12	58.09
New WIP	90	910.00	-910.00	89.02	-0.98
Noveleta	2	4.54	4.54	56.67	54.64
Paranaque I	5	30.14	49.73	65.36	60.33
Paranaque 2	5	30.14	49.73	60.43	55.40
Paranaque 3	10	30.14	49.73	60.24	50.22
Paranaque 4	10	30.14	49.73	63.80	53.77
Paranaque 5	10	15.00	24.75	67.80	57.77
Pasay2	5	11.68	19.27	64.99	59.96
Pasig 1	20	70.69	116.64	63.28	43.26
Pasig 2	30	70.69	116.64	62.02	32.00
Pateros 1	20	5.68	9.36	67.19	47.17
Pateros 2	20	5.68	9.36	66.88	46.86
Rosario	2	13.57	13.57	54.86	52.84
Taguig 1	5	40.58	66.95	69.13	64.09
Taguig 2	15	40.58	66.95	66.04	51.01
Taytay	10	28.32	46.73	69.74	59.71

 Table F4.1 Hydraulic Analysis Jubction Result at 9:00 (910 MLD)

			Diameter		Hazan	Discharge	Valocity	Headloss
Label	From Node	To Node		Length (m)	Williams C		velocity	Gradient
			(mm)		williams C	(IVII/d)	(m/s)	(m/km)
P-49e	Paranaque 2	J-15	1,100	3,100	100	65.45	0.80	0.79
P-51e	Paranaque 1	Paranaque 2	1,100	2,600	100	104.72	1.28	1.90
P-53e	J-20	J-19	500	700	100	3.77	0.22	0.19
P-56e	J-17	J-20	600	3,900	100	-4.98	0.20	0.13
P-57e	J-19	Las Pinas 1	500	1,200	100	21.63	1.28	4.77
P-58e	J-20	Bacoor 1	400	1,000	100	-8.75	0.81	2.65
P-59e	J-19	Las Pinas 2	500	1,200	100	-17.86	1.05	3.34
P-60e	J-17	Bacoor 2	600	1,000	100	-23.58	0.97	2.30
P-61e	Kawit	J-17	600	1,500	100	-28.56	1.17	3.28
P-62e	Paranaque 2	J-22	500	100	100	-12.28	0.72	1.67
P-63e	J-23	Paranaque 1	500	100	100	8.68	0.51	0.88
P-64e	J-22	J-23	500	2,900	100	-12.28	0.72	1.67
P-65e	J-24	J-25	450	4,500	100	3.59	0.26	0.29
P-66e	Taguig 2	J-24	450	1	110	3.59	0.26	0.24
P-67	Taytay	Taguig 1	3,400	7,500	110	411.94	0.53	0.08
P-67e	J-25	J-8	450	1	100	3.59	0.26	0.29
P-68e	J-26	J-6	400	2,500	100	-20.31	1.87	12.58
P-69e	J-27	J-26	600	1,500	100	39.99	1.64	6.11
P-70	Las Pinas 2	J-39	2,800	7,000	110	-230.56	0.43	0.07
P-70e	J-27	Makati	750	2,000	100	-100.29	2.63	11.30
P-71	J-39	Muntinlupa	2,800	1,800	110	-230.56	0.43	0.07
P-72	J-38	Muntinlupa	2,800	2,100	110	231.05	0.43	0.07
P-73	J-40	Taytay	3,400	3,500	110	-905.43	1.15	0.35
P-74	J-29	J-40	3,200	5,500	110	-594.92	0.86	0.22
P-74e	J-28	J-29	2,100	1,500	100	84.55	0.28	0.05
P-75	J-40	J-35	1,500	700	110	72.53	0.48	0.18
P-75e	J-29	J-30	1,050	2,000	100	-14.94	0.20	0.06
P-76	Cavite City	Noveleta	700	5,000	110	-17.07	0.51	0.50
P-76e	J-30	J-31	750	1,500	100	-14.94	0.39	0.33
P-77	Rosario	Noveleta	600	2,600	110	-13.57	0.56	0.69
P-77e	J-31	Taguig 1	600	1,200	100	-14.94	0.61	0.99
P-78	Noveleta	Kawit	1,000	4,500	110	-35.17	0.52	0.34
P-78e	Pasig 1	J-28	1,200	2,500	100	-121.96	1.25	1.65
P-79	Kawit	lmus	500	2,000	110	-19.37	1.14	3.26
P-80	J-15	Las Pinas 1	1,200	500	110	65.45	0.67	0.44
P-82	J-28	J-40	2,200	4,500	110	-237.98	0.72	0.25
P-84	Taguig 1	J-38	3,000	8,500	110	330.05	0.54	0.10
P-86	Paranaque 5	J-38	1,500	1,500	110	-99.00	0.65	0.32
P-89	Pateros 2	Pateros 1	2,600	1,200	110	-377.78	0.82	0.26
P-90	Taguig 2	Pateros 2	2,600	4,500	110	-317.53	0.69	0.19
P-91	J-23	Taguig 2	2,200	3,500	110	-193.07	0.59	0.17
P-92	Bacoor 2	Bacoor 1	1,350	2,000	110	-88.31	0.71	0.43
P-93	Bacoor 1	Las Pinas 2	1,350	1,500	110	-125.61	1.02	0.82
P-96	Paranaque 1	J-23	1,500	100	110	-172.11	1.13	0.88
P-97	Pateros 1	J-29	3,000	300	110	-688.81	1.13	0.39
P-100	New WTP	CWR	5,000	100	110	900.00	0.53	0.05
P-100e	J-34	J-28	2,100	1,100	100	-31.47	0.11	0.01
P-101	CWR	J-1	3,400	4,500	110	899.61	1.15	0.35
P-101e	J-34	Cainta	600	3,000	100	13.05	0.53	0.77
P-102e	Cainta	J-35	600	1,200	100	-26.02	1.07	2.76
P-103e	J-36	J-34	2,200	1,500	100	-4.95	0.02	0.00
P-104	PMP-1	PSV-2	1,600	2,200	110	43.27	0.25	0.05
P-104e	J-36	J-37	400	1,100	100	4.95	0.46	0.92
P-105	PSV-2	Antipolo SR	1,600	10	110	43.27	0.25	0.05
P-105e	J-37	Cainta	450	2,500	100	4.95	0.36	0.52

 Table F4.2
 Hydraulic Analysis Pipe Result at 9:00 (910 MLD) (1/2)

Label	From Node	To Node	Diameter	Length (m)	Hazen-	Discharge	Velocity	Headloss Gradient
			(mm)		Williams C	(Ml/d)	(m/s)	(m/km)
P-106	Antipolo SR	Antipolo	1,000	1,700	110	71.40	1.05	1.24
P-107	J-1	FCV-1	3,400	5,500	110	855.00	1.09	0.32
P-108	FCV-1	PSV-1	3,400	40	110	855.00	1.09	0.32
P-109	PSV-1	Taytay SR	3,400	10	110	855.00	1.09	0.32
P-111	Makati	Pateros 1	1,000	2,000	110	-68.35	1.01	1.15
P-117	PMP-1	J-42	2,000	6,800	110	-43.27	0.16	0.02
P-138	Bacoor 2	lmus	1,000	2,000	110	36.19	0.53	0.35
P-144e	Pasig 2	J-34	500	2,700	100	-13.48	0.79	1.99
P-147	J-1	Teresa	300	500	110	1.34	0.22	0.28
P-148	J-48	J-1	2,000	2,200	110	-43.27	0.16	0.02
P-148e	Makati	J-46	1,200	2,000	100	84.48	0.86	0.83
P-149e	J-46	Pasig 2	1,200	1,000	100	103.17	1.06	1.21
P-150e	Pasig 1	J-46	1,200	1,000	100	18.69	0.19	0.05
P-201	Taytay SR	J-2	4,000	2,000	110	1,364.10	1.26	0.34
P-202	J-2	Taytay	4,000	1,200	110	1,364.10	1.26	0.34
P-209e	Pasig 1	Pateros 1	500	2,000	100	-13.37	0.79	1.96
P-210e	Pateros 1	Makati	1,500	2,000	100	180.68	1.18	1.15
P-211e	Makati	J-5	1,200	800	100	3.97	0.04	0.00
P-212e	J-5	J-6	1,300	2,700	100	36.56	0.32	0.12
P-213e	Pateros 1	Pateros 2	1,200	1,200	100	44.86	0.46	0.26
P-214e	Pateros 2	J-5	1,200	2,000	100	92.90	0.95	0.99
P-215e	Pateros 2	Taguig 2	450	4,500	100	2.85	0.21	0.19
P-216e	J-6	Taguig 2	900	2,000	100	-36.98	0.67	0.73
P-217e	Taguig 2	J-8	900	5,600	100	19.79	0.36	0.23
P-219e	Paranaque 5	Paranaque 4	900	1,500	100	74.25	1.35	2.67
P-220e	J-8	Paranaque 4	900	3,000	100	23.39	0.43	0.31
P-221e	Paranaque 4	Paranaque 3	900	3,000	100	47.91	0.87	1.19
P-222e	Paranaque 3	Paranaque 2	450	2,300	100	-1.82	0.13	0.08
P-223e	J-6	Pasay2	650	2,500	100	-7.08	0.25	0.17
P-224e	Pasay2	Paranaque 1	1,050	2,000	100	-26.35	0.35	0.19
P-249e	J-29	Pateros 1	500	300	100	5.60	0.33	0.39

 Table F4.2
 Hydraulic Analysis Pipe Result at 9:00 (910 MLD) (2/2)

Note: Pipe lavel with e represents the existing primary main.

		Domand	Demand	Calculated	Pasidual
Label	Elevation (m)		Calculated	Hydraulic	Dragona (m)
		(MI/d)	(Ml/d)	Grade (m)	Pressure (m)
Antipolo	200	86.54	142.79	250.59	50.56
Bacoor 1	5	34.60	57.09	48.47	43.45
Cainta	20	53.37	88.05	61.02	41.00
Cardona	20	0.00	0.00	67.80	47.78
Cavite City	2	34.14	34.14	27.60	25.59
I-1	60	0.00	0.00	83.32	23.31
J-1 I-2	5	0.00	0.00	68.23	63 20
J-2 I 5	20	73.09	120.60	56.29	36.27
J-5 I 6	20	73.09	120.60	53 54	33.52
J-0 I 8	10	0.00	0.00	56.57	46 55
J-0 I 15	10	0.00	0.00	52.22	40.33 50.19
J-13 J-17	2	0.00	0.00	12.22 12.01	40.00
J-1/	2 5	0.00	0.00	43.01	40.99
J-19	5	0.00	0.00	33.00 40.15	4/.9/
J-20	5	0.00	0.00	49.13	44.12
J-22	3	0.00	0.00	52.60	47.58
J-23	5	0.00	0.00	56.97	51.94
J-24	10	0.00	0.00	58.02	47.99
J-25	10	0.00	0.00	56.57	46.55
J-26	20	73.09	120.60	48.35	28.34
J-27	20	73.09	120.60	49.05	29.04
J-28	20	0.00	0.00	60.95	40.92
J-29	10	0.00	0.00	60.80	50.77
J-30	10	0.00	0.00	61.01	50.99
J-31	10	0.00	0.00	61.84	51.81
J-34	15	0.00	0.00	60.95	45.92
J-35	20	56.36	93.00	62.87	42.84
I-36	20	0.00	0.00	60.95	40.92
J-37	20	0.00	0.00	60.98	40.96
J-38	5	0.00	0.00	59.21	54.18
J-30 I-39	20	0.00	0.00	57.36	37.34
J-37 I-40	10	0.00	0.00	63 62	53 59
J-40 I 42	85	86.54	-86 54	46.55	-38.43
J-42 I 46	10	0.00	0.00	59.46	49.43
J-40 I 49	10	86 54	86 54	83 19	83 14
J-48 Vouvit	2	25 51	25 51	42.08	40.06
Kawit Las Dinas 1	5	105 56	174.17	52 20	40.00
Las Pinas I	10	105.56	174.17 174.17	54.04	44.02
Las Pinas 2	10	33.65	33.65	12 61	32.50
imus Malasti	10	73.00	120.60	42.01 57.36	27.35
Makati	30 10	/ 3.09	120.00	58.21	27.33 48.10
Muntinlupa	10	1.820.00	1.820.00	30.21	46.19
New WTP	90	1,820.00	-1,820.00	89.01	-0.99
Noveleta	2	9.07	9.07	36.63	54.61
Paranaque 1	2	60.27	99.45	56.81	51.78
Paranaque 2	5	60.27	99.45	52.45	47.43
Paranaque 3	10	60.27	99.45	52.49	42.47
Paranaque 4	10	30.27	49.95	55.52	45.49
Paranaque 5	10	30.00	49.50	57.74	47.72
Pasay2	5	23.36	38.54	55.40	50.37
Pasig 1	20	188.51	311.05	60.37	40.35
Pasig 2	30	0.00	0.00	59.47	29.45
Pateros 1	20	11.32	18.67	60.53	40.51
Pateros 2	20	11.32	18.67	59.87	39.85
Rosario	2	27.13	27.13	30.13	28.12
Taguig 1	5	81.15	133.90	63.81	58.78
Taguig 2	15	81.15	133.90	58.02	43.00
Taytay	10	93.46	154.20	66.84	56.81

Table F4.3 Hydraulic Analysis Jubction Result at 9:00 (1,820 MLD)

			Diameter		Hazan	Discharge	Velocity	Headloss
Label	From Node	To Node		Length (m)	Williama C	(M1/d)	(m/a)	Gradient
			(mm)		williams C	(1011/d)	(m/s)	(m/km)
P-49e	Paranaque 2	J-15	1,100	3,100	100	18.297	0.22	0.08
P-51e	Paranaque 1	Paranaque 2	1,100	2,600	100	97.997	1.19	1.68
P-53e	J-20	J-19	500	700	100	-23.377	1.38	5.5
P-56e	J-17	J-20	600	3,900	100	-19.204	0.79	1.57
P-57e	J-19	Las Pinas 1	500	1,200	100	7.482	0.44	0.67
P-58e	J-20	Bacoor I	400	1,000	100	4.173	0.38	0.67
P-59e	J-19	Las Pinas 2	500	1,200	100	-8.604	0.51	0.87
P-60e	J-17	Bacoor 2	600	1,000	100	-9.161	0.38	0.4
P-61e	Kawit	J-1/	600	1,500	100	-11.61/	0.48	0.62
P-62e	Paranaque 2	J-22 Demonstration 1	500	100	100	-11.609	0.68	1.51
P-03e	J-23	Paranaque I	500	2 000	100	12.080	0.71	1.02
P-04e	J-22 I 24	J-25 L 25	300	2,900	100	-11.009	0.08	1.31
P-03e	J-24 Tecnic 2	J-23 I 24	430	4,300	100	3.817	0.28	0.32
P-00e	Taguig 2	J-24 Tecnic 1	2 400	7 500	110	3.817	0.28	0.27
P-07	Taylay		3,400	7,300	110	9/4.009	1.24	0.4
P 68e	J-25 I 26	J-0 I 6	430	2500	100	7.667	0.28	0.33
P 60e	J-20 I 27	J-0 I 26	400 600	2,500	100	-7.007	0.71	2.07
P 70	J-27 Las Pinas 2	J-20 I 30	2 800	7,000	110	637 207	0.41	0.40
P-70e	Las 1 mas 2 1_27	J-J9 Makati	2,800	2,000	100	-58 407	1.2	4.16
P-71	J-27 J-39	Muntinluna	2 800	1 800	110	-637 297	1.55	0.47
P-72	J-39	Muntinlupa	2,800	2 100	110	638 287	1.2	0.47
P-73	J-30 J-40	Tavtav	3 400	3 500	110	-1 519 16	1.2	0.40
P-74	J-40 J-29	I-40	3 200	5,500	110	-945 354	1.34	0.52
P-74e	J-28	I-29	2,100	1 500	100	116 332	0.39	0.01
P-75	J-40	J-35	1,500	700	110	192 141	1.26	1.08
P-75e	J-29	J-30	1,050	2.000	100	-19.633	0.26	0.11
P-76	Cavite City	Noveleta	700	5.000	110	-34.14	1.03	1.81
P-76e	J-30	J-31	750	1,500	100	-19.633	0.51	0.55
P-77	Rosario	Noveleta	600	2,600	110	-27.13	1.11	2.5
P-77e	J-31	Taguig 1	600	1,200	100	-19.633	0.8	1.64
P-78	Noveleta	Kawit	1,000	4,500	110	-70.34	1.04	1.21
P-78e	Pasig 1	J-28	1,200	2,500	100	-41.98	0.43	0.23
P-79	Kawit	lmus	500	2,000	110	-5	0.29	0.27
P-80	J-15	Las Pinas 1	1,200	500	110	18.297	0.19	0.04
P-82	J-28	J-40	2,200	4,500	110	-381.665	1.16	0.59
P-84	Taguig 1	J-38	3,000	8,500	110	820.479	1.34	0.54
P-86	Paranaque 5	J-38	1,500	1,500	110	-182.192	1.19	0.98
P-87	Pasig 1	J-28	2,200	2,500	110	-227.722	0.69	0.23
P-88	Pateros 1	Pasig 1	2,200	2,000	110	127.854	0.39	0.08
P-89	Pateros 2	Pateros 1	2,600	1,200	110	-568.527	1.24	0.55
P-90	Taguig 2	Pateros 2	2,600	4,500	110	-485.361	1.06	0.41
P-91	J-23	Taguig 2	2,200	3,500	110	-263.398	0.8	0.3
P-92	Bacoor 2	Bacoor 1	1,350	2,000	110	-230.968	1.87	2.53
P-93	Bacoor 1	Las Pinas 2	1,350	1,500	110	-283.886	2.3	3.71
P-96	Paranaque 1	J-23	1,500	100	110	-239.703	1.57	1.62
P-97	Pateros 1	J-29	3,000	300	110	-1,072.60	1.76	0.89
P-98	J-26	J-6	900	2,500	110	-71.306	1.3	2.07
P-99	J-26	J-27	900	1,500	110	-31.714	0.58	0.46
P-100	New WTP	CWR	5,000	100	110	1,800.00	1.06	0.19
P-100e	J-34	J-28	2,100	1,100	100	4.37	0.01	2.28E-04
P-101	CWR	J-1	3,400	4,500	110	1,801.00	2.3	1.26
P-101e	J-34 Coint	Cainta	600	3,000	100	-1.981	0.08	0.02
r-102e		J-33 I 24	000	1,200	100	-18.99	0.78	1.54
P-103e	J-30	J-34	2,200	1,500	100	0.75	2.28E-03	0.20E-06

 Table F4.4
 Hydraulic Analysis Pipe Result at 9:00 (1,820 MLD) (1/2)

			Diamatan		II.	Discharge	Vala sites	Headloss
Label	From Node	To Node	Diameter	Length (m)	Hazen-	Discharge	velocity	Gradient
			(mm)	Ū V	Williams C	(Ml/d)	(m/s)	(m/km)
P-104	PMP-1	PSV-2	1,600	2,200	110	86.54	0.5	0.18
P-104e	J-36	J-37	400	1,100	100	-0.75	0.07	0.03
P-105	PSV-2	Antipolo SR	1,600	10	110	86.54	0.5	0.18
P-105e	J-37	Cainta	450	2,500	100	-0.75	0.05	0.02
P-106	Antipolo SR	Antipolo	1,000	1,700	110	142.791	2.1	4.49
P-107	J-1	FCV-1	3,400	5,500	110	1,711.79	2.18	1.15
P-108	FCV-1	PSV-1	3,400	40	110	1,711.79	2.18	1.15
P-109	PSV-1	Taytay SR	3,400	10	110	1,711.79	2.18	1.15
P-110	J-27	Makati	900	2,000	110	-103.824	1.89	4.16
P-111	Makati	Pateros 1	1,000	2,000	110	-81.354	1.2	1.58
P-112	Kawit	J-17	1,200	1,500	110	-79.234	0.81	0.62
P-113	J-17	Bacoor 2	1,200	1,000	110	-62.485	0.64	0.4
P-114	Paranaque 2	Paranaque 3	1,000	2,300	110	-7.328	0.11	0.02
P-115	Paranaque 3	Paranaque 4	1,000	3,000	110	-63.706	0.94	1.01
P-116	Paranaque 4	Paranaque 5	1,000	1,500	110	-78.567	1.16	1.49
P-117	PMP-1	J-42	2,000	6,800	110	-86.54	0.32	0.06
P-134	Las Pinas 2	J-19	1,500	1,200	110	170.642	1.12	0.87
P-135	J-19	Las Pinas 1	1,500	1,200	110	148.387	0.97	0.67
P-138	Bacoor 2	lmus	1,000	2,000	110	38.65	0.57	0.4
P-144e	Pasig 2	J-34	500	2,700	100	-6.72	0.4	0.55
P-145	J-34	Cainta	1,000	3,000	110	-8.359	0.12	0.02
P-146	J-35	Cainta	1,000	1,200	110	80.152	1.18	1.54
P-147	J-1	Teresa	300	500	110	2.67	0.44	1
P-148	J-48	J-1	2,000	2,200	110	-86.54	0.32	0.06
P-148e	Makati	J-46	1,200	2,000	100	-95.583	0.98	1.05
P-149e	J-46	Pasig 2	1,200	1,000	100	-6.72	0.07	0.01
P-150e	Pasig 1	J-46	1,200	1,000	100	88.862	0.91	0.92
P-201	Taytay SR	J-2	4,000	2,000	110	2,690.76	2.48	1.2
P-202	J-2	Taytay	4,000	1,200	110	2,647.37	2.44	1.16
P-209e	Pasig 1	Pateros 1	500	2,000	100	-2.352	0.14	0.08
P-210e	Pateros 1	Makati	1,500	2,000	100	215.047	1.41	1.58
P-211e	Makati	J-5	1,200	800	100	109.15	1.12	1.34
P-212e	J-5	J-6	1,300	2,700	100	116.201	1.01	1.02
P-213e	Pateros 1	Pateros 2	1,200	1,200	100	67.516	0.69	0.55
P-214e	Pateros 2	J-5	1,200	2,000	100	127.653	1.31	1.79
P-215e	Pateros 2	Taguig 2	450	4,500	100	4.359	0.32	0.41
P-216e	J-6	Taguig 2	900	2,000	100	-67.576	1.23	2.24
P-217e	Taguig 2	J-8	900	5,600	100	21.032	0.38	0.26
P-219e	Paranaque 5	Paranaque 4	900	1,500	100	54.125	0.98	1.49
P-220e	J-8	Paranaque 4	900	3,000	100	24.849	0.45	0.35
P-221e	Paranaque 4	Paranaque 3	900	3,000	100	43.887	0.8	1.01
P-222e	Paranaque 3	Paranaque 2	450	2,300	100	0.814	0.06	0.02
P-223e	J-6	Pasay2	650	2,500	100	-15.798	0.55	0.74
P-224e	Pasay2	Paranaque 1	1,050	2,000	100	-54.342	0.73	0.71
P-249e	J-29	Pateros 1	500	300	100	8.722	0.51	0.89
P-301	J-2	Angono	1,500	800	110	43.39	0.28	0.07
P-302	Angono	Binangonan	1,350	6,600	110	29.7	0.24	0.06

 Table F4.4
 Hydraulic Analysis Pipe Result at 9:00 (1,820 MLD) (2/2)

Note: Pipe lavel with e represents the existing primary main

		Domond	Demand	Calculated	
Label	Elevation (m)		(Calculated)	Hydraulic	Pressure (m)
		(MI/d)	(Ml/d)	Grade (m)	
Angono	10	51.01	51.01	67.43	57.40
Antipolo	200	684.25	1,129.01	255.62	55.59
Bacoor I	5	73.14	120.67	30.83	25.81
Baras	5	/.03	/.03	45.27	40.24
Cainta	10	69.39 125.17	89.39 206.52	58.70 58.35	40.73
Cardona	20	7 97	200.32	51.99	31.98
Cavite City	20	33.06	33.06	9 91	7 91
J-1	60	0.00	0.00	83.20	23.19
J-2	5	0.00	0.00	68.47	63.44
J-5	20	85.29	140.73	51.58	31.57
J-6	20	85.29	140.73	47.47	27.46
J-8	10	0.00	0.00	46.14	36.12
J-15	2	0.00	0.00	33.46	31.44
J-17	2	0.00	0.00	27.07	25.06
J-19	5	0.00	0.00	34.28	29.26
J-20 L 22	5	0.00	0.00	31.43 20.10	20.41
J-22 I 23	5	0.00	0.00	59.10 50.78	54.09 45.76
J-23 I-24	10	0.00	0.00	52 40	43.70
J-24 J-25	10	0.00	0.00	46 14	36.12
J-26	20	85.29	140.73	40.77	20.76
J-27	20	85.29	140.73	41.74	21.73
J-28	20	0.00	0.00	59.34	39.32
J-29	10	0.00	0.00	59.11	49.09
J-30	10	0.00	0.00	59.09	49.06
J-31	10	0.00	0.00	59.00	48.97
J-34	15	0.00	0.00	59.31	44.29
J-35	20	125.17	206.52	62.89	42.87
J-36	20	0.00	0.00	59.31	39.29
J-3/ I 38	20	0.00	0.00	58.89 46.70	38.87 41.68
J-30 I-39	20	46.67	70.55	40.70	22 21
J-40	10	0.00	0.00	65 40	55 37
J-42	85	684.25	-684.25	75.42	-9.58
J-46	10	0.00	0.00	53.62	43.60
J-48	0	684.25	684.25	77.08	77.04
Jala-Jala	5	6.06	6.06	16.32	11.32
Kawit	2	27.21	27.21	25.79	23.78
Las Pinas 1	5	181.58	299.61	32.99	27.98
Las Pinas 2	10	181.58	299.61	35.81	25.80
imus Makati	10	37.31 85.20	37.31 140.73	25.92	15.91
Morong	10	8.61	8 61	47.16	22.94
Muntinlupa	10	46.67	77.01	44.14	34.12
New WTP	90	3.640.00	-3.640.00	88.96	-1.04
Noveleta	2	13.82	13.82	18.42	16.41
Paranaque 1	5	58.58	96.65	50.53	45.51
Paranaque 2	5	58.58	96.65	38.70	33.68
Paranaque 3	10	58.58	96.65	38.74	28.72
Paranaque 4	10	58.58	96.65	41.57	31.55
Paranaque 5	10	58.58	96.65	44.22	34.20
Pasay2	5 20	19.87	32.19	49.38	44.35
Pasig 1	20	210.09	557.55 178 77	50.25 50.86	38.23 20.85
Pateros 1	20	11 52	19.01	58 56	20.85
Pateros 2	20	11.52	19.01	57.07	37.05
Pililla	5	11.80	11.80	39.39	34.38
Rosario	2	35.98	35.98	7.46	5.46
Taguig 1	5	211.35	348.72	58.78	53.75
Taguig 2	15	211.35	348.72	52.40	37.38
Tanay	5	30.29	30.29	42.62	37.60
Taytay	10	116.76	192.65	67.51	57.48
Teresa	60	8.93	8.93	78.52	18.51

Table F4.5 Hydraulic Analysis Jubction Result at 9:00 (3,640 MLD)

Table F4.6	Hydraulic	Analysis 1	Pipe Result	at 9:00	(3,640 N	1LD) (1/2)
			1		(-)	

			Diamatar		Hagan	Disaharga	Valaaity	Headloss
Label	From Node	To Node	Diameter	Length (m)	Hazen-	Discharge	velocity	Gradient
			(mm)	8 ()	Williams C	(Ml/d)	(m/s)	(m/km)
P-49e	Paranaque 2	J-15	1,100	3,100	100	98.48	1.20	1.69
P-51e	Paranaque 1	Paranaque 2	1,100	2,600	100	168.14	2.05	4.55
P-53e	J-20	J-19	500	700	100	-19.87	1.17	4.07
P-56e	J-17	J-20	600	3,900	100	-15.95	0.65	1.12
P-57e	J-19	Las Pinas 1	500	1,200	100	9.66	0.57	1.07
P-58e	J-20	Bacoor I	400	1,000	100	3.92	0.36	0.60
P-59e	J-19 1 17	Las Pinas 2	500	1,200	100	-10.61	0.63	1.28
P-60e	J-1 / Vowit	Bacoor 2	600	1,000	100	-11./4	0.48	0.63
P-01e	Nawii	J-17 1.22	500	1,300	100	-15.78	0.30	0.83
P-62e	Paranaque 2	J-22 Daranaque 1	500	100	100	-19.75	1.10	4.03
P-64e	J-23 I-22	I aranaque I	500	2 900	100	-19.75	0.89	2.44
P-65e	J-22 J-24	J-25 J-25	450	4 500	100	8 43	0.61	1 39
P-66e	Taguig 2	J-24	450	1,500	110	8 43	0.61	1.55
P-67	Tavtav	Taguig 1	3 400	7 500	110	1 725 57	2.20	1 16
P-67e	J-25	J-8	450	1	100	8.43	0.61	1.40
P-68e	J-26	J-6	400	2,500	100	-8.81	0.81	2.68
P-69e	J-27	J-26	600	1,500	100	11.90	0.49	0.65
P-70	Las Pinas 2	J-39	2,800	7,000	110	-909.47	1.71	0.92
P-70e	J-27	Makati	750	2,000	100	-68.65	1.80	5.60
P-71	J-39	Muntinlupa	2,800	1,800	110	-986.47	1.85	1.06
P-72	J-38	Muntinlupa	2,800	2,100	110	1,063.48	2.00	1.22
P-73	J-40	Taytay	3,400	3,500	110	-1,208.92	1.54	0.60
P-74	J-29	J-40	3,200	5,500	110	-1,456.84	2.10	1.14
P-74e	J-28	J-29	2,100	1,500	100	148.09	0.49	0.15
P-75	J-40	J-35	1,500	700	110	367.60	2.41	3.58
P-/5e	J-29 Carrita Citra	J-30 Navalata	1,050	2,000	100	5.97	0.08	0.01
P-/0 P.76a	L 20	INOVEIEta	700	3,000	110	-35.00	0.99	1.70
P_{-77}	J-50 Rosario	J-J1 Noveleta	600	2,600	110	-35.98	0.10	0.00
P-77e	I_31	Taguig 1	600	2,000	100	-35.98	0.24	4.22
P-78	Noveleta	Kawit	1 000	4 500	110	-82.86	1 22	1 64
P-78e	Pasig 1	J-28	1,000	2,500	100	-59.56	0.61	0.44
P-79	Kawit	lmus	500	2.000	110	-2.31	0.14	0.06
P-80	J-15	Las Pinas 1	1,200	500	110	98.48	1.01	0.93
P-82	J-28	J-40	2,200	4,500	110	-593.39	1.81	1.35
P-84	Taguig 1	J-38	3,000	8,500	110	1,382.81	2.26	1.42
P-86	Paranaque 5	J-38	1,500	1,500	110	-242.35	1.59	1.66
P-87	Pasig 1	J-28	2,200	2,500	110	-323.06	0.98	0.44
P-88	Pateros 1	Pasig 1	2,200	2,000	110	184.88	0.56	0.16
P-89	Pateros 2	Pateros 1	2,600	1,200	110	-882.96	1.92	1.24
P-90	Taguig 2	Pateros 2	2,600	4,500	110	-800.82	1.75	1.04
P-91	J-23	Taguig 2	2,200	3,500	110	-333.33	1.01	0.46
P-92	Bacoor 2	Bacoor I	1,350	2,000	110	-1//.82	1.44	1.56
P-95	Dacool I	Las Pillas Z	1,550	1,300	110	-207.47	2.10	3.32 2.44
P_07	Pateros 1	J-23 I-29	3,000	300	110	-1 586 08	2.60	2.44
P-98	I-26	J-2) I-6	900	2 500	110	-1,580.08	1 49	2.68
P-99	J-26	J-27	900	1 500	110	-38.05	0.69	0.65
P-100	New WTP	CWR	5.000	100	110	3.600.00	2.12	0.69
P-100e	J-34	J-28	2,100	1,100	100	-62.68	0.21	0.03
P-101	CWR	J-1	3,400	4,500	110	1,804.47	2.30	1.26
P-101e	J-34	Cainta	600	3,000	100	8.12	0.33	0.32
P-102e	Cainta	J-35	600	1,200	100	-30.85	1.26	3.78
P-103e	J-36	J-34	2,200	1,500	100	-3.07	0.01	0.00
P-104	PMP-1	PSV-2	1,600	2,200	110	342.70	1.97	2.30
P-104e	J-36	J-37	400	1,100	100	3.07	0.28	0.38
P-105	PSV-2	Antipolo SR	1,600	10	110	342.70	1.97	2.30
P-105e	J-37	Cainta	450	2,500	100	3.07	0.22	0.22
P-106	Antipolo SR	Antipolo	1,000	1,700	110	91.57	1.35	1.97
P-10/	J-1 ECV 1	rUV-l	3,400	5,500	110	1,457.88	1.86	0.85
P-108 D 100	FUV-1 DSV 1	rov-1 Taxtay SP	3,400	40	110	1,457.88	1.80	0.85
P-110	J-27	Makati	900	2,000	110	-122.03	2.22	5.60

Table F4.6 Hydraulic Analysis Pipe Result at 9:00 (3,640 MLD) (2/2)

Label From Node To Node Diameter (mm) Length (m) Inacch Willians C Discharge Velocity (ML/a) Gradient (m/kg) P-111 Makati Pateros I 1,000 2,000 110 -110.83 1.63 2.81 P-112 Kawit Ja17 1,200 1,000 110 -80.07 0.82 0.63 P-114 Paranaque 2 Paranaque 3 1,000 2,000 110 -6.52 0.91 0.94 P-115 Paranaque 4 Paranaque 4 1,000 3,000 110 -6.52 0.91 0.94 P-117 PMr-1 J-42 2,000 6.800 110 1.842.47 2.30 1.26 0.77 P-118 Taytay SR J-22 3,400 4.000 1.00 1.457.88 1.86 0.85 P-121a FCV-2 PSV-3 Taytay S 3,400 100 114.457.88 1.86 0.85 P-122a PSV-3 Taytay A 4,000 1.000 <t< th=""><th></th><th></th><th></th><th>D' (</th><th></th><th>TT</th><th>D' 1</th><th>X7.1 ··</th><th>Headloss</th></t<>				D' (TT	D' 1	X7.1 ··	Headloss
	Label	From Node	To Node	Diameter	Length (m)	Hazen-	Discharge	Velocity	Gradient
	24001	11011111040	1011040	(mm)	Longen (m)	Williams C	(Ml/d)	(m/s)	(m/km)
P-112 Kawit J-17 1200 1500 110 -93.98 0.96 0.85 P-114 Paranaque 2 Paranaque 3 1.000 2.300 110 -6.52 0.91 0.01 P-116 Paranaque 4 Paranaque 5 1.000 1.500 110 -86.27 1.27 1.77 P-117 PMP1- J-2 4.000 4.500 110 -86.27 1.26 0.77 P-118 CWR J-2 4.000 4.500 110 1.804.47 2.201 L66 P-118 CWR J-2 4.000 2.000 110 1.457.88 1.86 0.85 P-121a FCV-2 PSV-3 3.400 10 1.457.88 1.86 0.85 P-122a L-2 Tsytay S 3.400 1.200 110 2.168.03 2.00 3.00 1.020 110 1.457.88 1.86 0.85 P-123a L-2 Tsytay S A.3400 1.200 1.00	P-111	Makati	Pateros 1	1.000	2.000	110	-110.85	1.63	2.81
P-113 J-17 Bacoor 2 1.200 1.000 1.00 -5.20 0.00 0.001 P-114 Paranaque 3 Paranaque 4 1.000 3.000 110 -6.52 0.10 0.01 P-115 Paranaque 4 1.000 3.000 110 -5.62 0.10 0.01 P-116 Paranaque 4 2.000 6.800 110 -542.70 1.26 0.77 P-118a CWR J-1 3.400 4.500 110 1.842.70 2.09 0.88 P-120a J-1 PCV-2 3.400 40 110 1.457.88 1.86 0.85 P-122a PSV-3 Taytay SR 3.400 10 11.457.88 1.86 0.85 P-123a I-2 Taytay J 3.400 1.00 1.200 110 1.457.88 1.86 0.85 P-124a Taytay J J-40 3.400 10 11.20 1.20 1.00 1.200 1.00 1.208 1.	P-112	Kawit	J-17	1,200	1,500	110	-93.98	0.96	0.85
P-114 Paramaque 2 Paramaque 3 1.000 2.300 110 -6.52 0.01 0.01 P-115 Paramaque 4 Paramaque 5 1.000 1.500 110 -86.27 1.27 1.77 P-117 PMT J-1 3.400 4.500 110 3.42.70 1.26 P-118a CWR J-1 3.400 4.500 110 1.47.788 1.86 0.85 P-120a J-1 FCV-2 PSV-3 3.400 10 11 1.47.788 1.86 0.85 P-122a FSV-3 Taytay 4.000 1.200 110 2.168.03 2.00 0.80 P-123a J-2 Taytay 4.000 1.200 110 1.47.788 1.86 0.85 P-134a Las Pinas 2 J-19 1.500 1.200 110 1.47.81 1.80 1.00 1.500 1.00 1.50 1.044 1.25 1.07 1.38 1.26 0.87 1.43 1.28 </td <td>P-113</td> <td>J-17</td> <td>Bacoor 2</td> <td>1,200</td> <td>1,000</td> <td>110</td> <td>-80.07</td> <td>0.82</td> <td>0.63</td>	P-113	J-17	Bacoor 2	1,200	1,000	110	-80.07	0.82	0.63
	P-114	Paranaque 2	Paranaque 3	1,000	2,300	110	-6.52	0.10	0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-115	Paranaque 3	Paranaque 4	1,000	3,000	110	-61.52	0.91	0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-116	Paranaque 4	Paranaque 5	1,000	1,500	110	-86.27	1.27	1.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-117	PMP-1	J-42	2,000	6,800	110	-342.70	1.26	0.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-118a	CWR	J-1	3,400	4,500	110	1,804.47	2.30	1.26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-119a	Taytay SR	J-2	4,000	2,000	110	2,274.52	2.09	0.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-120a	J-1	FCV-2	3,400	5,500	110	1,457.88	1.86	0.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-121a	FCV-2	PSV-3	3,400	40	110	1,457.88	1.86	0.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-122a	PSV-3	Taytay SR	3,400	10	110	1,457.88	1.86	0.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-123a	J-2	Taytay	4,000	1,200	110	2,168.03	2.00	0.80
	P-124a	Taytay	J-40	3,400	3,500	110	1,208.92	1.54	0.60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-134	Las Pinas 2	J-19	1,500	1,200	110	210.40	1.38	1.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-135	J-19	Las Pinas 1	1,500	1,200	110	191.48	1.25	1.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-136a	Las Pinas 2	Bacoor 1	1,000	1,500	110	121.39	1.79	3.32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-137a	Bacoor 1	Bacoor 2	1,000	1,500	110	94.28	1.39	2.08
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-138	Bacoor 2	lmus	1,000	2,000	110	59.62	0.88	0.89
P-142aPMP-2PSV-41,6002,200110341.551.972.28P-143aPSV-4Antipolo SR1,60010110341.551.972.28P-144aAntipolo SRAntipolo2,6002,0001101,037.452.261.68P-144aPasig 2J-345002,700100-17.241.023.13P-145J-34Cainta1,0003,000110342.550.500.32P-146J-35Cainta1,0001,200110130.231.923.78P-147J-1Teresa300500110-684.252.522.78P-148MakatiJ-461,2002,000100-51.840.530.34P-149J-46Pasig 21,2001,000100213.372.184.63P-201Taytay SRJ-24,0002,0001102,274.522.090.88P-202J-2Taytay4,0001,2001102,168.032.000.80P-202J-2Taytay4,0001,2001102,24.522.81P-210ePateros 1Makati1,5002,000100293.011.922.81P-211eMakatiJ-51,200800100124.371.261.52P-212ePateros 1Pateros 21,2001,200100104.43.71.261.52P-212ePateros 1 <td>P-141a</td> <td>J-42</td> <td>PMP-2</td> <td>2,000</td> <td>6,800</td> <td>110</td> <td>341.55</td> <td>1.26</td> <td>0.77</td>	P-141a	J-42	PMP-2	2,000	6,800	110	341.55	1.26	0.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-142a	PMP-2	PSV-4	1,600	2,200	110	341.55	1.97	2.28
P-144aAntipolo SRAntipolo $2,600$ $2,000$ 110 $1,037,45$ 2.26 1.68 P-144ePasig 2 $J.34$ 500 $2,700$ 100 -17.24 1.02 3.13 P-145 $J-35$ Cainta $1,000$ $3,000$ 110 34.25 0.50 0.32 P-146 $J-35$ Cainta $1,000$ $1,200$ 110 130.23 1.92 3.78 P-147 $J-1$ Teresa 300 500 110 8.93 1.46 9.36 P-148eMakati $J-46$ 1.200 $2,000$ 100 -684.25 2.52 2.78 P-148eMakati $J-46$ 1.200 $1,000$ 100 161.53 1.65 2.77 P-150ePasig 1 $J-46$ 1.200 $1,000$ 100 213.37 2.18 4.63 P-202 $J-2$ Taytay $4,000$ $2,000$ 110 $2.168.03$ 2.00 0.80 P-202e $J-2$ Taytay $4,000$ $1,200$ 110 $2.168.03$ 2.00 0.16 P-210ePateros 1Makati $1,500$ $2,000$ 100 23.40 1.27 1.70 P-212e $J-5$ $J-6$ $1,300$ $2,700$ 100 144.37 1.27 1.70 P-212e $J-5$ $J-6$ $1,300$ $2,700$ 100 144.37 1.27 1.70 P-212e $J-5$ $J-6$ $1,200$ $1,000$ 100 164.82 0.57 <td< td=""><td>P-143a</td><td>PSV-4</td><td>Antipolo SR</td><td>1,600</td><td>10</td><td>110</td><td>341.55</td><td>1.97</td><td>2.28</td></td<>	P-143a	PSV-4	Antipolo SR	1,600	10	110	341.55	1.97	2.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-144a	Antipolo SR	Antipolo	2,600	2,000	110	1,037.45	2.26	1.68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-144e	Pasig 2	J-34	500	2,700	100	-17.24	1.02	3.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-145	J-34	Cainta	1,000	3,000	110	34.25	0.50	0.32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-146	J-35	Cainta	1,000	1,200	110	130.23	1.92	3.78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-147	J-1	Teresa	300	500	110	8.93	1.46	9.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-148	J-48	J-1	2,000	2,200	110	-684.25	2.52	2.78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-148e	Makati	J-46	1,200	2,000	100	-51.84	0.53	0.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P-149e	J-46	Pasig 2	1,200	1,000	100	161.53	1.65	2.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P-150e	Pasig I	J-46	1,200	1,000	100	213.37	2.18	4.63
P-202 $P-2$ Pateros 1 $4,000$ $1,200$ 1100 $2,168,03$ 2.000 0.80 P-209ePasig 1Pateros 1Makati $1,500$ $2,000$ 1000 -3.40 0.20 0.166 P-210ePateros 1Makati 1.55 $1,200$ 800 100 124.30 1.27 1.70 P-212e $1-5$ $1-6$ $1,300$ $2,700$ 100 144.37 1.26 1.52 P-213ePateros 1Pateros 2 $1,200$ $1,200$ 100 104.86 1.07 1.24 P-214ePateros 2 $1-5$ $1,200$ $2,000$ 100 160.80 1.65 2.74 P-215ePateros 2Taguig 2 450 $4,500$ 100 -71.12 1.29 2.46 P-216e $J-6$ Taguig 2 900 $2,000$ 100 46.42 0.84 1.12 P-219eParanaque 5Paranaque 4 900 $3,000$ 100 59.43 1.08 1.77 P-220e $J-8$ Paranaque 4 900 $3,000$ 100 54.85 1.00 1.52 P-221eParanaque 4Paranaque 3 900 $3,000$ 100 42.38 0.77 0.94 P-222eParanaque 3Paranaque 2 450 $2,300$ 100 -16.01 0.56 0.76 P-222eParanaque 3Paranaque 2 650 $2,500$ 100 -16.01 0.56 0.76 P-222eParanaque 3Para	P-201	Taytay SR	J-2	4,000	2,000	110	2,274.52	2.09	0.88
P-209ePateros IS002,000100 -3.40 0.20 0.16 P-210ePateros IMakati1,5002,000100293.011.922.81P-211eMakatiJ-51,200800100124.301.271.70P-212eJ-5J-61,3002,700100104.861.071.24P-213ePateros 1Pateros 21,2001,200100104.861.071.24P-214ePateros 2J-51,2002,000100160.801.652.74P-215ePateros 2Taguig 24504,5001007.190.521.04P-216eJ-6Taguig 29002,00010046.420.841.12P-219eParanaque 5Paranaque 49001,50010059.431.081.77P-220eJ-8Paranaque 49003,00010042.380.770.94P-222eParanaque 3Paranaque 24502,500100-16.010.560.76P-222eParanaque 4Pao03,00010048.790.650.58P-224ePasay2Paranaque 24502,500100-16.010.560.76P-224ePasay2Paranaque 11,0502,00010048.790.650.58P-249eJ-29Pateros 150030010012.900.761.83P-301 <td< td=""><td>P-202</td><td>J-2</td><td>Taytay</td><td>4,000</td><td>1,200</td><td>110</td><td>2,168.03</td><td>2.00</td><td>0.80</td></td<>	P-202	J-2	Taytay	4,000	1,200	110	2,168.03	2.00	0.80
P-210ePateros IMakati1,5002,000100293.011.922.81P-211eMakatiJ-51,200800100124.301.271.70P-212eJ-5J-61,3002,700100104.831.261.52P-213ePateros 1Pateros 21,2001,200100104.861.071.24P-214ePateros 2J-51,2002,000100160.801.652.74P-215ePateros 2Taguig 24504,500100-71.121.292.46P-216eJ-6Taguig 2J-89005,60010046.420.841.12P-219eParanaque 5Paranaque 49001,50010059.431.081.77P-222eJ-8Paranaque 49003,00010042.380.770.94P-222eParanaque 3Paranaque 24502,300100-71.600.560.76P-222eParanaque 3Paranaque 24502,3001000.720.050.01P-222eParanaque 3Paranaque 24502,300100-16.010.560.76P-224ePasay2Paranaque 11,0502,000100-48.790.650.58P-301J-2Angono1,50030010012.900.761.83P-302AngonoBinangonan1,3506,600110161.971	P-209e	Pasig I	Pateros I	500	2,000	100	-3.40	0.20	0.16
P-211eMakatiJ-51,200800100124,301.271.70P-212eJ-5J-61,3002,700100104,4371.261.52P-213ePateros 1Pateros 21,2001,200100104,861.071.24P-214ePateros 2J-51,2002,000100160,801.652.74P-215ePateros 2Taguig 24504,5001007.190.521.04P-216eJ-6Taguig 29002,00010046,420.841.12P-219eParanaque 5Paranaque 49003,60010059,431.081.77P-220eJ-8Paranaque 49003,00010054,851.001.52P-221eParanaque 4Paranaque 39003,00010042,380.770.94P-222eParanaque 4Paranaque 24502,300100-16.010.560.76P-224ePasay26502,500100-16.010.560.76P-224ePasay2Paranaque 11,0502,000100-48.790.650.58P-301J-2Angono1,500800110212.981.391.30P-302AngonoBinangonan1,3506,600110161.971.311.31P-303BinangonanCardona1,0005,30011072.381.071.28P-	P-210e	Pateros I	Makati	1,500	2,000	100	293.01	1.92	2.81
P-212eP-3-5P-51,5002,700100144.571.261.32P-213ePateros 1Pateros 21,2001,200100104.861.071.24P-214ePateros 2J-51,2002,000100160.801.652.74P-215ePateros 2Taguig 24504,500100-71.121.292.46P-216eJ-6Taguig 29002,000100-71.121.292.46P-217eTaguig 2J-89005,60010046.420.841.12P-219eParanaque 5Paranaque 49001,50010059.431.081.77P-220eJ-8Paranaque 39003,00010054.851.001.52P-221eParanaque 4Paranaque 39003,00010042.380.770.94P-222eParanaque 3Paranaque 24502,300100-16.010.560.76P-224ePasay2Paranaque 11,0502,000100-48.790.650.58P-249eJ-29Pateros 150030010012.900.761.83P-301J-2Angono1,500800110212.981.391.30P-302AngonoBinangonan1,3506,600110161.971.311.31P-303BinangonanCardona1,0005,30011072.381.071.28 </td <td>P-211e</td> <td>Makati</td> <td>J-5 I 6</td> <td>1,200</td> <td>2 700</td> <td>100</td> <td>124.30</td> <td>1.27</td> <td>1.70</td>	P-211e	Makati	J-5 I 6	1,200	2 700	100	124.30	1.27	1.70
P-213ePateros 1Pateros 21,2001,200100104,861.071.24P-214ePateros 2J-51,2002,000100160.801.652.74P-215ePateros 2Taguig 24504,5001007.190.521.04P-216eJ-6Taguig 29002,000100-71.121.292.46P-217eTaguig 2J-89005,60010046.420.841.12P-219eParanaque 5Paranaque 49001,50010059.431.081.77P-220eJ-8Paranaque 49003,00010054.851.001.52P-221eParanaque 4Paranaque 39003,00010042.380.770.94P-222eParanaque 3Paranaque 24502,3001000.720.050.01P-223eJ-6Pasay26502,500100-16.010.560.76P-224ePasay2Paranaque 11,0502,000100-48.790.650.58P-301J-2Angono1,500800110212.981.391.30P-302AngonoBinangonan1,3506,600110161.971.311.31P-303BinangonanCardona1,0005,30011072.381.071.28P-304CardonaMorong1,0004,40011064.410.951.03 <td>P-212e</td> <td>J-3 D-4 1</td> <td>J-0 Deterre 2</td> <td>1,300</td> <td>2,700</td> <td>100</td> <td>144.57</td> <td>1.20</td> <td>1.52</td>	P-212e	J-3 D-4 1	J-0 Deterre 2	1,300	2,700	100	144.57	1.20	1.52
P-214ePateros 2 7.3 $1,200$ $2,000$ 100 100 100.80 1.63 2.74 P-215ePateros 2Taguig 2 450 $4,500$ 100 7.19 0.52 1.04 P-216eJ-6Taguig 2 900 $2,000$ 100 7.19 0.52 1.04 P-217eTaguig 2J-8 900 $5,600$ 100 46.42 0.84 1.12 P-219eParanaque 5Paranaque 4 900 $3,000$ 100 59.43 1.08 1.77 P-220eJ-8Paranaque 4 900 $3,000$ 100 54.85 1.00 1.52 P-221eParanaque 4Paranaque 3 900 $3,000$ 100 42.38 0.77 0.94 P-222eParanaque 3Paranaque 2 450 $2,300$ 100 0.72 0.05 0.01 P-222eParanaque 3Paranaque 2 450 $2,300$ 100 -16.01 0.56 0.76 P-224ePasay2Pasay2 650 $2,500$ 100 -16.01 0.56 0.58 P-249eJ-29Pateros 1 500 300 100 12.90 0.76 1.83 P-301J-2Angono $1,500$ 800 110 212.98 1.39 1.30 P-302AngonoBinangonan $1,350$ $6,600$ 110 72.38 1.07 1.28 P-304CardonaMorong $1,000$ $4,400$ 110 5	P-215e	Pateros 1	Pateros Z	1,200	1,200	100	104.80	1.07	1.24
P-213eFractors 2Fractors 2	P-214e	Pateros 2	J-S Tempia 2	1,200	2,000	100	100.80	1.03	2.74
1-2.10c $1-0$ $1aguig 2$ $3-00$ $2,000$ 100 $1-71.12$ 1.29 2.40 P-217eTaguig 2 $J-8$ 900 $5,600$ 100 46.42 0.84 1.12 P-219eParanaque 5Paranaque 4 900 $1,500$ 100 59.43 1.08 1.77 P-220e $J-8$ Paranaque 4 900 $3,000$ 100 54.85 1.00 1.52 P-221eParanaque 4Paranaque 3 900 $3,000$ 100 42.38 0.77 0.94 P-222eParanaque 3Paranaque 2 450 $2,300$ 100 0.72 0.05 0.01 P-223e $J-6$ Pasay2 650 $2,500$ 100 -16.01 0.56 0.76 P-224ePasay2Paranaque 1 $1,050$ $2,000$ 100 -48.79 0.65 0.76 P-249e $J-29$ Pateros 1 500 300 100 12.90 0.76 1.83 P-301 $J-2$ Angono $1,500$ 800 110 212.98 1.39 1.30 P-302AngonoBinangonan $1,350$ $6,600$ 110 161.97 1.31 1.31 P-303Binangonan 0.00 $5,300$ 110 72.38 1.07 1.28 P-304CardonaMorong $1,000$ $4,400$ 110 48.15 0.71 0.60 P-306BarasTanay $1,000$ $4,400$ 110 48.15 0.71	P 215e		Taguig 2	430	2,000	100	71.19	1.20	2.46
P-21/eFaging 2J-89003,00010040.420.841.12P-219eParanaque 5Paranaque 49001,50010059.431.081.77P-220eJ-8Paranaque 49003,00010054.851.001.52P-221eParanaque 4Paranaque 39003,00010042.380.770.94P-222eParanaque 3Paranaque 24502,3001000.720.050.01P-223eJ-6Pasay26502,500100-16.010.560.76P-224ePasay2Paranaque 11,0502,000100-48.790.650.58P-249eJ-29Pateros 150030010012.900.761.83P-301J-2Angono1,500800110212.981.391.30P-302AngonoBinangonan1,3506,600110161.971.311.31P-303Binangonan1,3506,60011072.381.071.28P-304CardonaMorong1,0002,40011055.800.820.79P-306BarasTanay1,0004,40011048.150.710.60P-307TanayPililla6002,80011017.860.731.15P-308PilillaJala-Jala35010 7001106.060.732.16	D 2170	J-0 Taguig 2	1 aguig 2	900	2,000	100	-/1.12	0.84	2.40
P-219eFataliaque 3Paranaque 49001,00010053.4.51.081.77P-220eJ-8Paranaque 4Paranaque 39003,00010054.851.001.52P-221eParanaque 4Paranaque 39003,00010042.380.770.94P-222eParanaque 3Paranaque 24502,3001000.720.050.01P-223eJ-6Pasay26502,500100-16.010.560.76P-224ePasay2Paranaque 11,0502,000100-48.790.650.58P-249eJ-29Pateros 150030010012.900.761.83P-301J-2Angono1,500800110212.981.391.30P-302AngonoBinangonan1,3506,600110161.971.311.31P-303Binangonan1,0005,30011072.381.071.28P-304CardonaMorong1,0002,40011064.410.951.03P-305MorongBaras1,0002,40011048.150.710.60P-306BarasTanay1,0004,40011048.150.710.60P-307TanayPililla6002,80011017.860.731.15P-308PilillaJala-Jala35010 7001106.060.732.16 <td>P 210e</td> <td>Taguig 2</td> <td>J-0 Daranagua A</td> <td>900</td> <td>3,000</td> <td>100</td> <td>40.42</td> <td>0.84</td> <td>1.12</td>	P 210e	Taguig 2	J-0 Daranagua A	900	3,000	100	40.42	0.84	1.12
P-220e P-3 Paranaque 4 Paranaque 3 900 3,000 100 42.38 0.77 0.94 P-222e Paranaque 3 Paranaque 2 450 2,300 100 0.72 0.05 0.01 P-222e Paranaque 3 Paranaque 2 450 2,300 100 0.72 0.05 0.01 P-223e J-6 Pasay2 650 2,500 100 -16.01 0.56 0.76 P-224e Pasay2 Paranaque 1 1,050 2,000 100 -48.79 0.65 0.58 P-249e J-29 Pateros 1 500 300 100 12.90 0.76 1.83 P-301 J-2 Angono 1,500 800 110 212.98 1.39 1.30 P-302 Angono Binangonan 1,350 6,600 110 161.97 1.31 1.31 P-303 Binangonan 1,350 6,600 110 72.38 1.07 1.28 P-304 Cardona Morong 1,000 4,400 110 55.80	P 220e		Paranaque 4	900	3,000	100	54.85	1.08	1.77
P-221e Paranaque 4 Paranaque 5 900 5,000 100 42.33 0.77 0.74 P-222e Paranaque 3 Paranaque 2 450 2,300 100 0.72 0.05 0.01 P-223e J-6 Pasay2 650 2,500 100 -16.01 0.56 0.76 P-224e Pasay2 Paranaque 1 1,050 2,000 100 -48.79 0.65 0.58 P-249e J-29 Pateros 1 500 300 100 12.90 0.76 1.83 P-301 J-2 Angono 1,500 800 110 212.98 1.39 1.30 P-302 Angono Binangonan 1,350 6,600 110 161.97 1.31 1.31 P-303 Binangonan Cardona 1,000 5,300 110 72.38 1.07 1.28 P-304 Cardona Morong 1,000 4,400 110 55.80 0.82 0.79 P-306 Baras Tanay 1,000 4,400 110 55.80	P-221e	J-0 Paranaque /	Paranaque 3	900	3,000	100	12 38	0.77	0.94
P-222eI analogue 2Pasay26502,500100 0.72 0.65 0.76 P-223eJ-6Pasay26502,500100 -16.01 0.56 0.76 P-224ePasay2Paranaque 11,0502,000100 -48.79 0.65 0.58 P-249eJ-29Pateros 150030010012.90 0.76 1.83 P-301J-2Angono1,500 800 110212.98 1.39 1.30 P-302AngonoBinangonan1,350 $6,600$ 110 161.97 1.31 1.31 P-303BinangonanCardona1,0005,300110 72.38 1.07 1.28 P-304CardonaMorong1,000 $2,400$ 110 64.41 0.95 1.03 P-305MorongBaras1,000 $2,400$ 110 55.80 0.82 0.79 P-306BarasTanay1,000 $4,400$ 110 48.15 0.71 0.60 P-307TanayPililla 600 $2,800$ 110 17.86 0.73 1.15 P-308PilillaJala-Jala 350 10100 10 6.66 0.73 2.16	P_222e	Paranaque 3	Paranaque 2	450	2 300	100	42.38	0.05	0.04
P-224e Pasay2 Paranaque 1 1,050 2,000 100 -10.01 0.50 0.76 P-224e Pasay2 Paranaque 1 1,050 2,000 100 -48.79 0.65 0.58 P-249e J-29 Pateros 1 500 300 100 12.90 0.76 1.83 P-301 J-2 Angono 1,500 800 110 212.98 1.39 1.30 P-302 Angono Binangonan 1,350 6,600 110 161.97 1.31 1.31 P-303 Binangonan Cardona 1,000 5,300 110 72.38 1.07 1.28 P-304 Cardona Morong 1,000 4,700 110 64.41 0.95 1.03 P-305 Morong Baras 1,000 2,400 110 55.80 0.82 0.79 P-306 Baras Tanay 1,000 4,400 110 48.15 0.71 0.60 P-307 Tanay Pililla 600 2,800 110 17.86	P_2220	I aranaque 5	Pasav?	650	2,500	100	-16.01	0.05	0.01
P-224e J asiy2 Patanalque 1 1,050 2,000 100 143.77 0.057 0.057 P-249e J-29 Pateros 1 500 300 100 12.90 0.76 1.83 P-301 J-2 Angono 1,500 800 110 212.98 1.39 1.30 P-302 Angono Binangonan 1,350 6,600 110 161.97 1.31 1.31 P-303 Binangonan Cardona 1,000 5,300 110 72.38 1.07 1.28 P-304 Cardona Morong 1,000 4,700 110 64.41 0.95 1.03 P-305 Morong Baras 1,000 2,400 110 55.80 0.82 0.79 P-306 Baras Tanay 1,000 4,400 110 48.15 0.71 0.60 P-307 Tanay Pililla 600 2,800 110 17.86 0.73 1.15 P-308 Pililla Jala-Jala 350 10 700 110 6.06 0	P-224e	J-U Dasav?	1 asay2 Paranaque 1	1 050	2,500	100	-10.01	0.50	0.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P-249e	I asay2 I_29	Pateros 1	500	300	100	12 90	0.05	1.83
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P-301	J-27 J-2	Angono	1 500	800	110	212.90	1 39	1.30
P-302 Frigorio Dinargonan 1,550 6,500 110 101,77 1,51 1,51 P-303 Binangonan Cardona 1,000 5,300 110 72.38 1.07 1.28 P-304 Cardona Morong 1,000 4,700 110 64.41 0.95 1.03 P-305 Morong Baras 1,000 2,400 110 55.80 0.82 0.79 P-306 Baras Tanay 1,000 4,400 110 48.15 0.71 0.60 P-307 Tanay Pililla 600 2,800 110 17.86 0.73 1.15 P-308 Pililla Jala-Jala 350 10,700 110 6.06 0.73 2.16	P-302	J-2 Angono	Rinangonan	1,300	6 600	110	161.97	1.37	1.30
P-304 Cardona Morong 1,000 4,700 110 72.55 1.07 1.26 P-304 Cardona Morong 1,000 4,700 110 64.41 0.95 1.03 P-305 Morong Baras 1,000 2,400 110 55.80 0.82 0.79 P-306 Baras Tanay 1,000 4,400 110 48.15 0.71 0.60 P-307 Tanay Pililla 600 2,800 110 17.86 0.73 1.15 P-308 Pililla Jala-Jala 350 10 700 110 6.06 0.73 2.16	P-302	Binangonan	Cardona	1,000	5 300	110	72 38	1.51	1.31
P-305 Contactual Harong 1,000 7,000 110 00.411 0.75 1.05 P-305 Morong Baras 1,000 2,400 110 55.80 0.82 0.79 P-306 Baras Tanay 1,000 4,400 110 48.15 0.71 0.60 P-307 Tanay Pililla 600 2,800 110 17.86 0.73 1.15 P-308 Pililla Jala-Jala 350 10 700 110 6.06 0.73 2.16	P-304	Cardona	Morong	1,000	4 700	110	64 41	0.95	1.20
P-306 Baras Tanay 1,000 4,400 110 55.65 6.82 6.77 P-306 Baras Tanay 1,000 4,400 110 48.15 0.71 0.60 P-307 Tanay Pililla 600 2,800 110 17.86 0.73 1.15 P-308 Pililla Jala-Jala 350 10 700 110 6.06 0.73 2.16	P-305	Morong	Baras	1,000	2400	110	55 80	0.95	0.79
P-307 Tanay Pililla 600 2,800 110 17.86 0.71 0.105 P-308 Pililla Jala-Jala 350 10 10 606 0.73 1.15	P-306	Baras	Tanav	1,000	4 400	110	48.15	0.02	0.60
P-308 Pililla Jala-Jala 350 10,700 110 6,06 0,73 2,16	P-307	Tanav	Pililla	600	2,800	110	17.86	0.71	1 1 5
	P-308	Pililla	Jala-Jala	350	10.700	110	6.06	0.73	2.16

Note: Pipe lavel with e and a represents the existing and additional primary main, respectively.

Pipe	1st Stage (for 900 MLD)		2nd Stage (fo	r 1,800 MLD)	3rd Stage (for	r 3,600 MLD)	Тс	otal
(mm)	Length (m)	Cost (x 1,000 Pesos)	Length (m)	Cost (x 1,000 Pesos)	Length (m)	Cost (x 1,000 Pesos)	Length (m)	Cost (x 1,000 Pesos)
4,000	3,200	732,800		0	3,200	732,800	6,400	1,465,600
3,400	11,000	1,980,000		0	13,500	2,430,000	24,500	4,410,000
3,200	5,500	907,500		0		0	5,500	907,500
3,000	8,800	1,240,800		0		0	8,800	1,240,800
2,800	10,900	1,308,000		0		0	10,900	1,308,000
2,600	5,700	615,600		0		0	5,700	615,600
2,400		0		0		0	0	0
2,200	8,000	640,000	4,500	360,000		0	12,500	1,000,000
2,000		0		0		0	0	0
1,500	4,700	225,600	2,400	115,200	800	38,400	7,900	379,200
1,350	3,500	143,500		0	6,600	270,600	10,100	414,100
1,200		0	2,500	87,500		0	2,500	87,500
1,000	8,500	221,000	11,000	286,000	19,800	514,800	39,300	1,021,800
900		0	6,000	138,000		0	6,000	138,000
800		0		0		0	0	0
700	5,000	85,000		0		0	5,000	85,000
600	2,600	31,200		0	2,800	33,600	5,400	64,800
500	4,700	47,000		0		0	4,700	47,000
250		0		0		0	0	0
Total	82,100	8,178,000	26,400	986,700	46,700	4,020,200	155,200	13,184,900

Table F4.7 Staged Implementation Plan of Primary Distribution Main

Note: Cost of pipelaying includes material, laying and cutting/breaking/restoration of of concrete pavement (250 mm of thickness).

.

General Layout of Selected Kaliwa-Angono Water Conveyance Route

