H. ENVIRONMENT

## H-1. Meteorology in Kandal Province

Table H-1-1 Maximum and minimum of temperature (1996-2001) : Station : Pochentong

| Year | Temp. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1996 | Max | 31 | 31.8 | 34.7 | 34.6 | 32.8 | 32.8 | 33.9 | 32.5 | 30.8 | 30.6 | 30.5 | 27.6 |
|  | Min | 20.6 | 21.8 | 23.4 | 25.3 | 25.3 | 24.7 | 23.7 | 24.9 | 24.3 | 27.2 | 26.3 | 22 |
| 1997 | Max | 30.8 | 32.4 | 34.4 | 35.3 | 35.2 | 35.2 | 32.3 | 32.6 | 32.1 | 31.5 | 31.3 | 32.2 |
|  | Min | 20.6 | 23.3 | 23.6 | 24.9 | 25.6 | 25.3 | 24.7 | 24.9 | 24.5 | 24.6 | 24.2 | 23 |
| 1998 | Max | 33.5 | 34.9 | 37.1 | 36.8 | 33.6 | 33.1 | 33.4 | 32.3 | 31.9 | 31.4 | 30.1 | 29 |
|  | Min | 22.7 | 23.8 | 24.9 | 26 | 25.6 | 25.3 | 24.7 | 24.9 | 24.5 | 24.6 | 24.2 | 23 |
| 1999 | Max | 31.5 | 32.8 | 35.8 | 33.9 | 33.1 | 32.6 | 32.1 | 32.5 | 32.6 | 30.9 | 30.1 | 27.2 |
|  | Min | 21.9 | 22.4 | 24.7 | 25 | 24.9 | 24.5 | 24.7 | 24.4 | 24.5 | 24.2 | 23.8 | 20.8 |
| 2000 | Max | 31.8 | 32.7 | 34.1 | 34.2 | 34 | 32.9 | 32.3 | 32.1 | 32 | 30.4 | 30.1 | 30.1 |
|  | Min | 22.7 | 22.8 | 24.3 | 25.2 | 25.4 | 24.7 | 24.2 | 24.8 | 24.5 | 23.7 | 23.4 | 23.4 |
| 2001 | Max | 31.1 | 32.6 | 33.4 | 35.4 | 34.5 | 33.4 | 33.3 | 32.3 | 32.5 | 31.5 | 29.3 | 30.7 |
|  | Min | 23.1 | 22.6 | 24.2 | 25.6 | 25.7 | 24.9 | 24.9 | 24.4 | 23.9 | 23.8 | 21.8 | 22 |

Source: Department of Hydrology, Ministry of Agriculture, Forestry and Fishery
Table H-1-2 Rain fall record in Kandal Province

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | Annual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 | 0.4 | 16.2 | 0 | 99.6 | 97.5 | 160.1 | 117.6 | 103.6 | 227.8 | 132.4 | 88.8 | 1.5 | 1045.5 |
| 1985 | - | 1 | 0.6 | 154.7 | 148.6 | 65.8 | 118.9 | 105.7 | 341.6 | 179.7 | 103.9 | 4.7 | 1225.2 |
| 1986 | - | 1.3 | 0 | 41.7 | 219.8 | 137.5 | 161.2 | 299.9 | 234.7 | 228.6 | 77.3 | 57.4 | 1459.4 |
| 1987 | - | 0 | 0 | 0 | 69.9 | 111.7 | 131.1 | 144.1 | 146.1 | 159.3 | 281 | - | 1043.2 |
| 1988 | - | 2.5 | 56 | 127 | 143 | 316.3 | 174.7 | 104.3 | 227.1 | 171.9 | 52.7 | - | 1375.5 |
| 1989 | 29.2 | - | 152.5 | 19.2 | 148.4 | 37.2 | 87.9 | 156.6 | 425.4 | 333.3 | 118 | 0 | 1507.7 |
| 1990 | - | - | 0 | 31 | 41 | 103.3 | 178.2 | 228.2 | 243.7 | 166.5 | 39.8 | 0 | 1031.7 |
| 1991 | - | - | - | 43.5 | 82.2 | 192.8 | 139.9 | 184.2 | 243.7 | 158.2 | 3 | 0 | 1047.5 |
| 1992 | - | - | - | 0 | 142.1 | 107.9 | 199.2 | 114.7 | 146.2 | 116.7 | - | 0 | 826.8 |
| 1993 | 6.4 | - | 127.3 | 109.5 | 94.7 | 200.2 | 191 | 105.8 | 134.6 | 370.2 | 95.8 | - | 1435.5 |
| 1994 | - | - | 147.2 | 0.9 | 140.2 | 54.8 | 177.2 | 229.7 | 559.1 | 210.2 | 0 | 0 | 1519.3 |
| 1995 | - | - | - | 30.4 | 115.7 | 292.5 | 115.4 | 116.7 | 193.8 | 481.4 | 4.7 | - | 1350.6 |
| 1996 | - | - | 0 | 109.3 | 280.2 | 90 | 108.7 | 174.2 | 228.5 | 240.1 | 202.9 | 1.8 | 1435.7 |
| 1997 | - | 1.2 | - | 32 | 106.5 | 96.1 | 190.4 | 102.6 | 125.4 | 430.3 | 26.6 | 5.2 | 1116.3 |
| 1998 | - | - | - | 76.5 | 68 | 151.1 | 144.2 | 171.2 | 206.1 | 158.8 | 216.9 | 19.8 | 1212.6 |
| 1999 | 0 | 2.5 | 13 | 218.3 | 161.5 | 79.2 | 156.9 | 224.9 | 168.5 | 362.4 | 204.5 | 39.1 | 1630.8 |
| 2000 | 34.3 | 26.1 | 64.7 | 111.4 | 133.9 | 212 | 151.3 | 155.4 | 96.6 | 395.8 | 103.5 | 274.2 | 1759.2 |
| 2001 | 67.2 | 0 | 83.4 | 45.5 | 87.7 | 123.4 | 116 | 181.7 | 231.7 | 375.3 | 56.9 | 3.3 | 1372.1 |

Source: Department of Hydrology, Ministry of Agriculture, Forestry and Fishery

## H-2. Household and Population in Kandal Province

Table H-2 Household and Population of the Study Area along NR-1

| Name of District, Commune and Villages | Total No of household | Population |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Male | Female |
| Mean Chey District | 27443 | 157,112 | 74,500 | 82,612 |
| Chbar Ampovi Commune | 1754 | 10,378 | 4,980 | 5398 |
| Phum Prek |  | 3,084 | 1,452 | 1,632 |
| Phum Doeum Mak Chleu |  | 4,207 | 2,045 | 2,162 |
| Phum Doeum Ampil |  | 3, 045 | 1,442 | 1,603 |
| Kien Svay District | 28,535 | 148,358 | 70,930 | 77,428 |
| Veal Sbov Commune | 1,368 | 6,952 | 3,389 | 3,563 |
| Kdei Ta Koy |  | 2,046 | 953 | 1,093 |
| Veal Sbov |  | 1,392 | 692 | 700 |
| Svay To Ok |  | 1,806 | 908 | 898 |
| Preaek Cheang Prum |  | 1,708 | 836 | 872 |
| Prek Aeng commune | 2,509 | 12,960 | 6,229 | 6,731 |
| Kbal Chroy |  | 1,071 | 483 | 588 |
| Ta Prum |  | 2,351 | 1,094 | 1,257 |
| Mitapheap |  | 2,252 | 1,099 | 1,153 |
| Toul To Chan |  | 1,273 | 605 | 668 |
| Kbal Kaoh Commune | 2,822 | 14,903 | 7,167 | 7,736 |
| Chroy Anpil |  | 7,187 | 3,482 | 3,705 |
| Yok Bat |  | 3,356 | 1,562 | 1,794 |
| Preak Thum |  | 4,360 | 2,123 | 2,237 |
| Phum Thum Commune | 1,818 | 9,491 | 4,517 | 4,974 |
| Phum Thum |  | 2,139 | 997 | 1,142 |
| Kaki Commune | 2,893 | 15,485 | 7,511 | 7,974 |
| Toul Thnot |  | 4,599 | 2,169 | 2,430 |
| Slab Ta Aon |  | 3,077 | 1,482 | 1,595 |
| Dei Edth Commune | 2,857 | 15,712 | 7,545 | 8,167 |
| Popeal Khae |  | 3,057 | 1,440 | 1,617 |
| Dei Edth Kaoh Plaos |  | 4,254 | 2,51 | 2,203 |
| Sdau Kanleang |  | 8,401 | 4,054 | 4,347 |
| Bantheay Daek Commune | 2,344 | 12,353 | 5,839 | 6,514 |
| Khsom |  | 4,380 | 2,074 | 2,306 |
| Kandal Leu |  | 4,085 | 1,932 | 2,153 |
| Kandal Kraom |  | 3,888 | 1,833 | 2,055 |
| Samraong Thum Commune | 3,749 | 18,655 | 8,909 | 9,746 |
| Chey Otdam |  | 3,377 | 1,629 | 1,748 |
| Prek Ta Kaev |  | 3,610 | 1,708 | 1,902 |
| Chroy Dang |  | 2,916 | 1,375 | 1,541 |
| Stueng |  | 2,294 | 1,091 | 1,203 |
| Preak Traeng |  | 2,772 | 1,347 | 1,425 |
| Samraong K'aer |  | 3,686 | 1,759 | 1,927 |
| Kaki Thum Commune | 2,294 | 11,518 | 5,376 | 6,142 |
| Pou Miev |  | 1,778 | 816 | 962 |
| Kaki Thum |  | 2,884 | 1,373 | 1,511 |
| Reang Dek |  | 3,735 | 1,748 | 1,987 |
| Leuk Daek District | 9,811 | 52,976 | 25,487 | 27,489 |
| Kampomg Phnum <br> Commune  | 2,306 | 12,235 | 5,799 | 6,436 |
| Kbal Chroy |  | 3,092 | 1,472 | 1,620 |
| Kampong Pou |  | 3,436 | 1,656 | 1,780 |
| Ampil Tuek |  | 4,039 | 1,885 | 2,154 |
| Preak Tonloab Commune | 2,455 | 13,277 | 6,349 | 6,928 |
| Kampong Chamlong |  | 4,966 | 2,394 | 2,572 |
| Spean Daek |  | 3,406 | 1,548 | 1,858 |

## H-3. Details of Affected Area

Table H-3-1(1/4) Affected houses and structures ( 15 m from the road center on both side: Temporally ROW)

| Station ( Km) |  | Left / Right side | Affected House / Building Type |  |  |  |  |  |  |  | Affected Fence Typ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Leave roof | Zinc plate roof |  | Tile roof |  | Concrete |  | Concrete |  | Wooden |  | Barbed wire |  |
|  |  | No. | $\mathrm{m}^{2}$ | No. | $\mathrm{m}^{2}$ | No. | $\mathrm{m}^{2}$ | No. | $\mathrm{m}^{2}$ | No. | m | No. | m | No. | m |
| 0 | $0+000$ to $0+500$ |  | Left | 0 | 0.0 | 8 | 176.0 | 3 | 39.6 | 0 | 102.4 | 1 | 31 | 0 | 0 | 0 | 0 |
|  |  |  | Right | 0 | 0.0 | 8 | 172.4 | 1 | 19.9 | 0 | 0.0 | 1 | 11 | 0 | 0 | 0 | 0 |
|  | $0+500$ to $1+000$ | Left | 0 | 0.0 | 27 | 1,130.3 | 4 | 197.2 | 13 | 387.2 | 2 | 32 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 28 | 834.6 | 0 | 0.0 | 1 | 42.0 | 1 | 17 | 0 | 0 | 0 | 0 |
| 1 | $1+000$ to $1+500$ | Left | 0 | 0.0 | 33 | 1,122.0 | 4 | 149.0 | 9 | 246.8 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 13 | 469.9 | 1 | 26.2 | 0 | 0.0 | 0 | 0 | 0 | 0 | - | 115 |
|  | 1+500 to $2+000$ | Left | 0 | 0.0 | 27 | 750.1 | 3 | 91.6 | 1 | 36.3 | 0 | 0 | 1 | 21 | 0 | 0 |
|  |  | Right | 1 | 56.1 | 17 | 642.6 | 0 | 0.0 | 0 | 0.0 | 1 | 30 | 0 | 0 | 1 | 32 |
| 2 | $2+000$ to $2+500$ | Left | 0 | 0.0 | 18 | 333.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 2 | 25.0 | 11 | 205.0 | 3 | 29.2 | 0 | 0.0 | 1 | 21 | 0 | 0 | 3 | 205 |
|  | $2+500$ to $3+000$ | Left | 0 | 0.0 | 4 | 101.4 | 0 | 0.0 | 0 | 0.0 | 1 | 40 | 1 | 30 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 15 | 349.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 2 | 60 |
| 3 | $3+000$ to $3+500$ | Left | 0 | 0.0 | 8 | 235.0 | 0 | 0.0 | 1 | 12.2 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 7 | 188.4 | 1 | 30.1 | 0 | 0.0 | 1 | 30 | 0 | 0 | 2 | 122 |
|  | $3+500$ to $4+000$ | Left | 0 | 0.0 | 9 | 102.3 | 3 | 37.6 | 0 | 0.0 | 0 | 0 | 0 | 0 | 1 | 25 |
|  |  | Right | 0 | 0.0 | 15 | 432.8 | 0 | 0.0 | 1 | 9.4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 4+000 to 4+500 | Left | 0 | 0.0 | 14 | 174.1 | 3 | 24.3 | 0 | 0.0 | 0 | 0 | 0 | 0 | 1 | 10 |
|  |  | Right | 0 | 0.0 | 17 | 523.5 | 0 | 0.0 | 0 | 0.0 | 2 | 56 | 0 | 0 | 0 | 0 |
|  | $4+500$ to $5+000$ | Left | 0 | 0.0 | 3 | 23.1 | 6 | 60.6 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 16 | 443.2 | 2 | 31.1 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | $5+000$ to $5+500$ | Left | 0 | 0.0 | 10 | 212.2 | 1 | 11.0 | 0 | 0.0 | 1 | 35 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 91.6 | 8 | 235.4 | 0 | 0.0 | 0 | 0.0 | 5 | 158 | 0 | 0 | 1 | 18 |
|  | $5+500$ to $6+000$ | Left | 0 | 0.0 | 10 | 404.8 | 3 | 140.3 | 7 | 269.2 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 18 | 924.8 | 3 | 184.9 | 0 | 0.0 | 5 | 140 | 0 | 0 | 0 | 0 |
| 6 | $6+000$ to $6+500$ | Left | 1 | 104.8 | 6 | 164.0 | 1 | 61.5 | 0 | 0.0 | 1 | 6 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 12 | 441.5 | 0 | 0.0 | 0 | 0.0 | 2 | 37 | 0 | 0 | 1 | 42 |
|  | $6+500$ to $7+000$ | Left | 0 | 0.0 | 1 | 26.2 | 3 | 159.1 | 2 | 35.3 | 1 | 40 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 9 | 349.9 | 0 | 0.0 | 1 | 69.5 | 1 | 38 | 0 | 0 | 2 | 100 |
| 7 | $7+000$ to $7+500$ | Left | 0 | 0.0 | 5 | 116.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 12.8 | 2 | 31.7 | 0 | 0.0 | 1 | 65.9 | 3 | 125 | 0 | 0 | 2 | 192 |
|  | $7+500$ to $8+000$ | Left | 0 | 0.0 | 1 | 60.3 | 1 | 7.8 | 0 | 0.0 | 3 | 113 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 2 | 73.7 | 2 | 119.3 | 0 | 0.0 | 0 | 0 | 0 | 0 | 4 | 212 |
| 8 | $8+000$ to $8+500$ | Left | 0 | 0.0 | 2 | 119.0 | 2 | 38.2 | 1 | 17.7 | 3 | 163 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 2 | 44.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 1 | 40 |
|  | $8+500$ to $9+000$ | Left | 0 | 0.0 | 6 | 125.7 | 5 | 130.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 6 | 251.4 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 2 | 78 |
| 9 | $9+000$ to $9+500$ | Left | 0 | 0.0 | 6 | 421.0 | 1 | 15.2 | 1 | 21.4 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 8 | 259.1 | 0 | 0.0 | 0 | 0.0 | 1 | 3 | 0 | 0 | 2 | 61 |
|  | $9+500$ to $10+000$ | Left | 0 | 0.0 | 6 | 149.5 | 3 | 63.4 | 0 | 0.0 | 0 | 0 | 1 | 32 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 4 | 99.7 | 0 | 0.0 | 0 | 0.0 | 4 | 102 | 0 | 0 | 3 | 86 |
| 10 | $10+000$ to $10+500$ | Left | 0 | 0.0 | 12 | 381.0 | 5 | 149.4 | 2 | 166.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 13 | 391.1 | 3 | 142.9 | 0 | 0.0 | 0 | 0 | 0 | 0 | 2 | 81 |
|  | $10+500$ to $11+000$ | Left | 0 | 0.0 | 5 | 146.0 | 2 | 59.4 | 0 | 0.0 | 1 | 22 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 15 | 487.5 | 1 | 26.4 | 1 | 21.2 | 0 | 0 | 1 | 3 | 0 | 0 |
| 11 | $11+000$ to $11+500$ | Left | 0 | 0.0 | 4 | 95.9 | 4 | 53.1 | 0 | 0.0 | 1 | 25 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 34.8 | 12 | 384.0 | 2 | 75.0 | 0 | 0.0 | 5 | 157 | 0 | 0 | 0 | 0 |
|  | $11+500$ to $12+000$ | Left | 0 | 0.0 | 2 | 126.0 | 1 | 8.5 | 0 | 0.0 | 1 | 105 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 7 | 111.4 | 0 | 0.0 | 0 | 0.0 | 1 | 60 | 0 | 0 | 1 | 30 |
| 12 | $12+000$ to $12+500$ | Left | 0 | 0.0 | 6 | 108.1 | 1 | 27.4 | 0 | 0.0 | 2 | 130 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 7 | 163.7 | 1 | 20.4 | 0 | 0.0 | 1 | 31 | 0 | 0 | 2 | 67 |
|  | $12+500$ to $13+000$ | Left | 0 | 0.0 | 7 | 110.9 | 5 | 38.9 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 11 | 319.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | $13+000$ to $13+500$ | Left | 0 | 0.0 | 9 | 146.2 | 3 | 64.3 | 4 | 72.5 | 3 | 45 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 9 | 325.3 | 3 | 86.8 | 2 | 62.7 | 3 | 100 | 1 | 20 | 0 | 0 |
|  | $13+500$ to $14+000$ | Left | 0 | 0.0 | 5 | 160.8 | 1 | 33.2 | 8 | 780.4 | 5 | 120 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 0 | 0.0 | 1 | 33.0 | 8 | 564.3 | 2 | 98 | 0 | 0 | 0 | 0 |
| 14 | $14+000$ to $14+500$ | Left | 0 | 0.0 | 3 | 77.4 | 1 | 11.8 | 2 | 46.9 | 5 | 205 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 5 | 153.0 | 0 | 0.0 | 0 | 0.0 | 10 | 456 | 1 | 35 | 0 | 0 |
|  | $14+500$ to $15+000$ | Left | 0 | 0.0 | 2 | 17.7 | 0 | 0.0 | 0 | 0.0 | 2 | 72 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 16.7 | 6 | 134.6 | 0 | 0.0 | 0 | 0.0 | 4 | 86 | 1 | 21 | 1 | 48 |
|  | Sub total |  | 8 | 341.8 | 562 | 16,761.4 | 93 | 2,497.3 | 66 | 3,029.1 | 87 | 2,940 | 7 | 162 | 35 | 1,624 |

Table H-3-1(2/4) Affected houses and structures (15m from the road center on both side: Temporally ROW)

| Station ( Km) |  | Left / Right side | Affected House / Building Type |  |  |  |  |  |  |  | Affected Fence Typє |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Leave roof | Zinc plate roof |  | Tile roof |  | Concrete |  | Concrete |  | Wooden |  | Barbed wire |  |
|  |  | No. | $\mathrm{m}^{2}$ | No. | $\mathrm{m}^{2}$ | No. | $\mathrm{m}^{2}$ | No. | $\mathrm{m}^{2}$ | No. | m | No. | m | No. | m |
| 15 | 15+000 to15+500 |  | Left | 0 | 0.0 | 4 | 47.6 | 1 | 15.2 | 0 | 0.0 | 1 | 41 | 0 | 0 | 0 | 0 |
|  |  |  | Right | 0 | 0.0 | 3 | 73.7 | 0 | 0.0 | 0 | 0.0 | 3 | 160 | 0 | 0 | 1 | 34 |
|  | 15+500 to 16+000 | Left | 0 | 0.0 | 7 | 102.1 | 2 | 50.0 | 0 | 0.0 | 2 | 37 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 1 | 20.1 | 0 | 0.0 | 1 | 8.1 | 4 | 144 | 0 | 0 | 0 | 0 |
| 16 | $16+000$ to $16+500$ | Left | 0 | 0.0 | 4 | 81.8 | 0 | 0.0 | 0 | 0.0 | 1 | 6 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 7 | 145.8 | 0 | 0.0 | 0 | 0.0 | 3 | 91 | 0 | 0 | 0 | 0 |
|  | 16+500 to $17+000$ | Left | 0 | 0.0 | 8 | 153.5 | 0 | 0.0 | 1 | 24.5 | 3 | 80 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 6 | 137.9 | 1 | 33.1 | 0 | 0.0 | 0 | 0 | 2 | 60 | 1 | 6 |
| 17 | 17+000 to 17+500 | Left | 0 | 0.0 | 9 | 168.7 | 0 | 0.0 | 0 | 0.0 | 2 | 38 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 13 | 347.0 | 0 | 0.0 | 0 | 0.0 | 3 | 36 | 0 | 0 | 2 | 39 |
|  | 17+500 to $18+000$ | Left | 0 | 0.0 | 22 | 484.9 | 1 | 10.8 | 1 | 21.3 | 1 | 23 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 2 | 59.6 | 1 | 66.5 | 0 | 0.0 | 3 | 341 | 0 | 0 | 0 | 0 |
| 18 | $18+000$ to $18+500$ | Left | 0 | 0.0 | 3 | 64.8 | 0 | 0.0 | 0 | 0.0 | 1 | 15 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 4 | 78.5 | 0 | 0.0 | 0 | 0.0 | 2 | 43 | 0 | 0 | 0 | 0 |
|  | 18+500 to 19+000 | Left | 0 | 0.0 | 6 | 96.5 | 2 | 44.0 | 0 | 0.0 | 1 | 7 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 3 | 86.2 | 0 | 0.0 | 0 | 0.0 | 1 | 20 | 0 | 0 | 0 | 0 |
| 19 | 19+000 to 19+500 | Left | 0 | 0.0 | 16 | 433.1 | 3 | 94.8 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 5 | 145.6 | 0 | 0.0 | 0 | 0.0 | 1 | 35 | 0 | 0 | 0 | 0 |
|  | 19+500 to 20+000 | Left | 1 | 35.6 | 8 | 193.7 | 0 | 0.0 | 0 | 0.0 | 2 | 38 | 0 | 0 | 0 | 0 |
|  |  | Right | 3 | 29.9 | 21 | 411.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 1 | 25 |
| 20 | $20+000$ to $20+500$ | Left | 0 | 0.0 | 6 | 116.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 4 | 85.2 | 15 | 396.6 | 1 | 23.1 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $20+500$ to $21+000$ | Left | 1 | 16.9 | 4 | 79.6 | 1 | 14.7 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 19 | 439.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 21 | $21+000$ to $21+500$ | Left | 0 | 0.0 | 13 | 294.0 | 1 | 13.5 | 2 | 70.1 | 1 | 6 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 14 | 330.7 | 1 | 17.6 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $21+500$ to $22+000$ | Left | 0 | 0.0 | 2 | 39.3 | 0 | 0.0 | 0 | 0.0 | 1 | 235 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 23.1 | 4 | 68.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 1 | 40 | 0 | 0 |
| 22 | $22+000$ to $22+500$ | Left | 0 | 0.0 | 3 | 77.8 | 1 | 5.2 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 8 | 179.4 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $22+500$ to $23+000$ | Left | 0 | 0.0 | 3 | 58.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 25 | 514.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 23 | $23+000$ to $23+500$ | Left | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 19 | 441.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $23+500$ to $24+000$ | Left | 0 | 0.0 | 4 | 67.4 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 12 | 371.3 | 0 | 0.0 | 0 | 0.0 | 1 | 24 | 0 | 0 | 0 | 0 |
| 24 | $24+000$ to $24+500$ | Left | 0 | 0.0 | 7 | 121.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 11.6 | 6 | 118.6 | 0 | 0.0 | 0 | 0.0 | 1 | 55 | 0 | 0 | 0 | 0 |
|  | $24+500$ to $25+000$ | Left | 0 | 0.0 | 3 | 37.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 2 | 44.8 | 2 | 18.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 1 | 16 | 0 | 0 |
| 25 | $25+000$ to $25+500$ | Left | 0 | 0.0 | 4 | 92.3 | 4 | 73.5 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 15.0 | 6 | 127.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 25+500 to 26+000 | Left | 0 | 0.0 | 5 | 74.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 10 | 293.6 | 0 | 0.0 | 0 | 0.0 | 2 | 56 | 0 | 0 | 0 | 0 |
| 26 | $26+000$ to $26+500$ | Left | 2 | 29.2 | 7 | 109.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 15.4 | 3 | 61.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $26+500$ to $27+000$ | Left | 1 | 10.7 | 3 | 23.4 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 2 | 31.6 | 0 | 0.0 | 0 | 0.0 | 1 | 54 | 0 | 0 | 0 | 0 |
| 27 | $27+000$ to $27+500$ | Left | 3 | 68.2 | 2 | 29.9 | 1 | 21.8 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 5 | 65.8 | 6 | 130.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $27+500$ to $28+000$ | Left | 3 | 43.6 | 3 | 52.6 | 1 | 5.6 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 11.5 | 8 | 154.0 | 0 | 0.0 | 0 | 0.0 | 1 | 27 | 0 | 0 | 0 | 0 |
| 28 | $28+000$ to28+500 | Left | 0 | 0.0 | 6 | 104.9 | 0 | 0.0 | 1 | 61.3 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 6 | 97.8 | 0 | 0.0 | 0 | 0.0 | 1 | 30 | 0 | 0 | 0 | 0 |
|  | $28+500$ to $29+000$ | Left | 0 | 0.0 | 2 | 38.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 3 | 46.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 29 | $29+000$ to $29+500$ | Left | 0 | 0.0 | 5 | 95.7 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 1 | 22.3 | 1 | 18.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $29+500$ to $30+000$ | Left | 0 | 0.0 | 1 | 23.5 | 1 | 20.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 2 | 32.1 | 2 | 19.9 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sub-total |  |  | 30 | 506.4 | 406 | 8,744.1 | 26 | 547.2 | 6 | 185.2 | 43 | 1,642 | 4 | 116 | 5 | 104 |

Table H-3-1(3/4) Affected houses and structures ( 15 m from the road center on both side: Temporally ROW)


Table H-3-1(4/4) Affected houses and structures ( 15 m from the road center on both side: Temporally ROW)

| Station ( Km) |  | $\begin{gathered} \hline \text { Left / } \\ \text { Right } \\ \text { side } \\ \hline \end{gathered}$ | Affected House / Building Type |  |  |  |  |  |  |  | Affected Fence Typє |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Leave roof | Zinc plate roof |  | Tile roof |  | Concrete |  | Concrete |  | Wooden |  | Barbed wire |  |
|  |  | No. | $\mathrm{m}^{2}$ |  | $\mathrm{m}^{2}$ |  | $\mathrm{m}^{2}$ |  | $\mathrm{m}^{2}$ |  | m |  | m |  | m |
| 45 | $45+000$ to 45+500 |  | Left | 0 | 0.0 | 2 | 56.4 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  |  | Right | 1 | 11.1 | 3 | 58.7 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 45+500 to 46+000 | Left | 1 | 17.2 | 11 | 488.8 | 1 | 33.8 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 15 | 277.0 | 1 | 14.1 | 0 | 0.0 | 1 | 25 | 0 | 0 | 1 | 22 |
| 46 | 46+000 to 46+500 | Left | 4 | 45.5 | 9 | 176.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 11 | 249.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 46+500 to 47+000 | Left | 0 | 0.0 | 4 | 57.6 | 1 | 12.8 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 4 | 40.0 | 8 | 108.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 47 | 47+000 to 47+500 | Left | 0 | 0.0 | 3 | 57.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 1 | 27.5 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 47+500 to 48+000 | Left | 0 | 0.0 | 4 | 70.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 48 | 48+000 to 48+500 | Left | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 12.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 48+500 to 49+000 | Left | 0 | 0.0 | 1 | 15.7 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 6 | 84.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 49 | 49+000 to 49+500 | Left | 2 | 21.2 | 13 | 263.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 4 | 37.2 | 6 | 104.7 | 1 | 40.2 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 49+500 to 50+000 | Left | 0 | 0.0 | 3 | 65.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 2 | 50.5 | 4 | 84.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 50 | $50+000$ to $50+500$ | Left | 0 | 0.0 | 1 | 32.7 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 7 | 134.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $50+500$ to $51+000$ | Left | 1 | 6.8 | 5 | 95.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 9 | 219.5 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 51 | $51+000$ to $51+500$ | Left | 0 | 0.0 | 5 | 84.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 1 | 13.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $51+500$ to $52+000$ | Left | 0 | 0.0 | 1 | 5.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 5 | 111.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 52 | $52+000$ to $52+500$ | Left | 0 | 0.0 | 2 | 51.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 16.3 | 1 | 16.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $52+500$ to $53+000$ | Left | 0 | 0.0 | 6 | 76.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 4 | 83.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 53 | $53+000$ to $53+500$ | Left | 7 | 89.0 | 5 | 61.5 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 1 | 1.3 | 1 | 7.1 | 0 | 0.0 | 0 | 0.0 | 1 | 41 | 0 | 0 | 0 | 0 |
|  | $53+500$ to $54+000$ | Left | 0 | 0.0 | 2 | 112.4 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 5 | 78.2 | 2 | 9.4 | 1 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 |
| 54 | 54+000 to 54+500 | Left | 0 | 0.0 | 2 | 43.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 9 | 252.6 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $54+500$ to $54+800$ | Left | 0 | 0.0 | 12 | 314.9 | 2 | 33.7 | 0 | 0.0 | 2 | 36 | 0 | 0 | 0 | 0 |
|  |  | Right | 0 | 0.0 | 4 | 39.0 | 0 | 0.0 | 0 | 0.0 | 1 | 29 | 1 | 36 | 0 | 0 |
| Sub-total |  |  | 29 | 348.3 | 191 | 4,077.2 | 8 | 143.9 | 1 | 10.4 | 5 | 131 | 1 | 36 | 1 | 22 |

Table H-3-2(1/4) Affected fruite trees ( 15 m from the road center on both sides: Temporally ROW)

| Station ( Km) |  | Left / <br> Right <br> side | Fruite trees |  |  |  |  |  |  |  | Others <br> (Nos.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mango <br> (Nos.) | Coconut (Nos.) | Jack fruite (Nos.) | Guava <br> (Nos.) | Kampinath (Nos.) | Lemon <br> (Nos.) | Pulasan (Nos.) | Papaya <br> (Nos.) |  |
| 0 | $0+000$ to $0+500$ |  | Left | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 |
|  |  | Right | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 |
|  | $0+500$ to $1+000$ | Left | 5 | 2 | 1 | 0 | 1 | 0 | 0 | 3 | 6 |
|  |  | Right | 7 | 6 | 4 | 1 | 0 | 0 | 1 | 2 | 2 |
| 1 | $1+000$ to $1+500$ | Left | 3 | 1 | 4 | 0 | 0 | 0 | 0 | 2 | 8 |
|  |  | Right | 5 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 21 |
|  | $1+500$ to $2+000$ | Left | 5 | 4 | 8 | 2 | 0 | 0 | 1 | 6 | 12 |
|  |  | Right | 9 | 8 | 5 | 2 | 0 | 0 | 0 | 0 | 47 |
| 2 | $2+000$ to $2+500$ | Left | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 3 | 22 |
|  |  | Right | 11 | 16 | 1 | 0 | 0 | 0 | 2 | 2 | 25 |
|  | $2+500$ to $3+000$ | Left | 17 | 5 | 17 | 2 | 0 | 0 | 0 | 5 | 20 |
|  |  | Right | 9 | 4 | 7 | 1 | 0 | 0 | 1 | 5 | 20 |
| 3 | $3+000$ to $3+500$ | Left | 3 | 3 | 1 | 6 | 1 | 0 | 2 | 13 | 20 |
|  |  | Right | 10 | 21 | 3 | 4 | 1 | 0 | 0 | 3 | 23 |
|  | $3+500$ to 4+000 | Left | 0 | 1 | 5 | 5 | 0 | 0 | 4 | 15 | 23 |
|  |  | Right | 7 | 67 | 16 | 1 | 0 | 0 | 2 | 3 | 23 |
| 4 | $4+000$ to 4+500 | Left | 5 | 3 | 18 | 3 | 1 | 0 | 2 | 6 | 16 |
|  |  | Right | 5 | 45 | 19 | 1 | 3 | 0 | 5 | 7 | 32 |
|  | $4+500$ to $5+000$ | Left | 3 | 2 | 16 | 4 | 2 | 0 | 0 | 11 | 14 |
|  |  | Right | 6 | 34 | 28 | 3 | 9 | 1 | 8 | 12 | 20 |
| 5 | $5+000$ to 5+500 | Left | 2 | 15 | 5 | 3 | 6 | 0 | 0 | 2 | 7 |
|  |  | Right | 6 | 17 | 16 | 1 | 5 | 1 | 1 | 6 | 6 |
|  | $5+500$ to $6+000$ | Left | 12 | 14 | 14 | 1 | 9 | 1 | 5 | 0 | 2 |
|  |  | Right | 3 | 27 | 19 | 0 | 7 | 0 | 1 | 2 | 8 |
| 6 | $6+000$ to $6+500$ | Left | 7 | 14 | 13 | 1 | 16 | 0 | 0 | 4 | 6 |
|  |  | Right | 3 | 17 | 20 | 3 | 5 | 0 | 1 | 3 | 6 |
|  | $6+500$ to 7+000 | Left | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 12 |
|  |  | Right | 5 | 39 | 7 | 0 | 1 | 0 | 0 | 1 | 4 |
| 7 | $7+000$ to 7+500 | Left | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 10 |
|  |  | Right | 5 | 9 | 0 | 0 | 0 | 0 | 0 | 4 | 107 |
|  | $7+500$ to $8+000$ | Left | 5 | 14 | 10 | 0 | 4 | 0 | 3 | 1 | 2 |
|  |  | Right | 3 | 26 | 2 | 6 | 1 | 0 | 0 | 0 | 82 |
| 8 | $8+000$ to $8+500$ | Left | 2 | 1 | 1 | 55 | 0 | 0 | 0 | 2 | 10 |
|  |  | Right | 11 | 14 | 16 | 0 | 1 | 0 | 1 | 1 | 30 |
|  | $8+500$ to $9+000$ | Left | 11 | 6 | 8 | 1 | 2 | 0 | 0 | 2 | 4 |
|  |  | Right | 10 | 48 | 18 | 2 | 10 | 0 | 8 | 1 | 17 |
| 9 | $9+000$ to $9+500$ | Left | 2 | 5 | 5 | 4 | 4 | 0 | 0 | 0 | 10 |
|  |  | Right | 15 | 17 | 10 | 1 | 4 | 0 | 6 | 4 | 23 |
|  | $9+500$ to $10+000$ | Left | 12 | 4 | 8 | 4 | 4 | 0 | 3 | 10 | 37 |
|  |  | Right | 7 | 27 | 17 | 0 | 10 | 1 | 3 | 6 | 45 |
| 10 | 10+000 to 10+500 | Left | 7 | 7 | 10 | 0 | 4 | 0 | 8 | 4 | 31 |
|  |  | Right | 6 | 35 | 18 | 5 | 0 | 1 | 9 | 2 | 56 |
|  | $10+500$ to $11+000$ | Left | 12 | 5 | 14 | 1 | 6 | 1 | 8 | 0 | 39 |
|  |  | Right | 7 | 23 | 35 | 1 | 17 | 0 | 1 | 4 | 46 |
| 11 | $11+000$ to $11+500$ | Left | 9 | 3 | 15 | 4 | 7 | 0 | 0 | 10 | 23 |
|  |  | Right | 11 | 19 | 14 | 0 | 9 | 0 | 0 | 7 | 36 |
|  | $11+500$ to $12+000$ | Left | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
|  |  | Right | 14 | 16 | 12 | 1 | 1 | 0 | 1 | 11 | 39 |
| 12 | $12+000$ to $12+500$ | Left | 4 | 0 | 2 | 1 | 2 | 0 | 0 | 2 | 14 |
|  |  | Right | 14 | 20 | 11 | 2 | 8 | 0 | 6 | 0 | 35 |
|  | $12+500$ to $13+000$ | Left | 23 | 6 | 3 | 5 | 5 | 1 | 0 | 52 | 9 |
|  |  | Right | 23 | 23 | 8 | 4 | 9 | 0 | 9 | 70 | 27 |
| 13 | $13+000$ to $13+500$ | Left | 10 | 3 | 12 | 7 | 5 | 3 | 3 | 4 | 23 |
|  |  | Right | 2 | 22 | 15 | 1 | 5 | 0 | 9 | 3 | 42 |
|  | $13+500$ to $14+000$ | Left | 1 | 3 | 4 | 1 | 2 | 1 | 2 | 0 | 9 |
|  |  | Right | 1 | 7 | 1 | 0 | 0 | 0 | 2 | 0 | 16 |
| 14 | $14+000$ to $14+500$ | Left | 7 | 13 | 6 | 2 | 1 | 1 | 4 | 5 | 23 |
|  |  | Right | 6 | 27 | 5 | 1 | 2 | 0 | 10 | 13 | 21 |
|  | $14+500$ to $15+000$ | Left | 9 | 6 | 2 | 12 | 6 |  | 2 | 5 | 30 |
|  |  | Right | 13 | 33 | 18 | 2 | 11 | 3 | 10 | 6 | 53 |
|  |  |  | 418 | 811 | 556 | 167 | 214 | 15 | 144 | 355 | 1366 |

Table H-3-2(2/4) Affected fruite trees ( 15 m from the road center on both sides: Temporally ROW)

| Station ( Km) |  | Left / | Fruite trees |  |  |  |  |  |  |  | Others |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right side | Mango (Nos.) | Coconut (Nos.) | Jack fruite (Nos.) | Guava (Nos.) | Kampinath (Nos.) | $\begin{gathered} \text { Lemon } \\ \text { (Nos.) } \end{gathered}$ | Pulasan (Nos.) | Papaya (Nos.) | (Nos.) |
| 15 | 15+000 to15+500 | Left | 6 | 20 | 11 | 3 | 7 | 1 | 10 | 12 | 30 |
|  |  | Right | 5 | 28 | 18 | 4 | 10 | 0 | 33 | 4 | 41 |
|  | $15+500$ to $16+000$ | Left | 8 | 9 | 13 | 3 | 16 | 1 | 12 | 8 | 39 |
|  |  | Right | 12 | 30 | 19 | 2 | 25 | 1 | 10 | 19 | 52 |
| 16 | $16+000$ to $16+500$ | Left | 7 | 2 | 6 | 7 | 12 | 3 | 6 | 0 | 29 |
|  |  | Right | 14 | 21 | 34 | 2 | 25 | 2 | 3 | 4 | 54 |
|  | $16+500$ to $17+000$ | Left | 21 | 17 | 10 | 6 | 8 | 0 | 4 | 4 | 38 |
|  |  | Right | 5 | 12 | 14 | 8 | 7 | 0 | 4 | 3 | 45 |
| 17 | $17+000$ to $17+500$ | Left | 19 | 43 | 10 | 3 | 4 | 0 | 6 | 6 | 35 |
|  |  | Right | 8 | 35 | 18 | 4 | 6 | 0 | 1 | 17 | 34 |
|  | $17+500$ to $18+000$ | Left | 8 | 12 | 8 | 1 | 3 | 1 | 4 | 3 | 17 |
|  |  | Right | 1 | 17 | 4 | 0 | 1 | 0 |  | 2 | 20 |
| 18 | $18+000$ to $18+500$ | Left | 15 | 37 | 6 | 5 | 20 | 0 | 10 | 7 | 15 |
|  |  | Right | 14 | 34 | 21 | 6 | 15 | 0 | 3 | 9 | 36 |
|  | $18+500$ to $19+000$ | Left | 6 | 9 | 6 | 0 | 1 | 0 | 3 | 3 | 15 |
|  |  | Right | 10 | 46 | 8 | 1 | 8 | 0 | 3 | 0 | 30 |
| 19 | $19+000$ to $19+500$ | Left | 4 | 10 | 6 | 2 | 1 | 0 | 1 | 1 | 27 |
|  |  | Right | 13 | 24 | 8 | 0 | 1 | 0 | 3 | 2 | 28 |
|  | 19+500 to 20+000 | Left | 3 | 15 | 3 | 5 | 0 | 0 | 1 | 4 | 32 |
|  |  | Right | 12 | 65 | 8 | 0 | 5 | 0 | 9 | 7 | 23 |
| 20 | $20+000$ to $20+500$ | Left | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 2 | 10 |
|  |  | Right | 11 | 27 | 11 | 3 | 5 | 0 | 1 | 5 | 35 |
|  | $20+500 \text { to } 21+000$ | Left | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
|  |  | Right | 6 | 32 | 9 | 2 | 2 | 0 | 2 | 2 | 13 |
| 21 | $21+000$ to $21+500$ | Left | 10 | 45 | 10 | 0 | 0 | 0 | 6 | 2 | 20 |
|  |  | Right | 12 | 34 | 22 | 2 | 5 | 0 | 9 | 10 | 33 |
|  | $21+500$ to $22+000$ | Left | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 23 |
|  |  | Right | 17 | 9 | 32 | 1 | 4 | 1 | 9 | 9 | 32 |
| 22 | $22+000$ to $22+500$ | Left | 4 | 1 | 5 | 2 | 1 | 0 | 0 | 2 | 18 |
|  |  | Right | 20 | 13 | 38 | 3 | 4 | 0 | 1 | 1 | 25 |
|  | $22+500$ to $23+000$ | Left | 3 | 0 | 3 | 0 | 1 | 0 | 0 | 2 | 45 |
|  |  | Right | 5 | 12 | 11 | 4 | 4 | 0 | 0 | 0 | 23 |
| 23 | $23+000$ to $23+500$ | Left | 5 | 2 | 2 | 0 | 5 | 0 | 0 | 2 | 11 |
|  |  | Right | 11 | 10 | 9 | 3 | 5 | 0 | 1 | 1 | 40 |
|  | $23+500$ to $24+000$ | Left | 0 | 24 | 4 | 0 | 0 | 0 | 0 | 1 | 7 |
|  |  | Right | 18 | 28 | 20 | 3 | 6 | 0 | 1 | 1 | 23 |
| 24 | $24+000$ to $24+500$ | Left | 10 | 2 | 3 | 3 | 1 | 0 | 0 | 5 | 23 |
|  |  | Right | 11 | 15 | 14 | 2 | 0 | 0 | 1 | 2 | 36 |
|  | $24+500$ to $25+000$ | Left | 3 | 4 | 2 | 5 | 1 | 0 | 0 | 5 | 39 |
|  |  | Right | 11 | 33 | 20 | 5 | 6 | 0 | 1 | 11 | 31 |
| 25 | $25+000$ to $25+500$ | Left | 3 | 4 | 0 | 3 | 1 | 0 | 0 | 11 | 16 |
|  |  | Right | 20 | 25 | 23 | 2 | 3 | 1 | 2 | 3 | 29 |
|  | $25+500$ to $26+000$ | Left | 15 | 3 | 2 | 5 | 2 | 0 | 0 | 2 | 15 |
|  |  | Right | 21 | 59 | 20 | 2 | 6 | 0 | 2 | 4 | 29 |
| 26 | $26+000$ to $26+500$ | Left | 9 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 22 |
|  |  | Right | 15 | 21 | 26 | 3 | 7 | 0 | 2 | 8 | 38 |
|  | $26+500$ to $27+000$ | Left | 2 | 4 | 1 | 1 | 2 | 0 | 0 | 2 | 14 |
|  |  | Right | 8 | 8 | 6 | 1 | 5 | 1 | 0 | 7 | 22 |
| 27 | $27+000$ to $27+500$ | Left | 1 | 0 | 1 | 3 | 1 | 0 | 0 | 10 | 8 |
|  |  | Right | 4 | 20 | 12 | 0 | 8 | 0 | 1 | 1 | 37 |
|  | $27+500$ to $28+000$ | Left | 2 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 7 |
|  |  | Right | 7 | 45 | 41 | 0 | 4 | 0 | 3 | 12 | 16 |
| 28 | $28+000$ to $28+500$ | Left | 0 | 2 | 3 | 3 | 0 | 0 | 0 | 6 | 20 |
|  |  | Right | 3 | 56 | 15 | 1 | 0 | 0 | 1 | 4 | 23 |
|  | $28+500$ to $29+000$ | Left | 4 | 0 | 4 | 3 | 1 | 0 | 0 | 4 | 11 |
|  |  | Right | 14 | 27 | 19 | 3 | 7 | 1 | 0 | 12 | 33 |
| 29 | $29+000$ to $29+500$ | Left | 0 | 0 | 4 | 2 | 3 | 0 | 0 | 4 | 15 |
|  |  | Right | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 56 |
|  | $29+500$ to $30+000$ | Left | 8 | 15 | 7 | 6 | 4 | 0 | 0 | 0 | 29 |
|  |  | Right | 0 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 63 |
|  |  |  | 486 | 1098 | 636 | 151 | 283 | 13 | 169 | 273 | 1635 |

Table H-3-2(3/4) Affected fruite trees ( 15 m from the road center on both sides: Temporally ROW)

| Station ( Km) |  | Left / | Fruite trees |  |  |  |  |  |  |  | Others |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right side | Mango (Nos.) | Coconut (Nos.) | Jack fruite (Nos.) | Guava (Nos.) | Kampinath <br> (Nos.) | $\begin{aligned} & \text { Lemon } \\ & \text { (Nos.) } \\ & \hline \end{aligned}$ | Pulasan (Nos.) | Papaya (Nos.) | (Nos.) |
| 30 | $30+000$ to $30+500$ | Left | 2 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 12 |
|  |  | Right | 1 | 0 | 11 | 4 | 3 | 0 | 0 | 1 | 19 |
|  | $30+500$ to $31+000$ | Left | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 5 | 18 |
|  |  | Right | 8 | 18 | 22 | 1 | 2 | 1 | 1 | 3 | 42 |
| 31 | $31+000$ to $31+500$ | Left | 34 | 8 | 1 | 0 | 1 | 0 | 0 | 1 | 46 |
|  |  | Right | 20 | 54 | 4 | 2 | 2 | 0 | 4 | 6 | 64 |
|  | $31+500$ to $32+000$ | Left | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 86 |
|  |  | Right | 3 | 26 | 5 | 0 | 0 | 0 | 2 | 4 | 86 |
| 32 | $32+000$ to $32+500$ | Left | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 2 | 2 |
|  |  | Right | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 77 |
|  | $32+500$ to $33+000$ | Left | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 5 | 3 |
|  |  | Right | 2 | 10 | 15 | 0 | 0 | 1 | 0 | 23 | 31 |
| 33 | $33+000$ to $33+500$ | Left | 0 | 14 | 0 | 12 | 3 | 0 | 0 | 5 | 7 |
|  |  | Right | 4 | 50 | 23 | 0 | 1 | 0 | 3 | 20 | 34 |
|  | $33+500$ to $34+000$ | Left | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 2 | 5 |
|  |  | Right | 5 | 53 | 24 | 2 | 1 | 2 | 1 | 17 | 25 |
| 34 | $34+000$ to $34+500$ | Left | 0 | 11 | 6 | 14 | 0 | 1 | 0 | 5 | 21 |
|  |  | Right | 3 | 28 | 8 | 1 | 1 | 0 | 2 | 16 | 48 |
|  | $34+500$ to $35+000$ | Left | 3 | 12 | 28 | 9 | 1 | 0 | 1 | 7 | 20 |
|  |  | Right | 5 | 35 | 17 | 0 | 1 | 3 | 11 | 10 | 44 |
| 35 | $35+000$ to $35+500$ | Left | 3 | 3 | 17 | 2 | 0 | 0 | 0 | 3 | 39 |
|  |  | Right | 4 | 33 | 15 | 5 | 0 | 0 | 0 | 3 | 25 |
|  | $35+500$ to $36+000$ | Left | 2 | 8 | 10 | 2 | 2 | 1 | 0 | 9 | 27 |
|  |  | Right | 1 | 30 | 7 | 1 | 0 | 1 | 4 | 1 | 25 |
| 36 | $36+000$ to $36+500$ | Left | 0 | 3 | 2 | 12 | 0 | 0 | 0 | 2 | 11 |
|  |  | Right | 7 | 31 | 12 | 6 | 1 | 1 | 1 | 13 | 35 |
|  | $36+500$ to $37+000$ | Left | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 2 |
|  |  | Right | 1 | 9 | 4 | 1 | 0 | 0 | 0 | 9 | 20 |
| 37 | $37+000$ to $37+500$ | Left | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 2 | 228 |
|  |  | Right | 4 | 4 | 49 | 2 | 0 | 0 | 1 | 20 | 48 |
|  | $37+500$ to $38+000$ | Left | 2 | 0 | 1 | 5 | 0 | 1 | 0 | 6 | 18 |
|  |  | Right | 13 | 14 | 15 | 2 | 1 | 2 | 0 | 5 | 56 |
| 38 | $38+000$ to $38+500$ | Left | 0 | 1 | 13 | 11 | 0 | 0 | 0 | 9 | 30 |
|  |  | Right | 5 | 10 | 20 | 5 | 0 | 0 | 1 | 1 | 26 |
|  | $38+500$ to $39+000$ | Left | 0 | 4 | 3 | 3 | 0 | 0 | 0 | 13 | 22 |
|  |  | Right | 2 | 6 | 22 | 2 | 0 | 1 | 0 | 32 | 36 |
| 39 | $39+000$ to $39+500$ | Left | 1 | 7 | 8 | 6 | 0 | 0 | 0 | 19 | 36 |
|  |  | Right | 5 | 13 | 28 | 2 | 1 | 0 | 0 | 12 | 35 |
|  | $39+500$ to 40+000 | Left | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 30 | 35 |
|  |  | Right | 12 | 3 | 35 | 2 | 1 | 1 | 0 | 22 | 42 |
| 40 | $40+000$ to $40+500$ | Left | 0 | 0 | 2 | 14 | 0 | 0 | 0 | 3 | 29 |
|  |  | Right | 4 | 1 | 37 | 5 | 0 | 0 | 0 | 14 | 66 |
|  | $40+500$ to $41+000$ | Left | 0 | 0 | 2 | 5 | 0 | 0 | 0 | 11 | 18 |
|  |  | Right | 2 | 0 | 13 | 1 | 0 | 0 | 0 | 16 | 61 |
| 41 | $41+000$ to $41+500$ | Left | 0 | 1 | 11 | 4 | 0 | 0 | 0 | 24 | 21 |
|  |  | Right | 1 | 2 | 10 | 2 | 0 | 0 | 0 | 13 | 63 |
|  | $41+500$ to $42+000$ | Left | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 143 |
|  |  | Right | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 11 |
| 42 | $42+000$ to $42+500$ | Left | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 29 |
|  |  | Right | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 |
|  | $42+500$ to $43+000$ | Left | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
|  |  | Right | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 43 | $43+000$ to 43+500 | Left | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 29 | 33 |
|  |  | Right | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
|  | $43+500$ to 44+000 | Left | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
|  |  | Right | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| 44 | $44+000$ to 44+500 | Left | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 110 |
|  |  | Right | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 4 | 36 |
|  | $44+500$ to $45+000$ | Left | 1 | 2 | 0 | 8 | 0 | 0 | 0 | 0 | 21 |
|  |  | Right | 6 | 4 | 7 | 3 | 0 | 1 | 2 | 8 | 66 |
|  |  |  | 170 | 514 | 517 | 195 | 26 | 17 | 34 | 469 | 2220 |

Table H-3-2(4/4) Affected fruite trees ( 15 m from the road center on both sides: Temporally ROW)

| Station ( Km) |  | Left / <br> Right <br> side | Fruite trees |  |  |  |  |  |  |  | Others <br> (Nos.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mango <br> (Nos.) | Coconut (Nos.) | Jack fruite (Nos.) | Guava <br> (Nos.) | Kampinath (Nos.) | $\begin{gathered} \text { Lemon } \\ \text { (Nos.) } \end{gathered}$ | Pulasan <br> (Nos.) | Papaya <br> (Nos.) |  |
| 45 | $45+000$ to 45+500 |  | Left | 5 | 5 | 0 | 16 | 1 | 0 | 1 | 3 | 48 |
|  |  | Right | 10 | 30 | 9 | 3 | 1 | 0 | 1 | 9 | 96 |
|  | $45+500$ to $46+000$ | Left | 5 | 11 | 6 | 20 | 2 | 0 | 1 | 8 | 37 |
|  |  | Right | 6 | 22 | 6 | 4 | 0 | 0 | 2 | 8 | 58 |
| 46 | $46+000$ to $46+500$ | Left | 11 | 30 | 1 | 11 | 0 | 0 | 0 | 0 | 4 |
|  |  | Right | 5 | 45 | 0 | 6 | 0 | 0 | 0 | 3 | 44 |
|  | $46+500$ to 47+000 | Left | 7 | 20 | 1 | 5 | 1 | 0 | 1 | 0 | 9 |
|  |  | Right | 2 | 5 | 14 | 6 | 0 | 2 | 3 | 3 | 45 |
| 47 | $47+000$ to 47+500 | Left | 2 | 0 | 1 | 14 | 2 | 0 | 0 | 0 | 22 |
|  |  | Right | 1 | 10 | 14 | 11 | 2 | 0 | 0 | 4 | 60 |
|  | $47+500$ to 48+000 | Left | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 3 | 40 |
|  |  | Right | 2 | 17 | 16 | 2 | 1 | 0 | 0 | 8 | 49 |
| 48 | $48+000$ to $48+500$ | Left | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 |
|  |  | Right | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 25 |
|  | $48+500$ to $49+000$ | Left | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
|  |  | Right | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 38 |
| 49 | $49+000$ to $49+500$ | Left | 0 | 1 | 11 | 4 | 1 | 0 | 4 | 2 | 17 |
|  |  | Right | 4 | 3 | 25 | 4 | 4 | 0 | 1 | 9 | 39 |
|  | $49+500$ to $50+000$ | Left | 1 | 0 | 0 | 8 | 1 | 0 | 0 | 2 | 20 |
|  |  | Right | 24 | 16 | 20 | 7 | 2 | 0 | 1 | 19 | 44 |
| 50 | $50+000$ to $50+500$ | Left | 1 | 0 | 3 | 8 | 1 | 0 | 0 | 22 | 13 |
|  |  | Right | 3 | 17 | 1 | 1 | 1 | 0 | 0 | 9 | 32 |
|  | $50+500$ to $51+000$ | Left | 2 | 3 | 5 | 1 | 0 | 0 | 0 | 15 | 9 |
|  |  | Right | 7 | 16 | 9 | 4 | 0 | 0 | 1 | 1 | 59 |
| 51 | $51+000$ to $51+500$ | Left | 2 | 0 | 7 | 4 | 3 | 0 | 0 | 9 | 24 |
|  |  | Right | 10 | 14 | 15 | 21 | 2 | 0 | 1 | 0 | 29 |
|  | $51+500$ to 52+000 | Left | 2 | 11 | 2 | 11 | 0 | 2 | 0 | 12 | 32 |
|  |  | Right | 7 | 12 | 4 | 22 | 4 | 0 | 0 | 5 | 37 |
| 52 | $52+000$ to $52+500$ | Left | 7 | 1 | 0 | 8 | 4 | 0 | 0 | 1 | 24 |
|  |  | Right | 0 | 7 | 1 | 0 | 1 | 0 | 0 | 0 | 34 |
|  | $52+500$ to $53+000$ | Left | 13 | 3 | 5 | 7 | 2 | 3 | 1 | 11 | 26 |
|  |  | Right | 26 | 24 | 20 | 14 | 3 | 0 | 3 | 1 | 50 |
| 53 | $53+000$ to $53+500$ | Left | 7 | 0 | 3 | 5 | 1 | 0 | 0 | 6 | 18 |
|  |  | Right | 16 | 22 | 9 | 10 | 7 | 0 | 0 | 9 | 52 |
|  | $53+500$ to 54+000 | Left | 7 | 10 | 10 | 1 | 2 | 1 | 2 | 10 | 10 |
|  |  | Right | 12 | 30 | 11 | 3 | 0 | 0 | 2 | 2 | 46 |
| 54 | 54+000 to 54+500 | Left | 1 | 7 | 6 | 4 | 2 | 0 | 5 | 4 | 11 |
|  |  | Right | 2 | 0 | 3 | 0 | 1 | 0 | 0 | 7 | 16 |
|  | $54+500$ to 55+000 | Left | 9 | 20 | 4 | 7 | 1 | 0 | 7 | 4 | 5 |
|  |  | Right | 1 | 14 | 2 | 1 | 1 | 1 | 19 | 1 | 30 |
| 55 | $55+000$ to 55+309 | Left |  |  |  |  |  |  |  |  |  |
|  |  | Right |  |  |  |  |  |  |  |  |  |
|  | $54+800$ to $55+342$ | Left |  |  |  |  |  |  |  |  |  |
|  |  | Right |  |  |  |  |  |  |  |  |  |
| Sub-total |  |  | 221 | 429 | 245 | 258 | 54 | 9 | 56 | 217 | 1272 |

## H-4. Resettlement Compensation Cost

TableH-4-1 Resettlement Compensation Cost Base

| Classification | Unit | (USD) |
| :---: | :---: | :---: |
| I. Allowances |  |  |
| Description Allowance | each | \$40.00 |
| Widow | each | \$20.00 |
| Disable | each | \$20.00 |
| Income<\$ 10/month | each | \$20.00 |
| Resettlement Allowance | each | \$40.00 |
| Provincial Government Payment fo resettlement Lot Development | each | \$300.00 |
| II. Structures |  |  |
| House Type 1 (Leave roofed) | $\mathrm{m}^{2}$ | \$4.50 |
| House Type 2 (Zin plate roofed) | $\mathrm{m}^{2}$ | \$12.00 |
| House Type 3 (Tile roofed) | $\mathrm{m}^{2}$ | \$85.00 |
| House Type 4 (Concrete) | $\mathrm{m}^{2}$ | \$140.00 |
| III. Other Fixed Assets |  |  |
| Gas Station | each | \$3,000.00 |
| Staff Market | each | \$4.50 |
| Wall, gate and housing of pagoda | each | \$3,000.00 |
| Wooden Bridge | $\mathrm{m}^{2}$ | \$4.50 |
| Concrete Bridge | $\mathrm{m}^{2}$ | \$12.00 |
| Digging Wells | each | \$50.00 |
| Pump Wells | each | \$75.00 |
| Wooden Fence | m | \$0.75 |
| Concrete Fence | m | \$4.86 |
| Crocodile Farm | $\mathrm{m}^{2}$ | \$4.86 |
| Barbed Wire Fence | m | \$0.75 |
| Zinc Fence | m | \$0.75 |
| Steel Fence | m | \$4.86 |
| Tomb | $\mathrm{m}^{2}$ | \$50.00 |
| IV. Lands |  |  |
| -Home Land Type 1 | $\mathrm{m}^{2}$ | \$20.00 |
| -Home Land Type 2 | $\mathrm{m}^{2}$ | \$15.00 |
| -Home Land Type 3 | $\mathrm{m}^{2}$ | \$8.00 |
| -Home Land Type 4 | $\mathrm{m}^{2}$ | \$22.00 |
| -Field Land | $\mathrm{m}^{2}$ | \$0.50 |
| -Damage Land | $\mathrm{m}^{2}$ | \$0.30 |


| Classification |  | Unit |
| :--- | :---: | ---: |
| V. Fruit Tree |  |  |
| Mango tree | each | $\$ 30.00$ |
| Tamarind tree | each | $\$ 10.00$ |
| Coconut tree | each | $\$ 15.00$ |
| Palm tree | each | $\$ 8.00$ |
| Bamboo tree | thicket | $\$ 15.00$ |
| Banana tree | thicket | $\$ 0.80$ |
| Jack fruit tree | each | $\$ 15.00$ |
| Otaheite tree | each | $\$ 15.00$ |
| Papaya tree | each | $\$ 2.50$ |
| Guava tree | each | $\$ 2.50$ |
| Cockcomb tree | each | $\$ 10.00$ |
| Lemon tree | each | $\$ 3.50$ |
| Soursop tree | each | $\$ 5.00$ |
| Custard apple tree | each | $\$ 3.00$ |
| Longan tree | each | $\$ 30.00$ |
| Milk tree | each | $\$ 30.00$ |
| Lichi tree | each | $\$ 30.00$ |
| Oreca palm tree | each | $\$ 5.00$ |
| Marian plum tree | each | $\$ 30.00$ |
| Pomegranate tree | each | $\$ 2.50$ |
| Pulasan tree | each | $\$ 15.00$ |
| Cashew-nut tree | each | $\$ 2.50$ |
| Vegetables | thicket | - |
| Timber | each | $\$ 25.00$ |
| Others | each | - |
|  |  |  |

Source: Inter-Ministerial Resettlement
Committee (IRC)

H-5. Approval of IEIA (Initial Environmental Impact Assessment)




nus: blso U.04 tor. W. N

## 

## 



 ดิษสีกนฺุุร












yixset?

-



# - Translation to English <br> Ministry of Environment 

No: 241 MoE

## Kingdom of Cambodia

Nation Religion King

Phnom Penh, 15th November 2002

## Dear: Minister of Public Works and Transport;

Purpose: Reviewing and giving the recommendation on the final report of the Initial Environmental Impact Assessment (IEIA) of the feasibility study on the improvement of the National Road No. 1 project from Phnom Penh to Neak Leoeung.

Reference: The letter No. 275 dated on $15^{\text {th }}$ October 2002 from director general of Public Works and Transport.

Referring to the above purpose, I have the great pleasure to tell you that Ministry of Environment (MoE) has approved the final report of Initial Environmental Impact Assessment (IEIA) of the feasibility study on the improvement of the National Road No. 1 project from Phnom Penh to Neak Leoeung, which has been sent to MoE for reviewing and commend. So MoE would like to provide some recommendations such as:

- Study more detail about environmental impacts on (social and natural environment) and the efficient and suitable measures to mitigate;
- Clearly identify the studied methodologies and the data sources;
- Translate in Khmer version of the final report of Initial Environmental Impact Assessment (IEIA).

Moreover, when the construction and project implement are started the project owner should strongly ensure the sustainable of social and natural environment.

Best regards,

## CC:

- Technical Directorate General

E.H. Dr. Mok Mareth

- Document Unit

Minister of Environment

## H-6. Study on Alternatives for Reduction of $\mathbf{1 8 0 5}$ Houses to be Resettled

1. Premises

* Study objective: Setting out road improvement plan taking account of flood prevention
* Right of way: 60 meters wide land acquired by law along the existing road ( 30 m from the center line at both side). No additional land acquisition is required.
* Resettlement of houses: Resettlement to the area outside of the 30 m wide tentative road ( 15 m from the center line at both side).

2. Results of the Study

The number of houses to be resettled cannot be reduced from 1805 , even though minimum 14 m wide road is proposed instead of 14 to 24 meter wide road, because it is stipulated to acquire 30 m wide right-of-way at least for road improvement.
3. Alternative Plans

## Alternative-1

## (1) Outline

Existing section that is 7 km long road section from the west end shall be rehabilitated at only pavement and shoulder. Road elevation is not raised because the flood prevention is not considered at this section.
(2) Result

Number of houses to be resettled will be reduced to approximately 1200 houses.
(3) Impact to the improvement effect

1) Maintenance cost will increase because floods may affect this section.
2) Traffic safety is not assured because slower traffic is not separated from fast one.
3) According to the traffic demand forecast, present road will be saturated by projected traffic volume in several years. This alternative can be a bottleneck on NR1.
4) The effective improvement to the rest of the project road is restricted.

## Alternative-2

(1) Outline

The provision to acquire minimum 14 m wide right-of-way shall be disregarded.
(2) Result

Number of houses to be resettled will be reduced to approximately 1600 houses.
(3) Impact to the improvement effect

1) Acquisition of land for other national road projects is complied with the same provision. This exception may give adverse effect to the subsequent projects.
2) This exception will give adverse effect to the government policy to let the residents know that ownership of land belongs to the nation by the resettlement of houses under the law.

## H-7. Actual Practices of MPWT on Public Information Campaign

Stage-1: The Governor of Kandal informs the relevant district chiefs and commune chiefs by his letter of the necessity of evacuating PAPs from 30 m wide ROW before the construction works commence. It is also informed that the resettlement will be carried out together with compensation.

Stage-2: The person-in-charge of MPWT will visit the relevant district chiefs and commune chiefs to explain the due procedure to resettle PAPs and the way to compensate their property. Taking this opportunity, MPWT will deliver a pamphlet to the relevant district chiefs and commune chiefs as a part of Public Information Campaign.

Stage-3: The relevant district chiefs and commune chiefs will organize the working group for resettlement. Since the member of the working group is not accustomed to the due procedure and the way of compensation, it is necessary for MPWT to conduct the training to them. It is also as a part of Public Information Campaign.

Stage-4: The member of the working group will visit the affected household individually to inform the implementation of project and to explain the due procedure to resettle PAPs and the way to compensate their property. Whenever they have difficult questions to answer or inquiries beyond their duty, they may consult with the person-in-charge of MPWT. Accordingly, although the Public Information Campaign is carried out the Control Key Step-1 of Compensation Procedure for Resettlement, it may continue to the Control Key Step-2 in reality.
I. Construction

## I-1. Construction Procedure of Roads



Fig. I-1 Construction Procedure of Road (14m width) (1/4)


Fig. I-1 Construction Procedure of Road (14m width) (2/4)


Fig. I-1 Construction Procedure of Road (14m width) (3/4)


Fig. I-1 Construction Procedure of Road (14m width) (4/4)
J. COST ESTIMATION

| Rough Cost Estimate, ALT-III-B Total Width : 24m, 21m, 14m |  |  |  | Pavement AS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  |  | Unit | Q ty | Unit Cost | Cost |
| Earth Work | Surface Stripping |  | $\mathrm{m}^{3}$ | 140, 750 | 0.76 | 107, 000 |
|  | Surface Hauling |  | $\mathrm{m}^{3}$ | 140, 750 | 0.89 | 125, 300 |
|  | Excavation |  | $\mathrm{m}^{3}$ | 165, 000 | 0.76 | 125, 400 |
|  | Pavement Stripping |  | $\mathrm{m}^{2}$ | 333, 000 | 0.17 | 56,700 |
|  | Stripped Pavement Hauling |  | $\mathrm{m}^{3}$ | 99, 900 | 0.89 | 89,000 |
|  | Excavation for Embankment Material |  | $\mathrm{m}^{3}$ | 1, 233, 432 | 0.76 | 937, 500 |
|  | Embankment Hauling |  | $\mathrm{m}^{3}$ | 1, 233, 432 | 1.39 | 1,714,500 |
|  | Embankment Spreading and Compunction |  | $\mathrm{m}^{3}$ | 1, 233, 432 | 0.38 | 468, 800 |
|  | Sub base Hauling | form Borrow pit | $\mathrm{m}^{3}$ | 273, 170 | 7.84 | 2, 141, 700 |
|  | Sub base Hauling | to Site | $\mathrm{m}^{3}$ | 99, 900 | 0.89 | 89,000 |
|  | Sub base Spreading and Compunction |  | $\mathrm{m}^{3}$ | 373, 070 | 0.60 | 223, 900 |
|  | Slope Trimming |  | $\mathrm{m}^{2}$ | 743, 064 | 0.92 | 686, 100 |
|  | Base Course Hauling |  | $\mathrm{m}^{3}$ | 140, 750 | 0.89 | 125, 300 |
|  | Wet Masonry | Excavation | $\mathrm{m}^{3}$ | 1,452 | 0.76 | 1,200 |
|  |  | Gravel | $\mathrm{m}^{2}$ | 560 | 2.93 | 1,700 |
|  |  | Leveling Concrete | $\mathrm{m}^{3}$ | 32 | 63.70 | 2,100 |
|  |  | Forming | $\mathrm{m}^{2}$ | 2, 400 | 10.12 | 24,300 |
|  |  | Concrete | $\mathrm{m}^{3}$ | 600 | 69.16 | 41,500 |
|  |  | Wet Masonry | $\mathrm{m}^{2}$ | 7,584 | 29.66 | 225, 000 |
|  | Sod Facing |  | nos | 1,404 | 7.00 | 9,900 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | Sub Total |  |  |  |  | 7, 194,900 |
| Pavement Work <br> Type24-1 <br> $0+000 \sim 0+300$ |  |  |  |  |  |  |
|  | Sub base | $\mathrm{t}=300 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 6, 180 | 5.97 | 36,900 |
|  | Base Course | $\mathrm{t}=150 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 5,898 | 3.30 | 19,500 |
|  | Surface Course (Through Travel Lane) | 60 mm | $\mathrm{m}^{2}$ | 4, 200 | 7.53 | 31,700 |
|  |  | 40 mm | $\mathrm{m}^{2}$ | 4, 200 | 5.01 | 21,100 |
|  | Surface Course (Heard Shoulder) | 40 mm | $\mathrm{m}^{2}$ | 1,200 | 5.01 | 6,100 |
| $\begin{array}{r} \text { Type24-2 } \\ 0+300 \sim 7+000 \end{array}$ | Sub base | $\mathrm{t}=270 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 105, 056 | 5.45 | 572, 600 |
|  | Base Course | $\mathrm{t}=150 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 92,460 | 3.30 | 305, 200 |
|  | Surface Course (Through Travel Lane) | 60 mm | $\mathrm{m}^{2}$ | 53,600 | 7.53 | 403, 700 |
|  |  | 40 mm | $\mathrm{m}^{2}$ | 53,600 | 5.01 | 268, 500 |
| $\begin{array}{r} \text { Type21-1 } \\ 7+000 \sim 13+500 \end{array}$ | Surface Course (Heard Shoulder) | 40 mm | $\mathrm{m}^{2}$ | 30,150 | 5.01 | 151, 100 |
|  | Sub base | $\mathrm{t}=240 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 101, 140 | 4.93 | 498, 700 |
|  | Base Course | $\mathrm{t}=150 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 103, 090 | 3.30 | 340, 200 |
|  | Surface Course (Through Travel Lane) | 60 mm | $\mathrm{m}^{2}$ | 52,000 | 7.53 | 391, 700 |
|  |  | 40mm | $\mathrm{m}^{2}$ | 52, 000 | 5.01 | 260, 500 |
| Type24-3 | Surface Course (Heard Shoulder) | 40 mm | $\mathrm{m}^{2}$ | 29,250 | 5.01 | 146,500 |
|  | Sub base | $\mathrm{t}=240 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 10,270 | 4.93 | 50, 700 |
|  | Base Course | $\mathrm{t}=150 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 9, 830 | 5.62 | 55,300 |
|  | Surface Course (Through Travel Lane) | 60 mm | $\mathrm{m}^{2}$ | 7,000 | 5.01 | 35,100 |
|  |  | 40 mm | $\mathrm{m}^{2}$ | 7,000 | 5.01 | 35,100 |
| $\begin{array}{r} \text { Type14-1 } \\ 14+000 \sim 36+000 \end{array}$ | Surface Course (Heard Shoulder) | 40 mm | $\mathrm{m}^{2}$ | 2,000 | 5.01 | 10,100 |
|  | Sub base | $\mathrm{t}=290 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 281, 600 | 5.80 | 1,633,300 |
|  | Base Course | $\mathrm{t}=250 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 324, 720 | 5.62 | 1,825,000 |
|  | Surface Course (Through Travel Lane) | 50 mm | $\mathrm{m}^{2}$ | 165, 000 | 6.13 | 1, 010,700 |
|  |  | 40 mm | $\mathrm{m}^{2}$ | 0 | 5.01 | , |
| $\begin{array}{r} \text { Type14-2 } \\ 36+000 \sim 55+300 \end{array}$ | Surface Course (Heard Shoulder) | 40 mm | $\mathrm{m}^{2}$ | 99, 000 | 5.01 | 495, 900 |
|  | Sub base | $\mathrm{t}=320 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 249, 990 | 6. 32 | 1,580,000 |
|  | Base Course | $\mathrm{t}=200 \mathrm{~mm}$ | $\mathrm{m}^{2}$ | 286, 260 | 4.65 | 1,331,200 |
|  | Surface Course (Through Travel Lane) | 50 mm | $\mathrm{m}^{2}$ | 146, 250 | 6.13 | 895, 800 |
|  |  | 40 mm | $\mathrm{m}^{2}$ | 87,750 | 5.01 | 439, 500 |
| Sidewalk ${ }^{\text {DBST }}$ | Surface Course (Heard Shoulder) | DBST | $\mathrm{m}^{2}$ | 0 | 3.06 | 0 |
|  |  |  |  |  |  |  |
|  | Base course | $\mathrm{t}=100$ | $\mathrm{m}^{2}$ | 37,500 | 1.56 | 58,500 |
|  | Surface Course | t=30 | $\mathrm{m}^{2}$ | 37,500 | 4.42 | 165, 900 |
|  | Sub Total |  |  |  |  |  |
|  |  |  |  |  |  | 13, 074, 500 |
| Bridge | 42+400 | Length:66m 3@22m | L/S | 1 |  | 1, 464, 400 |
|  | 42+850 | Length: $100 \mathrm{~m} 4 @ 25 \mathrm{~m}$ | L/S | 1 |  | 1,802,200 |
|  | $47+967$ | Length:66m 3@22m | L/S | 1 |  | 1,331,800 |
|  |  |  |  |  |  |  |
|  | Sub Total |  |  |  |  | 4, 598, 200 |
|  |  |  |  |  |  |  |


| Description |  |  | Unit | Q＇ty | Unit Cost | Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drainage Facilities |  |  |  |  |  |  |
| $0+000 \sim 0+600$$13+500 \sim 14+000$ | Drainage Pipe | $\phi 600$ | m | 2， 400 | 10.51 | 25，300 |
|  | Excavation |  | $\mathrm{m}^{3}$ | 2， 784 | 1.22 | 3， 400 |
|  | Gravel |  | $\mathrm{m}^{2}$ | 1，800 | 2.93 | 5，300 |
|  | Leveling Concrete | Surrounded $180^{\circ}$ | $\mathrm{m}^{3}$ | 511 | 56.65 | 29，000 |
|  | Concrete Work |  | $\mathrm{m}^{3}$ | 511 | 6.80 | 3，500 |
|  | RC Pipe | $\phi 600$ | m | 2， 400 | 16.80 | 40， 400 |
|  | Drainage Basin |  | nos | 120 | 12.39 | 1，500 |
|  |  | Concrete | $\mathrm{m}^{3}$ | 302 | 62.12 | 18，800 |
|  |  | Concrete Work | $\mathrm{m}^{3}$ | 302 | 6.80 | 2，100 |
|  |  | Re－bar | kg | 9， 072 | 0.48 | 4， 400 |
|  |  |  |  |  |  |  |
| $0+600 \sim 7+000$ | Side Ditch（L－type） |  |  |  |  |  |
|  |  | Concrete | $\mathrm{m}^{3}$ | 1，357 | 62.12 | 84， 300 |
|  |  | Concrete Work | $\mathrm{m}^{3}$ | 8，320 | 6.80 | 56，600 |
|  |  | Re－bar | kg | 33， 920 | 0.48 | 16，300 |
|  | Drainage Pipe（Across Sidewalk） |  | m | 1，067 | 7.51 | 8，100 |
|  | ¢ 400＠30m | Excavation | $\mathrm{m}^{3}$ | 555 | 1.22 | 700 |
|  |  | Gravel | $\mathrm{m}^{2}$ | 587 | 2.93 | 1，800 |
|  |  | Leveling Concrete | $\mathrm{m}^{3}$ | 115 | 56.65 | 6，600 |
|  |  | Concrete Work | $\mathrm{m}^{3}$ | 115 | 6.80 | 800 |
|  |  | RC Pipe | m | 1， 067 | 12.00 | 12，800 |
|  |  | Flow Treatment | L／S | 1 |  | 47， 000 |
|  | Drainage Basin |  | nos | 450 | 12.39 | 5，600 |
|  |  | Concrete | $\mathrm{m}^{3}$ | 153 | 62.12 | 9，600 |
|  |  | Concrete Work | $\mathrm{m}^{3}$ | 153 | 6.80 | 1，100 |
|  |  | Re－bar | kg | 4，590 | 0.48 | 2，300 |
|  |  |  |  |  |  |  |
|  | － | ， |  |  |  |  |
|  | ボックスカルバート工 |  |  |  |  |  |
|  | $24+000 \quad \mathrm{PC}-1$ | Pipe 1．0m＠1 | L／S | 1 |  | 14， 100 |
|  | $24+840 \quad \mathrm{PC}-2$ | Pipe 1．0m＠1 | L／S | 1 |  | 13，200 |
|  | $32+440 \quad \mathrm{BC}-1$ | 2－cell Box | L／S | 1 |  | 199， 900 |
|  | $32+760 \quad \mathrm{BC}-2$ | 2－cell Box | L／S | 1 |  | 219， 100 |
|  | 33＋230 $\quad \mathrm{BC}-3$ | 2－cell Box | L／S | 1 |  | 186， 800 |
|  | $36+900 \quad \mathrm{BC}-4$ | 2－cell Box | L／S | 1 |  | 217，500 |
|  | $41+040 \quad \mathrm{BC}-5$ | 2－cell Box | L／S | 1 |  | 203， 100 |
| 822，909， 583 | $41+800 \quad \mathrm{BC}-6$ | 2－cell Box | L／S | 1 |  | 198， 200 |
|  | $43+500 \quad \mathrm{BC}-7$ | 2－cell Box | L／S | 1 |  | 200， 100 |
|  | $44+400 \quad \mathrm{BC}-8$ | 2－cell Box | L／S | 1 |  | 192， 100 |
|  | $46+960 \quad \mathrm{BC}-9$ | 2－cell Box | L／S | 1 |  | 183， 300 |
|  | $48+800 \quad \mathrm{BC}-10$ | 2－cell Box | L／S | 1 |  | 197， 900 |
|  | $50+033 \quad \mathrm{BC}-11$ | 3－cell Box | L／S | 1 |  | 234， 700 |
|  |  |  |  |  |  |  |
|  | Sub Total |  |  |  |  | 2，645，700 |
|  |  |  |  |  |  |  |
| Road Facilities | Marking | Dash Line | m | 41，300 | 0.54 | 22， 400 |
|  |  | Continuous Line | m | 199， 200 | 0.52 | 104， 000 |
|  | Signal | Regulation | nos | 110 | 106.65 | 11，800 |
|  |  | Guide Sign | nos | 7 | 1，000．00 | 7，000 |
|  | Signal |  | nos | 5 | 16， 000.00 | 80，000 |
|  | Street Lightning |  | nos | 494 | 1，000．00 | 494， 000 |
|  |  |  |  |  |  |  |
|  | Guard Post |  | nos | 500 | 17.78 | 8，900 |
|  | per a post | Concrete | $\mathrm{m}^{3}$ | 0.04 | 62.12 | 100 |
|  |  | Concrete Work | $\mathrm{m}^{3}$ | 0.04 | 8.74 | 100 |
|  |  | Forming | $\mathrm{m}^{2}$ | 0.81 | 9.94 | 100 |
|  |  | Re－bar | kg | 5.4 | 0.48 | 100 |
|  |  | Painting | nos | 1 | 1.58 | 100 |
|  |  | Installation | nos | 1 | 2.72 | 100 |
|  |  | Hauling | t | 48 | 2.72 | 200 |
|  | Approach Slope for Local Road | Sub Base Hauling | $\mathrm{m}^{3}$ | 39， 845 | 7.84 | 312， 400 |
|  | Length 30 m | Spreading and Compunction | $\mathrm{m}^{3}$ | 39， 845 | 0.60 | 24， 000 |
|  |  |  |  |  |  |  |


| Description |  |  | Unit | Q＇ty | Unit Cost | Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Toll Plaza |  | nos | 1 |  | 423， 800 |
|  |  | Embankment | $\mathrm{m}^{3}$ | 6，936 | 1． 77 | 12，300 |
|  |  | Sub Grade | $\mathrm{m}^{3}$ | 1，293 | 8.44 | 11，000 |
|  |  | Base Course t＝250 | $\mathrm{m}^{2}$ | 3，975 | 5.62 | 22，400 |
|  |  | Sub Base t＝290 | $\mathrm{m}^{2}$ | 3， 812 | 5.80 | 22，200 |
|  |  | Surface Course t＝50 | $\mathrm{m}^{2}$ | 3，728 | 6.13 | 22，900 |
|  |  | Toll Booth | nos | 1 | 250，000．00 | 250， 000 |
|  |  | Weighbridge | nos | 1 |  | 83， 400 |
|  |  | Sub Total |  |  |  | 423， 800 |
|  |  |  |  |  |  |  |
|  | Pedestrian Bridge |  | nos | 2 |  | 104， 700 |
|  |  | Excavation | $\mathrm{m}^{3}$ | 580 | 0.76 | 500 |
|  |  | Leveling Concrete | $\mathrm{m}^{3}$ | 30 | 65.39 | 2，000 |
|  |  | Forming | $\mathrm{m}^{2}$ | 804 | 9.94 | 8，000 |
|  |  | Re －bar | t | 41 | 0.47 | 100 |
|  |  | Concrete | $\mathrm{m}^{3}$ | 308 | 78.99 | 24，400 |
|  |  | Scaffolding | $\mathrm{m}^{2}$ | 346 | 3.90 | 1，400 |
|  |  | Support | $\mathrm{m}^{3}$ | 913 | 3.74 | 3，500 |
|  |  | Refilling | $\mathrm{m}^{3}$ | 464 | 4.24 | 2， 000 |
|  |  | Girder | $\mathrm{m}^{3}$ | 17 | 130.20 | 2， 300 |
|  |  | Girder Erection | nos | 4 | 457.07 | 1，900 |
|  |  | Miscellaneous | nos | 1 | 6，827．98 | 6，900 |
|  |  | Sub Total |  |  |  | 52，400 |
|  | － |  |  |  |  |  |
|  | Livestock Refuge |  | nos | 1 |  | 30，300 |
|  |  | Embankment | $\mathrm{m}^{3}$ | 3，240 | 1． 77 | 5，800 |
|  |  | Base Course | $\mathrm{m}^{3}$ | 1，399 | 8.44 | 11，900 |
|  |  | Surface Course t＝250 | $\mathrm{m}^{2}$ | 2，256 | 5.62 | 12，700 |
|  |  | Sub Total |  |  |  | 30，300 |
|  |  |  |  |  |  |  |
|  | モトルモ停留所 |  | nos | 8 |  | 23，000 |
|  |  | Embankment | $\mathrm{m}^{3}$ | 441 | 1． 77 | 800 |
|  |  | Base Course | $\mathrm{m}^{3}$ | 116 | 8.44 | 1，000 |
|  |  | Surface Course t＝250 | $\mathrm{m}^{2}$ | 197 | 5.62 | 1，200 |
|  |  | Sub Total |  |  |  | 2，900 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | Sub Total |  |  |  |  | 1，646， 000 |
|  |  |  |  |  |  |  |
| Temporary Work | Stock Yard |  | nos | 14 | 3，446．55 | 48，300 |
|  |  | Gathering | $\mathrm{m}^{3}$ | 535 | 0.44 | 300 |
|  |  | Land Dues | $\mathrm{m}^{2} / 18 \mathrm{months}$ | 216 | 14.87 | 3， 300 |
|  |  |  |  |  |  |  |
|  | Plant Yard |  | nos | 1 | 283，292．83 | 283， 300 |
|  | Set Up | Excavation | $\mathrm{m}^{3}$ | 36， 874 | 0.76 | 28，100 |
|  |  | Hauling | $\mathrm{m}^{3}$ | 36，874 | 1．39 | 51，300 |
|  |  | Spreading and Compunction | $\mathrm{m}^{3}$ | 36，874 | 0.38 | 14，100 |
|  |  | Base Course t＝150 | m2 | 15，000 | 3.30 | 49，500 |
|  | Removal | Excavation | $\mathrm{m}^{3}$ | 36， 874 | 0.76 | 28，100 |
|  |  | Hauling Excess Soil | $\mathrm{m}^{3}$ | 36， 874 | 1.39 | 51，300 |
|  |  | Removal of Excess Soil | $\mathrm{m}^{3}$ | 36， 874 | 0.44 | 16，300 |
|  |  | Land Dues | $\mathrm{m}^{2} / 30 \mathrm{months}$ | 360 | 125.00 | 45， 000 |
|  |  |  |  |  |  |  |
|  | Sub Total |  |  |  |  | 331， 600 |
|  |  |  |  |  |  |  |
|  |  | Total Direct Cost |  |  |  | 29，490， 900 |
|  |  |  |  |  |  |  |

K. ECONOMIC ANALYSIS

## K-1. Economic Evaluation

## 1. Vehicle Operating Cost

### 1.1 General

(1) Standard Vehicle Class and Typical Vehicle Models

Taking into account vehicle classification made in the traffic survey and adopted in the HDM 4, the following vehicle classes are adopted in this study:

- Motor Cycle (New) Honda 100 Motor Cycle (Used) Daelim 100 (1999 Product)
- Car (New)

Car (Used) Toyota Camry 1800 (1995 Product)
Toyota Corolla 1500

- Pick ups (New) Hilux twin cab (2 WD)

Pick ups (Used) Hilux twin cab (2 WD)(1995 Product)

- Minibus (New) Toyota Hiace

Minibus (Used) Toyota Hiace (1995 Product)

- Bus
- 2-3 axle Truck Hyundai (2.5 ton)
- Heavy truck Hino ( 8 ton)
- Articulated Truck Benz 2631 AS 35
(2) Economic versus Financial Prices

Economic appraisals of road plans should always be undertaken in economic terms. This requires that both construction and maintenance costs and vehicle operating costs are quoted net of all taxes, duties and the effects of the shortage of skilled labour and foreign exchange. Where a good is traded internationally this can be undertaken easily by identifying the tax and duty (or subsidy) elements of retail prices and removing these tax and duty. The residue is economic prices, including an element of profit for traders where markets are competitive.
However, many goods are not traded internationally, either because they cannot be transported or they have no value outside the country such as vehicle crew cost and passenger time saving. In these cases different methods of estimating economic prices are required. Two typical methods are by estimating the shadow wage factor (SWF) for
unskilled labour and the standard conversion factor (SCF).

## (3) Identification of Tax and Duty Price Elements

For the purposes of the analysis, economic prices have been calculated in each case from first principles, involving the build up of the different price elements from published sources. Firstly retail prices have been estimated based on the survey of suppliers detailed below.
From these retail prices, elements of import duties, value added tax and retailers margin have been identified. By this method, the CIF or boarder prices for each goods have been estimated.

Information on import duties and VA tax has been extracted from "The Study on The Transport Master Plan of the Phnom Penh Metropolitan Area" November 2001, JICA and thee partial update produced in October 2002.
(4) Use of Shadow Wage Rate

Labour markets are often distorted by the Government policies, including minimum wage legislation, restrictions on import of certain types of skilled and semi-skilled labour so on. Each of these can lead to a divergence between the wage rate and its economic worth. The effects of these policies and restrictions will tend to be different for different types of labour.

Three general types of labour are usually defined within such an analysis, skilled, semi-skilled and unskilled. The former of these is generally highly mobile both within a country and internationally. It is therefore safe to assume that no market distortions can exist in this area.

Semi-skilled labours are however, generally mobile, certainly within a country, but often internationally. As with skilled workers it is therefore reasonable to assume that wage rates tend towards economic wage rates in these areas.

Unskilled labourers are however, generally immobile. In these cases wage rates are likely to be subject to market distortions. The most appropriate way to measure the economic wage of unskilled labour is to undertake an analysis of the opportunity cost i.e. how much would be the labourers earning in alternative employment. Since most of the construction
unskilled workers are employed in agriculture, the opportunity cost of this labour can therefore be considered to be its agricultural output.

The calculation of shadow wage rates for Cambodia is shown in Table K.1.1.

Table K.1.1 Shadow Wage Rate

|  | Skilled | Semi-Skilled | Unskilled |
| :--- | ---: | ---: | ---: |
| Index | 1 | 1 | 1 |
| Income Tax Rate | $0 \%$ | $0 \%$ | $0 \%$ |
| Other Taxes Rate | $0 \%$ | $0 \%$ | $0 \%$ |
| Average Agricultural Production Loss | $0 \%$ | $0 \%$ | $52 \%$ |
| Shadow Wage Rate Factor | 1.00 | 1.00 | 0.48 |

## (5) Use Standard Conversion Factor

The Standard Conversion Factor (SCF) is a standard method of incorporating the effects of shortage of foreign exchange, the effects of market distortions, and the implications of protectionist trade policies within the economic appraisals. Since individual analysis of all of these effects is often a time consuming and fruitless process, the SCF avoids the need to undertake detailed analysis.

The factor takes into account the effect of import duties, value added tax on imports, and export taxes in assessing the true value of goods. These are calculated as alongside observed exchange rates to develop a conversion factor to be applied to price elements which are not the subject of individual study.

The SCF can be calculated using a standard set of formulae. The calculation for Cambodia is shown in Table K.1.2.

### 1.2 Exchange Rate

For the purpose of this study an exchange rate of US\$1.00 $=$ Riels3, 990 has been used. This represents an average of the rate prevailing in Phnom Penh in October 2002.

Table K.1.2 Calculation of Standard Conversion Factor

| Item | Variables/Equations | Million US\$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1998 | 1999 | 2000 | 2001 |
| Imports |  |  |  |  |  |
| Total Imports | TQM | 4,018.1 | 4,413.9 | 5,858.6 | 6,276.8 |
| Special Transactions | SM | 1,108.2 | 654.2 | 652.9 | 688.7 |
| Government Imports | NM | 0.0 | 0.0 | 0.0 | 0.0 |
| Net Imports | QM $=$ TQM - SM -NM | 2,909.9 | 3,759.7 | 5,205.7 | 5,588.1 |
| Exports |  |  |  |  |  |
| Total Exports | TQX | 3,369.0 | 3,365.5 | 4,848.2 | 5,390.8 |
| Re -exports | RXX | 1,108.2 | 654.2 | 652.9 | 688.7 |
| Net Exports | QX $=$ TQX-RXX | 2,260.8 | 2,711.3 | 4,195.3 | 4,702.1 |
| Balance of Trade | $d Q=Q M-Q X$ | 649.1 | 1,048.4 | 1,010.4 | 886.0 |
| Import Duties |  |  |  |  |  |
| Total Import Duties | ITI | 432.7 | 491.6 | 466.5 | 581.4 |
| Relevant Import Duties | IT | 372.5 | 415.3 | 372.8 | 356.4 |
| Import Excise Duties | TR | 60.2 | 76.3 | 93.7 | 225.0 |
| Import Tariff Rate | TM $=(\mathrm{IT}-\mathrm{TR}) / \mathrm{QM}$ | 0.078 | 0.077 | 0.048 | 0.021 |
| Total Duties and Taxes on Imports | $\mathrm{T}=\mathrm{ITI}-\mathrm{TR}$ | 372.5 | 415.3 | 372.8 | 356.4 |
| Export Duties |  |  |  |  |  |
| Total Duties and Taxes on Exports | E | 2.7 | 16.5 | 15.8 | 18.5 |
| Export Tax Rate | Tx $=\mathrm{E} / \mathrm{QX}$ | 0.001 | 0.006 | 0.004 | 0.004 |
| Elasticties and Weights |  |  |  |  |  |
| Elasticity of Supply | Es | 1 | 1 | 1 | 1 |
| Elasticity of Demand | Nd | -3 | -3 | -3 | -3 |
| Weight on Supply | Ws=Es/(Es-(Nd*(QM/QX))) | 0.206 | 0.194 | 0.212 | 0.219 |
| Weight on Demand | $\mathrm{Wd}=(\mathrm{Nd} *(\mathrm{QM} / \mathrm{QX})) /(\mathrm{Es}-(\mathrm{Nd} *(\mathrm{QM} / \mathrm{QX}))$ | 1.080 | 1.102 | 1.069 | 1.056 |
| Official Exchange Rate | OER | 3,774 | 3,814 | 3,859 | 3,924 |
| Standard Conversion Factor |  |  |  |  |  |
| Fraction of Current BOP Deficit Sustainab | F | 90\% | 90\% | 90\% | 90\% |
| Equilibrium Nominal Exchange Rate | ERR $=$ OER $*(1+((1-F) * d Q) /(E s * Q X-N d * C$ | 3,796 | 3,843 | 3,879 | 3,940 |
| Shadow Exchange Rate | SER $=$ ERR $*$ ( $\mathrm{Ws} * *(1-T X)+$ Wd* $(1+T M)$ | 5,201 | 5,303 | 5,164 | 5,107 |
| Shadow Exchange Rate Factor | SERF=SER/OER | 1.378 | 1.390 | 1.338 | 1.301 |
| Standard Conversion Factor | SCF=OER/SER | 0.726 | 0.719 | 0.747 | 0.768 |

## Table K.1.3 Vehicle Prices

|  | Typical Model | Retail Price | VAT (\%) | VAT Amount | Specific Tax <br> (\%) | Spec. Tax Amount | Import Duty <br> (\%) | Import Duty Amount | CIF Price | Economic Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor Cycle | Honda 100, New | 865 | 10\% | 62 | 0\% | 0 | 20\% | 123 | 615 | 681 |
|  | Daelim 100, Used (1999) | 400 | 10\% | 30 | 0\% | 0 | 20\% | 59 | 295 | 312 |
| Cars | Corolla 1500, New | 32,000 | 10\% | 1,711 | 20\% | 3,422 | 40\% | 6,844 | 17,110 | 20,023 |
|  | Camry 1800, Used (1995) | 10,000 | 10\% | 560 | 20\% | 1,120 | 40\% | 2,240 | 5,600 | 6,080 |
|  | Pajero 2800, New | 84,227 | 10\% | 3.100 | 30\% | 9,300 | 90\% | 27,900 | 31,000 | 43,927 |
|  | Pajero 2800, Used (1996) | 14,500 | 10\% | 812 | 10\% | 812 | 40\% | 3,248 | 8,120 | 9,628 |
| Pickups | Toyota Hilux, New | 18,000 | 10\% | 1,212 | 10\% | 1.212 | 15\% | 1.818 | 12,120 | 13,758 |
|  | Toyota Hilux, Used (1994) | 5,000 | 10\% | 353 | 10\% | 353 | 15\% | 530 | 3,530 | 3,765 |
| Buses | Toyota Hiace, New | 31,000 | 10\% | 2,088 | 10\% | 2.088 | 15\% | 3,132 | 20,880 | 23,692 |
|  | Toyota Hiace, Used | 18,000 | 10\% | 1,270 | 10\% | 1,270 | 15\% | 1,905 | 12,700 | 13,555 |
| 2-3 axle trucks | Hyundai, used (1995) | 5,500 | 10\% | 388 | 10\% | 388 | 15\% | 582 | 3,880 | 4,142 |
| Heavy Truck | Hino, 8 ton, Used | 10,000 | 10\% | 705 | 10\% | 705 | 15\% | 1,058 | 7,050 | 7,533 |
| Notes: Information obtained from various car dealers in Phnom Penh Estimated by the JICA Study Team |  |  |  |  |  |  |  |  |  |  |

[^0]
### 1.3 Inputs for Vehicle Operating Costs

### 1.3.1 Vehicle Prices

The vehicle prices have been estimated on the basis of the average price for new vehicles and second hand vehicles from new and second hand car dealers. Most vehicles are imported to Cambodia as second hand reconditioned vehicles. Especially, in cases of large bus and heavy trucks, a few suppliers of new vehicles could be found. In these cases, the second hand vehicle prices are only used in this study.

For the purpose of calculating the economic price of each vehicle these taxes and import duty has been subtracted from retail price. The resulting economic price incorporates elements of CIF price, retailer's margin, covering transport and profit costs. The resulting calculations are summarized in TableK.1.3.

### 1.3.2 Tyre Costs

The economic costs of tyres have been assessed in the same way as vehicles. Various suppliers in Phnom Penh were surveyed to assess average prices of different types of tyre.

New tyres are subject to import duty and IVA tax. The rates of these vary for different types of tyre. Import duty is principally charged at $15 \%$ of the CIF. value of the tyre. (Cars at $50 \%$ ) The current rate of IVA tax is $10 \%$ on all types of tyre.

For the purpose of calculating the economic price of each vehicle tyres, these taxes and import duty have been subtracted from retail price. The resulting economic price incorporates elements of CIF price, retailer's margin, covering transport and profit costs. The resulting calculations are summarized in Table K.1.4.

### 1.3.3 Fuel and Lubricants Costs

Fuel and lubricants prices have been estimated based on a survey of prices in Phnom Penh. There are a number of suppliers in here operating competitively. There are three types of fuel are available, gasoline which can subdivided into two; super and regular, and diesel.

Fuels are subject to import duty and an specific and IVA taxes. The import tax regulations make allowance for gasoline and diesel.

For the purpose of calculating the economic price of each fuel and lubricants prices, these taxes and import duty have been subtracted from retail price. The resulting economic price incorporates elements of CIF price, retailer's margin, covering transport and profit costs. The resulting calculations are summarized in Table K.1.5.

Table K.1.5 Fuel and Lubricants Costs

|  | Gasoline |  | Diesel | Lubricant |
| :--- | ---: | ---: | ---: | ---: |
|  | Super | Regular |  | 2.60 |
| Retailed Prices | 0.589 | 0.564 | 0.414 | 0.17 |
| Tax (Import Tax, Special <br> Tax, VAT) | 0.196 | 0.188 | 0.076 | 2.43 |
| Economic Cost | 0.393 | 0.376 | 0.337 | 2.4 |

### 1.3.4 Vehicle Maintenance Costs

## (1) Spare Parts Costs

Fuel and lubricants prices have been estimated based on a survey of prices in Phnom Penh. There are a number of suppliers in here operating competitively. There are three types of fuel are available, gasoline which can subdivided into two; super and regular, and diesel.

Fuels are subject to import duty and an specific and IVA taxes. The import tax regulations make allowance for gasoline and diesel.

Table K.1.6 Spare Parts Cost
Unit: US \$

|  | Motor <br> Cycle | Cars | Pickups | Mini - <br> buses | Buses | $2-3$ axle <br> trucks | 4 axle <br> trucks | Articu- <br> lated |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vehicle Prices (Economic <br> Cost) | 681 | 20,023 | 13,758 | 23,692 | 62,350 | 31,425 | 49,810 | 54,620 |
| Spare Parts Rate (\%) | 1.0 | 0.83 | 0.83 | 1.0 | 1.0 | 0.83 | 0.83 | 0.83 |
| Spare Parts Cost (Economic <br> Cost) | 6.8 | 166.9 | 114.7 | 236.9 | 623.5 | 261.9 | 355.8 | 390.1 |

## (2) Maintenance Labour

Maintenance costs have been estimated based on a survey of the average monthly cost of skilled supervisor and skilled and semi-skilled mechanics in Phnom Penh. Applied to average working hours of 195 hours per month, proportion of working time and the Shadow Wage Rate Factor (SWR), it is calculated and is shown in Table K.1.7.

Table K.1.7 Maintenance Labour Cost
Unit: US \$ / hr.

|  | Motor | Cars | Pickups | Minibuses | Buses | $2-3$ axle | 4 axle |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Wages per month |  |  |  |  |  |  |  |
| Supervisor | 250 | 250 | 250 | 250 | 250 | 250 | 250 |
| Mechanic | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Owner | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Proportion of Time |  |  |  |  |  |  |  |
| Supervisor | $10 \%$ | $25 \%$ | $25 \%$ | $25 \%$ | $50 \%$ | $50 \%$ | $50 \%$ |
| Mechanic | $40 \%$ | $50 \%$ | $50 \%$ | $50 \%$ | $50 \%$ | $50 \%$ | $50 \%$ |
| Owner | $50 \%$ | $25 \%$ | $25 \%$ | $25 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |
| Working hours per month | 195 | 195 | 195 | 195 | 195 | 195 | 195 |
| Average hourly rate for | 0.333 | 0.577 | 0.579 | 0.579 | 0.897 | 0.897 | 0.897 |
| services | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Shadow Wage Rate Factor | 0.333 | 0.577 | 0.579 | 0.579 | 0.897 | 0.897 | 0.897 |
| Economic Rate |  |  |  |  |  |  |  |

### 1.3.5 Crew Cost

The crew costs have been estimated based on a survey of that of unit costs per drivers and conductor or helpers, number of staff per vehicle, and number of hours per vehicle. In Cambodia, unit costs for drivers are estimated at US $\$ 150$ to $\$ 250$ per worker depend on the type of vehicle, while the conductors or helpers are estimated to be one / half of the average monthly cost of skilled supervisor and skilled and semi-skilled mechanics in Phnom Penh. Applied to average working hours of 195 hours per month, proportion of working time and the Shadow Wage Rate Factor (SWR), it is calculated and is shown in Table K.1.8.

Table K.1.8 Crew Cost
Unit: US \$ / hr.

|  | Motor <br> Cycle | Cars | Pickups | Minibuses | Buses | 2-3 axle <br> trucks | 4 axle <br> trucks |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| No of Drivers | 0.25 | 0.25 | 0.75 | 1 | 1 | 1 | 1 |
| Average monthly wage rate | 150 | 200 | 150 | 150 | 150 | 150 | 150 |
| Average hourly rates for <br> Driver | 0.192 | 0.256 | 0.577 | 0.769 | 0.769 | 0.769 | 0.769 |
| SWF Semi-Skilled | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Economic Driver Costs | 0.192 | 0.256 | 0.577 | 0.769 | 0.769 | 0.769 | 0.769 |
| No of Conductors | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| Average hourly wage rate | 75 | 100 | 100 | 75 | 75 | 75 | 75 |
| Driver Costs | 0 | 0 | 0 | 0.385 | 0.385 | 0.385 | 0.385 |
| SWF Semi-Skilled | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
| Economic Driver Costs | 0.0 | 0.0 | 0.0 | 0.185 | 0.185 | 0.185 | 0.185 |
| Total Economic Cost | 0.192 | 0.256 | 0.577 | 0.954 | 0.954 | 0.954 | 0.954 |

### 1.3.6 Vehicle Utilization and Depreciation

The depreciation cost can be expressed as a percent of the new vehicle cost and is given by the followings:

## Cost per 1000 veh-km = DEP / New Vehicle Prices

A vehicle is a medium-term capital asset. Its purchase costs represents an investment which yields services over several years. The market value of the asset declines with both the passage of time and with the amount and type of usage.

It is this loss of market value that represents vehicle depreciation. The vehicle depreciation per km is a function of the average annual depreciation (ADEP) and annual utilization (AKM).
Table K.1.9 Vehicle Characteristics

| Type | Abbreviatio <br> n | Fuel Type | Number of Axles | Number of Wheels | $\begin{array}{\|c\|} \hline \text { Aerodynami } \\ \text { c Drag } \\ \text { Coeff. } \\ \hline \end{array}$ | Projected Frontal Area | Operating Weight | Annual Utilization | Service Life | Houre Worked | $\begin{gathered} \text { Occupanc } \\ \text { y } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor Cycle | MC | P | 2 | 2 | 0.70 | 0.8 | 0.2 | 7,200 | 8 | 400 | 2.5 |
| Moto-Dop | MD | P | 2 | 2 | 0.70 | 0.8 | 0.2 | 15,000 | 8 | 400 | 3.5 |
| Moto-Rumok | MR | P | 2 | 4 | 0.70 | 0.8 | 0.4 | 15,000 | 8 | 400 | 20.0 |
| Passenger Car | PC | P | 2 | 4 | 0.42 | 1.9 | 1.2 | 25,000 | 12.5 | 550 | 2.5 |
| Van/Pickup | VA | P | 2 | 4 | 0.50 | 2.0 | 1.5 | 47,500 | 12.5 | 1300 | 2.5 |
| Light Truck | LT | D | 2 | 4 | 0.55 | 4.0 | 2.0 | 32,500 | 12.5 | 1300 | 3.1 |
| Medium Truck | MT | D | 2 | 6 | 0.70 | 8.5 | 9.0 | 52,500 | 12.5 | 1200 | 3.1 |
| Heavy Truck | HT | D | 3 | 10 | 0.80 | 9.0 | 11.0 | 53,800 | 12.5 | 2050 | 3.1 |
| Light Bus | LB | D | 2 | 4 | 0.50 | 4.0 | 2.5 | 39,000 | 12.5 | 750 | 15.0 |
| Heavy Bus | HB | D | 2 | 6 | 0.55 | 5.0 | 6.0 | 65,000 | 12.5 | 1750 | 30.0 |

DEP = ADEP / AKM
Where: ADEP: Average annual depreciation, expressed as percentage of the average new vehicle cost, given by;

ADEP $=(1 /$ LIFE $) * 100$
LIFE is the average vehicle service life
AKM: Average number of kilometers driven per vehicle per year

For vehicle utilization, the following method can be used:

- Constant annual kilometrage method;
- Constant annual hourly utilization method; or
- Adjusted utilization method

In this study, the following annual kilometers driven and hours driven are used as shown in Table K.1.9.

### 1.3.7 Interest Rate

A rate of $12 \%$ per year is applied in this study.

### 1.4 Time Value

### 1.4.1 Passenger Time Value

There are a number of available methods for assessing the value of passenger time savings. For this analysis it is chosen different measure of time value for motor cycles, car and pickups, and trucks and buses. For cars and pickups, it was chosen average earning of top decile of household income for car drivers and passengers. This takes into account the generally higher time value levels required for car ownership. For motor cycles, it was chosen average earning of $7^{\text {th }}$ to $9^{\text {th }}$ decile of the household income. For trucks and buses average earnings throughout Cambodia has been used.

As the passenger time savings are a non-tradable goods it was applied the standards conversion factor. This represents the real value of the real of time savings, including factors to account market distortions and scarcity of foreign exchange.

Table K.1.10 Average Hourly Income

|  |  |  <br> Pickups | M/Cycles |  <br> Buses |
| :--- | :--- | ---: | ---: | ---: |
| Household Income | Riel | $1,384,860$ | 544,330 | 465,407 |
| Monthly Working Hours | Hr. | 192 | 192 | 192 |
| Hourly Income | Riel/Hr. | 7,213 | 2,835 | 2,424 |
| No. of Household Member | Person | 5.2 | 5.2 | 5.2 |
| Hourly Income/Capita | Riel/Hr./Person | 1,387 | 545 | 466 |
| Hourly Income/Capita | US\$/Hr./Person | 0.348 | 0.137 | 0.117 |

Table K.1.11 Composition of Trip Purpose

| Purpose | Composition |
| :--- | ---: |
| To Home | 0.215 |
| To Work | 0.193 |
| To School | 0.077 |
| Shop | 0.126 |
| Business | 0.310 |
| Private | 0.079 |
| Total | 1.000 |

Source: Traffic Survey made in this study

Table K.1.12 Average Value of Time Calculation

|  | M/Cycles | Cars | Pickups | Mini-buses | Buses | $2-3$ axle <br> Trucks | 4 axles <br> Trucks | Articulated |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Time Value per Hour | 0.137 | 0.348 | 0.348 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 |
| Proportion of Trips for <br> Work | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 |
| Value of Work Time per <br> Hour | 0.088 | 0.223 | 0.223 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 |
| Proportion of Trips for Non <br> Work | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
| Value of Non Work Time <br> per Hour | 0.049 | 0.125 | 0.125 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 |
| Standard Conversion <br> Factor | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 |
| Economic Value of Time | 0.063 | 0.160 | 0.160 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 |

## (3) Vehicle Occupancy

The other determinant of total travel time savings is number of passengers in each vehicle.
For this analysis, it is estimated from the traffic survey conducted in this study as shown in Table K.1.13.

Table K.1.13 Vehicle Occupancy

|  | M/Cycles | Cars | Pickups | Mini-buses | Buses | 2-3 axle <br> Trucks | 4 axles <br> Trucks | Articulated |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| No. of Passengers | 2.54 | $3 ., 11$ | 3.11 | 10.02 | 15.85 | 2.35 | 2.35 | 2.14 |

Source: Traffic Survey Conducted in this study

Table K.1. 14 Time Value by Types of Vehicle and by Years

|  | M/Cycle | Light <br> Vehicle | Heavy <br> Vehicle | Bicycle |
| :--- | ---: | ---: | ---: | ---: |
| 2002 | 0.160 | 0.499 | 0.269 | 0.054 |
| 2005 | 0.179 | 0.558 | 0.301 | 0.060 |
| 2010 | 0.213 | 0.663 | 0.358 | 0.072 |
| 2020 | 0.258 | 0.801 | 0.432 | 0.087 |

### 1.4.2 Cargo Time value

The cargo time value is calculated assuming an average value of US $\$ 1,000$ general cargo carried by truck and an interest rate of $12 \%$ per year, the hourly cost of delaying cargo would be about US $\$ 0.014$. This figure applies to average load carried by each vehicle type.
1.5 Summary of VOC and Time Cost

Tables K.1.15, K.1.16 and K.1.17 summarize the VOC.

Table K.1.15 Vehicle Operating Cost by Vehicle Types, 2002 Prices

|  |  | Motor Cycles | Cars | Pickups | Minibus | Buses | $2-3 \text { axle }$ trucks | 4 axle trucks | Articulated trucks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Related VOC ( $\$ /$ Year) | Crew cost | 78.0 | 143.0 | 469.2 | 1.162 .2 | 1.694 .9 | 1.162 .2 | 1.985 .4 | 1.985 .4 |
|  | Maintenance Cost | 3.3 | 28.9 | 28.9 | 46.2 | 89.7 | 89.7 | 89.7 | 89.7 |
|  | Insurance Cost | 114 | 616 | 528 | 616 | 572 | 528 | 352 | 352 |
|  | Depreciation Cost | 23 | 526 | 361 | 746 | 1.964 | 825 | 1.121 | 1.229 |
|  | Sub-Total (S/Year | 218 | 1.313 | 1.387 | 2.571 | 4,321 | 2.605 | 3.548 | 3.656 |
|  | Overhead Cost | 22 | 131 | 139 | 257 | 432 | 260 | 355 | 366 |
|  | Total (\$/Year) | 240 | 1.445 | 1.526 | 2.828 | 4.753 | 2.865 | 3.903 | 4.022 |
|  | \$ / Hour | 0.027 | 0.165 | 0.174 | 0.323 | 0.543 | 0.327 | 0.446 | 0.459 |
| Distance Related VOC | Fuel Cost | 61.7 | 1.080 .5 | 1.520.8 | 1,389.2 | 6.262 .2 | 2.027 .8 | 7.693 .6 | 7.693 .6 |
|  | Oil Cost | 9.7 | 24.3 | 48.6 | 48.6 | 425.3 | 151.2 | 647.8 | 647.8 |
|  | Tire Cost | 8.2 | 42.4 | 62.6 | 63.5 | 1.030 .8 | 187.8 | 1.962 .0 | 1.962 .0 |
|  | Maintenance Cost | 6.8 | 166.9 | 114.7 | 236.9 | 623.5 | 261.9 | 355.8 | 390.1 |
|  | Depreciation Cost | 42.1 | 976.1 | 670.7 | 1,386.0 | 3.647 .5 | 1.532 .0 | 2.081.3 | 2.282 .3 |
|  | Sub-Total | 128.5 | 2.290 .2 | 2.417 .4 | 3.124 .2 | 11,989.3 | 4.160 .7 | 12.740 .5 | 12.975 .8 |
|  | Overhead Cost | 12.9 | 229.0 | 241.7 | 312.4 | 1.198.9 | 416.1 | 1.274.1 | 1.297 .6 |
|  | Total | 141.4 | 2.519 .2 | 2.659 .1 | 3.436 .6 | 13.188 .2 | 4.576 .8 | 14.014 .6 | 14.273 .4 |
|  | \$ / 000km. | 14.1 | 100.8 | 88.6 | 114.6 | 188.4 | 114.4 | 163.0 | 166.0 |

Table K.1.16 Unit Cost of Vehicle Operating Cost by Vehicle Types, 2002 Prices

|  | Motor Cycles | Cars | Pickups | Minibus | Buses | $2-3 \text { axle }$ trucks | 4 axle trucks | Articulated trucks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Representative Vehicle | Honda 100 | Toyota Corolla | Toyota Hilux | Toyota Hiace |  | Hyudai | Hino 8 ton | Benz 2024 |
| New Vehicle Prices | 681 | 20.023 | 13,758 | 23.692 | 62,350 | 31.425 | 49.810 | 54.620 |
| Service Life (yrs) | 10 | 12 | 12 | 10 | 10 | 12 | 14 | 14 |
| Hours Driven per Year | 400 | 550 | 1.200 | 1.200 | 1.750 | 1.200 | 2.050 | 2.050 |
| Kilometers Driven per Year | 10.000 | 25,000 | 30.000 | 30,000 | 70,000 | 40.000 | 86.000 | 86,000 |
| Life time Running Kilometers | 100,000 | 300.000 | 360.000 | 300,000 | 700,000 | 480.000 | 1.204.000 | 1.204.000 |
| Tire Cost | 16.3 | 67.9 | 104.3 | 84.7 | 736.3 | 234.7 | 1.140.7 | 1.140 .7 |
| Running Kilometers | 20.000 | 40,000 | 50,000 | 40.000 | 50.000 | 50.000 | 50.000 | 50,000 |
| Tire Cost per 1000 Kilometer | 0.82 | 1.70 | 2.09 | 2.12 | 14.73 | 4.69 | 22.81 | 22.81 |
| Fuel Type Used | Petrol | Petrol | Diesel | Petrol | Diesel | Diesel | Diesel | Diesel |
| Fuel Costs (\$/L) | 0.3087 | 0.3087 | 0.2982 | 0.3087 | 0.2982 | 0.2982 | 0.2982 | 0.2982 |
| Fuel Consupmtion Rate ( $1 / \mathrm{Km}$ ) | 0.02 | 0.14 | 0.17 | 0.15 | 0.3 | 0.17 | 0.3 | 0.3 |
| Oil Costs | 4.86 | 9.72 | 12.15 | 12.15 | 48.6 | 34.02 | 75.33 | 75.33 |
| Distance between Oil Changes | 5000 | 10000 | 7500 | 7500 | 8000 | 9000 | 10000 | 10000 |
| Annual Maintenance Cost- Spare Parts | 6.8 | 166.9 | 114.7 | 236.9 | 623.5 | 261.9 | 355.8 | 390.1 |
| Annual Maintenance Cost- Labour | 3.3 | 28.9 | 28.9 | 46.2 | 89.7 | 89.7 | 89.7 | 89.7 |
| Insurance Cost per year | 114 | 616 | 528 | 616 | 572 | 528 | 352 | 352 |
| Crew Cost | 78 | 143 | 469 | 1.162 | 1.695 | 1.162 | 1.985 | 1.985 |
| Relicted Value | 34.1 | 2.002 .3 | 1,375.8 | 2.369.2 | 6.235 .0 | 3,142.5 | 4.981 .0 | 5.462 .0 |
| Time Related Depreciation | 35\% | 358 | 35\% | 35\% | 358 | 358 | 35s | 358 |
| Distance Related Depreciation | 658 | 65\% | 65\% | $65 \%$ | 658 | 65\% | 65\% | 65\% |
| Overhead Cos t( $\%$ ) | 0 | 0 | 10 | 10 | 10 | 10 | 10 | 10 |

Table K.1.17 Vehicle Operating Cost by Roughness Index, 2002 Prices

| Roughness | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Motor Cycles | 14.1 | 14.2 | 14.5 | 14.8 | 15.1 | 15.4 | 16.0 | 16.7 | 17.5 |
| Cars | 100.8 | 101.0 | 103.3 | 105.5 | 107.8 | 110.1 | 113.9 | 119.3 | 124.7 |
| $2-3$ axle trucks | 114.4 | 114.6 | 117.7 | 120.8 | 124.0 | 127.1 | 130.2 | 133.4 | 138.7 |
| 4axle trucks | 163.0 | 163.0 | 171.4 | 179.9 | 188.3 | 196.8 | 207.4 | 220.0 | 232.7 |
| Buses | 188.4 | 188.4 | 197.8 | 207.1 | 216.5 | 225.9 | 235.2 | 246.4 | 259.4 |

K-2. Forecasted Traffic Volume, Travel Time and Travel Kilometers on the Project Road
Table K.2.1 Forecasted Traffic Volume. Travel Time and Travel Kilometrs on the Project Road in 2005 (With Project)

Table K.2.2 Forecasted Traffic Volume. Travel Time and Travel Kilometrs on the Project Road in 2005 (Without Project)

Table K.2.3 Forecasted Traffic Volume. Travel Time and Travel Kilometrs on the Project Road in 2010 (With Project)

|  |  |  |  | Daily Traffic Volume |  |  |  |  | Travel Time |  |  |  |  |  | Travel Kilometer |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Link No | Length | Ave.Speed | M/Cycle | Car | Heavy Veh | Bycycle | Total | ravel Tim | M/Cycle | Car | Heavy Veh | Bycycle | Total | M/Cycle | Car | Heavy Veh | Bycycle | Total |
| 1 | 138 | 1.20 | 39.9 | 22,787 | 20,626 | 6,528 | 486 | 50,427 | 1.80 | 41,119 | 37,220 | 11,780 | 877 | 90,996 | 27,344 | 24,751 | 7,834 | 583 | 60,512 |
| 2 | 450 | 2.20 | 39.9 | 22,787 | 20,626 | 6,528 | 486 | 50,427 | 3.31 | 75,386 | 68,236 | 21,596 | 1,608 | 166,826 | 50,131 | 45,377 | 14,362 | 1,069 | 110,939 |
| 3 | 139 | 1.10 | 50.0 | 7,207 | 10,438 | 5,344 | 168 | 23,157 | 1.32 | 9,513 | 13,778 | 7,054 | 222 | 30,567 | 7,928 | 11,482 | 5,878 | 185 | 25,473 |
| 4 | 453 | 2.30 | 50.0 | 7,207 | 10,438 | 5,344 | 168 | 23,157 | 2.76 | 19,891 | 28,809 | 14,749 | 464 | 63,913 | 16,576 | 24,007 | 12,291 | 386 | 53,261 |
| 5 | 140 | 2.40 | 50.0 | 5,248 | 8,144 | 4,576 | 154 | 18,122 | 2.88 | 15,114 | 23,455 | 13,179 | 444 | 52,191 | 12,595 | 19,546 | 10,982 | 370 | 43,493 |
| 6 | 454 | 2.50 | 50.0 | 4,242 | 6,656 | 3,988 | 150 | 15,036 | 3.00 | 12,726 | 19,968 | 11,964 | 450 | 45,108 | 10,605 | 16,640 | 9,970 | 375 | 37,590 |
| 7 | 455 | 1.90 | 50.0 | 3,850 | 6,138 | 3,872 | 152 | 14,012 | 2.28 | 8,778 | 13,995 | 8,828 | 347 | 31,947 | 7,315 | 11,662 | 7,357 | 289 | 26,623 |
| 8 | 141 | 5.20 | 60.0 | 2,458 | 4,354 | 2,848 | 222 | 9,882 | 5.20 | 12,782 | 22,641 | 14,810 | 1,154 | 51,386 | 12,782 | 22,641 | 14,810 | 1,154 | 51,386 |
| 9 | 456 | 3.69 | 60.0 | 2,196 | 4,040 | 2,652 | 248 | 9,136 | 3.69 | 8,103 | 14,908 | 9,786 | 915 | 33,712 | 8,103 | 14,908 | 9,786 | 915 | 33,712 |
| 10 | 142 | 1.88 | 60.0 | 2,196 | 4,040 | 2,652 | 248 | 9,136 | 1.88 | 4,128 | 7,595 | 4,986 | 466 | 17,176 | 4,128 | 7,595 | 4,986 | 466 | 17,176 |
| 11 | 457 | 5.37 | 60.0 | 2,120 | 3,888 | 2,574 | 256 | 8,838 | 5.37 | 11,384 | 20,879 | 13,822 | 1,375 | 47,460 | 11,384 | 20,879 | 13,822 | 1,375 | 47,460 |
| 12 | 143 | 5.30 | 60.0 | 1,994 | 3,602 | 2,388 | 288 | 8,272 | 5.30 | 10,568 | 19,091 | 12,656 | 1,526 | 43,842 | 10,568 | 19,091 | 12,656 | 1,526 | 43,842 |
| 13 | 458 | 3.58 | 60.0 | 1,923 | 3,428 | 2,242 | 324 | 7,917 | 3.58 | 6,884 | 12,272 | 8,026 | 1,160 | 28,343 | 6,884 | 12,272 | 8,026 | 1,160 | 28,343 |
| 14 | 144 | 6.57 | 60.0 | 1,923 | 3,428 | 2,242 | 324 | 7,917 | 6.57 | 12,634 | 22,522 | 14,730 | 2,129 | 52,015 | 12,634 | 22,522 | 14,730 | 2,129 | 52,015 |
| 15 | 459 | 1.06 | 60.0 | 1,887 | 3,342 | 2,180 | 366 | 7,775 | 1.06 | 2,000 | 3,543 | 2,311 | 388 | 8,242 | 2,000 | 3,543 | 2,311 | 388 | 8,242 |
| 16 | 145 | 2.53 | 60.0 | 1,887 | 3,342 | 2,180 | 366 | 7,775 | 2.53 | 4,774 | 8,455 | 5,515 | 926 | 19,671 | 4,774 | 8,455 | 5,515 | 926 | 19,671 |
| 17 | 146 | 1.87 | 60.0 | 1,887 | 3,342 | 2,180 | 366 | 7,775 | 1.87 | 3,529 | 6,250 | 4,077 | 684 | 14,539 | 3,529 | 6,250 | 4,077 | 684 | 14,539 |
| 18 | 460 | 2.90 | 60.0 | 1,861 | 3,280 | 2,148 | 420 | 7,709 | 2.90 | 5,397 | 9,512 | 6,229 | 1,218 | 22,356 | 5,397 | 9,512 | 6,229 | 1,218 | 22,356 |
|  |  | 53.55 |  | 95,660 | 123,152 | 62,466 | 5,192 | 286,470 |  | 264,712 | 353,127 | 186,099 | 16,352 | 820,290 | 214,679 | 301,132 | 165,622 | 15,199 | 696,632 |

\footnotetext{
Table K.2.4 Forecasted Traffic Volume. Travel Time and Travel Kilometrs on the Project Road in 2010 (Without Project)

|  |  |  |  | Daily Traffic Volume |  |  |  |  | Travel Time |  |  |  |  |  | Travel Kilometer |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Link No | Length | Ave.Speed | M/Cycle | Car | Heavy Veh | Bycycle | Total | ravel Tim | M/Cycle | Car | Heavy Veh | Bycycle | Total | M/Cycle | Car | Heavy Veh | Bycycle | Total |
| 1 | 138 | 1.20 | 39.9 | 22.733 | 20,478 | 6,498 | 486 | 50,195 | 1.80 | 41,022 | 36,953 | 11,726 | 877 | 90,577 | 27,280 | 24,574 | 7,798 | 583 | 60,234 |
| 2 | 450 | 2.20 | 35.2 | 22,733 | 20,478 | 6,498 | 486 | 50,195 | 3.75 | 85,249 | 76,793 | 24,368 | 1,823 | 188,231 | 50,013 | 45,052 | 14,296 | 1,069 | 110,429 |
| 3 | 139 | 1.10 | 38.7 | 7,153 | 10,290 | 5,314 | 168 | 22,925 | 1.71 | 12,199 | 17,549 | 9,063 | 287 | 39,097 | 7,868 | 11,319 | 5,845 | 185 | 25,218 |
| 4 | 453 | 2.30 | 38.7 | 7,153 | 10,290 | 5,314 | 168 | 22,925 | 3.57 | 25,507 | 36,693 | 18,949 | 599 | 81,748 | 16,452 | 23,667 | 12,222 | 386 | 52,728 |
| 5 | 140 | 2.40 | 39.8 | 5,194 | 7,996 | 4,546 | 154 | 17,890 | 3.62 | 18,792 | 28,930 | 16,448 | 557 | 64,728 | 12,466 | 19,190 | 10,910 | 370 | 42,936 |
| 6 | 454 | 2.50 | 40.0 | 4,188 | 6,508 | 3,958 | 150 | 14,804 | 3.75 | 15,705 | 24,405 | 14,843 | 563 | 55,515 | 10,470 | 16,270 | 9,895 | 375 | 37,010 |
| 7 | 455 | 1.90 | 40.0 | 3,796 | 5,986 | 3,842 | 152 | 13,776 | 2.85 | 10,819 | 17,060 | 10,950 | 433 | 39,262 | 7,212 | 11,373 | 7,300 | 289 | 26,174 |
| 8 | 141 | 5.20 | 30.0 | 2,348 | 4,158 | 2,818 | 222 | 9,546 | 10.40 | 24,419 | 43,243 | 29,307 | 2,309 | 99,278 | 12,210 | 21,622 | 14,654 | 1,154 | 49,639 |
| 9 | 456 | 3.69 | 30.0 | 2,078 | 3,828 | 2,622 | 248 | 8,776 | 7.38 | 15,336 | 28,251 | 19,350 | 1,830 | 64,767 | 7,668 | 14,125 | 9,675 | 915 | 32,383 |
| 10 | 142 | 1.88 | 30.0 | 2,078 | 3,828 | 2,622 | 248 | 8,776 | 3.76 | 7,813 | 14,393 | 9,859 | 932 | 32,998 | 3,907 | 7,197 | 4,929 | 466 | 16,499 |
| 11 | 457 | 5.37 | 30.0 | 2,002 | 3,676 | 2,544 | 256 | 8,478 | 10.74 | 21,501 | 39,480 | 27,323 | 2,749 | 91,054 | 10,751 | 19,740 | 13,661 | 1,375 | 45,527 |
| 12 | 143 | 5.30 | 30.0 | 1,868 | 3,370 | 2,358 | 288 | 7,884 | 10.60 | 19,801 | 35,722 | 24,995 | 3,053 | 83,570 | 9,900 | 17,861 | 12,497 | 1,526 | 41,785 |
| 13 | 458 | 3.58 | 30.0 | 1,797 | 3,196 | 2,212 | 324 | 7,529 | 7.16 | 12,867 | 22,883 | 15,838 | 2,320 | 53,908 | 6,433 | 11,442 | 7,919 | 1,160 | 26,954 |
| 14 | 144 | 6.57 | 30.0 | 1,797 | 3,196 | 2,212 | 324 | 7,529 | 13.14 | 23,613 | 41,995 | 29,066 | 4,257 | 98,931 | 11,806 | 20,998 | 14,533 | 2,129 | 49,466 |
| 15 | 459 | 1.06 | 30.0 | 1,761 | 3,110 | 2,150 | 366 | 7,387 | 2.12 | 3,733 | 6,593 | 4,558 | 776 | 15,660 | 1,867 | 3,297 | 2,279 | 388 | 7,830 |
| 16 | 145 | 2.53 | 30.0 | 1,761 | 3,110 | 2,150 | 366 | 7,387 | 5.06 | 8,911 | 15,737 | 10,879 | 1,852 | 37,378 | 4,455 | 7,868 | 5,440 | 926 | 18,689 |
| 17 | 146 | 1.87 | 30.0 | 1.761 | 3,110 | 2,150 | 366 | 7,387 | 3.74 | 6,586 | 11,631 | 8,041 | 1,369 | 27,627 | 3,293 | 5,816 | 4,021 | 684 | 13,814 |
| 18 | 460 | 2.90 | 30.0 | 1.743 | 3,064 | 2,118 | 420 | 7,345 | 5.80 | 10,109 | 17,771 | 12,284 | 2,436 | 42,601 | 5,055 | 8,886 | 6,142 | 1,218 | 21,301 |
|  |  | 53.55 |  | 93,944 | 119,672 | 61,926 | 5,192 | 280,734 |  | 363,981 | 516,083 | 297,845 | 29,022 | 1,206,931 | 209,105 | 290,295 | 164,016 | 15,199 | 678,615 |

Table K.2.5 Forecasted Traffic Volume. Travel Time and Travel Kilometrs on the Project Road in 2015 (With Project)

|  |  |  |  | Daily Traffic Volume |  |  |  |  | Travel Time |  |  |  |  |  | Travel Kilometer |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Link No | Length | Ave.Speed | M/Cycle | Car | Heavy Veh | Bycycle | Total | ravel Tim | M/Cycle | Car | Heavy Veh | Bycycle | Total | M/Cycle | Car | Heavy Veh | Bycycle | Total |
|  | 138 | 1.20 | 39.9 | 28,211 | 27,195 | 8,108 | 626 | 64,140 | 1.80 | 50,907 | 49,074 | 14,631 | 1,130 | 115,741 | 33,853 | 32,634 | 9,730 | 751 | 76,968 |
| 2 | 450 | 2.20 | 39.9 | 28,211 | 27,195 | 8,108 | 626 | 64,140 | 3.31 | 93,330 | 89,968 | 26,823 | 2,071 | 212,192 | 62,064 | 59,829 | 17,838 | 1,377 | 141,108 |
|  | 139 | 1.10 | 50.0 | 10,037 | 12,839 | 6,464 | 306 | 29,646 | 1.32 | 13,249 | 16,947 | 8,532 | 404 | 39,133 | 11,041 | 14,123 | 7,110 | 337 | 32,611 |
|  | 453 | 2.30 | 50.0 | 10,037 | 12,839 | 6,464 | 306 | 29,646 | 2.76 | 27,702 | 35,436 | 17,841 | 845 | 81,823 | 23,085 | 29,530 | 14,867 | 70 | 68,186 |
| 5 | 140 | 2.40 | 50.0 | 6,872 | 10,790 | 5,832 | 274 | 23,768 | 2.88 | 19,791 | 31,075 | 16,796 | 789 | 68,452 | 16,493 | 25,896 | 13,997 | 65 | 57,043 |
| 6 | 454 | 2.50 | 50.0 | 5,526 | 8,706 | 5,036 | 264 | 19,532 | 3.00 | 16,578 | 26,118 | 15,108 | 792 | 58,596 | 13,815 | 21,765 | 12,590 | 66 | 48,830 |
| 7 | 455 | 1.90 | 50.0 | 5,004 | 8,026 | 4,890 | 262 | 18,182 | 2.28 | 11,409 | 18,299 | 11,149 | 597 | 41,455 | 9,508 | 15,249 | 9,291 | 498 | 34,546 |
| 8 | 141 | 5.20 | 60.0 | 3,142 | 5,578 | 3,548 | 358 | 12,626 | 5.20 | 16,338 | 29,006 | 18,450 | 1,862 | 65,655 | 16,338 | 29,006 | 18,450 | 1,862 | 65,655 |
| 9 | 456 | 3.69 | 60.0 | 2,794 | 5,170 | 3,298 | 400 | 11,662 | 3.69 | 10,310 | 19,077 | 12,170 | 1,476 | 43,033 | 10,310 | 19,077 | 12,170 | 1,476 | 43,033 |
| 10 | 142 | 1.88 | 60.0 | 2,794 | 5,170 | 3,298 | 400 | 11,662 | 1.88 | 5,253 | 9,720 | 6,200 | 752 | 21,925 | 5,253 | 9,720 | 6,200 | 752 | 21,925 |
| 11 | 457 | 5.37 | 60.0 | 2,698 | 4,984 | 3,212 | 408 | 11,302 | 5.37 | 14,488 | 26,764 | 17,248 | 2,191 | 60,692 | 14,488 | 26,764 | 17,248 | 2,191 | 60,692 |
| 12 | 143 | 5.30 | 60.0 | 2,538 | 4,624 | 2,982 | 442 | 10,586 | 5.30 | 13,451 | 24,507 | 15,805 | 2,343 | 56,106 | 13,451 | 24,507 | 15,805 | 2,343 | 56,106 |
| 13 | 458 | 3.58 | 60.0 | 2,444 | 4,408 | 2,812 | 488 | 10,152 | 3.58 | 8,750 | 15,781 | 10,067 | 1,747 | 36,344 | 8,750 | 15,781 | 10,067 | 1,747 | 36,344 |
| 14 | 144 | 6.57 | 60.0 | 2,444 | 4,408 | 2,812 | 488 | 10,152 | 6.57 | 16,057 | 28,961 | 18,475 | 3,206 | 66,699 | 16,057 | 28,961 | 18,475 | 3,206 | 66,699 |
| 15 | 459 | 1.06 | 60.0 | 2,404 | 4,310 | 2,742 | 542 | 9,998 | 1.06 | 2,548 | 4,569 | 2,907 | 575 | 10,598 | 2,548 | 4,569 | 2,907 | 575 | 10,598 |
| 16 | 145 | 2.53 | 60.0 | 2,404 | 4,310 | 2,742 | 542 | 9,998 | 2.53 | 6,082 | 10,904 | 6,937 | 1,371 | 25,295 | 6,082 | 10,904 | 6,937 | 1,371 | 25,295 |
| 17 | 146 | 1.87 | 60.0 | 2,404 | 4,310 | 2,742 | 542 | 9,998 | 1.87 | 4,495 | 8,060 | 5,128 | 1,014 | 18,696 | 4,495 | 8,060 | 5,128 | 1,014 | 18,696 |
| 18 | 460 | 2.90 | 60.0 | 2,384 | 4,246 | 2,710 | 608 | 9,948 | 2.90 | 6,914 | 12,313 | 7,859 | 1,763 | 28,849 | 6,914 | 12,313 | 7,859 | 1,763 | 28,849 |
|  |  | 53.55 | 56.8 | 122,348 | 159,108 | 77,800 | 7,882 | 367,138 |  | 337,653 | 456,579 | 232,126 | 24,926 | 1,051,283 | 274,545 | 388,687 | 206,667 | 23,283 | 893,183 |


|  |  |  |  | Daily Traffic Volume |  |  |  |  | Travel Time |  |  |  |  |  | Travel Kilometer |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Link No | Length | Ave.Speed | M/Cycle | Car | Heavy Veb | Bycycle | Total | ravel Tim | M/Cycle | Car | Heavy Veh | Bycycle | Total | M/Cycle | Car | Heavy Veh | Bycycle | Total |
| 1 | 138 | 1.20 | 39.1 | 28,071 | 26,975 | 8,066 | 626 | 63,726 | 1.84 | 51,691 | 49,673 | 14,853 | 1,153 | 117,369 | 33,685 | 32,370 | 9,679 | 751 | 76,486 |
| 2 | 450 | 2.20 | 31.7 | 28,071 | 26,975 | 8,066 | 626 | 63,726 | 4.16 | 116,889 | 112,325 | 33,587 | 2,607 | 265,407 | 61,756 | 59,345 | 17,745 | 1,377 | 140,224 |
| 3 | 139 | 1.10 | 36.7 | 10,013 | 12,695 | 6,422 | 306 | 29,424 | 1.80 | 18,007 | 22,830 | 11,549 | 550 | 52,937 | 11,014 | 13,965 | 7,064 | 337 | 32,380 |
| 4 | 453 | 2.30 | 36.7 | 10,013 | 12,695 | 6,422 | 306 | 29,424 | 3.76 | 37,651 | 47,736 | 24,148 | 1,151 | 110,686 | 23,030 | 29,199 | 14,771 | 704 | 67,703 |
| 5 | 140 | 2.40 | 38.6 | 6,802 | 10,620 | 5,794 | 274 | 23,478 | 3.73 | 25,375 | 39,619 | 21,615 | 1,022 | 87,631 | 16,325 | 25,488 | 13,906 | 658 | 56,376 |
| 6 | 454 | 2.50 | 39.6 | 5,456 | 8,536 | 4,998 | 264 | 19,242 | 3.79 | 20,667 | 32,333 | 18,932 | 1,000 | 72,932 | 13,640 | 21,340 | 12,495 | 660 | 48,135 |
| 7 | 455 | 1.90 | 39.8 | 4,926 | 7,840 | 4,852 | 262 | 17,868 | 2.86 | 14,110 | 22,456 | 13,898 | 750 | 51,214 | 9,359 | 14,896 | 9,219 | 498 | 33,972 |
| 8 | 141 | 5.20 | 29.8 | 3,004 | 5,332 | 3,510 | 358 | 12,192 | 10.47 | 31,451 | 55,825 | 36,749 | 3,748 | 127,773 | 15,621 | 27,726 | 18,252 | 1,862 | 63,461 |
| 9 | 456 | 3.69 | 29.9 | 2,644 | 4,908 | 3,260 | 400 | 11,200 | 7.40 | 19,578 | 36,342 | 24,139 | 2,962 | 83,021 | 9,756 | 18,111 | 12,029 | 1,476 | 41,372 |
| 10 | 142 | 1.88 | 30.0 | 2,380 | 4,342 | 2,944 | 400 | 10,096 | 3.76 | 8,949 | 16,326 | 11,069 | 1,504 | 37,848 | 4,474 | 8,163 | 5,535 | 752 | 18,924 |
| 11 | 457 | 5.37 | 30.0 | 2,286 | 4,126 | 2,774 | 408 | 9,662 | 10.74 | 24,552 | 44,313 | 29,793 | 4,382 | 103,040 | 12,276 | 22,157 | 14,896 | 2,191 | 51,520 |
| 12 | 143 | 5.30 | 30.0 | 2,246 | 4,028 | 2,704 | 442 | 9,508 | 10.60 | 23,808 | 42,697 | 28,662 | 4,685 | 99,852 | 11,904 | 21,348 | 14,331 | 2,343 | 49,926 |
| 13 | 458 | 3.58 | 30.0 | 2,246 | 4,028 | 2,704 | 488 | 9,508 | 7.16 | 16,081 | 28,840 | 19,361 | 3,494 | 67,777 | 8,041 | 14,420 | 9,680 | 1,747 | 33,888 |
| 14 | 144 | 6.57 | 29.9 | 2,644 | 4,908 | 3,260 | 488 | 11,200 | 13.18 | 34,858 | 64,707 | 42,980 | 6,434 | 148,979 | 17,371 | 32,246 | 21,418 | 3,206 | 74,241 |
| 15 | 459 | 1.06 | 30.0 | 2,548 | 4,722 | 3,174 | 542 | 10,840 | 2.12 | 5,402 | 10,011 | 6,729 | 1,149 | 23,290 | 2,701 | 5,005 | 3,364 | 575 | 11,645 |
| 16 | 145 | 2.53 | 30.0 | 2,286 | 4,126 | 2,774 | 542 | 9,662 | 5.06 | 11,567 | 20,878 | 14,036 | 2,743 | 49,224 | 5,784 | 10,439 | 7,018 | 1,371 | 24,612 |
| 17 | 146 | 1.87 | 30.0 | 2,246 | 4,028 | 2,704 | 542 | 9,508 | 3.74 | 8,400 | 15,065 | 10,113 | 2,027 | 35,605 | 4,200 | 7,532 | 5,056 | 1,014 | 17,802 |
| 18 | 460 | 2.90 | 30.0 | 2,234 | 3,980 | 2,672 | 608 | 9,482 | 5.80 | 12,957 | 23,084 | 15,498 | 3,526 | 55,065 | 6,479 | 11,542 | 7,749 | 1,763 | 27,533 |
|  |  | 53.55 | 31.8 | 120,116 | 154,864 | 77,100 | 7,666 | 359,746 |  | 481,992 | 685,059 | 377,711 | 44,887 | 1,589,650 | 267,416 | 375,291 | 204,209 | 23,283 | 870,199 |


[^0]:    Table K.1.4 Tyre Prices

    |  | Tyre Size | Retail Price | VAT | VAT Amount | Import Duty | Import Duty Amount | CIF Price | Economic Cost | No. of Tyres |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Motor Cycle | 100/17 | 20 | 10\% | 1.5 | 15\% | 2.2 | 14.8 | 16.3 | 2 |
    | Cars | 165/13 | 104 | 10\% | 6.0 | 50\% | 30.1 | 60.2 | 67.9 | 4 |
    | Pickups | 185/14 | 128 | 10\% | 9.5 | 15\% | 14.2 | 94.8 | 104.3 | 4 |
    | Minibuses | 165/13 | 104 | 10\% | 7.7 | 15\% | 11.6 | 77.0 | 84.7 | 4 |
    | Buses | 315-80 R22.5 | 840 | 10\% | 41.5 | 15\% | 62.2 | 414.8 | 736.3 | 6 |
    | 2-3 axle trucks | 650-16 | 288 | 10\% | 21.3 | 15\% | 32.0 | 213.3 | 234.7 | 6 |
    | 4 axle trucks | 1000-20 | 1,400 | 10\% | 103.7 | 15\% | 155.6 | 1,037.0 | 1,140.7 | 10 |

    Notes: Information obtained from various car dealers in Phnom Penh
    Estimated by the JICA Study Team

