THE FEASIBILITY STUDY ON
THE IMPROVEMENT OF
NATIONAL ROAD No.1
(PHnom Penh - Neak Loueng Section)
IN THE KINGDOM OF CAMBODIA

FINAL REPORT

Vol.1 MAIN REPORT
March 2003

PACIFIC CONSULTANTS INTERNATIONAL
KATAHIRA & ENGINEERS INTERNATIONAL
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF PUBLIC WORKS AND TRANSPORT
THE ROYAL GOVERNMENT OF THE KINGDOM OF CAMBODIA

THE FEASIBILITY STUDY
ON
THE IMPROVEMENT OF NATIONAL ROAD NO.1
(PHNUM PENH ~ NEAK LOUENG SECTION)
IN
THE KINGDOM OF CAMBODIA

FINAL REPORT
Vol. 1: MAIN REPORT

MARCH 2003

PACIFIC CONSULTANTS INTERNATIONAL
KATAHIRA & ENGINEERS INTERNATIONAL
The following foreign exchange rate was applied in the study:

US$ 1.0 = JPY 120 = Reil 3,990 (as of October 2002)
PREFAE

In response to the request from the Royal Government of the Kingdom of Cambodia, the Government of Japan decided to conduct the feasibility study on Improvement of National Road No.1 (Phnom Penh ~ Neak Loueng Section) in the Kingdom of Cambodia and entrusted the study to Japan International Cooperation Agency (JICA).

JICA dispatched a study team headed by Mr. Kenji Maruoka of Pacific Consultants International and consisting of Pacific Consultants International and Katahira & Engineers International to the Kingdom of Cambodia, three times between May 2002 and January 2003. In addition, JICA set up an Advisory Committee headed by Mr. Yukitoshi Fujishima of Japan Highway Public Corporation between May 2002 and January 2003, which examined the Study from specialist and technical point of view.

The team held discussions with the officials concerned of the Royal Government of the Kingdom of Cambodia and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the promotion of this project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Royal Government of the Kingdom of Cambodia for their close cooperation extended to the team.

March 2003

Takao Kawakami
President
Japan International Cooperation Agency
March 2003

Letter of Transmittal

Dear Sir,

We are pleased to submit herewith the Final Report of “The Feasibility Study on Improvement of National Road No.1 (Phnom Penh ~ Neak Loueng Section) in the Kingdom of Cambodia”.

The report contains the results of the study, which has been carried out by Pacific Consultants International in association with Katahira & Engineers International between April 2002 and March 2003. The report consists of four volumes, Summary, Main Report, Appendix, and Drawings.

The Summary briefly illustrates the findings in the study. The Main Report consists of 17 chapters and presents traffic demand forecast, engineering designs, road operation and maintenance plan, environmental conditions, project implementation plan, economic and financial analysis and conclusion and recommendations for the project implementation. It recommends that the institutional arrangements for project implementation should be organized as soon as possible.

We wish to express our greatest appreciation to officials of the Ministry of Public Works and Transport and the Royal Government of the Kingdom of Cambodia for their assistance extended to the Study Team, and also to the personnel of your Agency, the JICA Advisory Committee, the Ministry of Foreign Affairs, the Ministry of Land, Infrastructure and Transport, and the Embassy of Japan in the Kingdom of Cambodia. The Study Team sincerely hopes that the results of the Study will contribute to the improvement of road in Cambodia.

Yours faithfully,

[Signature]

Kenji Maruoka
Team Leader
The Feasibility Study
on Improvement of National Road No.1
(Phnom Penh ~ Neak Loueng Section)
in the Kingdom of Cambodia
AN OVERVIEW OF EXISTING CONDITIONS ALONG NATIONAL ROAD No.1

Urbanized and Settled Area

Congested section in the vicinity of Chbar Ampou market

Present land use at the intersection to Tiger beer factory

Roadside scenery in urban area with public facilities

Motorcycles and moto-remorks are gathered for local activities at Kokir market.

Typical settled house structures along the route

Ferry Terminal at West Neak Loueng

AN OVERVIEW OF EXISTING CONDITIONS ALONG NATIONAL ROAD No.1

Urbanized and Settled Area

Congested section in the vicinity of Chbar Ampou market

Present land use at the intersection to Tiger beer factory

Roadside scenery in urban area with public facilities

Motorcycles and moto-remorks are gathered for local activities at Kokir market.

Typical settled house structures along the route

Ferry Terminal at West Neak Loueng

AN OVERVIEW OF EXISTING CONDITIONS ALONG NATIONAL ROAD No.1

Urbanized and Settled Area

Congested section in the vicinity of Chbar Ampou market

Present land use at the intersection to Tiger beer factory

Roadside scenery in urban area with public facilities

Motorcycles and moto-remorks are gathered for local activities at Kokir market.

Typical settled house structures along the route

Ferry Terminal at West Neak Loueng
AN OVERVIEW OF EXISTING CONDITIONS ALONG NATIONAL ROAD No.1

Rural Area

- Typical land use in rural area
- Foliated bosquet performs rural roadside green scenery.
- Extended wooden deck leads to local house in the low-lying and flood prone area.
- Temporary bridge with control of load limit at cut-off section
- New colmatage water gate constructed by Japanese Grant Aid
- Existing condition of deteriorated pavement and mixed traffic
- Old Colmatage water gate with damaged concrete slab

LEGEND
- NR-1 National Road No.1 (The Study Road)
- NR-2 National Roads

Graphic Scale

0 5 10 km
PROPOSED IMPROVEMENT PLAN OF NATIONAL ROAD No.1

Road and Road Related Facilities

LEGEND
- NR-1 National Road No.1 (The Study Road)
- NR-2 National Roads

0 5 10 km
Graphic Scale

Bassac River

Mekong River

Water Gate 1
Water Gate 2
Water Gate 3
Water Gate 4

Bridge 1
Bridge 2

Road improvement in urban area considering traffic safety and future widening

Road improvement in rural area considering space for slow-moving vehicles

Neak Loueng

Pean Ro

NR-1

NR-2

NR-3

Phnom Penh

Tonle Sap River

Kien Svay

Kokr

15 km

20 km

0 km

5 km

10 km

25 km

30 km

35 km

40 km

45 km

50 km

55 km

55 km

NR-1

NR-2

NR-21

Road Station providing road users with the rest and amenity facilities as well as opportunity for local products and culture

Multi-purpose space for moto-remork stop and livestock refuge during flood

Kilometer Posts with particular design

New bridge with designed parapet laden with Cambodian motif
PROPOSED IMPROVEMENT PLAN OF NATIONAL ROAD No.1
Bridges and Structures

Three-cell box culvert for replacement of existing old water gate

Pre-stressed concrete bridge with protections against erosion and scouring

LEGEND
- NR-1 National Road No.1 (The Study Road)
- NR-2 National Roads
- PC-1 Pipe culvert
- BC-1 Box culvert
- B-1 Bridge

Two-cell box culvert with both functions of flood mitigation/water use and local communication

Slope protection against erosion by revetment or vegetation using green belt and sodding

Protection against local scouring using gabion mats
Map of Study Area

Legend
- National Road
- Border

Study Road L=56km

Cambodia

Vietnam
THE FEASIBILITY STUDY ON THE IMPROVEMENT OF NATIONAL ROAD NO.1
(PHNUM PENH - NEAK LOUENG SECTION)

Photographs of Study Area (1/3)

Km 0+000: Origin point at Monivong Bridge South side
Bridge length: 270 meters, Width: Carriage-way 11 meters
Bridge type: Pre-stressed concrete box girder
Bridge is expected to be stabilized for heavy load.
Erosion at some locations of protection and approach road
Commercial Area at South side of bridge

Km 1+000: Commercial area at both side,
Traffic congestion due to lack of slow-vehicle lane
Pavement width 7 meters
Shoulder width: 2.0 to 3.5 meters with earth surface

Km 18+000: Road conditions of local area
Critical damage/destruction of road structure

Heavy Vehicles : Ratio of heavy vehicle (PCU) 13.9%,
(NR-1, C-1) over 25-ton truck 19.1%

Km 28+450: Newly constructed colmatage water gate
(Constructed by Japan Grant Aid, 2001)
Carriage-way: 13.5 meters on culvert
Photographs of Study Area (2/3)

Km 40+000: Road Conditions of local area
- Critical damage: pothole/ broken road surface
- Bumpy road condition
- Pavement width 6 meters, shoulder width 2+2 meters

Km 42+850: Temporary steel bailey bridge
- Cut off in year 2000 flood,
- Bridge length 99 meters, width 4 meters,
- limited live load 16 ton
- ongoing improvement of piers and river-bed

Km 50+015: Old water gate,
- constructed in Pol Pot Regime, 1976
- Carriage-way width 5.8 meters
- Defects and damages on concrete structure
- Broken surface and concrete slab,
- Steel plates are placed on road surface

Km 55+300: Terminal Plaza at Neak Loueng Ferry Port
- and view on the Ferry
Photographs of Study Area (3/3)

Traffic accident of truck and motorbike caused by not following traffic rules (Km 18+000)

Traffic congestion with Moto-remork at commercial area (Km 2+000)

National Road No.11 related Road to NR1
Critical erosion/ damage of existing paved road
Over flood on road in several past time

Colmatage water gate along the Bassac River West to NR-1
ABBREVIATIONS

Authorities and Agencies

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>ASEAN</td>
<td>Association of South East Asian Nations</td>
</tr>
<tr>
<td>CDC</td>
<td>Cambodia Development Council</td>
</tr>
<tr>
<td>DHI</td>
<td>Danish Hydraulic Institute</td>
</tr>
<tr>
<td>DPWT</td>
<td>Department of Public Works and Transport</td>
</tr>
<tr>
<td>ESCAP</td>
<td>Economic and Social Commission for Asia and the Pacific</td>
</tr>
<tr>
<td>FRMR</td>
<td>Fund for Repair and Maintaining of Road</td>
</tr>
<tr>
<td>GOJ</td>
<td>Government of Japan</td>
</tr>
<tr>
<td>GOK</td>
<td>Government of Korea</td>
</tr>
<tr>
<td>IRC</td>
<td>Inter-ministerial Resettlement Committee</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>JRO</td>
<td>Japan Road Association</td>
</tr>
<tr>
<td>KOICA</td>
<td>Korea International Cooperation Agency</td>
</tr>
<tr>
<td>MAFF</td>
<td>Ministry of Agricultural and Forestry Regulation</td>
</tr>
<tr>
<td>MEF</td>
<td>Ministry of Economic and Finance</td>
</tr>
<tr>
<td>MIME</td>
<td>Ministry of Industry Policy</td>
</tr>
<tr>
<td>MLMUPC</td>
<td>Ministry of Land Management, Urban Planning and Construction</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Environment</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Public Health</td>
</tr>
<tr>
<td>MOP</td>
<td>Ministry of Planning</td>
</tr>
<tr>
<td>MOT</td>
<td>Ministry of Tourism</td>
</tr>
<tr>
<td>MoWRAM</td>
<td>Ministry of Water Resources and Meteorology</td>
</tr>
<tr>
<td>MPWT</td>
<td>Ministry of Public Works and Transport</td>
</tr>
<tr>
<td>MRC</td>
<td>Mekong River Commission</td>
</tr>
<tr>
<td>MRCS</td>
<td>Mekong River Commission Secretariat</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NIS</td>
<td>National Institute of Statistics</td>
</tr>
<tr>
<td>OPEC</td>
<td>Organization of Petroleum Exporting Countries</td>
</tr>
<tr>
<td>PIU</td>
<td>Project Implementation Unit</td>
</tr>
<tr>
<td>PMU</td>
<td>Project Management Unit</td>
</tr>
<tr>
<td>RCC</td>
<td>Road Construction Center</td>
</tr>
<tr>
<td>RGC</td>
<td>Royal Government of the Kingdom of Cambodia</td>
</tr>
<tr>
<td>RMMO</td>
<td>Road Maintenance Management Organization</td>
</tr>
<tr>
<td>RSOJ</td>
<td>Road Structure Ordinance of Japan</td>
</tr>
<tr>
<td>WB</td>
<td>World Bank (IBRD+IDA)</td>
</tr>
</tbody>
</table>

Note:
- IBRD: the International Bank for Reconstruction and Development
- IDA: International Development Association

Other Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>AC</td>
<td>Asphalt Concrete</td>
</tr>
<tr>
<td>ADCP</td>
<td>Acoustic Doppler Current Profiler</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>ALT</td>
<td>Alternative</td>
</tr>
<tr>
<td>AT</td>
<td>Articulated Truck</td>
</tr>
<tr>
<td>Ave</td>
<td>Average</td>
</tr>
<tr>
<td>B</td>
<td>Bridge</td>
</tr>
<tr>
<td>BC</td>
<td>Beginning of Curve</td>
</tr>
<tr>
<td>BCD</td>
<td>Boundary Condition of Downstream</td>
</tr>
<tr>
<td>BCU</td>
<td>Boundary Condition of Upstream</td>
</tr>
<tr>
<td>BKK</td>
<td>Bangkok</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>Br</td>
<td>Bridge</td>
</tr>
<tr>
<td>BST</td>
<td>Bituminous Surface Treatment</td>
</tr>
<tr>
<td>BTB</td>
<td>Battambang</td>
</tr>
<tr>
<td>B/C</td>
<td>Benefit Cost</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CBR</td>
<td>California Bearing Ratio</td>
</tr>
<tr>
<td>CDP</td>
<td>The Draft Cambodia Development Plan</td>
</tr>
<tr>
<td>Ch</td>
<td>Chainage</td>
</tr>
<tr>
<td>CHD</td>
<td>Chau Doc</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CSES</td>
<td>The Cambodia Socio-Economic Survey</td>
</tr>
<tr>
<td>CY</td>
<td>Pedal-cycles</td>
</tr>
<tr>
<td>C/R</td>
<td>Crusher run</td>
</tr>
<tr>
<td>C/S</td>
<td>Crushed stone</td>
</tr>
<tr>
<td>D</td>
<td>Depth</td>
</tr>
<tr>
<td>D</td>
<td>Inundation Depth</td>
</tr>
<tr>
<td>D or dia</td>
<td>Diameter</td>
</tr>
<tr>
<td>DBST</td>
<td>Double Bituminous Surface Treatment</td>
</tr>
<tr>
<td>DCP</td>
<td>Dynamic Cone Penetrometer</td>
</tr>
<tr>
<td>DCPT</td>
<td>Dynamic Cone Penetrometer Test</td>
</tr>
<tr>
<td>DEL</td>
<td>Design Embankment Level</td>
</tr>
<tr>
<td>dH</td>
<td>Freeboard</td>
</tr>
<tr>
<td>DHWL</td>
<td>Design High Water Level</td>
</tr>
<tr>
<td>DMS</td>
<td>Detail Management Survey</td>
</tr>
<tr>
<td>D/D</td>
<td>Detail Design</td>
</tr>
<tr>
<td>e</td>
<td>Exponent</td>
</tr>
<tr>
<td>EC</td>
<td>End of Curve</td>
</tr>
<tr>
<td>EDO</td>
<td>Environment Desk Officer</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIRR</td>
<td>Economic Internal Rate of Return</td>
</tr>
<tr>
<td>Elv or El</td>
<td>Elevation</td>
</tr>
<tr>
<td>EMAP</td>
<td>Environmental Management Action Plan</td>
</tr>
<tr>
<td>Env</td>
<td>Environment</td>
</tr>
<tr>
<td>ESAL</td>
<td>Equivalent Single Axle load</td>
</tr>
<tr>
<td>EP</td>
<td>Evaluation Point</td>
</tr>
<tr>
<td>F</td>
<td>Full access control</td>
</tr>
<tr>
<td>fc</td>
<td>Concrete Design Stress</td>
</tr>
<tr>
<td>FH</td>
<td>Formation Height</td>
</tr>
<tr>
<td>Fig</td>
<td>Figure</td>
</tr>
<tr>
<td>FMM</td>
<td>Flood Management and Mitigation</td>
</tr>
<tr>
<td>fp</td>
<td>Tensile strength of Tendon</td>
</tr>
<tr>
<td>FSM</td>
<td>Four-Stage Sequential Model</td>
</tr>
<tr>
<td>f sy</td>
<td>Yield Strength of Reinforcing Bar</td>
</tr>
<tr>
<td>GA</td>
<td>Generation and Attraction</td>
</tr>
<tr>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>cm/s</td>
<td>Centimeter per Second</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>deg</td>
<td>Degree</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>hr(s) of Hr</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>km²</td>
<td>Square Kilometer</td>
</tr>
<tr>
<td>km/h</td>
<td>Kilometer per Hour</td>
</tr>
<tr>
<td>kN</td>
<td>Kilo Newton</td>
</tr>
<tr>
<td>kN/m</td>
<td>Kilo Newton per Meter</td>
</tr>
<tr>
<td>kN/m³</td>
<td>Kilo Newton per Cubic Meter</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pascal</td>
</tr>
<tr>
<td>L or l</td>
<td>Litter</td>
</tr>
<tr>
<td>M or m</td>
<td>Meter</td>
</tr>
<tr>
<td>m²</td>
<td>Square Meter</td>
</tr>
<tr>
<td>M or mil</td>
<td>Million</td>
</tr>
<tr>
<td>Mg/l</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mo</td>
<td>Month</td>
</tr>
</tbody>
</table>
PROJECT SUMMARY

1. COUNTRY The Kingdom of Cambodia
2. NAME OF STUDY The Feasibility Study on the Improvement of National Road No.1 (Phnom Penh–Neak Loueng Section) in the Kingdom of Cambodia
3. COUNTERPART AGENCY Ministry of Public Works and Transport (MPWT)
4. OBJECTIVE OF STUDY To carry out a feasibility study on the improvement of National Road No.1 (Phnom Penh–Neak Loueng Section) and transfer technology to Cambodian counterparts.

1. STUDY AREA Road section from Phnom Penh to Neak Loueng on National Road No.1, approximately 56km in length and inundation area
2. TARGET YEAR Year 2015
3. ECONOMIC FRAMEWORK
 Population in Plain Region Thousand 8,887
 Per Capita GRDP ’000 Riels 1,440
 Annual Growth Rate % 6.0

6. ROAD IMPROVEMENT PLAN
 Improvement of vertical alignment (higher than 2000 Flood level plus 50 cm) and pavement thickness
 New construction of asphalt concrete pavement whose structure consists of roadbed embankment including subgrade, sub-base course, base course and surface course
 Cross section of 3meter (3.5m/lane) through-traveled lanes with provision of space for slow-moving vehicles
 Provision of sidewalk and drainage together with street lighting up to the intersection to Tiger beer factory
 Provision of space for future widening up to Kokir Market
 Improvement of existing intersection to Tiger beer factory by channelization with traffic signal
 Existing two temporary bridges replaced by new pre-stressed concrete bridge with protection against erosion and local scouring and one new construction of bridge.
 Existing two pipe culverts replaced by new pipe culvert with protection against erosion
 Existing two water gates replaced by new box culvert with protection against erosion and new construction of nine box culverts.
 Protection of slope surface of road embankment: 900-meter long revetment and 2,900-meter long green belt
 Traffic safety measures by installing road markings, guard posts and rails, regulatory & warning signs, guide signs, kilometer posts and traffic signal at intersections
 Road related facilities such as moto-remork stops cum livestock refuge during flood, weighbridge station, and Road Station, etc.

8. PROJECT IMPLEMENTATION PLAN AND EVALUATIONS
 (1) Project Implementation Plan and Cost Estimate
 Total construction period is planned as 36 months. Implementation plan starts in 2003 and the study road will be improved in second half of 2007. Estimated construction cost is 38,338 million US dollars and project cost is 43,408 million US dollars.
 (2) Economic Evaluation
 The base EIRR for the project is 13.3%, with various sensitivity scenarios giving results that range from 8.4% to 19.1%.
 (3) Environmental Evaluation
 The IEIA (Initial Environmental Impact Assessment) concluded that there are neither substantial nor irreversible adverse environmental and social impacts arising from the Project. No additional land acquisition for road right-of-way is required because the project only involves the improvement of existing roads. The project will require resettlement of project affected person. It is suggested that due procedure for the resettlement action should be taken into practice by implementation organization without delay.
 (4) Overall Evaluation
 High priority should be given to the implementation of the project because the project will promote economic and social development and there is expectation of a sufficient economic return. The project will also contribute to improve NR-1 to flood-free road to an all-weather standard, enhance traffic safety and environmental conservation by well-designed paved road, integrate producing and consuming centers in terms of regional context and increase job opportunities for the local poor especially in the development corridor between Phnom Penh and Neak Loueng.

9. CONCLUSION AND RECOMMENDATIONS
 It is concluded that the Study reveals high feasibility for the project implementation. Namely, the project has high technical feasibility, there is no substantial or irreversible adverse environmental impacts arising form the project, and the project is economically viable based on the economic analysis. It is recommended that the institutional arrangement for project implementation should be taken without interruption.
OUTLINE OF THE PROJECT

The Feasibility Study on Improvement of National Road No.1 (Phnom Penh – Neak Loueng Section) in the Kingdom of Cambodia

- Counterpart Agency: Ministry of Public Works and Transport, The Royal Government of the Kingdom of Cambodia

1. Background of the Study

National Road No.1 (NR-1) covers about 166 km in Cambodia from Phnom Penh to Bavet (on the border to Vietnam that is the main crossing point to the southern part of Vietnam and 72 km to Ho Chi Minh City). This route is designated as Asian Highway No. A-1 as well as ASEAN Highway No. 1, and almost of all road traffic between Phnom Penh and Ho Chi Minh passes on this route.

NR-1 is divided into two sections:
- The section C-1 from Phnom Penh to Neak Loueng
- The section C-2 from Neak Loueng to Bavet, on the border to Vietnam

The ongoing ADB funded “Ho Chi Minh City to Phnom Penh Highway Improvement Project” in Cambodia aims to directly improve an arterial road located in the Plain Region, which covers the five provinces of Kandal, Prey Veng, Svay Rieng, Kampong Cham and Takeo and one municipality of Phnom Penh. The Plain Region has a population of 6.8 million (2002) that is more than 50% of the national population. It produces 54% of GDP, but occupies only 14% of national land.

The C-2 section (105 km length) is being improved with ADB assistance and financing and is scheduled to be completed by the year 2003. A feasibility study is being carried out for the C-1 section (56 km length) by this study in cooperation with JICA.

The target year of the plan is the year 2015, which accords with that of relevant studies and projects implemented by the Royal Government of the Kingdom of Cambodia.

The influenced area has high development potential in terms of domestic production/consumption as well as international trade/investment. This area produces crops such as paddy, maize and vegetables as well as fisheries and livestock & poultry products that are mainly transported to Phnom Penh, the biggest consumption center. Accordingly, once NR-1 is improved, it will stimulate the development potential within the influence area, and high vehicle traffic generation is anticipated.

The expected roles and functions of NR-1 are as follows:
- To ensure road transport throughout the year by upgrading to a flood-free road to an all-weather standard.
- To secure traffic safety and conserve environment by separating slow-moving vehicles such as motorcycles and motorcycle trailer (“moto-remorks”).
- To stimulate economic and social development by connecting major productive centers to urban centers to provide better market accessibility, allow more competition and stable prices as well as to increase job opportunities for the poor.
- To strengthen linkages between producing and consuming centers and between exploited resources and trading gateways by the improvement of the arterial road to an international standard. This will encourage the ongoing transition to market economy that has opportunities for reducing poverty.
2. Outline of the Project

2.1 Flood Mitigation

(1) Flooding Condition and Flood Damage

Flooding area by 2000 Flood around Phnom Penh, NR-1 (C-1 and C-2) and NR-11 was very large with about 40 to 50 km width around Phnom Penh and about 20 km width around Neak Loueng. This large flooding area can be divided into three zones as follows: Zone 1: Mekong River Main Stream, Zone 2: Left Bank Side Flood Plain, and Zone 3: Right Bank Side Flood Plain (Colmatage Area). NR-1 C-1 is included in the Zone 3.

It was estimated that the maximum water level was almost same as the road top in 2/3 of the sections with three overflows occurring along NR-1 C-1. Two artificial Cut-offs were installed during 2000 flood to save urban area of Phnom Penh city. The flood survey clarified that the flood damage composed of damage to houses, agriculture and others by 2000 Flood was almost the same as other floods. This means that flood damage of 2000 Flood was not increased by the two artificial Cut-offs of NR-1 C-1 made during 2000 Flood.

In order to clarify the hydraulic effect by the two artificial Cut-offs along NR-1 C-1, unsteady hydraulic simulation model was developed. Effects of lowering the maximum water levels at Phnom Penh and Neak Loueng during 2000 Flood by the artificial Cut-offs were estimated at 9 cm and 14 cm respectively. This lowering of the flood water level at Phnom Penh and Neak Loueng was very important because these 2 towns seemed to be saved from flooding, but they would have been flooded if the water level was a little higher.

(2) Flood Mitigation Plan

As a principle for constructing roads in a flood plain, the road should not be an obstacle to the flow of a flood. Based on this principle and the purpose of this project (which is to formulate an improvement plan for NR-1 C-1 to be all-weather road even during floods), the height of road embankments and openings along the NR-1 C-1 were planned.

Since there is no clear historical trend of increasing flood water level along NR-1(C-1), it is sufficient to set the Design High Water Level (HWL) at the same elevation as the maximum water level of 2000 Flood. In order to maintain safety against wave height and possible floating debris, 0.5 meter of freeboard for embankment and 1.0 meter are considered above the HWL.

Plan for Openings is made based on the inflow into the Colmatage area. The plan indicates that inflow should be increased by installing new openings. Based on the hydraulic simulation, it was estimated that the plan could further lower the flood water level at Phnom Penh and Neak Loueng 2.0 to 3.5 cm. Bridge is installed near the existing temporary bridges and box culverts and pipe culverts are to be distributed along the road since flood flow is a kind of lateral flow. Followings are outline of the plan.

<table>
<thead>
<tr>
<th>Opening</th>
<th>Length/Size</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges</td>
<td>Total length: 232 m (Br.1: 66m, Br.2: 100m and Br.3: 66 m)</td>
<td>3 places</td>
</tr>
<tr>
<td>New Box Culverts with stop log slots</td>
<td>W 2.0 m x H 5 to 6 m x 2 cells</td>
<td>6 places</td>
</tr>
<tr>
<td>New Box Culverts without stop log slots</td>
<td>W 2.0 m x H 5 to 6 m x 2 cells</td>
<td>3 places</td>
</tr>
<tr>
<td>Improvement of Pipe Culverts</td>
<td>D 1.0 m x 1 no.</td>
<td>2 places</td>
</tr>
<tr>
<td>Improvement of Old Water Gates (by Box Culverts)</td>
<td>W 2.0 m x H 5.6 m x 2 cell, W 2.0 m x H 5.8 m x 3 cell</td>
<td>2 places</td>
</tr>
<tr>
<td>JICA Water Gates</td>
<td>No change</td>
<td>4 places</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20 places</td>
</tr>
</tbody>
</table>

Note: W: width, H: height and D: diameter, Stop log slots are to be attached to the 6 box culverts for water use for agriculture.
(3) Protection against Erosion and Scouring

Along NR-1 C-1, there are five places of total 3,800 meters where the road is facing the Mekong River and floodwater frequently attacks NR-1 C-1. In order to protect embankment slopes on the Mekong Side against erosion by waves or flow, revetment with wet masonry for the severest places between and Km 18+600 and 19+500 (900 meters) is planned. For other four places, gentle embankment slope (1:3) with green belt by swamp trees along the Mekong Side of the road for total 2,700 meters is planned.

Protection for bridges and box culverts are necessary against erosion and local scouring by contraction flow with turbulence. The planned protection for bridge is composed of revetment with wet masonry around abutments and bed protection by gabion mats and boulders. Inlets and outlets of box culverts are also planned to be protected by revetment with wet masonry and gabion mats with boulders.

2.2 Road and Road Facilities

To design centerline horizontal alignment
i) to follow the centerline of the existing NR-1 C-1 section as much as possible
ii) to adjust irregular sections
iii) to adjust where the centerline does not satisfy the proposed criteria

As the study area is in very flat region, grades in general are less than 0.1%. Grades went up to about 1% for the approach section for the bridges and culverts.

Common features of cross section are listed as follows:
1) Design Speed: 80 km/h
2) Through-traveled lane width: 3.5 m/lane
3) Space for slow-moving vehicles: 2.5 meters
4) Crossfall (Through-traveled lane): 2%
5) Crossfall (Shoulder): 4%

Each section has different component of cross section referring the results of traffic survey.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainage (St)</td>
<td>0+000 ~ 0+300</td>
<td>0+300 ~ 3+500</td>
<td>3+500 ~ 7+000</td>
<td>7+000 ~ 13+500</td>
<td>13+500 ~ 14+000</td>
<td>14+000 ~ 36+000</td>
<td>36+000 ~ 55+300</td>
</tr>
<tr>
<td>Type of Cross Section</td>
<td>I</td>
<td>II</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>- Detail of Cross Section</td>
<td>Unit: m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Total Width</td>
<td>Soft Shoulder</td>
<td>Sidewalk</td>
<td>Hard Shoulder</td>
<td>Through-lane</td>
<td>Median</td>
<td>Through-lane</td>
</tr>
<tr>
<td>I</td>
<td>24.0</td>
<td>-</td>
<td>2.5</td>
<td>2.0*</td>
<td>6.5</td>
<td>2.0</td>
<td>6.5</td>
</tr>
<tr>
<td>II</td>
<td>24.0</td>
<td>-</td>
<td>2.5</td>
<td>2.5</td>
<td>3.5</td>
<td>7.0**</td>
<td>3.5</td>
</tr>
<tr>
<td>III</td>
<td>21.0</td>
<td>1.0</td>
<td>-</td>
<td>2.5***</td>
<td>3.5</td>
<td>7.0**</td>
<td>3.5</td>
</tr>
<tr>
<td>IV</td>
<td>24.0</td>
<td>-</td>
<td>2.5</td>
<td>2.0*</td>
<td>6.5</td>
<td>2.0</td>
<td>6.5</td>
</tr>
<tr>
<td>V</td>
<td>14.0</td>
<td>1.0</td>
<td>-</td>
<td>2.5***</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* Hard shoulder is for stopping lane.
** Median is space for future widening.
*** Hard shoulder is space for slow-moving vehicles.

To cope with the increased number and speed of vehicles after improvement and to secure safety, various safety measures are planned.

i) Installation of road markings
ii) Installation of guard posts on high embankment, guard rails on box culverts
iii) Installation of signals, regulatory & warning signs, guide signs, and kilometer posts
iv) Distribution of pamphlets to public to draw their attention for traffic safety

To enhance the function of the Study Road as well as to contribute to traffic safety, the following facilities were planned:
i) Installation of Moto-remork stops cum livestock refuge during flood
ii) Bus stop
iii) Pedestrian Bridge for traffic and pedestrian safety
iv) Weighing station to control over loaded vehicles for road maintenance.
v) Approach Slopes for Local Road to secure access for the local people
vi) Road Station for the amenity of road as well as to provide employment to the local people

2.3 Pavement Structure

“AASHTO Guide for Design of Pavement Structures” (AASHTO Standard) was used as the basic criteria for pavement design. Also, other criteria, such as “Asphalt Pavement Manual” by Japan Road Association (JRO) were referenced.

Design CBR of 9 was used assuming improvement of subgrade by placing a selected material of 30 cm thickness. Traffic demand forecast is used as traffic volume for the design. The study road is divided into five sections and each section is calculated to have required strength. The most economical structure of pavements (subgrade, sub-base, base course and surface course) of pavement was selected. Table below show the structure of each section.

<table>
<thead>
<tr>
<th>Section of Road</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station (St)</td>
<td>0.0 - 3.5</td>
<td>3.5 - 7</td>
<td>7 - 14</td>
<td>14 - 36</td>
<td>36 – end</td>
</tr>
<tr>
<td>Pk (MPWT)</td>
<td>5.6 – 9.1</td>
<td>9.1 – 12.6</td>
<td>12.6 – 19.6</td>
<td>19.6 – 41.6</td>
<td>41.6 - End</td>
</tr>
<tr>
<td>Total and Surface thickness</td>
<td>55cm, 10cm</td>
<td>52cm, 10cm</td>
<td>49cm, 10cm</td>
<td>59cm, 5cm</td>
<td>57cm, 5cm</td>
</tr>
</tbody>
</table>

2.4 Opening Structures

Opening structures are planned after flood mitigation plan. The plan has three bridges (superstructure: PC I-shaped splice girder, substructure: RC elliptic column, foundation: cast-in-situ RC), 11 box culvert (seven 2-cell with stop logs, one 3-cell with stop logs and three 2-cell without stop logs) and two pipe culverts (D: 1.0 meter). Type of bridge was selected concerning natural condition, construction cost, method and period, ease of maintenance. Box culverts has sufficient height and opening section for wild animals and live stocks to cross the study road safely through the culverts.

2.5 Road Operation and Maintenance System

The road maintenance budget comes from “Fund for Repair and Maintaining of Road (FRMR)”. The fund will be used for routine and periodic maintenance and repair of the national, provincial and other roads under the management and responsibility of MPWT and other ministries. But the majority of the maintenance funds probably will be spent on emergencies by provincial level and leave very little for conventional maintenance activities. Both legal entities of Department of Public Works and Transport of province (DPWT) and Project Management Unit of MPWT (PMU) have similar problems as follows:

i) Shortage of road and bridge construction equipment and machinery
ii) Shortage of local engineers qualified in managing and supervising the operation of road and bridge construction equipment and machinery
iii) Lack of skilled construction equipment operators, mechanics, and electricians
iv) Lack of repair facilities and tools
v) Lack of managerial capability and research ability

Therefore, in order to secure the annual funds required for road maintenance, it is necessary to increase the road maintenance fund by strengthening road user cost recovery practices and to draw up a long-term strategy for cost recovery from road users. It is also necessary to ensure financing mechanism for road maintenance that are indispensable to strengthen road maintenance capability and to cope with incremental demand brought about by the governmental policy of road improvement:
3. Road Improvement Plan

The proposed road implementation is described as follows:

1) Improvement of vertical alignment (higher than 2000 Flood level plus 50 cm) and pavement thickness
2) New construction of asphalt concrete pavement whose structure consists of roadbed embankment including subgrade, sub-base course, base course and surface course
3) Provision of space for slow-moving vehicles
4) Provision of sidewalk and drainage together with street lighting up to the intersection to Tiger beer factory
5) Provision of space for future widening up to Kokir Market
6) Improvement of existing intersection to Tiger beer factory by channelization with traffic signal
7) Existing two temporary bridges replaced by new pre-stressed concrete bridge with protection against erosion and local scouring
8) Existing two pipe culverts replaced by new pipe culvert with protection against erosion
9) Existing two water gates replaced by new box culvert with protection against erosion
10) Construction of one new pre-stressed concrete bridge with protection against erosion and local scouring
11) Construction of nine new box culverts with protection against erosion
12) Protection of slope surface of road embankment: 900-meter long revetment and 2,900-meter long green belt
13) Traffic safety measures by installing road markings, guard posts and rails, regulatory & warning signs, guide signs, kilometer posts and traffic signal at intersections
14) Road related facilities such as moto-remork stops cum livestock refuge during flood, bus stops, pedestrian bridges, weighbridge station, approach slopes for local road and Road Station
15) Provision of space for toll plaza and administration office, if necessary

4. Project Implementation Plan

Construction planning is made to formulate project implementation plan. Construction method is selected and quantity estimation is carried out for main construction works. Construction time schedule is prepared based on following conditions

- Earth works: six months from November to April
- Asphalt pavement works: throughout the year.
- Sub structure works under HWL: six months from November to April.

Implementation takes 36 months in total. Project implementation plan is shown in table below.

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Design</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Detail Design/Preparation of tender Documents</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Pre-qualification of Contractors/Tendering/Tender Evaluation/Signing of Contract</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Construction</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

- V -
5. Economic Evaluation

Project cost is calculated based on quantity volume and construction plan of main construction works. The followings are the basic condition of cost estimation.

i) The cost is estimated in US dollar base considering the risk of fluctuation of exchange rate.
ii) The unit cost of each cost component is determined based on the economic conditions prevailing in October 2002 (US$ 1.0 = ¥ 120 = 3,990 Riel).
iii) Temporary facility cost, field expenses and over head are assumed to be 4%, 17% and 10% of direct construction cost.
iv) Detail engineering service and construction supervision service are assumed to be 4% and 6% of direct construction cost.
v) Survey and demolition cost for UXO is not estimated because it has already been carried out in most of the area of the study area.
vii) Equipment cost is based on the local market price as far as they are available. The cost analysis is made in case of special equipment that is not available in Cambodia.

the basic condition of economic evaluation is as follows:

i) Traffic volume is based on the result of traffic demand forecast.
ii) Base case of the economic growth rate is set as 6%/yr
iii) Project life is assumed to be 20 years.
iv) Two tangible benefits are taken into account, which are Saving in travel time cost (time saving) and Saving in vehicle operation cost (VOC saving).
v) Discount rate is set as 12%
vii) Sensitivity test is made in different economic growth rate, construction cost, benefit amount and time savings.

EIRR of base case in calculated as 13.3%. The result of sensitivity test shows that EIRR in most of the cases are more than 12%. Therefore, implementation of the project road is justified.

6. Environmental Evaluation

The IEIA was conducted in accordance with the environmental rules and regulations of Cambodia as well as environmental guidelines of JICA, and it concluded that there are neither substantial nor irreversible adverse environmental and social impacts arising from the Project. No adverse social impact is expected because the project only involves the improvement of existing roads and no additionally land acquisition for road right-of-way is required.

In the course of the Study, the activities designed to identify and predict the impact on the biogeographically environment and other matters was prepared based on the MOE’s comments on IEIA. MPWT as the executing agency for the project has submitted the final report of IEIA to MOE, and due procedure was carried out in November 2002. MOE has issued an approval letter to the project.

Therefore, the environmental justification for the project is confirmed officially.

7. Conclusion and Recommendations

1) Conclusion

The project will realize the strategic transport axis in East-south Asia as a part of Asian Highway No. A-1 by improvement of major arterial road to an all-weather international standard.

The significant benefits of the project are summarized as the enhancement of traffic safety and environmental conservation by well-designed paved road, the integration of producing and consuming centers in terms of regional context, and the reduction of transport cost to
provide better market accessibility for more competition toward low prices and to increase job opportunities for the local poor especially in the development corridor between Phnom Penh and Neak Loueng. The project will also stimulate the development of the Asian Highway No. A-1 and induce incremental demand of domestic cargo as well as international trade to Vietnam.

i) It is recommended that the improvement of National road No. 1 C-1 Section (Phnom Penh - Neak Loueng L=56 km) be given the highest priority in the Second Socio-Economic Development Plan (SEDP-2) due to its necessity and urgency. The project’s sufficient economic return is anticipated due to the higher traffic volumes.

ii) Well-designed bridges and culverts in the project will contribute to decreasing the floodwater level along NR-1(C-1) and at Phnom Penh, and accordingly flood risk will be reduced not only for NR-1(C-1) and Phnom Penh but also along NR-1(C-2) and NR-11 if 2000 Flood level should reoccur. By the inflow of floodwater to the Colmatage area through the planned openings, the water level inside the Colmatage area will slightly increase. However, no adverse impacts will affect agriculture in the Colmatage or the Bassac River.

iii) The proposed road improvement plan consists of appropriate flood mitigation measures, flood-free embankment level and strong as well as durable pavement structure. Accordingly it is technically feasible to cope with flood, floodwater and incremental demand of traffic and maintenance.

iv) The proposed plan will not require acquisition of land but evacuation of dwellers within Road Right-of-Way (ROW). According to prevailing procedure, 1,805 houses are located within tentative ROW of 30 meters, and they should move outside the tentative ROW. Since the permanent ROW is designated as 60 meters, it is socially feasible to vacate the land by a due procedure taken as the fair and just compensation to make Project Affected Persons (PAPs) resettled voluntarily outside the ROW.

(2) Recommendations

The following recommendations are made for the implementation of the project:

1) Appropriation of Funds for Project Implementation

It is recommended that the Government request a donor country to assist funding them, using bilateral ODA or a loan from a multi-lateral lending agency so as to alleviate the financial burden to the Government for the project implementation. The cost of compensation for resettlement and utility relocation, and the Government should appropriate the necessary funds for them in a timely manner.

2) Evacuation of Road Right-of-Way for the Project

It is necessary to evacuate PAPs from 30-meter wide ROW and to relocate utilities such as electricity and communication cables to proper locations before the construction works commence. These resettlement and relocation works require due and time-consuming procedures. Accordingly, it is recommended that such procedures should be taken in a timely manner to secure the necessary space for construction work.

3) Control of Development along NR-1(C-1)

It is recommended that any development within and along NR-1(C-1) should be effectively controlled to prevent indiscriminate activities and to facilitate the realization of project.

4) Maintenance of Detour Road at Cut-off No. 1 and No.2

Two temporary bridges at Cut-off No.1 and No.2 will be used until the construction work commences. Since it takes more than two years to start the construction work, it is necessary for MPWT to maintain detour roads and bridges properly.
5) Control of Over-loaded Trucks

It is recommended that action against over-loaded trucks should be taken immediately so that a weighbridge station at Cut-off No.2 be built to control over-loaded trucks.

6) Ensuring Financing Mechanism for Road Maintenance

To ensure financing mechanism for road maintenance, it is indispensable to strengthen road maintenance capability and to cope with incremental demand brought about by the governmental policy of road improvement. It is necessary to continue the follow up Road Maintenance Catch-up Program officially requested to Japan to realize the concept “Fee-for-Service” to contribute to increasing the road maintenance funds.

7) Improvement of Outlet Channel of Colmatage Water Gates

Outlet channels of Colmatage water gates constructed by Japan’s grant aid are eroded partially by strong current. In order to utilize their flood mitigation function, it is recommended to improve the existing outlet channels including bank protection against erosion.

8) Countermeasure against the Bank Erosion of the Mekong River

It is recommended to conduct observation of the bank erosion every year, and provide some countermeasure beforehand, so that the bank erosion will not become a really serious problem to NR-1(C-1).

9) Study on Bridge over the Mekong River at Neak Loueng

It is necessary to deliberate a scheme for bridge crossings since considerable numbers of travelers are always exposed to risk and inconvenience. Therefore, it is recommended that a study on bridges over the Mekong River at Neak Loueng should be conducted.

10) Comprehensive Study on Improvement of Chbar Ampov Intersection

Congested Chbar Ampov Intersection is one of major traffic bottlenecks on National Road No. 1 C-1 together with Neak Loueng Ferry and Kokir Market. Accordingly, it is desirable to improve it simultaneously if NR-1 C-1 is improved to a flood-free road to an all-weather standard. However, physical constraints are so severe and complicated that it is difficult to solve the problems only by an engineering design without the construction of 2nd Monivong Bridge.

It is recommended that the in-depth investigations and more comprehensive study covering Chbar Ampov Market, Kbal Ntal Intersection and its surroundings in Mean Chey District of Phnom Penh Municipality should be conducted for the improvement plan at Chbar Ampov Intersection.
TABLE OF CONTENTS

Preface
Letter of Transmittal
An Overview of Existing Conditions
Proposed Improvement Plan
Map of Study Area
Photographs of Study Area
Abbreviations
Project Summary
Outline of the Project

Vol. 1 MAIN REPORT

CHAPTER 1 INTRODUCTION

1.1 Introduction ... 1 - 1
1.2 Background of the Project and its Justification 1 - 1
1.3 Study Objectives .. 1 - 4
1.4 Scope of the Study .. 1 - 4
1.4.1 Study Area .. 1 - 4
1.4.2 Target Year .. 1 - 6
1.4.3 Concept of Work Flow .. 1 - 6
1.5 Study Organization ... 1 - 7
1.6 Draft Final Report .. 1 - 7

CHAPTER 2 CURRENT ROAD AND TRAFFIC CONDITIONS

2.1 Current Road Condition .. 2 - 1
2.1.1 Road and Road Transport in Cambodia 2 - 1
2.1.2 Roads in the Study Area ... 2 - 5
2.2 Existing Traffic Characteristics ... 2 - 7
2.2.1 Traffic Survey and Interviews ... 2 - 7
2.2.2 Roadside Traffic Volume Counts 2 - 11
2.2.3 Cordon Line Survey .. 2 - 13
CHAPTER 3 SOCIO-ECONOMIC FRAMEWORK

3.1 Socio-Economic Studies .. 3 - 1
 3.1.1 Present Socio-Economic Conditions .. 3 - 1
 3.1.2 Development Plans in the Study Area ... 3 - 7
3.2 Socio-Economic Framework .. 3 - 9
 3.2.1 Procedure of Setting up a Socio-Economic Framework 3 - 9
 3.2.2 Population Projection ... 3 - 10
 3.2.3 GDP Forecast ... 3 - 10
 3.2.4 Employment Projection .. 3 - 15
3.3 Distribution for Traffic Zone .. 3 - 17
 3.3.1 Distribution Process for the Traffic Zone .. 3 - 17
 3.3.2 Future Socio-Economic Framework by Traffic Zone .. 3 - 17
3.4 Socio-Economic Framework in Vietnam .. 3 - 23
 3.4.1 GDP and GRDP in Vietnam ... 3 - 23
 3.4.2 Population in Vietnam .. 3 - 24

CHAPTER 4 FORECAST OF FUTURE TRAFFIC DEMAND

4.1 Methodology for Traffic Demand Forecast .. 4 - 1
 4.1.1 Conventional Four-Stage Sequential Model .. 4 - 1
 4.1.2 Applied Procedure for Traffic Demand Forecast ... 4 - 2
4.2 Trip Production and Distribution .. 4 - 4
4.3 Modal Share .. 4 - 8
4.4 International & Trespass Traffic Demand Estimation and Forecast............................... 4 - 11
4.5 Traffic Assignment .. 4 - 13

CHAPTER 5 EXISTING CONDITIONS OF BRIDGES AND STRUCTURES

5.1 Outline of Existing Conditions of Bridges and Structures... 5 - 1
5.2 Inventory Survey of Existing Bridges and Structures ... 5 - 3
 5.2.1 Scope of Work .. 5 - 3
 5.2.2 Results of Inventory Survey ... 5 - 3
5.3 Stability of Existing Structures .. 5 - 5
 5.3.1 Soundness Evaluation .. 5 - 6
 5.3.2 Consideration of Structural Stability/ Strength for Existing Structures 5 - 6
 5.3.3 Results of Overall Evaluation .. 5 - 9
 5.3.4 Consideration of Monivong Bridge .. 5 - 11
5.4 Review of Recent Bridge and Structure Construction Project ... 5 - 12
CHAPTER 6 EXISTING CONDITION OF THE PROJECT ROAD

6.1 Review of Road Structure for Recent Road Improvement/Rehabilitation Projects........ 6 - 1
 6.1.1 Review of Road Projects Under Grant Aid of GOJ ... 6 - 2
 6.1.2 ADB Projects ... 6 - 2
 6.1.3 World Bank Projects ... 6 - 3
 6.1.4 MPWT Road Construction Projects ... 6 - 4
 6.1.5 Comparison of Pavement Structures .. 6 - 4

6.2 Review of Pavement Materials in Each Project ... 6 - 6

6.3 Evaluation of Existing Road Conditions .. 6 - 6
 6.2.1 Inventory Survey ... 6 - 6
 6.2.2 Embankment ... 6 - 14
 6.2.3 Pavement ... 6 - 14

6.4 Route Alignment .. 6 - 16
 6.4.1 Route Description ... 6 - 16
 6.4.2 Review of Detailed Design of ADB Project .. 6 - 20
 6.4.3 Traffic Control at Kokir Market ... 6 - 27
 6.4.4 Existing Traffic Control ... 6 - 27
 6.4.5 Traffic Safety ... 6 - 28

6.5 Issues of Road Maintenance .. 6 - 29
 6.5.1 Present Situation of Road Maintenance .. 6 - 29
 6.5.2 Fund for Road Maintenance ... 6 - 29
 6.5.3 Source of Fund for Road Maintenance .. 6 - 30

CHAPTER 7 NATURAL CONDITION EXAMINATION AND ENGINEERING SITE SURVEY

7.1 Basic Data for the Study .. 7 - 1
7.2 Physical Conditions of the Study Area ... 7 - 1
7.3 Topographic Survey .. 7 - 3
 7.3.1 Centerline Survey and Profile Survey ... 7 - 3
 7.3.2 Cross Section Survey ... 7 - 9

7.4 Geotechnical Investigation and Material Test .. 7 - 9
7.5 General Condition of Existing Agriculture and Land Use 7 - 15
 7.5.1 Existing Agricultural Condition .. 7 - 15
 7.5.2 Inland fishery .. 7 - 18
 7.5.3 Kien Svay Irrigation Area .. 7 - 19
 7.5.4 Colmatage Canal ... 7 - 20
 7.5.5 Land Use .. 7 - 25
 7.5.6 Damage Situation of 2000 Flood ... 7 - 27
 7.5.7 Possibility of Farmland Expansion ... 7 - 27
 7.5.8 Investigation of NR-1 Opening Point .. 7 - 28
CHAPTER 10 ENVIRONMENTAL CONDITIONS

10.1 Outline of Environmental Conditions ... 10- 1
10.1.1 Objective of Environmental Study ... 10- 3
10.1.2 Background of Environmental Conservation in Cambodia 10- 3
10.1.3 Outline of the Present Environment of the Study Area ... 10- 6
10.2 Ordinances Related with the Environmental Impact Assessment 10- 9
10.2.1 Law of Environmental Impact Assessment .. 10-11
10.2.2 Legal Procedure of EIA and IEIA .. 10-13
10.2.3 IEIA Process with the Cambodian Law .. 10-14
10.3 IEIA on the Study Route .. 10-16
10.3.1 Study Background ... 10-16
10.3.2 General description of the Study Area ... 10-17
10.3.3 Study Objectives and Method .. 10-18
10.3.4 Social Environment ... 10-19
10.3.5 Project Affected Persons .. 10-26
10.3.6 Natural Environment .. 10-27
10.3.7 Major Environmental Issues ... 10-31
10.3.8 Consideration of Mitigation Measure and Management ... 10-35
10.4 Formulation of Further Environmental Study ... 10-36
10.4.1 Consideration of Environmental Study .. 10-36
10.4.2 Works for Further Environmental Study .. 10-36
10.4.3 Environmental Protection Objective .. 10-37
10.4.4 Environmental Protection Measures .. 10-40
10.5 Compensation for Resettlement and Land Acquisition .. 10-43
10.5.1 Compensation for Land Acquisition .. 10-43
10.5.2 Resettlement Procedure of Project Affected Persons within Road Right-of-Way ... 10-44
10.5.3 Compensation Procedure for Resettlement .. 10-45
10.5.4 Compensation cost application based on the Government’s policy.......................... 10-47
10.5.5 Resettlement Action Plan .. 10-48
10.5.6 Environmental Monitoring Program .. 10-52
10.5.7 Environmental Management Action Plan ... 10-53
10.6 Summary of Environmental Impact ... 10-58
10.7 Cost Estimation .. 10-60
10.7.1 Cost on Environmental Monitoring Program .. 10-60
10.7.2 Cost for Resettlement Action Plan .. 10-61
10.7.3 Cost for Environmental Management Action Plan .. 10-62
CHAPTER 11 ESTABLISHMENT OF DESIGN CRITERIA

11.1 Design Criteria for Geometric Design and Pavement .. 11-1
 11.1.1 Design Concept ... 11-1
 11.1.2 Design Criteria for Geometric Design ... 11-1
 11.1.3 Design Criteria for Pavement ... 11-8

11.2 Design Criteria for Bridge and Structure ... 11-10
 11.2.1 Application of Design Standard .. 11-10
 11.2.2 Typical Cross Section and Design Condition for Bridge and Culvert 11-11
 11.2.3 Design Loads ... 11-12

CHAPTER 12 SETTING AND EVALUATION OF ALTERNATIVE PLANS

12.1 Study Methodology ... 12-1

12.2 Planning Parameters .. 12-2

12.3 Setting of Alternative Plans ... 12-9
 12.3.1 ALT-I a: Maintaining Existing Inflow Capacity .. 12-9
 12.3.2 Focusing on Flood Plain Management in Module-1 .. 12-10
 12.3.3 Focusing on Traffic Functions in Module-2 ... 12-12
 12.3.4 Scheme-2: Adoption of Spillway .. 12-14

12.4 Evaluation of Alternative Plans .. 12-14
 12.4.1 Study Approach and Methodology ... 12-14
 12.4.2 Summary of Evaluation ... 12-15

CHAPTER 13 PRELIMINARY DESIGN

13.1 Highway Design .. 13-1
 13.1.1 General Policy .. 13-1
 13.1.2 Alignment .. 13-1
 13.1.3 Road Structure ... 13-6
 13.1.4 Embankment on Soft Ground ... 13-12
 13.1.5 Road Drainage .. 13-14
 13.1.6 Traffic Safety Measures and Control Facilities .. 13-18
 13.1.7 Road Related Facilities ... 13-22
 13.1.8 Major Intersection .. 13-30

13.2 Pavement Design .. 13-32
 13.2.1 Design of Asphalt Pavement .. 13-32
 13.2.2 Consideration on Type of Pavement .. 13-40
 13.2.3 Consideration of Periodic Maintenance .. 13-40
 13.2.4 Life Cycle Cost Analysis ... 13-42

13.3 Preliminary Design for Opening Structures ... 13-43
 13.3.1 Design Concept for Opening Section .. 13-43
 13.3.2 Alternative Location and Scale for Opening Structures ... 13-44
 13.3.3 Selection of Structural Type for Bridge and Culvert ... 13-46
 13.3.4 Preliminary Design and Drawings for Opening Structures 13-57
 13.3.5 Construction Method for Opening Structures ... 13-60
 13.3.6 Maintenance Method .. 13-62
CHAPTER 14 PROPOSED ROAD OPERATION AND MAINTENANCE PLAN

14.1 Road Maintenance Practices ... 14-1
 14.1.1 Road Maintenance Works .. 14-1
 14.1.2 Present Financial Situation .. 14-2
14.2 Present Situation of Road Maintenance .. 14-3
14.3 Evaluation of Road Maintenance System .. 14-4
 14.3.1 System Improvement Measures .. 14-4
 14.3.2 Capacity Building of Road Maintenance .. 14-4
 14.3.3 Increase of Road Maintenance Fund ... 14-5
14.4 Neak Loueng Ferry ... 14-6
 14.4.1 Present Situation ... 14-6
 14.4.2 Problems related to Ferry Operation .. 14-10
 14.4.3 Necessity of Improvement for Ferry Operation and Facilities 14-11

CHAPTER 15 PROJECT IMPLEMENTATION PLAN

15.1 Introduction ... 15-1
15.2 Road Improvement Plan .. 15-1
15.3 Construction Planning ... 15-6
 15.3.1 Time Requirements ... 15-9
 15.3.2 Implementation Time Schedule .. 15-10

CHAPTER 16 ECONOMIC AND FINANCIAL ANALYSIS

16.1 Economic Evaluation ... 16-1
 16.1.1 General ... 16-1
 16.1.2 Project Cost .. 16-2
 16.1.3 Vehicle Operating Costs and Time Cost 16-3
 16.1.4 Estimation of Economic Benefits ... 16-6
 16.1.5 Benefit Cost Analysis ... 16-7
 16.1.6 Sensitivity Analysis ... 16-8
 16.1.7 Summary of Economic Evaluation ... 16-10
16.2 Financial Analysis ... 16-10
 16.2.1 Financial Capability of the Government 16-10
 16.2.2 Public Investment Program for 2003 - 2005 and Capital Investment Requirements .. 16-12
 16.2.3 Comparison between Capital Investment Availability and Requirements 16-15
CHAPTER 17 CONCLUSION AND RECOMMENDATIONS

17.1 Feasibility of the Project .. 17- 1
 17.1.1 Technical Feasibility .. 17- 1
 17.1.2 Environmental and Social Impact ... 17- 1
 17.1.3 Economic Feasibility ... 17- 1
17.2 Conclusion 17- 2
17.4 Recommendations ... 17- 3

Vol. 2 APPENDICES
A. Attendance List
B. Hydrology
C. Structure
D. Soil and Topography
E. Traffic Survey
F. Traffic Demand Forecast
G. Road
H. Environment
I. Construction
J. Cost Estimation
K. Economic Analysis
L. Scope of Work
M. List of Collected Data

Vol. 3 DRAWINGS
A. General
B. Road
C. Structure
D. Miscellaneous

SEPARATE VOLUME

- SUMMARY (ENGLISH)

- SUMMARY (JAPANESE)
LIST OF TABLES

CHAPTER 2
Table 2-1-1 Road Length under MPWT ... 2 - 3
Table 2-1-2 Road Inventory and Condition by Type of Pavement 2 - 4
Table 2-1-3 Structure Inventory by Type of Road ... 2 - 5
Table 2-2-1 Contents of Traffic Surveys and Interviews 2 - 7
Table 2-2-2 Traffic Volumes and Relating Index (NR-1) 2 - 11
Table 2-2-3 Traffic Volumes and Relating Index (NR-6, NR-7, and NR-11) 2 - 11
Table 2-2-4 Traffic Volumes and Relating Index (Phnom Penh Area) 2 - 12
Table 2-2-5 Traffic Volumes and Relating Index (NR-1 to NR-7) 2 - 14
Table 2-2-6 Sampling Number and Ratio of OD Interviews 2 - 15
Table 2-2-7 Observed Occupancy by Mode ... 2 - 16
Table 2-2-8 Average Travel Speed of National Road No.1 on Section C-1 2 - 20
Table 2-2-9 Loading Weight and Capacity of Cargo Vehicles 2 - 23
Table 2-2-10 Interview Based Fuel Consumption of Cargo Vehicles 2 - 24
Table 2-2-11 Frequency of Bus Operation to/from Phnom Penh 2 - 25
Table 2-2-12 Frequency of Inland Waterway Operation to/from Phnom Penh 2 - 26
Table 2-2-13 Ratio of Axle Load by Portable Scale to Axle Load by Fixed Scale ... 2 - 27

CHAPTER 3
Table 3-1-1 Estimated Gross Regional Domestic Products by Regions, 2002 3 - 5
Table 3-1-2 Estimated Populations and Population Density by Regions, 2002 3 - 6
Table 3-1-3 Number of Employment in 2002 ... 3 - 6
Table 3-1-4 Estimated Employment by Industry in 2002 3 - 6
Table 3-1-5 Monthly Wages by Areas in 1999 .. 3 - 7
Table 3-1-6 Target of Key Indicators of Past Development Plans 3 - 8
Table 3-1-7 Target of Key Indicators of SEDP-2 .. 3 - 8
Table 3-2-1 Population Projection by Year ... 3 - 10
Table 3-2-2 Socio-Economic Data for Analysis .. 3 - 10
Table 3-2-3 Economic Growth Prospects under Trend based Scenario 3 - 12
Table 3-2-4 Economic Growth Prospects in the CDP .. 3 - 13
Table 3-2-5 Economic Growth Prospects in ‘Low Growth Scenario’ 3 - 13
Table 3-2-6 Results of GDP Forecast by Year .. 3 - 14
Table 3-2-7 Result of GDP Forecast by Industry and Year in Medium Growth Scenario 3 - 15
Table 3-2-8 Number of Employment by Industry in 2015 3 - 15
Table 3-2-9 Comparison of Employment in 2002 and 2015 3 - 16
Table 3-2-10 Number of Employment by Industry in 2015 3 - 16
Table 3-3-1 Population Projection by Regions and Provinces 3 - 18

- ix -
CHAPTER 9
Table 9-2-1 Locations and Interval of the Flood Survey .. 9 - 3
Table 9-2-2 Sampling Number of Flood Survey .. 9 - 3
Table 9-2-3 Inflow Discharge/Capacity along NR-1 (C-1) .. 9 - 7
Table 9-2-4 Flood Damage along NR-11, NR-7 and NR-6A .. 9 - 11
Table 9-4-1 Boundary Conditions at Upstream End... 9 - 19
Table 9-4-2 Boundary Conditions at Downstream End.. 9 - 20
Table 9-7-1 Summary of Alternative Plans for Openings... 9 - 34
Table 9-7-3 Estimation of Hydraulic Effects by the Alternative Opening Cases under 2000 Flood .. 9 - 40
Table 9-7-5 Summary of Proposed Openings along NR-1 (C-1) ... 9 - 45
Table 9-7-6 Hydraulic Design of the Proposed Openings along NR-1 (C-1) 9 - 46
Table 9-7-8 Summary of Proposed Openings along NR-1 (C-1) .. 9 - 45
Table 9-8-1 Dimension of Bed Protection Area for Bridges .. 9 - 53

CHAPTER 10
Table 10-1-1 Categories of Protected Areas in the Kingdom of Cambodia 10- 5
Table 10-1-2 Forest Reserve in Cambodia .. 10- 6
Table 10-3-1 Average Monthly and Annual Income by Sex of Head of Households by Quintile.. 10-20
Table 10-3-2 Income Level of Occupational Groups .. 10-21
Table 10-3-3 Occupation of All Interviewed 891 Respondents.. 10-21
Table 10-3-4 Main institutional public facilities at different point of Km............................. 10-22
Table 10-3-5 Current Use of the Road Side Area and Use of Land with Property Right........... 10-23
Table 10-3-6 Land Use Type of the Household... 10-23
Table 10-3-7 Main Cultural Assets and Religious Facilities at Different Point of Km............. 10-24
Table 10-3-8 Peoples Interest on the Road Improvement Project ... 10-24
Table 10-3-9 Status of House Ownership... 10-25
Table 10-3-10 Year of Construction by Type of Building ... 10-25
Table 10-3-11 Year of Construction by Use of Building Status.. 10-25
Table 10-3-12 Year of Construction by Building Tenure .. 10-25
Table 10-3-13 HIV Infection, AIDS Reported to National Center for HIV/AIDS.................. 10-26
Table 10-3-14 Affected Houses and Structures ... 10-27
Table 10-3-15 Affected Fruit Trees .. 10-27
Table 10-3-16 Quality of Water at Four Stations... 10-29
Table 10-3-17 Quality of the Air at Four Stations... 10-30
Table 10-3-18 Noise Level at Four Stations.. 10-30
Table 10-5-1 Estimated Compensation Cost for House and Building................................. 10-47
Table 10-5-2 Estimated Compensation Cost for Fence.. 10-47
Table 10-5-3 Estimated Compensation Cost for Fruit Trees .. 10-47
Table 10-5-4 Estimated Allowance for Resettlement Compensation Cost................................. 10-47
Table 10-5-5 Summary of Compensation Cost.. 10-48
Table 10-5-6 Monitoring Program on Atmosphere and Air.. 10-52
Table 10-5-7 Monitoring Program on Surface Water ... 10-53
Table 10-5-8 Monitoring Program on Hygienic Condition of Work Site................................. 10-53
Table 10-5-9 Environmental Management Action Plan ... 10-54
Table 10-6-1 Summary of Environmental Impact of the NR-1 Improvement Project 10-59
Table 10-7-1 Cost Estimate for Monitoring Program... 10-60
Table 10-7-2 Cost for Resettlement Action Plan.. 10-61
Table 10-7-3 Cost for Environmental Management Action Plan ... 10-62

CHAPTER 11
Table 11-1-1 Summary of Major Geometric Design Factors of Cambodian Standard 11-1
Table 11-1-2 Summary of Design Factors of Asian Highway.. 11-2
Table 11-1-3 Basic Design Factors by AASHTO... 11-2
Table 11-1-4 Basic Design Factors by RSOJ ... 11-2
Table 11-1-5 Standard Lane Width in Major Countries ... 11-3
Table 11-1-6 Proposed Criteria for Basic Design Factors... 11-4
Table 11-1-7 Criteria for Vertical Clearance .. 11-6
Table 11-1-8 Elements of Geometric Design .. 11-6
Table 11-1-9 Alternatives for Embankment Height ... 11-7
Table 11-1-10 Earthwork Volume for Alternatives... 11-7
Table 11-1-11 Minimum Thickness of Surface Course.. 11-9
Table 11-1-12 Class of Traffic Volume for Pavement Design.. 11-10
Table 11-1-13 Minimum Thickness of Base Course and Subbase Course............................... 11-10
Table 11-2-1 Classified Design Loads.. 11-12
Table 11-2-2 Dead Load Intensity.. 11-13
Table 11-2-3 Live Loading Method in the World... 11-14
Table 11-2-4 Comparison of Weight of Transport Vehicles among Each Country 11-15
Table 11-2-4 List of Material and Strength .. 11-17

CHAPTER 12
Table 12-4-1 Comprehensive Evaluation ... 12-16
Table 12-4-2 Cost Comparison by Index.. 12-17
CHAPTER 13

Table 13-1-1 Proposed Design Elements and Actually Used Values .. 13-6
Table 13-1-2 Permeability and Drainage Characteristics of Soils... 13-10
Table 13-1-3 Comparison of Requirement for River Bank and Proposed Structure of the Study Road ... 13-11
Table 13-1-4 Calculation of Drainage for Chbar Ampov Section .. 13-15
Table 13-1-5 Calculation of Drainage for Kokir Market Section .. 13-15
Table 13-1-6 Sections of Proposed Guard Post and Guard Rail.. 13-20
Table 13-1-7 Location of Proposed Guide Signs... 13-21
Table 13-1-8 Location of Proposed Traffic Signal Installation ... 13-22
Table 13-1-9 Locations for Proposed Moto-remork Stops .. 13-22
Table 13-1-10 Locations for Moto-remork Stop cum Space for Livestock Refuge 13-24
Table 13-1-11 Required Number of Parking Lots ... 13-29
Table 13-2-1 CBR of Improved Subgrade for Dry Season and High-Water Season 13-33
Table 13-2-2 Estimated Values of ALEF .. 13-34
Table 13-2-3 Design W18 of Each Section .. 13-34
Table 13-2-4 Sections of Pavement Design and Design ESAL ... 13-34
Table 13-2-5 Values of ZR, S0, and △PSI.. 13-35
Table 13-2-6 Required SN for Each Section .. 13-35
Table 13-2-7 Minimum Thickness of Surface Course... 13-35
Table 13-2-8 Class of Traffic Volume.. 13-35
Table 13-2-9 Minimum Thickness of Base Course and Subbase Course 13-36
Table 13-2-10 Alternatives of Pavement Structure .. 13-36
Table 13-2-11 Cost Comparison of Alternatives of Pavement Structure 13-37
Table 13-2-12 Summary of Pavement Structure .. 13-38
Table 13-2-13 Summary of Maintenance of the Study Road ... 13-41
Table 13-2-14 Acceptable Maintenance Scenario for DBST ... 13-42
Table 13-2-15 Acceptable Maintenance Scenario of AC Pavement .. 13-42
Table 13-2-16 Assumed Conditions of LCC Analysis ... 13-43
Table 13-2-17 Summary of LCC Calculation ... 13-43
Table 13-3-1 Standardized Type for Opening Structures ... 13-43
Table 13-3-2 Flow Section of Existing Structures... 13-44
Table 13-3-3 Scale of Proposed Alternative Bridges... 13-45
Table 13-3-4 Relation between Superstructure Type and Span Length ... 13-46
Table 13-3-5 Comparison of Characteristics between PC Bridge and Steel Bridge 13-47
Table 13-3-6 Relation between Substructure Type and Height... 13-48
Table 13-3-7 Comparison for Pier Type ... 13-49
Table 13-3-8 Foundation Pile Types... 13-49
Table 13-3-9 Comparison of Pile Setting Method for Engineering Characteristics 13-50
Table 13-3-10 Comparison for Pile Foundation Type ... 13- 50
Table 13-3-11 Comparison of Span Arrangement ... 13- 52
Table 13-3-12 Characteristics of Selected Bridge Type CASE-2 .. 13- 53
Table 13-3-13 Specification and Characteristics of Opening Structures 13- 54
Table 13-3-14 List of Protection Area of Proposed Bridge .. 13- 55
Table 13-3-15 Opening Structures for Preliminary Design ... 13- 58
Table 13-3-16 Design of Bridges and Road Surface Elevation .. 13- 58
Table 13-3-17 Design of Culverts and Road Surface Elevation ... 13- 59
Table 13-3-18 Design Drawings of Opening Structures for the Project 13- 60
Table 13-3-19 Estimated Construction Cost of Opening Structures 13- 60
Table 13-3-20 Construction Scale for the Opening Structures .. 13- 61
Table 13-3-21 Method of Evaluation and Soundness Degree for Existing Bridges 13- 63
Table 13-4-1 Material Procurement Source List ... 13- 65
Table 13-4-2 Implementation Schedule for Culvert Construction 13- 76
Table 13-4-3 Implementation Schedule for Bridge Construction .. 13- 76
Table 13-4-4 Implementation Schedule for Road Construction ... 13- 77
Table 13-4-5 Unit Price of Major Construction Material .. 13- 78
Table 13-4-6 Unit Prices of Labor and Worker ... 13- 78
Table 13-4-7 Unit Prices of Equipments ... 13- 79
Table 13-4-8 Unit Price of Major Works ... 13- 80
Table 13-4-9 Direct Cost for Construction .. 13- 81
Table 13-4-10 Items of Indirect Cost and Percentage to Direct Cost 13- 82
Table 13-4-11 Compensation Cost ... 13- 82
Table 13-4-12 Relocation Cost for Utility ... 13- 82
Table 13-4-13 Cost on Environmental Measurement ... 13- 83
Table 13-4-14 Project Cost ... 13- 83

CHAPTER 14

Table 14-1-1 Typical Maintenance Activities .. 14- 1
Table 14-2-1 Road Length under MPWT ... 14- 3
Table 14-3-1 Estimated Revenue from Bridge Crossing ... 14- 6
Table 14-4-1 Organization of Ferry Operation ... 14- 8
Table 14-4-2 Toll Rates as of August 2002 .. 14- 9

CHAPTER 15

Table 15-2-1 Road Design Features in each Section .. 15- 2
Table 15-3-1 Quantities of Major Construction Works ... 15- 7
Table 15-3-2 Construction Time Schedule .. 15- 8
Table 15-4-1 Implementation Time Schedule ... 15- 11
CHAPTER 16
Table 16-1-1 Construction Cost Estimate ... 16-2
Table 16-1-2 Project Cost Estimation .. 16-3
Table 16-1-3 Unit Cost of Vehicle Operating Cost by Vehicle Types 16-4
Table 16-1-4 Vehicle Operating Cost by Vehicle Types .. 16-4
Table 16-1-5 Unit Cost of Vehicle Operating Cost by Roughness Index 16-5
Table 16-1-6 Calculation of Time Value, 2002 Prices .. 16-5
Table 16-1-7 Composition of Trip Purpose ... 16-5
Table 16-1-8 Time Value by Types of Vehicle and Years .. 16-5
Table 16-1-9 Traffic Volume in cases of with and without Project by Year 16-6
Table 16-1-10 Travel Time in cases of with and without Project by Year 16-6
Table 16-1-11 Vehicle Kilometers in cases of with and without Project by Year 16-6
Table 16-1-12 Estimation of Time Saving and VOC Saving .. 16-7
Table 16-1-13 Results of Benefit Cost Analysis ... 16-7
Table 16-1-14 Benefit - Cost Stream .. 16-8
Table 16-1-15 Forecasted Traffic Volume of Alternative Scenarios 16-9
Table 16-1-16 Forecasted Benefit in case of High Growth Scenario 16-9
Table 16-1-17 Forecasted Benefit in case of Lower Growth Scenario 16-9
Table 16-1-18 Results of Sensitivity Analysis of Alternative Economic Growth Rate ... 16-9
Table 16-1-19 Sensitivity Analysis regarding Cost and Benefit 16-10
Table 16-1-20 Sensitivity Analysis regarding Time Value ... 16-10
Table 16-2-1 GDP and Government Budget by Year ... 16-11
Table 16-2-2 Government Budget and Capital Investment by Year 16-11
Table 16-2-3 Capital Investment and Local Fund for Capital Investment by Year 16-11
Table 16-2-4 Projected GDP and Government Budget by Year 16-12
Table 16-2-5 Projected Capital Investment and Local Fund for Capital Investment 16-12
Table 16-2-6 Public Investment Program, 2002-2004 ... 16-13
Table 16-2-7 Public Investment Program for 2003-2005 .. 16-14
Table 16-2-8 Comparison between Capital Investment Availability and Requirements ... 16-15
LIST OF FIGURES

CHAPTER 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4-1</td>
<td>Study Area</td>
<td>1 - 5</td>
</tr>
<tr>
<td>1-4-2</td>
<td>Workflow Concept for the Study</td>
<td>1 - 6</td>
</tr>
<tr>
<td>1-5-1</td>
<td>Study Organization</td>
<td>1 - 7</td>
</tr>
</tbody>
</table>

CHAPTER 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1-1</td>
<td>Present National Road Network</td>
<td>2 - 2</td>
</tr>
<tr>
<td>2-1-2</td>
<td>Arterial Road Network in the Study Area</td>
<td>2 - 5</td>
</tr>
<tr>
<td>2-1-3</td>
<td>Existing Routes to Ho Chi Minh City</td>
<td>2 - 6</td>
</tr>
<tr>
<td>2-2-1</td>
<td>Location of Traffic Surveys and Interviews</td>
<td>2 - 8</td>
</tr>
<tr>
<td>2-2-2</td>
<td>Traffic Zone and Code No.</td>
<td>2 - 9</td>
</tr>
<tr>
<td>2-2-3</td>
<td>Tendency of Traffic Volumes and Modal Share on the National Road Networks</td>
<td>2 - 12</td>
</tr>
<tr>
<td>2-2-4</td>
<td>Average Daily Traffic Volume at Neak Loueng Ferry</td>
<td>2 - 13</td>
</tr>
<tr>
<td>2-2-5</td>
<td>Traffic Volume and Composition on Cordon Line Stations</td>
<td>2 - 14</td>
</tr>
<tr>
<td>2-2-6</td>
<td>Tendency of Traffic Volumes and Modal Share on Cordon Line Survey Stations</td>
<td>2 - 15</td>
</tr>
<tr>
<td>2-2-7</td>
<td>Trip Mode of National Road Network Users</td>
<td>2 - 16</td>
</tr>
<tr>
<td>2-2-8</td>
<td>Trip Purpose of National Road Network Users</td>
<td>2 - 17</td>
</tr>
<tr>
<td>2-2-9</td>
<td>Trip Origin and Destination of National Road Network Users</td>
<td>2 - 17</td>
</tr>
<tr>
<td>2-2-10</td>
<td>12-hr Traffic Volume and Movement</td>
<td>2 - 18</td>
</tr>
<tr>
<td>2-2-11</td>
<td>Average Travel Speed</td>
<td>2 - 20</td>
</tr>
<tr>
<td>2-2-12</td>
<td>Daily Cargo Movements by Type of Vehicles</td>
<td>2 - 21</td>
</tr>
<tr>
<td>2-2-13</td>
<td>Daily Cargo Movements by Cargo Categories</td>
<td>2 - 21</td>
</tr>
<tr>
<td>2-2-14</td>
<td>Compositions of Cargo Trucks</td>
<td>2 - 22</td>
</tr>
<tr>
<td>2-2-15</td>
<td>Compositions of Cargo Items</td>
<td>2 - 22</td>
</tr>
<tr>
<td>2-2-16</td>
<td>Compositions of Cargo Generation & Attraction</td>
<td>2 - 23</td>
</tr>
<tr>
<td>2-2-17</td>
<td>Loading Weight and Capacity of Cargo Vehicles</td>
<td>2 - 24</td>
</tr>
<tr>
<td>2-2-18</td>
<td>Directional Supplied Capacities of Public Transport to/from Phnom Penh</td>
<td>2 - 26</td>
</tr>
<tr>
<td>2-2-19</td>
<td>Distributions of Vehicle Weight and Equivalent Single Axle Load</td>
<td>2 - 27</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1-1</td>
<td>Growth Rate of GDP</td>
<td>3 - 1</td>
</tr>
<tr>
<td>3-1-2</td>
<td>GDP/Capita in 1993 Constant Riels</td>
<td>3 - 2</td>
</tr>
<tr>
<td>3-1-3</td>
<td>Composition of GDP by Industry in 1993</td>
<td>3 - 3</td>
</tr>
<tr>
<td>3-1-4</td>
<td>Composition of GDP by Industry in 2001</td>
<td>3 - 3</td>
</tr>
<tr>
<td>3-1-5</td>
<td>Growth Rate of GDP by Industry</td>
<td>3 - 3</td>
</tr>
<tr>
<td>3-1-6</td>
<td>Procedure for GRDP Estimation</td>
<td>3 - 4</td>
</tr>
<tr>
<td>3-1-7</td>
<td>Past Trend of Population</td>
<td>3 - 5</td>
</tr>
</tbody>
</table>
CHAPTER 7
Fig. 7-3-1 Plan and Profile .. 7 - 5
Fig. 7-4-1 Average CBR Value .. 7 - 13
Fig. 7-5-1 Land Use Map .. 7 - 26

CHAPTER 8
Fig. 8-2-1 Meteo-Hydrological Observation Network in Cambodia 8 - 1
Fig. 8-3-1 Distribution of Averaged Annual Precipitation in Cambodia 8 - 3
Fig. 8-3-2 Monthly Variation of Averaged Precipitation and Number of Rainy Day 8 - 5
Fig. 8-3-3 Rainfall Intensity .. 8 - 6
Fig. 8-4-1 Annual Maximum Water Surface Level at Chrouy Changvar 8 - 10
Fig. 8-4-2 Annual Maximum Water Surface Level at Kampong Cham 8 - 10
Fig. 8-4-3 Monthly Variation of Averaged Water Surface Level .. 8 - 11
Fig. 8-4-4 Rating Curve at Kampong Cham, Neak Loueng and Kaoh Khael 8 - 12
Fig. 8-4-5 Relationship between Total Discharge and Water Surface Level at Chrouy Changvar ... 8 - 13
Fig. 8-4-6 Relationship between Discharge and Difference of Water Surface Elevation at Phnom Penh Port and Prek Kdam ... 8 - 14
Fig. 8-6-1 Monthly Variation of Precipitation at Phnom Penh in 2000 8 - 16
Fig. 8-6-2 Comparison of Daily Water level along the Mekong River 8 - 17
Fig. 8-6-3 Comparison of Daily Water level along the Tonle Sap River 8 - 18
Fig. 8-7-1 Trend of Bank Erosion along the Mekong River between Kampong Cham and Neak Loueng ... 8 - 19

CHAPTER 9
Fig. 9-2-1 Flooding Condition of 2000 Flood ... 9 - 2
Fig. 9-2-2 Location of Overflow during 2000 Flood .. 9 - 5
Fig. 9-2-3 Estimated Maximum Water Level along NR-1 (C-1) during 2000 Flood 9 - 6
Fig. 9-2-4 Results of Statistical Analysis on the Flood Damage along NR-1(C-1) 9 - 8
Fig. 9-2-5 Evacuation Places of People and Livestock during Floods 9 - 10
Fig. 9-3-1 Rough Estimation of Discharge Balance during 2000 Flood 9 - 14
Fig. 9-4-1 Model Structure of Hydraulic Simulation ... 9 - 17
Fig. 9-4-2 Simulated Results of Water Surface Elevation with and without Openings 9 - 22
Fig. 9-5-1 Proposed Flood Control Plan by KOICA ... 9 - 24
Fig. 9-6-1 Comparison of Annual Max. Water Levels with Design Height of Road Embankment ... 9 - 27
Fig. 9-7-1 Possible Sites for Openings .. 9 - 30
Fig. 9-7-2 Condition of Opening Sites .. 9 - 31
Fig. 9-7-3 Location of Openings of ALT. A-1 for NR-1(C-1) .. 9 - 35
CHAPTER 10

Fig. 10-1-1 Eco-regional Map of Cambodia ... 10- 2
Fig. 10-1-2 Map of Study Area .. 10- 3
Fig. 10-1-3 Location of Protected Areas in the Kingdom of Cambodia 10- 4
Fig. 10-1-4 Map of the Forest Reserve in the Kingdom of Cambodia 10- 6
Fig. 10-1-5 Commercial Area at Right Side of the NR-1 after Crossing Monivong Bridge ... 10- 7
Fig. 10-1-6 NR-1 in Urban Area with Pagoda under Construction......................... 10- 7
Fig. 10-1-7 Typical Wooden House with Extended Deck at Low Laying Area at Right Side of NR-1 ... 10- 8
Fig. 10-1-8 Roadside Landscape near Tiger Beer Access Road 10- 8
Fig. 10-1-9 Congested local Activities at Kokir Market Frontage at NR-1................. 10- 8
Fig. 10-1-10 Typical Roadside Scenery with Village Bosquet and Settlement along NR-1...... 10- 8
Fig. 10-1-11 Local Commercial Center at Neack Loueng near the End Point of the Study Route ... 10- 9
Fig. 10-2-1 Organization Chart of MOE .. 10-13
Fig. 10-2-2 Organization Chart of EIA Department of MOE 10-13
Fig. 10-2-3 Flow Chart of EIA Procedure ... 10-14
Fig. 10-3-1 Study Route of NR-1 ... 10-17
Fig. 10-3-2 Landuse Pattern in the Study Area ... 10-22
Fig. 10-5-1 Relation between Road Right-of-Way and Resettlement..................... 10-44
Fig. 10-5-2 Diagram of Inter-Ministerial Resettlement Committee Establishment 10-46
Fig. 10-5-3 Diagram of Inter-Ministerial Resettlement Committee and Organization Members ... 10-46
CHAPTER 11
Fig. 11-1-1 Design Vehicle 11- 5
Fig. 11-1-2 General Flow of Determining Pavement Strength ... 11- 9
Fig. 11-2-1 Proposed Cross Sections on the Structures .. 11- 9
Fig. 11-2-2 Comparison of Bending Moment for Live Loading in the World 11- 11
Fig.11-2-3 American AASHTO- Tractor Truck with Semitrailer... 11- 14
Fig. 11-2-4 Japanese New Specification- Truck and Trailer ... 11- 16

CHAPTER 12
Fig. 12-1-1 Relationship between Planning Parameters and Each Alternative Plan 12- 2
Fig. 12-2-1 Relationship between HWL and Elevation of Road Surface 12- 3
Fig. 12-2-2 Typical Cross Sections in Urban and Rural Area to meet Minimum Requirement
 for Vehicular Traffic ... 12- 4
Fig. 12-2-3 Typical Cross Section between Monivong Bridge and Km 7+000 to keep Space
 for Widening to 4-lane .. 12- 5
Fig. 12-2-4 Divided 4-lane with Stopping Lane and Sidewalk at Kokir Market 12- 6
Fig. 12-2-5 Typical Cross Section to meet Traffic Requirement ... 12- 7
Fig. 12-2-6 Typical Cross Section to keep Space for Safety Measures and Future Widening .. 12- 7
Fig. 12-3-1 ALT-I a: Maintaining Existing Inflow Capacity .. 12- 9
Fig. 12-3-2 ALT-II a: Decreasing Inflow Capacity by Closing of 2 Cut-offs 12-11
Fig. 12-3-3 ALT-III a: Improvement on Flood Risk Mitigation ... 12-11
Fig. 12-3-4 ALT-III ab: Improvement on Minimum Requirement ... 12-13
Fig. 12-3-5 ALT-III b: Improvement on Traffic Function ... 12-13

CHAPTER 13
Fig. 13-1-1 Adjustment of Alignment .. 13- 4
Fig. 13-1-2 Typical Cross Section ... 13- 7
Fig. 13-1-3 Structure of Highway Embankment, River Bank and Study Road 13- 9
Fig. 13-1-4 Boring Logs of Suspected Soft Ground Area ... 13-13
Fig. 13-1-5 Road Drainage Plan for Chbar Ampov Area ... 13-16
Fig. 13-1-6 Road Drainage Plan around Kokir Market ... 13-17
Fig. 13-1-7 Examples of Road Markings ... 13-19
Fig. 13-1-8 A View of Moto-remork Stop cum Space for Livestock Refuge 13-23
Fig. 13-1-9 Layout Sample of Moto-remork Stop cum Space for Livestock Refuge 13-23
Fig. 13-1-10 Conceptual Layout of Bus Stop ... 13-25
Fig. 13-1-11 Image of Box Culvert Used as Crossing Facility .. 13-26
Fig. 13-1-12 Example of Pedestrian Bridge ... 13-27
Fig. 13-1-13 Slope of Local Road ... 13-28
Fig. 13-1-14 Image of Road Station ... 13-29
Fig. 13-1-15 Conceptual Layout of Road Station ... 13-29
Fig. 13-1-16 Conceptual Plan for Intersection with Tiger Beer Road with a Space for Future Development ... 13-31
Fig. 13-2-1 General Flow of Pavement Design .. 13-32
Fig. 13-2-2 Assumed Improvement of Subgrade ... 13-33
Fig. 13-2-3 Recommended Pavement Structure ... 13-38
Fig. 13-2-4 Summary Diagram of Pavement Design ... 13-39
Fig. 13-3-1 Design River Section for Proposed Bridge ... 13-45
Fig. 13-3-2 Bearing Strata and Pile Length for Project Structures 13-49
Fig. 13-3-3 Protection Area of Proposed Bridge ... 13-55
Fig. 13-3-4 Approach Slab for Bridge and Box Culvert .. 13-56
Fig. 13-3-5 Slope Protection Method for Bridge and Road ... 13-56
Fig. 13-3-6 Location Map of Opening Structures for Preliminary Design 13-57
Fig. 13-3-7 Design Opening Section of Bridges ... 13-58
Fig. 13-3-8 Design Opening Section of Culverts .. 13-59
Fig. 13-3-9 Flowchart of Maintenance Method for Bridges .. 13-62
Fig. 13-3-10 Overall Evaluation and Priority of Improvement/Rehabilitation for Bridges 13-63
Fig. 13-3-11 Relation between Appropriate Improvement and Public Serviceability 13-63
Fig. 13-3-12 Organization Chart of MPWT of Cambodian Government 13-64
Fig. 13-3-13 Example for Emergency Repair Method for Kampong Phnom Old Gate 13-65
Fig. 13-3-14 Location of Quarry and Borrow Pit ... 13-66
Fig. 13-3-15 Wrong Embankment Works: Thick Spreading Depth and High Speed of Embankment ... 13-67
Fig. 13-3-16 Proper Embankment Works and Observation of Ground Movement 13-67
Fig. 13-4-4 △q/△δ ~ H Management .. 13-68
Fig. 13-4-5 Construction Sequence for Pre-cast Pipe Culvert .. 13-70
Fig. 13-4-6 Detour Road for Construction of Box culvert ... 13-70
Fig. 13-4-7 Construction Method for RC Box Culvert .. 13-71
Fig. 13-4-8 Site Camp Yard for Structures ... 13-71
Fig. 13-4-9 Outline of Construction Method for Bridge ... 13-72
Fig. 13-4-10 Construction Sequence of Detour Road for New Bridge 13-73
Fig. 13-4-11 Construction Sequence of Substructure .. 13-74
Fig. 13-4-12 Construction Sequence of Erection of Girders .. 13-75

CHAPTER 14
Fig. 14-1-1 Budget of MPWT ... 14-2
Fig. 14-4-1 Annual Vehicular Traffic at Neak Loueng Ferry ... 14-9
Fig. 14-4-2 Annual Pedestrian Passengers at Neak Loueng Ferry 14-10
Fig. 14-4-3 Annual Fluctuation of Water Level .. 14-10
CHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION

1.1 Introduction

The National Road No.1 (NR-1) runs some 166 km in Cambodia from Phnom Penh to Bavet, the border to Vietnam that is the main cross-border to the southern part of Vietnam and the distance to Ho Chi Minh City remains 72 km. This route is designated as Asian Highway No. A-1 as well as ASEAN Highway No. 1, and almost of all road traffic between Phnom Penh and Ho Chi Minh pass on this route.

ADB undertook “The Greater Mekong Sub-region Project” in 1996-97, and it included confirming the feasibility of the improvement plan on NR-1 from Phnom Penh to Ho Chi Minh City as a part of Asian Highway. Upon the completion of the study, ADB has funded “Ho Chi Minh City to Phnom Penh Highway Improvement Project”.

The ongoing project in Cambodia directly improves an arterial road located in the Plain Region, which comprises five provinces of Kandal, Prey Veng, Svay Rieng, Kampong Cham and Takeo and one municipality of Phnom Penh. The Plain Region has a population of 6.8 million (2002) that accounts for more than 50 % of the national population and yields 54% of GDP, but it occupies only 14% of national land.

In response to the request of the Royal Government of the Kingdom of Cambodia (hereinafter referred to as "RGC"), the Government of Japan (hereinafter referred to as "GOJ") decided to conduct the Feasibility Study on the Improvement of National Road No.1 (Phnom Penh – Neak Loueng Section) in the Kingdom of Cambodia (hereinafter referred to as "the Study"), in accordance with the relevant laws and regulations in force in Japan.

Accordingly, Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation programs of GOJ, dispatched a Scope of Work (S/W) mission to the Kingdom of Cambodia in December 2001. The mission headed by Mr. Satoshi UMENAGA had a series of meetings with related agencies of RGC, and both parties have agreed to the Scope of Work for the Study.

The JICA entrusted the study team headed by Mr. Kenji Maruoka in April 2002 to conduct the Study based on the agreed Scope of Work.

1.2 Background of the Project and its Justification

(1) General

The National Road No.1 (NR-1) runs some 166 km in Cambodia from Phnom Penh to Bavet, the border to Vietnam.

The NR-1 is divided into two sections:
- The section C-1 from Phnom Penh to Neak Loueng
- The section C-2 from Neak Loueng to Bavet, the border to Vietnam

The C-2 section of 105 km in length is being improved by ADB financing and it is
scheduled to be completed by the year 2003.

As for the C-1 section of 56 km in length, the feasibility study is being carried out by this Study (JICA). However, ADB Emergency Flood Rehabilitation Project is underway from Km 19 to Km 56 to raise embankment level 20 cm above 2000 Flood Level at three over-flow sections, and the rehabilitated road condition will be the basis for the Study.

(2) Development Potential in the Plain Region

The area influenced directly by the project consists of three eastern provinces of Kandal, Prey Veng, Svay Rieng and the capital city of Phnom Penh including the Mekong River basin.

The influenced area has high development potential in terms of domestic production/consumption as well as international trade/investment. Industrial development is found along C-1 section of NR-1 such as timber factory, oil camp and food industry.

The Mekong River basin in Kandal province is productive for agricultural crops such as paddy, maize and vegetables and for fisheries and livestock & poultry, and they are mainly transported to Phnom Penh as the biggest consuming center.

Accordingly, once the NR-1 is improved and it stimulates the development potential within the influence area, high potential of vehicular generation is anticipated.

(3) National and Domestic Context

NR-1 exists in the Plain Region where half of national population concentrates in 14% of national land and agriculture as well as inland fishery is very productive. The improvement of the NR-1 is expected to bring enormous benefits to the region in several aspects. Major benefits are as follows:

1) Securing traffic safety and conserving environment by changing deteriorated and vulnerable road to a flood-free road to an all-weather standard;
2) Stimulating economic and social development by connecting productive area to consuming centers/major cities to provide better market accessibility for more competition and stable prices as well as to increase job opportunities for the poor;
3) Strengthening linkages between trading gateways and potential developing zones by the improvement of arterial road to an international standard. This will serve to encourage the development of the market economy; and
4) Connecting the major cities to Phnom Penh to expand a sphere of one-day activities, and accordingly enhance utilization of public facilities and disseminate information effectively.

The NR-1 connects major productive centers to urban centers. However, the Kandal province is the most productive province and Phnom Penh is the biggest urban center in Cambodia.

The eastern area of the Cambodia in the study area has broad resources of agricultural crops and inland fisheries. The major issue of obstruction for promoting the development and trade is high transport cost caused by insufficient internal transport infrastructures.
The development of agriculture in Cambodia is still underway and cash crops and fisheries are very favorable industry to be developed in future of Cambodia. Since some of cash crops and fisheries are exported to foreign countries such as Vietnam and Thailand, they are suitable for acquisition of foreign currency.

Accordingly, the project will stimulate the development of agricultural activities such as production of agricultural crops, inland fishery and livestock farming, and it is obvious that the movement of passengers and the transport of cargo volume will continue to increase as the socio-economic development is enhanced.

(4) International Context

The NR-1 improvement project addresses international contexts. The NR-1 is one of the major arterial roads in Cambodia and plays an important role in the socio-economic activity for Cambodia. Simultaneously, the NR-1 is designated as Asian Highway No. A-1 and ASEAN Highway No. 1 as well, and they aim to strengthen regional cooperation through development, formalization and promotion of road network in the aspects of classification/design standard, numbering/signage and cross-border administration. The NR-1 directly connects to the southern part of Vietnam and connects to the eastern part of Thailand through NR-5. The connecting road in the southern part of Vietnam is in good condition, but NR-5 that leads to Thailand still remains poor condition, especially in the northern part and damaged and deteriorated bridges.

(5) Provision of a Flood-free Road to an All-weather Standard

The NR-1 has been exposed to critical situation against flood. During 2000 Flood, in order to relieve Phnom Penh from danger of the flood, urgent artificial openings of embankment at two places along the NR-1 were made, which caused to disrupt traffic for several months and brought turmoil in Cambodia especially Phnom Penh and its surrounding areas. Inland water transport undertook passengers and cargoes in lieu of road transport, but it was inconvenient and very costly.

In the circumstances, the following countermeasures are to be taken into consideration to secure roles and functions of NR-1 by improving a flood-free road to an all-weather standard.

1) To make an elevation of road high enough to prevent adverse effects from flood
2) To protect road embankment by applying slope protection against erosion as well as to design pavement structure enough strong and durable to perform serviceability for a design life span

(6) Expected Roles and Functions of the Study Road

The major issues to impede exploiting development potential are pointed out in general as follows;

1) Poor infrastructure system and low efficiency of transport means/ facilities results in high transport costs due to the combined effect of river interruption and large fluctuation of water level.
2) Vulnerable transport means incurred by flood make road transport unreliable due to
heavy dependence on NR-1 as well as very coarse network of arterial roads.

Under such circumstances, the Royal Government of Cambodia has exerted great efforts in the improvement of the arterial road network and the rehabilitation of bridges to connect Phnom Penh with the rest of the country. These efforts can be seen in several strategic road improvement plans under multi-lateral lending agencies of ADB and WB as well as bilateral donor countries especially Japan.

These road improvement plans strategically target to strengthen radial national roads to connect with the capital city Phnom Penh, envisaging not only the improvement of road transport in Cambodia but also the enhancement of regional cooperation with Vietnam, Thailand and other surrounding countries.

The study road is identified as the priority section in the Second Socio-economic Development Plan (SEDP-2), and its expected roles and functions are as follows:
1) to ensure road transport through a year by improving a flood-free road to an all-weather standard;
2) to secure traffic safety and conserving environment by separating slow-moving vehicles such as motorcycles and moto-remorks;
3) to stimulate economic and social development by connecting major productive centers to urban centers to provide better market accessibility for more competition and stable prices as well as to increase job opportunities for the poor; and
4) to strengthen linkages between producing and consuming centers and between exploiting resources and trading gateways by the improvement of arterial road to an international standard. This will encourage undergoing transition to market economy that has common characteristics in terms of their needs and opportunities for reducing poverty.

1.3 Study Objectives

The objectives of the Study are as follows;
(1) To carry out the feasibility study on the improvement of National Road No.1 (Phnom Penh – Neak Loueng Section: C-1 Section); and
(2) To transfer technology to Cambodian counterparts.

1.4 Scope of the Study

1.4.1 Study Area

The study area covers National Road No.1 (NR-1) from the eastern edge of Monivong Bridge in Phnom Penh to the west of Neak Loueng ferry terminal (approximately 56 km in length) and the inundation areas surrounded by National Roads No.1, No.6, No.7 and No.11 as shown in Fig. 1-4-1.

The following conditions are taken into consideration as the precedence of the Study at both ends of the project road:
On the side of Phnom Penh, taking into consideration “the Transportation Master Plan of the Phnom Penh Metropolitan Area in the Kingdom of Cambodia” conducted by JICA.

On the side of Neak Loueng, taking into consideration the transportation improvement plan without considering the new bridge over the Mekong River, such as the improvement for ferry operation plan.
1.4.2 Target Year

The target year of the plan is the year 2015 which accords with that of relevant studies and projects implemented by RGC.

1.4.3 Concept of Work Flow

The Study is conducting in the following seven steps:

Step 1: Preparatory Work (Apr. 2002 in Japan)
Step 2: Setting of Alternative Plans (May through Jul. 2002 in Cambodia)
Step 3: Selection of Optimum Plan (Aug. through Sep. 2002 in Japan)
Step 4: Preparation of Road Improvement Plan (Oct. through Nov. 2002 in Cambodia)
Step 6: Presentation and discussion on Draft Final Report (Jan. 2003 in Cambodia)
Step 7: Preparation of Final Report (Feb. 2003 in Japan)

Fig. 1-4-2 shows the workflow concept for the Study and its progress.

![Workflow Concept for the Study](image-url)
1.5 Study Organization

The JICA Study Team closely collaborates with the Cambodian counterpart personnel from various organizations of RGC. The following committees are set up for the entire duration of the Study:

- Steering Committee of the Cambodian side, and
- JICA Advisory Committee.

The Study Organization is shown in Fig. 1-5-1.

![Study Organization Diagram]

The members of counterparts (Cambodian Counterparts) and JICA Study Team for execution of the Study are shown in Appendix-A.

1.6 Final Report

The Final Report sets out work completed in this study, taking into consideration results of engineering surveys, analysis and findings through series of discussions with MPWT, MoWRAM and other agencies concerned. It was completed after receiving the official comments of Draft Final Report that were made during the Steering Committee Meeting held in January 2003 in Phnom Penh, Cambodia.