# Appendix-11.4 Obstacles on Navigation in Alexandria/Cairo IW

Obstacles on navigation are summarized in this Appendix. These obstacles are basically outlined in accordance with the past survey report "Navigation and Infrastructure for RTA" by G.E.M. Consultants B.M., 1994. In addition, results of the cross-sectional sounding survey by the Study are also considered. Consequently, noteworthy obstacles can be summarized in the following Table.

|                                                                         |       |               | Sunken Units                                                             |            |
|-------------------------------------------------------------------------|-------|---------------|--------------------------------------------------------------------------|------------|
| Stretch                                                                 | Km    | Nr.           | Location                                                                 | Priority   |
|                                                                         |       | 1             | In front of beans factory (Alexandria) at the left bank                  | В          |
| End lock                                                                | 120   | 2,3           | 2 units in front Nor El Dien shipyard at the right bank                  | C          |
|                                                                         |       | 4             | In front of Abou Taleb shipyard at the right bank                        | A          |
| Nahada lock                                                             | 92    | 5             | Nearly at km 92 at the left bank                                         | В          |
| Sharbat bridge                                                          | 90    | 6             | In front of El Snoosy village near Sharbat bridge                        | В          |
| El Naudia bridge                                                        | 75    | 7             | Submerged small unit in front of El Sunawy village                       | C          |
| Ghanaklis bridge                                                        | 62    | 8             | Submerged ferry at the left bank                                         | - <b>B</b> |
| Daowd bridge                                                            | 52    | 9             | Partly sunken unit 300 m upstream of the bridge at the left bank         | В          |
| Khatatha                                                                | 42    | 10            | Partially submerged unit at the zone called Al Khaam                     | A          |
| Тиналацаа                                                               | 21    | 11            | Sunken ferry which was overrun by a barge                                | * .        |
|                                                                         |       |               | Unused Irrigation Water Source                                           |            |
| Nahada lock                                                             | 101   | 1             | At the left bank, nearby km 91.5                                         | В          |
| Indiada loca                                                            | 101   | 2             | At the right bank, nearby km 91                                          | В          |
| Shabat bridge                                                           | 90    | 3             | At about 0.5 km from the end of the first bend upstream of the           | А          |
| Onabat on Mage                                                          |       | 5             | bridge (stretches out about 8-10 m in the waterway)                      |            |
|                                                                         |       |               | Irrigation water source (still in use) extending about 4 m into the      |            |
| El Kreom bridge                                                         | 65    | 4             | waterway at about 0.4 km downstream El Kroom bridge at the               | A          |
| TA HICOMONAGE                                                           |       |               | left bank. Another "round " shape concrete structure will be             |            |
| 1918 - 1918 - 19                                                        |       |               | constructed                                                              |            |
|                                                                         |       | Part Marchine | Various Types of Obstacles                                               |            |
| End lock                                                                | 119   | 1             | Sunken bitt downstream the lock (left bank)                              | A          |
| Nahada lock                                                             | 100.6 | 2             | Sunken bitt (left bank)                                                  | A          |
| R. E. Teraa bridge                                                      | 81    | 3             | Submerged big stones at the end of the first bend upstream of the bridge | A          |
|                                                                         | 75    | A             | Submerged heaps of stones coming from collapsed bank                     |            |
| El Mahdia bridge 75 4 protection at approx. 2 km upstream of the bridge |       | 4             | protection at approx. 2 km upstream of the bridge                        | A          |

# Table A11.4-1 Summary of obstacles

continued

| Various Types of Obstacle |                |                     |          |                 |                                                                                |                                           |           |                   |                |
|---------------------------|----------------|---------------------|----------|-----------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------|-------------------|----------------|
| Streta                    | :h             | Km                  | Nr.      |                 |                                                                                | Location                                  |           |                   | Priority       |
|                           |                |                     | 5        |                 |                                                                                |                                           | 1 345 360 | n of the bridge   |                |
|                           |                | 75                  | 6        |                 |                                                                                | ete slab at abo                           | out 150 m | downstream of     | A              |
|                           |                |                     |          |                 | El Kroom bridge<br>Steel or concrete pipe extending 10m into waterway at about |                                           |           |                   |                |
|                           |                | 65.2                | 7        |                 |                                                                                |                                           |           |                   | Å              |
|                           |                |                     |          | dres car var or | ownstream of I                                                                 |                                           | Si cesare |                   |                |
| El Mahdia                 | bridge         | 64.5                | 8        |                 | 이 집에서 집 것 같이                                                                   | SR 425 - 12                               |           | about 3 km        | В              |
|                           |                |                     |          | 4-02-05-06-06   | am Ghanakfis                                                                   | S. C. |           | water level , at  |                |
|                           |                | 64                  | 9        | Khemez          | -                                                                              |                                           |           | water level, at   | A              |
|                           |                |                     |          |                 |                                                                                | k 4 m int                                 | o waterwa | ny at 200 m       |                |
|                           |                | 2                   | 10       |                 | am of Nikla b                                                                  |                                           |           | • <b>)</b> •• === | A              |
|                           |                | 28.5                | 11       | 48663919        | oitt in the midd                                                               |                                           |           |                   | A              |
| ·                         |                | <u>.</u>            | i        | 1               | Hazardous Sho                                                                  |                                           | <u> </u>  | <u></u>           | 1              |
| Nr.                       | Locatio        | on Pr               | iority   | Nr.             | Location                                                                       | Priority                                  | Nr.       | Location          | Priority       |
| 1                         | 132            | ing logi            | <b>B</b> | 23              | 158                                                                            | A                                         | - 45      | 180               | A              |
| 2                         | 137            | Norman Astronometer | A        | 24              | 159                                                                            | B                                         | 46        | 181               | A              |
| 3                         | 138            |                     | A .      | - 25            | 160                                                                            | Á                                         | 47        | 182               | A              |
| 4                         | 139            | -<br>-              | B        | 26              | 161                                                                            | A                                         | 48        | 183               | B              |
| 5                         | 140            |                     | A        | 27              | 162                                                                            | В                                         | 49        | 184               | A              |
| 6                         | 141            |                     | A        | 28              | 163                                                                            | A                                         | 50<br>21  | 185               | В              |
| 7<br>8                    | 142<br>143     |                     | B<br>A   | 29<br>30        | 164<br>165                                                                     | A<br>A                                    | 51<br>52  | 186<br>187        | а А.<br>А      |
| 9                         | 144            |                     | B        | 31              | 165                                                                            | A                                         | 53        | 187               | A              |
| 10                        | 145            |                     | A        | 32              | 167                                                                            | A                                         | 54        | 189               | A              |
| li                        | 146            |                     | A        | 33              | 168                                                                            | A                                         | 55        | 190               | A -            |
| 12                        | 147            |                     | A        | 34              | 169                                                                            | Α                                         | 56        | 191               | B              |
| - 13 ···                  | 148            |                     | B        | 35              | 170                                                                            | A ···                                     | 57        | 195               | . A .          |
| 14                        | 149            |                     | Α        | 36              | 171                                                                            | Α                                         | 58        | 197               | Α              |
| 15                        | 150            |                     | A        | 37              | 172                                                                            | A                                         | 59        | 198               | A              |
| 16                        | 151            |                     | A        | 38              | 173                                                                            | A                                         |           |                   |                |
| 17                        | 152            |                     | A        | 39              | 174                                                                            | A                                         |           |                   |                |
| 18                        | 153            |                     | A        | 40              | 175                                                                            | A                                         |           |                   |                |
| 19<br>20                  | 154<br>155     |                     | A        | 41<br>42        | 176<br>177                                                                     | A                                         |           |                   |                |
| 20                        | 155            |                     | A<br>A   | 42<br>43        | 177                                                                            | A<br>A                                    |           | 使感激的的             |                |
|                           | Marshell Polly | all the second      | n se     |                 | <b>170</b>                                                                     | A                                         |           |                   | all the second |

# Appendix-11.5 Requirements of IW (Width and Depth)

This appendix summarizes careful considerations to width or depth of IWs which were examined in the master plan.

As for width or depth, the following standards are outlined and its requirements are examined by Alexandria/Cairo IW and Damietta/Cairo IW, respectively.

- ✓ Existing standard by RTA
- ✓ International standard by PIANC

#### 1. Existing standard (Physical Requirements) by RTA.

At present, RTA has following physical requirements of 1st class waterways in Table A11.5-1.

| Table A11.5-1 | Physical Standards | of 1st class waterways |
|---------------|--------------------|------------------------|
|---------------|--------------------|------------------------|

- River Nile (mainstream of Aswan to Cairo)
   Two Branches (Damietta and Rosetta Branch)
- El Baheira/El Noubaria canal Ismaelia canal

| Water Depth                     | Width of Navigational Way                                    |
|---------------------------------|--------------------------------------------------------------|
| • The maximum draft 1.8 m       | •The width of the navigable cross-section not less than 35 m |
| • The minimum water depth 2.5 m | or two lanes (open space) with each one width is 12 m.       |
|                                 | Air Clearances                                               |

• The air clearness on the water level under bridges not less than 6 m (excluding movable bridges) Note) In case of Nile mainstream, not less than 13 m (excluding movable bridges)

Source : Navigation Guide (1999) by RTA (Details are refer to Section 6.2)

Actually, with difference from above Table, RTA has been made IW improvement plans taking account of each site's physical conditions. For example, "Damietta Branch Rehabilitation Project" adopted the following requirements of water depths and width of IW.

Design water depth of Damietta Project

2.3 m (This depth is determined taking account of some clearances which can permit barge's draft of 1.80 m.)

- Design width of Damietta Project Minimum 40 m (This width varies on the basis of bend radii and can permit two-way operation with beam of 7.5 m..)
- Alexandria/Cairo IW

Target requirements are depth of 2.3 m and width of 35 m. However, a lot of cross-sections cannot meet these requirements, and it is difficult to largely dredge without decrease in WL as described Chapter 11. These targets can also permit two-way operation with beam of 7.5 m, draft of 1.8 m.

#### 2. Required water depth

In this section, with comparison of the international standard by PIANC and Egyptian standard, water depth of Alexandrai/Cairo IW is examined.

In general, international organization such as PIANC recommended the following design method of water depth.

## Table A11.5-2 Estimation Factors of Channel Water Depth by PIANC

Depth is estimated from :

- · At-rest draft of design ship
- · Tide height throughout transit of channel
- Squat
- Wave-induced motion
- A margin depending on type of bed bottom
- · Water density and its effect on draught

All the above values for draft, squat, wave action and margin are additive.

Source : "Approach Channels a Guide for Design (June 1997)", Final Report of the Joint PIANC and IAPH, at Working Group II-30.

PIANC : Permanent International Association of Navigation Congresses

IAPH : International Association of Ports and Harbours

As above estimation factors by PIANC, some of factors are unnecessary to be considered in case of Egyptian IW in the Delta. Because these IWs are located in area of fresh water and have a little part of estuary.

The following Table indicates the needed factors by PIANC and compare with designed values of Damietta Project.

| Estimation Factors by PIANC                              | In case of waterways in the Delta (Damietta Branch)  |
|----------------------------------------------------------|------------------------------------------------------|
| At-rest draft of design ship ( $\Delta Dkc$ )            | In case of Damietta project, keel clearance = 0.10 m |
| Tide height throughout transit of channel                | -almost negligible-                                  |
| Squat (ΔDs)                                              | In case of Damietta project, 0.15 m                  |
| Wave-induced motion                                      | -negligible-                                         |
| A margin depending on type of bed bottom ( $\Delta Db$ ) | In case of Damietta project, 0.15 m                  |
| Water density and its effect on draft                    | -almost negligible-                                  |

In case of Damietta Project, total clearance is estimated at 0.50 m which value is  $\Delta Dkc + \Delta Ds + \Delta Db = 0.40$  m added to other margin 0.10 m as above table.

In the master plan, core system of future IWT will be new type barge. Consequently, important factor is design draft of barge and required water-depth is estimated by the ratio of depth to draft. This estimation method is simple, in case of Damietta Project, the depth/draft ratio is indicated as

# A11.5-2

follows.

- Depth/Draft Ratio Methods
  - Depth/Draft Ratio in case of Damietta Project Approx. 1.28 as below equation

Depth/Draft Ratio =  $\frac{\text{Required water depth 2.3 m}}{\text{Designed Draft 1.8 m}} (=\text{Max. Draft 1.8 m} + \text{Total Clearances 0.5 m})$ 

On the other hand, PIANC indicated Depth/Draft Ratio as below table A11.5-3.

## Table A11.5-3 Depth/Draft Ratio by PIANC

In the absence of other information,

minimum values of depth/draft ratio should be taken as :

- 1.10 in sheltered water
- 1.3 in waves up to one meter in height
- 1.5 in higher waves with unfavorable periods and directions

Source : "Approach Channels a Guide for Design (June 1997)", Final Report of the Joint PIANC and IAPH

One of major strategies is enlargement of barges to the maximum extent that the physical conditions of improved IW facilities will permit. According to this strategy, draft of new-type barge will be determined by the permissible Depth/Draft Ratio.

In general, Depth/Draft Ratio should be estimated at the minimum, in order to minimize a dredging work and to maximize size of barge.

In the master plan, Depth/Draft Ratio of Alexandria/Cairo IW is applied as more than 1.10 and less than 1.28 for the following reason.

Such Depth/Draft Ratio = 1.28 is the case of "Damietta Project", and Alexandria/Cairo waterway is likely to be superior to the Damietta Branch in aspects of navigational conditions as follows:

|                  | Alexandria/Cairo waterway         | Damietta Branch                       |
|------------------|-----------------------------------|---------------------------------------|
| Турс             | Manmade Canal                     | Natural River                         |
| Alignment        | Almost straight except for two    | There are a large number of meanders. |
| Angnunem         | sharp bends                       | There are some islands and sand bars  |
| R. A. STR. 1     | It is almost certain smaller than | about 1 m/sec (high discharge period) |
| Current Velocity | Damietta Branch                   | 0.1m/sec (low discharge period)       |
| Bottom Condition | Sand or Silt                      | Sand or Silt                          |

 Table A11.5-4 Summary of Comparison between Alex/Cairo IW and Damietta Branch

Estimated by JICA team

As shown in above table, Alexandria/Cairo waterways is composed of Baheria and Noubaria canals

which have more better navigational conditions such as alignment than Damietta Branch. Thus, the Depth/Draft Ratio of Alexandria/Cairo waterway is applied as the highest value = 1.28. Moreover, above ratio = 1.10 is the lowest value as the minimum standard of PIANC.

However, with applying smaller ratio of depth/draft, it is necessary to consider bottom resistance due to limited KC (Keel Clearance). Needless to say, the bottom resistance generally depends on shape of the bottom of barges and KC.

Meanwhile, the enlargement of laden capacity has led to the increase in bottom resistance. Because a hull of barge is becoming almost rectangular in shape, in order to enlarge of laden capacity, thus bottom resistance is increasing compared with a rounded hull.

In consideration of above aspects, the master plan proposes that KC = 40 cm, target depth = 2.0 m and draft of new barge = 1.6 m, namely Depth/Draft Ratio = 1.25.

#### 3. Required Width

As described in Chapter 11, minimum width of Alexandria/Cairo IW is estimated at 35 or 36 m. because large amount of widening will cause decrease in WL and dredging is not necessarily effective countermeasure without increase in water-discharge. Consequently, maximum width of barge is determined at 12 m corresponding to above-mentioned 35 or 36 m.

In this section, trial estimation by international standard (PIANC) is carried out for reffernce.

In general, PIANC recommended the following design method regarding widths of channels. The bottom width w of the waterway (see Figure V-1) is given for a one-way canal by:

$$w = w_{BM} + \sum_{i=1}^{N} w_i + w_{Br} + w_{Bg}$$
 -Eq (V-1)

and for a two-way canal by:

n

$$w = 2w_{BM} + 2\sum_{i=1}^{n} w_i + w_{Bi} + w_{Bg} + \sum w_{p}$$
 -Eq(V-2)

Source : "Approach Channels A Guide for Design (June 1997)", Final Report of the Joint PIANC and IAPH

Where, as shown below Figure,  $W_{Br}$  and  $W_{Bg}$  are the bank clearances on the "red" and "green" side.  $\Sigma W_p$  is passing distance and the  $W_i$  are additional widths as given Table V-8. The basic maneuvering width  $W_{BM}$  is given following Table V-5.

# A11.5-4

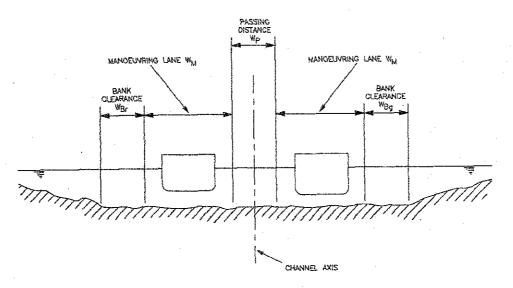



Figure A11.5-1 Elements of Canal Width

Following tables from Table V-5 to Table V-8 indicate each required elements of Alex./Cairo waterway based on PIANC's Guideline Tables and estimation JICA study team.

| Table A11. | 5-5 Basic | Maneuvering | Lane |
|------------|-----------|-------------|------|
|------------|-----------|-------------|------|

| Ship Manoeuvrability                    | good  | moderate | poor  |
|-----------------------------------------|-------|----------|-------|
| Basic Manoeuvring Lane, w <sub>BM</sub> | 1.3 B | 1.5 B    | 1.8 B |

Note : referring to design barge : B = Beam

/estimation by JICA study team

 Table A11.5-6 Passing Distance in Two-way Traffic

| PASSING DISTANCE w <sub>p</sub> | Outer Channel<br>exposed to<br>open water | Inner Channel<br>protected<br>water |
|---------------------------------|-------------------------------------------|-------------------------------------|
| Vessel speed (knots)            |                                           |                                     |
| - fast > 12                     | 2.0 B                                     | -<br>-                              |
| - moderate > 8 - 12             | 1.6 B                                     | <u>1.4 B</u>                        |
| - slow 5 - 8                    | 1.2 B                                     | <u>1.0 B</u>                        |
| Encounter traffic density       |                                           |                                     |
| - light                         | 0.0                                       | 0.0 🛌                               |
| - moderate                      | 0.2 B                                     | 0.2 B                               |
| - heavy                         | 0.5 B                                     | 0.4 B                               |

Note : referring to design barge : B = Beam

estimation by JICA study team

| WIDTH for BANK CLEARANCE<br>(w <sub>Br</sub> or w <sub>Bg</sub> ) | Vessel<br>Speed | Outer Channel<br>exposed to<br>open water | Inner Channel<br>protected<br>water |
|-------------------------------------------------------------------|-----------------|-------------------------------------------|-------------------------------------|
| Sloping channel edges and shoals :                                |                 |                                           |                                     |
| · · ·                                                             | fast            | 0.7 B                                     | -                                   |
| :                                                                 | moderate        | 0.5 B                                     | 0.5 B                               |
|                                                                   | slow            | 0.3 B                                     | 0.3 B                               |
| Steep and hard embankments, structures :                          | · ·             |                                           |                                     |
|                                                                   | fast            | 1.3 B                                     | -                                   |
|                                                                   | moderate        | 1.0 B                                     | 1.0 B                               |
|                                                                   | slow            | 0.5 B                                     | 0.5 B                               |

## Table A11.5-7 Width for Bank Clearance

Note : referring to design barge : B = Beam

estimation by JICA study team

Consequently, required width of Alexandria/Cairo Waterway is estimated using aforementioned equations (V-1) or (V-2) as follows:

- Required Width of Alexandria/Cairo waterways
  - Required width is estimated at 2.6 B (in case of one-way canal)  $W_{BM} + \Sigma W_i + W_{Br} + W_{Bg} = 1.5B + 0.5B + 0.3B + 0.3B = 2.6 B$
  - Required width is estimated at 5.6 B (in case of two-way canal)  $2W_{BM} + 2\Sigma W_i + W_{Br} + W_{Bg} + \Sigma W_p$
  - $= 2 \times 1.5B + 2 \times 0.5B + 0.3B + 0.3B + 1.0B = 5.6B$

Where, important notices are that required width depends on beam (B) of design barge, and depth (H) of waterway. Especially, later one indicates that additional width is estimated at 0.2B in case of (1.15 < H/T < 1.5) as shown in Table V-8 (here, T is draft of design barge).

In each case of barge types or waterway conditions, Table V-10 shows required widths of Alex./Cairo waterway. Each case is set up based on barge types and waterway sections as Table V-9.

As a result of PIANC method, estimated minimum width of IW is about 2 times design minimum width (36 m) in the master plan. However, other countermeasures such as semi-two operation, supplemental navigation aids are proposed in the master plan. In addition, according to hearing from badge operators or crews, there are no hindrances in case of 36 m wide when its design width and depth are certainly secured by improvement works.

| Table A11.5-8 Additional Width for Straight Canal Sections                                                                                                                                                                                                  |                                                   |                                                                           |                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|--|--|
| WIDTH<br><sup>w</sup> i                                                                                                                                                                                                                                     | Vessel<br>Speed                                   | Outer Channel exposed<br>to open water                                    | Inner Channel<br>protected water                |  |  |
| (a) Vessel speed (knots)<br>- fast > 12<br>- moderate > 8 - 12<br>- slow 5 - 8                                                                                                                                                                              |                                                   | 0.1 B<br>0.0<br>0.0                                                       | 0.1 B<br>0.0<br>0.0                             |  |  |
| <ul> <li>(b) Prevailing cross wind (knots) <ul> <li>mild ≤ 15 (≤ Beaufort 4)</li> <li>moderate &gt; 15 - 33</li> <li>(&gt; Beaufort 4 - Beaufort 7)</li> </ul> </li> <li>severe &gt; 33 - 48 <ul> <li>(&gt; Beaufort 7 - Beaufort 9)</li> </ul> </li> </ul> | all<br>fast<br>mod<br>slow<br>fast<br>mod         | 0.0<br>0.3 B<br>0.4 B<br>0.5 B<br>0.6 B<br>0.8 B                          | 0.0<br>0.4 B<br>0.5 B<br>0.8 B                  |  |  |
| (c) Prevailing cross current (knots)                                                                                                                                                                                                                        | slow<br>almost n                                  | 1.0 B<br>legligible in case of Alex./                                     | I.0 B<br>Cairo Waterway                         |  |  |
| (d) Prevailing longitudinal current (knots)<br>- low ≤ 1.5<br>- moderate > 1.5 - 3<br>- strong > 3                                                                                                                                                          | all<br>fast<br>mod<br>slow<br>fast<br>mod<br>slow | 0.0<br>0.0<br>0.1 B<br>0.2 B<br>0.1 B<br>0.2 B<br>0.2 B<br>0.2 B<br>0.4 B | 0.0<br>0.1 B<br>0.2 B<br>0.2 B<br>0.4 B         |  |  |
| (e) Significant wave height $H_s$ and length $\lambda$ (m)                                                                                                                                                                                                  | negligit                                          | ole in case of Alex./Cairo                                                | Waterway                                        |  |  |
| <ul> <li>(1) Aids to Navigation         <ul> <li>excellent with shore traffic control</li> <li>good</li> <li>moderate with infrequent poor visibility</li> <li>moderate with frequent poor visibility</li> </ul> </li> </ul>                                |                                                   | 0.0<br>0.1 B<br>0.2 B<br>≥ 0.5 B                                          | 0.0<br>0 L B<br>0.2 B<br>≥ 0.5 B                |  |  |
| (g) Bottom surface<br>- if depth ≥ 1.5T<br>- if depth < 1.5T then<br>- smooth and soft<br>- smooth or sloping and hard<br>- rough and hard                                                                                                                  |                                                   | 0.0<br>0.1 B<br>0.1 B<br>0.2 B                                            | 0.0<br>0.1 B<br>0.1 B<br>0.2 B                  |  |  |
| (h) Depth of waterway<br>- ≥1.5T<br>- 1.5T - 1.25T<br>- <1.25T                                                                                                                                                                                              |                                                   | 0.0<br>0.1 B<br>0.2 B                                                     | ≥1.5T 0.0<br><1.5T-1.15T 0.2.B*<br><1.15T 0.4 B |  |  |
| (i) Cargo hazard level<br>- low<br>- medium<br>- high                                                                                                                                                                                                       |                                                   | 0.0<br>~ 0.5 B<br>~ 1.0 B                                                 | 0.0<br>~ 0.4 B<br>~ 0.8 B                       |  |  |

# Table A11.5-8 Additional Width for Straight Canal Sections

Note : referring to design barge : B = Beam, T=Draft

: estimation by JICA Study Team.

\* is estimated for Baheria and Noubaria Canal

Source of Table V-5 to V-8 is "Approach Channels a Guide for Design (June 1997)", Final Report of the Joint PIANC and IAPH

# Table A11.5-9 Rough Estimation of H/T in Alex/Cairo Waterway

| Barge type     | Existing Barge (Twin Type)                | Proposed New Barge (Twin Type)*            |
|----------------|-------------------------------------------|--------------------------------------------|
|                | Max Draft (Dis 1.8 m                      | Max Draft (1) is 1.6 m                     |
| Canal Section  | Beam is 7.5m denight is 100 m as a second | Beam & 12.0 m Length is 100 m              |
| Baheria Canat  | Rough estimation is $1.15 < H/T < 1.5 **$ | Rough estimation is 1.15 < H/T < 1.5       |
| Noubarra Canal | Rough estimation is H/T < 1.15 **         | Rough estimation is $1.15 \le H/T \le 1.5$ |

(H is actual depth of each site)

Note : \* Proposed New-generation Barge is described in Section 11.6.1.

\*\* Detailed estimations of each section's depth are indicated in Next Section 11.5.

# Table A11.5-10 Required Width of Alex./Cairo Waterway (based on above Table A11.5.8)

| Barge type         | Constant Marge (Dwin Type)        |                                     |
|--------------------|-----------------------------------|-------------------------------------|
| Canal Section      | Beam (B) of / Sin / Lengths 100 m | (Beam (B) of 12:0 m Mength is 100 m |
| Benford Contribute | 42 m (is 5.6B) for two-way canal  | 68 m (is 5.6B) for two-way canal    |
|                    | 20 m (is 2.6B) for one-way canal  | 32 m (is 2.6B) for one-way canal    |
| Nounema Caret      | 45 m (is 6.0B) for two-way canal  | 68 m (is 5.6B) for two-way canal    |
|                    | 21 m (is 2.8B) for one-way canal  | 32 m (is 2.6B) for one-way canal    |

# Appendix-11.6 Estimation of Lock Capacity

In this Appendix, the capacity of Alexandria/Cairo IW is estimated at the number of daily passable units (barges) in 2020. Regarding Damietta/Cairo IW, the later half of this Appendix similarly indicates its estimated passable traffic volume in the view of lock capacity.

# 1. Lock Capacity of Alexandria/Cairo IW

Assumptions for estimating the number of daily passable units are as follows.

Improvement of operational cycle-time of the Nahda lock

Number of barge traffic on the basis of demand forecast in 2020

# 1-(1) Operational cycle-time of the lock

|           | Difference        | Operational Cycle-Time |                    |                            |                 |          |
|-----------|-------------------|------------------------|--------------------|----------------------------|-----------------|----------|
| Lock      | between WLs of    | Total Cycle Tin        | e for Water-charge |                            | Total 7         | lime for |
| LOOK      | Up-/Down-stream   | and-discharge          |                    | Total 10 min               | Upward/Downward |          |
|           | op /Down suchin   | Upstream ward          | Downstream ward    | for                        |                 |          |
| Kanater   | 1.7 to 0.4 (m)    | 10 min                 | 10 min             | Gate                       | 20 min          | 20 min   |
| Khataba   | 1.2  to  0.1  (m) | 20 min                 | 15 min             |                            | 30 min          | 25 min   |
| Boulin    | 0.8 to $0.2$ (m)  | 15 min                 | 12 min             | operation &<br>Enter/Leave | 25 min          | 22 min   |
| Busstan   | 0.4 to $0.0$ (m)  | 10 min                 | 10 min             |                            | 20 min          | 20 min   |
| Janaklees | 0.5 to 0.1 (m)    | 12 min                 | 10 min             | of<br>Dorrad               | 22 min          | 20 min   |
| Nahda     | 5.6 to 5.3 (m)    | 45 min                 | 35 min             | Barge                      | 55 min          | 45 min   |
| End lock  | 2.5 (m)           | 15 min                 | 15 min             |                            | 25 min          | 25 min   |

Existing operational cycle-time of the each lock are as follows:

Source) Estimation by the Study Team

Among these locks, the Nahda lock has the longest operational cycle-time due to the largest WLs' difference.

In order to meet increase in barge traffic in 2020, it is needed that operations of water-charge/ discharge will be improved by introduction of mechanical system such as pumping system. In the master plan, it is considered that discharge-time is expected to be shortened by about 10 min with above pumping system. Consequently, it is assumed that <u>total operational cycle-time of Nahda Lock</u> should be reduced from a maximum 55 min to a maximum 45 min.

## 1-(2) Number of barge traffic volume in 2020

The number of barge traffic through Alexandria/Cairo IW is shown in Table A11.6–1, and this traffic volume is estimated by the following assumptions.

## Size of barges and its loading capacities

In 2020, it is assumed that large barges will enter services between GCR and Alexandria, and existing standard type units (width of 7.5 m) will navigate the Central Delta such as Rosetta branch (Kafr El Zayat) and will continuously transport from Upper Egypt to GCR.

Large Barge (width of 12 m): laden capacity is 1,378 MT (1,450 DWT) or 96 TEU (88 TEU\*)

\*Coastal barge between Dekheila and GCR has a capacity of 88 TEU

Existing standard type (width of 7.5 m): laden capacity is 713 MT (750 DWT)

# > Number of units (barges) per day

The number of units per day (N) is estimated using the following equation. As a result, <u>daily</u> <u>traffic is estimated at 32 units</u> in all, in consideration of some congestion due to seasonal or daily fluctuations of barge traffic (see Table A11.6-1).

## N≈Ny/T× $\lambda$ -Eq.(A)

Where, Ny: Annual cargo-wise number of units,

- T : Maximum navigable days for year (=335 days/year),
- $\lambda~$  : Cargo-wise peaking factor to the daily average traffic.

|               |                                           |                                            | Corre Volume | Corre Volume Allegated      |                               | Number of Barges (units) |              | ) Peaking     |
|---------------|-------------------------------------------|--------------------------------------------|--------------|-----------------------------|-------------------------------|--------------------------|--------------|---------------|
| I             | W Route                                   | ( UIWI (2020)                              |              | (Cargo volume<br>per units) | (Number of<br>units per year) | (Number o<br>units per d |              |               |
|               |                                           | Wheat                                      | 326          | '000MT                      | /1378 MT=                     | 237                      | 1.0          |               |
|               | · · · ·                                   | Maize                                      | 432          | '000MT                      | /1378 MT =                    | 314                      | 1.3          | 1.4           |
|               |                                           | Coal                                       | 675          | '000MT                      | /1378 MT=                     | <b>49</b> 1              | 1.9          | 1.3           |
| Up-stream     | (Alexandria to GCR)                       | Timber                                     | 342          | '000MT                      | /1378 MT =                    | 249                      | 1.0          | 1.3           |
|               | Γ                                         | Cement                                     | 62           | '000MT                      | /1378 MT =                    | 46                       | 0.2          | 1.3           |
|               |                                           | Iron/Steel Products                        | 68           | '000MT                      | /1378 MT=                     | 50                       | 0.2          | 1.3           |
|               |                                           | Containers (TEUs)                          | 120          | '000TEU                     | /96 (or 88) TEU=              | 1,327                    | 5.1          | 1.3           |
|               |                                           | Mollases                                   | 233          | '000MT                      | /1378 MT =                    | 170                      | 0.9          | 1.8           |
| Down-stream   | n (GCR to Alexandria)                     | Coke                                       | 300          | '000MT                      | /1378 MT=                     | 218                      | 0.8          | 1.3           |
|               |                                           | Containers (TEUs)                          | 120          | '000TEU                     | /96 (or 88) TEU=              | 1,327                    | 5.1          | 1.3           |
| Down-stream ( | (Upper Egypt to Alex.)                    | Mollases                                   | 257          | '000MT                      | /713 MT=                      | 361                      | 1.9          | 1.8           |
| Up-stream     |                                           | Sulfur                                     | 131          | '000MT                      | /713 MT≈                      | 184                      | 0.7          | 1.3           |
| opsucant      | (between Alexandria<br>and Kafr El Zayat) | Grease                                     | 30           | '000MT                      | /713 MT =                     | 43                       | 0.2          | 1.3           |
| Down-stream   | <b></b>                                   | Super Phosphate                            | 130          | '000MT                      | /713 MT=                      | 183                      | 0.7          | 1.3           |
|               |                                           | Total number of units per year (Up-stream) |              |                             | 3,873                         | 16.0 <sup>u</sup>        | mits per day |               |
|               |                                           |                                            |              |                             | Down-stream)                  | 3,873                    | 16.0         | inits per day |

 Table A11.6-1
 Traffic Volume in 2020 via Alexandria-Cairo IW (Noubaria Canal)

In Equation (A), T=335 days/year, namely blockade period of IW is estimated at 1 month although one of strategies of the conceptual plan is to shorten blockade's period as much as possible. In order to avoid to underestimating daily traffic, it is assumed that such closing period is 1 month in consideration of existing blockade period of IWs.

As for peaking factor  $\lambda$ , existing barge traffic pattern seems to indicate considerable fluctuations (seasonable congestion), namely barge operation during summer is generally more active than winter period. In future, IWT sector will make an effort to secure "regular service all round year" in order to attract mass-transportation users, thus, such fluctuations will be reduce in 2020. As a result, peaking factor is applied at  $\lambda = 1.3$  except for agricultural cargoes. As for grain cargoes such as maize (summer crops in Egypt) and wheat (winter crops),  $\lambda = 1.4$  is assumed because such imported grain cargoes are mainly transported to supply the deficit of local production.  $\lambda = 1.8$  is assumed for molasses because volume of its transportation strongly depends on the crop

of sugar cane (summer crops).

The applicability of the " $\lambda$  (peaking factor)" used in above table is expected to be verified by using actual statistics of barge traffic after IWT will be more active due to "regular service all round year" in these commodities such as containers, grain and other goods.

# 1-(3) Lock Capacity of Alexandria/Cairo IW

As described in the former section 1-(1), <u>total operational cycle-time of Nahda Lock</u> should <u>be</u> <u>improved from a maximum 55 min to a maximum 45 min</u>, by installation of appropriate pumping system.

On this condition, the capacity of Alexandria/Cairo IW is estimated at 32 units per day (see Table A11.6-2). Consequently, capacities of canals can meet increase in the traffic of units for 2020.

|               | Nahda Lock (Alex/Cairo IW)          |
|---------------|-------------------------------------|
| Operational   | Total cycle time will be 0.75 hour. |
| cycle-time    |                                     |
| Lock Capacity | 32 units per day (=24 hours/0.75)   |

 Table A11.6-2
 Capacities of Nahda Lock

Note: 1) Cycle-time includes open/close time of gates, water-filling/discharge time, and enter/leave time of units.

2) Introduction of 24-hours operation is assumed.

# 2. Lock Capacity of Damietta/Cairo IW

#### 2-(1) Operational cycle-time of the lock

When "Damietta Project" is completed, three (3) locks are expected to be operated by RTA. Among them, construction works of two locks are well underway. It is assumed that the longest operational cycle-time of these lock will be 0.5 hours:

#### 2-(2) Number of barge traffic volume in 2020

The number of barge traffic through Damietta/Cairo IW is shown in Table A11.6-3. A calculation procedure is the same as previous case of Alexandria/Cairo IW, and resulting traffic volume is estimated by the following assumptions.

# Size of barges and its loading capacities

In 2020, it is assumed that large barges will enter services between GCR and Damietta. Large Barge (width of 12 m): laden capacity is 1,378 MT (1,450 DWT) or 96 TEU

#### Number of units (barges) per day

The number of units per day (N) is estimated using the following equation. As a result, <u>daily</u> <u>traffic is estimated at 13 units</u> (to be exact, 12.2 units) in all, in consideration of some congestion due to seasonal or daily fluctuations of barge traffic (see Table A11.6-4).

## N=Ny/T $\times \lambda$ -Eq.(A)

Where, Ny: Annual cargo-wise number of units,

T : Maximum navigable days for year (=335 days/year),

 $\lambda$ : Cargo-wise peaking factor to the daily average traffic.

| Γ |                                                    | 0-5 Hame volume   |                                         |         |                             |                                |                              |               |
|---|----------------------------------------------------|-------------------|-----------------------------------------|---------|-----------------------------|--------------------------------|------------------------------|---------------|
|   |                                                    |                   | Cargo Volume Allocated<br>to IWT (2020) |         | Number of Barges (units)    |                                | Eq. (A)                      | Peaking       |
|   | IW Route                                           | Cargo Item        |                                         |         | (Cargo volume<br>per barge) | (Number of<br>barges per year) | (Number of<br>barges per day | Factor<br>(λ) |
| - |                                                    | Maize             | 285                                     | '000MT  | /1378 MT=                   | 208                            | 0.9                          | 1.4           |
| F |                                                    | Wheat             | 417                                     | '000MT  | /1378 MT=                   | 303                            | 1.3                          | 1.4           |
| - | Up-stream (Damietta to GCR)                        | Timber            | 86                                      | '000MT  | /1378 MT=                   | 63                             | 0.2                          | 1.3           |
| - |                                                    | Containers (TEUs) | 92                                      | '000TEU | /96 TEU=                    | 955                            | 3.7                          | 1.3           |
|   | Down-stream (GCR to Damietta)                      | Containers (TEUs) | 92                                      | '000TEU | /96 TEU=                    | 955                            | 3.7                          | 1.3           |
| - | Total number of barges per year (Up-stream)        |                   |                                         | 1,529   | 6.1 <sup>unit</sup>         | s per day                      |                              |               |
|   | Total number of barges per year (Down-stream) 1,52 |                   |                                         | ) 1,529 | 6.1 unit                    | s per day                      |                              |               |

# Table A11.6-3 Traffic Volume in 2020 via Damietta-Cairo IW

# 2-(3) Lock Capacity of Damietta/Cairo IW

As described in the former section 2-(1), total operational cycle-time of lock along this IW is estimated at 30 min.

On such condition, <u>the capacity of Alexandria/Cairo IW is estimated at 48 units per day</u> (see Table A11.6-4). Consequently, capacities of canals can meet increase in the traffic of units for 2020.

|                             | Damietta/Cairo IW                   |
|-----------------------------|-------------------------------------|
| Operational                 | Total cycle time will be 0.50 hour. |
| cycle-time<br>Lock Capacity | 48 units per day (=24 hours/0.50)   |

 Table A11.6-4
 Capacities of Lock in Damietta Branch

Note: 1) Cycle-time includes open/close time of gates, water-filling/discharge time, and enter/leave time of units.

2) Introduction of 24-hours operation is assumed.

# Appendix-11.7 Width of Damietta/Cairo IW

The bases of dimension of Damietta/Cairo IW at planning/design stages are summarized in this Appendix. How to determine width and depth of IW in "Damietta Project" has a great importance for the master plan, because a review of "Damietta Project" is needed to examine a possibility of introduction new-wider barge in Damietta/Cairo IW.

This appendix mainly quotes the following study (hereinafter referred to as "Damietta Study"): Volume III A -Feasibility Study, Technical Development-, "Proposed Damietta/Cairo Inland Waterway Rehabilitation Project", February 87.

According to above Damietta Study, the bases of determination of this IW width are quoted as follows:

The necessary canal width is contingent on:

-Size of the foreseen barges

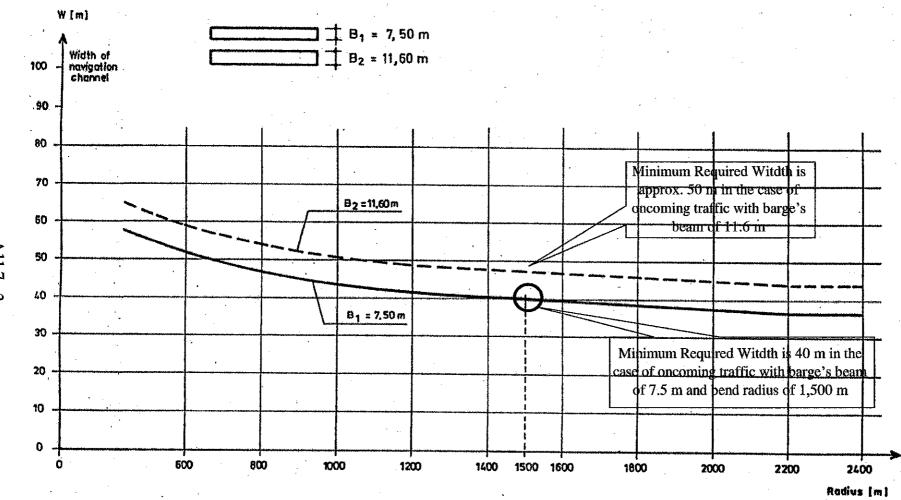
-Bend radii of IW

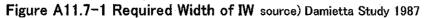
- Type of traffic, one-way traffic or oncoming traffic (Two-way)

-Speed of barges

-Flow velocity of IW

-Required safety distances,


-Discharge volume and IW depth


-Traffic density.

Besides, the bases of determination of this IW depth are indicated in Appendix-11.5.

Above bases are almost same with the approach of PIANC (see Appendix- V for detail). As the conclusion of Damietta Study, required minimum wide is estimated at 40 m in the case of oncoming (Two-way) traffic with barge's beam of 7.5 m. Another major reason of its determination is bend radii as 1,500 m, namely, a maximum bend radius of Damietta Branch is estimated at 1,500 m (see Figure A11.7-1 in next page). Moreover, "Damietta study" suggested that minimum required width is approximately 50 m in the case of oncoming traffic with barge's beam of 11.6 m. These cases assume that both oncoming barges pass each other at normal speed.

However, the master plan proposes that new operation methods will be applied in case of new wider barge. According to this new operation, when wider barges moving in opposite directions encounter each other, one barge should stop and safe navigation will be secured even though increase in traffic of wider barges. Therefore, design width of Damietta Project is adequate for navigation of new wider barges.





A11.7- 2

# Appendix-11.8 (Long-Term Plan) Required Facilities and Equipments at a New River Port

# (1) Required Number of Container Berths at New River Port

Assumptions for obtaining the required number of container berths in 2020 are as follows:

| Working Time per Day:                               | 24 hours                  |
|-----------------------------------------------------|---------------------------|
| Actual Working Days per Year:                       | 335 days                  |
| Number of Calling Container Barges per Year:        | 2,286 barges              |
|                                                     | (910 barges for Dekheila) |
| Number of Loading / Unloading Containers per Barge: | 192 TEUs                  |
|                                                     | (176 TEUs for Dekheila)   |
| Conversion Rate:                                    | 1.67 TEU / Box            |
| Berth Occupancy Ratio:                              | 70%                       |
| Non-operational Hours at Berthing and De-berthing:  | 1 hour                    |

The required number of container berths in 2020 is obtained as follows:

# Berthing Time / Barge

= 192 (TEUs) / 1.67 (TEU / box) / 30 (box / hour) + 1 (hour) = 4.8 hours (176 (TEUs) / 1.67 (TEU / box) / 30 (box / hour) + 1 (hour) = 4.5 hours for Dekheila) Required Number of Container Berths

= (4.8 (hours) x 1,376 (barges) + 4.5 (hours) x 910 (barges)) / 24 hours / 335days / 0.7 =  $1.9 \rightarrow 2$  berths

# (2) Required Number of Container Stacking Ground Slots

Required number of container stacking ground slots is calculated as follows.

| (Inbound Containers)                                           |                      |
|----------------------------------------------------------------|----------------------|
| Inbound Containers:                                            | 4,417 TEUs / week    |
| Average Number of Stacking Tiers of Inbound Containers:        | 2.25 tiers           |
| Yard Stacking Efficiency:                                      | 1.0                  |
| Container Delivery Efficiency:                                 | 0.5 /week            |
| Required Number of Ground Slots for Inbound Containers         |                      |
| $= 4,417 (TEUs / week) / 2.25 (tiers) \times 1.0 \times 0.000$ | 5 (/week) = 982 TEUs |

| (Outbound Containers)                      |                          |
|--------------------------------------------|--------------------------|
| Outbound Containers:                       | 4,417 TEUs / week        |
| Average Number of Stacking Tiers of Outbou | nd Containers: 3.0 tiers |
| Yard Stacking Efficiency:                  | 1.2                      |
| Container Receiving Efficiency:            | 0.35 /week               |

## A11.8 1

# Required Number of Ground Slots for Outbound Containers

# = 4,417 (TEUs / week) / 3.0 (tiers) x $1.2 \times 0.35$ (/week) = 618 TEUs

(Empty Containers)

Empty Container Storage Ratio:20%Average Number of Stacking Tiers of Empty Containers:4.0 tiersYard Stacking Efficiency:1.1 / weekRequired Number of Ground Slots for Empty Containers

= 423 (000 TEUs / year) x 0.2 / 48 (week) / 4.0 (tiers) x 1.1 = 485 TEUs

Total required number of ground slots is shown in the following table.

# Total Required Number of Ground Slots

| Container Status                      | Required Number of |
|---------------------------------------|--------------------|
|                                       | Ground Slots (TEU) |
| Inbound Container Stacking Slots      | 982                |
| Outbound Container Stacking Slots     | 618                |
| Empty Container Stacking Slots        | 485                |
| Total Required Number of Ground Slots | 2,085              |

# (3) Required Number of General Cargo Berths

Assumptions for obtaining the required number of general cargo berths in 2020 are as follows:

| Working Time per Day:                              | 16 hours   |
|----------------------------------------------------|------------|
| Actual Working Days per Year:                      | 335 days   |
| Number of Calling General Cargo Barges per Year:   |            |
| Timber:                                            | 317 barges |
| Cement:                                            | 47 barges  |
| Iron/Steel Products:                               | 51 barges  |
| Number of Loading / Unloading Cargoes per Barge:   | 1,378 MT   |
| Berth Occupancy Ratio:                             | 70%        |
| Non-operational Hours at Berthing and De-berthing: | 1 hour     |

Required number of general cargo berths in 2020 is obtained as follows:

Berthing Time / Barge (Timber) = 1,378 (MT) / 110 (MT) + 1 (hour) = 13.5 hours Required Number of Berths (Timber)

= 13.5 (hours) x 317 (barges) / 16 hours / 335 days / 0.7 = 1.1

Berthing Time / Barge (Cement) = 1,378 (MT) / 30 (MT) + 1 (hour) = 46.9 hours

## A11.8-2

Required Number of Berths (Cement)

= 46.9 (hours) x 47 (barges) / 16 hours / 335 days / 0.7 = 0.6

Berthing Time / Barge (Iron/Steel Products) = 1,378 (MT) / 70 (MT) + 1 (hour) = 20.7 hours Required Number of Berths (Iron/Steel Products)

= 20.7 (hours) x 51 (barges) / 16 hours / 335 days / 0.7 = 0.3

Total Required Number of General Cargo Berth =  $2.0 \rightarrow 2$  berths

#### (4) Required Areas of Sheds and Open Yard

The required areas of commodity-wise sheds and open yard are estimated using the following formula on the general cargo storage condition presented in the following table.

 $A = (\lambda \times \delta \times V/T) / (\mu \times \xi \mathfrak{E})$ 

where,

V: Annual cargo-wise throughput of conventional cargo (tons),

T: Maximum available working days for the year (= 335 days/year),

 $\lambda$ : Cargo-wise peaking factor to the daily average handling demand,

 $\delta$ : Average dwelling time (=7 days),

μ: Cargo-wise unit load per square meter for storage,

 $\xi$ : Passage ratio (=0.5), and

 $\epsilon$ : Operational factor (=0.75).

| I ackage-wise       | I ackage wise Storage Continuous of Conventional Cargo |                |             |               |  |  |  |
|---------------------|--------------------------------------------------------|----------------|-------------|---------------|--|--|--|
| Commodity           | Package Style                                          | Peaking Factor | Unit Load   | Storage Place |  |  |  |
|                     |                                                        | ())            | for Storage |               |  |  |  |
|                     |                                                        |                | (µ; ton/m2) |               |  |  |  |
| Timber              | Bundle                                                 | 1.3            | 2.5         | Yard          |  |  |  |
| Cement              | Bag                                                    | 1.6            | 3.0         | Shed          |  |  |  |
| Iron/Steel Products | Bundle                                                 | 1.8            | 2.0         | Yard          |  |  |  |

Package-wise Storage Conditions of Conventional Cargo

1) Sheds

Required area of sheds is calculated at 2,000 m2 based on the conditions below.

A-shed = 
$$(\lambda \times \delta \times V/T) / (\mu \times \xi \times \delta)$$
  
=  $(1.6 \times 7 \times 64,000 / 335) / (3.0 \times 0.5 \times 0.75)$   
=  $1,902 \text{ (m2)}$ 

# 2) Open Yard

Required area of open yard is calculated at 16,000 m2 based on the conditions below.

A-open yard = 
$$(\lambda \times \delta \times V/T) / (\mu \times \xi \times V)$$
  
=  $(1.3 \times 7 \times 436,000 / 335) / (2.5 \times 0.5 \times 0.75)$   
+  $(1.6 \times 7 \times 70,000 / 335) / (2.0 \times 0.5 \times 0.75)$   
=  $12,633 + 3,120$   
=  $15,753 (m2)$ 

# (4) Cargo Handling Equipment for Container Cargo

## 1) Quay Side Crane

The required number of quay side movable cranes for handling containers can be obtained by the following formula:

Nqc = A / (T x  $\mu$ 1 x P x Pqc x  $\mu$ 2 x E)

where,

Nqc: Required number of quay side movable cranes

A : Annual throughput in TEUs

T : Maximum annual available working hours

available working day per year = 335 days

actual working hours = 24 hours per day x 335 = 8,040 hours per year

P : Berth occupancy ratio = 0.7

Pqc : Net productivity of quay side movable crane (20 boxes/hour/unit in 2020)

 $\mu 1$ : Percentage of availability (0.8)

 $\mu 2$ : Container operation efficiency ratio (0.8)

#### A11.8-4

## E : Conversion ratio of 20'/40' (1.67 TEU / box)

Assuming that the operational conditions above and a forecast annual throughput of 423 thousand TEUs for the port, the required number of quay side movable cranes is calculated at four (4) units as below.

Nqc =  $423,000 / (8,040 \times 0.8 \times 0.7 \times 20 \times 0.8 \times 1.67)$ 

 $= 3.5 \rightarrow 4$  (units)

### 2) Rubber Tire Mounted Gantry Crane (RTG)

The required number of RTGs used at the marshalling yard is estimated by the following formula on the assumption that containers loading / discharging will be stacked once in the marshalling yard.

Nrc = Nrc1 + Nrc2 + Nrc3

Where,

Nrc: Required number of RTGs

Nrc1: RTGs mainly used for quay side crane operation

= One unit RTG x Number of quay side cranes

Nrc2: RTGs mainly used for container receiving/delivery operation

= Number of annual handling containers / Amy / T

 $= A \times R / Amy / T$ 

A : Annual throughput in TEUs

R : Handling times pre unit (3)

Amy =  $\mu 1 \times Prc \times E$ 

 $\mu$ 1: Percentage of available ratio (0.7)

Prc: Productivity of RTG on the basis of gross (23 boxes/hour/unit)

E: Conversion rate of 20' / 40' (1.67 TEUs / box)

 $Amy = 0.7 \times 23$  boxes  $\times 1.67 = 26.9$ 

T: Maximum available working hours per year (8,040 hours/year)

Nrc3: Stand-by RTGs for immobilization due to repairmen, periodical inspection or other unforeseen circumstances

 $= (Nrc1 + Nrc2) \times 10\%$ 

Nrc 1 = 4

Nrc 2 = (423,000 x 3) / 26.9 / 8,040 = 5.9 Nrc 3 = (4 + 5.9) x 0.1 = 0.99

Nrc = 4Units + 6Units + 1Unit = 11Units

Total required number of RTGs in 2020 is <u>11 units</u>.

# 3) Prime Mover (Tractor / Trailer)

Yard tractor-trailers with chassis run between the quay side apron and the marshaling yard, and transport containers for loading onto or unloading from the container barges. One job cycle time of the yard tractor-trailers largely depends on the traveling distance between quay side cranes and marshaling yard. The required number of yard tractor-trailers for each quay side crane (Nytt) is estimated based on the conditions below.

Nytt =  $(3.0 + 0.7 / (15 / 60)) / (3.0 \times 0.7)$ 

=  $5.8/2.1 = 2.76 \rightarrow 3$  (units/quay side crane)

| Average travel speed of yard tractor-trailers: | 15 (km/hour)      |
|------------------------------------------------|-------------------|
| Handling time under quay-side crane:           | 3 (minute/cycle)  |
| Handling time under RTGs:                      | 3 (minutes/cycle) |
| Average traveling distance of yard tractors:   | 0.7 (km/cycle)    |
| Operational factor:                            | 0.7               |

Therefore, the required number of yard tractor-trailers in total is estimated at 12 (= 3 x 4) units.

#### (5) Cargo Handling Equipment for General Cargo

## 1) Quay Side Crane

Considering available working range of truck crane and efficient cargo handling, two truck cranes should be applied for one unit of barges. The required number of truck cranes in total is 4 units (2 cranes x 2 berths).

#### 2) Forklift

It is essential to introduce a sufficient number of forklifts in order to efficiently handle general cargoes. Forklifts are used for receiving cargoes on the apron and delivering cargoes at the shed and open yard. The required number of forklifts is obtained as follows:

Required number of forklifts for receiving cargoes on the apron = 1 (unit/crane) x 4 (cranes) = 4 (units)

Required number of forklifts for delivering cargoes at the shed and open yard

## A11.8 6

= 2 (units/berth) x 2 (berth) = 4 (units)

I

The required number of forklifts in total is 8 units.

# Appendix 11-9 Rough Estimate of Dredging Volume along the Upper River Nile

The possible volume of maintenance dredging is estimated based on the results of cross sectional survey which was carried out by the Study Team for 1 km distance at each specified 30 location along the Upper River Nile form Cairo to Asyut. The estimated volume of dredging for each specified location is summarized in the following Table for two cases of water depth requirement, CASE 1: Water Depth of 2.3 m and CASE 2: Water Depth of 2.5 m.

Roughly estimated cost for the above estimated maintenance dredging was obtained at L.E. 33.7 million for 2.4 million cubic meters dredging work (CASE 1: water depth of 2.3 m) and L.E. 39.6 million for 2.8 million cubic meters dredging works (CASE 2: water depth of 2.5 m) respectively as summarized below.

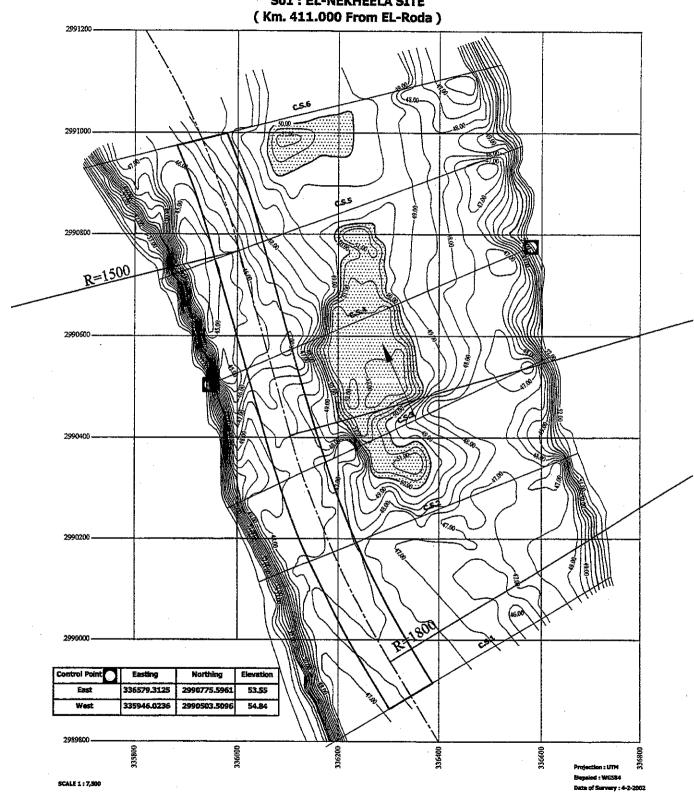
|   |                  |           | CASE 1                       | CASE 2             |  |  |
|---|------------------|-----------|------------------------------|--------------------|--|--|
|   |                  |           | Min. Depth = $2.3 \text{ m}$ | Min. Depth = 2.5 m |  |  |
|   | ·                |           | V=2.36 mil m3                | V=2.78 mil m3      |  |  |
| Α | Dredging Cost    |           | 28.4                         | 33.4               |  |  |
| В | Indirect Cost    | (A) x 15% | 4.3                          | 5.0                |  |  |
| С | Sub Total        | (A) + (B) | 32.7                         | 38.4               |  |  |
| D | Engineering Cost | (C) x 3 % | 1.0                          | 1.2                |  |  |
|   | Total            | (C) + (D) | 33.7                         | 39.6               |  |  |

Table A11.9.1 Cost Estimate on Maintenance Dredging from Asyut to Cairo (million L.E.)

## Dredging Volume CASE-1 (Min.Water Depth -2.3m)

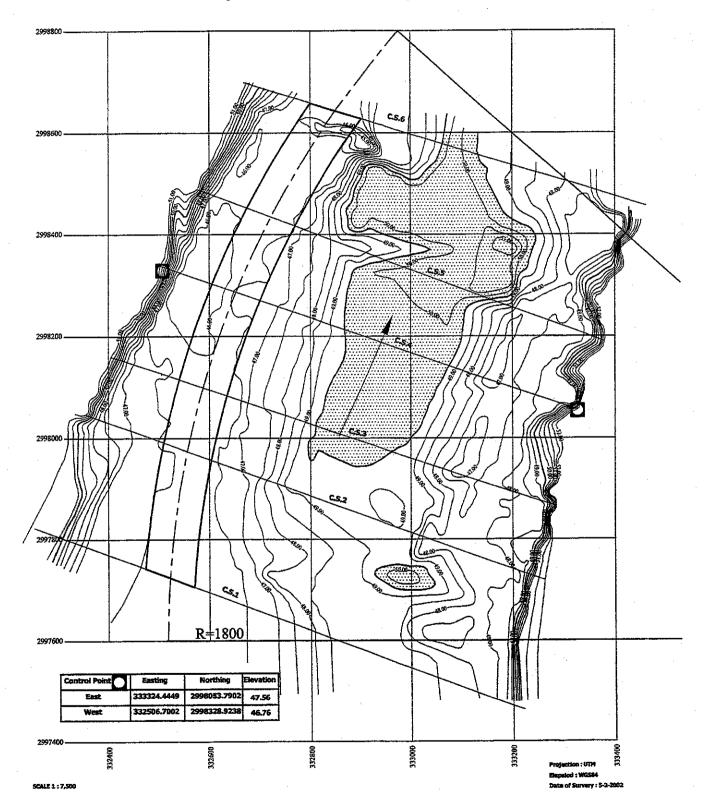
| 1        |                                                  | Area                                                             | Length                                 | Volume                                                     |             |                                   | Area                                           | Length                   | Volume                           |            |                              | Area                                      | Length                   | Volume                                       |
|----------|--------------------------------------------------|------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|-------------|-----------------------------------|------------------------------------------------|--------------------------|----------------------------------|------------|------------------------------|-------------------------------------------|--------------------------|----------------------------------------------|
| Point    | Section                                          | (m2)                                                             | (m)                                    | (m3)                                                       | Point       | Section                           | (m2)                                           | (m)                      | (m3)                             | Point      | Section                      | (m2)                                      | (m)                      | (m3)                                         |
| S01      | 1                                                | 86.78                                                            |                                        | (11.47                                                     | S11         | 1                                 | 27.95                                          |                          |                                  | S21        | 1                            | 8.91                                      |                          |                                              |
| <b>.</b> | 2                                                | 59,98                                                            | 323                                    | 23,730                                                     | 0           | 2                                 | 141,57                                         | 208                      | 17.602                           |            | 2                            | 134.67                                    | 301                      | 21,593                                       |
|          | 3                                                | 102.25                                                           | 168                                    | 13,648                                                     |             | 3                                 | 172.55                                         | 247                      | 38,813                           |            | 3                            | 234.09                                    | 203                      | 37,469                                       |
| [        | 4                                                | 0.00                                                             | 233                                    | 11,914                                                     |             | 4                                 | 144.91                                         | 198                      | 31,442                           |            | 4                            | 318.77                                    | 281                      | 77,739                                       |
|          | 5                                                | 20.32                                                            | 222                                    | 2,254                                                      |             | 5                                 | 98.35                                          | 229                      | 27,907                           |            | 5                            | 372.00                                    | 210                      | 72,417                                       |
|          | 6                                                | 50.78                                                            | 230                                    | 8,190                                                      |             | 6                                 | 0.00                                           | 227                      | 11,169                           |            | 6                            | 265.31                                    | 365                      | 116,276                                      |
|          | V01                                              |                                                                  |                                        | 59,737                                                     |             | V11                               |                                                |                          | 126,932                          |            | V21                          |                                           |                          | 325,495                                      |
| S02      | 1                                                | 4.27                                                             |                                        |                                                            | S12         | 1                                 | 0.20                                           |                          |                                  | S22        | 1                            | 12.75                                     |                          |                                              |
|          | 2                                                | 10.14                                                            | 252                                    | 1,820                                                      | 1           | 2                                 | 5.81                                           | 224                      | 675                              |            | 2                            | 0.00                                      | 187                      | 1,193                                        |
|          | 3                                                | 10.61                                                            | 129                                    | 1,340                                                      | -           | 3                                 | 3.45                                           | 186                      | 863                              | · .        | 3                            | 5.41                                      | 208                      | 563                                          |
|          | 4                                                | 15.95                                                            | 199                                    | 2,639                                                      |             | 4                                 | 37.12                                          | 216                      | 4,392                            |            | 4                            | 0.00                                      | 195                      | 528                                          |
|          | 5                                                | <u>1.19</u><br>2.10                                              | 163                                    | 1,398                                                      | ł           | 5                                 | 0.90                                           | 233                      | 4,437                            |            | 5                            | 0.25                                      | 196                      | 24                                           |
|          | 6<br>V02                                         | 2.10                                                             | 246                                    | 404<br>7,601                                               |             | 6<br>V12                          | 0.00                                           | 168                      | 76<br>10,441                     |            | 6<br>V22                     | 6.79                                      | 191                      | <u>674</u><br>2,981                          |
| ~~~      | 1                                                | 0.00                                                             |                                        | 7,001                                                      | 019         | 1                                 | 3.87                                           |                          | 10,441                           | S23        | 1                            | 305.94                                    |                          | 2,901                                        |
| S03      | 2                                                | 0.00                                                             | 326                                    | 0                                                          | S13         | 2                                 | 104,41                                         | 279                      | 15,105                           | 525        | 2                            | 284.10                                    | 232                      | 68,326                                       |
|          | 3                                                | 0.00                                                             | 240                                    | 0<br>0                                                     |             | 2                                 | 151.85                                         | 215                      | 27,576                           |            | 3                            | 270.88                                    | 202                      | 56,170                                       |
|          | 4                                                | 2.30                                                             | 187                                    | 216                                                        |             | 4                                 | 149.71                                         | 230                      | 34,712                           |            | 4                            | 281.11                                    | 290                      | 79,925                                       |
|          | 5                                                | 26.19                                                            | 170                                    | 2,427                                                      |             | 5                                 | 0.00                                           | 184                      | 13,751                           |            | 5                            | 267.52                                    | 326                      | 89,346                                       |
|          | 6                                                | 60.89                                                            | 172                                    | 7,491                                                      |             | 6                                 | 0.00                                           | 218                      | 0                                |            | 6                            | 24.64                                     | 224                      | 32,655                                       |
|          | V03                                              |                                                                  |                                        | 10,134                                                     |             | V13                               |                                                |                          | 91,144                           |            | V23                          |                                           |                          | 326,422                                      |
| S04      | 1                                                | 95.83                                                            |                                        |                                                            | S14         | 1                                 | 0.00                                           |                          | . ,                              | S24        | 1                            | 0.00                                      |                          |                                              |
| ·        | 2                                                | 14.94                                                            | 185                                    | 10,256                                                     |             | 2                                 | 20.95                                          | 195                      | 2,043                            |            | 2                            | 0.00                                      | 197                      | Ŭ                                            |
|          | 3                                                | 25.61                                                            | 146                                    | 2,963                                                      |             | 3                                 | 66.53                                          | 237                      | 10,383                           |            | 3                            | 0.00                                      | 213                      | 0                                            |
| [        | 4                                                | 33.08                                                            | 171                                    | 5,021                                                      |             | 4                                 | 110.47                                         | 220                      | 19,453                           |            | 4                            | 89.78                                     | 381                      | 17,095                                       |
|          | 5                                                | 1.11                                                             | 177                                    | 3,021                                                      |             | 5                                 | 107.48                                         | 213                      | 23,158                           |            | 5                            | 247.01                                    | 237                      | 39,830                                       |
|          | 6                                                | 8.93                                                             | 146                                    | 732                                                        |             | 6                                 | 27.73                                          | 229                      | 15,510                           |            | 6                            | 342.17                                    | 255                      | 75,042                                       |
|          | V04                                              |                                                                  |                                        | 21,994                                                     | L           | V14                               |                                                |                          | 70,547                           |            | V24                          |                                           |                          | 131,967                                      |
| S05      | 1                                                | 0.00                                                             |                                        |                                                            | S15         | 1                                 | 219.10                                         |                          |                                  | S25        | 1                            | 200.47                                    |                          | 10.017                                       |
|          | 2                                                | 0.00                                                             | 158                                    | 0                                                          |             | 2                                 | 140.11                                         | 203                      | 36,454                           |            | 2                            | 151.08                                    | 239                      | 42.017                                       |
|          | 3                                                | 0.00                                                             | 137                                    | 0                                                          | 1           | 3                                 | 186.14                                         | 217                      | 35,441                           |            | 3                            | 143.39                                    | 209                      | 30,747                                       |
|          | 4 5                                              | 36.96                                                            | 185                                    | 3,414                                                      |             | 4                                 | 150.28                                         | 276                      | 46,416<br>22,110                 |            | <u>4</u>                     | 135.95                                    | 185                      | 25,848<br>25,782                             |
|          | <br>6                                            | 168.49<br>202.22                                                 | 184<br>209                             | 18,936<br>38,676                                           |             | 5<br>6                            | 15.27<br>72.40                                 | <u>267</u><br>271        | 11,888                           |            |                              | 174.66<br>107.22                          | 166<br>207               | 29,182                                       |
|          | V05                                              | 202.22                                                           | 209                                    | 61,026                                                     |             | V15                               | /2.40                                          | 2/1                      | 152,309                          |            | V25                          | 107.22                                    |                          | 153,542                                      |
| S06      | 1                                                | 0.11                                                             |                                        | 01,020                                                     | S16         | 1                                 | 186.66                                         |                          | 102,309                          | S26        | 1                            | 0.00                                      |                          | 100,042                                      |
| 300      | 2                                                | 18.85                                                            | 216                                    | 2.044                                                      | 1310        | 2                                 | 98.53                                          | 208                      | 29.621                           | 320        | 2                            | 0.00                                      | 195                      | 0                                            |
|          | 3                                                | 23.12                                                            | 211                                    | 4,431                                                      |             | 3                                 | 39.54                                          | 182                      | 12,552                           | 1          | 3                            | 0.00                                      | 237                      | 0                                            |
|          | 4                                                | 99.83                                                            | 189                                    | 11,623                                                     | 1           | 4                                 | 45.71                                          | 234                      | 9,965                            |            | 4                            | 0.00                                      | 216                      | 0                                            |
| 1        | 5                                                | 251.55                                                           | 190                                    | 33,455                                                     | 1           | 5                                 | 0.18                                           | 191                      | 4,390                            |            | 5                            | 10.58                                     | 265                      | 1,401                                        |
| 1 [      | 6                                                | 299.85                                                           | 182                                    | 50,137                                                     | 1           | 6                                 | 0.00                                           | 183                      | 16                               |            | 6                            | 59.80                                     | 244                      | 8,569                                        |
|          | V06                                              |                                                                  |                                        | 101,690                                                    |             | V16                               |                                                |                          | 56,544                           |            | V26                          |                                           |                          | 9,970                                        |
| S07      | 1                                                | 38.42                                                            |                                        |                                                            | S17         | 1                                 | 0.00                                           |                          |                                  | S27        | 1                            | 0.00                                      |                          |                                              |
| 1        | 2                                                | 6.24                                                             | 296                                    | 6,602                                                      | -           | 2                                 | 0.00                                           | 279                      | 0                                |            | 2                            | 134.72                                    | 259                      | 17,419                                       |
|          | 3                                                | 56.01                                                            | 188                                    | 5,843                                                      |             | 3                                 | 0.00                                           | 208                      | 0                                |            | 3                            | 198.05                                    | 196                      | 32,548                                       |
|          | 4                                                | 54.20                                                            | 156                                    | 8,598                                                      |             | 4                                 | 4.45                                           | 226                      | 503                              |            | 4                            | 208.69                                    | 207                      | 42,004                                       |
|          | 5                                                | 95.65                                                            | 175                                    | 13,101                                                     |             | 5                                 | 67.93                                          | 209                      | 7,558                            |            | 5                            | 67.22                                     | 329                      | 45,453                                       |
|          | 6                                                | 93.98                                                            | 193                                    | 18,253                                                     |             | 6                                 | 137.98                                         | 202                      | 20,848                           |            | 6                            | 177.24                                    | 181                      | 22,101                                       |
|          | V07                                              | 1.10                                                             |                                        | 52,396                                                     | 010         | V17                               | 78.47                                          |                          | 28,909                           | 000        | V27                          | 205.11                                    |                          | 159,525                                      |
| S08      | 1                                                | <u>1.42</u><br>2.06                                              | 140                                    | 243                                                        | \$18        | 1 2                               | 0.00                                           | 161                      | 6,328                            | S28        | 1                            | 56.80                                     | 256                      | 33,589                                       |
|          | 23                                               | 38.25                                                            | 140                                    | 243                                                        |             | 3                                 | 0.00                                           | 158                      | 12                               |            | 3                            | 22.79                                     | 230                      | 9,148                                        |
|          | 4                                                | 46.80                                                            | 215                                    | 9,136                                                      |             | 4                                 | 57.09                                          | 138                      | 5,077                            |            | 4                            | 59.64                                     | 230                      | 9,006                                        |
|          | 5                                                | 59.40                                                            | 114                                    | 6,062                                                      | 1           | 5                                 | 130.22                                         | 169                      | 15,850                           |            | 5                            | 80.30                                     | 233                      | 16,300                                       |
|          | 6                                                | 191.68                                                           | 146                                    | 18,333                                                     | 1           | 6                                 | 178.96                                         | 176                      | 27,184                           | 1          | 6                            | 7.30                                      | 214                      | 9,352                                        |
|          | V08                                              | 101.00                                                           |                                        | 36,511                                                     | ł           | V18                               |                                                |                          | 54,452                           |            | V28                          |                                           |                          | 77,395                                       |
| S09      | 1                                                | 94.83                                                            |                                        |                                                            | \$19        | 1                                 | 30.23                                          |                          |                                  | S29        | 1                            | 0.00                                      |                          |                                              |
|          | 2                                                | 111.72                                                           | 183                                    | 18,863                                                     |             | 2                                 | 6,72                                           | 111                      | 2,046                            |            | 2                            | 0.00                                      | 304                      | 0                                            |
|          |                                                  | 112.65                                                           | 150                                    | 16,831                                                     |             | 3                                 | 9,40                                           | 274                      | 2,211                            | i i        | 3                            | 78.22                                     | 278                      | 10,858                                       |
|          | 3                                                | 112.00                                                           |                                        | 20,332                                                     |             | 4                                 | 106.32                                         | 213                      | 12,298                           |            | 4                            | 73.45                                     | 274                      | 20,777                                       |
|          |                                                  | 89.94                                                            | 201                                    | 20,002                                                     |             | 5                                 | 68.53                                          | 198                      | 17,289                           |            | 5                            | 0.00                                      | 267                      | 9,817                                        |
|          | 3<br>4<br>5                                      | 89.94<br>71.40                                                   | 173                                    | 13,968                                                     |             |                                   |                                                |                          |                                  |            |                              |                                           |                          |                                              |
|          | 3<br>4<br>5<br>6                                 | 89.94                                                            |                                        | 13,968<br>15,597                                           |             | 6                                 | 28.96                                          | 205                      | 9,986                            |            | 6                            | 1,77                                      | 296                      | 262                                          |
|          | 3<br>4<br>5                                      | 89.94<br>71.40<br>91.08                                          | 173                                    | 13,968                                                     |             | 6<br>V19                          | 28.96                                          | 205                      | 9.986<br>43.830                  |            | V29                          |                                           | 296                      | 262<br>41,714                                |
| S10      | 3<br>4<br>5<br>6<br>V09<br>1                     | 89.94<br>71.40<br>91.08<br>2.37                                  | 173<br>192                             | 13,968<br>15,597<br>85,591                                 | S20         | 6<br>V19<br>1                     | 28.96                                          |                          | 43,830                           | S30        | V29<br>1                     | 31.16                                     |                          | 41,714                                       |
|          | 3<br>4<br>5<br>6<br>V09<br>1<br>2                | 89.94<br>71.40<br>91.08<br>2.37<br>20.26                         | 173<br>192<br>151                      | 13,968<br>15,597<br>85,591<br>1,713                        | S20         | 6<br>V19<br>1<br>2                | 28.96<br>14.71<br>7.71                         | 199                      | 43,830<br>2,235                  | S30        | V29<br>1<br>2                | <u>31.16</u><br>16.14                     | 237                      | 41,714<br>5,609                              |
|          | 3<br>4<br>5<br>6<br>V09<br>1<br>2<br>3           | 89.94<br>71.40<br>91.08<br>2.37<br>20.26<br>3.59                 | 173<br>192<br>151<br>220               | 13,968<br>15,597<br>85,591<br>1,713<br>2,624               | \$20        | 6<br>V19<br>1<br>2<br>3           | 28.96<br>14.71<br>7.71<br>0.00                 | 199<br>193               | 43,830<br>2,235<br>742           | S30        | V29<br>1<br>2<br>3           | 31.16<br>16.14<br>45.05                   | 237<br>208               | 41,714<br>5,609<br>6,368                     |
|          | 3<br>4<br>5<br>6<br>V09<br>1<br>2<br>3<br>4      | 89.94<br>71.40<br>91.08<br>2.37<br>20.26<br>3.59<br>0.00         | 173<br>192<br>151<br>220<br>209        | 13,968<br>15,597<br>85,591<br>1,713<br>2,624<br>376        | S20         | 6<br>V19<br>1<br>2<br>3<br>4      | 28.96<br>14.71<br>7.71<br>0.00<br>0.00         | 199<br>193<br>190        | 43,830<br>2,235<br>742<br>0      | S30        | V29<br>1<br>2<br>3<br>4      | 31.16<br>16.14<br>45.05<br>75.39          | 237<br>208<br>214        | 41,714<br>5,609<br>6,368<br>12,867           |
|          | 3<br>4<br>5<br>6<br>V09<br>1<br>2<br>3<br>4<br>5 | 89.94<br>71.40<br>91.08<br>2.37<br>20.26<br>3.59<br>0.00<br>3.34 | 173<br>192<br>151<br>220<br>209<br>175 | 13,968<br>15,597<br>85,591<br>1,713<br>2,624<br>376<br>291 | <b>\$20</b> | 6<br>V19<br>1<br>2<br>3<br>4<br>5 | 28.96<br>14.71<br>7.71<br>0.00<br>0.00<br>0.00 | 199<br>193<br>190<br>160 | 43,830<br>2,235<br>742<br>0<br>0 | S30        | V29<br>1<br>2<br>3<br>4<br>5 | 31.16<br>16.14<br>45.05<br>75.39<br>99.02 | 237<br>208<br>214<br>221 | 41,714<br>5,609<br>6,368<br>12,867<br>19,295 |
|          | 3<br>4<br>5<br>6<br>V09<br>1<br>2<br>3<br>4      | 89.94<br>71.40<br>91.08<br>2.37<br>20.26<br>3.59<br>0.00         | 173<br>192<br>151<br>220<br>209        | 13,968<br>15,597<br>85,591<br>1,713<br>2,624<br>376        | S20         | 6<br>V19<br>1<br>2<br>3<br>4      | 28.96<br>14.71<br>7.71<br>0.00<br>0.00         | 199<br>193<br>190        | 43,830<br>2,235<br>742<br>0      | <u>S30</u> | V29<br>1<br>2<br>3<br>4      | 31.16<br>16.14<br>45.05<br>75.39          | 237<br>208<br>214        | 41,714<br>5,609<br>6,368<br>12,867           |

Total 2,364,412


A11.9-2

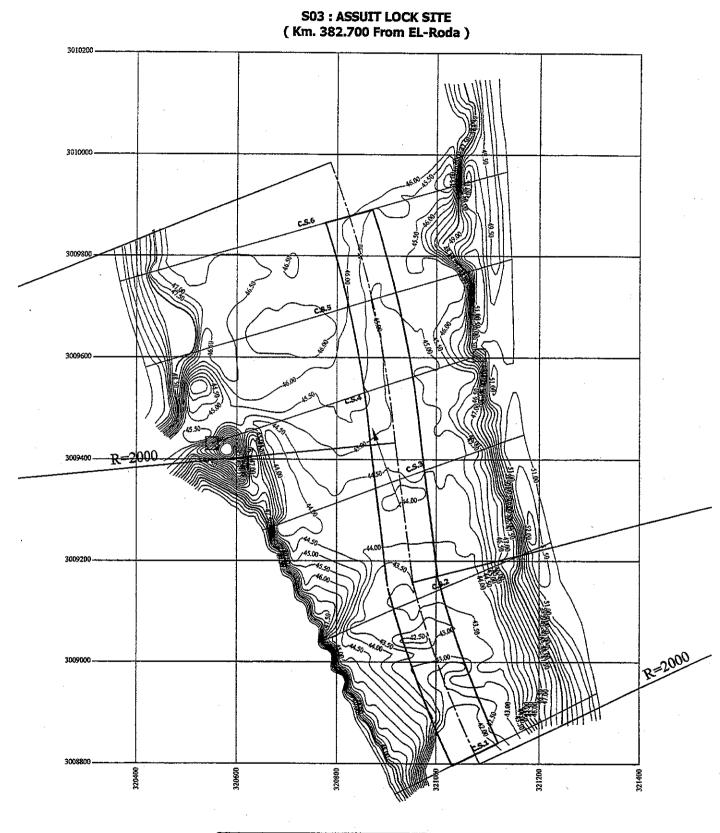
## Dredging Volume CASE-2 (Min.Water Depth -2.5m)

ļ


| 1     | Ĩ       | Area   | Length   | Volume          |                |            | Area    | Length   | Volume     |       | 1          | Area   | Length   | Volume                                |
|-------|---------|--------|----------|-----------------|----------------|------------|---------|----------|------------|-------|------------|--------|----------|---------------------------------------|
| Point | Section | (m2)   | (m)      | (m3)            | Point          | Section    | (m2)    | (m)      | (m3)       | Point | Section    | (m2)   | (m)      | (m3)                                  |
| S01   | 1       | 108.16 | <u> </u> | (110)           | S11            | 1          | 38.57   | WID      |            | S21   | 1          | 17.75  |          | (110)                                 |
| 201   | 2       | 81.32  | 323      | 30,639          | 311            | 2          | 163.52  | 208      | 20.985     | 321   | 2          | 156.97 | 301      | 26.276                                |
|       | 2 3     | 122.06 | 168      | 17.111          | 1 .            | 3          | 195.34  | 203      | 44,341     |       | 3          | 257.59 | 203      | 42,123                                |
|       |         |        |          |                 | 1              | 4          | 154.24  | 198      | 34,623     |       | 4          | 343.29 | 203      | 84,492                                |
|       | 4       | 1.38   | 233      | 14,384          |                |            |         |          |            |       |            |        |          |                                       |
|       | 5       | 27.07  | 222      | 3,156           |                | 5          | 113.39  | 229      | 30,702     |       | 5          | 396.93 | 210      | 77,602                                |
|       | 6       | 67.22  | 230      | 10,861          |                | 6          | 0.00    | 227      | 12,876     |       | 6          | 288.58 | 365      | 125,071                               |
|       | V01     |        |          | 76,150          |                | V11        |         |          | 143,527    |       | V21        |        |          | 355,564                               |
| S02   | 1       | 15.34  |          |                 | S12            | 1          | 1.50    |          |            | S22   | 1          | 18.62  |          | · · · · · · · · · · · · · · · · · · · |
|       | 2       | 24.69  | 252      | 5,053           |                | 2          | 10.04   | 224      | 1,295      |       | 2          | 0.00   | 187      | 1,742                                 |
|       | 3       | 25.44  | 129      | 3,236           |                | 3          | 7.70    | 186      | 1,652      |       | 3          | 9.48   | 208      | 986                                   |
|       | 4       | 25.72  | 199      | 5,083           |                | 4          | 50,67   | 216      | 6,318      | 1     | 4          | 0.00   | 195      | 925                                   |
|       | 5       | 7,09   | 163      | 2,676           |                | 5          | 3.50    | 233      | 6,321      | 1     | 5          | 4.28   | 196      | 420                                   |
|       | 6       | 14.11  | 246      | 2,609           | i <sup> </sup> | 6          | 0.00    | 168      | 294        |       | 6          | 21.74  | 191      | 2,490                                 |
|       | V02     |        |          | 18,656          |                | V12        |         |          | 15,880     |       | V22        |        |          | 6,562                                 |
| S03   | 1       | 0.00   |          |                 | S13            | 1          | 12.25   |          |            | S23   | 1          | 330.29 |          |                                       |
|       | 2       | 0.00   | 326      | 0               |                | 2          | 126.02  | 279      | 19,291     |       | 2          | 308.37 | 232      | 73,956                                |
|       | 3       | 0.00   | 240      | Ŭ,              |                | 3          | 174.03  | 215      | 32,288     |       | 3          | 294,91 | 202      | 61.059                                |
|       | 4       | 7.22   | 187      | 675             | ł              | 4          | 166.91  | 230      | 39,244     |       | 4          | 305.14 | 290      | 86,884                                |
|       | 5       | 41.78  | 170      | 4,172           |                | 5          | 0.00    | 184      | 15,331     | 1     | 5          | 289.68 | 326      | 96,867                                |
|       | 6       | 81.30  | 172      | 10,588          | 1 ·            | 6          | 0.00    | 218      | 0          |       | 6          | 31.50  | 224      | 35,898                                |
|       | V03     | 01.00  | 1/2      | 15,435          | 1              | V13        | 0.00    | <u> </u> | 106,153    |       | V23        | 01,00  | <u> </u> | 354,664                               |
| 001   |         | 117.65 |          | 10,400          | S14            | 1          | 0.25    |          | 100,100    | S24   | <u>vzs</u> | 0.57   | l        | 004,004                               |
| S04   | 1       |        | 105      | 12 200          | 1314           | 2          |         | 195      | 3,103      | 324   | 2          | 0.07   | 197      | 56                                    |
|       | 2       | 26.74  | 185      | 13,369          |                |            | 31.57   |          |            |       |            |        |          |                                       |
|       | 3       | 38.41  | 146      | 4,760           |                | 3          | 87.92   | 237      | 14,183     |       | 3          | 0.00   | 213      | 01 1 25                               |
|       | 4       | 44.36  | 171      | 7,080           |                | 4          | 132.15  | 220      | 24,187     |       | 4          | 111.00 | 381      | 21,135                                |
|       | 5       | 3.49   | 177      | 4,227           |                | 5          | 122.44  | 213      | 27,052     |       | 5          | 270.79 | 237      | 45,152                                |
|       | 6       | 15.07  | 146      | 1,353           |                | 6          | 36.81   | 229      | 18,268     |       | 6          | 367.06 | 255      | 81,241                                |
|       | V04     |        |          | 30,790          | I              | V14        |         |          | 86,793     |       | V24        |        |          | 147,584                               |
| S05   | 1       | 0.00   |          |                 | S15            |            | 240.99  |          |            | S25   | 1          | 223.41 |          |                                       |
|       | 2       | 0.00   | 158      | 0               |                | 2          | 161.87  | 203      | 40,885     |       | 2          | 173.22 | 239      | 47,405                                |
|       | 3       | 0.00   | 137      | 0               |                | 3          | 206.63  | 217      | 40,032     |       | 3          | 166.23 | 209      | 35,443                                |
|       | 4       | 57.06  | 185      | 5,270           |                | 4          | 165.14  | 276      | 51,294     |       | 4          | 158.13 | 185      | 30,014                                |
|       | 5       | 190,46 | 184      | 22,813          |                | 5          | 26.22   | 267      | 25,557     |       | 5          | 197.57 | 166      | 29,523                                |
|       | 6       | 224.72 | 209      | 43,316          | 1              | 6          | 88.68   | 271      | 15,579     |       | 6          | 128.83 | 207      | 33,750                                |
|       | V05     | ۰.     |          | 71,399          |                | V15        |         |          | 173.348    |       | V25        |        |          | 176,135                               |
| S06   | 1       | 5.43   |          |                 | S16            | 1          | 208.77  |          |            | S26   | 1          | 0.00   |          |                                       |
| 000   | 2       | 29.29  | 216      | 3,744           | 0.0            | 2          | 112.44  | 208      | 33,362     |       | 2          | 0.00   | 195      | 0                                     |
|       | 3       | 30.45  | 211      | 6,308           |                | 3          | 52.27   | 182      | 14,975     |       | 3          | 1.47   | 237      | 174                                   |
|       | 4       | 121.85 | 189      | 14,397          |                | 4          | 57.92   | 234      | 12,882     |       | 4          | 0.00   | 216      | 158                                   |
|       | 5       | 275.00 | 190      | 37,783          |                | 5          | 1.22    | 191      | 5,658      |       | 5          | 21.45  | 265      | 2,840                                 |
|       | 6       | 324.31 | 182      | 54,493          |                | 6          | 0.00    | 183      | 112        |       | 6          | 80.61  | 244      | 12,426                                |
|       | V06     | 024.01 | 104      | 116,725         |                | V16        | 0.00    | 100      | 66,989     |       | V26        | 00.01  | 2.77     | 15,598                                |
| 007   | 1       | 56.84  |          | 110,723         | 017            | 1          | 0.00    |          | 00,000     | 607   | 1          | 3.32   |          | 10,000                                |
| S07   |         |        | 296      | 10.017          | S17            | 2          | 0.00    | 279      | 0          | S27   | 2          | 156.91 | 259      | 20,718                                |
|       | 2       | 16.33  |          | 10,817          |                | 3          | 0.00    | 2/9      | 0          |       | 3          | 221.00 | 196      |                                       |
|       | 3       | 77.25  | 188      | 8,783           |                |            |         |          |            |       |            |        |          | 36,963                                |
|       | 4       | 71.54  | 156      | 11,607          | 11             | 4          | 11.62   | 226      | 1,313      |       | 4          | 231.99 | 207      | 46,780                                |
|       | 5       | 117,49 | 175      | 16,526          |                | 5          | 89.21   | 209      | 10,528     |       | 5          | 89.04  | 329      | 52,886                                |
|       | 6       | 115.84 | 193      | 22,460          |                | 6          | 160.28  | 202      | 25,259     |       | 6          | 200,20 | 181      | 26,149                                |
| L     | V07     |        |          | 70,193          |                | V17        |         | ļ        | 37,100     |       | V27        |        |          | 183,495                               |
| S08   | 1       | 4.06   |          |                 | S18            | 1          | 100.04  | <u> </u> |            | S28   | 1          | 225.06 |          | ·····                                 |
| }     | 2       | 7.83   | 140      | 830             | l[             | 2          | 0.00    | 161      | 8,068      |       | 2          | 67.22  | 256      | 37,484                                |
|       | 3       | 52.19  | 136      | 4,076           |                | 3          | 3.72    | 158      | 293        | 11    | 3          | 42.61  | 230      | 12,623                                |
|       | 4       | 67.90  | 215      | 12,899          |                | 4          | 77.97   | 177      | 7,246      |       | 4          | 74.93  | 219      | 12,843                                |
|       | 5       | 78.15  | 114      | 8,336           |                | 5          | 152.11  | 169      | 19,470     |       | 5          | 101.20 | 233      | 20,515                                |
|       | 6       | 214.35 | 146      | 21,357          | H              | 6          | 201.71  | 176      | 31,109     | 1     | 6          | 15.50  | 214      | 12,458                                |
| L     | V08     |        |          | 47,497          |                | V18        |         |          | 66,186     |       | V28        |        |          | 95,924                                |
| S09   | 1       | 114.15 |          |                 | S19            | 1          | 44.69   | 1        |            | S29   | 1          | 0.27   |          |                                       |
|       | 2       | 133.71 | 183      | 22,636          | 11             | 2          | 12.50   | 111      | 3,167      | 1     | 2          | 0.44   | 304      | 107                                   |
|       | 3       | 134.98 | 150      | 20,154          | 11             | 3          | 19.93   | 274      | 4,447      | 11    | 3          | 99.30  | 278      | 13,845                                |
|       | 4       | 112.37 | 201      | 24,823          | 1              | 4          | 128.16  | 213      | 15,739     | 11 .  | 4          | 94,53  | 274      | 26,553                                |
|       | 5       | 92.96  | 173      | 17,777          | 1              | 5          | 85.54   | 198      | 21,131     | 11    | 5          | 1.75   | 267      | 12,868                                |
|       | 6       | 112.13 | 192      | 19.686          | 11             | 6          | 40.57   | 205      | 12,919     | 1     | 6          | 3.91   | 296      | 837                                   |
|       | V09     |        | 104      | 105.076         |                | <b>V19</b> | 1 -0.07 | 200      | 57,402     | {     | V29        |        |          | 54,211                                |
| 010   | 1       | 7.28   | <u> </u> | 100,010         | S20            |            | 25.00   |          | 01,402     | S30   | 1          | 44.55  |          | J7,211                                |
| S10   | 0       |        | 151      | 3,297           | 1020           | 2          | 23.34   | 199      | 4,818      | 1000  | 2          |        | 237      | 8,446                                 |
|       | 2       | 36.28  |          |                 | łł             |            |         |          |            | 1     |            | 26.68  |          |                                       |
|       | 3       | 8.31   | 220      | 4,905           |                | 3          | 0.00    | 193      | 2,247      | ł     | 3          | 56.57  | 208      | 8,663                                 |
|       | 4       | 1.16   | 209      | 991             | 11             | 4          | 0.00    | 190      | ļ <u> </u> |       | 4          | 85.87  | 214      | 15,216                                |
|       | 5       | 8.09   | 175      | 807             | 1              | 5          | 0.00    | 160      | 0          | 1     | 5          | 114.07 | 221      | 22,119                                |
| 1     | 6       | 5.12   | 216      | 1,428<br>11,428 | 1              | - v20      | 2.19    | 157      | 172        | 11    | 6          | 15.13  | 205      | 13,235                                |
|       | V10     |        |          | 11/00           | 11             |            |         |          | 7,236      | 11    | V30        |        |          | 67,679                                |

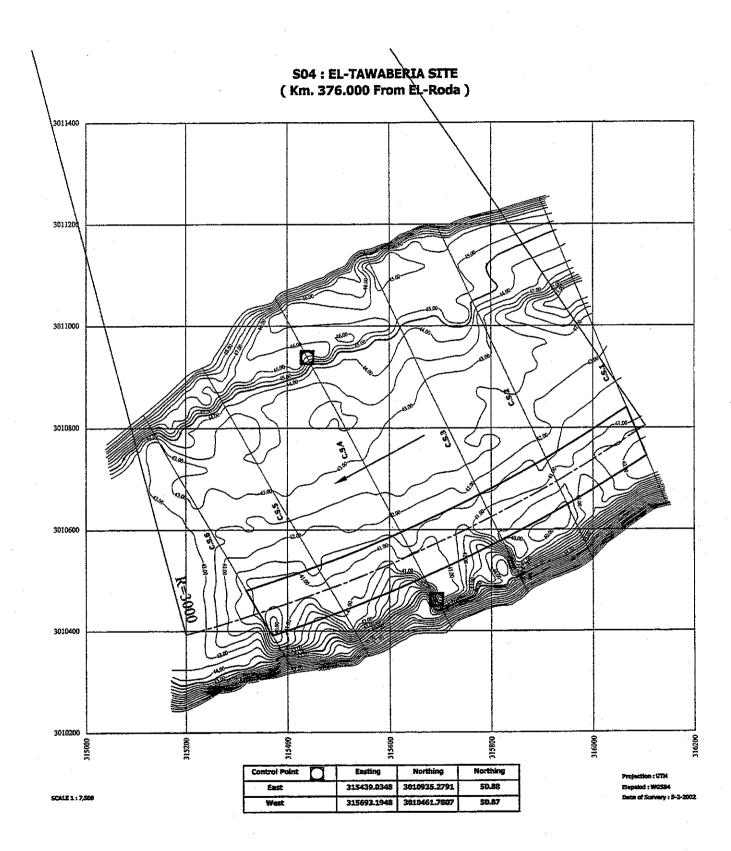
A11.9-3

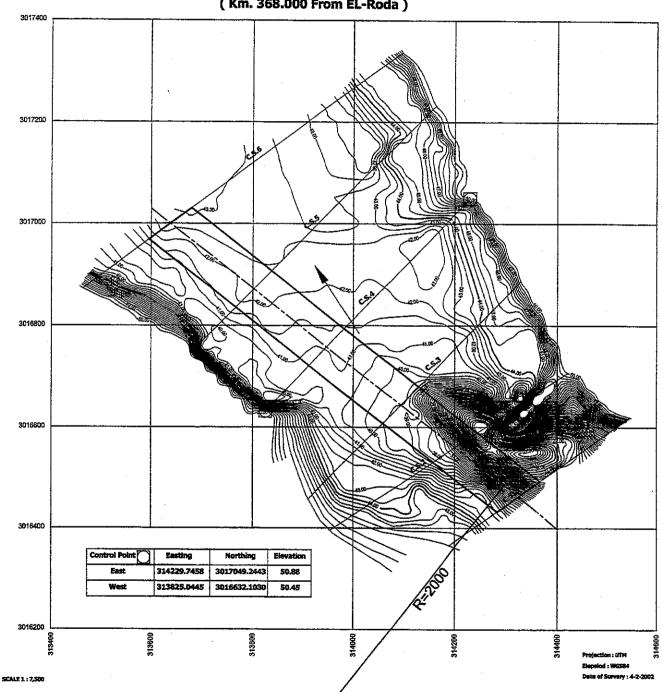



S01 : EL-NEKHEELA SITE

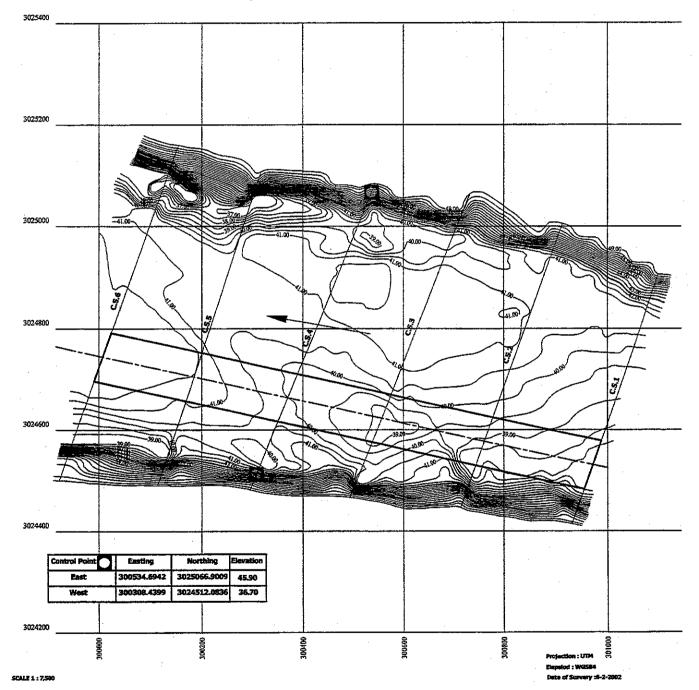
A11-73



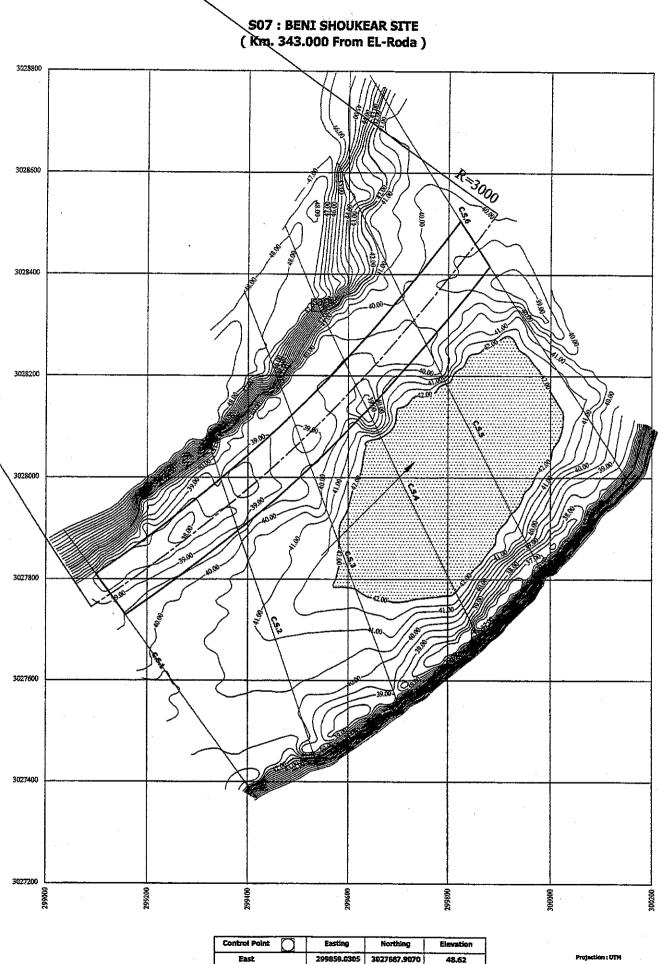

S02 : SAKOUR SITE ( Km. 402.000 From EL-Roda )


A11-74




|   | Control Point | Easting     | Northing     | Elevation |                                      |
|---|---------------|-------------|--------------|-----------|--------------------------------------|
|   | East          | 321083.1409 | 3009605.3294 | 50.35     | Projection : UTM<br>Election : W4584 |
| • | West          | 320551.8671 | 3009430.5825 | 50.872    | Date of Survery : 5-2-2002           |

SCALE 1 : 7,500






S05 : BAHEEG ISLAND SITE ( Km. 368.000 From EL-Roda )

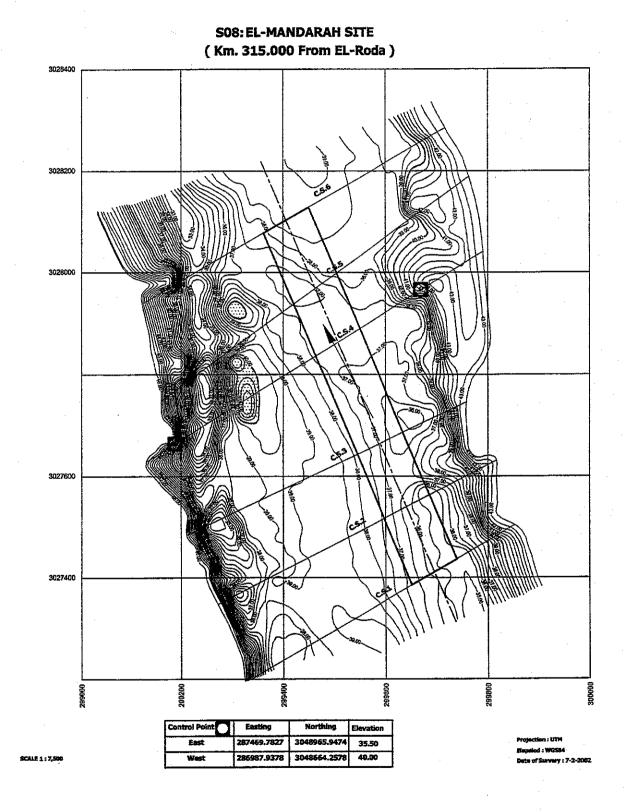


S06:HASSAN ATIAH SITE (Km. 348.000 From EL-Roda)

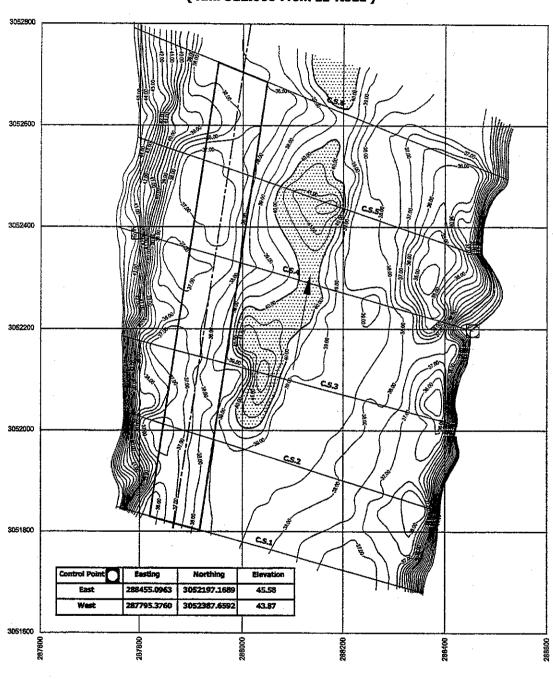


Projection : UTM Elepsiod : WGS84 Date of Survery : 7-2-2002

CALE 1 : 7,500


A11-79

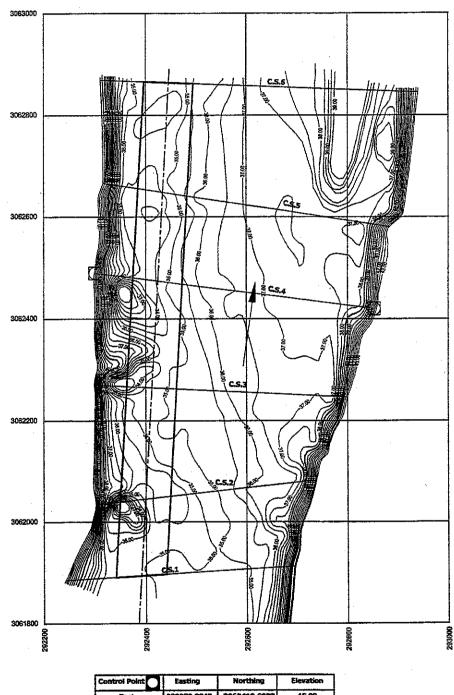
299536.9796


3028338.7687

47.99

West



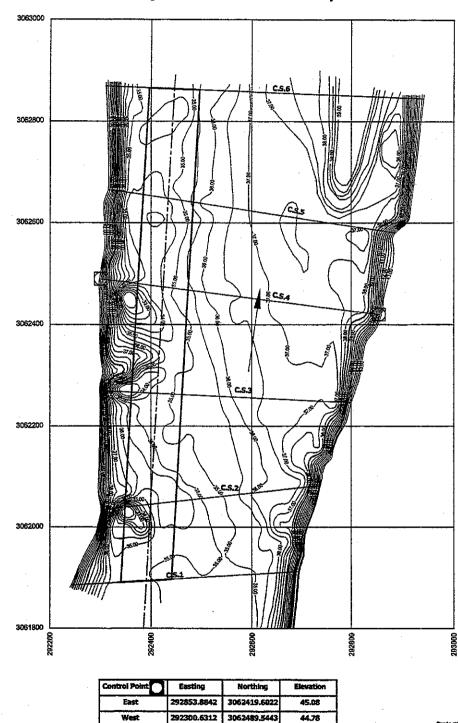

A11-80



S09 : NAZLET EL-AWAMER SITE ( Km. 312.000 From EL-Roda )

SCALE 1 : 7,500

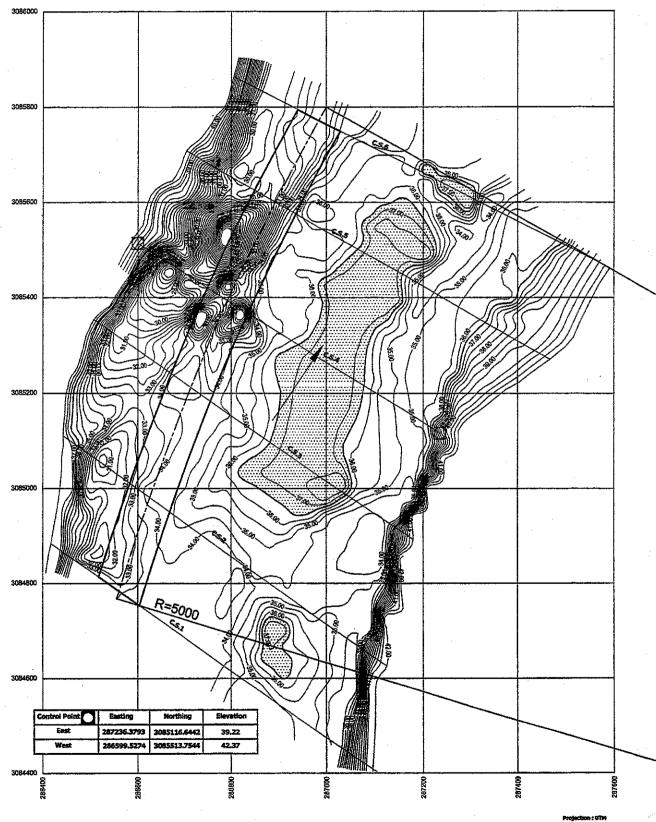
Projection : UTM Elepsiod : WGSB4 Date of Survey : 9-2-2002




S10 : SAWADA SITE ( Km. 299.000 From EL-Roda )

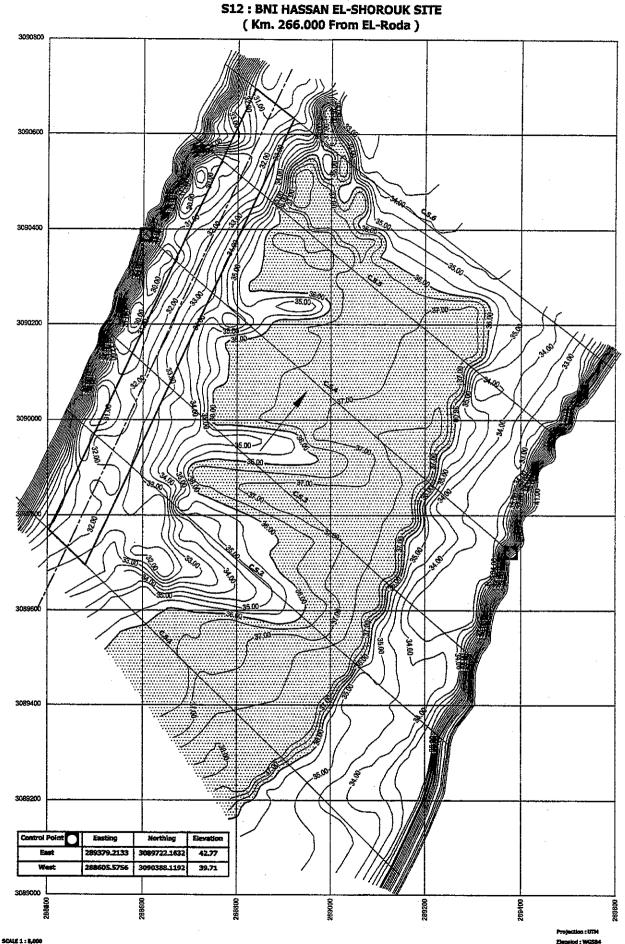
| Control Point | Easting     | Northing     | Elevation |  |  |
|---------------|-------------|--------------|-----------|--|--|
| East          | 292853.8842 | 3062419.6022 | 45.08     |  |  |
| West          | 292300.6312 | 3062489.5443 | 44.78     |  |  |

SCALE 1 : 7,500


Projection : UTH Elepsiod : WGS84 Data of Survey : 9-2-200



S10 : SAWADA SITE ( Km. 299.000 From EL-Roda )


SCALE 1 : 7,500

Projection : UTH Elepsied : WGS84 Data of Example 4 9-2-201 S11 : EL-SHIAKH NEMR ISLAND SITE (Km. 271.000 From EL-Roda)



Elepsion : WESEA Data of Survey : 10-2-2002

SCALE 1 : 8,



Improve : WGS84 Date of Survey : 10-2-2002