### ANNEX 7

#### **SWITCHING SYSTEM**

## Annex 7

# Switching System

| 7.1 | Switching Facilities Plan - Capacity in Operation | 2  |
|-----|---------------------------------------------------|----|
| 7.2 | Existing Switching Facilities in 2001             | 20 |

|                             | ŀ     | ł     | ł     | ľ     | ľ     |       |       |       | Two   | Switch Capacity in Operation | IV IN Ope | Tattion |        |        |        |                     |        |        |        |        |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|-----------|---------|--------|--------|--------|---------------------|--------|--------|--------|--------|
| - 1                         | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011      | 2012    | 2013   | 2014   | 2015   | 2016                | 2017   | 2018   | 2019   | 2020   |
|                             |       |       |       |       |       |       |       |       |       |                              |           |         |        |        |        |                     |        |        |        | ļ      |
| _                           | 1,348 | 1,348 | 1,348 | 4,580 | 4,820 | 5,060 | 5,300 | 5,540 | 5,810 | 6,070                        | 6,340     | 6,600   | 6,870  | 7,240  | 7,600  | 7,970               | 8,330  | 8,700  | 9,060  | 9,430  |
|                             | 50    | 50    | 50    | 50    | 260   | 260   | 260   | 260   | 260   | 260                          | 260       | 260     | 260    | 260    | 260    | 260                 | 260    | 260    | 260    | 28     |
| _                           | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 120   | 120   | 120                          | 120       | 120     | 120    | 120    | 120    | 120                 | 120    | 120    | 120    | 120    |
|                             | 48    | 48    | 48    | 48    | 160   | 160   | 160   | 160   | 160   | 160                          | 160       | 160     | 160    | 160    | 160    | 160                 | 160    | 160    | 160    | 160    |
|                             | 16    | 16    | 16    | 16    | 240   | 240   | 240   | 240   | 240   | 240                          | 240       | 240     | 240    | 240    | 240    | 240                 | 240    | 240    | 240    | 240    |
| _                           | 12    | 12    | 12    | 12    | 12    | 12    | 12    | 120   | 120   | 120                          | 120       | 120     | 120    | 120    | 120    | 120                 | 120    | 120    | 120    | 21     |
|                             | 16    | 16    | 16    | 16    | 180   | 180   | 180   | 180   | 180   | 180                          | 180       | 180     | 180    | 180    | 180    | 8                   | 180    | 180    | 180    | 181    |
|                             | 20    | 20    | 20    | 20    | 200   | 200   | 200   | 200   | 200   | 200                          | 200       | 200     | 200    | 200    | 8      | 200                 | 200    | 8      | 200    | 8      |
|                             | 48    | 48    | 48    | 48    | 220   | 220   | 220   | 220   | 220   | 220                          | 220       | 220     | 220    | 220    | 220    | 220                 | 220    | 220    | 220    | ໃຊ     |
|                             | 40    | 40    | 40    | 330   | 330   | 330   | 330   | 330   | 330   | 330                          | 330       | 330     | 330    | 30     | 330    | 330                 | 330    | 330    | 330    | 8      |
| -                           | 10    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 100   | 901                          | 8         | 8       | 8      | 8      | 101    | 8                   | 8      | ğ      | 100    | 8      |
| $\vdash$                    | 20    | 20    | 20    | 20    | 8     | 20    | 180   | 180   | 180   | 180                          | 180       | 180     | 180    | 180    | 180    | 8                   | 180    | 180    | 180    | 8      |
|                             | 48    | 48    | 48    | 48    | 48    | 48    | 170   | 170   | 170   | 170                          | 170       | 170     | 170    | 170    | 170    | 17                  | 170    | 170    | 170    | 170    |
|                             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48        | 130     | 130    | 130    | 130    | 130                 | 130    | 130    | 130    | 130    |
|                             | 50    | 50    | 50    | 50    | 50    | 50    | 250   | 250   | 250   | 250                          | 250       | 250     | 250    | 250    | 250    | 250                 | 250    | 250    | 250    | 250    |
| _                           | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20                           | 20        | 130     | 130    | 130    | 130    | 130                 | 130    | 130    | 130    | 5      |
|                             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 90    | 90                           | 8         | 8       | 8      | 8      | 8      | 8                   | 8      | 8      | 8      | 8      |
|                             | 50    | 50    | 50    | 270   | 270   | 270   | 270   | 270   | 270   | 270                          | 270       | 270     | 270    | 270    | 270    | 270                 | 270    | 270    | 270    | 12     |
|                             | 48    | 48    | 48    | 48    | 250   | 250   | 250   | 250   | 250   | 250                          | 250       | 250     | 250    | 250    | 250    | 250                 | 250    | 250    | 250    | 250    |
| <b>Total of Sum Centres</b> | 550   | 550   | 550   | 1,060 | 2,324 | 2,324 | 2,806 | 3,018 | 3,208 | 3,208                        | 3,208     | 3,400   | 3,400  | 3,400  | 3,400  | 3,400               | 3,400  | 3,400  | 3,400  | 994°E  |
|                             | 1,898 | 1,898 | 1,898 | 5,640 | 7,144 | 7,384 | 8,106 | 8,558 | 9,018 | 9,278                        | 9,548     | 10,000  | 10,270 | 10,640 | 11,000 | 11,370              | 11,730 | 12,100 | 12,460 | 12,830 |
| _                           |       |       |       |       |       |       |       |       |       |                              |           |         |        |        |        |                     |        |        |        |        |
|                             | 2,035 | 2,035 | 2,035 | 3,480 | 3,630 | 3,770 | 3,910 | 4,050 | 4,250 | 4,440                        | 4,640     | 4,830   | 5,030  | 5,290  | 5,560  | 5,830               | 6,090  | 6,360  | 6,630  | 6,890  |
|                             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 90    | 90                           | 06        | 90      | 90     | 90     | 06     | 8                   | 66     | 8      | 8      | 8      |
| _                           | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48        | 48      | 48     | 8      | 06     | 8                   | 60     | 8      | 8      | 8      |
|                             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 180       | 180     | 180    | 180    | 180    | 180                 | 180    | 180    | 180    | 180    |
|                             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 100   | 100                          | 100       | 100     | 100    | 100    | 100    | 100                 | 100    | 100    | 100    | 8      |
|                             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0         | 0       | 120    | 120    | 120    | 120                 | 120    | 120    | 120    | 120    |
|                             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0         | 0       | 0      | 0      | 80     | 08                  | 8      | 80     | 8      | 8      |
|                             | 32    | 32    | 32    | 32    | 32    | 140   | 140   | 140   | 140   | 140                          | 140       | 140     | 140    | 140    | 140    | 140                 | 140    | 140    | 140    | ₹      |
|                             | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16                           | 170       | 170     | 170    | 170    | 170    | 170                 | 170    | 170    | 170    | 12     |
|                             | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 32                           | 32        | 32      | 110    | 110    | 110    | 110                 | 110    | 110    | 110    | 110    |
|                             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 150   | 150   | 150                          | 150       | 150     | 150    | 150    | 150    | 150                 | 150    | 150    | 150    | 150    |
|                             | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 150   | 150   | 150                          | 150       | 150     | 150    | 150    | 150    | 150                 | 150    | 150    | 150    | 150    |
|                             | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 150   | 150   | 150                          | 150       | 150     | 150    | 150    | 150    | 150                 | 150    | 150    | 150    | 150    |
|                             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 80    | 80                           | 8         | 8       | 80     | 8      | 80     | 8                   | 80     | 8      | 80     | 8      |
|                             | 50    | 50    | ŝ     | 50    | 50    | 50    | 180   | 180   | 180   | 180                          | 180       | 180     | 180    | 180    | 180    | 180                 | 180    | 180    | 180    | 8      |
| Total of Sum Centres        | 422   | 422   | 422   | 422   | 422   | 530   | 660   | 962   | 1.184 | 1.184                        | 1.470     | 1 470   | 1.440  | 1710   | 197.1  | 86                  | 100    | 502    | 505    |        |
| _                           |       |       |       |       |       |       |       |       |       |                              |           |         | 000    | 1, 14  |        | <b>1</b> , <b>N</b> | T, / X |        | Γ,/Χ   | Ķ      |

\_\_\_\_\_

| Operation  |
|------------|
| i.         |
| Capacity   |
| ÷          |
| Plai       |
| Facilities |
| Switching  |
|            |

7.1

| No | No AIMAG             |       |       |       |       |       |       |       |       | Swite | Switch Capacity in Operation | ty in Oper | ation |       |            |       |        |        |        |        |            |
|----|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|------------|-------|-------|------------|-------|--------|--------|--------|--------|------------|
|    | No. Sum              | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012  | 2013  | 2014       | 2015  | 2016   | 2017   | 2018   | 2019   | 2020       |
| m  | BAYANKHONGOR         |       |       |       |       |       |       |       |       |       |                              |            |       |       |            |       |        |        |        |        |            |
| m  | I Aimag Centre       | 1,600 | 1,600 | 1,600 | 3,930 | 4,090 | 4,250 | 4,410 | 4,570 | 4,790 | 5,010                        | 5,230      | 5,440 | 5,660 | 5,960      | 6,270 | 6,570  | 6,870  | 7,170  | 7,470  | 7,770      |
| m  | 2 Shargaljuut        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 50                           | 50         | 50    | 50    | 50         | 50    | 50     | 50     | 50     | 50     | 50         |
| m  | 3 Ulzüt              | 48    | 48    | 48    | 48    | 48    | 48    | 240   | 240   | 240   | 240                          | 240        | 240   | 240   | 240        | 240   | 240    | 240    | 240    | 240    | 240        |
| 3  | 4 Jinst              | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0     | 120   | 120        | 120   | 120    | 120    | 120    | 120    | 120        |
| З  | 5 Bogd               | 48    | 48    | 48    | 48    | 220   | 220   | 220   | 220   | 220   | 220                          | 220        | 220   | 220   | 220        | 220   | 220    | 220    | 220    | 220    | 220        |
| 3  | 6 Bayanlig           | 48    | 48    | 48    | 48    | 48    | 48    | 190   | 190   | 190   | 061                          | 190        | 190   | 190   | 190        | 190   | 190    | 190    | 190    | 190    | 190        |
| ę  | 7 Bayangobi          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 140   | 140   | 140                          | 140        | 140   | 140   | 140        | 140   | 140    | 140    | 140    | 140    | 140        |
| ٣  | 8 Baantsagaan        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 120   | 120   | 120                          | 120        | 120   | 120   | 120        | 120   | 120    | 120    | 120    | 120    | 120        |
| ſ  | 9 Bayantsagaan       | 48    | 48    | 48    | 300   | 300   | 300   | 300   | 300   | 300   | 300                          | 300        | 300   | 300   | 300<br>300 | 300   | 300    | 300    | 8      | 300    | <u>3</u> 8 |
| m  | 10 Bayan-Undur       | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48    | 100   | 100        | 100   | 100    | 100    | 100    | 100    | 100        |
| 3  | 11 Shinejinst        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 96    | 60                           | 60         | 90    | 06    | 90         | 60    | 90     | 90     | 90     | 90     | 90         |
| ę  | 12 Burnbugur         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0     | 110   | 110        | 110   | 110    | 110    | 110    | 110    | 110        |
| С  | 13 Buutsagaan        | 48    | 48    | 48    | 340   | 340   | 340   | 340   | 340   | 340   | 340                          | 340        | 340   | 340   | 340        | 340   | 340    | 340    | 340    | 340    | 340        |
| m  | 14 Khureemaral       | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 300        | 300   | 300   | 300        | 300   | 300    | 300    | 300    | 300    | 300        |
| m  | 15 Bayanbulag        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 120   | 120   | 120                          | 120        | 120   | 120   | 120        | 120   | 120    | 120    | 120    | 120    | 120        |
| m  | 16 Gurbanbulag       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 120   | 120   | 120                          | 120        | 120   | 120   | 120        | 120   | 120    | 120    | 120    | 120    | 120        |
| m  | 17 Zag               | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 140   | 140   | 140        | 140   | 140    | 140    | 140    | 140    | 140        |
| 3  | 18 Jargalant         | 48    | 48    | 48    | 340   | 340   | 340   | 340   | 340   | 340   | 340                          | 340        | 340   | 340   | 340        | 340   | 340    | 340    | 340    | 340    | 340        |
| 3  | 19 Galuut            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 180        | 180   | 180   | 180        | 180   | 180    | 180    | 180    | 180    | 180        |
| 3  | 20 Bayan-Oboo        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 140   | 140   | 140                          | 140        | 140   | 140   | 140        | 140   | 140    | 140    | 140    | 140    | 140        |
| 3  | 21 Erdenetsogt       | 0     | 0     | 0     | 0     | 0     | 0     | 190   | 190   | 190   | 190                          | 190        | 061   | 190   | 190        | 190   | 190    | 190    | 190    | 190    | 061        |
|    | Total of Sum Centres | 384   | 384   | 384   | 1,220 | 1,392 | 1,392 | 1,916 | 2,556 | 2,646 | 2,696                        | 3,128      | 3,268 | 3,550 | 3,550      | 3,550 | 3,550  | 3,550  | 3,550  | 3,550  | 3,550      |
|    | Aimag Total          | 1,984 | 1,984 | 1,984 | 5,150 | 5,482 | 5,642 | 6,326 | 7,126 | 7,436 | 7,706                        | 8,358      | 8,708 | 9,210 | 9,510      | 9,820 | 10,120 | 10,420 | 10,720 | 11,020 | 11,320     |
|    |                      |       |       |       |       |       |       |       |       |       |                              |            |       |       | :          |       |        | :      |        |        |            |

|    | AIMAG                |                |       |       |       |       |       |              |       | Switch | Switch Canacity in Oneration | in Onersi | acit. |          |           |          |       |       |       |       | ſ     |
|----|----------------------|----------------|-------|-------|-------|-------|-------|--------------|-------|--------|------------------------------|-----------|-------|----------|-----------|----------|-------|-------|-------|-------|-------|
| ž  | No. Sum              | 2001           | 2002  | 2003  | 2004  | 2005  | 2006  | 2007         | 2008  | 2009   | 2010                         | 2011      | 2017  | 2013     | 2014      | 2015     | 2016  | 2017  | 2018  | 0100  | 0000  |
| BU | BULGAN               |                |       |       |       |       |       | <del> </del> |       |        |                              | ┢         | 1     |          |           | 202      | 2127  | 1107  | 0107  | 1177  | 0707  |
|    | I Aimag Centre       | 1,384          | 1,384 | 1,384 | 1,690 | 1,760 | 1,830 | 006'1        | 1,970 | 2,060  | 2,160                        | 2,250     | 2,350 | 2,440    | 2.570     | 2.700    | 2.830 | 2.960 | 3.090 | 3.220 | 3.350 |
| _  | 2 Bayan-Agt          | 48             | 48    | 48    | 48    | 180   | 180   | 180          | 180   | 081    | 180                          | 180       | 180   | 180      | 180       | 180      | 80    | 180   | 180   | 180   | 180   |
|    | 3 Bayannur           | 50             | 50    | 50    | 50    | 50    | 50    | 061          | 190   | 190    | 190                          | <u>6</u>  | 61    | 6        | <u>6</u>  | 190      | 61    | 6     | 190   | 8     | 6     |
|    | 4 Bugat              | 50             | 50    | 50    | 50    | 50    | 50    | 50           | 50    | 001    | 100                          | 01        | 100   | <u>8</u> | <u>10</u> | <u>8</u> | 001   | 100   | 8     | 8     | 01    |
|    | 5 Buregkhangai       | 48             | 48    | 48    | 48    | 48    | 48    | 190          | 190   | 190    | 190                          | 190       | 190   | 061      | 061       | 190      | 190   | 190   | 190   | 190   | 190   |
|    | 6 Gurbanbulag        | 50             | 50    | 50    | 50    | 170   | 170   | 170          | 170   | 170    | 041                          | 170       | 170   | 170      | 170       | 170      | 170   | 170   | 170   | 170   | 170   |
|    | 7 Dashinchilen       | 50             | 50    | 50    | 270   | 270   | 270   | 270          | 270   | 270    | 270                          | 270       | 270   | 270      | 270       | 270      | 270   | 270   | 270   | 270   | 270   |
|    | 8 Mogod              | 32             | 32    | 32    | 33    | 32    | 130   | 130          | 130   | 130    | 130                          | 130       | 130   | 130      | 130       | 130      | 130   | 130   | 130   | 130   | 130   |
|    | 9 Orkhon             | <del>8</del> 4 | 48    | 48    | 48    | 48    | 48    | 48           | 150   | 150    | 150                          | 150       | 150   | 150      | 150       | 150      | 150   | 150   | 150   | 150   | 150   |
| -  | 10 Rashaant          | 50             | 50    | 50    | 310   | 310   | 310   | 310          | 310   | 310    | 310                          | 310       | 310   | 310      | 310       | 310      | 310   | 310   | 310   | 310   | 310   |
| -  | 11 Saikhan           | 50             | 50    | 50    | 300   | 300   | 300   | 300          | 300   | 300    | 300                          | 300       | 300   | 300      | 300       | 300      | 300   | 300   | 300   | 300   | 300   |
| -  | 12 Selenge           | 50             | 50    | 50    | 280   | 280   | 280   | 280          | 280   | 280    | 280                          | 280       | 280   | 280      | 280       | 280      | 280   | 280   | 280   | 280   | 280   |
| ~] | 13 Teshig            | 50             | 50    | 50    | 50    | 180   | 180   | 180          | 180   | 180    | 180                          | 180       | 180   | 180      | 180       | 180      | 180   | 180   | 180   | 180   | 180   |
| -  | 14 Khangal           | 48             | 48    | 48    | 48    | 48    | 48    | 410          | 410   | 410    | 410                          | 410       | 410   | 410      | 410       | 410      | 410   | 410   | 410   | 410   | 410   |
|    | 15 Khishi-Undur      | 50             | 50    | 50    | 300   | 300   | 300   | 300          | 300   | 300    | 300                          | 300       | 300   | 300      | 300       | 300      | 300   | 300   | 300   | 300   | 300   |
| -  | 16 Khutag            | 100            | 100   | 100   | 420   | 420   | 420   | 420          | 420   | 420    | 420                          | 420       | 420   | 420      | 420       | 420      | 420   | 420   | 420   | 420   | 420   |
| -  | 17 Khyaiganat        | 50<br>70       | 200   | 200   | 200   | 200   | 200   | 390          | 390   | 390    | 390                          | 390       | 390   | 390      | 390       | 390      | 390   | 390   | 390   | 390   | 390   |
|    | Total of Sum Centres | 974            | 974   | 974   | 2,504 | 2,886 | 2,984 | 3,818        | 3,920 | 3,970  | 3,970                        | 3,970     | 3,970 | 3,970    | 3,970     | 3,970    | 3,970 | 3,970 | 3,970 | 3,970 | 3,970 |
|    | Aimag Total          | 2,358          | 2,358 | 2,358 | 4,194 | 4,646 | 4,814 | 5,718        | 5,890 | 6,030  | 6,130                        | 6,220     | 6,320 | 6,410    | 6,540     | 6,670    | 6,800 | 6,930 | 7,060 | 7,190 | 7,320 |
|    |                      |                |       |       |       |       |       |              |       |        |                              |           |       |          |           |          |       |       |       |       | l     |

Page 7 - 4

| ĺź       | No AIMAG | IAG                  |       |       |       |       |       |       |       |       | Switt | capaci | Switch Capacity in Operation | ation |       |       |       |       |       |       |       | Γ     |
|----------|----------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | No Sum   | Sum                  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010   | 2011                         | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| ~        | g        | GOBI-ALTAI           |       |       |       |       |       |       |       |       |       |        |                              |       |       |       |       |       |       |       |       |       |
| Ś        |          | Aimag Centre         | 1,750 | 1,750 | 1,750 | 1,930 | 2,010 | 2,090 | 2,170 | 2,250 | 2,350 | 2,460  | 2,570                        | 2,680 | 2,780 | 2,930 | 3,080 | 3,230 | 3,380 | 3,520 | 3,670 | 3,820 |
| 2        |          | 2 Altai              | 48    | 48    | 48    | 48    | 48    | 120   | 120   | 120   | 120   | 120    | 120                          | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| ŝ        | 3        | Bayan-Uul            | 48    | 48    | 48    | 48    | 250   | 250   | 250   | 250   | 250   | 250    | 250                          | 250   | 250   | 250   | 250   | 250   | 250   | 250   | 250   | 250   |
| Ś        | 4        | Bayantooroo          | Ģ     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 40     | 40                           | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 40    |
| Ś        |          | 5 Biger              | 100   | 100   | 100   | 100   | 220   | 220   | 220   | 220   | 220   | 220    | 220                          | 220   | 220   | 220   | 220   | 220   | 220   | 220   | 220   | 220   |
| ŝ        | L        | 6 Bugat              | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 120   | 120   | 120    | 120                          | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| ŝ        | L        | 7 Darvi              | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 130   | 130   | 130    | 130                          | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| Ś        | 8        | Delger               | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48     | 230                          | 230   | 230   | 230   | 230   | 230   | 230   | 230   | 230   | 230   |
| ŝ        |          | 9 Jargalan           | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 06    | 90     | 90                           | 90    | 90    | 90    | 90    | 90    | 90    | 90    | 90    | 90    |
| ŝ        | 10 1     | 10 Taishir           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0                            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 40    | 40    |
| Ś        | 17       | Tonkhil              | 100   | 100   | 100   | 100   | 240   | 240   | 240   | 240   | 240   | 240    | 240                          | 240   | 240   | 240   | 240   | 240   | 240   | 240   | 240   | 240   |
| ~<br>  ~ | 12 T     | Tugrug               | 48    | 48    | 48    | 48    | 48    | 110   | 110   | 110   | 110   | 110    | 110                          | 110   | 110   | 110   | 110   | 110   | 110   | 110   | 110   | 110   |
| l 'n     | 13 K     | Khaliun              | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48     | 48                           | 48    | 48    | 48    | 80    | 80    | 80    | 80    | 80    | 80    |
| $\sim$   | 14<br>14 | 14 Khukhmort         | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48     | 48                           | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   |
| S        | 151      | 15 Tsogt             | 100   | 100   | 100   | 100   | 100   | 100   | 360   | 360   | 360   | 360    | 360                          | 360   | 360   | 360   | 360   | 360   | 360   | 360   | 360   | 360   |
| ŝ        |          | 16 Tseel             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 90    | 90     | 90                           | 90    | 90    | 90    | 90    | 90    | 90    | 96    | 90    | 90    |
| S        |          | 17 Chandmani         | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48     | 48                           | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| Ś        | _        | 18 Sharga            | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16     | 16                           | 16    | 16    | 16    | 16    | 16    | 60    | 99    | 60    | 8     |
| S        |          | 19 Erdene            | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16     | 16                           | 16    | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| 5        |          | 20 Guulin            | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100    | 240                          | 240   | 240   | 240   | 240   | 240   | 240   | 240   | 240   | 240   |
|          | Ľ        | Total of Sum Centres | 916   | 916   | 916   | 916   | 1.378 | 1,512 | 1,772 | 1,924 | 2,054 | 2,094  | 2,416                        | 2,590 | 2,694 | 2,694 | 2,726 | 2,726 | 2,770 | 2,770 | 2,810 | 2,810 |
| L        |          | Aimag Total          | 2,666 | 2,666 | 2,666 | 2,846 | 3,388 | 3,602 | 3,942 | 4,174 | 4,404 | 4,554  | 4,986                        | 5,270 | 5,474 | 5,624 | 5,806 | 5,956 | 6,150 | 6,290 | 6,480 | 6,630 |
|          |          |                      |       |       |       |       |       |       |       |       |       |        |                              |       |       | 1     |       | i     |       |       | ı     |       |

| No AI | AIMAG                |       |       |       |       |       |       |       |       | Swit  | Switch Capacity in Operation | ity in Ope | ration |       |          |       |       |       |       |       |          |
|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|------------|--------|-------|----------|-------|-------|-------|-------|-------|----------|
| No    | No. Sum              | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012   | 2013  | 2014     | 2015  | 2016  | 2017  | 2018  | 2019  | 2020     |
| 6 DQ  | 6 DORNOGOVI          |       |       |       |       |       |       |       |       |       |                              | <u> </u>   |        |       | -        | T     |       |       |       |       |          |
| 6 1   | Aimag Centre         | 1,650 | 1,650 | 1,650 | 1,700 | 1,760 | 1,830 | 1,900 | 1,970 | 2,070 | 2,160                        | 2,260      | 2,350  | 2,440 | 2,570    | 2,700 | 2,830 | 2,960 | 3,090 | 3.220 | 3,350    |
| 6 2   |                      | 50    | S0    | 20    | 50    | 240   | 240   | 240   | 240   | 240   | 240                          | 240        | 240    | 240   | 240      | 240   | 240   | 240   | 240   | 240   | 240      |
| 63    | Altanshiree          | 100   | 100   | 100   | 100   | 100   | 100   | 180   | 180   | 180   | 180                          | 180        | 180    | 180   | 180      | 180   | 180   | 180   | 180   | 180   | 180      |
| 6 4   | Dalanjargalan        | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 80    | 80                           | 80         | 80     | 80    | 80       | 80    | 8     | 80    | 80    | 80    | 80       |
| 6 5   | Delgerekh            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 50                           | 50         | 50     | 50    | 50       | 50    | 50    | 50    | 50    | 50    | 50       |
| 66    | lkhkhet              | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 180        | 180    | 180   | 180      | 180   | 180   | 180   | 180   | 180   | 180      |
| 67    | Mandakh              | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 50                           | 50         | 50     | 50    | 50       | 50    | 50    | 50    | 50    | 50    | 50       |
| 6 8   | Urgun                | 48    | 48    | 48    | 48    | 48    | 120   | 120   | 120   | 120   | 120                          | 120        | 120    | 120   | 120      | 120   | 120   | 120   | 120   | 120   | 120      |
| 69    | Saikhandulaan        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 30                           | 30         | 30     | 30    | 30       | 30    | ЭÖ    | 30    | 30    | 30    | 8        |
| 6 10  | 10 Ulaanbadrakh      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 50                           | 50         | \$     | 50    | 50       | 50    | 50    | 50    | 50    | ß     | 50       |
| 6 1 ] | Khatanbuiag          | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 80    | 80                           | 80         | 80     | 80    | 80       | 80    | 80    | 80    | 80    | 80    | 8        |
| 6 12  | Khuvsguì             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0        | 0     | 0     | 0     | 0     | 40    | 40       |
| 6 13  |                      | 48    | 48    | 48    | 48    | 48    | 48    | 170   | 170   | 170   | 170                          | 170        | 170    | 170   | 170      | 170   | 170   | 170   | 170   | 170   | 170      |
| 6 14  | 14 Zuunbayan         | 200   | 200   | 200   | 440   | 440   | 440   | 440   | 440   | 440   | 440                          | 440        | 440    | 440   | 440      | 440   | 440   | 440   | 440   | 440   | 440      |
| 6 15  | Zamiin-Uud           | 300   | 300   | 300   | 640   | 640   | 640   | 640   | 640   | 1,040 | 1,040                        | 1,040      | 1,040  | 1,040 | 1,040    | 1,040 | 1,040 | 1,040 | 1,040 | 1,040 | 1,040    |
| 6 16  | Zulegt               | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50     | 50    | 3        | 50    | 50    | 50    | 50    | 8     | 8        |
| 6 17  | Khajuuulaan          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 6        | 8     | 8     | 8     | 8     | 8     | 8        |
| 6 18  | Sulinkheer           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0        | 0     | 0     | 0     | 0     | 0     | ß        |
|       | Total of Sum Centres | 894   | 894   | 894   | 1,474 | 1,664 | 1,736 | 1,938 | 1,938 | 2,400 | 2,580                        | 2,760      | 2,760  | 2,760 | 2,850    | 2,850 | 2,850 | 2,850 | 2,850 | 2,890 | 2,920    |
|       | Aimag Total          | 2,544 | 2,544 | 2,544 | 3,174 | 3,424 | 3,566 | 3,838 | 3,908 | 4,470 | 4,740                        | 5,020      | 5,110  | 5,200 | 5,420    | 5,550 | 5,680 | 5,810 | 5,940 | 6,110 | 6,270    |
| 7 DO  | DORNOD               |       |       |       |       |       |       |       |       |       |                              |            |        |       | <b> </b> |       | †     |       |       |       | <b> </b> |
| 7 1   | Aimag Centre         | 2,227 | 2,227 | 2,227 | 2,227 | 2,227 | 2,227 | 2,227 | 2,227 | 2,227 | 2,227                        | 2,290      | 2,390  | 2,490 | 2,620    | 2,750 | 2,880 | 3,010 | 3,140 | 3,280 | 3,410    |
| 7 2   | Khalkhgol            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 80    | 80                           | 80         | 80     | 80    | 80       | 80    | 80    | 80    | 80    | 80    | 80       |
| 7     |                      | 16    | 16    | 9     | 16    | 16    | 50    | 50    | 50    | 50    | 50                           | 50         | 50     | 50    | 50       | 50    | 50    | 50    | 50    | 50    | 50       |
| 4     | Khulunbuir           | 32    | 33    | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 60                           | 60         | 60     | 60    | 60       | 60    | 60    | 60    | 60    | 60    | 60       |
| 7 5   | Bayantumen           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0        | 0     | 0     | 0     | 0     | 40    | 40       |
| 7     | Tsagaan-Ovoo         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0        | 0     | 0     | 0     | 50    | 50    | 50       |
| 7 7   | Bayan-uul            | 0     | 0     | 0     | 0     | 0     | 140   | 140   | 140   | 140   | 140                          | 140        | 140    | 140   | 140      | 140   | 140   | 140   | 140   | 140   | 140      |
| 7 8   |                      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0        | 0     | 0     | 0     | 50    | 50    | 50       |
| 7     | Dashbalbar           | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 70    | 70                           | 70         | 70     | 70    | 70       | 70    | 70    | 70    | 70    | 70    | 70       |
| 7 10  | Gurbanzagal          | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48     | 48    | 48       | 48    | 48    | 48    | 50    | 50    | 50       |
| 7     | Kherlen /Choibalsan/ | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 100   | 100                          | 100        | 100    | 100   | 100      | 100   | 100   | 100   | 001   | 001   | 100      |
| 7 12  | Ereentsav            | 0     | 0     | 0     | 0     | 200   | 200   | 200   | 200   | 200   | 200                          | 200        | 200    | 200   | 200      | 200   | 200   | 200   | 200   | 200   | 200      |
| 7 13  |                      | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 32    | 32                           | 32         | 32     | 32    | 32       | 32    | 70    | 70    | 70    | 70    | 70       |
| 7 14  |                      | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16                           | 16         | 16     | 16    | 16       | 16    | 16    | 16    | 50    | 50    | 50       |
| 7 15  |                      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 10                           | 10         | 0      | 10    | 0]       | 10    | 10    | 10    | 10    | 10    | 10       |
| +     | Total of Sum Centres | 240   | 240   | 240   | 240   | 440   | 614   | 614   | 614   | 768   | 806                          | 806        | 806    | 806   | 806      | 806   | 844   | 844   | 980   | 1,020 | 1,020    |
|       | Aimag Total          | 2,467 | 2,467 | 2,467 | 2,467 | 2,667 | 2,841 | 2,841 | 2,841 | 2,995 | 3,033                        | 3,096      | 3,196  | 3,296 | 3,426    | 3,556 | 3,724 | 3,854 | 4,120 | 4,300 | 4,430    |

| 2001         2002         2004         2005         2004         2005         2004         2005         2004         2010         2010         2011         2012         2013 $\mathbf{v}$ 1,500         1,500         1,500         1,500         1,500         1,500         1,510         1,570 $\mathbf{v}$ 48         48         48         48         48         48         48         100 $\mathbf{v}$ 48         48         48         48         48         48         48         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z        | <b>JAIN</b> | NoAIMAG              |       |       |       |       |       |       |       |       | Swit  | Switch Capacity in Operation | ity in Ope | ration |       |       |       |       | 1     |       |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Image: contract light li |          | N<br>N      | Sum                  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012   | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 1         Aimag Centre         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500         1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ĺ        | nal         | INDGOBI              |       |       |       |       |       |       |       |       |       |                              |            |        |       |       |       |       |       |       |       |       |
| 2Adatase48484848484848484848100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8        |             | Aimag Centre         | 1,500 | 1,500 | 1,500 | 1,500 | 1,500 | 1,500 | 1,500 | 1,500 | 1,500 | 1,500                        | 1,500      | 1,510  | 1,570 | 1,650 | 1,730 | 1,820 | 1,900 | 1,980 | 2,060 | 2,150 |
| 3         Delgerisogr         50         50         50         50         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>~</b> | 7           | Adaatsag             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48     | 001   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| 4Deren1001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~        | 3           | Delgertsogt          | 50    | 50    | 50    | 50    | 50    | 100   | 100   | 100   | 100   | 001                          | 100        | 100    | 001   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| 5Gobi-Ugraal100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100 <td>~</td> <td>4</td> <td>Deren</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>160</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~        | 4           | Deren                | 100   | 100   | 100   | 100   | 160   | 160   | 160   | 160   | 160   | 160                          | 160        | 160    | 160   | 160   | 160   | 160   | 160   | 160   | 160   | 160   |
| 6         Gurbansaikhan         50         50         50         50         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , so     | Ś           | Gobi-Ugtaal          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 150   | 150   | 150                          | 150        | 150    | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   |
| 7         Taggandelger         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         50         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | Gurbansaikhan        | 50    | 50    | 50    | 50    | 50    | 6     | 90    | 90    | 06    | 96                           | 90         | 90     | 90    | 90    | 90    | 90    | 90    | 90    | 90    | 8     |
| 8         Bayanjargalan         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>~</b> |             | Tsagaandelger        | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48     | 48    | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| 9         Undurshit         48         48         48         48         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ~           | Bayanjargalan        | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20    |       | 20                           | 20         | 20     | 20    | 20    | 20    | 20    | 20    | 20    | 40    | 40    |
| 10       Ulziti       0       0       0       0       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50 <td< td=""><td>~</td><td>6</td><td>Undurshit</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td><td>50</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~        | 6           | Undurshit            | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 50                           | 50         | 50     | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| 11       Khuld       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       48       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | æ        | -           | Utziit               | 0     | 0     | 0     | 0     | 0     | 50    | 50    | 50    | 50    | 50                           | 50         | 50     | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| 12     Luus     48     48     48     48     48     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~        | -           | Khuld                | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48     | 48    | 90    | 90    | 90    | 90    | 8     | 90    | 90    |
| 13     Saikhan-Ovoo     48     48     48     48     48     80     80     80     80     80       14     Delgerkhangai     48     48     48     48     48     48     80     80     80     80     80       15     Erdenedalai     256     256     360     360     360     360     360     360     360       15     Erdenedalai     256     256     350     360     360     360     360     360     360       15     Erdenedalai     256     256     350     360     360     360     360     360       10     Total of Sum Centres     912     912     912     1,016     1,076     1,216     1,266     1,402     1,404     1,404       1     Aimsor Total     2,412     2,415     2,576     2,716     2,716     2,912     2,914     3,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | گ        | _           | Luus                 | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 100   | 100                          | 100        | 100    | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 8     |
| 14         Delgerkhangai         48         48         48         48         48         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | Saikhan-Ovoo         | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 80    | 80                           | 80         | 80     | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| 15         Erdenedalai         256         256         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>~</u> |             | Delgerkhangai        | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 100   | 100                          | 100        | 100    | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| n Centree 912 912 912 1,016 1,076 1,216 1,216 1,26 1,402 1,404 1,404 1,404 1,404 1,456 2,412 2,412 2,412 2,516 2,576 2,716 2,716 2,766 2,902 2,904 2,914 3,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~        |             | Erdenedalai          | 256   | 256   | 256   | 360   | 360   | 360   | 360   | 360   | 360   | 360                          | 360        | 360    | 360   | 360   | 360   | 360   | 360   | 360   | 360   | 360   |
| 2412 2412 2412 2412 2516 2576 2.716 2.716 2.766 2.902 2.904 2.904 2.914 3.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             | Total of Sum Centres |       | 912   | 912   | 1,016 | 1,076 | 1,216 | 1,216 | 1,266 | 1,402 | 1,404                        | 1,404      | 1,404  | 1,456 | 1,530 | 1,530 | 1,530 | 1,530 | 1,530 | 1,550 | 1,550 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             | Aimag Total          | 2,412 | 2,412 | 2,412 | 2,516 | 2,576 | 2,716 | 2,716 | 2,766 | 2,902 | 2,904                        | 2,904      | 2,914  | 3,026 | 3,180 | 3,260 | 3,350 | 3,430 | 3,510 | 3,610 | 3,700 |

,

| l        | No. AIMAG            |           |       |           |       |       |       |       |       |       | Swit  | ch Capaci | Switch Capacity in Operation | ation |       |       |       |       |       |       |       | Γ     |
|----------|----------------------|-----------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-----------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | No. Sum              |           | 2001  | 2002      | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010      | 2011                         | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 0        | 9 ZAVKHAN            |           |       | $\square$ |       |       |       |       |       |       |       |           |                              |       |       |       |       |       |       |       |       |       |
| 6        | 1 Aimag Centre       | ге        | 1,568 | 1,568     | 1,568 | 1,620 | 1,680 | 1,750 | 1,820 | 1,880 | 1,970 | 2,060     | 2,150                        | 2,240 | 2,330 | 2,460 | 2,580 | 2,700 | 2,830 | 2,950 | 3,070 | 3,200 |
| 6        | 2 Aldarkhaan         |           | 48    | 48        | 48    | 48    | 48    | 48    | 180   | 180   | 180   | 180       | 180                          | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   |
| 6        | 3 Asgat              |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 0     | 0     | 0     | 0     | 0     | 0     | 50    | 50    | 50    |
| δ        | 4 Bayantes           |           | 0     | 0         | 0     | 0     | 0     | 90    | 90    | 90    | 60    | 96        | 60                           | 6     | 8     | 96    | 06    | 8     | 8     | 6     | 8     | 8     |
| <u>^</u> | 5 Bayankhairkhan     | han       | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 0     | 0     | 0     | 0     | 0     | 60    | 3     | 60    | 09    |
| ^        | 6 Bulnai             |           | 400   | 400       | 400   | 680   | 680   | 680   | 680   | 680   | 680   | 680       | 680                          | 680   | 680   | 680   | 680   | 680   | 680   | 680   | 680   | 680   |
| δ        | 7 Durvulzin          |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 60        | 60                           | 60    | 60    | 60    | 99    | 60    | 99    | 60    | 60    | 60    |
| 6        | 8 Zavkhanmanda       | dal       | 0     | 0         | 0     | 0     | 0     | 80    | 80    | 80    | 80    | 80        | 80                           | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| 6        | 9 Ider               |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 130   | 130   | 130       | 130                          | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 9        | 10 Ikh-Uul           |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 60        | 60                           | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 99    |
| \$       | 11 Numrug            |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 60        | 60                           | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| ^        | 12 Otgon             |           | 16    | 16        | 16    | 16    | 16    | 16    | 16    | 16    | 80    | 80        | 80                           | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| 5        | 13 Santmargaz        |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 0     | 0     | 0     | 0     | 0     | 60    | 60    | 60    | 60    |
| б.       | _                    |           | 0     | 0         | 0     | 440   | 440   | 440   | 440   | 440   | 440   | 440       | 440                          | 440   | 440   | 440   | 440   | 440   | 440   | 440   | 440   | 440   |
| 9        | 15 Tudevtei          |           | 100   | 100       | 100   | 100   | 220   | 220   | 220   | 220   | 220   | 220       | 220                          | 220   | 220   | 220   | 220   | 220   | 220   | 220   | 220   | 220   |
| 6        | 16 Tes               |           | 48    | 48        | 48    | 48    | 48    | 48    | 200   | 200   | 200   | 200       | 200                          | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   |
| 6        | _                    |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 60        | 60                           | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| 0        | 18 Urgamal           |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 60        | 60                           | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 99    |
| 9        | 19 Tsagaankharkhan   | khan      | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 0     | 0     | 0     | 0     | 70    | 70    | 70    | 70    | 70    |
| 0        | 20 Tsagaanchuluut    | nnt       | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 40    | 40    |
| 6        | 21 Tsetsenuuí        |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 6        | 22 Shiluustei        |           | 48    | 48        | 48    | 48    | 48    | 130   | 130   | 130   | 130   | 130       | 130                          | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 6        | 23 Erdenekhairkhan   | chan      | 0     | Ò         | 0     | 0     | 0     | 0     | 0     | 0     | 80    | 80        | 80                           | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| 6        | 24 Yaruu             |           | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0         | 0                            | 0     | 0     | 0     | 0     | 0     | 50    | 50    | 50    | 50    |
|          | Total of Sum Centres | m Centres | 660   | 660       | 660   | 1,380 | 1,500 | 1,752 | 2,036 | 2,166 | 2,310 | 2,610     | 2,610                        | 2,740 | 2,740 | 2,740 | 2,740 | 2,810 | 2,980 | 3,030 | 3,070 | 3,070 |
|          | Aimag Total          |           | 2,228 | 2,228     | 2,228 | 3,000 | 3,180 | 3,502 | 3,856 | 4,046 | 4,280 | 4,670     | 4,760                        | 4,980 | 5,070 | 5,200 | 5,320 | 5,510 | 5,810 | 5,980 | 6,140 | 6,270 |
|          |                      |           |       |           |       |       |       |       |       |       |       |           |                              |       |       |       |       |       |       |       |       |       |

| °Z | NoIAIMAG      |                      |       |       |       |       |       |       |       |       | Swit  | ch Capaci | Switch Capacity in Operation | ation |       |       |       |       |       |       |       | [     |
|----|---------------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | No. Sum       | E                    | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010      | 2011                         | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 10 | UVURK         | UVURKHANGAI          |       |       |       |       |       |       |       |       |       |           |                              |       |       |       |       |       |       |       |       |       |
| 10 |               | I Aimag Centre       | 1,760 | 1,760 | 1,760 | 1,850 | 1,960 | 2,070 | 2,180 | 2,300 | 2,410 | 2,520     | 2,620                        | 2,730 | 2,840 | 2,990 | 3,150 | 3,300 | 3,450 | 3,600 | 3,750 | 3,900 |
| 10 | 2             | Bayan-Undur          | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 50        | 50                           | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| 10 | 3 Burd        | p                    | 50    | 50    | 50    | 50    | 50    | 90    | 90    | 90    | 66    | 90        | 90                           | 90    | 96    | 90    | 96    | 90    | 90    | 90    | 96    | 8     |
| 10 | 4             | Bat-Ulzii            | 48    | 48    | 48    | 48    | 210   | 210   | 210   | 210   | 210   | 210       | 210                          | 210   | 210   | 210   | 210   | 210   | 210   | 210   | 210   | 210   |
| 10 | 5 BB-Ulaan    | Ulaan                | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50        | 50                           | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| 10 | 6 Bayangol    | 'angol               | 48    | 48    | 48    | 48    | 48    | 130   | 130   | 130   | 130   | 130       | 130                          | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 10 |               | 7 Guchin-Us          | 100   | 100   | 001   | 100   | 100   | 100   | 100   | 120   | 120   | 120       | 120                          | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| 10 | 8 Zyil        |                      | 100   | 100   | 100   | 100   | 180   | 180   | 180   | 180   | 180   | 180       | 180                          | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   |
| 10 | 9 Ulziit      | iit                  | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 70    | 70        | 70                           | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| 10 | 10 ZB Ulaan   | Ulaan                | 50    | 50    | 50    | 50    | 50    | 130   | 130   | 130   | 130   | 130       | 130                          | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 10 | 11 Bogd       | p                    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 011   | 110   | 110       | 110                          | 110   | 110   | 110   | 110   | 110   | 110   | 110   | 110   | 110   |
| 10 | 12            | inteel               | 50    | 50    | 50    | 50    | 50    | 140   | 140   | 140   | 140   | 140       | 140                          | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   |
| 10 | 13 Sant       | t                    | 50    | 50    | 50    | 50    | 50    | 100   | 100   | 100   | 100   | 100       | 100                          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| 10 | 14 Taragt     | agt                  | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 100   | 100       | 100                          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| 10 | 15 Tugrug     | nug                  | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 80    | 80        | 80                           | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| 10 | 16 Yanga      | ıga                  | 150   | 150   | 150   | 320   | 320   | 320   | 320   | 320   | 320   | 320       | 320                          | 320   | 320   | 320   | 320   | 320   | 320   | 320   | 320   | 320   |
| 10 |               | 17 Kharkhandulaan    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50        | 50                           | 50    | 50    | 50    | 50    | 60    | 8     | 60    | 60    | 8     |
| 10 |               | Izirt                | 280   | 280   | 280   | 660   | 660   | 660   | 660   | 660   | 660   | 660       | 660                          | 660   | 660   | 660   | 660   | 660   | 660   | 660   | 660   | 660   |
| 10 | 19 Kharkhorin | urkhorin             | 1,000 | 1,000 | 1,000 | 1,160 | 1,160 | 1,160 | 1,160 | 1,160 | 1,880 | 1,880     | 1,880                        | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 |
| 10 | 20 Bayanteeg  | anteeg               | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48        | 48                           | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 50    |
|    | Tota          | Total of Sum Centres | 2,308 | 2,308 | 2,308 | 3,018 | 3,260 | 3,602 | 3,602 | 3,684 | 4,516 | 4,518     | 4,518                        | 4,518 | 4,518 | 4,518 | 4,518 | 4,528 | 4,528 | 4,528 | 4,528 | 4,530 |
|    | Aim           | Aimag Total          | 4,068 | 4,068 | 4,068 | 4,868 | 5,220 | 5,672 | 5,782 | 5,984 | 6,926 | 7,038     | 7,138                        | 7,248 | 7,358 | 7,508 | 7,668 | 7,828 | 7,978 | 8,128 | 8,278 | 8,430 |
|    |               |                      |       |       |       |       |       |       |       |       |       |           |                              |       |       |       |       |       | 1     |       |       |       |

.

| No          | No AIMAG              |                |       |        |       |       |           |       |       | Swit  | Switch Capacity in Oneration | itv in One | ration |       |       |       |       |            |        |        |       |
|-------------|-----------------------|----------------|-------|--------|-------|-------|-----------|-------|-------|-------|------------------------------|------------|--------|-------|-------|-------|-------|------------|--------|--------|-------|
|             | No. Sum               | 2001           | 2002  | 2003   | 2004  | 2005  | 2006      | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012   | 2013  | 2014  | 2015  | 2016  | 2017       | 2018 1 | 2019 1 | 2020  |
| D II        | 11 UMNUGOBI           |                |       |        |       |       |           |       |       |       |                              |            |        |       |       |       |       |            |        |        |       |
| =           | 1 Aimag Centre        | 1,864          | 1,864 | 1,864  | 2,070 | 2,160 | 2,240     | 2,320 | 2,410 | 2,530 | 2,640                        | 2,760      | 2,870  | 2,990 | 3,150 | 3,310 | 3,470 | 3,620      | 3,780  | 3,940  | 4,100 |
| Ξ           | 2 Bayandalai          | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 80    | 80                           | 80         | 80     | ~ 80  | 80    | 80    | 80    | 80         | 80     | 80     | 80    |
| Ξ           | 3 Bayan-Ovoo          | 0              | 0     | 0      | ¢     | 0     | 0         | 0     | 0     | 0     | 50                           | 50         | 50     | 50    | 50    | 50    | 50    | 50         | 50     | 50     | 50    |
| -           | 4 Bulgan              | 48             | 48    | 48     | 48    | 48    | 48        | 48    | 130   | 130   | 130                          | 130        | 130    | 130   | 130   | 130   | 130   | 130        | 130    | 130    | 130   |
| 11          | 5 Gurbantes           | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 130   | 130   | 130                          | 130        | 130    | 130   | 130   | 130   | 130   | 130        | 100    | 130    | 130   |
| -           | 6 Mandal-Ovoo         | 48             | 48    | 48     | 48    | 48    | 48        | 48    | 48    | 48    | 48                           | 48         | 130    | 130   | 130   | 130   | 130   | 130        | 130    | 130    | 130   |
| -           | 7 Mantai              | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0     | 80    | 80    | 80         | 80     | 80     | 80    |
| 11          | 8 Nomgon              | 0              | 0     | 0      | 0     | 210   | 210       | 210   | 210   | 210   | 210                          | 210        | 210    | 210   | 210   | 210   | 210   | 210        | 210    | 210    | 210   |
| 11          | 9 Noyon               | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 06    | 96                           | 8          | 06     | 60    | 90    | 96    | 90    | 96         | 8      | 6      | 96    |
| 1           | 10 Sevrei             | 0              | 0     | 0      | 0     | 0     | 70        | 70    | 70    | 70    | 70                           | 70         | 70     | 70    | 70    | 70    | 20    | 70         | 70     | 70     | 70    |
| 1           | 11 Khanbogd           | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 20    | 70                           | 70         | 70     | 70    | 70    | 70    | 02    | 20         | 70     | 70     | 70    |
| 1           | 12 Khankhongor        | 48             | 48    | 48     | 48    | 48    | 48        | 48    | 120   | 120   | 120                          | 120        | 120    | 120   | 120   | 120   | 120   | 120        | 120    | 120    | 120   |
| 11          | 13 Khurmen            | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 0     | 60                           | 60         | 60     | 60    | 60    | 99    | 99    | <b>9</b> 9 | 60     | 60     | 60    |
| -<br>-<br>- | 14 Tsogt-Ovoo         | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 0     | 50                           | 50         | 50     | 50    | 50    | 50    | 50    | 50         | 50     | 50     | 50    |
| 11 1        | 15 Tsogttsetsi        | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 70    | 70                           | 70         | 70     | 70    | 70    | 70    | 70    | 70         | 70     | 70     | 70    |
| 11          | 16 Tavantolgoi        | 0              | 0     | 0      | 0     | 0     | 70        | 70    | 70    | 70    | 70                           | 70         | 70     | 70    | 70    | 70    | 70    | 70         | 70     | 70     | 70    |
|             | Total of Sum Centres  | 144            | 144   | 144    | 144   | 354   | 494       | 494   | 778   | 1,088 | 1,248                        | 1,248      | 1,330  | 1,330 | 1,330 | 1,410 | 1,410 | 1,410      | 1,410  | 1,410  | 1,410 |
| _           | Aimag Total           | 2,008          | 2,008 | 2,008  | 2,214 | 2,514 | 2,734     | 2,814 | 3,188 | 3,618 | 3,888                        | 4,008      | 4,200  | 4,320 | 4,480 | 4,720 | 4,880 | 5,030      | 5,190  | 5,350  | 5,510 |
| 12 SI       | SUKHBAATAR            |                |       |        |       |       |           |       |       |       |                              |            |        |       |       |       |       |            |        |        |       |
| 12          | 1 Aimag Centre        | 1,071          | 1,071 | 1,071  | 2,140 | 2,210 | 2,280     | 2,350 | 2,410 | 2,530 | 2,650                        | 2,760      | 2,880  | 3,000 | 3,150 | 3,310 | 3,470 | 3,630      | 3,790  | 3,950  | 4,100 |
| 12          | 2 Danganga            | 50             | 50    | 30     | 50    | 50    | 50        | 50    | 50    | 70    | 70                           | 70         | 70     | 70    | 70    | 70    | 70    | 70         | 70     | 70     | 70    |
|             | 3 Naran               | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 0     | 0     | 0                            | 0          | 0      | 0     | 0     | 80    | 80    | 80         | 80     | 80     | 80    |
|             | 4 Ongon               | 50             | 50    | 50     | 50    | 220   | 220       | 220   | 220   | 220   | 220                          | 220        | 220    | 220   | 220   | 220   | 220   | 220        | 220    | 220    | 220   |
|             | 5 Bayandelger         | 30             | 30    | Э<br>С | 30    | 30    | 30        | 160   | 160   | 160   | 160                          | 160        | 160    | 160   | 160   | 160   | 160   | 160        | 160    | 160    | 160   |
| _1          | 6 Khalzan             | 48             | 48    | 48     | 48    | 48    | 48        | 48    | 48    | 48    | 48                           | 48         | 48     | 100   | 100   | 100   | 100   | 100        | 100    | 100    | 100   |
|             | 7 Uulbayan            | 0              | 0     | 0      | 0     | 200   | 200       | 200   | 200   | 200   | 200                          | 200        | 200    | 200   | 200   | 200   | 200   | 200        | 200    | 200    | 200   |
| 12          | 8 Munkhkhaan          | <del>8</del> 4 | 20    | 200    | 200   | 200   | 200       | 200   | 200   | 200   | 200                          | 200        | 200    | 250   | 250   | 250   | 250   | 250        | 250    | 250    | 250   |
| 12          | 9 Sukhbaatar          | 50             | ŝ     | 50     | 50    | 50    | 50        | 50    | 50    | 50    | 50                           | 50         | 50     | 110   | 110   | 110   | 110   | 110        | 110    | 110    | 110   |
|             | 10 Erdenetsagaan      | 48             | 48    | 48     | 290   | 290   | 290       | 290   | 290   | 290   | 290                          | 290        | 290    | 290   | 290   | 290   | 290   | 290        | 290    | 290    | 290   |
| 12 1        | 1 Tumentsogt          | 100            | 001   | 001    | 410   | 410   | 410       | 410   | 410   | 410   | 410                          | 410        | 410    | 410   | 410   | 410   | 410   | 410        | 410    | 410    | 410   |
| 12 1:       | 12 Tuvsinshiree       | 0              | 0     | 0      | 0     | 0     | <u> 8</u> | 90    | 6     | 90    | 8                            | 90         | 90     | 60    | 90    | 06    | 6     | 06         | 90     | 6      | 90    |
| 12          | 13 Asgat              | 0              | 0     | 0      | 0     | 0     | 0         | 0     | 110   | 110   | 110                          | 110        | 110    | 110   | 011   | 110   | 110   | 110        | 110    | 110    | 110   |
| 12          | 14 Talbulag (uurkhai) | 9              | 0     | 0      | 0     | 0     | 0         | ٥     | 0     | 0     | 0                            | 0          | 0      | 0     | 0     | 0     | 0     | 0          | 0      | ٥      | 40    |
|             | Total of Sum Centres  | 424            | 576   | 576    | 1,128 | 1,498 | 1,588     | 1,718 | 1,828 | 1,848 | 1,848                        | 1,848      | 1,848  | 2,010 | 2,010 | 2,090 | 2,090 | 2,090      | 2,090  | 2,090  | 2,130 |
|             | Aimag Totat           | 1,495          | 1,647 | 1,647  | 3,268 | 3,708 | 3,868     | 4,068 | 4,238 | 4,378 | 4,498                        | 4,608      | 4,728  | 5,010 | 5,160 | 5,400 | 5,560 | 5,720      | 5,880  | 6,040  | 6,230 |

| 12 | NoJAIMAG             |       |       |       |       |       |       |       |       | Switc | Switch Capacity in Operation | ty in Oper | ation      | ŀ     |       |       |       |              |            |          | Γ     |
|----|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|------------|------------|-------|-------|-------|-------|--------------|------------|----------|-------|
|    | No. Sum              | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012       | 2013  | 2014  | 2015  | 2016  | 2017         | 2018       | 2019     | 2020  |
| 13 | SELENGE              |       |       |       |       |       |       |       |       |       |                              |            |            |       |       |       |       |              |            |          |       |
| 13 | 1 Aimag Centre       | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880 | 1,880                        | 1,880      | 1,930      | 2,010 | 2,120 | 2,220 | 2,330 | 2,440        | 2,540      | 2,650    | 2,750 |
| 13 | 2                    | 200   | 200   | 200   | 280   | 280   | 280   | 280   | 280   | 280   | 280                          | 280        | 280        | 280   | 280   | 280   | 280   | 280          | 280        | 280      | 280   |
| 13 | 3 Eruu               | 100   | 100   | 100   | 100   | 230   | 230   | 230   | 230   | 230   | 230                          | 230        | 230        | 230   | 230   | 230   | 230   | 230          | 230        | 230      | 230   |
| 13 |                      | 32    | 32    | 32    | 32    | 32    | 120   | 120   | 120   | 120   | 120                          | 120        | 120        | 120   | 120   | 120   | 120   | 120          | 120        | 120      | 120   |
| 13 | 5 Khushaat           | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50         | 50    | 50    | 50    | 70    | 70           | 70         | 70       | 70    |
| 13 | 6 Orkhon             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48         | 100   | 100   | 100   | 100   | 100          | 100        | 100      | 100   |
| 13 | 7 Sant               | 50    | 50    | 50    | 50    | 50    | 130   | 130   | 130   | 130   | 130                          | 130        | 130        | 130   | 130   | 130   | 130   | 130          | 130        | 130      | 130   |
| 13 | 8 Khuder             | .50   | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50         | 50    | 80    | 80    | 80    | 80           | 80         | 80       | 80    |
| 1  | 9 Tsagaannuur        | 100   | 100   | 100   | 100   | 230   | 230   | 230   | 230   | 230   | 230                          | 230        | 230        | 230   | 230   | 230   | 230   | 230          | 230        | 230      | 230   |
| 13 |                      | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100                          | 170        | 170        | 170   | 170   | 170   | 170   | 170          | 170        | 170      | 170   |
| 13 |                      | 50    | 50    | 50    | 50    | 190   | 190   | 061   | 190   | 061   | 190                          | 190        | 190        | 190   | 190   | 1901  | 190   | 190          | 190        | 190      | 190   |
| 13 | 12 Barunburen        | 100   | 100   | 100   | 100   | 100   | 100   | 190   | 190   | 190   | 190                          | 190        | 190        | 190   | 190   | 190   | 190   | 190          | 061        | 190      | 190   |
| 13 | 13 Dulaankhaan       | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100                          | 100        | 100        | 100   | 100   | 100   | 70    | 70           | 70         | 70       | 70    |
| 13 |                      | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50         | 50    | 50    | 80    | 80    | 80           | 80         | 80       | 80    |
| 13 | 15 Shaamar           | 100   | 100   | 100   | 300   | 300   | 300   | 300   | 300   | 300   | 300                          | 300        | 300        | 300   | 300   | 300   | õõ    | 300          | 300        | 300      | 300   |
| 13 | -                    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50         | 50    | 90    | 90    | 90    | 90           | 90         | 8        | 8     |
| 13 | 17 Saikhan           | 100   | 100   | 100   | 100   | 100   | 100   | 370   | 370   | 370   | 370                          | 370        | 370        | 370   | 370   | 370   | 370   | 370          | 370        | 370      | 370   |
| 13 | 18 Khutul            | 600   | 600   | 600   | 690   | 690   | 690   | 690   | 690   | 690   | 690                          | 690        | 690        | 690   | 890   | 890   | 890   | 890          | 890        | 890      | 890   |
| 13 | 19 Zuunkharaa        | 1.000 | 1,000 | 1,000 | 1,260 | 1,260 | 1,260 | 1,260 | 1,260 | 1,570 | 1,570                        | 1,570      | 1,570      | 1,570 | 2,040 | 2,040 | 2,040 | 2,040        | 2,040      | 2,040    | 2,040 |
| 13 |                      | 160   | 160   | 160   | 400   | 400   | 400   | 400   | 400   | 400   | 400                          | 400        | <b>6</b> 4 | 400   | 400   | 400   | 400   | <del>6</del> | 408<br>408 | 400      | 400   |
| 13 | 21 Tunkhel           | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 8                            | 100        | 8          | 100   | 3     | 0     | 8     | 8            | 8          | <u>9</u> | 8     |
|    | Total of Sum Centres | 3,140 | 3,140 | 3,140 | 4,010 | 4,410 | 4,578 | 4,938 | 4,938 | 5,248 | 5,248                        | 5,318      | 5,318      | 5,370 | 6,110 | 6,140 | 6,130 | 6,130        | 6,130      | 6,130    | 6,130 |
|    | Aimag Total          | 5,020 | 5,020 | 5,020 | 5,890 | 6,290 | 6,458 | 6,818 | 6,818 | 7,128 | 7,128                        | 7,198      | 7,248      | 7,380 | 8,230 | 8,360 | 8,460 | 8,570        | 8,670      | 8,780    | 8,880 |
|    |                      |       |       |       |       |       |       |       |       |       |                              |            |            |       |       |       |       |              |            |          |       |

| No.A. | No.AIMAG             |          |          |       |       |       |       |       |       | Switc  | Switch Capacity in Operation | tv in Oper | ation | ļ     |       |       |       |       |       |       | Γ     |
|-------|----------------------|----------|----------|-------|-------|-------|-------|-------|-------|--------|------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ż     | No. Sum              | 2001     | 2002     | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009   | 2010                         | 2011       | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 14 TI | ruv                  |          |          |       |       |       |       |       |       |        |                              |            |       |       |       |       |       |       |       |       |       |
| 14    | 1 Aimag Centre       | 2,016    | 2,016    | 2,016 | 2,060 | 2,120 | 2,180 | 2,240 | 2,300 | 2,410  | 2,520                        | 2,630      | 2,740 | 2,850 | 3,010 | 3,160 | 3,310 | 3,460 | 3,610 | 3,770 | 3,920 |
| 4     | 2 Altanbulag         | 16       | 16       | 16    | 16    | 16    | 16    | 16    | 16    | 90     | 8                            | 8          | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     |
| 4     | 3 Argalant           | 50       | ß        | S0    | SO    | 50    | 50    | 50    | 130   | 130    | 130                          | 130        | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 14 4  | 4 Batsumber          | 102      | 102      | 102   | 102   | 102   | 102   | 200   | 200   | 200    | 200                          | 200        | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   |
| 14 5  | 5 Bayan              | 50       | 50       | 50    | 50    | 170   | 170   | 170   | 170   | 170    | 170                          | 170        | 170   | 170   | 170   | 170   | 170   | 170   | 170   | 170   | 170   |
| 14    | 6 Bayan-Unzuul       | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0                            | 0          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 40    | 4     |
| 14    | 7 Bayanjargalan      | 50       | 50       | 50    | 50    | 50    | 50    | 50    | 50    | 50     | 50                           | 50         | 50    | 50    | 50    | 80    | 8     | 80    | 80    | 8     | 80    |
| 14    | 8 Bayankhangai       | S        | ß        | 50    | 50    | 50    | 110   | 110   | 110   | 110    | 110                          | 110        | 110   | 110   | 110   | 110   | 110   | 110   | 110   | 011   | 10    |
| 14    | 9 Bayantsagaan       | 50       | 50       | 50    | 50    | 50    | 50    | 50    | 50    | 50     | 50                           | 50         | 50    | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8     |
| 14    | 10 Bayantsogt        | 102      | 102      | 102   | 102   | 180   | 180   | 180   | 180   | 180    | 180                          | 180        | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   |
| 14 11 | 11 Bornuur           | 70       | 70       | 70    | 260   | 260   | 260   | 260   | 260   | 260    | 260                          | 260        | 260   | 260   | 260   | 260   | 260   | 260   | 260   | 260   | 260   |
| 14 12 | 12 Buren             | 16       | 16       | 16    | 16    | 16    | 96    | 60    | 8     | 96     | 60                           | 90         | 96    | 66    | 8     | 6     | 8     | 8     | 8     | 8     | 8     |
| 14 13 | 13 Delgerkhaan       | 16       | 16       | 16    | 16    | 16    | 16    | 16    | 16    | 16     | 16                           | 16         | 16    | 001   | 100   | 100   | 8     | 100   | 8     | 8     | 8     |
| 14 [4 | 14 Jargalant         | 8        | 3        | 00    | 460   | 460   | 460   | 460   | 460   | 460    | 460                          | 460        | 460   | 460   | 460   | 460   | 460   | 460   | 460   | 460   | 460   |
| 14 15 | 15 Zaamar            | ŝ        | 8        | 50    | 270   | 270   | 270   | 270   | 270   | 270    | 270                          | 270        | 270   | 270   | 270   | 270   | 270   | 270   | 270   | 270   | 270   |
| 14    | 16 Lun               | 8        | 8        | 8     | 340   | 340   | 340   | 340   | 340   | 340    | 340                          | 340        | 340   | 340   | 340   | 340   | 340   | 340   | 340   | 340   | 340   |
| 14 17 | 17 Undurshireet      | 48       | 48       | 48    | 48    | 48    | 48    | 48    | 48    | 48     | 48                           | 48         | 48    | 48    | 48    | 80    | 80    | 80    | 80    | 80    | 80    |
| 14 18 | 18 Sergelen          | 20       | 20       | 20    | 20    | 20    | 20    | 20    | 20    | 70     | 70                           | 70         | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| 14 19 | 19 Sumber            | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 140   | 140    | 140                          | 140        | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   |
| 14 20 | 20 Ugtaal            | 100      | 8        | 8     | 8     | 240   | 240   | 240   | 240   | 240    | 240                          | 240        | 240   | 240   | 240   | 240   | 240   | 240   | 240   | 240   | 240   |
| 14    | 14 21 Tseel          | <u>8</u> | 8        | 8     | 270   | 270   | 270   | 270   | 270   | 270    | 270                          | 270        | 270   | 270   | 270   | 270   | 270   | 270   | 270   | 270   | 270   |
| 14 2. | 14 22 Erdene         | 3        | 20       | 8     | S     | 50    | 120   | 120   | 120   | 120    | 120                          | 120        | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| 14 2  | 23 Erdenesant        | 100      | 8        | 8     | 330   | 330   | 330   | 330   | 330   | 330    | 330                          | 330        | 330   | 330   | 330   | 330   | 330   | 330   | 330   | 330   | 330   |
| 14 24 | 24 Arkhust           | 48       | 48       | 48    | 48    | 48    | 48    | 48    | 48    | 8      | 90                           | 8          | 66    | 8     | 90    | 90    | 06    | 6     | 06    | 06    | 66    |
| 14 2, | 25 Bayanchandmani    | 8        | <u>8</u> | 8     | 350   | 350   | 350   | 350   | 350   | 350    | 350                          | 350        | 350   | 350   | 350   | 350   | 350   | 350   | 350   | 350   | 350   |
| 14 26 | 26 Zanchivlan        | 48       | 48       | 48    | 48    | 48    | 48    | 48    | 48    | 48     | 20                           | 20         | 20    | 20    | 20    | 20    | 20    | 30    | 20    | 20    | 20    |
| [4 2] |                      | 28       | 28       | 28    | 28    | 28    | 28    | 28    | 150   | 150    | 150                          | 150        | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   |
| 14 28 | 28 Mungunmorit       | 24       | 24       | 24    | 24    | 24    | 24    | 24    | 24    | 8      | 8                            | 8          | 8     | 90    | 90    | 90    | 8     | 90    | 90    | 90    | 8     |
|       | Total of Sum Centres | 1,488    | 1,488    | 1,488 | 3,148 | 3,486 | 3,690 | 3,788 | 4,130 | 4,362  | 4,334                        | 4,334      | 4,334 | 4,418 | 4,458 | 4,520 | 4,520 | 4,520 | 4,520 | 4,560 | 4,560 |
|       | Aimag Total          | 3,504    | 3,504    | 3,504 | 5,208 | 5,606 | 5,870 | 6,028 | 6,430 | 6, 772 | 6,854                        | 6,964      | 7,074 | 7,268 | 7,468 | 7,680 | 7,830 | 7,980 | 8,130 | 8,330 | 8,480 |
|       |                      |          |          |       |       |       |       |       |       |        |                              |            |       |       |       |       |       |       |       |       | ļ     |

| Z  | NoIAIMAG             |           |       |       |       |       |       |       |       | Swit  | Switch Capacity in Operation | tv in Oper | ation |       |       |       |       |       |       |          |       |
|----|----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|----------|-------|
|    | No. Sum              | 2001      | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019     | 2020  |
| 15 | 15 UVS               |           |       |       |       |       |       |       |       |       |                              | <br>       |       |       |       |       |       |       |       |          |       |
| 15 | 1 Aimag Centre       | 2,016     | 2,016 | 2,016 | 2,016 | 2,020 | 2,100 | 2,180 | 2,260 | 2,370 | 2,480                        | 2,580      | 2,690 | 2,800 | 2,950 | 3,100 | 3,250 | 3,390 | 3,540 | 3,690    | 3,840 |
| 15 | 2 Barunturun         | 32        | 32    | 32    | 32    | 0/1   | 170   | 170   | 170   | 170   | 170                          | 170        | 170   | 170   | 170   | 170   | 170   | 170   | 170   | 170      | 170   |
| 15 | 3 Bokhmurun          | 0         | 0     | 0     | 0     | 0     | 60    | 60    | 60    | 60    | 60                           | 60         | 60    | 60    | 60    | 99    | 60    | 60    | 60    | 60       | 60    |
| 15 | 4 Davst              | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | ¢     | 0     | 0     | 0     | 0     | 0     | 50    | 50       | S.    |
| 5  | 5 Zavkhan            | 0         | 0     | 0     | 0     | 0     | 70    | 70    | 70    | 70    | 70                           | 70         | 70    | 20    | 70    | 70    | 70    | 70    | 20    | 2        | 70    |
| 15 | 6 Zuungobi           | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 50                           | 50         | 50    | 50    | 50    | 50    | 50    | 50    | 50    | ŝ        | Š     |
| 15 | 7 Zuunkhangai        | 0         | 0     | 0     | 0     | 0     | 50    | 50    | 50    | 50    | 50                           | 50         | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50       | 20    |
| 15 | 8 Maichin            | 50        | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50       | 50    |
| ž  | 9 Naranbulag         | 48        | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48         | 48    | 48    | 48    | 48    | 60    | 60    | 60    | 60       | 60    |
| 12 | 10 Ulgii             | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 40       | 40    |
| 15 | =                    | <u>10</u> | 100   | 100   | 100   | 100   | 8     | 6     | 6     | 66    | 96                           | 60         | 90    | 90    | 90    | 90    | 96    | - 60  | 90    | 90       | 8     |
| 51 | 12 Undurkhangai      | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 110   | 110   | 110                          | 110        | 110   | 110   | 110   | 110   | 110   | 110   | 110   | 110      | 110   |
| 15 | 13 Sagil             | 50        | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50         | 50    | 50    | 50    | 50    | 50    | 60    | 60    | 60       | 60    |
| 15 | 4                    | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 140   | 140   | 140                          | 140        | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140      | 140   |
| 5  | 15                   | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0     | 0     | 0     | 0     | 0     | 99    | 33    | જ        | 8     |
| 15 | 16 Tes               | 100       | 001   | 100   | 100   | 100   | 60    | 60    | 60    | 60    | 60                           | 60         | 90    | 99    | 99    | 60    | 8     | 8     | 90    | 3        | 8     |
| 15 | 17 Kharkhiraa        | 50        | 50    | 50    | 50    | , 50  | 50    | 50    | 50    | 50    | 50                           | S<br>N     | Ŝ     | 8     | 8     | ß     | 8     | ŝ     | 8     | 8        | 8     |
| 15 | 15 18 Khovd          | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 8     |
| 15 | 19 Khyrgas           | 48        | 48    | 48    | 48    | 48    | 50    | 50    | 50    | 50    | 50                           | 50         | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50       | 50    |
| 15 | 20 Tsagaankhairkhan  | 48        | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 100   | 100                          | 100        | 100   | 8     | 8     | 100   | 100   | 100   | 100   | 10<br>10 | 100   |
|    | Total of Sum Centres | 526       | 526   | 526   | 526   | 664   | 796   | 796   | 1,046 | 1,098 | 1,148                        | 1,148      | 1,148 | 1,148 | 1,148 | 1,148 | 1,160 | 1,230 | 1,280 | 1,320    | 1,320 |
|    | Aimag Total          | 2,542     | 2,542 | 2,542 | 2,542 | 2,684 | 2,896 | 2,976 | 3,306 | 3,468 | 3,628                        | 3,728      | 3,838 | 3,948 | 4,098 | 4,248 | 4,410 | 4,620 | 4,820 | 5,010    | 5,160 |
|    |                      |           |       |       |       |       |       |       |       |       |                              |            |       |       |       |       |       |       |       |          |       |

| ž        | No. AIMAG | IAG                  |       |       |       |       |       |       |       |       | Swit  | Switch Capacity in Operation | ty in Ope | ration |       |       |       |       |       |       |       | Γ     |
|----------|-----------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|-----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | No. Sum   | Sum                  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011      | 2012   | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 19]      | KHOVD     | DVD                  |       |       |       |       |       |       |       |       |       |                              |           |        |       |       |       |       |       |       | ┥     |       |
| 16       | -         | Aimag Centre         | 2,048 | 2,048 | 2,048 | 2,480 | 2,580 | 2,680 | 2,790 | 2,890 | 3,030 | 3,160                        | 3,300     | 3,440  | 3,580 | 3,770 | 3,960 | 4,150 | 4,340 | 4.530 | 4,720 | 4.910 |
| 16       | 3         | Altai                | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 8     | 8                            | 8         | 8      | 6     | 8     | 8     | 8     | 8     | 8     | -     | 8     |
| 16       |           | 3 Bulgan             | 100   | 100   | 100   | 390   | 390   | 390   | 390   | 390   | 390   | 390                          | 390       | 390    | 390   | 390   | 390   | 390   | 390   | 390   | 390   | 390   |
| 16       | 4         | Buyant               | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 130   | 130   | 130                          | 130       | 130    | 130   | 130   | 130   | 130   | 130   | 130   | 130   | 130   |
| 16       | S         | Darvi                | 48    | 48    | 48    | 48    | 160   | 160   | 160   | 160   | 160   | 160                          | 160       | 160    | 160   | 160   | 160   | 160   | 160   | 160   | 160   | 160   |
| 16       |           | 6 Durgun             | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 48        | 48     | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| 91       | ~         | Duut                 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0         | 0      | 0     | 0     | 0     | 0     | 0     | 8     | 50    | 8     |
| 19       |           | 8 Zereg              | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 100   | 100                          | 100       | 100    | 001   | 100   | 100   | 8     | 100   | 100   | 100   | 8     |
| 2        |           | 9 Mankhan            | 50    | 50    | 50    | 50    | 50    | 150   | 150   | 150   | 150   | 150                          | 150       | 150    | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   |
| <u>9</u> | 2         | 10 Munkhkhaan        | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50                           | 50        | 50     | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 30    |
| 16       | =         | Must                 | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 140   | 140   | 140                          | 140       | 140    | 140   | 140   | 140   | 140   | 140   | 140   | 140   | 140   |
| 16       | 12        | 12 Myngad            | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 90    | 90                           | 60        | 90     | 60    | 90    | 96    | 8     | 60    | 96    | 8     | 8     |
| 19       | 13 [      | 13 Uench             | 128   | 128   | 128   | 128   | 128   | 128   | 250   | 250   | 250   | 250                          | 250       | 250    | 250   | 250   | 250   | 250   | 250   | 250   | 250   | 250   |
| .16      | 14 K      | 14 Khovd             | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0         | 0      | 0     | 0     | 80    | 80    | 80    | 80    | 80    | 80    |
| 9        | 15 1      | 16 15 Tsetseg        | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 110   | 110   | 110                          | 110       | 110    | 011   | 110   | 110   | 110   | 110   | 110   | 110   | 110   |
| 19       | 2         | 16 Chandman          | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 80    | 80                           | 80        | 80     | 80    | 80    | 80    | 80    | 80    | 80    | 80    | 8     |
| 9        | 2         | Erdeneburen          | 50    | ŝ     | 50    | 50    | 50    | 50    | 50    | 50    | 90    | 90                           | 96        | 8      | 90    | 90    | 60    | 90    | 90    | 90    | 90    | 8     |
|          |           | Total of Sum Centres | 734   | 734   | 734   | 1,024 | 1,136 | 1,236 | 1,358 | 1,592 | 1,878 | 1,878                        | 1,878     | 1,878  | 1,950 | 1,950 | 2,030 | 2,030 | 2,030 | 2,080 | 2,080 | 2,060 |
|          | A         | Aimag Total          | 2,782 | 2,782 | 2,782 | 3,504 | 3,716 | 3,916 | 4,148 | 4,482 | 4,908 | 5,038                        | 5,178     | 5,318  | 5,530 | 5,720 | 5,990 | 6,180 | 6,370 | 6,610 | 6,800 | 6,970 |
|          |           |                      |       |       |       |       |       |       |       |       |       |                              |           |        |       |       |       |       |       |       |       |       |

.

Page 7 - 14

| Z  | NoIAIMAG             | F         |       |       |       |       |       |       |       |       | Swit  | Switch Canacity to Operation | ou O or vi | ration |        |        |        |        |        |        |        | Γ      |
|----|----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2  | No. Sum              |           | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010                         | 2011       | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
| 17 | 17 KHUVSGUL          |           |       |       |       |       |       |       |       |       |       | ŀ                            | †<br> <br> |        | ŀ      |        |        |        |        |        | -      |        |
| 17 | 1 Aimag Centre       |           | 2,320 | 2,320 | 2,320 | 4,460 | 4,590 | 4,720 | 4,850 | 4,980 | 5,220 | 5,460                        | 5,700      | 5,940  | 6,180  | 6,500  | 6,830  | 7,160  | 7,490  | 7,820  | 8,140  | 8,470  |
| 17 | 2                    | `         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 130    | 130    | 130    | 130    | 130    | 130    | 130    | 130    | 130    |
| 17 | 3                    |           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 200        | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 200    |
| 17 |                      |           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 160    | 160    | 160    | 160    | 160    | 160    | 160    | 160    | 160    |
| 17 | 5                    |           | 48    | 48    | 48    | 48    | 250   | 250   | 250   | 250   | 250   | 250                          | 250        | 250    | 250    | 250    | 250    | 250    | 250    | 250    | 250    | 250    |
| 17 | 6                    |           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 40     | 40     |
| 17 | 7 Galt               |           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 120   | 120   | 120                          | 120        | 120    | 120    | 120    | 120    | 120    | 120    | 120    | 120    | 120    |
| 17 | 8 Jargalant          |           | 48    | 48    | 48    | 48    | 48    | 48    | 220   | 220   | 220   | 220                          | 220        | 220    | 220    | 220    | 220    | 220    | 220    | 220    | 220    | 220    |
| 17 | 9 Ikh-Uul            |           | 40    | 40    | 40    | 40    | 260   | 260   | 260   | 260   | 260   | 260                          | 260        | 260    | 260    | 260    | 260    | 260    | 260    | 260    | 260    | 260    |
| 17 | 10 Rashaant          |           | 48    | 48    | 48    | 48    | 170   | 170   | 170   | 170   | 170   | 170                          | 170        | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    |
| 17 | 11 Renchinlkhumbe    | nbe       | 48    | 48    | 48    | 48    | 170   | 170   | 170   | 170   | 170   | 170                          | 170        | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    |
| 17 | 12 Tarialan          |           | 100   | 100   | 100   | 600   | 600   | 600   | 600   | 600   | 600   | 600                          | 600        | 600    | 600    | 600    | 600    | 600    | 600    | 600    | 600    | 600    |
| 17 | 13 Tosontsengel      |           | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 170        | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    |
| 17 | 14 Tumurbulag        |           | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 40    | 40                           | 40         | 160    | 160    | 160    | 160    | 160    | 160    | 160    | 160    | 160    |
| 17 | 15                   |           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 140    | 140    | 140    | 140    | 140    | 140    | 140    | 140    | 140    |
| 17 | 16 Ulaan-Uul         |           | 0     | 0     | 0     | 0     | 0     | 0     | 170   | 170   | 170   | 170                          | 170        | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    |
| 17 | 17 Khankh            |           | 0     | 0     | 0     | 0     | 160   | 160   | 160   | 160   | 160   | 160                          | 160        | 160    | 160    | 160    | 160    | 160    | 160    | 160    | 160    | 160    |
| 17 | 18 Khatgal           |           | 200   | 200   | 200   | 380   | 380   | 380   | 380   | 380   | 380   | 380                          | 380        | 380    | 380    | 380    | 380    | 380    | 380    | 380    | 380    | 380    |
| 17 | 19 Tsagaannuur       |           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                            | 0          | 0      | 100    | 100    | 100    | 100    | 100    | 100    | 100    | 100    |
| 17 |                      |           | 96    | 96    | 96    | 300   | 300   | 300   | 300   | 300   | 300   | 300                          | 300        | 300    | 300    | 300    | 300    | 300    | 300    | 300    | 300    | 300    |
| 17 |                      |           | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 140   | 140   | 140                          | 140        | 140    | 140    | 140    | 140    | 140    | 140    | 140    | 140    | 140    |
| 17 | 23                   |           | 40    | 40    | 40    | 40    | 40    | 40    | 170   | 170   | 170   | 170                          | 170        | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    | 170    |
| 17 | 23 Chandman Undu     | ndur      | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 48                           | 180        | 180    | 180    | 180    | 180    | 180    | 180    | 180    | 180    | 180    |
| 17 | 24 Shine-Ider        |           | 0     | 0     | 0     | 0     | 0     | 150   | 150   | 150   | 150   | 150                          | 150        | 150    | 150    | 150    | 150    | 150    | 150    | 150    | 150    | 150    |
| 17 | 25 Erdenebulgan      |           | 48    | 48    | 48    | 48    | 48    | 48    | 48    | 150   | 150   | 150                          | 150        | 150    | 150    | 150    | 150    | 150    | 150    | 150    | 150    | 150    |
|    | Total of Sum Centres | n Centres | 906   | 900   | 906   | 1,784 | 2,610 | 2,760 | 3,232 | 3,546 | 3,546 | 3,546                        | 4,000      | 4,550  | 4,650  | 4,650  | 4,650  | 4,650  | 4,650  | 4,650  | 4,690  | 4,690  |
|    | Aimag Total          |           | 3,220 | 3,220 | 3,220 | 6,244 | 7,200 | 7,480 | 8,082 | 8,526 | 8,766 | 9,006                        | 9,700      | 10,490 | 10,830 | 11,150 | 11,480 | 11,810 | 12,140 | 12,470 | 12,830 | 13,160 |
|    |                      |           |       |       |       |       |       |       |       |       |       |                              |            |        |        |        |        |        |        |        |        |        |

| ź        | No AIMAG             |         |       |       |       |       |          |       |          | Swite | Switch Canacity in Operation | tv in Oner | ation |       |       |       |       |       |       |       | ſ     |
|----------|----------------------|---------|-------|-------|-------|-------|----------|-------|----------|-------|------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | No Sum               | 2001    | 2002  | 2003  | 2004  | 2005  | 2006     | 2007  | 2008     | 2009  | 2010                         | 2011       | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
| 18       | KHENTII              |         |       |       |       |       |          |       | <b> </b> | <br>  |                              |            |       |       |       | +     |       |       |       |       |       |
| 2        | 1 Aimag Centre       | 1,640   | 1,640 | 1,640 | 1,870 | 1,920 | 1,970    | 2,020 | 2,080    | 2,180 | 2,270                        | 2,370      | 2,470 | 2,570 | 2,710 | 2,850 | 2,980 | 3,120 | 3,250 | 3,390 | 3,530 |
| ≊        | 2 Galshar            | 0       | 0     | 0     | 0     | 0     | 0        | 0     | 0        | 0     | 60                           | 60         | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| ≊        | 3 Bayankhutagt       | 50      | 50    | 50    | 50    | 50    | 50       | 50    | 120      | 120   | 120                          | 120        | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| 18       | 4 Darkhan            | 0       | 0     | 0     | 0     | 0     | 60       | 60    | 60       | 60    | 60                           | 60         | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 99    | 60    |
| ~        | 5 Bayanmunkh         | 32      | 32    | 32    | 32    | 32    | 90       | 90    | 90       | 90    | 60                           | 96         | 06    | 90    | 96    | 90    | 96    | 96    | 06    | 8     | 8     |
| <b>~</b> | 6 Delgerkhaan        | 0       | 0     | 0     | 0     | 160   | 160      | 160   | 160      | 160   | 160                          | 160        | 160   | 160   | 160   | 160   | 160   | 160   | 160   | 160   | 160   |
| ≃        | 7 Jargaltkhaan       | 20      | 200   | 200   | 200   | 200   | 200      | 200   | 200      | 200   | 200                          | 200        | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   |
| <u>~</u> | 8 Tsenkhermandal     | 0       | 200   | 200   | 200   | 200   | 200      | 200   | 200      | 200   | 200                          | 200        | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   |
| 38       | 9 Murun              | 16      | 200   | 200   | 200   | 200   | 200      | 200   | 200      | 200   | 200                          | 200        | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   | 200   |
| 18       | 10 Umnudelger        | 78      | 78    | 78    | 290   | 290   | 290      | 290   | 290      | 290   | 290                          | 290        | 290   | 290   | 290   | 290   | 290   | 290   | 290   | 290   | 290   |
| 18       | 11 Bayanadraga       | 0       | 0     | 0     | 0     | 0     | 0        | 0     | 0        | 0     | 0                            | 0          | 0     | 011   | 110   | 110   | 110   | 110   | 110   | 110   | 110   |
| 8        | 12 Binder            | 0       | 0     | 0     | 0     | 0     | 0        | 180   | 180      | 180   | 180                          | 180        | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   |
| 80<br>7  | 13 Batshireet        | 0       | 0     | 0     | 0     | 0     | 0        | 0     | 0        | 0     | 0                            | 0          | 0     | 0     | 06    | 06    | 90    | 06    | 8     | 8     | 8     |
| 8        | 14 Batnorov          | 0       | 0     | 0     | 0     | 0     | 90       | 90    | 60       | 90    | 90                           | 90         | 90    | 06    | 06    | 60    | 06    | 60    | 6     | 90    | 8     |
| 18       | 15 Berkh             | 16      | 16    | 16    | 350   | 350   | 350      | 350   | 350      | 350   | 350                          | 350        | 350   | 350   | 350   | 350   | 350   | 350   | 350   | 350   | 350   |
| 8        | 16 Bayan-Ovoo        | 0       | 0     | 0     | 0     | 0     | 0        | 0     | 0        | 0     | 60                           | 60         | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| <u>~</u> | 17 Khajuu-Ulaan      | 0       | 0     | 0     | 0     | 0     | 0        | 0     | 0        | 0     | 0                            | 180        | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   | 180   |
| ≃        |                      | 0       | 0     | 0     | 0     | 0     | <u>8</u> | 8     | 100      | 8     | 001                          | 90<br>1    | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| 8        | 19 Dadal             | 0       | 0     | 0     | 0     | 0     | 0        | 0     | 150      | 150   | 150                          | 150        | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   | 150   |
| 18       | 20 Ulziit            | 50      | 50    | 50    | 50    | 50    | 50       | 50    | 120      | 120   | 120                          | 120        | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   | 120   |
| ~        | 21 Gurbanbulag       | 50      | 50    | 50    | 50    | 50    | 50       | 50    | 50       | 50    | 50                           | 50         | 50    | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   |
| 18       | 22 Bor-Undur         | 400     | 400   | 400   | 980   | 980   | 980      | 980   | 980      | 1,590 | 1,590                        | 1,590      | 1,590 | 1,590 | 1,590 | 1,590 | 1,590 | 1,590 | 1,590 | 1,590 | 1,590 |
|          | Total of Sum Centres | res 712 | 1,276 | 1,276 | 2,402 | 2,562 | 2,870    | 3,050 | 3,340    | 3,950 | 4,070                        | 4,250      | 4,250 | 4,410 | 4,500 | 4,500 | 4,500 | 4,500 | 4,500 | 4,500 | 4,500 |
|          | Aimag Total          | 2,352   | 2,916 | 2,916 | 4,272 | 4,482 | 4,840    | 5,070 | 5,420    | 6,130 | 6,340                        | 6,620      | 6,720 | 6,980 | 7,210 | 7,350 | 7,480 | 7,620 | 7,750 | 7,890 | 8,030 |
|          |                      |         |       |       | í     |       |          |       |          |       |                              |            |       |       |       |       |       |       |       |       | Ì     |

| AN-UUL         2001         2002         2003         2004         2005         2007         2008         2007         2008         2007         2008         2007         2008         2007         2008         2007         2008         2007         2008         2008         2003         2004         2008         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003         2003                                                                                                                                                                                                                                                                                                                                                                                                  | Ž  | NolaIMAG                  |       |       |       |        |        |        |        |        | Swit   | Switch Capacity in Operation | tv in One | ration |        |        |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|------------------------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| D.NKKAN.ULL         S.608         S.604         S.608         S.609         S.700                                                                                                                                                                                                                                                                                                                                                          |    | No. Sum                   | 2001  | 2002  | 2003  | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010                         | 2011      | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
| Aimage Centre5608500867007700770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 | DARKHAN-UUL               |       |       |       |        |        |        |        |        |        |                              |           |        |        |        |        |        |        |        |        |        |
| 2         Shamingi         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 |                           | 5,608 | 5,608 | 5,608 | 6,790  | 7,020  | 7,250  | 7,480  | 7,710  | 8,050  | 8,390                        | 8,730     | 9,080  | 9,420  | 9,890  | 10,360 | 10,840 | 11,310 | 11,780 | 12,260 | 12,730 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 | 2                         | 500   | 500   | 500   | 500    | 500    | 500    | 770    | 770    | 770    | 770                          | 770       | 1,220  | 1,220  | 1,220  | 1,220  | 1,220  | 1,220  | 1,220  | 1,220  | 1,220  |
| 4         Orthom         190         190         190         190         190         190         190         190         190         170         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770         1770                                                                                                                                                                                                                                                                                                                                                                                                  | 19 | ĉ                         | 150   | 150   | 150   | 150    | 150    | 150    | 150    | 330    | 330    | 330                          | 330       | 330    | 330    | 330    | 330    | 330    | 330    | 330    | 330    | 330    |
| Total of Same Centree         See         See         No         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70         1,70 <th>19</th> <th>4</th> <th>150</th> <th>150</th> <th>150</th> <th>150</th> <th>150</th> <th>150</th> <th>150</th> <th>150</th> <th>220</th>                                                                                            | 19 | 4                         | 150   | 150   | 150   | 150    | 150    | 150    | 150    | 150    | 220    | 220                          | 220       | 220    | 220    | 220    | 220    | 220    | 220    | 220    | 220    | 220    |
| Aimag Teat6,4066,4067,5007,907,908,5009,3709,71010,00611,96013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,70013,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | Total of Sum Centre       |       | 800   | 800   | 800    | 800    | 800    | 1,070  | 1,250  | 1,320  | 1,320                        | 1,320     | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  |
| ORKHON         N         OP         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N </th <th></th> <th>Aimag Total</th> <th>6,408</th> <th>6,408</th> <th>6,408</th> <th>7,590</th> <th>7,820</th> <th>8,050</th> <th>8,550</th> <th>8,960</th> <th>9,370</th> <th>9,710</th> <th>10,050</th> <th>10,850</th> <th>11,190</th> <th>11,660</th> <th>12,130</th> <th>12,610</th> <th>13,080</th> <th>13,550</th> <th>_</th> <th>14,500</th>                                                                                                                                                                       |    | Aimag Total               | 6,408 | 6,408 | 6,408 | 7,590  | 7,820  | 8,050  | 8,550  | 8,960  | 9,370  | 9,710                        | 10,050    | 10,850 | 11,190 | 11,660 | 12,130 | 12,610 | 13,080 | 13,550 | _      | 14,500 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 | ORKHON                    |       |       |       |        |        |        |        |        |        |                              |           |        |        |        |        |        |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 |                           | 5,400 | 5,400 | 5,400 | 17,340 | 18,000 | 18,670 | 19,330 | 19,990 | 20,950 | 21,910                       | 22,870    | 23,830 | 24,790 | 26,110 | 27,420 | 28,740 | 30,060 | 31,370 | 32,690 | 34,010 |
| Total of Summag Total         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700<                                                                                                                                                                                                                                                                                                                                               | 20 | 2                         | 2,300 |       | 2,300 | 2,950  | 2,950  | 2,950  | 2,950  | 2,950  | 3,680  | 3,680                        | 3,680     | 3,680  | 3,680  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  |
| Aimag Totat7,7007,7007,7007,7007,7007,7007,7002,0,5002,0,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,5,5002,7,6002,7,002,7,002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,7002,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Total of Sum Centre       | L. I  | 2,300 | 2,300 | 2,950  | 2,950  | 2,950  | 2,950  | 2,950  | 3,680  | 3,680                        | 3,680     | 3,680  | 3,680  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  |
| COBISUMBER         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th="">         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I</thi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Aimag Total               | ι     | 7,700 | 7,700 | 20,290 | 20,950 | 21,620 | 22,280 | 22,940 | 24,630 | 25,590                       | 26,550    | 27,510 | 28,470 | 30,900 | 32,210 | 33,530 | 34,850 | 36,160 | _      | 38,800 |
| 1         Aimag Centre         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         510         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  | 00                        |       |       |       |        |        |        |        |        |        |                              |           |        |        |        |        |        |        |        |        |        |
| 2         Shivegobi         200         200         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270         270                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 | I Aimag Centre            | 512   | 512   | 512   | 620    | 620    | 620    | 620    | 620    | 490    | 520                          | 540       | 560    | 580    | 610    | 640    | 670    | 700    | 730    | 760    | 790    |
| 3         Bayantal         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         48         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50 <t< td=""><th>51</th><td>2</td><td>200</td><td>200</td><td>200</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td><td>270</td></t<>                                                                                                                                                                                               | 51 | 2                         | 200   | 200   | 200   | 270    | 270    | 270    | 270    | 270    | 270    | 270                          | 270       | 270    | 270    | 270    | 270    | 270    | 270    | 270    | 270    | 270    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 | 3                         | 48    | 48    | 48    | 48     | 48     | 48     | 48     | 48     | 48     | 50                           | 50        | 50     | 50     | 50     | 50     | 50     | 50     | 50     | 50     | 50     |
| Aimag Totat7607607609389389388488408408408408409309309301,0301,0301,030NALIKI111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 </td <th></th> <td>Total of Sum Centre</td> <td></td> <td>248</td> <td>248</td> <td>318</td> <td>318</td> <td>318</td> <td>318</td> <td>318</td> <td>318</td> <td>320</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Total of Sum Centre       |       | 248   | 248   | 318    | 318    | 318    | 318    | 318    | 318    | 320                          | 320       | 320    | 320    | 320    | 320    | 320    | 320    | 320    | 320    | 320    |
| NALAIKINALAIKINIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Aimag Total               | 760   | 760   | 760   | 938    | 938    | 938    | 938    | 938    | 808    | 840                          | 860       | 880    | 906    | 930    | 960    | 966    | 1,020  | 1,050  | 1,080  | 1,110  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 | NAI                       |       |       |       |        |        |        |        |        |        |                              |           |        |        |        |        |        | <br>.  |        |        |        |
| $ \                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 | 1                         | 1,536 | 1,536 | 1,536 | 2,570  | 2,680  |        | 2,910  | 3,020  |        |                              | 3,460     | 3,600  | 3,750  | 3,950  | 4,150  | 4,350  | 4,550  | 4,740  | 4,940  | 5,140  |
| 3 Shokhoi00000000000070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070 <td< td=""><th>22</th><td>2</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>48</td><td>280</td><td>280</td><td>280</td><td>280</td><td>280</td><td>280</td><td>280</td><td>280</td><td>280</td><td>280</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 | 2                         | 48    | 48    | 48    | 48     | 48     | 48     | 48     | 48     | 48     | 48                           | 280       | 280    | 280    | 280    | 280    | 280    | 280    | 280    | 280    | 280    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 | 3                         | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0                            | 0         | 0      | 0      | 0      | 0      | 70     | 70     | 70     | 70     | 70     |
| 5         Nisekh/GORDOK/         0         0         0         0         0         0         0         0         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22 | 4                         | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0                            | 0         | 0      | 0      | 0      | 0      | 70     | 02     | 70     | 70     | 70     |
| Total of Sum Centres         48         48         48         48         48         48         48         48         48         280         280         280         280         420         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         470         5.220         5.210         5.420         5.420                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 | 5                         | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0                            | 0         | 0      | 0      | 0      | 0      | 0      | 60     | 60     | 60     | 60     |
| Aimag Total         1,584         1,584         1,584         1,584         1,584         1,584         1,584         1,584         2,728         2,948         2,958         3,068         3,218         3,3740         3,880         4,030         4,130         4,770         5,030         5,220         5,420           BAGANUUR Aimag Total         1         2,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130 <th></th> <td>Total of Sum Centre</td> <td></td> <td>48</td> <td>48</td> <td>48</td> <td>48</td> <td>48</td> <td>48</td> <td>48</td> <td>48</td> <td>48</td> <td>280</td> <td>280</td> <td>280</td> <td>280</td> <td>280</td> <td>420</td> <td>480</td> <td>480</td> <td>480</td> <td>480</td>                                                           |    | Total of Sum Centre       |       | 48    | 48    | 48     | 48     | 48     | 48     | 48     | 48     | 48                           | 280       | 280    | 280    | 280    | 280    | 420    | 480    | 480    | 480    | 480    |
| BAGANUUR Aimag Total         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,130         3,170         3,610         3,990         4,180         4,370         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560         4,560 </td <th></th> <td>Aimag Total</td> <td>1,584</td> <td>1,584</td> <td>1,584</td> <td>2,618</td> <td>2,728</td> <td>2,848</td> <td>2,958</td> <td>3,068</td> <td>3,218</td> <td>3,358</td> <td>3,740</td> <td>3,880</td> <td>4,030</td> <td>4,230</td> <td>4,430</td> <td>4,770</td> <td>5,030</td> <td>5,220</td> <td>5,420</td> <td>5,620</td> |    | Aimag Total               | 1,584 | 1,584 | 1,584 | 2,618  | 2,728  | 2,848  | 2,958  | 3,068  | 3,218  | 3,358                        | 3,740     | 3,880  | 4,030  | 4,230  | 4,430  | 4,770  | 5,030  | 5,220  | 5,420  | 5,620  |
| 1 Baganuuu city 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 3,130 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 4,750 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | <b>BAGANUUR Aimag Tot</b> | 8     |       |       |        |        |        |        |        |        |                              |           |        |        |        |        |        |        |        |        |        |
| 3.130 3.130 3.130 3.130 3.130 3.130 3.130 3.130 3.130 3.130 3.130 3.130 3.190 3.301 3.470 3.610 3.800 3.990 4.180 4.570 4.560 4.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2  | _                         | 3,130 | _     | 3,130 | 3,130  | 3,130  | 3,130  | 3,130  | 3,130  | 3,130  | 3,190                        | 3,330     | 3,470  | 3,610  | 3,800  | 3,990  | 4,180  | 4,370  | 4,560  | 4,750  | 4,950  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Aimag Total               | 3,130 | 3,130 | 3,130 | 3,130  | 3,130  | 3,130  | 3,130  | 3,130  | 3,130  | 3,190                        | 3,330     | 3,470  | 3,610  | 3,800  | 3,990  | 4,180  | 4,370  | 4,560  | 4,750  | 4,950  |

| ź          | No AIMAG                          |                      |        |        |        |        |        |        |        | Swi    | Switch Capacity in | ity in Ope | Operation |        |        |        |        |        |        |        | Γ      |
|------------|-----------------------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------------------|------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
|            | No. Sum                           | 2001                 | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010               | 2011       | 2012      | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|            | Total by Aimag (Sum Centres Only) | tres Only            | y) (   |        |        |        |        |        |        |        |                    |            |           |        |        |        |        |        |        |        |        |
| -          | Arkhangai                         | 550                  | 550    | 550    | 1,060  | 2,324  | 2,324  | 2,806  | 3,018  | 3,208  | 3,208              | 3,208      | 3,400     | 3,400  | 3,400  | 3,400  | 3,400  | 3,400  | 3,400  | 3,400  | 3,400  |
| 2          | 2 Bayan-Ulgii                     | 422                  | 422    | 422    | 422    | 422    | 530    | 660    | 962    | 1,184  | 1,184              | 1,470      | 1,470     | 1,668  | 1,710  | 1,790  | 1,790  | 1,790  | 1,790  | 1,790  | 1,790  |
| m          | 3 Bayankhongor                    | 384                  | 384    | 384    | 1,220  | 1,392  | 1,392  | 1,916  | 2,556  | 2,646  | 2,696              | 3,128      | 3,268     | 3,550  | 3,550  | 3,550  | 3,550  | 3,550  | 3,550  | 3,550  | 3,550  |
| 4          | 4 Bulgan                          | 974                  | 974    | 974    | 2,504  | 2,886  | 2,984  | 3,818  | 3,920  | 3,970  | 3,970              | 3,970      | 3,970     | 3,970  | 3,970  | 3,970  | 3,970  | 3,970  | 3,970  | 3,970  | 3,970  |
| 5          | Govi-Altai                        | 916                  | 916    | 916    | 916    | 1,378  | 1,512  | 1,772  | 1,924  | 2,054  | 2,094              | 2,416      | 2,590     | 2,694  | 2,694  | 2,726  | 2,726  | 2,770  | 2,770  | 2,810  | 2,810  |
| Ŷ          | 6 Domogovi                        | 894                  | 894    | 894    | 1,474  | 1,664  | 1,736  | 1,938  | 1,938  | 2,400  | 2,580              | 2,760      | 2,760     | 2,760  | 2,850  | 2,850  | 2,850  | 2,850  | 2,850  | 2,890  | 2,920  |
| 5          | 7 Dornod                          | 240                  | 240    | 240    | 240    | 440    | 614    | 614    | 614    | 768    | 806                | 806        | 806       | 806    | 806    | 806    | 844    | 844    | 980    | 1,020  | 1,020  |
| 8          | 8 Dundgovi                        | 912                  | 912    | 912    | 1,016  | 1,076  | 1,216  | 1,216  | 1,266  | 1,402  | 1,404              | 1,404      | 1,404     | 1,456  | 1,530  | 1,530  | 1,530  | 1,530  | 1,530  | 1,550  | 1,550  |
| 6          | 9 Zavkhan                         | 660                  | 660    | 660    | 1,380  | 1,500  | 1,752  | 2,036  | 2,166  | 2,310  | 2,610              | 2,610      | 2,740     | 2,740  | 2,740  | 2,740  | 2,810  | 2,980  | 3,030  | 3,070  | 3,070  |
| 2          | 10 Uvurkhangai                    | 2,308                | 2,308  | 2,308  | 3,018  | 3,260  | 3,602  | 3,602  | 3,684  | 4,516  | 4,518              | 4,518      | 4,518     | 4,518  | 4,518  | 4,518  | 4,528  | 4,528  | 4,528  | 4,528  | 4,530  |
| =          | 11 Umnugovi                       | 144                  | 144    | 144    | 144    | 354    | 494    | 494    | 778    | 1,088  | 1,248              | 1,248      | 1,330     | 1,330  | 1,330  | 1,410  | 1,410  | 1,410  | 1,410  | 1,410  | 1,410  |
| 17         | 12 Sukhbaatar                     | 424                  | 576    | 576    | 1,128  | 1,498  | 1,588  | 1,718  | 1,828  | 1,848  | 1,848              | 1,848      | 1,848     | 2,010  | 2,010  | 2,090  | 2,090  | 2,090  | 2,090  | 2,090  | 2,130  |
| -          | 13 Selenge                        | 3,140                | 3,140  | 3,140  | 4,010  | 4,410  | 4,578  | 4,938  | 4,938  | 5,248  | 5,248              | 5,318      | 5,318     | 5,370  | 6,110  | 6,140  | 6,130  | 6,130  | 6,130  | 6,130  | 6,130  |
| <u></u> ]4 | 14 Tuv                            | 1,488                | 1,488  | 1,488  | 3,148  | 3,486  | 3,690  | 3,788  | 4,130  | 4,362  | 4,334              | 4,334      | 4,334     | 4,418  | 4,458  | 4,520  | 4,520  | 4,520  | 4,520  | 4,560  | 4,560  |
| 15         | 15 Uvs                            | 526                  | 526    | 526    | 526    | 664    | 796    | 796    | 1,046  | 1,098  | 1,148              | 1,148      | 1,148     | 1,148  | 1,148  | 1,148  | 1,160  | 1,230  | 1,280  | 1,320  | 1,320  |
| 9          | 16 Khovd                          | 734                  | 734    | 734    | 1,024  | 1,136  | 1,236  | 1,358  | 1,592  | 1,878  | 1,878              | 1,878      | 1,878     | 1,950  | 1,950  | 2,030  | 2,030  | 2,030  | 2,080  | 2,080  | 2,060  |
| -          | 17 Khuvsugul                      | 900                  | 906    | 006    | 1,784  | 2,610  | 2,760  | 3,232  | 3,546  | 3,546  | 3,546              | 4,000      | 4,550     | 4,650  | 4,650  | 4,650  | 4,650  | 4,650  | 4,650  | 4,690  | 4,690  |
| ≌          | 18 Khenti                         | 712                  | 1,276  | 1,276  | 2,402  | 2,562  | 2,870  | 3,050  | 3,340  | 3,950  | 4,070              | 4,250      | 4,250     | 4,410  | 4,500  | 4,500  | 4,500  | 4,500  | 4,500  | 4,500  | 4,500  |
| <u>=</u>   | 19 Darkhan-Uul                    | 800                  | 800    | 800    | 800    | 800    | 800    | 1,070  | 1,250  | 1,320  | 1,320              | 1,320      | 1,770     | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  | 1,770  |
| ลี         | 20 Orkhon                         | 2,300                | 2,300  | 2,300  | 2,950  | 2,950  | 2,950  | 2,950  | 2,950  | 3,680  | 3,680              | 3,680      | 3,680     | 3,680  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  | 4,790  |
| 21         | Govisumber                        | 248                  | 248    | 248    | 318    | 318    | 318    | 318    | 318    | 318    | 320                | 320        | 320       | 320    | 320    | 320    | 320    | 320    | 320    | 320    | 320    |
| 22         | 22 Nalaikh                        | 48                   | 48     | 48     | 48     | 48     | 48     | 48     | 48     | 48     | 48                 | 280        | 280       | 280    | 280    | 280    | 420    | 480    | 480    | 480    | 480    |
| 53         | 23 Baganuur                       | 0                    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0                  | 0          | 0         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|            | Total                             | 19,724 20,440 20,440 | 20,440 | 20,440 | 31,532 | 37,178 | 39,790 | 44,138 | 47,812 | 52,842 | 53,758             | 55,914     | 57,632    | 58,898 | 61,084 | 61,528 | 61,788 | 62,132 | 62,418 | 62,718 | 62,770 |
|            |                                   |                      |        |        |        |        |        |        |        | I      |                    |            |           |        |        |        |        |        |        |        |        |

| No AIMAG                                                       |            |         |          |              |           |                                                                                                     |          |          | Switt      | Switch Capacity in Operation | tv in Oper | ation      |           |          |           |         | ļ       |         |           |         |
|----------------------------------------------------------------|------------|---------|----------|--------------|-----------|-----------------------------------------------------------------------------------------------------|----------|----------|------------|------------------------------|------------|------------|-----------|----------|-----------|---------|---------|---------|-----------|---------|
| No. Sum                                                        | 2001       | 2002    | 2003     | 2004         | 2005      | 2006                                                                                                | 2007     | 2008     | 2009       | 2010                         | 2011       | 2012       | 2013      | 2014     | 2015      | 2016    | 2017    | 2018    | 2019      | 2020    |
| Total by Aimag (Aimag Centres + Sum Centres)                   | Centres 4  | + Sum C | entres)  | ŀ            | <b> </b>  |                                                                                                     |          |          |            |                              |            |            |           |          |           |         |         |         |           |         |
| IARKHANGAI                                                     | 1,898      | 1,898   | 1,898    | 5,640        | 7,144     | 7,384                                                                                               | 8,106    | 8,558    | 9,018      | 9,278                        | 9,548      | 10,000     | 10,270    | 10,640   | 11,000    | 11,370  | 11,730  | 12,100  | 12,460    | 12,830  |
| 2BAYAN-ULGI                                                    | 2.457      | 2,457   | 2,457    | 3,902        | 4,052     | 4,300                                                                                               | 4,570    | 5,012    | 5,434      | 5,624                        | 6,110      | 6,300      | 6,698     | 7,000    | 7,350     | 7,620   | 7,880   | 8,150   | 8,420     | 8,680   |
| <b>JBAYANKHONGOR</b>                                           | 1.984      | 1,984   | 1,984    | 5,150        | 5,482     | 5,642                                                                                               | 6,326    | 7,126    | 7,436      | 7,706                        | 8,358      | 8,708      | 9,210     | 9,510    | 9,82d     | 10,120  | 10,420  | 10,720  | 11,020    | 11,320  |
| 4BULGAN                                                        | 2,358      | 2,358   | 2,358    | 4,194        | 4,646     | 4,814                                                                                               | 5,718    | 5,890    | 6,030      | 6,130                        | 6,220      | 6,320      | 6,410     | 6.540    | 6,670     | 6,800   | 6,930   | 7,060   | 7,190     | 7,320   |
| 5 GOBI-ALTAI                                                   | 2,666      | 2,666   | 2,666    | 2,846        | 3,388     | 3,602                                                                                               | 3,942    | 4,174    | 4,404      | 4,554                        | 4,986      | 5,270      | 5,474     | 5,624    | 5,806     | 5,956   | 6,150   | 6,290   | 6,480     | 6,630   |
| 6 DORNOGOVI                                                    | 2,544      | 2,544   | 2,544    | 3,174        | 3,424     | 3,566                                                                                               | 3,838    | 3,908    | 4,470      | 4,740                        | 5,020      | 5,110      | 5,200     | 5,420    | 5,550     | 5,680   | 5,810   | 5,940   | 6,110     | 6,270   |
| 7 DORNOD                                                       | 2,467      | 2,467   | 2,467    | 2,467        | 2,667     | 2,841                                                                                               | 2,841    | 2,841    | 2,995      | 3,033                        | 3,096      | 3,196      | 3,296     | 3,426    | 3,556     | 3,724   | 3,854   | 4,120   | 4,300     | 4,430   |
| 8 DUNDGOBI                                                     | 2,412      | 2,412   | 2,412    | 2,516        | 2,576     | 2,716                                                                                               | 2,716    | 2,766    | 2,902      | 2,904                        | 2,904      | 2,914      | 3,026     | 3,180    | 3,260     | 3,350   | 3,430   | 3,510   | 3,610     | 3,700   |
| 9 ZAVKHAN                                                      | 2,228      | 2.228   | 2,228    | 3,000        | 3,180     | 3,502                                                                                               | 3,856    | 4,046    | 4,280      | 4,670                        | 4,760      | 4,980      | 5,070     | 5,200    | 5,320     | 5,510   | 5,810   | 5,980   | 6,140     | 6,270   |
| IOUVURKHANGAI                                                  | 4,068      | 4,068   | 4,068    | 4,868        | 5,220     | 5,672                                                                                               | 5,782    | 5,984    | 6,926      | 7,038                        | 7,138      | 7,248      | 7,358     | 7,508    | 7,668     | 7,828   | 7,978   | 8,128   | 8,278     | 8,430   |
| 11 UMNUGOBI                                                    | 2,008      | 2,008   | 2,008    | 2,214        | 2,514     | 2,734                                                                                               | 2,814    | 3,188    | 3,618      | 3,888                        | 4,008      | 4,200      | 4,320     | 4,480    | 4,720     | 4,880   | 5,030   | 5,190   | 5,350     | 5,510   |
| 12 SUKHBAATAR                                                  | 1,495      | 1.647   | 1,647    | 3,268        | 3,708     | 3,868                                                                                               | 4,068    | 4,238    | 4,378      | 4,498                        | 4,608      | 4,728      | 5,010     | 5,160    | 5,400     | 5,560   | 5,720   | 5,880   | 6,040     | 6,230   |
| 13 SELENGE                                                     | 5,020      | 5,020   | 5,020    | 5,890        | 6,290     | 6,458                                                                                               | 6,818    | 6,818    | 7,128      | 7,128                        | 7,198      | 7,248      | 7,380     | 8,230    | 8,360     | 8,460   | 8,570   | 8,670   | 8,780     | 8,880   |
| 14 TUV                                                         | 3,504      | 3,504   | 3,504    | 5,208        | 5,606     | 5,870                                                                                               | 6,028    | 6,430    | 6,772      | 6,854                        | 6,964      | 7,074      | 7,268     | 7,468    | 7,680     | 7,830   | 7,980   | 8,130   | 8,330     | 8,480   |
| ISUVS                                                          | 2,542      | 2,542   | 2,542    | 2,542        | 2,684     | 2,896                                                                                               | 2,976    | 3,306    | 3,468      | 3,628                        | 3,728      | 3,838      | 3,948     | 4,098    | 4,248     | 4,410   | 4,620   | 4,820   | 5,010     | 5,160   |
| IGKHOVD                                                        | 2,782      | 2,782   | 2,782    | 3,504        |           | 3,916                                                                                               | 4,148    | 4,482    | 4,908      | 5,038                        | 5,178      | 5,318      | 5,530     | 5,72d    | 5,990     | 6,180   | 6,370   | 6,610   | 6,800     | 6,970   |
| 17KHUVSGUL                                                     | 3,220      | 3,220   | 3,220    | 6,244        | 7,200     | 7,480                                                                                               | 8,082    | 8,526    | 8,766      | 9,006                        | 9,700      | 10,490     | 10,830    | 11,150   | 11,480    | 11,810  | 12,140  | 12,470  | 12,830    | 13,160  |
| 18KHENTII                                                      | 2,352      | 2,916   | 2,916    | 4,272        | 4,482     | 4,840                                                                                               | 5,070    | 5,420    | 6,13d      | 6,340                        | 6,620      | 6,720      | 6,980     | 7,210    | 7,350     | 7,480   | 7,620   | 7,750   | 7,890     | 8,030   |
| 19 DARKHAN-UUL                                                 | 6,408      | 6,408   | 6,408    | 7,590        |           | 8,050                                                                                               | 8,550    | 8,960    | 9,370      | 9,710                        | 10,050     | 10,850     | 11,190    | 11,660   | 12,130    | 12,610  | 13,080  | 13,550  | 14,030    | 14,500  |
| ZOORKHON                                                       | 7,700      | 7,700   | 7,700    | 20.290       | 20,950    | 21,620                                                                                              | 22,280   | 22,940   | 24,630     | 25,590                       | 26,550     | 27,510     | 28,470    | 30,900   | 32,210    | 33,530  | 34,850  | 36,160  | 37,480    | 38,800  |
| 21 GOBISUMBER                                                  | 760        | 760     | 760      | 938          | 938       | 938                                                                                                 | 938      | 938      | 808        | 840                          | 860        | 880        | 900       | 930      | 960       | 990     | 1,020   | 1,050   | 1,080     | 1,110   |
| 22 NALAIKH                                                     | 1.584      | 1.584   | 1.584    | 2,618        | 2,728     | 2,848                                                                                               | 2,958    | 3,068    | 3,218      | 3,358                        | 3,740      | 3,880      | 4,030     | 4,230    | 4,430     | 4,770   | 5,030   | 5,220   | 5,420     | 5,620   |
| 23 BAGANUUR                                                    | 3,130      | 3,130   | 3,130    | 3,130        | 3,130     | 3,130                                                                                               | 3,130    | 3,130    | 3,130      | 3,190                        | 3,330      | 3,470      | 3,610     | 3,800    | 3,990     | 4,180   | 4,370   | 4,560   | 4,750     | 4,950   |
| Total                                                          | 67,587     | 68,303  | 68,303   | 105,465 113, | 549       | 118,687                                                                                             | 125,555  | 131,749  | 140,219    | 144,745                      | 150,674    | 156,252    | 161,478   | 69.084   | 174,948   | 180,648 | 186,392 | 192,058 | 197,798 2 | 203,280 |
| Note: Thenkhermandal, Jargalkhaan and Muren of Khenti Atmag an | argalkhaan | and Mur | en of Kh | enti Aima    | ig and Mu | d Mukhaan of Sukhbaatar Aimag are provided with Digital switch in 2003 under MON-4 (Korean) Project | Sukhbaat | ır Aimag | are provid | led with I                   | digital sw | itch in 20 | 3 under ] | MON-4 () | Korean) P | roject. |         |         |           |         |
|                                                                |            |         |          |              |           |                                                                                                     |          |          |            |                              |            |            |           |          |           |         |         |         |           |         |

| No. |                   | Name of      | Dist- | From UB   | UB    | Area                 | Population | tion            | Sum | SW       | Subsc   | riber by | Subscriber by user category | gory      | Subs   | Subscriber by location | cation         |
|-----|-------------------|--------------|-------|-----------|-------|----------------------|------------|-----------------|-----|----------|---------|----------|-----------------------------|-----------|--------|------------------------|----------------|
|     | the Aimag         | the Capital  | rict  | Direction | km    | $10^3 \mathrm{Km}^2$ | Total      | Pops/           |     | Capacity | Total   | Public   | Public Bussines             | s Private | Total  | Aimag                  | Sum            |
|     |                   |              |       |           | ſ     |                      |            | Km <sup>2</sup> | ,   |          |         |          |                             |           |        | Centre                 | Centre         |
| ч   | Arkhangai         | Tsetserieg   | υ     | ×         | 453   | 55.00                | 97,500     | 1.8             | 19  | 1,898    | 1,187   | 319      | 149                         | 719       | 1,187  | 395                    | 192            |
| 2   |                   | Olgii        | ≥     | ×         | 1,636 | 46.00                | 94,600     | 2.1             | 15  | 2,457    | 1,755   | 298      | 188                         | 1,269     | 1,755  | 1,666                  | 89             |
| £   | hongor            | Bayankhongor | s     | WSW       | 630   | 116.00               | 85,300     | 0.7             | 21  | 1,984    | 1,320   | 260      | 177                         | 883       | 1,320  | 1,106                  | 214            |
| 4   |                   | Bulgan       | z     | MN        | 318   | 49.00                | 62,600     | 1.3             | 17  | 2,358    | 1,831   | 340      | 178                         | 1,313     | 1,831  | 1,247                  | 584            |
| Ś   | 5 Govi-Altai      | Altai        | ≩     | WSW       | 1,001 | 142.00               | 63,600     | 0.4             | 20  | 2,666    | 1,737   | 301      | 144                         | 1,292     |        | 1,227                  | 510            |
| 9   | ovi               | Sainshand    | s     | SES       | 463   | 111.00               | 51,100     | 0.5             | 18  | 2,544    | 1,542   | 255      | 124                         | 1,163     | 1,542  | 1,054                  | 488            |
| 7   | 7 Dornod          | Choibalsan   | ш     | Е         | 655   | 124.00               | 74,200     | 0.6             | 15  | 2,467    | 1,687   | 273      | 161                         | 1,253     |        | 1,596                  | 91             |
| ∞   |                   | Mandalgovi   | S     | S         | 260   | 78.00                | 51,300     | 0.7             | 15  | 2,412    | 1,726   | 266      | 180                         | 1,280     | 1,726  | 1,145                  | 581            |
| 6   |                   | Uliastai     | z     | 3         | 984   | 82.00                | 87,200     | 1.1             | 24  | 2,228    | 1,587   | 370      | 134                         | 1,083     |        |                        | 565            |
| 10  | gai               | Arvaikheer   | υ     | WS        | 430   | 63.00                | 113,000    | 1.8             | 20  | 4,068    | 2,979   | 332      | 262                         | 2,385     | 2,979  | 1,644                  | 1,335          |
| Ξ   |                   | Dalanzadgad  | s     | s         | 553   | 165.00               | 46,900     | 0.3             | 16  | 2,008    | 1,618   | 232      | 148                         | 1,238     | 1,618  | 1,555                  | 63             |
| 2   | ıtar              | Banun-Urt    | ш     | н         | 560   | 82.00                | 55,900     | 0.7             | 14  | 1,495    | 929     | 205      | 85                          | 623       | 929    | 792                    | 137            |
| 13  | nge               | Sukhbaatar   | z     | z         | 311   | 43.00                | 100,900    | 2.3             | 21  | 5,020    | 3,225   | 474      | 412                         | 2,339     | 3,225  | 1,376                  | 1,849          |
| 4   |                   | Zuunmod      | ပ     | -         | 43    | 81.00                | 98,000     | 1.2             | 28  | 3,504    | 1,829   | 547      | 205                         | 1,101     | 1,829  | 1,249                  | 580            |
| 15  |                   | Ulaangom     | 3     | WNW       | 1,336 | 69.00                | 86,800     | 1.3             | 20  | 2,542    | 1,883   | 221      | 125                         | 1,537     | 1,883  | 1,846                  | 37             |
| 16  |                   | Khovd        | ≽     | ×         | 1,425 | 76.00                | 87,800     | 1.2             | 17  | 2,782    | 1,456   | 316      | 175                         | 965       | 1,456  | 1,241                  | 215            |
| 17  | rul               | Moron        | z     | NW        | 671   | 101.00               | 119,800    | 1.2             | 25  | 3,220    | 2,490   | 477      | 268                         | 1,745     | 2,490  | 2,014                  | 476            |
| 18  | 18 Khentii (      | Ondorkhaan   | Ш     | Э         | 331   | 82.00                | 71,400     | 0.9             | 22  | 2,352    | 1,624   | 271      | 202                         | 1,151     | 1,624  | 1,064                  | 560            |
| 19  | n-Uul             | Darkhan      | z     | NWN       | 219   | 0.20                 | 84,800     | 424.0           | 5   | 6,408    | 5,871   | 319      | 523                         | 5,029     | 5,871  | 5,417                  | 454            |
| ខ្ល | 20 Orkhon         | Erdenet      | z     | MNM       | 371   | 0.06                 | 76,000     | 1,266.7         | 3   | 7,700    | 6,323   | 353      | 626                         | 5,344     | 6,323  | 5,004                  | 1,319          |
| 21  | Govisumber        | Choir        | S     | SE        | 240   | ł                    | 12,300     | -               | 3   | 760      | 643     | 118      | 81                          | 444       | 643    | 479                    | 164            |
| 22  | 22 Baganuur       |              | 1     | 1         |       | -                    |            |                 | 1   | 3,130    | 2,649   | 171      | 252                         | 2,226     | ц,     | 2,550                  | <del>6</del> 6 |
| 53  | 23 Nalaikh        |              | 1     |           |       | -                    | 1          | :               | 5   | 1,584    | 1,490   | 165      | 126                         | 1,199     | 1,490  | 1,472                  | 18             |
|     | Subtotal of Aimag |              | 1     | 1         | -     | 1                    | -          |                 | 364 | 67,587   | 49,381  | 6,883    | 4,925                       | 37,597    | 49,381 | 38,761                 | 10,620         |
| 24  | 24 Ulaanbaatar    |              | ł     | !         | 1     |                      | 786,500    | 1               |     | 73,192   | 70,611  |          |                             |           |        |                        |                |
|     | Total             |              | ł     |           |       | 1 565.26             | 2 407 SM   | 1 711           |     | 140 770  | 110 007 |          |                             |           |        |                        |                |

7.2 Existing Switching Facilities in 2001

Page 7 - 20

| Official         Official           52         7         3,159         5,260           64         0         5,464         5,020           67         0         1,452         2,771           97         0         1,452         2,771           70         1,452         2,771           71         0         1,452         2,771           70         0         1,452         2,771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         1,33         771           70         0         2,68         2,611           70         0         2,08         2,625           713         8,262< | │ <b>└</b> ┝ <b>──╂</b> ── <del>┢──┟──┟──┼──┼──</del> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Party         Total         Sin           2         7         3,159         5,           4         0         5,464         5,           7         0         5,464         5,           7         0         1,452         2,           3         0         1,452         2,           3         0         1,452         2,           3         0         1,452         2,           6         0         1,452         2,           6         0         1,452         2,           8         0         1,070         9           8         0         2,08         2           3         4         67         8           3         0         7,13         8           7         2,058         7,3         3           9         0         7,13         8         7           1         7         2,058         7         3         3                                                                                                                                                                                    | Sing<br>3,1<br>5,4<br>1,4<br>1<br>1,0<br>1,0          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,1<br>5,4<br>1,4<br>6<br>1<br>1,0<br>1,0             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,464<br>1,452<br>697<br>133<br>1,070<br>66           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,452<br>697<br>133<br>1,070<br>66                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 697<br>133<br>1,070<br>66                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133<br>1,070<br>66                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,070<br>66                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 666                                                   |
| 0         46           0         208           4         67           0         713         8,           0         1,075         3,           7         2,058         7,           0         202         1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| 0         208           4         67           0         713         8,           0         1,075         3,           7         2,058         7,           0         202         1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                    |
| 4         67           0         713         8,           0         1,075         3,           7         2,058         7,           0         202         1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 208                                                   |
| 0 713<br>0 1,075<br>7 2,058<br>0 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                                                    |
| 0 1,075<br>7 2,058<br>0 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 713                                                   |
| 7 2,058<br>0 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,075                                                 |
| 0 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,051                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 202                                                   |
| 45 3 248 1,717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 245                                                   |
| 37 21 16,658 53,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16,637                                                |

.

Ulaanbaatar

EATS = Digital Switch, AATS = Analogue Switch.

'---' means the figure is inleaded in the column indicated above.

| No. | Aimag/Sum      | Switc             | Switching Facilities | es                                    |       | Subscriber | criber   |         | No. of circuits |
|-----|----------------|-------------------|----------------------|---------------------------------------|-------|------------|----------|---------|-----------------|
|     |                | Model             | Type                 | Capacity                              | Total | Public     | Business | Private | to/from Aimag   |
|     | Aimag center   | EWSD              | D                    | 1,348                                 | 995   | 200        | 120      | 675     |                 |
| 7   | Battsengel     | ATC-50/200        | Α                    | 50                                    | 24    | 15         | 4        | 5       |                 |
| ς   | Bulgan         | KX-616            | D                    | 16                                    | 3     | 2          |          | 0       | 1               |
| 4   | Chuluut        | C-12/48           | A                    | 48                                    | m     | Э          | 0        | 0       |                 |
| 5   | Erdenemandal   | C-12/48           | A                    | 48                                    | 16    | 7          | 4        | 5       |                 |
| 9   | Ikhtamir       | KX-616            | D                    | 16                                    | 10    | 6          |          | 0       |                 |
| 7   | Jargalant      | C-12/48           | Α                    | 48                                    | 6     | ~          |          | 0       | 1               |
| 8   | Khairkhan      | ATC-50/200        | Α                    | 50                                    | 24    | 4          |          | 19      |                 |
| 6   | 9 Khangai      | JC-20             | A                    | 20                                    | 10    | 2          | E.       | 0       | 1               |
| 10  | 10 Khashaat    | manual            | Μ                    |                                       | 9     | 4          | 2        | 0       |                 |
| Ξ   | Khotont        | ATC-50/200        | А                    | 50                                    | 21    | 7          | 9        | ∞       | 2               |
| 12  | Tariat         | EM-48             | A                    | 48                                    | 10    | 9          | 0        | 4       |                 |
| 13  | Tsakhir        | manual            | М                    |                                       | 7     | 7          | 0        | 0       |                 |
| 14  | Tsenkher       | JC-20             | Α                    | 20                                    | 5     | 3          | 0        | 7       | 1               |
| 15  | Tsetserleg     | C-12/48           | А                    | 48                                    | 9     | 9          | 0        | 0       |                 |
| 16  | 16 Tuvshruuleh | ATC-40/80         | Α                    | 40                                    | 15    | 13         | 2        | 0       |                 |
| 17  | Ugiinuur       | EM-4              | А                    | 12                                    | 8     | 7          |          | 0       | 1               |
| 18  | Ulziit         | KX-616            | D                    | 16                                    | 12    | 6          | 2        |         |                 |
| 19  | Undur-Ulaan    | JC-20             | V                    | 20                                    | 3     | 2          |          | 0       | 1               |
|     | Total          |                   | -                    | 1,898                                 | 1,187 | 319        | 149      | 719     |                 |
|     |                | Type D = Digital, | A = Analog           | D = Digital, A = Analogue, M = Manual | al.   |            |          |         |                 |

Arkhangai

| Model         Type         Capacity         Total         Public         Business         Private         toffom Aimage           1         Aimag center         EWSD         D         2,035         1,666         209         188         1,269         coffom Aimage           2         Altai         C-12/48         A         48         2,035         1,666         209         188         1,269         model         m | No. | Aimag/Sum    | Switch     | Switching Facilities | es       |       | Subscriber | criber   |         | No. of circuits |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|------------|----------------------|----------|-------|------------|----------|---------|-----------------|
| Aimag centerEWSDD $2,035$ $1,666$ $209$ $188$ $1,269$ AttaiC-12/48A4844600AttaitsugtsC-12/48A4822000BaynnurC-12/48AA822000BaynnurC-12/48AA4822000BugatmanualMM14000BuyantmanualM114000BuyantmanualM122000BuyantMM111000BuyantManualM111000BuyantMM111100BuyantMM111100BuyantMM111100BuyantKTX16/32D3244000SagaiMM1111000SagaiMM1111000SagainurMMM111000SagainurMMM111000Sagainur </th <th></th> <th></th> <th>Model</th> <th>Type</th> <th>Capacity</th> <th>Total</th> <th>Public</th> <th>Business</th> <th>Private</th> <th>to/from Aimag</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              | Model      | Type                 | Capacity | Total | Public     | Business | Private | to/from Aimag   |
| Atai $C-12/48$ A48484600Atartsugts $C-12/48$ A4822000Baynnur $C-12/48$ A48220000BugatmanualMMM660000BugatmanualMMM48220000BugatmanualMMM484440000BugatmanualMMM484440000BugatmanualMMM4444440000BuyantmanualMMM4444440000BuyantmanualMMM4444440000BuyantmanualMMM324444440000NogoonnurKTX16/32DMM161616000000SagsaiATC-50/200AMM18181600000000000000000000000000000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | Aimag center | EWSD       | D                    | 2,035    | 1,666 | 209        | 188      | 1,269   |                 |
| Attantsugts         C-12/48         A         48         2         2         0         0         0           Baynnuur         C-12/48         A         A         48         2         2         0         0         0         0           Baynnuur         C-12/48         A         A         48         2         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                | 2   | Altai        | C-12/48    | Y                    | 48       | 4     | 4          | 0        | 0       | 1               |
| Baynnur         C-12/48         A         48         2         2         0         0         0           Bugat         manual         M         M         F         F         F         F         0         0         0         0         0           Bugat         manual         M         M         F         F         F         F         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                     | Э   | Altantsugts  | C-12/48    | A                    | 48       | 2     | 2          | 0        | 0       | 1               |
| Bugat         manual         M         M         6         6         0         0         0           Bujan         manual         M         M         M         4         0         0         0         0           Bujant         manual         M         M         1         4         0         0         0           Buyant         manual         M         M         3         4         0         0         0           Buyant         KrX16/32         D         32         4         4         0         0         0         0           Khorgor         manual         M         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>4</td> <td>Baynnur</td> <td>C-12/48</td> <td>A</td> <td>48</td> <td>2</td> <td>2</td> <td>0</td> <td>0</td> <td>1</td>                                       | 4   | Baynnur      | C-12/48    | A                    | 48       | 2     | 2          | 0        | 0       | 1               |
| Bulgan         manual         M         M         4         4         0         0         0           Buyant         manual         M         M         3         3         9         0         0         0         0           Buyant         manual         M         M         32         4         4         0         0         0         0         0           Deluun         KTX16/32         D         32         4         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>5</td> <td>Bugat</td> <td>manual</td> <td>М</td> <td></td> <td>6</td> <td>9</td> <td>0</td> <td>0</td> <td>-</td>                               | 5   | Bugat        | manual     | М                    |          | 6     | 9          | 0        | 0       | -               |
| Buyant         manual         M         M         3         3         3         0         0         0           Deluun         KTX16/32         D         32         4         4         0         0         0         0           Khotgor         manual         M         52         1         1         1         0         0         0         0           Khotgor         manual         M         50         16         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>9</td><td>Bulgan</td><td>manual</td><td>Μ</td><td></td><td>4</td><td>4</td><td>0</td><td>0</td><td>1</td></td<>                                 | 9   | Bulgan       | manual     | Μ                    |          | 4     | 4          | 0        | 0       | 1               |
| Deluur         KTX16/32         D         32         4         6         0         0           Khotgor         manual         M         M         1         1         1         0         0         0           Khotgor         manual         M         1         1         1         0         0         0         0           Nogoonuur         KTX16/32         D         16         18         18         0         0         0         0           Sagsai         ATC-50/200         A         50         18         18         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                            | 7   |              | manual     | Μ                    |          | 3     | 6          | 0        | 0       | 1               |
| Khotgor         manual         M         1         1         0         0           Nogoonnuur         KTX16/32         D         16         1         1         0         0         0           Nogoonnuur         KTX16/32         D         A         50         16         18         0         0         0           Sagsai         ATC-50/200         A         50         18         18         0         0         0           Tolbo         KTX16/32         D         32         6         6         6         0         0         0           Tolbo         ATC-50/200         A         50         15         15         0         0         0         0           Tsagaannuur         ATC-50/200         A         50         15         15         0         0         0           Tsengel         ATC-50/200         A         50         15         15         0         0         0           Tsengel         ATC-50/200         A         48         8         0         0         0         0           Ulaankhuus         C-12/48         A         2,457         1,755         298         1,269 </td <td>8</td> <td>Deluun</td> <td>KTX16/32</td> <td>D</td> <td>32</td> <td>4</td> <td>4</td> <td>0</td> <td>0</td> <td>1</td>           | 8   | Deluun       | KTX16/32   | D                    | 32       | 4     | 4          | 0        | 0       | 1               |
| Nogoonnur         KTX16/32         D         16         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                    | 6   | Khotgor      | manual     | М                    |          | 1     | 1          | 0        | 0       | 1               |
| Sagsai         ATC-50/200         A         50         18         0         0         0           Tolbo         KTX16/32         D         32         6         6         0         0         0         0           Tolbo         ATC-50/200         A         50         15         15         0         0         0         0           Tsagaannuur         ATC-50/200         A         50         15         15         0         0         0         0           Tsengel         ATC-50/200         A         50         15         15         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                              | 10  | Nogoonnur    | KTX16/32   | D                    | 16       | 1     | 1          | 0        | 0       | 1               |
| Tolbo         KTX16/32         D         32         6         6         0         0         0           Tsagaamnuur         ATC-50/200         A         50         15         15         0         0         0         0           Tsagaamnuur         ATC-50/200         A         50         15         15         0         0         0         0           Tsengel         ATC-50/200         A         50         15         15         0         0         0         0           Ulaankhus         C-12/48         A         48         8         8         0         0         0         0         1         755         298         1369         1,269         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td>Sagsai</td> <td>ATC-50/200</td> <td>A</td> <td>50</td> <td>18</td> <td>18</td> <td>0</td> <td>0</td> <td>1</td>          |     | Sagsai       | ATC-50/200 | A                    | 50       | 18    | 18         | 0        | 0       | 1               |
| Tsagaannuur         ATC-50/200         A         50         15         15         0         0         0           Tsengel         ATC-50/200         A         50         15         15         0         0         0         0           Tsengel         ATC-50/200         A         48         75         15         0         0         0         0           Ulaankhus         C-12/48         A         48         8         8         0         0         0         0           Total          2,457         1,755         298         188         1,269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12  | Tolbo        | KTX16/32   | D                    | 32       | 9     | 6          | 0        | 0       |                 |
| Tsengel         ATC-50/200         A         50         15         15         0         0         0           Ulaankhus         C-12/48         A         48         8         8         0         0         0         0           Total          2,457         1,755         298         188         1,269         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13  | Tsagaannuur  | ATC-50/200 | A                    | 50       | 15    | 15         | 0        | 0       | 1               |
| Ulaankhus         C-12/48         A         48         8         8         0         0         0           Total          2,457         1,755         298         188         1,269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14  | Tsengel      | ATC-50/200 | Α                    | 50       | 15    | 15         | 0        | 0       | 1               |
| 2,457 1,755 298 188 1,269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15  |              | C-12/48    | A                    | 48       | 8     | 8          | 0        | 0       | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Total        |            | -                    | 2,457    | 1,755 | 298        | 188      | 1,269   |                 |

# Bayan-Ulgii

| B   | Bayankhongor  |                                                    |                      |                |       |        |            |         |                 |
|-----|---------------|----------------------------------------------------|----------------------|----------------|-------|--------|------------|---------|-----------------|
| No. | . Aimag/Sum   | Switch                                             | Switching Facilities | es             |       | Subso  | Subscriber |         | No. of circuits |
|     |               | Model                                              | Type                 | Capacity       | Total | Public | Business   | Private | to/from Aimag   |
| I   | Aimag center  | EWSD                                               | D                    | 1,600          | 1,106 | 176    | 169        | 192     |                 |
| 5   |               | manual                                             | М                    |                | 5     | 5      | 0          | 0       |                 |
| Э   |               | manual                                             | М                    |                | 5     | 4      | 1          | 0       |                 |
| 4   | Bayangobi     | manual                                             | М                    |                | 2     | 2      | 0          | 0       |                 |
| 5   |               | C-12/48                                            | Α                    | 48             | 14    | 5      | 0          | 6       |                 |
| 9   | Bayan-Oboo    | manual                                             | М                    |                | 0     | 0      | 0          | 0       |                 |
| 2   | Bayantsagaan  | Panasonic                                          | D                    | 48             | 37    | 10     | 2          | 25      |                 |
| ∞   | 8 Bayan-Undur | C-12/48                                            | Υ                    | 48             | 9     | 9      | 0          | 0       |                 |
| 6   | Bogd          | C-12/48                                            | Α                    | 48             | 21    | 6      | 3          | 6       |                 |
| 10  | Bumbugur      | manual                                             | ¥                    |                | 0     | 0      | 0          | 0       |                 |
| =   | 11 Buutsagaan | C-12/48                                            | А                    | 48             | 25    | 4      | 0          | 21      |                 |
| 12  | Erdenetsogt   | manual                                             | M                    |                | 1     | 1      | 0          | 0       |                 |
| 13  | Galuut        | C-12/48                                            | А                    |                | 0     | 0      | 0          | 0       |                 |
| 14  | Gurbanbulag   | manual                                             | М                    |                | 9     | 6      | 0          | 0       |                 |
| 15  | Jargalant     | C-12/48                                            | A                    | 48             | 19    | 7      | 2          | 10      |                 |
| 16  | Jinst         | manual                                             | М                    |                | 5     | 5      | 0          | 0       |                 |
| 17  | Khureemaral   | C-12/48                                            | A                    | 48             | 43    | 9      | 0 .        | 34      |                 |
| 18  | Shargaljuut   | manual                                             | Μ                    |                | 0     | 0      | 0          | 0       |                 |
| 19  | Shinejinst    | manual                                             | М                    |                | 0     | 0      | 0          | 0       |                 |
| 20  | Ulziit        | C-12/48                                            | A                    | 48             | 20    | 6      | 0          | 14      |                 |
| 21  | Zag           | manual                                             | M                    |                | 5     | 5      | 0          | 0       |                 |
|     | Total         |                                                    | -                    | 1,984          | 1,320 | 260    | 177        | 883     |                 |
|     |               | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ | , A = Analc          | igue, M ≃ Manı | .lai  |        |            |         |                 |

Т

٦

|     | D              |                                                    |                      |                | •     |            |          |         |                 |
|-----|----------------|----------------------------------------------------|----------------------|----------------|-------|------------|----------|---------|-----------------|
| No. | A imag/Sum     | Switc                                              | Switching Facilities | ies            |       | Subscriber | criber   |         | No. of circuits |
|     |                | Model                                              | Type                 | Capacity       | Total | Public     | Business | Private | to/from Aimag   |
| 1   | Aimag center   | SDE                                                | D                    | 1,384          | 1,247 | 160        | 103      | 984     |                 |
| 2   |                | C-12/48                                            | Υ                    | 48             | 34    | 8          | 2        | 24      | 1               |
| 3   | Bayannur       | ATC-50/200                                         | Y                    | 50             | 38    | 10         | 2        | 26      | 1               |
| 4   |                | ATC-50/200                                         | A                    | 50             | 6     | 6          | 0        | 0       | 1               |
| 5   | Buregkhangai   | C-12/48                                            | A                    | 48             | 35    | 10         | 5        | 20      | 2               |
| 9   | Dashinchilen   | ATC-50/200                                         | A                    | 50             | 50    | 7          | 3        | 40      | 2               |
| 7   | Gurbanbulag    | ATC-50/200                                         | A                    | 50             | 19    | 15         | 4        | 0       | 1               |
| 8   |                | C-12/48                                            | A                    | 48             | 8     | 8          | 0        | 0       | 1               |
| 6   | 9 Khishi-Undur | ATC-50/200                                         | A                    | 50             | 40    | 22         | 8        | 10      | 1               |
| 10  | 10 Khutag      | HICOM-318                                          | D                    | 100            | 88    | 14         | 17       | 57      | 3               |
| 11  | Khyalganat     | ATC-50/200                                         | Υ                    | 200            | 90    | 11         | 6        | 73      |                 |
| 12  | Mogod          | Panasonic                                          | D                    | 32             | 20    | 9          | 3        | 8       |                 |
| 13  | Orkhon         | C-12/48                                            | A                    | 48             | 23    | 9          | 4        | 10      | 1               |
| 14  | Rashaant       | ATC-50/200                                         | A                    | 50             | 38    | 15         | 11       | 12      | 1               |
| 15  | Saikhan        | ATC-50/200                                         | Υ                    | 50             | 50    | 12         | 2        | 36      | 2               |
| 16  | Selenge        | ATC-50/200                                         | A                    | 50             | 12    | 9          | 3        | 0       | 1               |
| 17  | Teshig         | ATC-50/200                                         | A                    | 50             | 30    | 12         | 5        | 13      | -               |
|     | Total          |                                                    |                      | 2,358          | 1,831 | 340        | 178      | 1,313   | -               |
|     |                | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ | l, A = Anald         | igue, M = Mani | ual.  |            |          |         |                 |

Bulgan

| N  | Aimag/Sum    | Switch                                       | Switching Facilities | es            |       | Subscriber | criber   |         | No. of circuits |
|----|--------------|----------------------------------------------|----------------------|---------------|-------|------------|----------|---------|-----------------|
|    |              | Model                                        | Type                 | Capacity      | Total | Public     | Business | Private | to/from Aimag   |
| -  | Aimag center | EWSD                                         | D                    | 1,750         | 1,227 | 179        | 126      | 922     |                 |
| 2  | Altai        | C-12/48                                      | Α                    | 48            | 6     | 5          | 0        | 4       |                 |
| 3  | Bayantooroo  | manual                                       | М                    |               | 4     | 2          | 2        | 0       |                 |
| 4  | Bayan-Uul    | C-12/48                                      | A                    | 48            | 12    | 3          |          | 8       |                 |
| 5  | Biger        | ATC                                          | A                    | 100           | 75    | 6          | 1        | 65      |                 |
| 6  | Bugat        | ATC-50/200                                   | A                    | 50            | 21    | 5          |          | 15      |                 |
| 7  | 7 Chandmani  | C-12/48                                      | A                    | 48            | 16    | 2          |          | 8       |                 |
| ∞  | Darvi        | C-12/48                                      | А                    | 48            | 34    | 6          | 2        | 23      |                 |
| 6  | Delger       | C-12/48                                      | Α                    | 48            | 15    | 2          | 0        | 8       |                 |
| 2  | 10 Erdene    | ATC                                          | Α                    | 16            | 22    | 6          | -        | . 12    |                 |
| Ξ  | Guulin       | ATC-50/200                                   | A                    | 100           | 60    | 6          | 0        | 53      |                 |
| 12 | Jargalan     | ATC-50/200                                   | A                    | 50            | ∞     | 2          |          | 0       |                 |
| 13 | Khaliun      | C-12/48                                      | А                    | 48            | 14    | 9          |          | 7       |                 |
| 14 | Khukhmort    | C-12/48                                      | А                    | 48            | 37    | 10         | 2        | 25      |                 |
| 15 | 15 Sharga    | ATC                                          | Α                    | 16            | 0     | 0          | 0        | 0       |                 |
| 16 | Taishir      | manual                                       | М                    |               | 7     | 9          | 1        | 0       |                 |
| 17 | Tonkhil      | ATC                                          | A                    | 100           | 62    | 11         |          | 50      |                 |
| 18 | Tseel        | ATC                                          | A                    |               | 6     | 5          | ]        | 3       |                 |
| 19 | 19 Tsogt     | ATC                                          | А                    | 100           | 80    | 4          |          | 75      |                 |
| 20 | 20 Tugrug    | C-12/48                                      | А                    | 48            | 25    | 10         | 1        | 14      |                 |
|    | Total        |                                              | -                    | 2,666         | 1,737 | 301        | 144      | 1,292   |                 |
|    |              | Type $D = Digital, A = Analogue, M = Manual$ | A = Analo            | gue, M = Manı | ıal.  |            |          |         |                 |

Gobi-Altai

| No. | Aimag/Sum     | Switc    | Switching Facilities | ies      |       | Subs   | Subscriber |         | No. of circuits |
|-----|---------------|----------|----------------------|----------|-------|--------|------------|---------|-----------------|
|     |               | Model    | Type                 | Capacity | Total | Public | Business   | Private | to/from Aimag   |
| Ē   | Aimag center  | EWSD     | D                    | 1,650    | 1,054 | 165    | 102        | 787     |                 |
| 2   | Airag         | ATC-50   | A                    | 50       | 20    | 0      | 0          | 20      |                 |
| m   | Altanshiree   | ATC-100  | A                    | 100      | 61    | 8      | 3          | 50      |                 |
| 4   | Dalanjargalan | EM-48    | Y                    | 48       | 0     |        |            |         |                 |
| S   | Delgerekh     | manual   | М                    |          | 0     |        |            |         |                 |
| 6   | Erdene        | EM-48    | A A                  | 48       | 16    | 4      | 2          | 10      |                 |
| 7   | Ikhkhet       | manual   | W                    |          | 12    |        |            | 12      |                 |
| ~   | 8 Khajuuulaan | manual   | Μ                    |          |       |        |            |         |                 |
| 6   | 9 Khatanbulag | ATC-50   | A                    | 50       | 10    | 8      | 2          | 0       |                 |
| 0   | 10 Khuvsgul   | manual   | W                    |          | 0     |        |            |         |                 |
| Ξ   | Mandakh       | manual   | M                    |          | 0     |        |            |         |                 |
| 12  | Saikhandulaan | manual   | М                    |          | 0     |        |            |         |                 |
| 13  | Sulinkheer    | manual   | W                    |          |       | -      | -          |         |                 |
| 14  | Ulaanbadrakh  | manual   | M                    |          | 0     |        |            |         |                 |
| 15  | Urgun         | EM-48    | А                    | 48       | 14    | 7      | 5          | 2       |                 |
| 9   | 16 Zamiin-Uud | HICOM    | D                    | 300      | 236   | 22     | 8          | 206     |                 |
| 17  | Zulegt        | ATC-50   | A                    | 50       | 0     |        |            |         |                 |
| 18  | 18 Zuunbayan  | ATCK-200 | A                    | 200      | 119   | 41     | 2          | 76      |                 |
|     | total         |          |                      | 2.544    | 1.542 | 255    | 124        | 1.163   | 1               |

| No. | Aimag/Sum            | Switch                                             | Switching Facilities                                                           | es            |       | Subscriber | criber   |         | No. of circuits                        |
|-----|----------------------|----------------------------------------------------|--------------------------------------------------------------------------------|---------------|-------|------------|----------|---------|----------------------------------------|
|     |                      | Model                                              | Type                                                                           | Capacity      | Total | Public     | Business | Private | to/from Aimag                          |
| -   | Aimag center         | EWSD                                               | D                                                                              | 2,227         | 1,596 | 225        | 145      | 1,226   |                                        |
| 2   | Bayandun             | manual                                             | M                                                                              |               | 0     |            |          |         |                                        |
| e   | Bayantumen           | manual                                             | M                                                                              |               | 0     |            |          |         |                                        |
| 4   | 4 Bayan-uul          | manual                                             | Μ                                                                              |               | 0     | 0          | 0        | 0       | 1                                      |
| S   | Bulgan               | KX16/32                                            | D                                                                              | 32            | 18    | 8          | 4        | 9       |                                        |
| 6   | Dashbalbar           | C-12/48                                            | A                                                                              | 48            | 9     | 5          |          |         |                                        |
| 7   | Ereentsav            | manual                                             | M                                                                              |               | 0     |            |          |         | 2                                      |
| 8   | Gurbanzagal          | C-12/48                                            | A                                                                              | 48            | 13    | 6          | 2        | 2       |                                        |
| 6   | Khalkhgol            | manual                                             | Μ                                                                              |               | 0     |            |          |         |                                        |
| 10  | Kherlen /Choibalsan/ | C-12/48                                            | A                                                                              | 48            | 27    | 10         | 2        | 10      |                                        |
| П   | Khulunbuir           | Panasonic-64                                       | D                                                                              | 32            | 16    | 10         |          | 5       |                                        |
| 12  | Matad                | KX616                                              | D                                                                              | 16            | 2     | 2          |          |         |                                        |
| 13  | Sergelen             | KX16/32                                            | D                                                                              | 16            | 6     | 4          |          | 4       |                                        |
| 14  | Sumber               | manual                                             | W                                                                              |               | 0     |            |          |         | 4 (VSAT)                               |
| 15  | 15 Tsagaan-Ovoo      | manual                                             | Μ                                                                              |               | 0     | 0          | 0        | 0       | `````````````````````````````````````` |
|     | Total                |                                                    | 1                                                                              | 2,467         | 1,687 | 273        | 161      | 1.253   |                                        |
|     |                      | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ | $\mathbf{A} = \mathbf{A}\mathbf{n}\mathbf{a}\mathbf{l}\mathbf{o}_{\mathbf{i}}$ | gue, M = Manı | ıal.  |            |          |         |                                        |

)

Dornod

Page 7 - 28

| No. | Aimag/Sum       | Switch                                             | Switching Facilities | es           |       | Subse  | Subscriber |         | No. of circuits |
|-----|-----------------|----------------------------------------------------|----------------------|--------------|-------|--------|------------|---------|-----------------|
|     |                 | Model                                              | Type                 | Capacity     | Total | Public | Business   | Private | to/from Aimag   |
| I   | Aimag center    | EWSD                                               | D                    | 1,500        | 1,145 | 156    | 149        | 840     |                 |
| 2   | Adaatsag        | C-12/48                                            | A                    | 48           | 34    | 5      | 1          | 28      |                 |
| 3   | Bayanjargalan   | Manual                                             | М                    | 20           | 0     | 0      | 0          | 0       |                 |
| 4   | Delgerkhangai   | C-12/48                                            | Α                    | 48           | 49    | 10     | 3          | 36      |                 |
| 5   | Delgertsogt     | ATCK-50/200                                        | A                    | 50           | 30    | 11     | 2          | 17      |                 |
| 9   | 6 Deren         | ATCK-50/200                                        | A                    | 100          | 74    | 10     | 4          | 60      |                 |
| 7   | 7 Erdenedalai   | Panasonic                                          | D                    | 256          | 178   | 17     | 6          | 152     |                 |
| 8   | 8 Gobi-Ugtaal   | ATCK-50/200                                        | Α                    | 100          | 67    | 13     | 2          | 52      |                 |
| 6   | 9 Gurbansaikhan | ATCK-50/200                                        | A                    | 50           | 25    | 6      | 3          | 16      |                 |
| 10  | 10 Khuld        | C-12/48                                            | A                    | 48           | 38    | 9      | 2          | 27      |                 |
| 11  | 11 Luus         | C-12/48                                            | A                    | 48           | 36    | 6      | 1          | 26      |                 |
| 12  | Saikhan-Ovoo    | C-12/48                                            | A                    | 48           | 21    | 8      | 1          | 12      |                 |
| 13  | Tsagaandelger   | C-12/48                                            | A                    | 48           | 23    | 8      | 1          | 14      |                 |
| 14  | 14 Ulziit       | Manual                                             | М                    |              | 0     | 0      | 0          | 0       |                 |
| 15  | 15 Undurshil    | EM-48                                              | A                    | 48           | 6     | 4      | 2          | 0       |                 |
|     | Total           |                                                    |                      | 2,412        | 1,726 | 266    | 180        | 1,280   | -               |
|     |                 | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ | A = Analo            | gue, M = Man | ual.  |        |            |         |                 |

| • •      |
|----------|
| ~        |
|          |
|          |
| <u> </u> |
| 50       |
|          |
|          |
|          |
| _        |
|          |
|          |
| _        |
| $\frown$ |

| No. | Aimag/Sum       | Switc               | Switching Facilities | es                     |       | Subscriber | riber    |         | No. of circuits |
|-----|-----------------|---------------------|----------------------|------------------------|-------|------------|----------|---------|-----------------|
|     |                 | Model               | Type                 | Capacity               | Total | Public     | Business | Private | to/from Aimag   |
| -1  | Aimag center    | EWSD                | D                    | 1,568                  | 1,022 | 197        | 86       | 727     |                 |
| 2   | Aldarkhaan      | C-12/48             | А                    | 48                     | 30    | 25         | 0        | 5       | 1               |
| Э   | Asgat           | manual              | M                    |                        | 2     | 2          | 0        | 0       | 1               |
| 4   | Bayankhairkhan  | manual              | М                    |                        | 5     | 5          | 0        | 0       | I               |
| 5   | 5 Bayantes      | manual              | Μ                    |                        | 8     | 7          | 1        | 0       |                 |
| 9   | Bulnai          | HICOM               | D                    | 400                    | 300   | 23         | 17       | 260     |                 |
| ٢   | 7 Durvulzin     | manual              | W                    |                        | 10    | 9          | 4        | 0       | -               |
| 8   | Erdenekhairkhan | manual              | М                    |                        | 14    | 11         | 3        | 0       | 1               |
| 6   | 9 Ider          | manual              | М                    |                        | 5     | 3          | 2        | 0       | 1               |
| 10  | 10 Ikh-Uul      | manual              | М                    |                        | 7     | 9          | 1        | 0       | 1               |
| Ξ   | Numrug          | manual              | М                    |                        | 3     | 3          | 0        | 0       | 1               |
| 12  | Otgon           | KXT-616             | D                    | 16                     | 14    | 8          | 0        | 9       | 1               |
| 13  | Santmargaz      | manual              | М                    |                        | 2     | 2          | 0        | 0       | 4 (VSAT)        |
| 14  | Shiluustei      | C-12/48             | A                    | 48                     | 17    | 7          | 0        | 10      | 2               |
| 15  | Songino         | manual              | М                    |                        | 5     | 5          | 0        | 0       | Ţ               |
| 16  | Telmen          | manual              | М                    |                        | 2     | 2          | 0        | 0       | 2               |
| 17  | Tes             | C-12/48             | А                    | 48                     | 32    | 17         | 1        | 14      |                 |
| 18  | Tsagaanchuluut  | manual              | М                    |                        | 5     | 5          | 0        | 0       | 1               |
| 19  | Tsagaankharkhan | manual              | М                    |                        | 7     | 5          | 2        | 0       | 1               |
| 20  | Tsetsenuul      | manual              | М                    |                        | 13    | 12         | 1        | 0       | 1               |
| 21  | Tudevtei        | ATC-100             | А                    | 100                    | 72    | 6          | 2        | 19      | 4 (VSAT)        |
| 22  | Urgamal         | manual              | М                    |                        | 5     | 4          | 1        | 0       | 1               |
| 23  | Yaruu           | manual              | М                    |                        | 2     | 2          | 0        | 0       | 1               |
| 24  | Zavkhanmandal   | manual              | Μ                    |                        | 5     | 4          | 1        | 0       | 2               |
|     | Total           |                     | 1                    | 2,228                  | 1,587 | 370        | 134      | 1,083   | l               |
|     |                 | Type D = Digital, A | l, A = Analo         | = Analogue, M = Manual | ual.  |            |          |         |                 |

Zavkhan

Page 7 - 30

| No. | Aimag/Sum      | Switch           | Switching Facilities | es                                      |       | Subscriber | triber   |          | No. of circuits |
|-----|----------------|------------------|----------------------|-----------------------------------------|-------|------------|----------|----------|-----------------|
|     |                | Model            | Type                 | Capacity                                | Total | Public     | Business | Private  | to/from Aimag   |
| -   | Aimag center   | SDE              | D                    | 1,760                                   | 1,644 | 171        | 162      | 1,311    |                 |
| 2   | Bat-Ulzii      | C-12/48          | A                    | 48                                      | 23    | 6          | 2        | 12       |                 |
| 3   | Bayangol       | C-12/48          | А                    | 48                                      | 40    | 14         | 0        | 26       |                 |
| 4   | Bayan-Undur    | C-12/48          | А                    | 48                                      | -     | 1          | 0        | 0        |                 |
| 5   | BB-Ulaan       | ATC-50/200       | А                    | 50                                      | 0     | 0          | 0        | 0        |                 |
| 9   | Bogd           | C-12/48          | A                    | 48                                      | 0     |            | 0        | 0        |                 |
| 2   | 7 Burd         | ATC-50/200       | A                    | 50                                      | 22    | 6          | 4        | 6        |                 |
| 8   | 8 Guchin-Us    | Panasonic        | D                    | 100                                     | 38    | 9          | 1        | 31       |                 |
| 6   | Kharkhandulaan | ATC-50/203       | A                    | 50                                      | 0     | 0          | 0        | 0        |                 |
| 10  | 10 Kharkhorin  | ATC-50/205       | Α                    | 1,000                                   | 720   | 39         | 67       | 614      |                 |
| =   | 11 Khuzirt     | ATC-50/204       | A                    | 280                                     | 197   | 22         | 6        | 166      |                 |
| 12  | Nariinteel     | ATC-50/200       | A                    | 50                                      | 17    | 9          | 0        | <b>~</b> |                 |
| 13  | Sant           | ATC-50/200       | A                    | 50                                      | 10    | 8          | 2        | 0        |                 |
| 4   | 14 Taragt      | ATC-50/200       | Α                    | 50                                      | 21    | 7          | 0        | 14       |                 |
| 15  | Tugrug         | EM-48            | Α                    | 48                                      | 21    | 6          | 4        | 11       |                 |
| 16  | Ulziit         | ATC-40/80        | A                    | 40                                      | 4     | 4          | 0        | 0        | 1               |
| 17  | Uurkha         | C-12/48          | A                    | 48                                      | 0     | 0          | 0        | 0        |                 |
| 18  | Yanga          | ATC-50/202       | Α                    | 150                                     | 130   | 13         | 4        | 113      |                 |
| 19  | ZB Ulaan       | manual           | М                    | 50                                      | 31    | 9          | 5        | 20       |                 |
| 20  | 20 Zyil        | ATC-50           | A                    | 100                                     | 60    | 8          | 2        | 50       |                 |
|     | Total          |                  |                      | 4,068                                   | 2,979 | 332        | 262      | 2,385    |                 |
|     |                | Type D = Digital | , A = Analo          | e D = Digital, A = Analogue, M = Manual | ual.  |            | 3        |          |                 |

Uvurkhangai

|     | Umnogovi        |                                                      |                      |              |       |            |          |         |                 |
|-----|-----------------|------------------------------------------------------|----------------------|--------------|-------|------------|----------|---------|-----------------|
| No. | Aimag/Sum       | Swite                                                | Switching Facilities | ies          |       | Subscriber | riber    |         | No. of circuits |
|     |                 | Model                                                | Type                 | Capacity     | Total | Public     | Business | Private | to/from Aimag   |
| -   | Aimag center    | EWSD                                                 | D                    | 1,864        | 1,555 | 208        | 142      | 1,205   |                 |
| 7   | Bayandalai      | manual                                               | W                    |              | 0     |            |          |         |                 |
| 3   | 3 Bayan-Ovoo    | manual                                               | W                    |              | 0     |            |          |         |                 |
| 4   | Bulgan          | C-12/48                                              | A                    | 48           | 10    | 4          | 4        | 5       |                 |
| 5   | 5 Gurbantes     | manual                                               | M                    |              | 0     |            |          |         |                 |
| 9   | 6 Khanbogd      | manual                                               | Ψ                    |              | 0     |            |          |         |                 |
| 7   | Khankhongor     | C-12/48                                              | A                    | 48           | 30    | 10         | 0        | 20      |                 |
| 8   | 8 Khurmen       | manual                                               | W                    |              | 0     |            |          |         |                 |
| \$  | 9 Mandal-Ovoo   | C-12/48                                              | A                    | 48           | 23    | 10         | 2        | 11      |                 |
| 2   | 10 Manlai       | manual                                               | W                    |              | 0     |            |          |         |                 |
| 11  | 11 Nomgon       | manual                                               | Σ                    |              | 0     |            |          |         |                 |
| 12  | Noyon           | manual                                               | Σ                    |              | 0     |            |          |         |                 |
| 13  | Sevrei          | manual                                               | X                    |              | 0     | <u> </u>   |          |         |                 |
| 14  | Tavantolgoi     | manual                                               | W                    |              |       |            |          |         |                 |
| 15  | Tsogt-Ovoo      | manual                                               | Μ                    |              | 0     |            |          |         |                 |
| 16  | 16 Tsogttsetsii | manual                                               | М                    |              | 0     |            |          |         |                 |
|     | total           |                                                      | -                    | 2,008        | 1,618 | 232        | 148      | 1.238   | i               |
|     |                 | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ . | l, A = Analo         | gue, M = Man | ual.  |            |          |         |                 |

Page 7 - 32

| No. | Aimag/Sum          | Switch                                             | Switching Facilities | es            |       | Subse  | Subscriber |         | No. of circuits  |
|-----|--------------------|----------------------------------------------------|----------------------|---------------|-------|--------|------------|---------|------------------|
|     |                    | Model                                              | Type                 | Capacity      | Total | Public | Business   | Private | to/from Aimag    |
| -   | Aimag center       | EWSD                                               | D                    | 1,071         | 792   | 160    | 68         | 564     |                  |
| 2   |                    | manual                                             | М                    |               | 8     | 4      | 4          | 0       |                  |
| 3   | Bayandelger        | Panasonic                                          | D                    | 30            | 16    | 5      | 1          | 10      |                  |
| 4   | Dariganga          | ATC-50/200                                         | A                    | 50            | 1     | 1      | 0          | 0       |                  |
| 5   | Erdenetsagaan      | C-12/48                                            | Ÿ                    | 48            | 13    | 11     | 2          | 0       |                  |
| 9   | Khalzan            | C-12/48                                            | A                    | 48            | 7     | 3      | 1          | Э       |                  |
| 7   | Munkhkhaan         | C-12/48                                            | V                    | 48            | 30    | 4      | 2          | 24      |                  |
| ∞   | Naran              | manual                                             | M                    |               | 2     | 2      | 0          | 0       |                  |
| 6   | Ongon              | ATC-50/200                                         | Ÿ                    | 50            | 5     | 4      | 1          | 0       | -<br>-<br>-<br>- |
| 10  | 10 Sukhbaatar      | ATC-50                                             | A                    | 50            |       | 1      | 0          | 0       |                  |
| 11  | Talbulag (uurkhai) | manual                                             | Μ                    |               |       |        |            |         |                  |
| 12  | Tumentsogt         | ATC-50                                             | A                    | 100           | 54    | 10     | 9          | 38      |                  |
| 13  | 13 Tuvsinshiree    | manual                                             | Μ                    |               | 0     | 0      | 0          | 0       |                  |
| 14  | 14 Uulbayan        | manual                                             | Μ                    |               | 0     | 0      | 0          | 0       |                  |
|     | Total              |                                                    | 8 - T                | 1,495         | 929   | 205    | 85         | 639     |                  |
|     |                    | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ | , A = Analo          | igue, M = Man | ual.  |        |            |         |                  |

Sukhbaatar

|    |              |                     | 4                    |                        |       |            |          |         | •               |
|----|--------------|---------------------|----------------------|------------------------|-------|------------|----------|---------|-----------------|
|    | Aimag/Sum    | SWITCH              | Switching Facilities | es                     |       | Subscriber | inber    |         | No. of circuits |
|    |              | Model               | Type                 | Capacity               | Total | Public     | Business | Private | to/from Aimag   |
|    | Aimag center | SDE                 | D                    | 1,880                  | 1,376 | 161        | 158      | 1,027   |                 |
| 2  | Altanbulag   | HICOM               | D                    | 200                    | 89    | 12         | 7        | 70      | 2               |
| 3  | Baruunburen  | ATC-50/200          | A                    | 100                    | 49    | 16         |          | 30      |                 |
| 4  | Bayangol     | ATC-50/200          | A                    | 160                    | 144   | 16         | 25       | 103     |                 |
| 5  | 5 Bugant     | ATC-50/200          | A                    | 100                    | 44    | 22         | 17       | 5       |                 |
| 6  | Dulaankhaan  | ATC-50/200          | A                    | 100                    | 7     | 3          |          |         |                 |
| 7  | 7 Eruu       | ATC-50/200          | A                    | 100                    | 02    | 10         | 14       | 46      | 2               |
| 8  | Javkhlant    | ATC-50/200          | A                    | 50                     | 18    | 9          | 5        | 10      | 1               |
| 6  | Khuder       | ATC-50/200          | A                    | 50                     | 12    | 4          | 8        | 0       |                 |
| 10 | 10 Khushaat  | ATC-50/200          | A                    | 50                     | 10    | 8          | 2        | 0       |                 |
| 11 | Khutul       | ATC-100/2000        | А                    | 600                    | 518   | 31         | 54       | 433     |                 |
| 12 | Orkhon       | C-12/48             | A                    | 48                     | 11    | 2          | 5        | 4       | 1               |
| 13 | Orkhontuul   | ATC-50/200          | A                    | 50                     | 31    | 17         | 8        | 9       | 1               |
| 14 | Saikhan      | ATC-50/200          | A                    | 100                    | 25    | 10         | 15       | 0       |                 |
| 15 | Sant         | ATC-50/200          | A                    | 50                     | 33    | 14         | 8        | 11      | 1               |
| 16 | Shaamar      | ATC-50/200          | A                    | 100                    | 72    | 13         | 5        | 54      |                 |
| 17 | Tsagaannuur  | ATC-50/200          | A                    | 100                    | 45    | 15         | 30       | 0       | 2               |
| 18 | Tunkhel      | ATC-50/200          | А                    | 100                    | 6     | 7          | 0        | 2       |                 |
| 19 | Tushig       | ATC-50/200          | A                    | 50                     | 10    | 5          | 5        | 0       |                 |
| 20 | 20 Zuunburen | Panasonic           | D                    | 32                     | 10    | 8          | 2        | 0       | 1               |
| 21 | Zuunkharaa   | ATC-100/2000        | A                    | 1,000                  | 642   | 64         | 43       | 535     |                 |
|    | total        |                     | 1                    | 5,020                  | 3,225 | 474        | 412      | 2,339   |                 |
|    |              | Type D = Digital, A | A = Analo            | = Analogue, M = Manual | ual.  |            |          |         |                 |

Selenge

| Dol         | Aimag/Sum       | Switch      | Switching Facilities | es       |       | Subscriber | riber    |         | No. of circuits |
|-------------|-----------------|-------------|----------------------|----------|-------|------------|----------|---------|-----------------|
|             |                 | Model       | Type                 | Capacity | Total | Public     | Business | Private | to/from Aimag   |
| 1           | Aimag center    | EWSD        | D                    | 2,016    | 1,249 | 261        | 103      | 885     |                 |
| 27          | Altanbulag      | KXTA-616    | D                    | 16       | 3     | 3          |          |         |                 |
| 3           | Argalant        | ATC-50/200  | A                    | 50       | 12    | 9          | 6        | 0       |                 |
| 4 /         | Arkhust         | C-12/48     | A                    | 48       | 7     | 6          | 1        | 0       |                 |
| 5 I         | Batsumber       | CO-102      | А                    | 102      | 3     | 3          | 0        | 0       |                 |
| 6 E         | Bayan           | ATC-50/200  | A                    | 50       | 24    | 12         | 9        | 9       |                 |
| 71          | 7 Bayanchandman | ATCK-50/200 | A                    | 100      | 54    | 25         | 9        | 23      |                 |
| 8 1         | Bayandelger     | MC-52       | А                    | 28       | 29    | 12         | 2        | 15      |                 |
| 9 H         | Bayanjargalan   | ATC-50/200  | A                    | 50       | 15    | 11         | 4        | 0       |                 |
| 10 1        | Bayankhangai    | ATC-50/200  | A                    | 50       | 13    | 7          | 9        | 0       |                 |
| 11          | Bayantsagaan    | ATC-50/200  | A                    | 50       | 11    | 10         | 1        | 0       |                 |
| 12 [F       | Bayantsogt      | CO-102      | A                    | 102      | 30    | 17         | 3        | 10      |                 |
| 13 F        | Bayan-Unzuul    | manual      | Μ                    |          | 0     | 0          | 0        | 0       |                 |
| 14 E        | Bornuur         | PT-70       | A                    | 70       | 30    | 15         | 5        | 10      |                 |
| 15  1       | Buren           | KXTA-616    | D                    | 16       | 11    | 10         | 1        | 0       |                 |
| 16 I        | Delgerkhaan     | KXTA-616    | D                    | 16       | 15    | 11         | 4        | 0       |                 |
| 17   E      | Erdene          | ATCK-50/200 | A                    | 50       | 17    | 14         | 3        | 0       |                 |
| 18 F        | Erdenesant      | ATCK-50/200 | Α                    | 100      | 58    | 19         | 13       | 26      |                 |
| נן 19       | Jargalant       | ATCK-50/200 | Α                    | 001      | 55    | 19         | 11       | 25      |                 |
|             | 20 Lun          | ATCK-50/200 | A                    | 100      | 80    | 16         | 6        | 55      |                 |
| 21 I        | Mungunmort      | Panasonic   | D                    | 24       | 0     | 11         | 6        | 7       |                 |
| <u> </u>    | 22 Sergelen     | BPC-20      | А                    | 20       | 8     | 8          | 0        | 0       |                 |
| 23 5        | Sumber          | manual      | М                    |          | 0     | 0          | 0        | 0       |                 |
| 24 J        | Tseel           | ATCK-50/200 | Α                    | 100      | 31    | 18         | 4        | 6       |                 |
| <u>25 l</u> | Ugtaal          | ATCK-50/200 | A                    | 100      | 36    | 11         | 3        | 22      |                 |
| 26 L        | Undurshireet    | C-12/48     | A                    | 48       | 4     | 4          | 0        | 0       |                 |
| 27 2        | Zaamar          | ATCK-50/200 | A                    | 50       | 32    | 16         | 8        | 8       |                 |
| 28 2        | Zanchivlan      | C-12/48     | Α                    | 48       | 2     | 2          | 0        | 0       |                 |
|             | Total           |             | 1                    | 3,504    | 1,829 | 547        | 205      | 1,101   | 1               |

Tuv

| No. of circuits      | to/from Aimag | 0            | 2 (VSAT)     | -         |        |            | -       |         |         | -          |       | -        | -    |                  | -      | 1      |             |              | 1       | -        | -              |       |                                          |
|----------------------|---------------|--------------|--------------|-----------|--------|------------|---------|---------|---------|------------|-------|----------|------|------------------|--------|--------|-------------|--------------|---------|----------|----------------|-------|------------------------------------------|
| No. of               | to/fron       |              | 2 (V         |           |        |            |         |         |         |            |       |          |      |                  |        |        |             |              |         |          |                |       |                                          |
|                      | Private       | 1,537        |              |           |        |            |         |         |         |            |       |          |      |                  |        |        |             |              |         |          |                | 1,537 |                                          |
| riber                | Business      | 116          | 9            |           |        |            |         |         |         |            |       |          |      |                  |        |        | 2           |              |         |          |                | 125   |                                          |
| Subscriber           | Public        | 193          | 9            | 2         |        |            |         |         |         |            |       |          |      | 3                |        |        | 10          |              |         |          | 2              | 221   |                                          |
|                      | Total         | 1,846        | 12           | 2         |        |            |         | 1       |         | <br> <br>  |       |          |      | 4                |        |        | 12          |              |         |          | 2              | 1,883 | -                                        |
| S                    | Capacity      | 2,016        | 32           |           |        | 50         |         | 48      | 50      | 48         | 50    |          | 100  | 48               |        |        | 100         |              |         |          |                | 2,542 | The Meridian                             |
| Switching Facilities | Type          | D            | D            | Μ         | X      | A          | Σ       | A       | A       | A          | A     | Σ        | D    | A                | M      | W      | D           | Ψ            | W       | M        | М              | 1     |                                          |
| Switc                | Model         | EWSD         | KX16/32      | manual    | manual | ATC        | manual  | C12/48  | ATCK    | C-12/48    | ATC   | manual   | КХ   | C12/48           | manual | manual | KX          | manual       | manual  | manual   | manual         |       | Tune D = Divited A = Analogue M = Manuel |
| Aimag/Sum            |               | Aimag center | Baruunturuun | Bokhmurun | Davst  | Kharkhiraa | 6 Khovd | Khyrgas | Malchin | Naranbulag | Sagil | Tarialan | Tes  | Tsagaankhairkhan | Turgen | Ulgii  | 16 Umnugobi | Undurkhangai | Zavkhan | Zuungobi | 20 Zuunkhangai | Total |                                          |
| No.                  |               | ~<br>        | 2 E          | 3         | 41     | 5 F        | 61      | 7 k     | 8       | 9          | 10 S  | 11 1     | 12 J | 13 T             | 14 T   | 15 U   | 16 [        | 17 U         | 18 2    | 19 Z     | 20 2           |       |                                          |

Uvs

| No. | Aimag/Sum     | Switcl                                     | Switching Facilities | es           |       | Subscriber | criber   |         | No. of circuits |
|-----|---------------|--------------------------------------------|----------------------|--------------|-------|------------|----------|---------|-----------------|
|     |               | Model                                      | Type                 | Capacity     | Total | Public     | Business | Private | to/from Aimag   |
| -   | Aimag center  | EWSD                                       | D                    | 2,048        | 1,241 | 217        | 160      | 864     |                 |
| 2   |               |                                            |                      |              | 0     |            |          |         |                 |
| £   | Bulgan        | ATC-50/200                                 | Α                    | 100          | 34    | 11         | 3        | 20      |                 |
| 4   | Buyant        | ATC-50/200                                 | A                    | 50           | 13    | 11         | 2        | 0       |                 |
| 5   | Chandman      | C-12/48                                    | A                    | 48           | 2     | 2          |          |         |                 |
| 9   | Darvi         | C-12/48                                    | A                    | 48           | 34    | 6          | 1        | 24      |                 |
| 7   | Durgun        | C-12/48                                    | А                    | 48           | 21    | 7          | 1        | 13      |                 |
| 8   | Duut          |                                            |                      |              | 1     | 1          | 0        | 0       |                 |
| 6   | Erdeneburen   | ATC-50/200                                 | A                    | 50           | 8     | 8          |          |         |                 |
| 10  | 10 Khovd      |                                            |                      |              | 1     | 1          |          |         |                 |
| 11  | 11 Mankhan    | ATC-50/200                                 | А                    | 50           | 11    | 3          | 2        | 9       |                 |
| 12  | 12 Munkhkhaan | ATC-50/200                                 | A                    | 50           | 5     | 5          | 0        | 0       |                 |
| 13  | 13 Must       | C-12/48                                    | A                    | 48           | 17    | 9          | 2        | 9       |                 |
| 14  | 14 Myngad     | ATC-50/200                                 | А                    | 50           | 7     | 5          | 2        | 0       |                 |
| 15  | 15 Tsetseg    | C-12/48                                    | A                    | 48           | 10    | 9          | 1        | 0       |                 |
| 16  | 16 Uench      | E-100                                      | A                    | 128          | 40    | 12         | 0        | 28      |                 |
| 17  | 17 Zereg      | Panasonic                                  | D                    | 16           | 11    | 6          | 1        | 4       |                 |
|     | Total         |                                            |                      | 2,782        | 1,456 | 316        | 175      | 965     | 1               |
|     |               | Type D = Digital, A = Analogue, M = Manual | , A = Analo          | gue, M = Man | ual.  |            |          | 1 -     |                 |

Khoud

| ModelType1Aimag center $EWSD$ D2Alag-ErdenemanualM3ArbulagmanualM4BayanzurkhmanualM5BurenkhaanmanualM6BurenkhaanmanualM7Chandman Undur $C-12/48$ A8Erdenebulgan $C-12/48$ A9GaltmanualM11Jargal $E-48$ A12KhatgalHICOMD13KhatgalHICOMD14Rashaant $C-12/48$ A15Renchinlkhumbe $C-12/48$ A16Shine-IdermanualM17Tarialan $ATC-400$ A18Tosontsengel $C-12/48$ A19Tasigaannuur $C-12/48$ A20Tasigaannuur $C-12/48$ A21Tasigaannuur $C-12/48$ A22Tasigaannuur $C-12/48$ A23Tumrbulag $ATC-400$ A24Tunel $ATC-400$ A<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       | Subscriber  |                  | No of circuite |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-------------|------------------|----------------|
| EWSD       manual       c-12/48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ype Capacity | Total | Public Busi | Business Private | to/from Aimag  |
| manual         manual<                                                           |              | 2,014 | 260         | ∞                |                |
| manual         manual<                                                           | ×            | 5     | 4           | 1                |                |
| manual         manual<                                                           | м            | 17    | 12          | 2 3              |                |
| manual         manual<                                                           | Я            | 15    | 13          | 1                |                |
| Indur         Panasonic         Indur         C-12/48         Indur         C-12/48         Indur         Indur<         Ind                                                                    | μ            | 3     | 1           | 2 0              |                |
| Indur     C-12/48       n     C-12/48       manual     manual       ATC-40     E-48       ATC-40     E-48       manual     FE-48       Mbe     E-48       ATC-40     E-48       ATC-40     E-48       ATC-40     E-48       ATC-40     E-48       Mbe     C-12/48       Mbe     C-12/48       Manual     ATC-50/200       Panasonic     manual       Panasonic     C-12/48       ATC-50/200     C-12/48       ATC-50     ATC-50       ATC-40     ATC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D 48         | 48    | 12          | 0 36             |                |
| n     C.12/48       manual     manual       ATC-40     E-48       ATC-40     E-48       manual     E-48       manual     HICOM       Mbe     C-12/48       manual     ATC-50/200       ATC-50/200     C-12/48       Manual     C-12/48       Mbe     C-12/48       ATC-50/200     C-12/48       ATC-50/200     Manual       ATC-50     Manual       ATC-50     ATC-50       ATC-40     ATC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A 48         | 10    | 8           | 2 0              |                |
| manual     manual       ATC-40     E-48       E-48     manual       Macuul     HICOM       C-12/48     manual       Manual     C-12/48       Manual     ATC-50/200       Panasonic     manual       Panasonic     manual       ATC-50/200     C-12/48       ATC-50/200     C-12/48       ATC-50/200     ATC-50       ATC-50     ATC-50       ATC-50     ATC-50       ATC-50     ATC-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A 48         | 1     | 4           | 3                |                |
| ATC-40     E-48       E-48     manual       manual     HICOM       Mbe     C-12/48       manual     C-12/48       ATC-50/200     Panasonic       Panasonic     manual       C-12/48     C-12/48       ATC-50/200     C-12/48       ATC-50/200     C-12/48       ATC-50     C-12/48       ATC-50     Manual       ATC-50     ATC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - F          | 8     | 80          | 0                |                |
| E-48       manual       manual       HICOM       C-12/48       manual       C-12/48       manual       ATC-50/200       Panasonic       manual       C-12/48       manual       ATC-50/200       C-12/48       ATC-50/200       ATC-50       ATC-50       ATC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 40         | 32    | 12          | 3 17             |                |
| manual         manual         HICOM         HICOM         Manual         Manual <td>A 48</td> <td>25</td> <td>6</td> <td>1 15</td> <td></td> | A 48         | 25    | 6           | 1 15             |                |
| HICOM       mbe     C-12/48       mbe     C-12/48       manual     manual       ATC-50/200     C-12/48       Panasonic     manual       C-12/48     C-12/48       ATC-50     ATC-40       ATC-40     Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μ            | 8     | 5           | 3 0              |                |
| C:12/48       mbe     C:12/48       manual     manual       manual     C-12/48       ATC-50/200     C-12/48       Panasonic     manual       C:12/48     C-12/48       Panasonic     C-12/48       ATC-50/200     C-12/48       ATC-50     Manual       ATC-50     ATC-50       ATC-40     Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 200        | 20    | 6           | 3                |                |
| mbe         C-12/48         manual         manual <td>A 48</td> <td>19</td> <td>10</td> <td>2 7</td> <td></td> | A 48         | 19    | 10          | 2 7              |                |
| manual         manual         ATC-50/200         ATC-50/200         ATC-50/200         ATC-50/200         ATC-50         ATC-40                                                           | A 48         | 22    | 11          | 3 8              |                |
| ATC-50/200       C-12/48       C-12/48       Panasonic       manual       C-12/48       ATC-50       ATC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W            | 14    | 7           | 4 3              |                |
| C-12/48 Panasonic Panasonic manual C-12/48 C-12/48 ATC-50 ATC-40 manual manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 100        | 88    | 11          | 7 70             |                |
| Panasonic       manual       C-12/48       ATC-50       ATC-40       manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 48         | 8     | 8           | 0 0              |                |
| manual manual C-12/48<br>ATC-50<br>ATC-40<br>manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D   96       | 52    | 18          | 5 29             |                |
| C-12/48<br>ATC-50<br>ATC-40<br>manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A            | 8     | 5           | 1 2              |                |
| ATC-50<br>ATC-40<br>manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A 48         | 12    | 12          | 0 0              |                |
| ATC-40<br>manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 40         | 13    | 13          | 0 0              |                |
| manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A 40         | 14    | 10          | 3 1              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | м [          | 6     | 8           | 1 0              |                |
| 25 Ulaan-Uul Manual M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | м —          | 61    | 7           | 3 9              |                |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,220        | 2,490 | 477         | 268 1,745        | -              |

Khuvsgul

| ume Smur       | 2WIIC       | Switching Facilities |          |       | Subscriber | criber   |         | No. of circuits |
|----------------|-------------|----------------------|----------|-------|------------|----------|---------|-----------------|
|                | Model       | Type                 | Capacity | Total | Public     | Business | Private | to/from Aimag   |
|                | EWSD        | D                    | 1,640    | 1,064 | 197        | 148      | 719     |                 |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | ATCK-50/200 | А                    | 50       | 25    | 8          | 0        | 17      |                 |
|                | C-12/48     | Α                    | 32       | 14    | 5          | 2        | 7       | 1               |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | Panasonic   | D                    | 16       | 2     | 0          | 2        | 0       | 4               |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | ATC-50/200  | А                    | 400      | 413   | 29         | 27       | 357     |                 |
|                | manual      | Μ                    |          |       |            |          |         | 1               |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | manual      | М                    |          |       |            |          |         |                 |
| -              | manual      | M                    |          |       |            |          |         | 1               |
|                | ATC-50/200  | A                    | 50       |       |            |          |         | 1               |
|                | MC-52       | А                    | 20       | 24    | 8          | æ        | 13      | 1               |
|                | manual      | М                    |          |       |            |          |         | 1               |
|                | C-12/48     | А                    | 16       | 12    | 9          | 0        | 9       | 1               |
|                | manual      | M                    |          |       |            |          |         | 1               |
| Tsenkhermandal | manual      | М                    | -        |       |            |          |         | 1               |
|                | ATC-50/200  | Α                    | 50       | 39    | 8          | 5        | 26      | 2               |
|                | MC-52       | A                    | 30       | 16    | 6          | 2        | 5       | 1               |
|                | EM-48       | А                    | 48       | 15    | 1          | 13       | 1       |                 |
|                |             |                      | 2,352    | 1,624 | 271        | 202      | 1,151   |                 |

Khentii

| Switching Facilities | ies      |       | Subs   | Subscriber |           | No. of circuits |
|----------------------|----------|-------|--------|------------|-----------|-----------------|
| Type                 | Capacity | Total | Public | Business   | Private   | to/from Aimag   |
| D                    | 5,608    | 5,417 | 262    | 481        | 4,674     | D               |
| ATC-50/200 A         | 150      | 65    | 13     | 11         | 41        | 2               |
| ATC-50/200 A         | 150      | 28    | 6      | 4          | 18        | 2               |
| Ψ                    |          |       |        |            |           |                 |
| ATC-50/200 A         | 500      | 361   | 38     | 27         | 296       | 7               |
|                      | 6,408    | 5,871 | 319    | 523        | 5,029     |                 |
|                      | {        | 0,4U8 | 0,408  | 1/2'5      | 3,8/1 319 | 5,8/1 319 523   |

**Darkhan-Uul** 

Type D = Digital, A = Analogue, M = Manual.

# Orkhon

| No. | Aimag/Sum    | Switc                                      | Switching Facilities | es           |       | Subscriber | riber    |             | No. of circuits |
|-----|--------------|--------------------------------------------|----------------------|--------------|-------|------------|----------|-------------|-----------------|
|     |              | Model                                      | Type                 | Capacity     | Total | Public     | Business | Private     | to/from Aimag   |
| -   | Aimag center | EWSD                                       | Q                    | 5,400        | 5,004 | 169        | 421      |             | D               |
| 7   | Jargalant    | ATC                                        | Y                    | 2,000        | 1,193 | 165        | 198      | 830         |                 |
| ŝ   | Ulaantolgoi  | ATC-400                                    | Υ                    | 300          | 126   | 19         | 7        | 100         |                 |
|     | total        |                                            | 1                    | 7,700        | 6,323 | 353        | 626      | 5.344       |                 |
|     |              | Type D = Digital, A = Analogue, M = Manual | , A = Analo          | gue, M = Man | ual.  |            |          | ,<br>,<br>, |                 |

JICA Telecom Study

| No. | Aimag/Sum            | Switch                                             | Switching Facilities | es           |       | Subscriber | :riber   |         | No. of circuits |
|-----|----------------------|----------------------------------------------------|----------------------|--------------|-------|------------|----------|---------|-----------------|
|     |                      | Model                                              | Type                 | Capacity     | Total | Public     | Business | Private | to/from Aimag   |
|     | Aimag center (Choir) | HICOM 370                                          | D                    | 512          | 479   | 94         | 62       | 323     | 1               |
|     | Bayntal              | EM-48                                              | А                    | 48           | 14    | 6          | 2        | 3       |                 |
| m   | Shiveegobi           | Panasonic                                          | D                    | 200          | 150   | 15         | 17       | 118     | 1               |
|     | total                |                                                    | 1                    | 160          | 643   | 118        | 81       | 444     |                 |
| 1   |                      | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ | , A = Analo          | gue, M = Man | ual.  |            |          |         |                 |

Govisumber

# Nalaikh

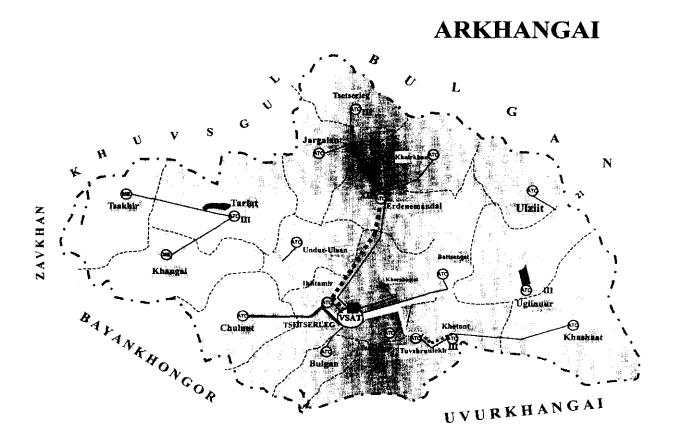
| No. | Aimag/Sum        | Switch                                               | Switching Facilities | S             |       | Subse  | Subscriber      |         | No. of circuits |
|-----|------------------|------------------------------------------------------|----------------------|---------------|-------|--------|-----------------|---------|-----------------|
|     |                  | Model                                                | Type                 | Type Capacity | Total | Public | Public Business | Private | to/from Aimag   |
| 1   | Nalaikh city     | EWSD                                                 | D                    | 1,536         | 1,472 | 163    | 112             | 1,197   | 2               |
| 2   | 2 Arzanchivlan   | manual                                               | M                    |               |       |        |                 |         |                 |
| З   | 3 Nisekh/GORDOK/ | manual                                               | M                    |               |       |        |                 |         |                 |
| 4   | 4 Shokhoi        | manual                                               | M                    |               |       |        |                 |         | 1               |
| 5   | 5 Terelj         | EM-48                                                | A                    | 48            | 18    | 2      | 14              | 2       | 1               |
|     | Total            |                                                      |                      | 1,584         | 1,490 | 165    | 126             | 1,199   | 4               |
|     |                  | Type $D = Digital$ , $A = Analogue$ , $M = Manual$ . | I, A = Analo         | gue, M = Ma   | mual. |        |                 |         |                 |

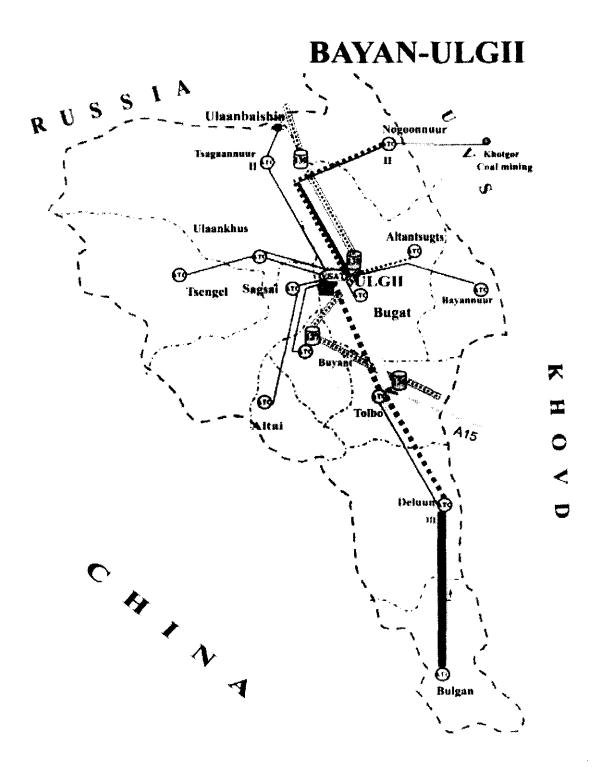
| No. | Aimag/Sum     | Switcl                                     | Switching Facilities | es           |       | Subscriber | criber   |         | No. of circuits |
|-----|---------------|--------------------------------------------|----------------------|--------------|-------|------------|----------|---------|-----------------|
|     |               | Model                                      | Type                 | Capacity     | Total | Public     | Business | Private | to/from Aimag   |
| -   | Baganuur city | ATC                                        | A                    | 3,000        | 2,550 | 151        | 207      | 2,192   |                 |
|     |               | EM-48                                      | A                    | 48           | 41    | 8          | 32       |         |                 |
|     |               | KX16/32                                    | D                    | 32           | 20    | 7          | 10       | -<br>m  |                 |
|     |               | ATC-50/200                                 | A                    | 50           | 38    | 5          | С        | 30      |                 |
|     | Total         |                                            | ]                    | 3,130        | 2,649 | 171        | 252      | 2,226   | 2               |
|     |               | Type D = Digital, A = Analogue, M = Manual | , A = Analo          | gue, M = Man | ual.  |            |          |         |                 |

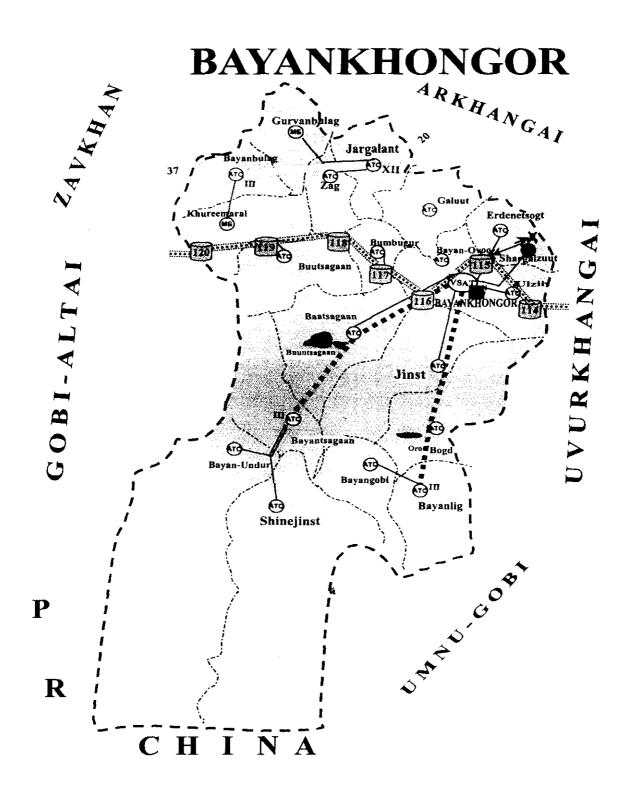
# ANNEX 8

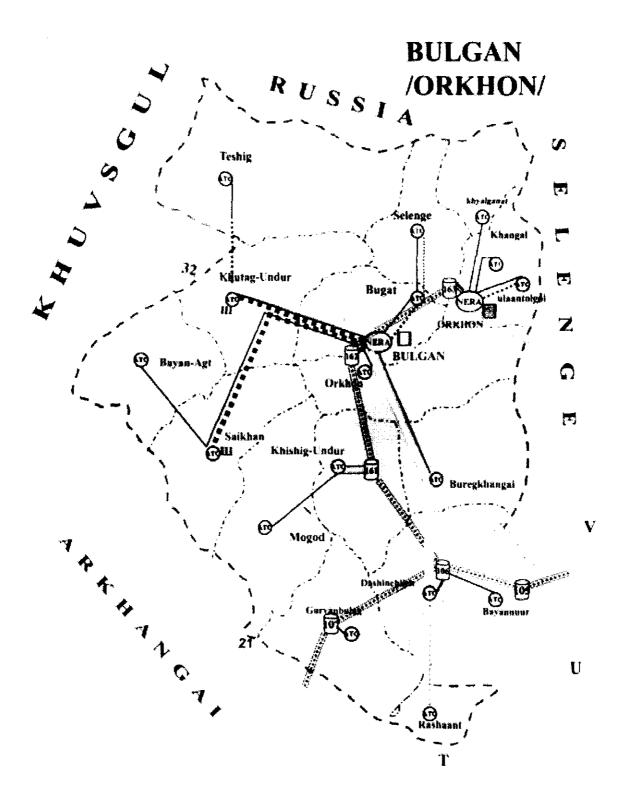
# **TRANSMISSION SYSTEM**

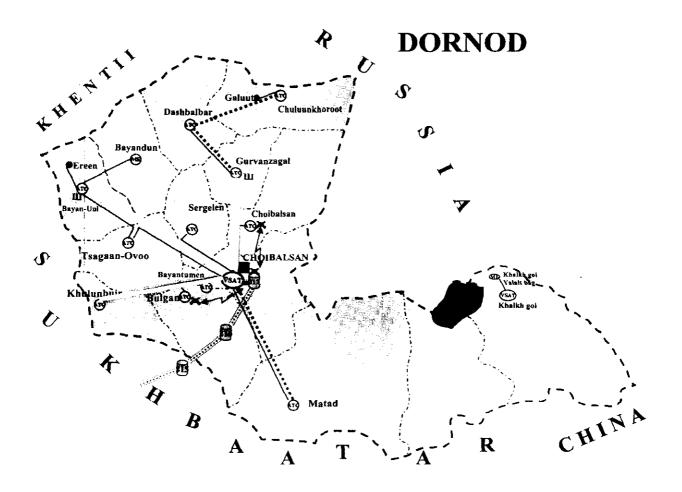
#### Annex 8

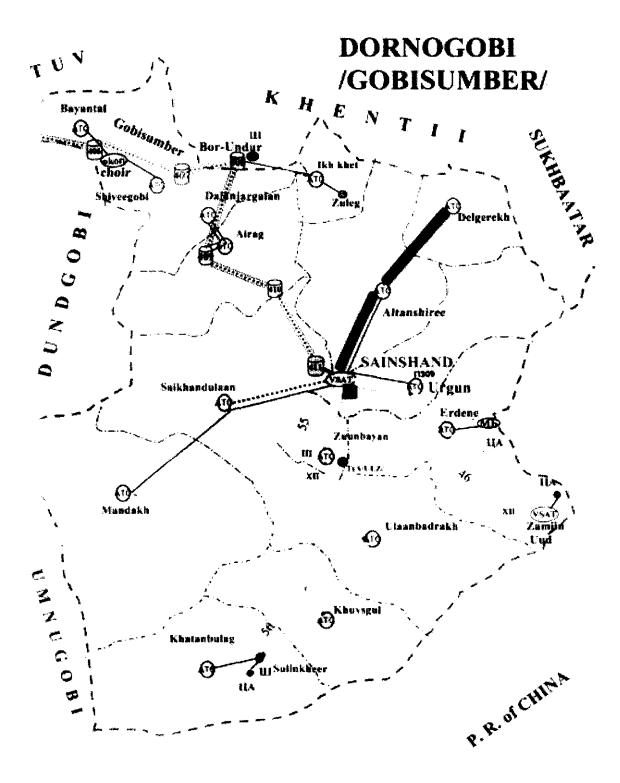

# **Transmission System**


| Annex 8-1 | Mongolia Rural Transmission Network Configuration |
|-----------|---------------------------------------------------|
|           |                                                   |
| Annex 8-2 | System Selection Table for Digitisation on        |
|           | Rural Network between Aimag centre and Sum centre |


. .

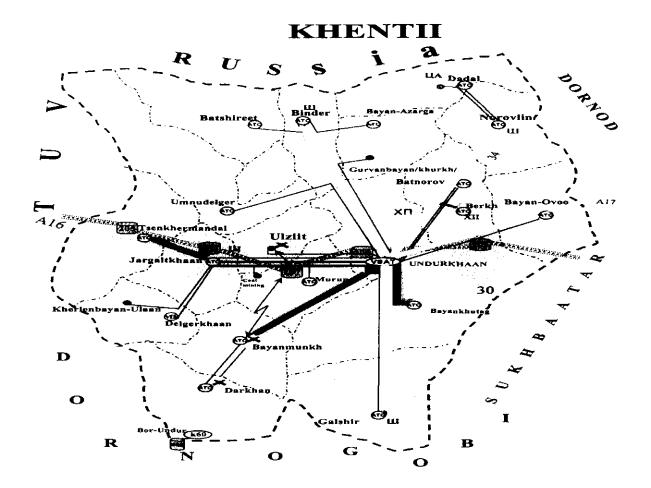

# Annex 8-1 Mongolia Rural Transmission Network Configuration

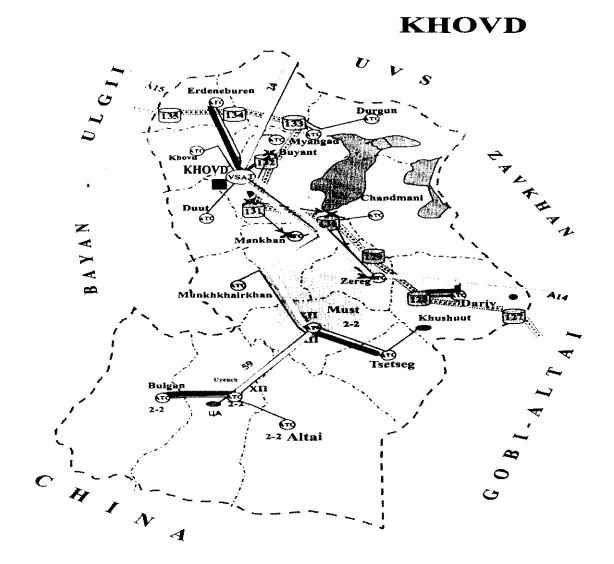

| Arkhangai            |
|----------------------|
| Bayan-Ulgii          |
| Bayankhongor         |
| Bulgan/Orkhon        |
| Dornod               |
| Dornogovi/Govisumber |
| Govi-Alatai          |
| Khentii              |
| Khovd                |
| Khuvsugul            |
| Selenge/Darkhan-Uul  |
| Sukhbaatar           |
| Tuv                  |
| Umnugovi             |
| Uvs                  |
| Uvurkhangai          |
| Zavkhan              |
| Dundgovi             |

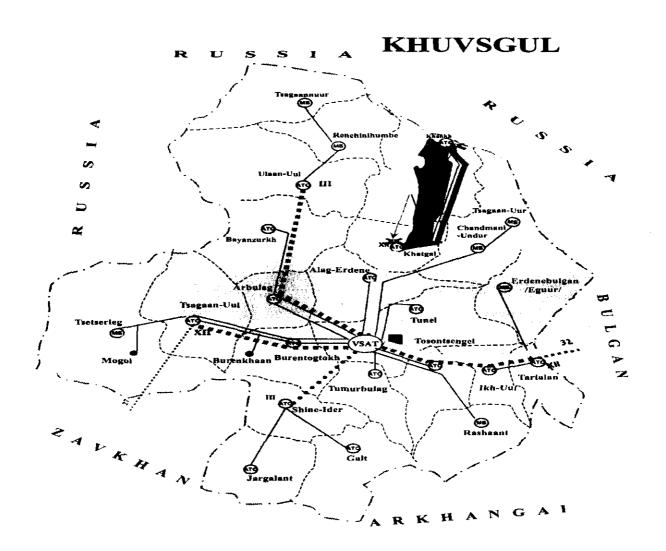


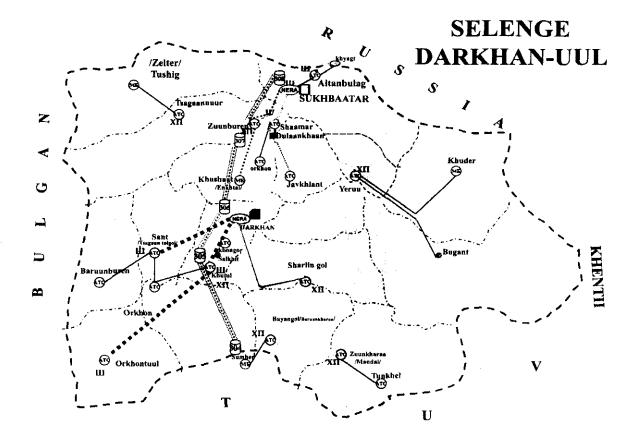


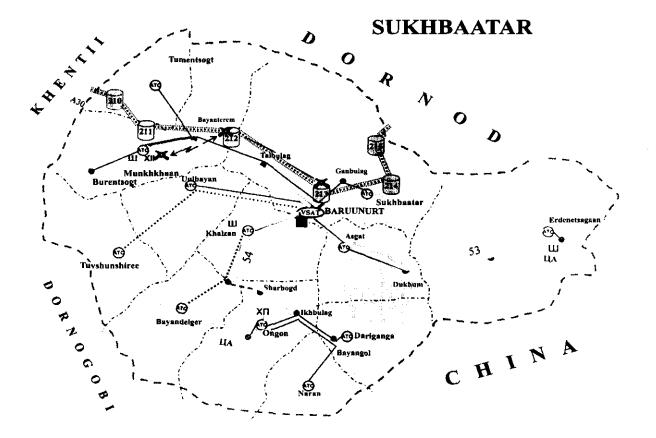


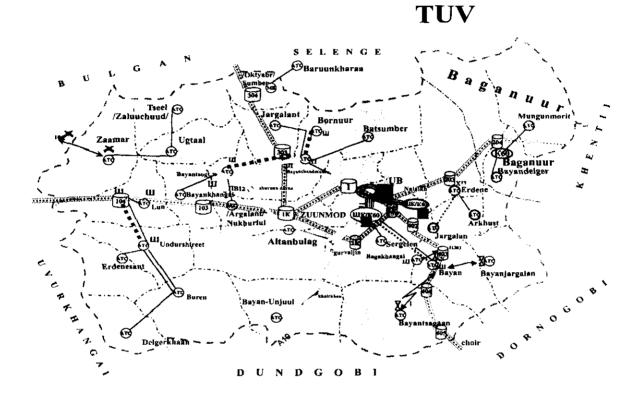


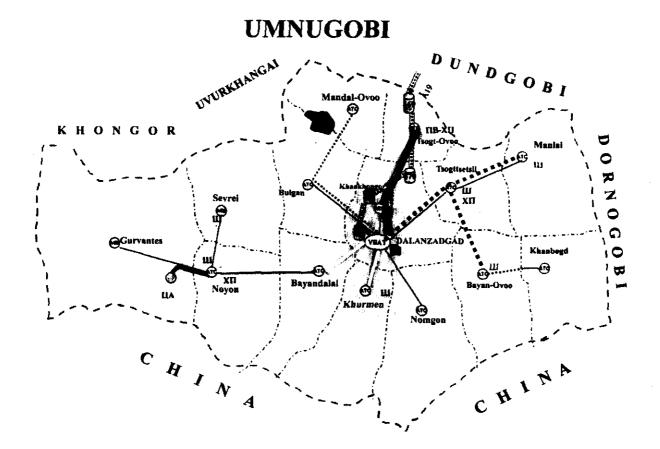



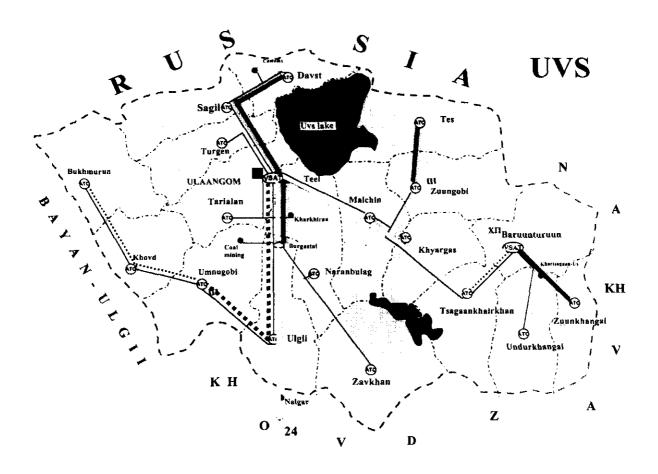



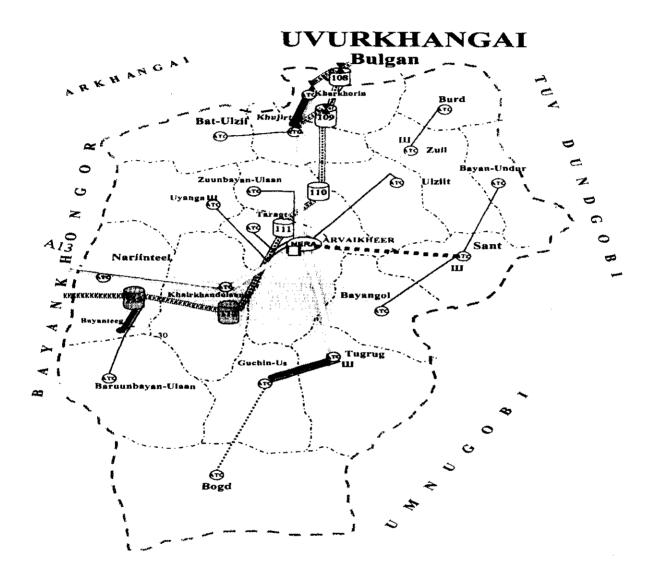



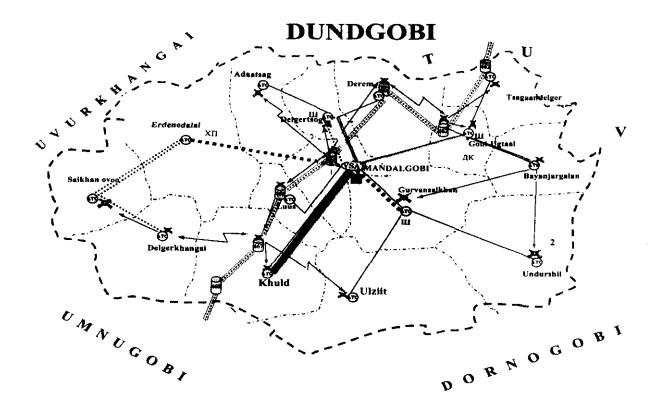
















#### Annex 8-2 System Selection Table for Digitisation on Rural Network between Aimag centre and Sum centre

| Arkhangai/Bayankhongor  | 8-22 |
|-------------------------|------|
| Bayan-Ulgii/ Bulgan     | 8-23 |
| Govi-Altai/ Dornod      |      |
| Dundgobi/ Dornogovi     | 8-25 |
| Zavkhan/ Sukhbaatar     | 8-26 |
| Selenge/ Darkhan-uul    | 8-27 |
| Orkhon/ Govisumber/ Tuv | 8-28 |
| Uvs/ Khuvsgul           | 8-29 |
| Khentii/ Khovd          | 8-30 |
| Uvurkhangai/ Umunugovi  | 8-31 |

| 2-1 ARKHANGAI AIMAG | 1 2 3 4                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Priority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | thousand                                                                                                                                                                        | Population                                                                                                                                         | Suberiber                                                                                                                                                                                                                | Demand<br>Forecasting                                                                                                                                  | OFC/ µ/VSAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Telephone<br>Density                                                                                                                                                    | Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Network                                                                                                                                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NGAI AIMAG          | 3                                                                                                                       | Aimag Center(Erdenebuilgan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5                                                                                                                                                                             | 17799                                                                                                                                              | 995                                                                                                                                                                                                                      | 6110                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                         | C Grid, DG-30Kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic                                                                                                                                                                                                                             |
| NGAI AIMAG          |                                                                                                                         | Battsengel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3                                                                                                                                                                             | 1178                                                                                                                                               | 24                                                                                                                                                                                                                       | 258                                                                                                                                                    | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.04                                                                                                                                                                    | CGrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                             |
| NGAI AIMAG          | 4                                                                                                                       | Bulgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                                                                                                             | 743                                                                                                                                                | 3                                                                                                                                                                                                                        | 111                                                                                                                                                    | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40                                                                                                                                                                    | Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                                                             |
| NGAI AIMAG          |                                                                                                                         | Jargalant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                              | 880                                                                                                                                                | 9                                                                                                                                                                                                                        |                                                                                                                                                        | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.02                                                                                                                                                                    | CGrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                             |
| NGAI AIMAG          |                                                                                                                         | Ikhtamir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                             | 1455                                                                                                                                               | 10                                                                                                                                                                                                                       |                                                                                                                                                        | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
| NGAI AIM            |                                                                                                                         | Ugiinur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7                                                                                                                                                                             | 644                                                                                                                                                | 8                                                                                                                                                                                                                        |                                                                                                                                                        | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.24                                                                                                                                                                    | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
| NGAI 4              | 7                                                                                                                       | Uziit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7                                                                                                                                                                             | 902                                                                                                                                                | 12                                                                                                                                                                                                                       |                                                                                                                                                        | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         | CGrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                             |
| NGA                 | 8                                                                                                                       | Undur-Ulaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                             | 1368                                                                                                                                               | 3                                                                                                                                                                                                                        |                                                                                                                                                        | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
| Ż,                  | 9                                                                                                                       | Tariat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                             | 1315                                                                                                                                               | 10                                                                                                                                                                                                                       |                                                                                                                                                        | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | C Grid, PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic                                                                                                                                                                                                                             |
| 4                   |                                                                                                                         | Tuvshruulekn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                                                                                                                             | 2044                                                                                                                                               | 15                                                                                                                                                                                                                       |                                                                                                                                                        | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.73                                                                                                                                                                    | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
| 3                   |                                                                                                                         | Tsakhir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4                                                                                                                                                                             | 506                                                                                                                                                | 7                                                                                                                                                                                                                        | 97                                                                                                                                                     | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.38                                                                                                                                                                    | DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                                             |
| Ż,                  |                                                                                                                         | Tsenkher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                                                                                                             | 1227                                                                                                                                               | 5                                                                                                                                                                                                                        | 180                                                                                                                                                    | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
|                     |                                                                                                                         | Tastacrieg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                             | 1046                                                                                                                                               | 6                                                                                                                                                                                                                        | 163                                                                                                                                                    | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.57                                                                                                                                                                    | CGrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                             |
| 2                   |                                                                                                                         | Chuluut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                               | 849                                                                                                                                                | 3                                                                                                                                                                                                                        | 125                                                                                                                                                    | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.36                                                                                                                                                                    | DG(60K),PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic                                                                                                                                                                                                                             |
|                     | 15                                                                                                                      | Khairkhan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                              | 1091                                                                                                                                               | 24                                                                                                                                                                                                                       | 247                                                                                                                                                    | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.20                                                                                                                                                                    | CGrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                             |
|                     | 16                                                                                                                      | Khangai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                             | 659                                                                                                                                                | 10                                                                                                                                                                                                                       | 130                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.52                                                                                                                                                                    | DG(60K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                                                             |
|                     | 17                                                                                                                      | Khashaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6                                                                                                                                                                             | 439                                                                                                                                                | 6                                                                                                                                                                                                                        | 85                                                                                                                                                     | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.37                                                                                                                                                                    | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
|                     | 18                                                                                                                      | Khotont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                              | 5603                                                                                                                                               | 21                                                                                                                                                                                                                       | 264                                                                                                                                                    | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                    | C Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                             |
|                     | 19                                                                                                                      | Erdenemandal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                             | 1372                                                                                                                                               | 16                                                                                                                                                                                                                       | 247                                                                                                                                                    | μ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17                                                                                                                                                                    | C Grid, PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic                                                                                                                                                                                                                             |
| Note                |                                                                                                                         | digital switching systems. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                         | WILL THE LEE CAN CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I WRD                                                                                                                                                                                                                               |
| Z                   | sizec<br>insta                                                                                                          | lled auto connection systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vince trunk                                                                                                                                                                     | line shall be repl                                                                                                                                 | aced by dig                                                                                                                                                                                                              | atal microwa                                                                                                                                           | ve link instead o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f VSAT.                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Г                                                                                                                                                                                                                                   |
| Z                   | sizec<br>insta<br>1                                                                                                     | fled auto connection systems<br>Aimag Center(Bayanhongor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Inter-pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                    | aced by dig<br>1106                                                                                                                                                                                                      | atal microwa<br>7763                                                                                                                                   | ve link instead o<br>VSAT (Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f VSAT.                                                                                                                                                                 | ADG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic                                                                                                                                                                                                                             |
| z                   | sizec<br>insta<br>1                                                                                                     | lled auto connection systems<br>Aimeg Center(Bayanhongor)<br>Shargaljuut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vince trunk<br>3.86                                                                                                                                                             | line shall be rep<br>17424                                                                                                                         | aced by dig<br>1106                                                                                                                                                                                                      | atal microwa<br>7763<br>43                                                                                                                             | Ve link instead of VSAT (Existing) $\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f VSAT.<br>6.35                                                                                                                                                         | A-DG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic<br>Metalic                                                                                                                                                                                                                  |
| z                   | sizec<br>insta<br>1<br>2<br>3                                                                                           | lled auto connection systems<br>Aimag Canter(Bayanhongor)<br>Shangaljuut<br>Uziit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vince trunk<br>3.86<br>3.86                                                                                                                                                     | line shall be rep<br>17424<br>787                                                                                                                  | aced by dig<br>1106<br>0<br>20                                                                                                                                                                                           | atal microwa<br>7763<br>43<br>239                                                                                                                      | Ve link instead of VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f VSAT.<br>6.35<br>2.54                                                                                                                                                 | ADG<br>ADG<br>ADG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                       |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4                                                                                      | lled auto connection systems<br>Aimag Center(Bayanhongor)<br>Shangaljuut<br>Uziit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P2<br>P1<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.86<br>3.86<br>3.86<br>3.86<br>3.96                                                                                                                                            | line shall be repi<br>17424<br>                                                                                                                    | aced by dig<br>1106<br>0<br>20<br>5                                                                                                                                                                                      | atal microwa<br>7763<br>43<br>239<br>114                                                                                                               | Ve link instead of<br>VSAT(Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f VSAT.<br>6.35<br>2.54<br>1.01                                                                                                                                         | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                            |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5                                                                                 | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P2<br>P1<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.86<br>3.86<br>3.98<br>3.98<br>5.3                                                                                                                                             | 17424<br>17424<br>787<br>497<br>666                                                                                                                | aced by dig<br>1106<br>0<br>20<br>5<br>21                                                                                                                                                                                | atal microwa<br>7763<br>43<br>239<br>114<br>220                                                                                                        | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15                                                                                                                                 | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(60K),PV(0.5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                 |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6                                                                            | lied auto connection systems<br>Aimag Canter(Bayanhongor)<br>Shargaljuut<br>Lizit<br>Jinst<br>Bogd<br>Bayanlig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter-pro<br>22<br>PT<br>PT<br>PT<br>PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xince trunk<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92                                                                                                                             | ine shall be rep<br>17424<br>787<br>497<br>666<br>681                                                                                              | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14                                                                                                                                                                          | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188                                                                                                 | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06                                                                                                                         | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(60K),PV(0.5K)<br>S-DG(100K),PV(0.5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                      |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                       | Iled auto connection systems<br>Aimag Canter(Bayanhongor)<br>Shargaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayangobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inter-pro           P1           P2           P1           P2           P1           P2           P1           P2           P1           P2           P1           P2           P1           P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66                                                                                                                            | 17424<br>17424<br>787<br>497<br>666<br>681<br>679                                                                                                  | laced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22                                                                                                                                                                   | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133                                                                                          | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29                                                                                                                 | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K),PV(0.5K)<br>S-DG(100K),PV(0.8K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                           |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                  | lled auto connection systems<br>Aimag Center(Bayanhongor)<br>Shangaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inter-pro           환2           환1           환2           환1           환2           환1           환2           환1           환1           환1           환1           환1           환1           환1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84                                                                                                                    | ine shall be rep<br>17424<br>787<br>497<br>666<br>681<br>679<br>527                                                                                | aced by dig<br>1106<br>20<br>5<br>21<br>14<br>22<br>5                                                                                                                                                                    | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119                                                                                   | we link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>VSAT<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95                                                                                                         | A-DG<br>A-DG<br>5-DG(100K)<br>5-DG(60K),PV(0.5K)<br>5-DG(60K),PV(0.5K)<br>5-DG(100K)<br>5-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                           |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                             | lied auto connection systems<br>Aimag Canter(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan<br>Bayantsagaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inter-pro           P2           P1           P2           P3           P4           P4 | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45                                                                                                                    | line shall be repi<br>17424<br>787<br>497<br>686<br>681<br>679<br>527<br>675                                                                       | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>14<br>2<br>5<br>37                                                                                                                                                    | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298                                                                            | we link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>VSAT<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48                                                                                                 | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(00K),PX(0.5K)<br>S-DG(00K),PX(0.5K)<br>S-DG(00K)<br>S-DG(00K),PX(0.8K)<br>S-DG(00K),PX(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                       | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayantig<br>Bayantig<br>Baatsagaan<br>Bayantaggaan<br>Bayantaggaan<br>Bayantudur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inter-pro<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2<br>원2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.86<br>3.86<br>3.96<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89                                                                                                           | ine shall be rep<br>17424<br>787<br>497<br>686<br>681<br>679<br>527<br>675<br>331                                                                  | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>14<br>2<br>2<br>5<br>37<br>6                                                                                                                                          | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91                                                                      | we link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>VSAT<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81                                                                                         | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K),PV(0.5K)<br>S-DG(100K)<br>S-DG(00K)<br>S-DG(00K),PV(0.8K)<br>S-DG(100K),PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                 | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayanlig<br>Bayangobi<br>Bayangobi<br>Bayansagaan<br>Bayansagaan<br>Bayan Undur<br>Shinejinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inter-pro<br>名2<br>円<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5                                                                                                   | ine shall be rep<br>17424<br>787<br>497<br>666<br>681<br>679<br>527<br>675<br>331<br>460                                                           | aced by dig<br>1106<br>20<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>6<br>0<br>0                                                                                                                                    | atal microwa<br>7763<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90                                                                      | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(1)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00                                                                                 | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.8K)<br>S-DG(60K), PV(0.8K)<br>S-DG(100K), PV(0.4K)<br>S-DG(100K), PV(0.4K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                          |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                           | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Lizit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Bayangobi<br>Baayangobi<br>Baayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Ba | . Inter-pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04                                                                                           | line shall be repi<br>17424<br>787<br>666<br>681<br>679<br>527<br>675<br>331<br>460<br>523                                                         | aced by dig<br>1106<br>20<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>0                                                                                                                               | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101                                                         | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00                                                                         | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(00K),PV(0.5K)<br>S-DG(100K),PV(0.8K)<br>S-DG(100K),PV(0.8K)<br>S-DG(100K),PV(0.4K)<br>S-DG(100K),PV(0.4K)<br>S-DG(100K)<br>S-DG(30K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                    |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                     | Iled auto connection systems<br>Aimag Canter (Bayanhongor)<br>Shargaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayantgg<br>Bayangobi<br>Bayangobi<br>Bayan-Undur<br>Shinajinst<br>Bumbugur<br>Buntsagaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Inter-pro<br>P2<br>P2<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P2<br>P2<br>P2<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86<br>3.86<br>3.86<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84                                                                                   | ine shall be rep<br>17424<br>787<br>497<br>686<br>881<br>679<br>527<br>675<br>331<br>460<br>523<br>1234                                            | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25                                                                                                                               | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340                                                  | ve link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\nu$ (2)<br>$\mu$ (2) | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.000<br>2.03                                                                | A-DG<br>A-DG<br>S-DG(100k)<br>S-DG(100k),PV(0.5k)<br>S-DG(100k),PV(0.8k)<br>S-DG(00k),PV(0.8k)<br>S-DG(00k),PV(0.4k)<br>S-DG(100k),S-DG(100k)<br>S-DG(100k),S-DG(100k)<br>S-DG(100k),PV(0.6k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                         |
| BAYANKHONGOR AIMAG  | size<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan<br>Bayanteagaan<br>Bayan-Undur<br>Shinejinst<br>Buntagur<br>Buutsagaan<br>Khureemaral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter-pro     P2     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33                                                                           | line shall be rep<br>17424<br>787<br>497<br>666<br>681<br>679<br>527<br>675<br>3311<br>460<br>523<br>1234<br>984                                   | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25<br>37<br>43<br>37<br>43                                                                                                       | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>00<br>101<br>340<br>228                                     | ve link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$                                                                                                                                                                                                                                                                                                                                                                    | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>0.00<br>2.03<br>4.37                                                 | A-DG<br>A-DG<br>S-DQ(100K)<br>S-DQ(00K),PX(0.5K)<br>S-DQ(00K),PX(0.5K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K),PX(0.6K)<br>S-DQ(100K),PX(0.6K)<br>S-DQ(00K),PX(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                        |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                         | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan<br>Bayantsagaan<br>Bayan-Undur<br>Shinejinst<br>Buntsagaan<br>Buutsagaan<br>Khureemaral<br>Bayanbulag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter-pro     P2     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.86<br>3.86<br>3.96<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>4.33<br>3.04                                                                           | line shall be repi<br>17424<br>787<br>497<br>666<br>681<br>675<br>675<br>331<br>460<br>523<br>1234<br>984<br>984                                   | aced by dig<br>1106<br>0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                    | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>10<br>101<br>298<br>91<br>90<br>101<br>115           | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.548<br>1.81<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99                                                | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(00K),PV(0.5K)<br>S-DG(100K)<br>S-DG(00K)<br>S-DG(00K),PV(0.8K)<br>S-DG(100K),PV(0.4K)<br>S-DG(100K),PV(0.6K)<br>S-DG(00K),PV(0.6K)<br>S-DG(00K),PV(0.6K)<br>S-DG(00K),PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                        |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                   | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inter-pro<br>유2<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.86<br>3.86<br>3.86<br>3.96<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.44                                                   | ine shall be rep<br>17424<br>787<br>497<br>666<br>681<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482                                     | aced by dig<br>1106<br>0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                    | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340<br>298<br>115<br>118                             | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99<br>1.24                                 | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K) | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17             | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayanlig<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Butsagaan<br>Khureemaral<br>Bayanbulag<br>Gauvanbulag<br>Zag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inter-pro<br>유2<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>우<br>우<br>우<br>우<br>우<br>우                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.86<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.44<br>2.56                                           | ine shall be rep<br>17424<br>787<br>497<br>666<br>669<br>669<br>679<br>527<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482<br>629         | aced by dig<br>1106<br>0<br>20<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>25<br>37<br>5<br>5<br>5<br>5<br>5                                                                           | atal microwa<br>7763<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340<br>298<br>115<br>118<br>138                            | ve link instead o<br>VSAT (Evisting)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.000<br>2.03<br>4.37<br>0.99<br>1.24<br>0.79                                | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K), P-V(0.5K)<br>S-DG(100K), P-V(0.8K)<br>S-DG(100K), P-V(0.8K)<br>S-DG(100K), P-V(0.4K)<br>S-DG(100K), P-V(0.6K)<br>S-DG(100K), P-V(0.6K)<br>S-DG(00K), P-V(0.6K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       | lied auto connection systems<br>Aimag Canter (Bayanhongor)<br>Shargaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayantgo<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bay | Inter-pro           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           환           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1                                        | 3.86<br>3.86<br>3.86<br>5.398<br>5.39<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.43<br>3.04<br>4.44<br>4.33<br>3.04<br>4.44<br>4.33<br>3.04  | ine shall be rep<br>17424<br>787<br>487<br>686<br>681<br>679<br>527<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482<br>629<br>1339        | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25<br>43<br>5<br>5<br>19                                                                                                   | atal microwa<br>7763<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340<br>298<br>115<br>118<br>138<br>331                     | ve link instead o<br>VSAT (Evisting)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99<br>1.24<br>0.79<br>1.24                         | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(1.5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayanlig<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Butsagaan<br>Khureemaral<br>Bayanbulag<br>Gauvanbulag<br>Zag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inter-pro<br>유2<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>우<br>우<br>우<br>우<br>우<br>우                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.86<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.44<br>2.56                                           | ine shall be rep<br>17424<br>787<br>497<br>666<br>669<br>669<br>679<br>527<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482<br>629         | aced by dig<br>1106<br>0<br>20<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>25<br>37<br>5<br>5<br>5<br>5<br>5                                                                           | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>296<br>91<br>296<br>91<br>330<br>101<br>340<br>298<br>115<br>118<br>331<br>180 | ve link instead o<br>VSAT (Evisting)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99<br>1.24<br>0.79<br>1.24<br>0.79<br>1.42<br>0.00 | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K), P-V(0.5K)<br>S-DG(100K), P-V(0.8K)<br>S-DG(100K), P-V(0.8K)<br>S-DG(100K), P-V(0.4K)<br>S-DG(100K), P-V(0.6K)<br>S-DG(100K), P-V(0.6K)<br>S-DG(00K), P-V(0.6K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                       | Iled auto connection systems<br>Aimag Canter(Bayanhongor)<br>Shargaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayangobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inter-pro           P1           P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66                                                                                                                            | 17424<br>17424<br>787<br>497<br>666<br>681<br>679                                                                                                  | laced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22                                                                                                                                                                   | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133                                                                                          | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06                                                                                                                         | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(60K),PV(0.5K)<br>S-DG(100K),PV(0.5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M M M M M                                                                                                                                                                                                                           |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                 | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayanlig<br>Bayangobi<br>Bayangobi<br>Bayansagaan<br>Bayansagaan<br>Bayan Undur<br>Shinejinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inter-pro<br>名2<br>円<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料<br>料                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5                                                                                                   | ine shall be rep<br>17424<br>787<br>497<br>666<br>681<br>679<br>527<br>675<br>331<br>460                                                           | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>6<br>0<br>0                                                                                                                                     | atal microwa<br>7763<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90                                                                      | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(1)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00                                                                                 | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.8K)<br>S-DG(60K), PV(0.8K)<br>S-DG(100K), PV(0.4K)<br>S-DG(100K), PV(0.4K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                          |
|                     | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                     | Iled auto connection systems<br>Aimag Canter (Bayanhongor)<br>Shargaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayantgg<br>Bayangobi<br>Bayangobi<br>Bayan-Undur<br>Shinajinst<br>Bumbugur<br>Buntsagaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Inter-pro<br>P2<br>P2<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P2<br>P2<br>P2<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86<br>3.86<br>3.86<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84                                                                                   | ine shall be rep<br>17424<br>787<br>497<br>686<br>881<br>679<br>527<br>675<br>331<br>460<br>523<br>1234                                            | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25                                                                                                                               | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340                                                  | ve link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\nu$ (2)<br>$\mu$ (2) | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.000<br>2.03                                                                | A-DG<br>A-DG<br>S-DG(100k)<br>S-DG(100k),PV(0.5k)<br>S-DG(100k),PV(0.8k)<br>S-DG(60k),PV(0.8k)<br>S-DG(60k),PV(0.4k)<br>S-DG(100k),S-DG(100k)<br>S-DG(100k),S-DG(100k)<br>S-DG(100k),PV(0.6k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                         |
| BAYANKHONGOR AIMAG  | size<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan<br>Bayanteagaan<br>Bayan-Undur<br>Shinejinst<br>Buntagur<br>Buutsagaan<br>Khureemaral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter-pro     P2     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.86<br>3.86<br>3.86<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84                                                                                   | ine shall be rep<br>17424<br>787<br>497<br>686<br>881<br>679<br>527<br>675<br>331<br>460<br>523<br>1234                                            | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25                                                                                                                               | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340                                                  | ve link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\nu$ (2)<br>$\mu$ (2) | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.000<br>2.03                                                                | A-DG<br>A-DG<br>S-DG(100k)<br>S-DG(100k),PV(0.5k)<br>S-DG(100k),PV(0.8k)<br>S-DG(60k),PV(0.8k)<br>S-DG(60k),PV(0.4k)<br>S-DG(100k),S-DG(100k)<br>S-DG(100k),S-DG(100k)<br>S-DG(100k),PV(0.6k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                         |
| BAYANKHONGOR AIMAG  | size<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan<br>Bayanteagaan<br>Bayan-Undur<br>Shinejinst<br>Buntagur<br>Buutsagaan<br>Khureemaral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter-pro     P2     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33                                                                           | line shall be rep<br>17424<br>787<br>497<br>666<br>681<br>679<br>527<br>675<br>3311<br>460<br>523<br>1234<br>984                                   | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25<br>37<br>43<br>37<br>43                                                                                                       | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>00<br>101<br>340<br>228                                     | ve link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$                                                                                                                                                                                                                                                                                                                                                                    | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>0.00<br>2.03<br>4.37                                                 | A-DG<br>A-DG<br>S-DQ(100K)<br>S-DQ(00K),PX(0.5K)<br>S-DQ(00K),PX(0.5K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K),PX(0.6K)<br>S-DQ(100K),PX(0.6K)<br>S-DQ(00K),PX(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                   |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                         | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanig<br>Bayangobi<br>Baatsagaan<br>Bayantsagaan<br>Bayan-Undur<br>Shinejinst<br>Buntsagaan<br>Buutsagaan<br>Khureemaral<br>Bayanbulag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter-pro     P2     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.86<br>3.86<br>3.96<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>4.33<br>3.04                                                                           | line shall be repi<br>17424<br>787<br>497<br>665<br>681<br>675<br>675<br>331<br>460<br>523<br>1234<br>984<br>984                                   | aced by dig<br>1106<br>0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                    | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>10<br>101<br>298<br>91<br>90<br>101<br>115           | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.548<br>1.81<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99                                                | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(00K),PV(0.5K)<br>S-DG(100K)<br>S-DG(00K)<br>S-DG(00K),PV(0.8K)<br>S-DG(100K),PV(0.4K)<br>S-DG(100K),PV(0.6K)<br>S-DG(00K),PV(0.6K)<br>S-DG(00K),PV(0.6K)<br>S-DG(00K),PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                        |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                   | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Bayantig<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan<br>Burtsagaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inter-pro<br>유2<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원<br>원                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.86<br>3.86<br>3.86<br>3.96<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.44                                                   | ine shall be rep<br>17424<br>787<br>497<br>666<br>681<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482                                     | aced by dig<br>1106<br>0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                    | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340<br>298<br>115<br>118                             | ve link instead o<br>VSAT (Existing)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99<br>1.24                                 | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)                             | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17             | lied auto connection systems<br>Aimag Center(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayanlig<br>Bayanlig<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Butsagaan<br>Khureemaral<br>Bayanbulag<br>Gauvanbulag<br>Zag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inter-pro<br>유2<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>유<br>우<br>우<br>우<br>우<br>우<br>우                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.86<br>3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.44<br>2.56                                           | ine shall be rep<br>17424<br>787<br>497<br>666<br>669<br>669<br>679<br>527<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482<br>629         | aced by dig<br>1106<br>0<br>20<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>25<br>37<br>5<br>5<br>5<br>5<br>5                                                                           | atal microwa<br>7763<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340<br>298<br>115<br>118<br>138                            | ve link instead o<br>VSAT (Evisting)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.000<br>2.03<br>4.37<br>0.99<br>1.24<br>0.79                                | A-DG<br>A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K), P-V(0.5K)<br>S-DG(100K), P-V(0.8K)<br>S-DG(100K), P-V(0.8K)<br>S-DG(100K), P-V(0.4K)<br>S-DG(100K), P-V(0.6K)<br>S-DG(100K), P-V(0.6K)<br>S-DG(00K), P-V(0.6K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                        |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       | lied auto connection systems<br>Aimag Canter (Bayanhongor)<br>Shargaljuut<br>Uzit<br>Jinst<br>Bogd<br>Bayantgo<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bay | Inter-pro           환2           환3           10           11           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12 | 3.86<br>3.86<br>3.86<br>5.398<br>5.39<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.43<br>3.04<br>4.44<br>4.33<br>3.04<br>4.44<br>4.33 | ine shall be rep<br>17424<br>787<br>487<br>686<br>681<br>679<br>527<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482<br>629<br>1339        | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>25<br>43<br>5<br>5<br>19                                                                                                   | atal microwa<br>7763<br>239<br>114<br>220<br>188<br>133<br>119<br>298<br>91<br>90<br>101<br>340<br>298<br>115<br>118<br>138<br>331                     | ve link instead o<br>VSAT (Evisting)<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(1)$<br>VSAT<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu($                                                                                                                                                                                                                                                      | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99<br>1.24<br>0.79<br>1.24                         | A-DG<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(0.5K)<br>S-DG(100K), PV(1.5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| BAYANKHONGOR AIMAG  | sizec<br>insta<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | lied auto connection systems<br>Aimag Canter(Bayanhongor)<br>Shargaljuut<br>Uziit<br>Jinst<br>Bogd<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Bayangobi<br>Ba | Inter-pro           원2           관계           관계 | 3.86<br>3.86<br>3.98<br>5.3<br>11.92<br>4.66<br>5.84<br>7.45<br>16.89<br>16.5<br>3.04<br>5.84<br>4.33<br>3.04<br>4.33<br>3.04<br>4.44<br>4.33<br>3.04<br>4.44<br>4.4            | ine shall be rep<br>17424<br>787<br>497<br>666<br>681<br>679<br>527<br>675<br>331<br>460<br>523<br>1234<br>984<br>506<br>482<br>629<br>1339<br>964 | aced by dig<br>1106<br>0<br>20<br>5<br>21<br>14<br>22<br>5<br>37<br>6<br>0<br>0<br>0<br>0<br>25<br>37<br>6<br>37<br>6<br>37<br>6<br>37<br>6<br>19<br>19<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | atal microwa<br>7763<br>43<br>239<br>114<br>220<br>188<br>133<br>119<br>296<br>91<br>296<br>91<br>330<br>101<br>340<br>298<br>115<br>118<br>331<br>180 | ve link instead o<br>VSAT (Existing)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$                                                                                                                                                                                                                                                                                                                                                                    | f VSAT.<br>6.35<br>2.54<br>1.01<br>3.15<br>2.06<br>0.29<br>0.95<br>5.48<br>1.81<br>0.00<br>0.00<br>2.03<br>4.37<br>0.99<br>1.24<br>0.79<br>1.24<br>0.79<br>1.42<br>0.00 | A-DG<br>A-DG<br>S-DC3(100K)<br>S-DC3(100K)<br>S-DC3(100K),PV(0.5K)<br>S-DC3(100K),PV(0.5K)<br>S-DC3(100K),PV(0.6K)<br>S-DC3(100K),PV(0.6K)<br>S-DC3(100K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(00K),PV(0.6K)<br>S-DC3(0K),PV(0.6K)<br>S-DC3(0K)                                                                                                                                                                            | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |

|                      |                                                                                     | Aimag Center(Olgii)                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                   | 25763                                                                                                                                     | 1666                                                                                         | 5175                                                                                                 |                                                                                                                                                                                                | 6.47                                                                                                          | West Grid DG-30KW                                                                                                                                                                                                            | Metalic                                                                                                                                     |
|----------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                     | Altai                                                                                                                                                                                         | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                                                                                                                                 | 1013                                                                                                                                      | 4                                                                                            | 86                                                                                                   | $\mu(1)$                                                                                                                                                                                       |                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                             |
|                      | 3                                                                                   | Altantsuguts                                                                                                                                                                                  | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8                                                                                                                                 | 1131                                                                                                                                      | 2                                                                                            |                                                                                                      | μ(2)                                                                                                                                                                                           |                                                                                                               | S-DC(60K), PV(0.6K)                                                                                                                                                                                                          | Metalic                                                                                                                                     |
| ¥                    | 4                                                                                   | Bayarnur                                                                                                                                                                                      | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                                                                                                                                  | 2206                                                                                                                                      | 2                                                                                            |                                                                                                      | μ(2)                                                                                                                                                                                           |                                                                                                               | S-DG(100K), PV(0.6K)                                                                                                                                                                                                         |                                                                                                                                             |
| Ę.                   | 5                                                                                   | Bugat                                                                                                                                                                                         | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                   | 1010                                                                                                                                      | 6                                                                                            |                                                                                                      | μ(1)                                                                                                                                                                                           |                                                                                                               | West Grid                                                                                                                                                                                                                    | Metalic                                                                                                                                     |
| -1 BAYAN-ULGII AIMAG |                                                                                     | Bulgan                                                                                                                                                                                        | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                   | 1378                                                                                                                                      | - 4                                                                                          |                                                                                                      | VSAT                                                                                                                                                                                           |                                                                                                               |                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
| ចុ                   | 7                                                                                   | Buyart                                                                                                                                                                                        | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8                                                                                                                                 | 835                                                                                                                                       | 3                                                                                            |                                                                                                      | μ(2)                                                                                                                                                                                           |                                                                                                               | S-DG(60K)                                                                                                                                                                                                                    | Metalic                                                                                                                                     |
| Ę                    | 8                                                                                   | Delun                                                                                                                                                                                         | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6                                                                                                                                 | 1634                                                                                                                                      | 4                                                                                            |                                                                                                      | VSAT                                                                                                                                                                                           |                                                                                                               | S-DG(160K), PV(0.6K)                                                                                                                                                                                                         |                                                                                                                                             |
| Ż.                   | 9                                                                                   | Ngoorrur                                                                                                                                                                                      | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.2                                                                                                                                 | 2217                                                                                                                                      | 1                                                                                            |                                                                                                      | $\mu(2)$                                                                                                                                                                                       |                                                                                                               | S-DG(100K), PV(0.6K)                                                                                                                                                                                                         |                                                                                                                                             |
| Σ.                   | 10                                                                                  | Tabo                                                                                                                                                                                          | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                   | 1165                                                                                                                                      | 6                                                                                            | 103                                                                                                  | μ(2)                                                                                                                                                                                           |                                                                                                               | PV(0.6K)                                                                                                                                                                                                                     | Metalic                                                                                                                                     |
| 2                    | 11                                                                                  | Uaankhus                                                                                                                                                                                      | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                   | 1657                                                                                                                                      | 8                                                                                            |                                                                                                      | μ(1)                                                                                                                                                                                           |                                                                                                               | West Grid                                                                                                                                                                                                                    | Metalic                                                                                                                                     |
| 7                    | 12                                                                                  | Sagsai                                                                                                                                                                                        | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1                                                                                                                                 | 1331                                                                                                                                      | 18                                                                                           |                                                                                                      | μ(1)                                                                                                                                                                                           |                                                                                                               | West Grid                                                                                                                                                                                                                    | Metalic                                                                                                                                     |
| -                    | 13                                                                                  | Tsengel                                                                                                                                                                                       | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.5                                                                                                                                 | 1507                                                                                                                                      | 15                                                                                           |                                                                                                      | μ(1)                                                                                                                                                                                           |                                                                                                               | West Grid                                                                                                                                                                                                                    | Metalic                                                                                                                                     |
|                      | 14                                                                                  | Khotgor (UNS)                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |                                                                                                                                           | 1                                                                                            | 79                                                                                                   | μ(3)                                                                                                                                                                                           |                                                                                                               |                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
|                      |                                                                                     | Tsagaamur                                                                                                                                                                                     | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-                                                                                                                                  | 1853                                                                                                                                      | 15                                                                                           |                                                                                                      | $\mu(2)$                                                                                                                                                                                       | 0.81                                                                                                          | S-DG(100K), PV(0.8K)                                                                                                                                                                                                         |                                                                                                                                             |
| Note                 | agi                                                                                 | alization or transmission nei                                                                                                                                                                 | work Bayan-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ugiy aimag comm                                                                                                                     | nalogue microw<br>unication office                                                                                                        | ind                                                                                          |                                                                                                      |                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                             |
| Note                 |                                                                                     |                                                                                                                                                                                               | work Bayan-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ugiy aimag comm                                                                                                                     | unication office                                                                                                                          |                                                                                              |                                                                                                      |                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                             |
| Note                 | 1                                                                                   | Aimag Center (Bulgan)                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     | unication office                                                                                                                          | 1247                                                                                         | 3342                                                                                                 |                                                                                                                                                                                                |                                                                                                               | Central Grid                                                                                                                                                                                                                 | Metalic                                                                                                                                     |
| Note                 | 1 2                                                                                 | Aimag Center (Bulgan)<br>Bayan- Agt                                                                                                                                                           | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.06                                                                                                                                | unication office                                                                                                                          | 1247                                                                                         | 180                                                                                                  | μ(2)                                                                                                                                                                                           |                                                                                                               | Central Grid                                                                                                                                                                                                                 | Metalic                                                                                                                                     |
| Note                 | 1<br>2<br>3                                                                         | Aimag Center (Bulgan)<br>Bayan-Agt<br>Bayannur                                                                                                                                                | P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     | Unication office<br>841<br>824                                                                                                            | 1247<br>34<br>38                                                                             | 180<br>186                                                                                           | VSAT                                                                                                                                                                                           | 4.61                                                                                                          | Central Grid<br>Central Grid                                                                                                                                                                                                 | Metalic<br>Metalic                                                                                                                          |
| Note                 | 1<br>2<br>3<br>4                                                                    | Aimag Center (Bulgan)<br>Bayan-Agt<br>Bayanur<br>Bugat                                                                                                                                        | P1<br>P1<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.08<br>0.96<br>3                                                                                                                   | 841<br>824<br>612                                                                                                                         | 1247<br>34<br>38<br>9                                                                        | 180<br>186<br>98                                                                                     | VSAT<br>μ(1)                                                                                                                                                                                   | 4.61<br>1.47                                                                                                  | Central Grid<br>Central Grid<br>Central Grid                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic                                                                                                               |
|                      | 1<br>2<br>3<br>4<br>5                                                               | Aimeg Center (Bulgan)<br>Bayan-Agt<br>Bayamur<br>Bugat<br>Burghangai                                                                                                                          | P1<br>P1<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.06<br>0.96<br>3.345                                                                                                               | Unication office<br>841<br>824<br>612<br>899                                                                                              | 1247<br>34<br>38<br>9<br>35                                                                  | 180<br>186<br>98<br>189                                                                              | $\frac{\mu(1)}{\mu(1)}$                                                                                                                                                                        | 4.61<br>1.47<br>3.89                                                                                          | Central Grid<br>Central Grid<br>Central Grid<br>Central Grid                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                    |
|                      | 1<br>2<br>3<br>4<br>5                                                               | Aimag Center (Bulgan)<br>Bayan- Agt<br>Bayamur<br>Bugat<br>Buraghangai<br>Gurvanbulag                                                                                                         | P1<br>P1<br>P2<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 306<br>0.96<br>3<br>3.45<br>2.69                                                                                                    | unication office<br>841<br>824<br>612<br>899<br>1019                                                                                      | 1247<br>34<br>38<br>9<br>35<br>19                                                            | 180<br>186<br>98<br>189<br>169                                                                       | $ \begin{array}{c} \text{VSAT} \\ \mu(1) \\ \mu(1) \\ \mu(2) \end{array} $                                                                                                                     | 4.61<br>1.47<br>3.89<br>1.96                                                                                  | Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                         |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                     | Aimag Center (Bulgan)<br>Bayan- Agt<br>Bayamur<br>Bugat<br>Buraghangai<br>Guvanbulag<br>Dashinchilen                                                                                          | P1<br>P2<br>P2<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.08<br>0.98<br>3.345<br>2.69<br>2.32                                                                                               | unication office<br>841<br>844<br>612<br>889<br>1019<br>1235                                                                              | 1247<br>34<br>38<br>9<br>36<br>19<br>50                                                      | 180<br>186<br>98<br>189<br>169<br>263                                                                | VSAT<br>$\mu(1)$<br>$\mu(1)$<br>$\mu(2)$<br>VSAT                                                                                                                                               | 4.61<br>1.47<br>3.89<br>1.96<br>4.05                                                                          | Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                              |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                | Aimag Center (Bulgan)<br>Bayan Agt<br>Bayamur<br>Bugat<br>Burghangai<br>Guvarbulag<br>Dashinchilen<br>Mogot                                                                                   | 면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면<br>면                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.08<br>0.96<br>3.345<br>2.66<br>2.32<br>2.82                                                                                       | unication office<br>841<br>824<br>612<br>829<br>1019<br>1019<br>1235<br>613                                                               | 1247<br>34<br>38<br>9<br>35<br>19<br>50<br>20                                                | 180<br>186<br>98<br>189<br>169<br>263<br>122                                                         | VSAT $\mu(1)$ $\mu(2)$ VSAT $\mu(2)$                                                                                                                                                           | 4.61<br>1.47<br>3.89<br>1.96<br>4.05<br>3.26                                                                  | Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                   |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                           | Aimeg Center (Bulgan)<br>Bayan-Agt<br>Bayantur<br>Bugat<br>Bureghangai<br>Curvanbulag<br>Dashinchilen<br>Mogot<br>Othon                                                                       | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.06<br>0.96<br>3.45<br>2.69<br>2.32<br>2.82<br>4.22                                                                                | unication office<br>841<br>824<br>612<br>889<br>1019<br>1235<br>613<br>758                                                                | 1247<br>34<br>38<br>9<br>36<br>19<br>50<br>20<br>23                                          | 180<br>186<br>98<br>189<br>169<br>263<br>122<br>146                                                  | VSAT $\mu(1)$ $\mu(2)$ VSAT $\mu(2)$ $\mu(2)$ $\mu(1)$                                                                                                                                         | 4.61<br>1.47<br>3.89<br>1.96<br>4.05<br>3.26<br>3.03                                                          | Central Crid<br>Central Crid<br>Central Crid<br>Central Crid<br>Central Crid<br>Central Crid<br>Central Crid<br>Central Crid                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                   |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                     | Aimeg Center (Bulgen)<br>Bayen- Agt<br>Bayen<br>Buget<br>Bureghangei<br>Curverbulag<br>Dashinchilen<br>Mogot<br>Orkhon<br>Rashaent (Uziit)                                                    | PI                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.08<br>0.96<br>3.345<br>2.69<br>2.32<br>2.82<br>4.22<br>1.01                                                                       | unication office<br>841<br>824<br>612<br>899<br>1019<br>1235<br>613<br>758<br>1813                                                        | 1247<br>34<br>38<br>9<br>35<br>19<br>50<br>20<br>23<br>38                                    | 180<br>186<br>98<br>189<br>169<br>263<br>122<br>146<br>310                                           | VSAT $\mu(1)$ $\mu(2)$ VSAT $\mu(2)$ $\nu(2)$ $\nu(1)$ $\nu(2)$ $\nu(1)$ $\nu(3)$                                                                                                              | 4,61<br>1,47<br>3,89<br>1,96<br>4,05<br>3,26<br>3,03<br>2,10                                                  | Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid<br>Central Grid                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                               | Aimag Center (Bulgan)<br>Bayan Agt<br>Bayan Lur<br>Bugat<br>Curvarbulag<br>Dashinchilen<br>Mogot<br>Oktoon<br>Rashaant (Uziit)<br>Salkhan                                                     | P1           P2           P1           P2           P1           P2           P3           P4           P5           P6           P7           P8           P7           P8           P7           P8           P7           P8           P7                                                                                                                                                                                                                                                                                                                                                                              | 3.08<br>0.98<br>3.45<br>2.69<br>2.32<br>2.82<br>4.22<br>1.01<br>2.77                                                                | unication office<br>841<br>612<br>9399<br>1019<br>1235<br>613<br>758<br>1813<br>758                                                       | 1247<br>34<br>38<br>9<br>35<br>19<br>50<br>20<br>20<br>23<br>38<br>50                        | 180<br>186<br>98<br>189<br>169<br>263<br>122<br>146<br>310<br>228                                    | $ \begin{array}{c} \text{VSAT} \\ \mu(1) \\ \mu(2) \\ \text{VSAT} \\ \mu(2) \\ \mu(1) \\ \text{VSAT} \\ \mu(2) \\ \text{VSAT} \\ \mu(2) \\ \end{array} $                                       | 4.61<br>1.47<br>3.89<br>1.86<br>4.05<br>3.26<br>3.03<br>2.10<br>6.60                                          | Central Crid<br>Central Crid                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                         | Aimag Center (Bulgan)<br>Bayan-Agt<br>Bayamur<br>Buraghangai<br>Gurvanbulag<br>Dashinchilen<br>Mogot<br>Olikhon<br>Rashaent (Uziit)<br>Salikhan<br>Selenge                                    | ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 308<br>0.95<br>345<br>269<br>232<br>422<br>4.22<br>1.01<br>2.77<br>4.83                                                             | unication office<br>841<br>824<br>612<br>899<br>1019<br>1235<br>613<br>613<br>758<br>1813<br>758<br>1990                                  | 1247<br>34<br>38<br>9<br>36<br>19<br>50<br>20<br>23<br>38<br>50<br>12                        | 180<br>186<br>98<br>189<br>263<br>122<br>146<br>310<br>228<br>277                                    | $\begin{array}{c} \text{VSAT} \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \text{VSAT} \\ \mu(2) \\ \mu(1) \\ \text{VSAT} \\ \mu(2) \\ \mu(1) \\ \text{VSAT} \\ \mu(2) \\ \mu(2) \\ \end{array}$           | 4,61<br>1,47<br>3,89<br>1,96<br>4,05<br>3,26<br>3,03<br>2,10<br>6,60<br>0,60                                  | Central Crid<br>Central Crid                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                   | Aimag Center (Bulgan)<br>Bayan Agt<br>Bayamur<br>Burghangai<br>Guvanbulag<br>Dashinchilen<br>Mogot<br>Orkton<br>Rashaant (Uziit)<br>Salkhan<br>Salenge<br>Teshig                              | ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ<br>ጅ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.08<br>0.95<br>3.45<br>2.69<br>2.32<br>2.62<br>4.22<br>1.01<br>2.77<br>4.83<br>7.72                                                | unication office<br>841<br>824<br>612<br>899<br>1019<br>1235<br>613<br>758<br>1813<br>758<br>1813<br>758<br>1990<br>875                   | 1247<br>34<br>38<br>9<br>35<br>19<br>50<br>20<br>23<br>38<br>50<br>12<br>30                  | 180<br>186<br>98<br>189<br>263<br>122<br>146<br>310<br>298<br>277<br>175                             | VSAT $\mu(1)$ $\mu(1)$ $\mu(2)$ VSAT $\mu(2)$ $\mu(1)$ VSAT $\mu(1)$ VSAT $\mu(2)$ $\mu(2)$ $\mu(2)$ VSAT                                                                                      | 4.61<br>1.47<br>3.89<br>1.86<br>4.05<br>3.26<br>3.03<br>2.10<br>6.60<br>0.60<br>0.343                         | Central Grid<br>Central Grid                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                       |
| 2-3 BULGAN AIMAG     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14             | Aimag Center (Bulgan)<br>Bayan- Agt<br>Bayamur<br>Bugat<br>Buraghangai<br>Guvanbulag<br>Dashinchilen<br>Mogot<br>Otkhon<br>Rashaant (Uziit)<br>Saikman<br>Selenge<br>Teshig<br>Khangel        | P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P | 308<br>0.95<br>3<br>269<br>232<br>269<br>232<br>269<br>232<br>269<br>232<br>269<br>232<br>269<br>232<br>277<br>4.83<br>7.72<br>1.66 | 2011 Cation office<br>841<br>824<br>612<br>899<br>1019<br>1235<br>613<br>758<br>1813<br>758<br>1813<br>758<br>1990<br>875<br>1633         | 1247<br>34<br>38<br>9<br>35<br>19<br>35<br>20<br>23<br>23<br>38<br>50<br>12<br>30<br>9       | 180<br>186<br>98<br>189<br>169<br>263<br>122<br>146<br>310<br>298<br>277<br>175<br>402               | VSAT $\mu(1)$ $\mu(2)$ VSAT $\mu(2)$ $\mu(1)$ VSAT $\mu(2)$ $\mu(2)$ $\mu(2)$ VSAT $\mu(2)$ VSAT $\mu(2)$ VSAT $\mu(2)$                                                                        | 4.61<br>1.47<br>3.89<br>1.86<br>4.05<br>3.26<br>3.03<br>2.10<br>6.60<br>0.60<br>0.343<br>0.55                 | Central Grid<br>Central Grid | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic            |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15       | Aimag Center (Bulgan)<br>Bayan- Agt<br>Bayamur<br>Burghargai<br>Guvanbulag<br>Dashinchilen<br>Mogot<br>Otkhon<br>Rashaant (Uziit)<br>Salkman<br>Selenge<br>Teshig<br>Khangel<br>Khishig-Undur | P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P | 308<br>0.96<br>3<br>269<br>232<br>422<br>4.22<br>1.01<br>2.77<br>4.83<br>7.72<br>1.66<br>2.46                                       | 411<br>841<br>824<br>612<br>899<br>1019<br>1235<br>613<br>758<br>1813<br>758<br>1813<br>758<br>1813<br>758<br>1833<br>875<br>1633<br>1633 | 1247<br>34<br>38<br>9<br>35<br>19<br>35<br>20<br>20<br>23<br>38<br>50<br>12<br>30<br>9<br>40 | 180<br>186<br>98<br>189<br>169<br>263<br>122<br>146<br>310<br>298<br>277<br>175<br>402<br>283        | $\begin{array}{c} \text{VSAT} \\ \mu(1) \\ \mu(2) \\ \text{VSAT} \\ \mu(2) \\ \mu(1) \\ \text{VSAT} \\ \mu(2) \\ \mu(1) \\ \text{VSAT} \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \end{array}$ | 4.61<br>1.47<br>3.89<br>1.86<br>4.05<br>3.26<br>3.03<br>2.10<br>0.60<br>0.60<br>0.343<br>0.55<br>2.45         | Central Grid<br>Central Grid | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |
| AIMAG                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | Aimag Center (Bulgan)<br>Bayan- Agt<br>Bayamur<br>Bugat<br>Buraghangai<br>Guvanbulag<br>Dashinchilen<br>Mogot<br>Otkhon<br>Rashaant (Uziit)<br>Saikman<br>Selenge<br>Teshig<br>Khangel        | P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P           P | 308<br>0.95<br>3<br>269<br>232<br>269<br>232<br>269<br>232<br>269<br>232<br>269<br>232<br>269<br>232<br>277<br>4.83<br>7.72<br>1.66 | 2011 Cation office<br>841<br>824<br>612<br>899<br>1019<br>1235<br>613<br>758<br>1813<br>758<br>1813<br>758<br>1990<br>875<br>1633         | 1247<br>34<br>38<br>9<br>35<br>19<br>35<br>20<br>23<br>23<br>38<br>50<br>12<br>30<br>9       | 180<br>186<br>98<br>189<br>169<br>263<br>122<br>146<br>310<br>226<br>277<br>175<br>402<br>233<br>418 | VSAT $\mu(1)$ $\mu(2)$ VSAT $\mu(2)$ $\mu(1)$ VSAT $\mu(2)$ $\mu(2)$ $\mu(2)$ VSAT $\mu(2)$ VSAT $\mu(2)$ VSAT $\mu(2)$                                                                        | 4.61<br>1.47<br>3.89<br>1.86<br>4.05<br>3.26<br>3.03<br>2.10<br>0.60<br>0.60<br>0.343<br>0.55<br>2.45<br>4.87 | Central Grid<br>Central Grid | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                       |

|     |                                                                                                                  | Aimag Center(Esun-bulag)                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14657                                                                                                                                                                       | 1284                                                                                                                                                             | 3813                                                                                                                                                                                                   | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.76                                                                                                                                                           | ADG, DG-30KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 2                                                                                                                | Altai                                                                                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                            | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 868                                                                                                                                                                         | 9                                                                                                                                                                | 117                                                                                                                                                                                                    | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01                                                                                                                                                           | S-DG(60K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
|     | 3                                                                                                                | Beyan-Uu                                                                                                                                                                                                                                                                                                                                                              | P1                                                                                                                                                                                                                                                                                                                                                                                            | 59.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1996                                                                                                                                                                        | 12                                                                                                                                                               | 245                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60                                                                                                                                                           | S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                    |
| i i | 4                                                                                                                | Bayantooroi                                                                                                                                                                                                                                                                                                                                                           | P2                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             | 4                                                                                                                                                                | 31                                                                                                                                                                                                     | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic                                                                                                                                                                                                    |
|     | 5                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 562                                                                                                                                                                         | 85                                                                                                                                                               | 216                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.12                                                                                                                                                          | S-DG(60K),PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                    |
| >   | 6                                                                                                                | Bugat                                                                                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                            | 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 629                                                                                                                                                                         | 21                                                                                                                                                               | 113                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.34                                                                                                                                                           | S-DG(60K), PV(0.3K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
|     | 7                                                                                                                | Darvi                                                                                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                            | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 491                                                                                                                                                                         | 34                                                                                                                                                               | 125                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.92                                                                                                                                                           | S-DG(60K), PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
| 2   | 8                                                                                                                | Delger                                                                                                                                                                                                                                                                                                                                                                | P2                                                                                                                                                                                                                                                                                                                                                                                            | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 620                                                                                                                                                                         | 15                                                                                                                                                               | 226                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242                                                                                                                                                            | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic                                                                                                                                                                                                    |
| 5   | 9                                                                                                                | Jargalant                                                                                                                                                                                                                                                                                                                                                             | М                                                                                                                                                                                                                                                                                                                                                                                             | 3.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 610                                                                                                                                                                         | 8                                                                                                                                                                | 84                                                                                                                                                                                                     | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.31                                                                                                                                                           | S-DG(60K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
|     | 10                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       | P3                                                                                                                                                                                                                                                                                                                                                                                            | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 157                                                                                                                                                                         | 7                                                                                                                                                                | 8                                                                                                                                                                                                      | OFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.46                                                                                                                                                           | S-DG(60K), PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
| 6   | _11                                                                                                              | Tonkhil                                                                                                                                                                                                                                                                                                                                                               | P1                                                                                                                                                                                                                                                                                                                                                                                            | 5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 962                                                                                                                                                                         | 62                                                                                                                                                               | 237                                                                                                                                                                                                    | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.31                                                                                                                                                           | S-DG(60K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
| Į   | 12                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                            | 5.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 485                                                                                                                                                                         | 25                                                                                                                                                               |                                                                                                                                                                                                        | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                | S-DG(60K), PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
| 5   | 13                                                                                                               | Khaliun                                                                                                                                                                                                                                                                                                                                                               | _P3                                                                                                                                                                                                                                                                                                                                                                                           | 5.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 448                                                                                                                                                                         | 14                                                                                                                                                               | 78                                                                                                                                                                                                     | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.13                                                                                                                                                           | S-DG(60K), PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
|     | 14                                                                                                               | Khukhmorit                                                                                                                                                                                                                                                                                                                                                            | P2                                                                                                                                                                                                                                                                                                                                                                                            | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 520                                                                                                                                                                         | 37                                                                                                                                                               | 134                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.12                                                                                                                                                           | S-DG(60K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                    |
| -   | 15                                                                                                               | Tsogt                                                                                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                            | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 661                                                                                                                                                                         | 80                                                                                                                                                               | 354                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.10                                                                                                                                                          | S-DG(100K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                    |
|     | 16                                                                                                               | Tseel                                                                                                                                                                                                                                                                                                                                                                 | P2                                                                                                                                                                                                                                                                                                                                                                                            | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 606                                                                                                                                                                         | 9                                                                                                                                                                | 86                                                                                                                                                                                                     | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.49                                                                                                                                                           | S-DG(100K), PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                    |
|     | 17                                                                                                               | Chandmani                                                                                                                                                                                                                                                                                                                                                             | P2                                                                                                                                                                                                                                                                                                                                                                                            | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 842                                                                                                                                                                         | 16                                                                                                                                                               | 126                                                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.90                                                                                                                                                           | S-DG(100K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                    |
| [   | 18                                                                                                               | Sharga                                                                                                                                                                                                                                                                                                                                                                | P3                                                                                                                                                                                                                                                                                                                                                                                            | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 502                                                                                                                                                                         | 0                                                                                                                                                                | 58                                                                                                                                                                                                     | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic                                                                                                                                                                                                    |
| [   | 19                                                                                                               | Erdene                                                                                                                                                                                                                                                                                                                                                                | P2                                                                                                                                                                                                                                                                                                                                                                                            | 25.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 596                                                                                                                                                                         | 22                                                                                                                                                               | 11                                                                                                                                                                                                     | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.69                                                                                                                                                           | S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                    |
|     | 20                                                                                                               | Gudin                                                                                                                                                                                                                                                                                                                                                                 | P2                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             | 60                                                                                                                                                               | 234                                                                                                                                                                                                    | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                | S-DG(100K), PV(0.3K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                    |
|     | Option<br>ises<br>(17 in<br>with                                                                                 | cal Fibre Cable Network at PD<br>tablished by VSAT and Analo,<br>n sums). 94,1% or 16 sums ha<br>manual connection, planning t                                                                                                                                                                                                                                        | gue microw<br>ave an auto<br>to install au                                                                                                                                                                                                                                                                                                                                                    | veve transmission<br>connection for inf<br>to connection equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system. Gobi-Alt<br>er-aimag and lor<br>ipment up to 200                                                                                                                    | ai aimag com<br>ng distance co<br>12, 15 sums di                                                                                                                 | munication<br>mmunicati<br>Gobi-Alta                                                                                                                                                                   | n office including 2<br>ion, and 5.9% or 1<br>i aimag has auto-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 branches (1<br>sum has a m<br>witching syste                                                                                                                 | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d in rurai a<br>Inmorit su<br>seel sum,                                                                                                                                                                    |
|     | Opti<br>is es<br>(17 i<br>with<br>Taisi                                                                          | tablished by VSAT and Analo<br>n sums). 94,1% or 16 sums ha<br>manual connection, planning i<br>hir sum and Bayantooroy beg                                                                                                                                                                                                                                           | gue microw<br>ave an auto<br>to install au                                                                                                                                                                                                                                                                                                                                                    | veve transmission<br>connection for inf<br>to connection equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 200<br>switching. By M                                                                                                  | ai aimag com<br>ng distance co<br>12. 15 sums di<br>TC researches                                                                                                | munication<br>mmunicati<br>Gobi-Alta<br>s for last 3                                                                                                                                                   | n office including 2<br>ion, and 5.9% or 1<br>i aimag has auto-s<br>years in 10 sums                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-                                                                                              | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T:<br>switching systems, and i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d in rurai<br>hmorit su<br>seel sum,<br>n 7 sums                                                                                                                                                           |
|     | Opti<br>is es<br>(17 i<br>with<br>Taisi                                                                          | tablished by VSAT and Analo,<br>n sums). 94,1% or 16 sums ha<br>manual connection, planning t                                                                                                                                                                                                                                                                         | gue microw<br>ave an auto<br>to install au                                                                                                                                                                                                                                                                                                                                                    | veve transmission<br>connection for inf<br>to connection equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system. Gobi-Alt<br>er-aimag and lor<br>ipment up to 200                                                                                                                    | ai aimag com<br>ng distance co<br>12, 15 sums di                                                                                                                 | munication<br>mmunicati<br>Gobi-Alta                                                                                                                                                                   | n office including 2<br>ion, and 5.9% or 1<br>i aimag has auto-s<br>years in 10 sums                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-                                                                                              | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>switching systems, and i<br>[A-DG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d in rurai<br>Armonit su<br>seel sum,                                                                                                                                                                      |
|     | Option<br>is est<br>(17 in<br>with<br>Taist<br>1<br>2                                                            | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning t<br>hir sum and Bayantooroy beg<br>Aimag Center(Kherten)<br>Khalkh gol                                                                                                                                                                                                   | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2                                                                                                                                                                                                                                                                                                                               | veve transmission<br>connection for inf<br>to connection equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 200<br>switching. By M                                                                                                  | ai aimag com<br>ng distance co<br>12. 15 sums di<br>TC researches                                                                                                | munication<br>mmunicati<br>Gobi-Alta<br>5 for last 3<br>3406<br>72                                                                                                                                     | n office including 2<br>ion, and 5.9% or 1<br>ii aimag has auto-s<br>years in 10 sums<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-                                                                                              | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T:<br>switching systems, and i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d in rurai<br>hmorit su<br>seel sum,<br>n 7 sums                                                                                                                                                           |
|     | Option<br>is est<br>(17 in<br>with<br>Taist<br>1<br>2                                                            | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums ha<br>manual connection, planning i<br>hir sum and Bayantooroy beg<br>Aimag Center(Kherlen)                                                                                                                                                                                                                 | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1                                                                                                                                                                                                                                                                                                                         | veve transmission<br>to connection for initiation for initiation operation equi-<br>binstall newly auto<br>227.6<br>222.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 200<br>switching. By M<br>36423<br>1844<br>1038                                                                         | ai aimag com<br>ng distance co<br>12. 15 sums of<br>17C researches<br>1596<br>0<br>2                                                                             | munication<br>mmunicati<br>Gobi-Alta<br>5 for last 3<br>3406<br>72                                                                                                                                     | n office including 2<br>ion, and 5.9% or 1<br>i aimag has auto-c<br>years in 10 sums                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 branches (1<br>sum has a m<br>awitching syste<br>installed auto-<br>4,38<br>0.00                                                                             | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d in rurai<br>hmorit su<br>sæel sum,<br>n 7 sums<br>Metalic                                                                                                                                                |
|     | Optivits est<br>(17 is<br>with<br>Taiss<br>1<br>2<br>3                                                           | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning t<br>hir sum and Bayantooroy beg<br>Aimag Center(Kherten)<br>Khalkh gol                                                                                                                                                                                                   | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2                                                                                                                                                                                                                                                                                                                   | veve transmission<br>connection for in<br>to connection equ<br>install newly auto<br>227.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 200<br>switching. By M<br>36423<br>1844                                                                                 | ai aimag com<br>ng distance co<br>12. 15 sums of<br>TC researches<br>1596                                                                                        | munication<br>mmunicati<br>Gobi-Alta<br>s for last 3<br>3406<br>72<br>43<br>56                                                                                                                         | n office including 2<br>ion, and 5.9% or 1<br>i aimeg has auto-s<br>years in 10 sums<br>VSAT<br>VSAT<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 branches (1<br>sum has a m<br>awitching syste<br>installed auto-<br>4.38<br>0.00<br>0.19                                                                     | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>awtching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d in rurai<br>Inmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic                                                                                                                                    |
|     | Optivits est<br>(17 is<br>with<br>Taiss<br>1<br>2<br>3<br>4                                                      | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums ha<br>manual connection, planning i<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad                                                                                                                                                                                          | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1                                                                                                                                                                                                                                                                                                                         | veve transmission<br>to connection for initiation for initiation operation equi-<br>binstall newly auto<br>227.6<br>222.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 200<br>switching. By M<br>36423<br>1844<br>1038                                                                         | ai aimag com<br>ng distance co<br>12. 15 sums of<br>17C researches<br>1596<br>0<br>2                                                                             | munication<br>mmunicati<br>Gobi-Alta<br>s for last 3<br>3406<br>72<br>43<br>56                                                                                                                         | n office including 2<br>ion, and 5.9% or 1<br>i aimag has auto-s<br>years in 10 sums<br>VSAT<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4.38<br>0.00<br>0.19<br>1.87                                                              | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>awtching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d in rurai<br>hmorit s.<br>seal sum,<br>n 7 sums<br>Matalic<br>Matalic                                                                                                                                     |
|     | Option<br>is estimations<br>(17 in<br>with<br>Taiss<br>1<br>2<br>3<br>4<br>5                                     | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums ha<br>manual connection, planning i<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khulumbuir                                                                                                                                                                            | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3                                                                                                                                                                                                                                                                                                       | veve transmission<br>connection for inf<br>to connection equ<br>install newly auto<br>227.6<br>22.83<br>3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system. Gobi-Att<br>er-sirrag and lor<br>pment up to 200<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>336<br>1130                                                  | ai aimag com<br>ng distance co<br>12, 15 sums di<br>1596<br>0<br>2<br>16                                                                                         | munication<br>mmunicati<br>Gobi-Ata<br>s for last 3<br>3406<br>72<br>43<br>56<br>38                                                                                                                    | n office including 2<br>ion, and 5.9% or 1<br>i aimeg has auto-s<br>years in 10 sums<br>VSAT<br>VSAT<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 branches (1<br>sum has a m<br>awitching syste<br>installed auto-<br>4.38<br>0.00<br>0.19<br>1.87<br>0.00                                                     | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K)<br>S-DG(60K), PV(1.2K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d in rurai<br>hmorit s.<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic                                                                                                                          |
|     | Option<br>is ease<br>(17 ii<br>with<br>Taisi<br>1<br>2<br>3<br>4<br>5<br>6                                       | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums ha<br>manual connection, planning i<br>hir sum and Bayantooroy beg<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khulumbuir<br>Bayantumen                                                                                                                                                              | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3<br>P3<br>P1                                                                                                                                                                                                                                                                                           | veve transmission<br>connection for initiate connection equi-<br>pinstall newly auto<br>227.6<br>22.83<br>3.77<br>6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | system. Gobi-Alt<br>er-aimag and lor<br>prment up to 200<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>936                                                          | ai aimag com<br>ng distance co<br>12. 15 sums of<br>TC researches<br>1596<br>0<br>2<br>16<br>0                                                                   | munication<br>mmunicati<br>Gobi-Atta<br>5 for last 3<br>3406<br>72<br>43<br>56<br>38<br>45                                                                                                             | n office including 2<br>ion, and 5.9% or 1<br>i aimeg has auto-s<br>years in 10 sums<br>VSAT<br>VSAT<br>$\mu$ (2)<br>$\mu$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00                                              | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ame in sum centers, in T:<br>switching systems, and it<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K),<br>A-DG<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d in rurai<br>Inmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                              |
|     | Option<br>is ease<br>(17 in<br>with<br>Taisis<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                 | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning 1<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khulunbuir<br>Bayanturren<br>Tsagaan-Ovco                                                                                                                                             | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3                                                                                                                                                                                                                                                                                                       | veve transmission<br>o connection for ini<br>to connection equ<br>install newly auto<br>227.6<br>22.83<br>3.77<br>6.33<br>6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | system. Gobi-Att<br>er-sirrag and lor<br>pment up to 200<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>336<br>1130                                                  | ai aimag com<br>ng distance co<br>12. 15 sums of<br>TC researches<br>1596<br>0<br>2<br>16<br>0<br>0                                                              | munication<br>mmunicati<br>Gobi-Aha<br>s for last 3<br>3406<br>72<br>43<br>56<br>38<br>43<br>45<br>134                                                                                                 | n office including 2<br>ion, and 5.9% or 1<br>i aimag has auto-s<br>years in 10 sums<br>VSAT<br>VSAT<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 branches (1<br>sum has a m<br>awitching syste<br>installed auto-<br>4,38<br>0.00<br>0.19<br>1.87<br>0.00<br>0.00<br>0.00                                     | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ame in sum centers, in T:<br>switching systems, and it<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K),<br>A-DG<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d in rurai<br>Inmorit s.<br>Seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                   |
|     | Option<br>is ess<br>(17 ii<br>with<br>Taiss<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                              | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning 1<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khulumbur<br>Bayantumen<br>Tsagaan-Ovco<br>Bayan-Ovco                                                                                                                                 | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3<br>P3<br>P1                                                                                                                                                                                                                                                                                           | veve transmission<br>o connection for ini<br>ulo connection equi<br>install newly auto<br>227.6<br>22.83<br>3.77<br>6.33<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 2000<br>switching. By M<br>39423<br>1844<br>1038<br>857<br>395<br>1130<br>2689                                          | ai aimag com<br>ng distance co<br>12, 15 sums di<br>TC researche<br>1596<br>0<br>2<br>16<br>0<br>0<br>0                                                          | munication<br>mmunicati<br>Gobi-Atua<br>s for last 3<br>3406<br>72<br>72<br>43<br>56<br>38<br>43<br>43<br>44<br>44                                                                                     | n office including 2<br>ion, and 5.9% or 1<br>is aimeg has auto-s<br>years in 10 sums<br>VSAT<br>VSAT<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (2)<br>VSAT(Edisting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00<br>0,00<br>0,00                              | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ame in sum centers, in T:<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K),<br>A-DG<br>S-DG(100K),<br>S-DG(100K), S-DG(100K), S-DG(100K), S-DG(100K), S-V(0.8K), S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d in rural<br>hmorit s.<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                         |
|     | Option<br>is estimated<br>(17 ii<br>with<br>Taisis<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                  | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning 1<br>hir sum and Bayantooroy beg<br>Aimag Center(Kherten)<br>Khalkh gol<br>Metad<br>Khulumbuir<br>Bayantumen<br>Tsagaan-Ovco<br>Bayan-Uu<br>Bayandun                                                                                                                      | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P2<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3                                                                                                                                                                                                                                           | veve transmission<br>o connection for int<br>to connection equi-<br>install newly auto<br>227.6<br>2283<br>3.77<br>6.33<br>6.5<br>5.62<br>6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 2000<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>3056<br>1130<br>2689<br>1104                                 | ai aimag com<br>g distance co<br>12: 15 sums d<br>TC researcher<br>0<br>2<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               | munication<br>mmunicati<br>Gobi-Atua<br>s for last 3<br>3406<br>72<br>43<br>56<br>38<br>43<br>56<br>38<br>45<br>44<br>63                                                                               | h office including 2<br>ion, and 5.9% or 1<br>ii aimeg has auto-<br>years in 10 sums<br>VSAT<br>VSAT<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\psi$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00              | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ams in sum centers, in T:<br>switching systems, and i<br>A-DG<br>S-DC(100K), PV(1.2K),<br>DC(60K), PV(1.2K),<br>S-DC(60K), PV(1.2K),<br>A-DG<br>S-DC(100K),<br>S-DC(100K),<br>S-DC(100K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d in rural<br>hmorit s.<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                              |
|     | Option<br>is estimation<br>(17 ii<br>with<br>Taisis<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10           | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning I<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Metad<br>Khulunbuir<br>Bayantumen<br>Tsagaan-Ovco<br>Bayan-Uu<br>Bayan-Uu<br>Bayan-Uu<br>Bayan-Uu                                                                                                                             | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3                                                                                                                                                                                                                                     | veve transmission<br>o connection for initiation initiation for initiatity for init | system. Gobi-Att<br>er-aimag and lor<br>prnent up to 2000<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>306<br>1130<br>2699<br>1104<br>1187                         | ai aimag com<br>g distance co<br>12. 15 sums of<br>TC researches<br>1596<br>0<br>2<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | municatio<br>mmunicati<br>Gobi-Ata<br>s for last 3<br>3406<br>72<br>43<br>56<br>38<br>45<br>134<br>44<br>44<br>63<br>47                                                                                | n office including 2<br>ion, and 5.9% or 1<br>i aimeg has auto-<br>years in 10 sums<br>VSAT<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>VSAT(Existing)<br>$\mu$ (3)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00              | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(60K), PV(1.2K)<br>A-DG<br>S-DG(60K), PV(1.2K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d in rural<br>hmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                   |
|     | Option<br>is ess<br>(17 in<br>with<br>Taiss<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11             | tablished by VSAT and Analo<br>n sums). 94, 1% or 16 sums ha<br>manual connection, planning i<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khulunbuir<br>Bayantumen<br>Tsagaan-Ovcoo<br>Bayan-Uu<br>Bayandun<br>Dashbalbar<br>Gurvanzagal                                                                                                                       | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P2<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3                                                                                                                                                                                                                                           | veve transmission<br>o connection for initiation initiation for initiatity for init | system. Gobi-Att<br>er-aimag and lor<br>prnent up to 2000<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>306<br>1130<br>2699<br>1104<br>1187                         | ai aimag com<br>Ig distance co<br>12. 15 sums di<br>TC researcher<br>0<br>2<br>1586<br>0<br>2<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>13           | municatio<br>mmunicati<br>Cobi-Afta<br>s for last 3<br>3406<br>72<br>43<br>56<br>38<br>45<br>134<br>45<br>134<br>63<br>47<br>96                                                                        | n office including 2<br>ion, and 5.9% or 1<br>i aimeg has auto-s<br>years in 10 aums<br>VSAT<br>$\mu$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00              | 8 sums), 19 of its locate<br>anual connection. In Khu<br>ams in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K)<br>DG-16(K)<br>S-DG(00K), PV(1.2K)<br>S-DG(00K), PV(1.2K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d in rural a<br>hmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                      |
|     | Option<br>is ess<br>(17 in<br>with<br>Taiss<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12       | tablished by VSAT and Analo<br>n sums). 94,1% or 16 sums he<br>manual connection, plenning 1<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khalkh gol<br>Matad<br>Khalumbuir<br>Bayantumen<br>Tsagaan-Ovco<br>Bayantumen<br>Tsagaan-Ovco<br>Bayantumen<br>Cashbalbar<br>Qurvarzagal<br>Khelen/Choibalsan                          | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3                                                                                                                                                       | veve transmission<br>o connection for initiation initiation for initiatity for init | system. Gobi-Att<br>er-aimag and lor<br>prnent up to 2000<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>306<br>1130<br>2699<br>1104<br>1187                         | ai aimag com<br>g distance co<br>iz. 15 sums d<br>1596<br>0<br>2<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | munication<br>mmunication<br>Cobt-Afta<br>s for last 3<br>3406<br>72<br>43<br>56<br>38<br>43<br>56<br>38<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>45<br>134<br>44<br>63<br>47<br>996<br>192  | n office including 2<br>ion, and 5.9% or 1<br>is aimag has auto-s<br>years in 10 sums<br>VSAT<br>$\psi$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\psi$ (3)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>1,80               | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ams in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K)<br>DG-16K)<br>S-DG(60K), PV(1.2K)<br>S-DG(60K), PV(1.2K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)<br>S-DG(00K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d in rural a<br>hmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                     |
|     | Option<br>is est<br>(17 ii<br>with<br>Taiss<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | tablished by VSAT and Analo,<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning 1<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen).<br>Khalkh gol<br>Metad<br>Khulunbuir<br>Bayantumen<br>Tisagaan-Ovco<br>Bayan-Uu<br>Bayandun<br>Dashbalbar<br>Gurvanzagal<br>Kheler/Choibalsan<br>Ereentsav                                                    | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3<br>P3<br>P3<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P3<br>P2<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3 | veve transmission<br>o connection for ini<br>to connection equip<br>install newly auto<br>227.6<br>22.83<br>3.77<br>6.33<br>6.5<br>5.62<br>6.24<br>8.77<br>5.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system. Gobi-Alt<br>er-aimag and lor<br>pment up to 2000<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>936<br>1130<br>2689<br>1104<br>1167<br>723                   | ai aimag com<br>g distance co<br>12. 15 sums d<br>1596<br>0<br>2<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | municatio<br>rmmunicati<br>Gobi-Aha<br>s for last 3<br>3406<br>72<br>43<br>56<br>38<br>45<br>134<br>44<br>63<br>44<br>63<br>45<br>134<br>63<br>66<br>66                                                | n office including 2<br>ion, and 5.9% or 1<br>is aimeg has auto-<br>years in 10 sums<br>VSAT<br>$\psi$ (2)<br>$\mu$ (1)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\psi$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0.00<br>0.19<br>1.87<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ame in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(00K), PV(1.2K),<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K) | d in rural a<br>hmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic          |
|     | Option<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)<br>(17)                                           | tablished by VSAT and Analo,<br>n sums). 94, 1% or 16 sums he<br>manual connection, planning 1<br>hir sum and Bayantooroy bag<br>Aimag Center(Kherlen)<br>Khalkh gol<br>Matad<br>Khukh gol<br>Matad<br>Khukh gol<br>Matad<br>Rhukumbur<br>Bayantumen<br>Tsapaan-Oxoo<br>Bayan-Uu<br>Bayandun<br>Dashbalbar<br>Gurvanzagal<br>Khelen/Choibalsan<br>Ereentsav<br>Bulgan | gue microw<br>ave an auto<br>to install au<br>planning to<br>P2<br>P1<br>P2<br>P3<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3<br>P2<br>P3                                                                                                                                                       | veve transmission<br>o connection for ini<br>to connection equi-<br>install newly auto<br>227.6<br>22.83<br>3.77<br>6.33<br>6.5<br>5.62<br>6.24<br>8.77<br>5.25<br>7.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | system. Gobi-Alt<br>er-sirrag and lor<br>prnent up to 2000<br>switching. By M<br>36423<br>1844<br>1038<br>857<br>1038<br>857<br>1038<br>1130<br>2689<br>1104<br>1187<br>723 | ai aimag com<br>g distance co<br>12. 15 sums d<br>1596<br>0<br>2<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | municatio<br>rmmunicati<br>Gobi-Ata<br>s for last 3<br>3406<br>72<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>44<br>44<br>63<br>44<br>44<br>63<br>47<br>96<br>192<br>96<br>66<br>42 | $\begin{array}{c} \text{n office including 2} \\ \text{ion, and 5.9\% or 1} \\ \text{is aimag has auto-s} \\ \text{years in 10 sums} \\ \hline \\ \text{VSAT} \\ \hline \\ \text{VSAT} \\ \mu(2) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(3) \\ \mu(2) \\ \mu(2$ | 0 branches (1<br>sum has a m<br>witching syste<br>installed auto-<br>4,38<br>0,00<br>0,19<br>1,87<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0 | 8 sums), 19 of its locate<br>anuel connection. In Khu<br>ame in sum centers, in T<br>switching systems, and i<br>A-DG<br>S-DG(100K), PV(1.2K),<br>DG-16K)<br>S-DG(00K), PV(1.2K),<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K)<br>S-DG(10K) | d in rural<br>hmorit su<br>seel sum,<br>n 7 sums<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |

to install newly auto switching systems. By MTC researches for last 3 years in 7 sums installed auto-switching systems, and in 7 sums with manual connection was installed auto-connection systems.

| ن<br>10 4           | 2.1                                                                            | Aimeg Center(Mandargovi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                             | 10063                                                                               | 1145                                                                                    |                                                                                                      | VSAT(Existing)                                                                                                                                                                                                      | 11.38                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <  -                                                                           | Adaetseg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P2                                                                                                                               | n.a.                                                                        | 529                                                                                 | 34                                                                                      | 92                                                                                                   | μ(2)                                                                                                                                                                                                                | 6.43                                                                                          | S-DG(100K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
|                     | 3                                                                              | Delgertsogt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P1                                                                                                                               | n.a.                                                                        | 368                                                                                 | 30                                                                                      | 99                                                                                                   | μ(2)                                                                                                                                                                                                                |                                                                                               | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
| š   5               | 4                                                                              | Daran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1                                                                                                                               | n.a.                                                                        | 694                                                                                 | 74                                                                                      | 154                                                                                                  | μ(1)                                                                                                                                                                                                                | 10.66                                                                                         | C-Grid, DG-16KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic                                                                                                                                     |
|                     | 5                                                                              | Gobi- Ugtaal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1                                                                                                                               | n.a.                                                                        | 660                                                                                 | 67                                                                                      | 142                                                                                                  | μ (2)                                                                                                                                                                                                               | 10.15                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
| 🛢   Te              | 6                                                                              | Gurvansaikhan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                               | n.a.                                                                        | 554                                                                                 | 25                                                                                      | - 84                                                                                                 | μ (2)                                                                                                                                                                                                               | 4.51                                                                                          | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
|                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P3                                                                                                                               | na                                                                          | 533                                                                                 | 23                                                                                      | 80                                                                                                   | μ (3)                                                                                                                                                                                                               | 4.32                                                                                          | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
| 5 18                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P3                                                                                                                               | n.a.                                                                        | 337                                                                                 | 0                                                                                       |                                                                                                      | μ(2)                                                                                                                                                                                                                | 0.00                                                                                          | S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
| 2 9                 | <u>9</u>                                                                       | Undurshil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P2                                                                                                                               | n.a.                                                                        | 397                                                                                 | 6                                                                                       | 47                                                                                                   | VSAT                                                                                                                                                                                                                | 1.51                                                                                          | S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
| Z 16                | 10                                                                             | Ulziit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P1                                                                                                                               | n.a.                                                                        | 452                                                                                 | 0                                                                                       | 47                                                                                                   | μ(3)                                                                                                                                                                                                                | 0.00                                                                                          | S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
| 3 1                 | 1                                                                              | Khuid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P3                                                                                                                               | n.a.                                                                        | 460                                                                                 | 38                                                                                      | 89                                                                                                   | μ(2)                                                                                                                                                                                                                | 8.26                                                                                          | C-Grid, DG-16KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic                                                                                                                                     |
| 7 1                 | 2                                                                              | Luus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P2                                                                                                                               | n.a.                                                                        | 507                                                                                 | 36                                                                                      | 92                                                                                                   | μ(2)                                                                                                                                                                                                                | 7.10                                                                                          | C-Grid, DG-16KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic                                                                                                                                     |
| * T                 | 3                                                                              | Saikhan- Övoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2                                                                                                                               | na                                                                          | 534                                                                                 | 21                                                                                      |                                                                                                      | VSAT                                                                                                                                                                                                                | 3.93                                                                                          | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
|                     |                                                                                | Delgerhangai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P2                                                                                                                               | n.a.                                                                        | 368                                                                                 | 49                                                                                      | 93                                                                                                   | μ (2)                                                                                                                                                                                                               | 13.32                                                                                         | C-Grid,<br>S-DG(60K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                     |
| 12                  | 5                                                                              | Erdenedalai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P1                                                                                                                               | n.a.                                                                        | 1500                                                                                | 178                                                                                     | 353                                                                                                  | VSAT                                                                                                                                                                                                                | 11.87                                                                                         | Central Grid, DG-8KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic                                                                                                                                     |
|                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                             |                                                                                     |                                                                                         |                                                                                                      |                                                                                                                                                                                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
| lou                 |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                             |                                                                                     |                                                                                         |                                                                                                      |                                                                                                                                                                                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
| - 1                 |                                                                                | Aimag Center(Sainshand)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  | - <del> </del>                                                              | 13624                                                                               | 1054                                                                                    | 3347                                                                                                 |                                                                                                                                                                                                                     |                                                                                               | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
| 1                   | 2                                                                              | Airao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1                                                                                                                               | 7.4                                                                         | 2154                                                                                | 20                                                                                      | 232                                                                                                  | OFC                                                                                                                                                                                                                 | 0.93                                                                                          | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic                                                                                                                                     |
| 1                   | 2<br>3                                                                         | Airao<br>Atanahirao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P1                                                                                                                               | 7.2                                                                         | 2154<br>479                                                                         | 20<br>61                                                                                | 232<br>174                                                                                           | ΟFC<br>μ (3)                                                                                                                                                                                                        | 0.93<br>12.73                                                                                 | Central Grid<br>C-Grid, S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic<br>Metalic                                                                                                                          |
| 1                   | 2<br>3<br>4                                                                    | Airao<br>Atanahiree<br>Dalanjargalan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1<br>P2                                                                                                                         | 7.2                                                                         | 2154<br>479<br>816                                                                  | 20<br>61<br>0                                                                           | 232<br>174<br>74                                                                                     | OFC<br>μ (3)<br>OFC                                                                                                                                                                                                 | 0.93<br>12.73<br>0.00                                                                         | Central Grid<br>C-Grid, S-DG(100K)<br>No Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic<br>Metalic<br>Metalic                                                                                                               |
|                     | 2<br>3<br>4<br>5                                                               | Airag<br>Airanahirae<br>Dalanjargalan<br>Delgerekh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P1<br>P2<br>P2                                                                                                                   | 7.2<br>4.1<br>4.8                                                           | 2154<br>479<br>816<br>488                                                           | 20<br>61<br>0                                                                           | 232<br>174<br>74<br>46                                                                               | OFC<br>μ (3)<br>OFC<br>μ (2)                                                                                                                                                                                        | 0.93<br>12.73<br>0.00<br>0.00                                                                 | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                    |
|                     | 2<br>3<br>4<br>5<br>6                                                          | Arag<br>Atanatires<br>Dalanjargalan<br>Delgerekh<br>Ikhkhet (Zulegt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1<br>P2<br>P2<br>P2                                                                                                             | 7.2<br>4.1<br>4.8<br>n.a                                                    | 2154<br>479<br>816<br>488<br>816                                                    | 20<br>61<br>0<br>12                                                                     | 232<br>174<br>74<br>46<br>177                                                                        | ΟFC<br>μ (3)<br>OFC<br>μ (2)<br>VSAT                                                                                                                                                                                | 0.93<br>12.73<br>0.00<br>0.00<br>1.47                                                         | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                         |
|                     | 2<br>3<br>4<br>5<br>6<br>7                                                     | Airag<br>Atlansifice<br>Delargiansian<br>Delgereich<br>(Kihkhet (Zulegt)<br>Mandakh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P1<br>P2<br>P2<br>P2<br>P2                                                                                                       | 7.2<br>4.1<br>4.8<br>n.a<br>12.7                                            | 2154<br>479<br>816<br>488<br>816<br>477                                             | 20<br>61<br>0<br>12<br>0                                                                | 232<br>174<br>74<br>46<br>177<br>45                                                                  | OFC<br>μ (3)<br>OFC<br>μ (2)<br>VSAT<br>μ(2)                                                                                                                                                                        | 0.93<br>12.73<br>0.00<br>0.00<br>1.47<br>0.00                                                 | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                              |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8                                                | Airag<br>Atlanshirae<br>Dalanjanselan<br>Delgereich<br>Ikhkhet (Zulegt)<br>Mandakh<br>Urgoun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P1                                                                                     | 7.2<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7                                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024                                     | 20<br>61<br>0<br>12<br>0<br>14                                                          | 232<br>174<br>74<br>46<br>177<br>45<br>119                                                           | ΟFC<br>μ (3)<br>OFC<br>μ (2)<br>VSAT<br>μ(2)<br>OFC<br>OFC                                                                                                                                                          | 0.93<br>12.73<br>0.00<br>0.00<br>1.47<br>0.00<br>1.37                                         | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0,6K)<br>Central Grid                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                              |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                           | Arag<br>Atanahine<br>Dalanjaryalan<br>Dalgerekh<br>Ikhkret (ZJegt)<br>Mandalh<br>Mandalh<br>Urgoun<br>Saikhandulean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P1<br>P2                                                                         | 7.2<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5                              | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269                              | 20<br>61<br>0<br>12<br>0<br>14<br>0                                                     | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27                                                     | OFC<br>μ (3)<br>OFC<br>μ (2)<br>VSAT<br>μ(2)<br>OFC<br>μ (3)                                                                                                                                                        | 0.93<br>12.73<br>0.00<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00                                 | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)<br>Central Grid<br>S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                                                                       | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                   |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                     | Arag<br>Atanahine<br>Delanjergelan<br>Delgereich<br>Ikhichei (Zulegt)<br>Mandakh<br>Urgoun<br>Saiktandulaan<br>Ulaanbadraich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P1<br>P2<br>P2<br>P2                                                                   | 7.2<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5                              | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507                       | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0                                                | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47                                               | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ \mu (2) \\ GFC \\ \mu (3) \\ \mu (3) \\ \end{array}$                                                                                       | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00                                 | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)<br>Central Grid<br>S-DG(100K), PV(0.8K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                        |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                               | Airag<br>Aitanahiree<br>Dalarjangatan<br>Delgereth<br>Ilihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Seikhandulean<br>Ulaanbadrakh<br>Khatanbuleg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PT<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 7.2<br>4.1<br>1.4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7            | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>568                | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>10                                          | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>47<br>74                                   | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \end{array}$                                                                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>0.00<br>1.67 | Central Ond<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)<br>Central Grid<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12                   | Arag<br>Atanahine<br>Delanjergelan<br>Delgereich<br>Ikhichei (Zulegt)<br>Mandakh<br>Urgoun<br>Saiktandulaan<br>Ulaanbadraich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P1<br>P2<br>P2<br>P2                                                                   | 7.2<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5                              | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507                       | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0                                                | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>74<br>40                             | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ \mu (2) \\ GFC \\ \mu (3) \\ \mu (3) \\ \end{array}$                                                                                       | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>0.00<br>1.67 | Central Grid           C-Grid, S-DG(100k)           No Power           S-DG(100k)           Central Grid           S-DG(00k), PV(0.6k)           Central Grid           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)                                                                                                                                                                                                          | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 2 DORNOGOVI AIMAG   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                   | Arag<br>Atarahirat<br>Dalanjarjatan<br>Dalanjarjatan<br>Dalanjarjatan<br>Dalanjarjatan<br>Ikhkre (Zulegt)<br>Mandaloh<br>Urgoun<br>Saikhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvegul<br>Erdene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2 | 7.2<br>4.1<br>1.27<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269<br>507<br>598<br>420         | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>0<br>0<br>0<br>0<br>0                       | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>165                            | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ \forall SAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ \mu (3) \\ \forall SAT \\ \mu (2) \\ \end{array}$                                                      | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00                 | Central Ghd<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)<br>Central Grid<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14             | Arag<br>Atanahiros<br>Dalanjaryalan<br>Dalgerskh<br>Ikhkret (ZJegt)<br>Mandakh<br>Ulaon<br>Saikhandulaan<br>Ulaonbadrakh<br>Khatanbulég<br>Khuvagul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P3<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                         | 7.2<br>4.1<br>1.27<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269<br>507<br>598<br>420         | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>14<br>0<br>0<br>10<br>0<br>16               | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>277<br>47<br>74<br>40<br>165<br>165                    | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ U(2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ OFC \\ \end{array}$                                                         | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00                 | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(00K), PV(0.8K)<br>Central Grid<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), DG-16K/M                                                                                                                                                                                                                                                                                       | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15       | Arag<br>Atanahirae<br>Dalanjeraten<br>Delgereth<br>Ilihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Salkhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvsgul<br>Erdene<br>Zuunbeyen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>10<br>0<br>10<br>10<br>0<br>16<br>119            | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>165<br>432<br>1034             | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ \end{array}$                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(60K), PV(0.6K)           Central Grid           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), DV(0.6K)           S-DG(100K), DV(0.6K)           C-Grid,           S-DG(100K), DG-16K/N           Central Grid           Import from China, DG-                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | Arag<br>Atanahira<br>Dalarijanatan<br>Delgerekh<br>Kihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Urgoun<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhandulean<br>Saikhand | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P3<br>P2<br>P3<br>P2<br>P1<br>P1                         | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>10<br>0<br>10<br>0<br>10<br>0<br>119<br>236 | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>40<br>165<br>432<br>1034<br>21 | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ OFC \\ VSAT (Existing) \\ VSAT (Existing) \\ \end{array}$                | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(00K), PV(0.8K)           Cantral Grid           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), DV(0.8K)           S-DG(100K), DV(0.8K)           C-Grid,           S-DG(100K), DG-16KW           Central Grid           Import from China, DG-16KW | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Wetalic            |
| 1                   | 2                                                                              | Airao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |                                                                             | 2154                                                                                | 20                                                                                      | 232                                                                                                  | OFC                                                                                                                                                                                                                 | 0.93                                                                                          | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Met                                                                                                                                         |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                               | Airag<br>Aitanahiree<br>Dalarjangatan<br>Delgereth<br>Illinkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Seikhandulean<br>Ulaanbadrakh<br>Khatanbuleg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PT<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 7.2<br>4.1<br>1.4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7            | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>568                | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>10                                          | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>47<br>74                                   | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \end{array}$                                                                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>0.00<br>1.67 | Central Ond<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)<br>Central Grid<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)<br>S-DG(100K), PV(0.6K)                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12                   | Arag<br>Atanahiros<br>Dalanjaryalan<br>Dalgerskh<br>Ikhkret (ZJegt)<br>Mandakh<br>Ulaanbadrakh<br>Khatanbulaan<br>Ulaanbadrakh<br>Khatanbulag<br>Khuvagul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                   | 7.2<br>4.1<br>1.27<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269<br>507<br>598<br>420         | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>0<br>0<br>0<br>0<br>0                       | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>74<br>40                             | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ \forall SAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ \mu (3) \\ \forall SAT \\ \mu (2) \\ \end{array}$                                                      | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00                 | Central Ghd<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(60K), PV(0.6K)<br>Central Grid<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                        | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
|                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12                   | Arag<br>Atanahiros<br>Dalanjaryalan<br>Dalgerskh<br>Ikhkret (ZJegt)<br>Mandakh<br>Ulaanbadrakh<br>Khatanbulaan<br>Ulaanbadrakh<br>Khatanbulag<br>Khuvagul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                   | 7.2<br>4.1<br>1.27<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269<br>507<br>598<br>420         | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>0<br>0<br>0<br>0<br>0                       | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>74<br>40                             | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ \forall SAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ \mu (3) \\ \forall SAT \\ \mu (2) \\ \end{array}$                                                      | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00                 | Central Grid           C-Grid, S-DG(100k)           No Power           S-DG(100k)           Central Grid           S-DG(00k), PV(0.6k)           Central Grid           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)           S-DG(100k), PV(0.8k)                                                                                                                                                                                                          | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 2 DORNOGOVI AIMAG   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                   | Arag<br>Atarahirat<br>Dalanjarjatan<br>Dalanjarjatan<br>Dalanjarjatan<br>Dalanjarjatan<br>Ikhkre (Zulegt)<br>Mandaloh<br>Urgoun<br>Saikhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvegul<br>Erdene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P3<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                         | 7.2<br>4.1<br>1.27<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269<br>507<br>598<br>420         | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>14<br>0<br>0<br>10<br>0<br>16               | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>165                            | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ U(2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ OFC \\ OFC \\ \end{array}$                                                  | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00                 | Central Grid<br>C-Grid, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Grid<br>S-DG(00K), PV(0.8K)<br>Central Grid<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), DG-16K/M                                                                                                                                                                                                                                                                                       | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| 2 DORNOGOVI AIMAG   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                   | Arag<br>Atarahirat<br>Dalanjarjatan<br>Dalanjarjatan<br>Dalanjarjatan<br>Dalanjarjatan<br>Ikhkre (Zulegt)<br>Mandaloh<br>Urgoun<br>Saikhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvegul<br>Erdene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1<br>P2<br>P2<br>P2<br>P2<br>P1<br>P2<br>P2<br>P2<br>P2<br>P3<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                         | 7.2<br>4.1<br>1.27<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4                     | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>269<br>507<br>598<br>420         | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>14<br>0<br>0<br>10<br>0<br>16               | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>165                            | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ U(2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ OFC \\ OFC \\ \end{array}$                                                  | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00                 | Central Ghd<br>C-Ghd, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Ghd<br>S-DG(60K), PV(0.6K)<br>Central Ghd<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), DG-16KV<br>Central Ghd                                                                                                                                                                                                                                                                                                     | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14             | Arag<br>Atanahirae<br>Dalanjeraten<br>Delgereth<br>Ilihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Salkhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvsgul<br>Erdene<br>Zuunbeyen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>10<br>0<br>10<br>10<br>0<br>16<br>119            | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>277<br>47<br>74<br>40<br>165<br>165                    | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ \end{array}$                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Ghd<br>C-Ghd, S-DG(100K)<br>No Power<br>S-DG(100K)<br>Central Ghd<br>S-DG(60K), PV(0.6K)<br>Central Ghd<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), PV(0.8K)<br>S-DG(100K), DG-16KV<br>Central Ghd                                                                                                                                                                                                                                                                                                     | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14             | Arag<br>Atanahirae<br>Dalanjeraten<br>Delgereth<br>Ilihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Salkhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvsgul<br>Erdene<br>Zuunbeyen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>10<br>0<br>10<br>10<br>0<br>16<br>119            | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>277<br>47<br>74<br>40<br>165<br>165                    | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ \end{array}$                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(60K), PV(0.6K)           Central Grid           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), DV(0.6K)           S-DG(100K), DV(0.6K)           C-Grid,           S-DG(100K), DG-16K/N           Central Grid           Import from China, DG-                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14             | Arag<br>Atanahirae<br>Dalanjeraten<br>Delgereth<br>Ilihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Salkhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvsgul<br>Erdene<br>Zuunbeyen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>10<br>0<br>10<br>10<br>0<br>16<br>119            | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>277<br>47<br>74<br>40<br>165<br>165                    | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ \end{array}$                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(60K), PV(0.6K)           Central Grid           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), DV(0.6K)           S-DG(100K), DV(0.6K)           C-Grid,           S-DG(100K), DG-16K/N           Central Grid           Import from China, DG-                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14             | Arag<br>Atanahirae<br>Dalanjeraten<br>Delgereth<br>Ilihkhet (Zulegt)<br>Mandakh<br>Urgoun<br>Salkhandulean<br>Ulaanbadrakh<br>Khatanbuleg<br>Khuvsgul<br>Erdene<br>Zuunbeyen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>10<br>0<br>10<br>10<br>0<br>16<br>119            | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>277<br>47<br>74<br>40<br>165<br>165                    | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ \end{array}$                                          | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(60K), PV(0.6K)           Central Grid           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), PV(0.6K)           S-DG(100K), DV(0.6K)           S-DG(100K), DV(0.6K)           C-Grid,           S-DG(100K), DG-16K/N           Central Grid           Import from China, DG-                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                  |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | Arag<br>Atanahirae<br>Dalanjereta<br>Ibhthet (Zulegt)<br>Mandakh<br>Urgoun<br>Saikhandulean<br>Ulaanbadrakh<br>Khatanbulean<br>Ulaanbadrakh<br>Khuvsgul<br>Erdene<br>Zuunbeyen<br>Zaunbeyen<br>Zamin-Uud<br>Zulegt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>10<br>0<br>10<br>0<br>10<br>0<br>119<br>236 | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>40<br>165<br>432<br>1034<br>21 | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ OFC \\ \mu (2) \\ VSAT(Existing)(0 \\ \mu (1) \\ \mu (1) \\ \end{array}$ | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(100K), PV(0.8K)           Contral Grid           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           C-Grid,           S-DG(100K), DG-16KW           Central Grid           Import from China, DG-16KW           Central Grid                                                                      | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Wetalic<br>Wetalic<br>Metalic |
| 3-2 DORNOGOVI AIMAG | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | Arag<br>Atanahirae<br>Dalanjereta<br>Ibhthet (Zulegt)<br>Mandakh<br>Urgoun<br>Saikhandulean<br>Ulaanbadrakh<br>Khatanbulean<br>Ulaanbadrakh<br>Khuvsgul<br>Erdene<br>Zuunbeyen<br>Zaunbeyen<br>Zamin-Uud<br>Zulegt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P1<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2<br>P2                                                 | 72<br>4.1<br>4.8<br>n.a<br>12.7<br>8.7<br>4.5<br>11.4<br>18.7<br>8.4<br>9.6 | 2154<br>479<br>816<br>488<br>816<br>477<br>1024<br>289<br>507<br>598<br>420<br>1498 | 20<br>61<br>0<br>12<br>0<br>14<br>0<br>0<br>10<br>0<br>10<br>0<br>10<br>0<br>119<br>236 | 232<br>174<br>74<br>46<br>177<br>45<br>119<br>27<br>47<br>74<br>40<br>40<br>165<br>432<br>1034<br>21 | $\begin{array}{c} OFC \\ \mu (3) \\ OFC \\ \mu (2) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (3) \\ \mu (3) \\ VSAT \\ \mu (2) \\ OFC \\ \mu (2) \\ OFC \\ \mu (2) \\ VSAT(Existing)(0 \\ \mu (1) \\ \mu (1) \\ \end{array}$ | 0.93<br>12.73<br>0.00<br>1.47<br>0.00<br>1.37<br>0.00<br>0.00<br>1.67<br>0.00<br>1.67         | Central Grid           C-Grid, S-DG(100K)           No Power           S-DG(100K)           Central Grid           S-DG(100K), PV(0.8K)           Contral Grid           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           S-DG(100K), PV(0.8K)           C-Grid,           S-DG(100K), DG-16KW           Central Grid           Import from China, DG-16KW           Central Grid                                                                      | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |

| 2 Aldarkhaan<br>3 Asgat                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ADG                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                       | (PI                                                                                                                                 | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(100K), DG-4KW                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       | P3                                                                                                                                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mu(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(100K)                                                                                                                                                                                                                   | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 Bayantes                                                                                                                                                                                                                            | PI                                                                                                                                  | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(100K)                                                                                                                                                                                                                   | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5 Beyankheirkhan                                                                                                                                                                                                                      | P3                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S-DG(100K)                                                                                                                                                                                                                   | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 Bulnai/Tosontsangel                                                                                                                                                                                                                 | P1                                                                                                                                  | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VSAT(Existing)/<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S-DG(500K),<br>DG-1&K,20K                                                                                                                                                                                                    | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7 Durvuljin                                                                                                                                                                                                                           | P2                                                                                                                                  | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(100K)                                                                                                                                                                                                                   | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 Zavikhanmandal                                                                                                                                                                                                                      | P1                                                                                                                                  | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S-DC(1000 D.//0.840                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9 Ider                                                                                                                                                                                                                                | P1                                                                                                                                  | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μ( <b>2</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(100K)                                                                                                                                                                                                                   | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10  kh- Uul                                                                                                                                                                                                                           | P2                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11 Numrug                                                                                                                                                                                                                             | P2                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12 Otgon                                                                                                                                                                                                                              | P2                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(60K).PV(0.8K)                                                                                                                                                                                                           | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13 Santmargats                                                                                                                                                                                                                        | P3                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14 Songino                                                                                                                                                                                                                            | P1                                                                                                                                  | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 Tudevtei                                                                                                                                                                                                                           | P1                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(60K),PV(2K),                                                                                                                                                                                                            | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16 Tes                                                                                                                                                                                                                                | P1                                                                                                                                  | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-DG(100K), PV(0.8K),                                                                                                                                                                                                        | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17 Telmen                                                                                                                                                                                                                             | P2                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 Yaruu                                                                                                                                                                                                                               | P3                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S-DG(60K)                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ne Zavikhan aimag commur                                                                                                                                                                                                              | ication office inc                                                                                                                  | lucing 24 branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s, 23 of its loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ated in sums.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tudevtey an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Bulnay sums h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ave VSAT ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nnas. All sums have aut                                                                                                                                                                                                      | o connec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| he Zavidhan airmag commun<br>the matter of switching, Bu<br>avidhan airmag communicati<br>1 [Airmag Center(Barun-Ui                                                                                                                   | inay has HICON<br>on offices for the                                                                                                | Istation, and exce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es, 23 of its loca<br>act of Alderikha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ated in sums.<br>an, Otgon, Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tudevtey ar<br>devtey, Tes<br>g systems, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and Shiluustey, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ave VSAT ante<br>Il sums haven'i<br>h manuel conn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t switching systems in su                                                                                                                                                                                                    | o connect<br>m center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U<br>2 Dariganga                                                                                                                                      | Inay has HCON<br>on offices for the<br>1)<br>P2                                                                                     | Istation, and exce<br>last 3 years in 2<br>4.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es, 23 of its loc<br>apt of Aderkhan<br>sums installed<br>11873<br>491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ated in sums.<br>an, Otgon, Tu<br>auto-switching<br>792<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and Shiluustey, a<br>nd in 18 sums wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ave VSAT ante<br>Il sums haven'i<br>h manuel com<br>6.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t switching systems in su<br>rection was installed auto                                                                                                                                                                      | o connect<br>m centers<br>connecti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U                                                                                                                                                     | inay has HICON<br>on offices for the<br>t)                                                                                          | Istation, and exce<br>last 3 years in 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es, 23 of its loca<br>apt of Adarkhai<br>sums installed<br>11873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ated in sums.<br>an, Otgon, Tu<br>auto-switching<br>792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ave VSAT ante<br>Il sums haven'i<br>h manuel conn<br>6.67<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t switching systems in su<br>rection was installed auto                                                                                                                                                                      | o connecti<br>m centers<br>connecti<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-Ui<br>2 Derigenga<br>3 Naran<br>4 Ongon                                                                                                               | Inay has HCON<br>on offices for the<br>1)<br>P2                                                                                     | Istation, and exce<br>last 3 years in 2<br>4.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es, 23 of its loc<br>apt of Aderkhan<br>sums installed<br>11873<br>491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ated in sums.<br>an, Otgon, Tu<br>auto-switching<br>792<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Shiluustey, a<br>nd in 18 sums with<br>VSAT(Existing)<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ave VSAT ante<br>Il sums haven'i<br>h manuel conn<br>6.67<br>0.20<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t switching systems in su<br>tection was installed auto<br>[A-DG<br>[S-DG(100K)                                                                                                                                              | o connect<br>moenten<br>connecti<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-Ui<br>2 Dariganga<br>3 Naran                                                                                                                          | Inay has HICON<br>on offices for the<br>t)<br>P2<br>P3                                                                              | I station, and exce<br>last 3 years in 2<br>4.61<br>3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es, 23 of its loca<br>apt of Adarkhar<br>sums installed<br>11873<br>491<br>478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ated in sums.<br>an, Otgon, Tu<br>auto-switchin;<br>792<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tudevtey an<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Shiluustey, a<br>nd in 18 sums with<br>VSAT(Existing)<br>$\mu(2)$<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ave VSAT ante<br>ll sums haven'i<br>h manual conn<br>6.67<br>0.20<br>0.42<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t switching systems in su<br>tection was installed auto<br>A-DG<br>S-DG(100K)<br>S-DG(100K)                                                                                                                                  | o connect<br>m center<br>connecti<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-Ui<br>2 Derigenga<br>3 Naran<br>4 Ongon                                                                                                               | Inay has HCON<br>on offices for the<br>t)<br>P2<br>P3<br>P1                                                                         | station, and exco<br>last 3 years in 2<br>4.61<br>3.52<br>6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es, 23 of its loca<br>apt of Aldarikhai<br>sums installed<br>11873<br>491<br>478<br>1472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | atted in sums.<br>an, Otgon, Tu<br>auto-switching<br>792<br>1<br>2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tudevtey an<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>211<br>158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Existing)<br>$\mu(2)$<br>VSAT<br>$\mu(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ave VSAT ante<br>Il sums haven'i<br>h manuel conn<br>6.67<br>0.20<br>0.42<br>0.34<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t switching systems in su<br>lection was installed auto<br>A-DG<br>S-DG(100K)<br>S-DG(100K), PV(0.8K)                                                                                                                        | o connect<br>m centen<br>connecti<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U<br>2 Darigenga<br>3 Naran<br>4 Ongon<br>5 Bayandelger                                                                                               | Iney has HCOV<br>on offices for the<br>t)<br>P2<br>P3<br>P1<br>P1                                                                   | station, and exor<br>last 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es, 23 of its loca<br>apt of Aldarkhai<br>sums installed<br>11873<br>491<br>478<br>1472<br>755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | atted in sums.<br>an, Otgon, Tu<br>auto-switchin,<br>792<br>1<br>2<br>5<br>5<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>211<br>158<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Existing)<br>$\mu$ (2)<br>VSAT<br>$\mu$ (3)<br>$\mu$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ave VSAT ante<br>Il sums haven'<br>h manuel com<br>6.67<br>0.20<br>0.42<br>0.34<br>2.12<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t switching systems in su<br>lection was installed auto<br>A-DG<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K),PV(0.8K)<br>S-DG(100K),PV(0.8K)                                                                                    | o connect<br>m centen<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U<br>2 Derigenga<br>3 Naran<br>4 Ongon<br>5 Bayandelger<br>6 Khaizan                                                                                  | Iney has HCOIV<br>on offices for the<br>t) P2<br>P3<br>P1<br>P1<br>P1<br>P2                                                         | station, and exor<br>last 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88<br>3.79                                                                                                                                                                                                                                                                                                                                                                                                                                         | es, 23 of its loc<br>apt of Adarkha<br>sums installed<br>11873<br>491<br>478<br>1472<br>755<br>560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ated in sums.<br>an, Otgon, Tu<br>auto-switching<br>792<br>1<br>2<br>5<br>16<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>211<br>158<br>100<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Existing)<br>$\mu$ (2)<br>VSAT<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ave VSAT ante<br>Il sums haven<br>h manuel conn<br>6.67<br>0.20<br>0.42<br>0.34<br>2.12<br>1.25<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t switching systems in su<br>ection was installed auto<br>S-DC3(100K)<br>S-DC3(100K)<br>S-DC3(100K),PV(0.8K)<br>S-DC3(100K),PV(0.8K)<br>S-DC3(100K)                                                                          | o connec<br>m centen<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U<br>2 Derigenga<br>3 Naran<br>4 Ongon<br>5 Bayandelger<br>5 Bayandelger<br>6 Khaizan<br>7 Uutbayan                                                   | Iney has HCOIV<br>on offices for the<br>t) P2<br>P3<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1                                             | station, and exo<br>last 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88<br>3.79<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                  | es, 23 of its loc<br>apt of Aldericha<br>sums installed<br>11873<br>491<br>478<br>1472<br>755<br>560<br>1489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ated in sums.<br>an, Olgon, Tu<br>auto-switching<br>792<br>1<br>2<br>5<br>16<br>7<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>211<br>158<br>100<br>200<br>246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and Shiluustey, a<br>nd in 18 sums with<br>VSAT(Existing)<br>$\mu$ (2)<br>VSAT<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ave VSAT ante<br>Il sums haven't<br>h manuel com<br>6.67<br>0.20<br>0.42<br>0.34<br>2.12<br>1.25<br>0.00<br>2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t switching systems in su<br>ection was installed auto<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K),PV(0.8K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                          | o connect<br>m centers<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U<br>2 Darigenge<br>3 Naran<br>4 Orgon<br>5 Bayandelger<br>6 Khalzan<br>7 Uutbayan<br>8 Munkhkhaan                                                    | Iney has HICON<br>on offices for the<br>1)<br>P2<br>P3<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1                                    | station, and exor<br>tast 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88<br>3.79<br>2.14<br>7.42                                                                                                                                                                                                                                                                                                                                                                                                                         | es, 23 of its loc<br>apt of Alderkha<br>sums installed<br>11873<br>491<br>478<br>1472<br>755<br>560<br>1489<br>1033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ated in sums.<br>an, Otgon, Tu<br>auto-switching<br>792<br>1<br>2<br>5<br>16<br>7<br>0<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tudevtey ar<br>devtey, Tes.<br>9 systems, a<br>4101<br>70<br>71<br>2111<br>158<br>100<br>200<br>246<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Existing)<br>$\mu$ (2)<br>VSAT<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (3)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave VSAT ante<br>Il sums haven<br>h manuel com<br>0.20<br>0.42<br>0.34<br>2.12<br>1.25<br>0.00<br>2.90<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t switching systems in su<br>ection was installed auto<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K),PV(0.8K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                          | o connect<br>m centers<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-Ui<br>2 Darigenge<br>3 Naran<br>4 Orgon<br>5 Bayandelger<br>6 Khalzan<br>7 Uutbayan<br>8 Munkhkhaan<br>9 Sukhbaatar                                   | Inay has HOON<br>on offices for the<br>t)<br>P2<br>P3<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P2<br>P1<br>P2                   | station, and exor<br>last 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88<br>3.79<br>2.14<br>7.42<br>12.75                                                                                                                                                                                                                                                                                                                                                                                                                | es, 23 of its loc<br>apt of Alderkha<br>sums installed<br>11873<br>491<br>478<br>1472<br>755<br>560<br>1449<br>1033<br>728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ated in sums.<br>en, Otgon, Tu<br>auto-switchin;<br>792<br>1<br>2<br>5<br>16<br>7<br>16<br>7<br>0<br>30<br>1<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tudevtey ar<br>devtey, Tes<br>9 systems, a<br>4101<br>70<br>71<br>2111<br>158<br>100<br>200<br>246<br>101<br>285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Edisting)<br>$\mu$ (2)<br>VSAT<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ave VSAT ante<br>Il sums haven't<br>h manuel conn<br>0.42<br>0.34<br>2.12<br>1.25<br>0.00<br>2.90<br>0.14<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t switching systems in su<br>ection was installed auto<br>S-DQ(100K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)                                 | o connecti<br>m centers<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-Ui<br>2 Darigenge<br>3 Naran<br>4 Ongon<br>5 Bayandelger<br>6 Khaizan<br>7 Uutbayan<br>8 Munkhkhaan<br>9 Sukhbaatar<br>0 Erdenetsagaan                | Inay has HOON<br>on offices for the<br>t)<br>P2<br>P3<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1 | station, and exor<br>last 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88<br>3.79<br>2.14<br>7.42<br>12.75                                                                                                                                                                                                                                                                                                                                                                                                                | es, 23 of its loc<br>apt of Alderkhas<br>sums installed<br>11873<br>4911<br>478<br>1472<br>755<br>560<br>1489<br>1033<br>728<br>1812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ated in sums.<br>en, Otgon, Tu<br>auto-switchin;<br>792<br>1<br>2<br>5<br>16<br>7<br>7<br>0<br>30<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>211<br>158<br>100<br>200<br>246<br>101<br>101<br>285<br>403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and Shilustey, a<br>nd in 18 sums wit<br>VSAT(Existing)<br>$\mu(2)$<br>$\nu(3)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$ | ave VSAT ante<br>Il sums haven't<br>h manuel conn<br>6,67<br>0,20<br>0,42<br>0,34<br>2,12<br>1,25<br>0,00<br>2,90<br>0,14<br>0,72<br>3,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t switching systems in su<br>ection was installed auto<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K),PV(0.8K)<br>S-DQ(100K),PV(0.8K)<br>S-DQ(100K),PV(0.8K)<br>S-DQ(100K),PV(0.8K)<br>S-DQ(100K),PV(0.8K)<br>S-DQ(100K),PV(0.8K) | o connecti<br>m centers<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the matter of switching, Bu<br>avkhan aimag communicati<br>1 Aimag Center(Barun-U<br>2 Derigenga<br>3 Naran<br>4 Ongon<br>5 Bayandelger<br>6 Khaizan<br>7 Uutbayan<br>8 Murkhkhean<br>9 Sukhbaatar<br>0 Erdenetsagaan<br>1 Tumentsogt | Iney has HCOIV<br>on offices for the<br>P2<br>P3<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1      | station, and exo<br>tast 3 years in 2<br>4.61<br>3.52<br>6.47<br>7.88<br>3.79<br>2.14<br>7.42<br>12.76<br>16.95                                                                                                                                                                                                                                                                                                                                                                                                        | es, 23 of its loc<br>apt of Alderkhas<br>sums installed<br>11873<br>491<br>478<br>1472<br>755<br>560<br>1489<br>1033<br>728<br>1812<br>1552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ated in sums.<br>en, Otgon, Tu<br>auto-switching<br>792<br>1<br>2<br>5<br>16<br>7<br>0<br>30<br>1<br>1<br>13<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tudevtey ar<br>devtey, Tes<br>g systems, a<br>4101<br>70<br>71<br>2111<br>158<br>100<br>200<br>246<br>101<br>285<br>403<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and Shiluustey, a<br>nd in 18 sums wit<br>VSAT(Edisting)<br>$\mu$ (2)<br>VSAT<br>$\mu$ (3)<br>$\mu$ (3)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ave VSAT ante<br>Il sums haven't<br>h manuel conn<br>6,67<br>0,20<br>0,42<br>0,34<br>2,12<br>1,25<br>0,00<br>2,90<br>0,14<br>0,72<br>3,48<br>0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t switching systems in su<br>ection was installed auto<br>S-DQ(100K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)<br>S-DQ(100K), PV(0.8K)                                 | o connecti<br>m centers<br>connecti<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                       | Ider       0       1       Numug       2       Otgon       3       Santmargats       4       Sangino       5       Tudevtei       6 | Ider         P1           0         Ikh-Uul         P2           1         Numrug         P2           2         Otgon         P2           3         Santmargats         P3           4         Songino         P1           5         Tudevtei         P1           6         Tes         P1           7         Telmen         P2           9         Tsagaanthainthan         P3           0         Tsagaanchuluut         P3           1         Tsetsen-Uu         P2           2         Shiluustei         P1 | Pi         38           0         Ider         P1         38           0         Ider         P2         33           1         Numug         P2         6           2         Otgon         P2         24           3         Santmargats         P3         24           4         Songino         P1         53           5         Tudevtei         P1         26           6         Tes         P1         0.9           7         Telmen         P2         3.4           8         Urgamei         P2         3.5           9         Tsagaankfrainkhan         P3         2.6           1         Tsetsen-Uul         P2         2.4           2         Shiluustei         P1         2.7 | Ider         P1         3.8         1396           0         Ikh-Uul         P2         3.3         547           1         Numug         P2         6         630           2         Otgon         P2         24         630           3         Santmargats         P3         2.4         618           4         Sorgino         P1         5.3         5383           5         Tudevtei         P1         2.6         839           6         Tes         P1         0.9         1584           7         Telmen         P2         3.4         642           8         Urgarnel         P2         3.5         534           9         Tsagaankheinkharn         P3         2.7         622           0         Tsagaankheinkharn         P3         2.6         320           1         Tsetsen-Uu         P2         2.4         124           2         Shituustei         P1         2.7         1124 | Pi         3.8         1396         5           0         Ider         P1         3.8         1396         5           1         Numug         P2         3.3         547         7           1         Numug         P2         6         630         3           2         Otgon         P2         2.4         630         14           3         Santmargets         P3         2.4         618         2           4         Sorgino         P1         5.3         5383         5           5         Tudevtei         P1         2.6         839         72           6         Tes         P1         0.9         1584         32           7         Telmen         P2         3.4         642         2           8         Urgarnel         P2         3.5         534         5           9         Tsageantificainthern         P3         2.6         320         5           9         Tsageantificainthern         P3         2.6         320         5           1         Testeer-U4         P2         2.4         1220         13           2         Shit | P         Ider         P1         3.8         1396         5         122           0         Ikh- Uul         P2         3.3         547         7         59           1         Numug         P2         6         630         3         58           2         Olgon         P2         2         6         630         3         58           2         Olgon         P2         2.4         630         14         78           3         Santmargats         P3         2.4         618         2         54           4         Sorgino         P1         5.3         5383         5         438           5         Tudevitei         P1         2.6         839         72         219           6         Tes         P1         0.9         1584         32         194           7         Telmen         P2         3.4         642         2         56           8         Urgamel         P2         3.5         534         5         53           9         Tsagaankhaikhain         P3         2.6         320         5         36           0         Tsagaanch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pi         3.8         1396         5         122 $\mu$ (2)           0         Ider         P1         3.8         1396         5         122 $\mu$ (2)           1         Numug         P2         6         630         3         58 $\mu$ (3)           2         Otgon         P2         6         630         14         78 $\mu$ (2)           3         Santmargets         P3         2.4         618         2         54 $\mu$ (2)           4         Sorgino         P1         5.3         5383         5         438 $\mu$ (1)           5         Tudevitei         P1         2.6         839         72         219         vsArtEsstray $\mu$ (1)           6         Tes         P1         0.9         1584         32         194         vSAT           7         Telmen         P2         3.4         642         2         66 $\mu$ (2)           8         Urgannel         P2         3.5         534         5         53         VSAT           9         Tsageantificanthein         P3         2.6         320         5         36         0FCKMON-4) | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                       | 5       Zawita intercat       P1       3.7       30.9       5       75 $\mu$ (2)       0.02       DG-8.5kW         0       Ider       P1       3.8       1396       5       122 $\mu$ (2)       0.38       SDG(100k)         0       Ikh- Ud       P2       3.3       547       7       59 $\mu$ (2)       1.28       SDG(200k)         1       Numug       P2       6       6300       3       58 $\mu$ (2)       2.22       SDG(60K), PV(0.8k)         2       Ogon       P2       2.4       618       2       54 $\mu$ (2)       0.32       SDG(100k)         2       Ogon       P1       5.3       5383       5       438 $\mu$ (1)       0.00       SDG(100k), PV(0.8k)         2       Tudevtei       P1       2.6       839       72       219       vsAt(Exating/ $\mu$ (1)       8.58       SDG(60K), PV(0.8k), DG-44k/V         7       Telmen       P2       3.4       642       2       66 $\mu$ (2)       0.31       SDG(100k)         8       Urgannal       P2       3.5       534       5       53       VSAT       0.04       SDG(100k)         9 |

|            |                       | Alexandre /O (Alexandre)                                                                                                                                              | 1 1                                                                            |                                                                      | 4070                                                 | 0.000                                    | A                                                               |                                                      |                                                                    |                                         |
|------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
|            |                       | Aimap Center (Sukhbeatar)                                                                                                                                             |                                                                                | 20282                                                                | 1376                                                 |                                          | Approach Micro                                                  |                                                      | Central Grid                                                       | Metalic                                 |
|            |                       | Atanbulag                                                                                                                                                             | P1                                                                             | 2870                                                                 | 89                                                   | 274                                      |                                                                 |                                                      | Central Grid                                                       | Metalic                                 |
| 1.1        |                       | Ew                                                                                                                                                                    | P1                                                                             | 2365                                                                 | 70                                                   |                                          | μ R/S(2)                                                        |                                                      | Central Grid                                                       | Metalic                                 |
|            |                       | Zurturen                                                                                                                                                              | Р                                                                              | 1950                                                                 | 10                                                   |                                          | <u>μ R/S(1)</u>                                                 |                                                      | Central Grid                                                       | Metalic                                 |
|            | _                     | Khusheet                                                                                                                                                              | P4                                                                             | 896                                                                  | 10                                                   |                                          | OFC                                                             |                                                      | Central Grid                                                       | Metalic                                 |
| 12.1       | 6                     | Orkhan                                                                                                                                                                | P3                                                                             | 1497                                                                 | 11                                                   |                                          | OFC                                                             |                                                      | Central Grid                                                       | Metalic                                 |
| MAG        | 7                     | Sent                                                                                                                                                                  | P1                                                                             | 1339                                                                 | 33                                                   |                                          | μR/S (1)                                                        |                                                      | Central Grid                                                       | Metalic                                 |
| 5          |                       | Khuder                                                                                                                                                                | P4                                                                             | 1221                                                                 | 12                                                   |                                          | μ(2)                                                            |                                                      | Central Grid                                                       | Metalic                                 |
| - <b>T</b> | 9                     | Teagaamur                                                                                                                                                             | P1                                                                             | 3107                                                                 | 45                                                   | 223                                      | μ R/S(1)                                                        | 1.45                                                 | Central Grid                                                       | Metalic                                 |
| Ц.         | 10                    | Bugant                                                                                                                                                                | P3                                                                             |                                                                      | - 44                                                 | 165                                      | μ(2)                                                            |                                                      | Central Grid                                                       | Metalic                                 |
| ž          | 11                    | Onthontul                                                                                                                                                             | P1                                                                             | 2743                                                                 | 31                                                   | 185                                      | OFC+ µ R/S(1)                                                   | 1.13                                                 | Central Grid                                                       | Metalic                                 |
| ELENGE     | 12                    | Barunburen                                                                                                                                                            | P2                                                                             | 2174                                                                 | 49                                                   | 181                                      | μ(2)                                                            | 2.25                                                 | Central Grid                                                       | Metalic                                 |
| Щ.         | 13                    | Dulaankhaan                                                                                                                                                           | P4                                                                             |                                                                      | 7                                                    | 62                                       | OFC                                                             |                                                      | Central Grid                                                       | Metalic                                 |
| vộ         | 14                    | Javkhlant                                                                                                                                                             | P4                                                                             | 930                                                                  | 18                                                   | 74                                       | μ(1)                                                            | 1.94                                                 | Central Grid                                                       | Metalic                                 |
| e,         | 15                    | Shearnar                                                                                                                                                              | PI                                                                             | 2108                                                                 | 72                                                   | 296                                      | μ                                                               | 3.42                                                 | Central Grid                                                       | Metalic                                 |
| 1.<br>1.   | 16                    | Tushig                                                                                                                                                                | P4                                                                             | 1339                                                                 | 10                                                   | 83                                       | μ(2)                                                            | 0.75                                                 | Central Grid                                                       | Metalic                                 |
| 2          | 17                    | Saikhan/Nomgon                                                                                                                                                        | P2                                                                             | 6436                                                                 | 25                                                   | 365                                      | μ(2)                                                            | 0.39                                                 | Central Grid                                                       | Metalic                                 |
| 11.1       | 18                    | Khutul                                                                                                                                                                | PI                                                                             |                                                                      | 518                                                  | 867                                      |                                                                 |                                                      | Central Grid                                                       | WILL                                    |
| - 11 A.    | 19                    | Zunkherae                                                                                                                                                             | PI                                                                             | 1 1                                                                  | 642                                                  | 2039                                     | OFC or <i>u</i>                                                 |                                                      | Central Grid                                                       | WLL                                     |
|            | 20                    | Bayangol (Benumaraa)                                                                                                                                                  | PI                                                                             |                                                                      | 144                                                  | 397                                      | OFC                                                             |                                                      | Central Grid                                                       | Metalic                                 |
|            |                       | MRC Turkhel                                                                                                                                                           | P2                                                                             |                                                                      | 9                                                    | 24                                       | OFC                                                             | ¢                                                    | Central Grid                                                       | Metalic                                 |
| Note       | long<br>100%<br>In Se | nge aimag communication offi<br>distance communication. In K<br>& operation is relatively reliabl<br>alenge aimag for last 3 years in<br>han aimag communication offi | nuder, Tushig and Khus<br>le, which shows that ain<br>h 4 sums installed auto- | haat, with menual oc<br>neg paying attention<br>switching systems, a | onnection, plan<br>for service an<br>ind in 5 sums v | ning to ins<br>d maintena<br>with manual | all auto connectio<br>nce, their positive<br>I connection was i | on. Al) sums pr<br>experiences s<br>installed auto c | ovided by auto switc<br>hould be penetrated<br>connection systems. | thing systems for<br>I to other aimags. |
| 3          | <u> </u>              | Aimag Center(Darkhan)                                                                                                                                                 | 1 <u>1</u>                                                                     | 66863                                                                | 5417                                                 | <u> </u>                                 | I                                                               |                                                      | Central Grid                                                       | Metalic                                 |
| 1.         |                       | Sharin Gol                                                                                                                                                            | P2                                                                             | 7790                                                                 | 361                                                  | 1216                                     | μ R/S(2)                                                        |                                                      | Central Grid                                                       | WLL                                     |
| ŝ          |                       | Khongor                                                                                                                                                               | P2                                                                             | 2596                                                                 | 65                                                   |                                          | OFC                                                             |                                                      | Central Grid                                                       | Metalic                                 |
|            |                       | Orkhon                                                                                                                                                                | P2                                                                             | 1980                                                                 | 28                                                   |                                          | OFC                                                             | 2.00                                                 |                                                                    |                                         |

#### JICA Telecom Study

| NOHS  | 1 | Aimag Center(Erdenet) |    |      |      | 5004 | 34003 |     |       | Central, Western Grid |      |
|-------|---|-----------------------|----|------|------|------|-------|-----|-------|-----------------------|------|
| 24 OR | 2 | Jargalant             | P1 | 0.52 | 2208 | 1193 | 4786  | OFC | 54.03 | Central, Western Grid | WLL. |

| MBER  | 1 | Aimagu Center (Sumber) |    | 7048 | 479 | 790 |     | 6.80 | Central Grid, DG-16KW | Metalic |
|-------|---|------------------------|----|------|-----|-----|-----|------|-----------------------|---------|
| OBISU | 2 | Shiveegobi             | P1 | 2153 | 150 | 262 | OFC | 6.97 | Central Grid          | Metalíc |
| 1 2   | 3 | Bayantal               | P2 | 399  | 14  | 36  | OFC | 3.51 | Central Grid          | Metalic |

|       | 1                             | Aimag Center(Zuunmod)                                                                                                                                                                                 | 1                                                          |                                                                                         | 14771                                                             | 1246                                             | 3912                                 |                                                         | 8.44                                                      | Central Grid                                 | Metalic                           |
|-------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|-----------------------------------|
|       |                               | Altanbulag                                                                                                                                                                                            | p2                                                         | 5.65                                                                                    | 906                                                               | 3                                                | 83                                   | μ(2)                                                    | 0.33                                                      | Central Grid                                 | Metalic                           |
|       | 3                             | Argelant                                                                                                                                                                                              | P1                                                         | 1.13                                                                                    | 1167                                                              | 12                                               | 126                                  | μ(2)                                                    | 1.03                                                      | Central Grid                                 | Metalic                           |
|       | 4                             | Betsumber                                                                                                                                                                                             | PI                                                         | 2.43                                                                                    | 2319                                                              | 3                                                | 198                                  | μ(2)                                                    | 0.13                                                      | Central Grid                                 | Metalic                           |
|       | 5                             | Bavan                                                                                                                                                                                                 | PI                                                         | 29                                                                                      | 1292                                                              | 24                                               | 166                                  | OFC                                                     | 1.86                                                      | Central Grid                                 | Metalic                           |
|       | 6                             | Bayan-Unjuul                                                                                                                                                                                          | P3                                                         | 4.79                                                                                    | 355                                                               | 0                                                | 33                                   | μ(3)                                                    | 0.00                                                      | Central Grid                                 | Metalic                           |
|       | 7                             | Bayanjargalan                                                                                                                                                                                         | P3                                                         | 2.38                                                                                    | 484                                                               | 15                                               | 78                                   | μ(2)                                                    | 3.10                                                      | Central Grid                                 | Metalic                           |
|       | 8                             | Bayanhangai                                                                                                                                                                                           | P1                                                         | 1.01                                                                                    | 1292                                                              | 13                                               | 110                                  | μ(1)                                                    | 1.01                                                      | Central Grid                                 | Metalic                           |
|       | 9                             | Bayantsagaan                                                                                                                                                                                          | P3                                                         | 6.47                                                                                    | 670                                                               | 11                                               | 82                                   | μ(2)                                                    | 1.64                                                      | Central Grid                                 | Metalic                           |
|       | 10                            | Beyantsogt                                                                                                                                                                                            | P1                                                         | 1.47                                                                                    | 1274                                                              | 30                                               | 179                                  | μ(2)                                                    | 2.35                                                      | Central Grid                                 | Metalic                           |
|       | 11                            | Bomur                                                                                                                                                                                                 | P1                                                         | 1.15                                                                                    | 2272                                                              | 30                                               | 260                                  | OFC                                                     | 1.32                                                      | Central Grid                                 | Metalic                           |
| Q     | 12                            | Buren                                                                                                                                                                                                 | P1                                                         | 3.76                                                                                    | 711                                                               | 11                                               | 85                                   | VSAT                                                    | 1.55                                                      | Central Grid                                 | Metalic                           |
| AIMAG | 13                            | Delgerkhaan                                                                                                                                                                                           | P2                                                         | 2.17                                                                                    | 668                                                               | 16                                               | 93                                   | VSAT                                                    | 2.40                                                      | Central Grid                                 | Metalic                           |
|       | 14                            | Jargalant                                                                                                                                                                                             | P1                                                         | 1.87                                                                                    | 3930                                                              | 55                                               | 457                                  | μ( <b>1</b> )                                           | 1.40                                                      | Central Grid                                 | Metalic                           |
| Ð     | 15                            | Zaamar                                                                                                                                                                                                | PI                                                         | 2.82                                                                                    | 1398                                                              | 32                                               | 261                                  | VSAT                                                    | 2.29                                                      | Central Grid                                 | Metalic                           |
| F     | 16                            | lun                                                                                                                                                                                                   | PI                                                         | 2.53                                                                                    | 1623                                                              | 110                                              | 331                                  | μ(1)                                                    | 6.78                                                      | Central Grid                                 | Metalic                           |
| 3-6   | 17                            | Undurshireet                                                                                                                                                                                          | P3                                                         | 2,71                                                                                    | 774                                                               | 4                                                | 74                                   | VSAT                                                    | 0.52                                                      | Central Grid                                 | Metalic                           |
|       | 18                            | Sergelen                                                                                                                                                                                              | P2                                                         | 3.87                                                                                    | 512                                                               | 8                                                | 62                                   | μ(1)                                                    | 1.56                                                      | Central Grid                                 | Metalic                           |
|       | 19                            | Sumber                                                                                                                                                                                                | PI                                                         |                                                                                         |                                                                   | 0                                                | 132                                  | μ(1)                                                    |                                                           | Central Grid                                 | Metalic                           |
| i     |                               | Ugtaal                                                                                                                                                                                                | P1                                                         | 1.55                                                                                    | 1824                                                              | 36                                               | 238                                  | μ(2)                                                    | 1.97                                                      | Central Grid                                 | Metalic                           |
|       | 21                            | Tseel                                                                                                                                                                                                 | P1                                                         | 1.66                                                                                    | 2242                                                              | 31                                               | 261                                  | μ(2)                                                    | 1.38                                                      | Central Grid                                 | Metalic                           |
|       | 22                            | Erdene                                                                                                                                                                                                | P1                                                         | 8.03                                                                                    | 908                                                               | 17                                               | 118                                  | μ(2)                                                    | 1.87                                                      | Central Grid                                 | Metalic                           |
|       | 23                            | Erdenesant                                                                                                                                                                                            | P1                                                         | 1.87                                                                                    | 2221                                                              | 58                                               | 325                                  | VSAT                                                    | 2.61                                                      | Central Grid                                 | Metalic                           |
|       | 24                            | Ankhust                                                                                                                                                                                               | P2                                                         | 8.24                                                                                    | 791                                                               | 7                                                | ន                                    | μ(2)                                                    | 0.88                                                      | Central Grid                                 | Metalic                           |
|       | 25                            | Bayanchandmani                                                                                                                                                                                        | P1                                                         | 6.13                                                                                    | 2599                                                              | 54                                               | 347                                  | μ(2)                                                    | 2.06                                                      | Central Grid                                 | Metalic                           |
|       | 26                            | Zanchivlan                                                                                                                                                                                            | P2                                                         |                                                                                         |                                                                   | 2                                                | 14                                   | VSAT                                                    |                                                           | Central Grid                                 | Metalic                           |
|       | 27                            | Bayandelger                                                                                                                                                                                           | P1                                                         |                                                                                         |                                                                   | 29                                               | 144                                  | μ(1)                                                    |                                                           | Central Grid                                 | Metalic                           |
|       | 28                            | Mungurmort                                                                                                                                                                                            | P2                                                         |                                                                                         |                                                                   | 0                                                | 85                                   | VSAT                                                    |                                                           | Central Grid                                 | Metalic                           |
| Note  | subc<br>Ugta<br>atter<br>Nala | Tuv aimag communication of<br>ordinated to Nalaikh district. In<br>rait, Sergelen and Bayan-Unju<br>ntion to install switching system<br>ikh communication office ind<br>ers), Baganuur and Nalaikh o | n Tuv aimag<br>ul don't hav<br>ms with auto<br>uding 8 bra | for the last 3 years<br>e switching system<br>connection in 4 s<br>nches, 2 of its loca | s in 13 sums ins<br>is in sum center.<br>ums.<br>ted in sum cente | talled auto co<br>. Buren and D<br>ers. Baganuur | nnection s<br>eigenkhaai<br>communic | ystems, and in 6<br>n sums have me<br>cation office ind | 3 sums was insta<br>anual connection<br>lucting 3 branche | iled auto-switching<br>, according this fact | systems. Tseel<br>; we should pay |

Page 8 - 28

| E                  |                                                                   | Aimag Center(Uaangom)                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1                                                                                                                                          | 23217                                                                                                                              | 1846                                                                                                                                                                                                                      | 3655                                                                                                                                                                                            | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.30                                                                                                                                                         | Western Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 2                                                                 | Barunturuun                                                                                                                                                                                                                                                                                                                                        | IP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | 2502                                                                                                                               | 12                                                                                                                                                                                                                        |                                                                                                                                                                                                 | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48                                                                                                                                                         | DG-16K.PV-3.5K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Bukhmurun                                                                                                                                                                                                                                                                                                                                          | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 926                                                                                                                                | 2                                                                                                                                                                                                                         |                                                                                                                                                                                                 | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.22                                                                                                                                                         | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Devst                                                                                                                                                                                                                                                                                                                                              | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                                                                                                                                          | 668                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | <u>u(</u> 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| - F                |                                                                   | Zavkhan                                                                                                                                                                                                                                                                                                                                            | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 993                                                                                                                                | 1                                                                                                                                                                                                                         |                                                                                                                                                                                                 | <u>μ</u> (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                  | _                                                                 | Zuungobi                                                                                                                                                                                                                                                                                                                                           | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 677                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                         | S-DG(100K), PV(0.8K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| . ⊦                |                                                                   | Zuunhancai                                                                                                                                                                                                                                                                                                                                         | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ╞╼╴╴╞                                                                                                                                        | 759                                                                                                                                | 2                                                                                                                                                                                                                         | 48                                                                                                                                                                                              | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.26                                                                                                                                                         | DG-16K/V<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| ~ ~                | · · ·                                                             | Malchin                                                                                                                                                                                                                                                                                                                                            | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>                                      </u>                                                                                                | 803                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | μ(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| ᆋᅡ                 | _                                                                 | Naranbulag                                                                                                                                                                                                                                                                                                                                         | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 959                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | μ( <u>2</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| ₹ ⊢                | _                                                                 | Uqii                                                                                                                                                                                                                                                                                                                                               | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>     </del>                                                                                                                             | 615                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | OFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | W-Grid, S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 H                |                                                                   |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                                                                                                            | 1038                                                                                                                               | 12                                                                                                                                                                                                                        |                                                                                                                                                                                                 | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | W-Grid, S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u> </u>           |                                                                   | Umnugobi                                                                                                                                                                                                                                                                                                                                           | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | {}                                                                                                                                           | 1660                                                                                                                               | 1                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Undurhangai                                                                                                                                                                                                                                                                                                                                        | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b></b>                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | S-DG(100K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | _                                                                 | Sagil                                                                                                                                                                                                                                                                                                                                              | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>↓ ↓</b>                                                                                                                                   | 878                                                                                                                                | <del>_</del>                                                                                                                                                                                                              |                                                                                                                                                                                                 | $\mu(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              | Western Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                  |                                                                   | Tarialan                                                                                                                                                                                                                                                                                                                                           | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 1842                                                                                                                               |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | OFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | Western Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Turgen                                                                                                                                                                                                                                                                                                                                             | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 867                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | $\mu(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              | Western Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Tes                                                                                                                                                                                                                                                                                                                                                | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 940                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Kharkhiraa                                                                                                                                                                                                                                                                                                                                         | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>                                     </u>                                                                                                 |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                   | Khovd                                                                                                                                                                                                                                                                                                                                              | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ļ                                                                                                                                            | 425                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                 | <u>µ(2)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| L                  | 19                                                                | Khyargas                                                                                                                                                                                                                                                                                                                                           | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 763                                                                                                                                | 1                                                                                                                                                                                                                         |                                                                                                                                                                                                 | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ē                  | 20                                                                | Tsagaanhairkhan                                                                                                                                                                                                                                                                                                                                    | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | 1533                                                                                                                               | 4                                                                                                                                                                                                                         | 98                                                                                                                                                                                              | $\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.26                                                                                                                                                         | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
| -  r               | 1                                                                 | Aiman Center(Moron)                                                                                                                                                                                                                                                                                                                                | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T I                                                                                                                                          | 27092                                                                                                                              | 2014                                                                                                                                                                                                                      | 8467                                                                                                                                                                                            | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.43                                                                                                                                                         | ADG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | _                                                                 | Aimag Center(Moron)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              | 27092                                                                                                                              | 2014                                                                                                                                                                                                                      |                                                                                                                                                                                                 | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | ADG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | 2                                                                 | Alag-Erdene                                                                                                                                                                                                                                                                                                                                        | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.49                                                                                                                                         | 889                                                                                                                                | 5                                                                                                                                                                                                                         | 125                                                                                                                                                                                             | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.66                                                                                                                                                         | S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | 23                                                                | Alag-Erdene<br>Arbulag                                                                                                                                                                                                                                                                                                                             | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66                                                                                                                                         | 889<br>1186                                                                                                                        | <u>5</u><br>17                                                                                                                                                                                                            | 125<br>198                                                                                                                                                                                      | μ(2)<br>μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.66                                                                                                                                                         | S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | 2<br>3<br>4                                                       | Alag-Erdane<br>Arbulag<br>Bayanzurkh                                                                                                                                                                                                                                                                                                               | P2<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.66<br>3.7                                                                                                                                  | 889<br>1186<br>872                                                                                                                 | 5<br>17<br>15                                                                                                                                                                                                             | 125<br>198<br>153                                                                                                                                                                               | $\mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.66<br>1.43<br>1.72                                                                                                                                         | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | 2345                                                              | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh                                                                                                                                                                                                                                                                                               | P2<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.66                                                                                                                                         | 889<br>1186                                                                                                                        | 5<br>17<br>15<br>48                                                                                                                                                                                                       | 125<br>198<br>153<br>242                                                                                                                                                                        | $ \begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.66<br>1.43<br>1.72                                                                                                                                         | S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                            |
|                    | 23456                                                             | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenkhaan                                                                                                                                                                                                                                                                                 | P2<br>P2<br>P1<br>P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,66<br>3.7<br>3.77                                                                                                                          | 889<br>1186<br>872<br>816                                                                                                          | 5<br>17<br>15<br>48<br>3                                                                                                                                                                                                  | 125<br>198<br>153<br>242<br>35                                                                                                                                                                  | $ \begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.56<br>1.43<br>1.72<br>5.88                                                                                                                                 | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 234567                                                            | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenkhaan<br>Galt                                                                                                                                                                                                                                                                         | P2<br>P2<br>P1<br>P3<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.66<br>3.7                                                                                                                                  | 889<br>1186<br>872<br>816<br>722                                                                                                   | 5<br>17<br>15<br>48<br>3<br>8                                                                                                                                                                                             | 125<br>198<br>153<br>242<br>35<br>113                                                                                                                                                           | $ \begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.66<br>1.43<br>1.72<br>5.88<br>1.11                                                                                                                         | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 2 3 4 5 6 7 8                                                     | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Burenkhaan<br>Gelt<br>Jargelant                                                                                                                                                                                                                                                              | P2<br>P2<br>P1<br>P3<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.66<br>3.7<br>3.77<br>3.77                                                                                                                  | 889<br>1186<br>872<br>816<br>722<br>1182                                                                                           | 5<br>17<br>15<br>48<br>3<br>8<br>25                                                                                                                                                                                       | 125<br>196<br>153<br>242<br>35<br>113<br>219                                                                                                                                                    | $ \begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu$                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12                                                                                                                 | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                                      |
|                    | 23456789                                                          | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gatt<br>Jargelant<br>Ikh-Uul                                                                                                                                                                                                                                                                 | P2<br>P2<br>P1<br>P3<br>P1<br>P1<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66<br>3.7<br>3.77<br>3.6<br>2.02                                                                                                           | 889<br>1186<br>872<br>816<br>722<br>1182<br>1328                                                                                   | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32                                                                                                                                                                                 | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258                                                                                                                                             | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41                                                                                                         | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Gnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                           |
|                    | 2 3 4 5 6 7 8 9 2                                                 | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenthaan<br>Gatt<br>Jargelant<br>Ikh-Uul<br>Rashaant                                                                                                                                                                                                                                     | P2           P1           P3           P1           P3           P1           P1           P1           P1           P1           P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.66<br>3.7<br>3.77<br>3.6<br>2.02<br>1.98                                                                                                   | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911                                                                            | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32<br>19                                                                                                                                                                           | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168                                                                                                                                      | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(1) \\ \mu(2) \\ \mu(1) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(2) \\ \mu($                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09                                                                                                 | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>Central Grid<br>Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                |
|                    | 2 3 4 5 6 7 8 9 2                                                 | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gatt<br>Jargelant<br>Ikh-Uul                                                                                                                                                                                                                                                                 | P2<br>P2<br>P1<br>P3<br>P1<br>P1<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66<br>3.7<br>3.77<br>3.6<br>2.02                                                                                                           | 889<br>1186<br>872<br>816<br>722<br>1182<br>1328                                                                                   | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32                                                                                                                                                                                 | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168                                                                                                                                      | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09                                                                                                 | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>Central Grid<br>Central Grid<br>S-DG(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                                           |
|                    | 23456789121                                                       | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenthaan<br>Gatt<br>Jargelant<br>Ikh-Uul<br>Rashaant                                                                                                                                                                                                                                     | P2<br>P2<br>P1<br>P3<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.66<br>3.77<br>3.77<br>3.6<br>2.02<br>1.96<br>6.74<br>3.43                                                                                  | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738                                                             | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32<br>19<br>22<br>22<br>88                                                                                                                                                         | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>595                                                                                                                        | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ VSAT \\ VSAT \\ VSAT \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21                                                                                 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>Central Grid<br>S-DQ(100K)<br>C-Grid<br>S-DQ(100K)<br>C-Grid<br>S-DQ(60K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                                     |
|                    | 2 3 4 5 6 7 8 9 10 11 12 13                                       | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gelt<br>Jargelant<br>Ikh-Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel                                                                                                                                                                                                       | P2<br>P2<br>P1<br>P3<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.66<br>3.77<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04                                                                          | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169                                                     | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32<br>19<br>22<br>88<br>88                                                                                                                                                         | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>595                                                                                                                        | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \forall SAT \\ \forall SAT \\ \mu(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68                                                                         | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>C-Grid,<br>S-DQ(00K), PV(0.8K)<br>S-DQ(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                                          |
|                    | 2 3 4 5 6 7 8 9 10 11 12 13                                       | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gelt<br>Jargelant<br>Ikh-Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan                                                                                                                                                                                                                       | P2           P2           P1           P3           P1           P2           P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66<br>3.7<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52                                                                   | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904                                              | 5<br>17<br>15<br>48<br>3<br>3<br>8<br>25<br>32<br>19<br>22<br>22<br>88<br>88<br>8<br>14                                                                                                                                   | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>595<br>168<br>169                                                                                                          | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ VSAT \\ VSAT \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55                                                                 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>C-Grid,<br>S-DQ(60K), PV(0.8K)<br>S-DQ(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                                               |
|                    | 2 3 4 5 6 7 8 9 2 1 2 3 4                                         | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gelt<br>Jargelant<br>Ikh-Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel                                                                                                                                                                                                       | P2           P2           P1           P3           P1           P1           P1           P1           P1           P1           P1           P2           P2           P2           P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.66<br>3.7<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58                                                           | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169                                                     | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32<br>19<br>22<br>22<br>88<br>8<br>8<br>14<br>9                                                                                                                                    | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>595<br>595<br>166<br>152<br>162<br>152                                                                                     | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ VSAT \\ VSAT \\ \mu(2) \\ \mu($                                                                                                                                                                                                                                                                                                                                                                                                      | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05                                                         | S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>S-DG(100K)<br>Central Grid<br>Central Grid<br>S-DG(100K)<br>C-Grid,<br>S-DG(100K)<br>S-DG(60K), PV(0.8K)<br>S-DG(60K)<br>S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                                         |
|                    | 2 3 4 5 6 7 8 9 2 1 2 3 4 5                                       | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gait<br>Jargelant<br>Ikh- Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel<br>Tumurbulag                                                                                                                                                                                        | P2           P2           P1           P3           P1           P2           P2           P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66<br>3.7<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52                                                                   | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874                                | 5<br>17<br>15<br>48<br>3<br>3<br>8<br>25<br>32<br>19<br>22<br>22<br>88<br>88<br>8<br>4<br>14<br>9<br>19                                                                                                                   | 125<br>198<br>153<br>242<br>355<br>113<br>219<br>258<br>168<br>169<br>169<br>169<br>152<br>152<br>154<br>154<br>164                                                                             | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(3) \\ \mu($                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17                                                 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>Central Grid<br>S-DQ(100K)<br>C-Grid,<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                                                              |
|                    | 2 3 4 5 6 7 8 9 2 1 2 3 4 5 6                                     | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gelt<br>Jargelant<br>Ikh- Uul<br>Reshaant<br>Reshaant<br>Tarialan<br>Tosontsengel<br>Tumurbulag<br>Tumurbulag                                                                                                                                                                                | P2           P2           P1           P3           P1           P1           P1           P1           P1           P1           P2           P2           P4           P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.66<br>3.7<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58                                                           | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032                        | 5<br>17<br>15<br>48<br>3<br>3<br>3<br>25<br>32<br>19<br>22<br>22<br>88<br>88<br>14<br>9<br>9<br>9<br>9<br>9<br>88                                                                                                         | 125<br>198<br>153<br>242<br>35<br>35<br>35<br>242<br>242<br>35<br>595<br>168<br>169<br>169<br>152<br>154<br>154<br>154<br>151                                                                   | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \forall SAT \\ \forall SAT \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \forall SAT \\ \forall SAT \\ \forall SAT \\ \forall SAT \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.59<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78                                         | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(60K), PV(0.8K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                                  |
| 2-6 KHUVSGUL AIMAG | 2 3 4 5 6 7 8 9 2 1 2 3 4 5 6 7                                   | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenthaan<br>Geit<br>Jargelant<br>Ikh- Uu<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel<br>Tumurbulag<br>Utaan- Uu                                                                                                                                                            | P2           P2           P1           P3           P1           P2           P2           P1           P1           P2           P3           P4                                                                                                                                                                                                                                                                                                                         | 3.66<br>3.77<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27                                                  | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874                                | 5<br>17<br>15<br>48<br>3<br>3<br>3<br>25<br>32<br>19<br>22<br>88<br>8<br>8<br>14<br>9<br>19<br>22<br>88<br>8<br>20                                                                                                        | 125<br>198<br>153<br>242<br>35<br>35<br>113<br>219<br>258<br>168<br>169<br>595<br>595<br>169<br>152<br>152<br>134<br>154<br>154<br>154<br>374                                                   | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu($                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79                                 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>Central Grid<br>Central Grid<br>S-DQ(100K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(100K),PV(1KV)<br>Western Grid<br>S-DQ(100K),PV(1KV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                                       |
| 2-6 KHUVSGUL AIMAG | 2 3 4 5 6 7 8 9 2 1 2 3 4 5 6 7 8                                 | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gelt<br>Jargelant<br>Ikh- Uu<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel<br>Turnel<br>Khankh                                                                                                                                                                                   | P2           P2           P1           P3           P1           P2           P2           P3                                                                                                                                                                                                                                                                                                                                                                                                       | 3.66<br>3.7<br>3.77<br>3.77<br>2.02<br>1.96<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>6.17                                  | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032                        | 5<br>17<br>15<br>48<br>3<br>8<br>25<br>32<br>19<br>22<br>88<br>88<br>8<br>14<br>9<br>9<br>19<br>22<br>88<br>88<br>8<br>14<br>9<br>9<br>5<br>88<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>595<br>168<br>159<br>159<br>168<br>159<br>159<br>168<br>159<br>159<br>159<br>159<br>159<br>159<br>159<br>159<br>159<br>159 | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \nu \text{SAT} \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \nu \text{SAT} \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} $ | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79                                 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>Central Grid<br>S-DQ(100K)<br>C-Grid,<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K),PV(1KV),<br>Western Grid<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                 |
| 2-6 KHUVSGUL AIMAG | 2 3 4 5 6 7 8 9 2 1 2 3 4 5 6 7 8 9 2 2                           | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Gelt<br>Jargelant<br>Ikh- Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel<br>Tumurbulag<br>Tumurbulag<br>Tumurbulag<br>Khankh<br>Khankh                                                                                                                                        | P2           P2           P1           P3           P1           P2           P3           P4           P5           P6           P7           P8           P9           P1           P6           P7                                                                                                                                                                                                                                                                                                                                      | 3.66<br>3.7<br>3.77<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>6.17<br>1.73                   | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032<br>2544<br>1147        | 5<br>17<br>15<br>48<br>3<br>3<br>8<br>25<br>32<br>19<br>22<br>88<br>88<br>8<br>14<br>9<br>19<br>22<br>88<br>8<br>8<br>14<br>9<br>9<br>20<br>8<br>8<br>52                                                                  | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>169<br>169<br>152<br>152<br>152<br>154<br>154<br>154<br>154<br>154<br>154<br>2374<br>294                                   | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ VSAT \\ \mu(2) \\ \mu(2) \\ VSAT \\ \mu(2) \\ VSAT \\ \mu(2) \\ VSAT \\ \mu(2) \\ VSAT \\ \mu(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79<br>0.70                         | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>C-Grid<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(100K),PV(1KV)<br>Western Grid<br>S-DQ(100K),PV(1KV)<br>S-DQ(100K),PV(1KV)<br>S-DQ(100K),PV(1KV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                           |
| 2-6 KHUVSGUL AIMAG | 23456789211 2 345678928                                           | Alag-Erdene Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Galt<br>Jargelant<br>Ikh- Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel<br>Tumubulag<br>Tumel<br>Utaan- Uul<br>Kharkh<br>Kharkh                                                                                                                                                 | P2           P2           P1           P3           P1           P2           P2           P3                                                                                                                                                                                                                                                                                                                                                                                                       | 3.66<br>3.7<br>3.77<br>3.77<br>2.02<br>1.96<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>6.17                                  | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032<br>2544                | 5<br>17<br>15<br>48<br>3<br>3<br>8<br>25<br>32<br>19<br>22<br>22<br>88<br>8<br>8<br>4<br>14<br>9<br>19<br>8<br>8<br>20<br>8<br>8<br>20<br>8<br>8<br>20<br>8<br>8<br>22<br>12                                              | 125<br>198<br>153<br>242<br>35<br>113<br>219<br>258<br>168<br>169<br>169<br>169<br>152<br>152<br>152<br>154<br>154<br>154<br>154<br>154<br>154<br>2374<br>294                                   | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \nu \text{SAT} \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} \\ \nu \text{SAT} \\ \nu \text{SAT} \\ \mu(2) \\ \nu \text{SAT} $ | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.69<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79<br>0.70<br>1.52                 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>C-Grid,<br>S-DQ(00K),PV(0.8K)<br>S-DQ(00K),PV(0.8K)<br>S-DQ(00K),PV(1KV),<br>Vestern Grid<br>S-DQ(100K),PV(1KV),<br>Vestern Grid<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                                                                                 |
| 2-5 KHUVSGUL AIMAG | 23456789211 2 345678928                                           | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenthaan<br>Gelt<br>Jargelant<br>Ikh- Uu<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tarialan<br>Tarialan<br>Tarialan<br>Tarialan<br>Uaan- Uu<br>Kharkh<br>Kharkh<br>Kharkh<br>Tsagaan<br>Tsagaan<br>Tsagaan                                                                            | P2           P2           P1           P3           P1           P2           P3           P4           P5           P6           P7           P8           P9           P1           P6           P7                                                                                                                                                                                                                                                                                                                                      | 3.66<br>3.7<br>3.77<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>6.17<br>1.73                   | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032<br>2544<br>1147        | 5<br>17<br>15<br>48<br>3<br>3<br>3<br>25<br>32<br>19<br>22<br>22<br>88<br>8<br>8<br>14<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>8<br>20<br>8<br>8<br>20<br>8<br>8<br>20<br>12<br>13                           | 125<br>198<br>153<br>242<br>35<br>35<br>113<br>219<br>258<br>168<br>169<br>152<br>134<br>151<br>152<br>134<br>164<br>151<br>374<br>100<br>294<br>133<br>4<br>169                                | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \nu(SAT \\ \nu(SAT \\ \mu(2) \\ \mu(2) \\ \nu(SAT \\ \nu(SAT \\ \mu(2) \\ \nu(SAT \\ \nu(SAT \\ \mu(2) \\ \nu(SAT \\ \nu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.59<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79<br>0.70<br>1.52<br>1.24         | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ( | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |
| 2-6 KHUVSGUL AIMAG | 2 3 4 5 8 2 3 4 5 6 7 8 9 2 1 2 2 12 12 12 12 12 12 12 12 12 12 1 | Alag-Erdene<br>Arbulag<br>Bayanzurkh<br>Burentogtokh<br>Burenthaan<br>Gelt<br>Jargelant<br>Ikh- Uu<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tarialan<br>Tarialan<br>Tarialan<br>Tarialan<br>Uaan- Uu<br>Kharikh<br>Kharikh<br>Kharikh<br>TsagaanUu<br>Tsagaan                                                                                  | P2           P2           P1           P3           P1           P2           P3           P4           P5           P5           P1           P5                                                                                                                                                             | 3.66<br>3.7<br>3.77<br>3.6<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>6.17<br>1.73<br>6.74                   | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032<br>2544<br>1147<br>792 | 5<br>17<br>15<br>48<br>3<br>3<br>8<br>25<br>32<br>19<br>22<br>22<br>88<br>8<br>8<br>4<br>14<br>9<br>19<br>8<br>8<br>20<br>8<br>8<br>20<br>8<br>8<br>20<br>8<br>8<br>22<br>12                                              | 125<br>198<br>153<br>242<br>35<br>35<br>113<br>219<br>258<br>168<br>169<br>152<br>134<br>151<br>152<br>134<br>164<br>151<br>374<br>100<br>294<br>133<br>4<br>169                                | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \Psi(3AT \\ \Psi(2) \\ \mu(2) \\ \Psi(2) \\ \Psi(2) \\ \Psi(2) \\ \Psi(2) \\ \Psi(1) \\ \mu(2) \\ \Psi(3AT \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \Psi(2) \\ \Psi(2) \\ \Psi(3AT \\ \Psi(1) \\ \mu(1) \\ \mu(2) \\ \Psi(2) \\ \Psi(3AT \\ \Psi(1) \\ \Psi(2) \\ \Psi(3AT \\ \Psi(2) \\ \Psi(3AT \\ \Psi(2) \\ \Psi(3AT \\ \Psi(2) \\ \Psi(3AT $                                                                                                                                                                                                                                      | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.59<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79<br>0.70<br>1.52<br>1.24         | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>C-Grid,<br>S-DQ(00K),PV(0.8K)<br>S-DQ(00K),PV(0.8K)<br>S-DQ(00K),PV(1KV),<br>Vestern Grid<br>S-DQ(100K),PV(1KV),<br>Vestern Grid<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),PV(1KV),<br>S-DQ(100K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                          |
| 2-6 KHUVSGUL AIMAG | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                             | Alag-Erdene Arbulag Bayanzurkh Burenkhaan Galt Jargelant Ikh- Uul Rashaant Renchinikhumbe Tarialan Tosontsengel Turnel Uul Anar- Uul Khankh Khatgel Tsagaan- Uul Tsagaan- Cor Tsetserteg                                                                                                                                                           | P2           P1           P3           P1           P2           P2           P3           P1           P3           P4           P5           P6           P7           P8           P9           P1           P1           P3           P4           P5           P6           P7           P8           P9           P1           P1                                                                                                                                                                                       | 3.66<br>3.77<br>3.77<br>3.77<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>                                     | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032<br>2544<br>1147<br>    | 5<br>17<br>15<br>48<br>3<br>3<br>3<br>25<br>32<br>19<br>22<br>22<br>88<br>8<br>8<br>14<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>8<br>20<br>8<br>8<br>20<br>8<br>8<br>20<br>12<br>13                           | 125<br>198<br>153<br>242<br>35<br>35<br>113<br>219<br>258<br>168<br>169<br>595<br>595<br>168<br>152<br>134<br>154<br>152<br>134<br>164<br>151<br>374<br>100<br>294<br>134                       | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \nu(SAT \\ \nu(SAT \\ \mu(2) \\ \mu(2) \\ \nu(SAT \\ \nu(SAT \\ \mu(2) \\ \nu(SAT \\ \nu(SAT \\ \mu(2) \\ \nu(SAT \\ \nu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79<br>0.70<br>1.52<br>1.24<br>0.84 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>Central Grid<br>S-DQ(100K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ( | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                       |
| 2-6 KHUVSGUL AIMAG | 23456789211 2 34567892333                                         | Alag-Erdene Arbulag<br>Bayanzurkh<br>Burenkhaan<br>Galt<br>Jargelant<br>Ikh- Uul<br>Rashaant<br>Renchinikhumbe<br>Tarialan<br>Tosontsengel<br>Tumurbulag<br>Tumurbulag<br>Tumurbulag<br>Tumurbulag<br>Tumurbulag<br>Tumurbulag<br>Tumurbulag<br>Tagaan- Uul<br>Khankh<br>Khatgal<br>Tsagaan- Uul<br>Tsagaan- Oor<br>Tsetserleg<br>Chandmani- Undur | P2           P1           P3           P1           P2           P3           P1           P3           P1           P3           P4           P5           P6           P7           P7 | 3.66<br>3.77<br>3.77<br>3.77<br>2.02<br>1.98<br>6.74<br>3.43<br>2.04<br>2.52<br>3.58<br>4.27<br>1.91<br>6.17<br>1.73<br>6.74<br>7.45<br>4.49 | 889<br>1196<br>872<br>816<br>722<br>1182<br>1328<br>911<br>849<br>2738<br>1169<br>904<br>857<br>874<br>1032<br>2544<br>1147<br>    | 5<br>17<br>15<br>48<br>3<br>3<br>3<br>25<br>32<br>19<br>22<br>88<br>8<br>8<br>14<br>9<br>19<br>22<br>88<br>8<br>14<br>9<br>19<br>22<br>20<br>88<br>14<br>19<br>19<br>22<br>12<br>13<br>10                                 | 125<br>198<br>153<br>242<br>35<br>35<br>113<br>219<br>258<br>168<br>169<br>169<br>152<br>152<br>154<br>155<br>164<br>155<br>152<br>374<br>100<br>294<br>134<br>169<br>1777<br>147               | $\begin{array}{c} \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(2) \\ \mu(1) \\ \mu(1) \\ \mu(1) \\ \mu(2) \\ \mu($                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66<br>1.43<br>1.72<br>5.88<br>1.11<br>2.12<br>2.41<br>2.09<br>2.69<br>3.21<br>0.68<br>1.55<br>1.05<br>2.17<br>0.78<br>0.79<br>0.70<br>1.52<br>1.24<br>0.84 | S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(00K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)<br>S-DQ(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                       |

|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aimag Center(Ondorkhaan)                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.46                                                                                                                                                                       | 13479                                                                                                                                                   | 1153                                                                                                                                                                                                                                                          | 3521                                                                                                                                            | VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.55                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gelshir                                                                                                                                                                                                                                                                                                     | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.34                                                                                                                                                                       | 588                                                                                                                                                     |                                                                                                                                                                                                                                                               | 55                                                                                                                                              | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                             | S-DG(60 K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                            |
|            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bayankhutag                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.03                                                                                                                                                                       | 568                                                                                                                                                     | 25                                                                                                                                                                                                                                                            | 113                                                                                                                                             | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.40                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
| E          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Derkhan                                                                                                                                                                                                                                                                                                     | Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.45                                                                                                                                                                       | 634                                                                                                                                                     |                                                                                                                                                                                                                                                               | 59                                                                                                                                              | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bayanmunkh                                                                                                                                                                                                                                                                                                  | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.55                                                                                                                                                                       | 545                                                                                                                                                     | 14                                                                                                                                                                                                                                                            | 83                                                                                                                                              | μ(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.57                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deigerkhaan                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.86                                                                                                                                                                       | 1719                                                                                                                                                    |                                                                                                                                                                                                                                                               | 154                                                                                                                                             | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jargattikhaan                                                                                                                                                                                                                                                                                               | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.75                                                                                                                                                                       | 632                                                                                                                                                     | 32                                                                                                                                                                                                                                                            | 116                                                                                                                                             | OFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.06                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
| ۱L         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tsenkhermandal                                                                                                                                                                                                                                                                                              | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.18                                                                                                                                                                       | 673                                                                                                                                                     |                                                                                                                                                                                                                                                               | 62                                                                                                                                              | OFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Murun                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.19                                                                                                                                                                       | 522                                                                                                                                                     | 12                                                                                                                                                                                                                                                            | 94                                                                                                                                              | OFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.30                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
| Ľ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Umnudelger                                                                                                                                                                                                                                                                                                  | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.76                                                                                                                                                                       | 2756                                                                                                                                                    | 22                                                                                                                                                                                                                                                            |                                                                                                                                                 | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bayan-Adarga                                                                                                                                                                                                                                                                                                | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.02                                                                                                                                                                       | 1140                                                                                                                                                    |                                                                                                                                                                                                                                                               | 103                                                                                                                                             | μ(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  | S-DG(60 K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                            |
| iL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Binder                                                                                                                                                                                                                                                                                                      | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.37                                                                                                                                                                       | 1978                                                                                                                                                    |                                                                                                                                                                                                                                                               |                                                                                                                                                 | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                             | S-DG(60 K) PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                             | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Batshireet                                                                                                                                                                                                                                                                                                  | P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.02                                                                                                                                                                       | 975                                                                                                                                                     |                                                                                                                                                                                                                                                               | 89                                                                                                                                              | $\mu(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                             | S-DG(60 K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                            |
| ۰ L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bathorov                                                                                                                                                                                                                                                                                                    | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.97                                                                                                                                                                       | 983                                                                                                                                                     |                                                                                                                                                                                                                                                               | 89                                                                                                                                              | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,00                                                                                                                                                             | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Berkh                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            | 3861                                                                                                                                                    | 2                                                                                                                                                                                                                                                             | 342                                                                                                                                             | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bayan- Ovoo                                                                                                                                                                                                                                                                                                 | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.38                                                                                                                                                                       | 629                                                                                                                                                     |                                                                                                                                                                                                                                                               | 59                                                                                                                                              | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                             | S-DG(60 K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Khajuu-ulaan                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                                                                                               |                                                                                                                                                 | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  | Western Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Norovlin                                                                                                                                                                                                                                                                                                    | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.33                                                                                                                                                                       | 1077                                                                                                                                                    |                                                                                                                                                                                                                                                               | 98                                                                                                                                              | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  | S-DG(60 K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                            |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dadai                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.73                                                                                                                                                                       | 1597                                                                                                                                                    |                                                                                                                                                                                                                                                               |                                                                                                                                                 | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                             | S-DG(60 K) PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                             | Metalic                                                                                                                                                                                            |
| 1          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ulzit                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                         | 39                                                                                                                                                                                                                                                            |                                                                                                                                                 | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                    | Metalic                                                                                                                                                                                            |
|            | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gurbanbavan                                                                                                                                                                                                                                                                                                 | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                                                                                               | 91                                                                                                                                              | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 | Metalic                                                                                                                                                                                            |
|            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contractional                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |
| K ai       | 22<br>Ihen<br>ima<br>nple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kiy aimag communication offic<br>g and long distance communic<br>ament an auto switching. In Kh<br>(Aimag Center(Khovd)                                                                                                                                                                                     | cation. 7 st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ims have switchin                                                                                                                                                          | g systems in own                                                                                                                                        | 1 sum center.                                                                                                                                                                                                                                                 | 11 sums h<br>ing system                                                                                                                         | Except of Deigerkha<br>have manual switchb<br>ns, and in 12 sums w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oard in the s<br>ith manual (                                                                                                                                    | sum center, and there re-<br>connection was installed                                                                                                                                                                                                                                                                                                                                                           | quires                                                                                                                                                                                             |
| Kei        | 22<br>Ther<br>ima<br>nple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bor-Undur<br>thy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)                                                                                                                                                                         | ce including<br>cation, 7 su<br>mentiy aima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ims have switchin<br>g for last 3 years i                                                                                                                                  | g systems in own<br>n 4 sums installe                                                                                                                   | rural area (17<br>n sum center,<br>ad auto-switch                                                                                                                                                                                                             | in sums).<br>11 sums h<br>ing system<br>4903                                                                                                    | Except of Delgerkha<br>Nave menual switchb<br>1s, and in 12 sums w<br>VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oard in the s<br>ith manual (<br>4.70                                                                                                                            | have an auto connectio<br>sum center, and there re<br>connection was installed<br>Western Grid                                                                                                                                                                                                                                                                                                                  | n for inter<br>quires<br>auto<br>Metalic                                                                                                                                                           |
| K ai<br>in | 22<br>Iner<br>ima<br>nple<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh                                                                                                                                                                                                | cation. 7 su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ims have switchin                                                                                                                                                          | g systems in own<br>n 4 sums installe<br>26418                                                                                                          | rurai area (17<br>n sum center,<br>ad auto-switch<br>1241]                                                                                                                                                                                                    | in sums).<br>11 sums h<br>ing system<br>4903<br>83                                                                                              | Except of Deigerkha<br>have manual switchb<br>ns, and in 12 sums w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 and in the s<br>with manual (<br>4,70<br>0.00                                                                                                                  | have an auto connectio<br>sum center, and there re<br>connection was installed<br>Western Crid<br>S-DC(60K)<br>S-DC(100K),PV(0.8K),                                                                                                                                                                                                                                                                             | n for inter<br>quires<br>auto                                                                                                                                                                      |
| K ai       | 22<br>there<br>ima<br>mple<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan                                                                                                                                                      | cation, 7 s.<br>cation, 7 s.<br>entiy aima<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ms have switchin<br>g for last 3 years i<br>1.37<br>8.1                                                                                                                    | g systems in own<br>n 4 sums installe<br>26418<br>1026<br>3790                                                                                          | rural area (17<br>n sum center,<br>id auto-switch<br>1241<br>0<br>34                                                                                                                                                                                          | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384                                                                                       | Except of Deigerkha<br>have manual switchb<br>rs, and in 12 sums w<br>VSAT(Existing)<br>VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oard in the s<br>ith manual (<br>4,70<br>0.00<br>0.90                                                                                                            | have an auto connectio<br>sum center, and there re<br>connection was installed<br>Western Grid<br>S-DC(60K)<br>S-DC(100K),PV(0.8K),<br>DC-7.5KW                                                                                                                                                                                                                                                                 | n for inte<br>quires<br>auto<br>Metalic<br>Metalic                                                                                                                                                 |
| K ai       | 22<br>There<br>ima<br>nple<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi<br>ment an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant                                                                                                                                               | cation. 7 s.<br>rentiy aima<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ms have switchin<br>g for last 3 years i<br>1.37<br>8.1<br>2.68                                                                                                            | g systems in own<br>n 4 sums installe<br>26418<br>1026<br>3790<br>1155                                                                                  | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13                                                                                                                                                                                      | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124                                                                                | Except of Deigerkha<br>have manual switch<br>is, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>VSAT<br>$\mu$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 and in the s<br>ith manual (<br>4.70<br>0.00<br>0.90<br>1.13                                                                                                   | have an auto connection<br>sum center, and there re-<br>connection was installed<br>Vestern Grid<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid                                                                                                                                                                                                                                                            | n for inter<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic                                                                                                                                     |
|            | 22<br>Therefore a constrained and a constrained an | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi<br>ment an auto switching. In Kr<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Darvi                                                                                                                                      | e includin;<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ins have switchin<br>g for last 3 years i<br>1.37<br>8.1<br>2.68<br>5.5                                                                                                    | g systems in own<br>n 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766                                                                           | ural area (17<br>h sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34                                                                                                                                                                                | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151                                                                         | Except of Deigenkha<br>nave menual switchb<br>rs, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>VSAT<br>$\mu(1)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oard in the s<br>ith manual (<br>4,70<br>0.00<br>0.90<br>1.13<br>4.44                                                                                            | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>Western Grid<br>S-DC(60K)<br>S-DC(100K),PV(0.8K),<br>DC-7.5KW<br>Western Grid<br>S-DC(100K),PV(0.5K)                                                                                                                                                                                                                         | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                           |
|            | 22<br>Sher<br>ima<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi<br>ment an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant                                                                                                                                               | cation. 7 s.<br>nentiy aima<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ms have switchin<br>g for last 3 years i<br>1.37<br>8.1<br>2.68                                                                                                            | g systems in own<br>n 4 sums installe<br>26418<br>1026<br>3790<br>1155                                                                                  | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13                                                                                                                                                                                      | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119                                                                  | Except of Deigenkha<br>have menual switchb<br>rs, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oard in the s<br>ith manual o<br>4,70<br>0.00<br>0.90<br>1.13<br>4.44<br>2.59                                                                                    | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>Western Grid<br>S-DC3(60K)<br>S-DC3(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DC3(60K),PV(0.5K)<br>S-DC3(60K),PV(0.4K)                                                                                                                                                                                                | n for inter<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic                                                                                                                                     |
|            | 22 mer mple 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communic<br>ment an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Darvi<br>Durgun                                                                                                                           | 2e includinç<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ins have switchin<br>g for last 3 years i<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77                                                                                            | g systems in own<br>n 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810                                                                    | ural area (17<br>h sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34                                                                                                                                                                                | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45                                                            | Except of Delgentha<br>save manual switchb<br>ns, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>$\psi$ (1)<br>$\mu$ (2)<br>$\mu$ (2)<br>$\mu$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oard in the s<br>ith manual o<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19                                                                            | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>Western Grid<br>S-DC(60K)<br>S-DC(100K),PV(0.8K),<br>DC-7.5KW<br>Western Grid<br>S-DC(100K),PV(0.5K)<br>S-DC(60K),PV(0.4K)                                                                                                                                                                                                   | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                          |
|            | 22<br>then<br>mple<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Aitai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Durgun                                                                                                                | 2e includinç<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P2<br>P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ins have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18                                                                                      | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526                                                            | ural area (17<br>n sum center.<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>1                                                                                                                                                                | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45<br>99                                                      | Except of Deigenkha<br>have manual switchio<br>ns, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oard in the s<br>ith manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22                                                                   | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(00K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DG(100K),PV(0.4K)<br>S-DG(00K),PV(0.4K)<br>S-DG(00K),PV(0.4K)<br>S-DG(00K),PV(0.4K)                                                                                                                                                                       | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                                |
|            | 22 mar 1 2 3 4 5 6 7 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Duut<br>Zareg                                                                                                         | 2e includinç<br>cation. 7 s.<br>hentiy aima<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P2<br>P3<br>P2<br>P3<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ins have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18                                                                                      | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>859                                                     | ural area (17<br>n sum center,<br>id auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21                                                                                                                                                                         | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45<br>99<br>144                                               | Except of Deigenkha<br>have menual switchb<br>rs, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$ | oard in the s<br>ith manual of<br>0.00<br>0.90<br>1.13<br>4.44<br>2.59<br>0.19<br>1.22<br>0.74                                                                   | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K)                                                                                                                                                                                 | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                               |
|            | 22 men mple 1 2 3 4 5 6 7 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Durt<br>Durt<br>Zereg<br>Mankhan                                                                                       | x including<br>cation. 7 s.<br>whily aima<br>P2<br>P1<br>P1<br>P1<br>P1<br>P2<br>P3<br>P2<br>P3<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49                                                                               | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>899<br>1490                                             | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>11<br>11                                                                                                                                                         | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45<br>99<br>144<br>29                                         | Except of Deigenkha<br>have manual switchio<br>ns, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oard in the s<br>ifth manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49                                                  | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>Vestern Grid<br>S-DC(60K)<br>S-DC(100K),PV(0.8K),<br>DC-7.5KW<br>Western Grid<br>S-DC(60K),PV(0.4K)<br>S-DC(60K),PV(0.4K)<br>S-DC(60K),PV(0.8K)<br>S-DC(60K),PV(0.8K)                                                                                                                                                        | n for inte<br>puires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                    |
|            | 22 Shern ima mple 1 2 3 4 5 6 7 8 9 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kr<br>Aimag Center(Khovd)<br>Aitai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Durgun<br>Durgun<br>Durgun<br>Durgun<br>Mankhan<br>Munkhkhairkhan<br>Must                                             | 2e including<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P1<br>P2<br>P1<br>P2<br>P1<br>P3<br>P2<br>P1<br>P3<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ins have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49<br>2.53<br>3.93                                                              | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>899<br>1490<br>201<br>1129                              | ural area (17<br>n sum center,<br>ed auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>1<br>11<br>5<br>17                                                                                                                                              | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45<br>999<br>144<br>29<br>134                                 | Except of Delgentha<br>reversion of the second switch b<br>reversion of the second switch b<br>reversion of the second switch b<br>VSAT VSAT VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu$                       | oard in the s<br>ifth manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49<br>1,51                                          | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K) | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                    |
|            | 22 mer ima per 1 2 3 4 5 6 7 8 9 10 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Duut<br>Zareg<br>Mankhan<br>Munkhkhairkhan                                                                            | 2e including<br>cation. 7 s.<br>entiy eime<br>P2<br>P1<br>P1<br>P2<br>P1<br>P2<br>P3<br>P2<br>P1<br>P2<br>P1<br>P2<br>P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49<br>2.53                                                                       | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>899<br>1490<br>201                                      | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>1<br>11<br>5                                                                                                                                                     | in sums). 11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45<br>99<br>134<br>29<br>134                                     | Except of Deigentha<br>ave manual switchb<br>rs, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oard in the s<br>ifth manual of<br>4,70<br>0,00<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49<br>1,51<br>0,83<br>2,31                                  | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(1.4K),<br>Mestern Grid<br>S-DG(60K),PV(1.4K),                                        | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                         |
|            | 22 mer mple 1 2 3 4 5 6 7 8 9 10 11 12 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ment an auto switching. In Kh<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Darvi<br>Darvi<br>Durgun<br>Duut<br>Zareg<br>Mankhan<br>Munkhkhairkhan<br>Must<br>Myangad<br>Uench                                        | 2e includinç<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P2<br>P1<br>P2<br>P3<br>P1<br>P2<br>P3<br>P1<br>P2<br>P3<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P3<br>P1<br>P2<br>P2<br>P1<br>P2<br>P2<br>P1<br>P2<br>P2<br>P1<br>P2<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1 | rns have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49<br>2.53<br>3.93<br>3.26<br>7                                                 | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>859<br>1450<br>201<br>1129<br>848<br>1732               | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>1<br>11<br>11<br>5<br>17<br>7<br>40                                                                                                                              | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>45<br>99<br>144<br>29<br>134<br>85<br>241                     | Except of Deigenkha<br>we menual switchb<br>rs, and in 12 sums w<br>VSAT(Existing)<br>VSAT<br>$\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$   | coard in the s<br>ifth manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49<br>1,51<br>0,83<br>2,31                         | have an auto connection<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Westem Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.8K)<br>S-DG(60K),PV(1.4K),<br>DG-7.5KW                                                                                                               | n for inter<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                             |
|            | 22 men mple 1 2 3 4 5 6 7 8 9 10 11 12 13 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Aitai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Durgun<br>Duut<br>Zereg<br>Mankhen<br>Munkhikhairkhan<br>Must<br>Myangad<br>Uanch                                     | 2e including<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P2<br>P3<br>P2<br>P1<br>P2<br>P3<br>P1<br>P2<br>P3<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P3                                                                                                                                                                                                                                                                                                                                                                                                       | Ins have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49<br>2.53<br>3.93<br>3.93<br>3.26<br>7<br>2.8                                  | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>859<br>1490<br>201<br>1129<br>848<br>1732<br>976        | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>11<br>5<br>17<br>7<br>40<br>1                                                                                                                                    | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>455<br>99<br>144<br>29<br>134<br>85<br>241<br>79              | Except of Deigentha<br>reversion of the second switch b<br>reversion of the second switch b<br>reversion of the second switch b<br>VSAT VSAT $\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$                            | coard in the s<br>ith manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49<br>1,51<br>0,83<br>2,31<br>0,10                  | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Westem Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(1.4K),<br>DG-7.5KW<br>Westem Grid<br>S-DG(60K),PV(1.4K),<br>DG-7.5KW                                        | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                        |
|            | 22 men mple<br>mple<br>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kr<br>Aimag Center(Khovd)<br>Altai<br>Bulgan<br>Byant<br>Daryi<br>Durgun<br>Durgun<br>Durgun<br>Durgun<br>Durgun<br>Mankhairkhan<br>Munkhkairkhan<br>Must<br>Myangad<br>Uench<br>Khovd<br>Tsetseg | 26 including<br>cation. 7 s.<br>971 y aima<br>P2<br>P1<br>P1<br>P1<br>P2<br>P3<br>P2<br>P1<br>P3<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P2<br>P1<br>P1<br>P2<br>P2<br>P1<br>P1<br>P2<br>P2<br>P1<br>P1<br>P2<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P2<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1<br>P1       | Ins have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49<br>2.53<br>3.93<br>3.26<br>7<br>7<br>2.8<br>3.93<br>3.26<br>7<br>2.8<br>3.47 | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>869<br>1490<br>201<br>1129<br>848<br>1732<br>976<br>795 | unal area (17           n sum center,           auto-switch           1241           0           34           13           34           13           34           13           34           17           17           7           40           1           10 | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>455<br>99<br>144<br>29<br>134<br>85<br>241<br>79<br>107       | Except of Delgenkha           wave manual switchib           ns, and in 12 sums w           VSAT(Existing)           VSAT           μ(1)           μ(2)           μ(2)           μ(2)           μ(2)           μ(2)           μ(2)           μ(2)           μ(2)           μ(1)           ψ(2)           μ(2)           μ(1)           VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oard in the s<br>ith manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49<br>1,51<br>0,83<br>2,31<br>0,10<br>1,26           | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(1.4K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(1.4K),                                                                                              | n for inter<br>puires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |
|            | 22 men mpe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bor-Undur<br>tiy aimag communication offic<br>g and long distance communi-<br>ament an auto switching. In Kh<br>Aimag Center(Khovd)<br>Aitai<br>Bulgan<br>Byant<br>Darvi<br>Durgun<br>Durgun<br>Duut<br>Zereg<br>Mankhen<br>Munkhikhairkhan<br>Must<br>Myangad<br>Uanch                                     | 2e including<br>cation. 7 s.<br>entiy aima<br>P2<br>P1<br>P1<br>P2<br>P3<br>P2<br>P1<br>P2<br>P3<br>P1<br>P2<br>P3<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P1<br>P2<br>P3                                                                                                                                                                                                                                                                                                                                                                                                       | Ins have switchin<br>g for last 3 years<br>1.37<br>8.1<br>2.68<br>5.5<br>3.77<br>2.18<br>2.49<br>2.53<br>3.93<br>3.93<br>3.26<br>7<br>2.8                                  | g systems in own<br>in 4 sums installe<br>26418<br>1026<br>3790<br>1155<br>766<br>810<br>526<br>859<br>1490<br>201<br>1129<br>848<br>1732<br>976        | ural area (17<br>n sum center,<br>d auto-switch<br>1241<br>0<br>34<br>13<br>34<br>21<br>1<br>11<br>5<br>17<br>7<br>40<br>1                                                                                                                                    | in sums).<br>11 sums h<br>ing system<br>4903<br>83<br>384<br>124<br>151<br>119<br>455<br>99<br>144<br>29<br>134<br>85<br>241<br>79<br>107<br>79 | Except of Deigentha<br>reversion of the second switch b<br>reversion of the second switch b<br>reversion of the second switch b<br>VSAT VSAT $\mu(1)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(2)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$<br>$\mu(3)$                            | coard in the s<br>ith manual of<br>4,70<br>0,00<br>0,90<br>1,13<br>4,44<br>2,59<br>0,19<br>1,22<br>0,74<br>2,49<br>1,51<br>0,83<br>2,31<br>0,110<br>1,26<br>0,21 | have an auto connectio<br>sum center, and there re-<br>connection was installed<br>S-DG(60K)<br>S-DG(100K),PV(0.8K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(0.4K)<br>S-DG(60K),PV(1.4K),<br>DG-7.5KW<br>Western Grid<br>S-DG(60K),PV(1.4K),                                                                                              | n for inte<br>quires<br>auto<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                        |

| 1                                                                                                                                                                                                                                                                   | Aimag Center(Arvaikheer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51                                                                                                   | 20669                                                                                                                                                                         | 1644                                                                                                                                                                                                                                    | 3894                                                                                                                                                               | Approach Micro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,95                                                                                                                                                         | C-Grid,<br>S-DG(60K),DG-16KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                   | Bayan-Undur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.25                                                                                                 | 515                                                                                                                                                                           | 1                                                                                                                                                                                                                                       | 49                                                                                                                                                                 | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19                                                                                                                                                         | C-Grid, S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                         |
| 3                                                                                                                                                                                                                                                                   | Burd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.58                                                                                                 | 528                                                                                                                                                                           | 22                                                                                                                                                                                                                                      | 82                                                                                                                                                                 | μ R/S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,17                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 4                                                                                                                                                                                                                                                                   | Bet-Uzit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24                                                                                                 | 2000                                                                                                                                                                          | 20                                                                                                                                                                                                                                      |                                                                                                                                                                    | μ R/S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 5                                                                                                                                                                                                                                                                   | Banunbayan-Ulaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.94                                                                                                 | 489                                                                                                                                                                           | 0                                                                                                                                                                                                                                       | 47                                                                                                                                                                 | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                         | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic                                                                                                                                                                                         |
| 6                                                                                                                                                                                                                                                                   | Bayaroo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.54                                                                                                 | 684                                                                                                                                                                           | 38                                                                                                                                                                                                                                      | 123                                                                                                                                                                | μ R/S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.56                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 7                                                                                                                                                                                                                                                                   | Guchin-Us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.76                                                                                                 | 663                                                                                                                                                                           | 57                                                                                                                                                                                                                                      | 116                                                                                                                                                                | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.60                                                                                                                                                         | S-DG(60K), PV(0.8K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic                                                                                                                                                                                         |
| 8                                                                                                                                                                                                                                                                   | Eson-Zyli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.21                                                                                                 | 946                                                                                                                                                                           | 60                                                                                                                                                                                                                                      |                                                                                                                                                                    | μ R/S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.34                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 9                                                                                                                                                                                                                                                                   | Ulzit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                   | 690                                                                                                                                                                           | 4                                                                                                                                                                                                                                       |                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 10                                                                                                                                                                                                                                                                  | Dzuunbayan-Ulaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                   | 1025                                                                                                                                                                          | 38                                                                                                                                                                                                                                      | 125                                                                                                                                                                | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,71                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 11                                                                                                                                                                                                                                                                  | Bogd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.15                                                                                                | 1176                                                                                                                                                                          | 0                                                                                                                                                                                                                                       | 110                                                                                                                                                                | VSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,00                                                                                                                                                         | S-DG(60K) PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metalic                                                                                                                                                                                         |
| 12                                                                                                                                                                                                                                                                  | Narlinteel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                   | 1213                                                                                                                                                                          | 17                                                                                                                                                                                                                                      | 138                                                                                                                                                                | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.40                                                                                                                                                         | C-Grid, S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                         |
| 13                                                                                                                                                                                                                                                                  | Sart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.56                                                                                                 | 859                                                                                                                                                                           | 5                                                                                                                                                                                                                                       | 94                                                                                                                                                                 | μ R/S(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58                                                                                                                                                         | C-Grid, S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metalic                                                                                                                                                                                         |
| 14                                                                                                                                                                                                                                                                  | Taraqt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.45                                                                                                 | 676                                                                                                                                                                           | 21                                                                                                                                                                                                                                      | 94                                                                                                                                                                 | μ(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.11                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
| 15                                                                                                                                                                                                                                                                  | Tugrug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.47                                                                                                 | 621                                                                                                                                                                           | 21                                                                                                                                                                                                                                      | 79                                                                                                                                                                 | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                                                                                                                                                         | C-Grid, S-<br>DG(60K),PV(0.4K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic                                                                                                                                                                                         |
| 16                                                                                                                                                                                                                                                                  | Uaynga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.14                                                                                                 | 2500                                                                                                                                                                          | 133                                                                                                                                                                                                                                     | 320                                                                                                                                                                | μ R/S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.32                                                                                                                                                         | Central Grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metalic                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                     | Khairkhandulaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.14                                                                                                 | 615                                                                                                                                                                           | 0                                                                                                                                                                                                                                       |                                                                                                                                                                    | μ(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              | S-DG(60K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.72                                                                                                 | 8000                                                                                                                                                                          | 218                                                                                                                                                                                                                                     |                                                                                                                                                                    | OFC+#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | C-Grid, DG-24KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                     | i Kiscaint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WL                                                                                                                                                                                              |
| 18                                                                                                                                                                                                                                                                  | Khujirt<br>Kharkhorin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | 8689                                                                                                                                                                          | 766                                                                                                                                                                                                                                     | 1875                                                                                                                                                               | u I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.6                                                                                                                                                         | IC-GIIQ, LC+ 101/47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |
| 18<br>19<br>20<br>Uvu<br>aima<br>swite                                                                                                                                                                                                                              | Khujiri<br>Kharkhonin<br>Bayaanteeg<br>khangai aimag communicatio<br>gand long distance communi<br>ching systems in own sum can<br>s in 3 sums installed auto-swit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P1<br>P4<br>ication. Khar<br>iter. In Baya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.24<br>uding 20 branches<br>-Horin and Hujirt (<br>n-Undur, Baruunb                                 | communication I<br>ayan-Ulaan and<br>with manual co                                                                                                                           | have digital m<br>Khairkhandul<br>nnection was                                                                                                                                                                                          | a (18 in su<br>hicrowave r<br>laan sums<br>installed a                                                                                                             | μ(1)<br>ms). 100% of comm.<br>adio transmission sy<br>the auto switching ha<br>uto connection system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unication se<br>stem and o<br>as not instal<br>ms.                                                                                                           | ctor have an auto conne<br>perating by POM. 15 sur<br>led. In Uvurkhangai aim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic<br>ction for i<br>ns have<br>ag for las                                                                                                                                                 |
| 18<br>19<br>20<br>Uvu<br>aima<br>swite<br>year<br>1                                                                                                                                                                                                                 | Kharkhorin<br>Bayaanteeg<br>Ikhangai aimag communicatlu<br>ag and long distance commun<br>ching systems in own sum car<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1<br>P4<br>ication. Khar<br>iter. In Baya<br>itching system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.24<br>Loting 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums          | , 19 of its locate<br>communication I<br>ayan-Ulaan and<br>with manual co<br>11739                                                                                            | 0<br>ed in rural are<br>have digital m<br>I Khairkhandul                                                                                                                                                                                | 21<br>a (18 in su<br>hicrowave r<br>laan sums<br>installed a<br>4095                                                                                               | $\mu$ (1)<br>ms). 100% of commu-<br>radio transmission sy<br>the auto switching ha<br>uto connection system<br>VSAT(Existing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unication se<br>stem and o<br>as not instat<br>ms.<br>13.72                                                                                                  | S-DC(60K),PV(0.6K)<br>ctor have an auto conne<br>perating by PCM. 15 sur<br>led. In Uvurkhangai aim<br>A-DG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic                                                                                                                                      |
| 18<br>19<br>20<br>Uvu<br>aima<br>swite<br>year<br>1<br>2                                                                                                                                                                                                            | Khardhorin<br>Bayaanteeg<br>Khargai aimag communicatio<br>ag and long distance commun<br>ching systems in own sum oar<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad<br>Bayandalai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1.<br>P4<br>in office indu<br>ication. Khar<br>iter. In Baya<br>tohing system                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.24<br>uding 20 branches<br>-Horin and Hujirt (<br>n-Undur, Baruunb                                 | , 19 of its locate<br>communication I<br>ayan-Ulaan and<br>with manual co<br>11739<br>560                                                                                     | 0<br>ed in rural area<br>have digital m<br>Khairkhandul<br>nnection was<br>1611<br>1                                                                                                                                                    | 21<br>a (18 in su<br>hicrowave r<br>laan sums<br>installed a<br>4095<br>_76                                                                                        | $\begin{array}{c} \mu(1) \\ \text{ms). 100\% of comm.} \\ radio transmission system of the auto switching has used on the switching has used on the switching has used on the switching has a specific system of the switching has a sp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18                                                                                          | S-DC(60K), PV(0.6K)<br>ctor have an auto conne<br>peraiting by PCM. 15 sur<br>led. In Uvurkhangai aim<br>A-DG<br>S-DC(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic                                                                                                                           |
| 18<br>19<br>20<br>Uvu<br>aime<br>swite<br>year<br>1<br>2<br>3                                                                                                                                                                                                       | Kharkhorin<br>Bayaanteeg<br>khangai aimag communicatio<br>ag and long distance communi<br>hing systems in own sum oar<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad<br>Bayan-Ovco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1.<br>P4<br>n office indu<br>ication. Kher<br>ter. In Baya<br>tohing system<br>)<br>P2<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.24<br>Loting 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums          | , 19 of its locate<br>communication I<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366                                                                              | 0<br>ed in rural area<br>have digital m<br>Khairkhandul<br>nnection was<br>1611<br>1<br>0                                                                                                                                               | 21<br>a (18 in su<br>hicrowave r<br>laan sums<br>installed a<br>4095<br>76<br>50                                                                                   | $\begin{array}{c} \mu(1) \\ \text{ms). 100\% of commeactio transmission systemthe auto switching heuto connection systemVSAT(Existing) \\ \mu(2) \\ \mu(3) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00                                                                                  | S-DQ(60K), PV(0.6K)<br>ctor have an auto come<br>parating by PCM 15 sur<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(60K), PV(1K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metalic<br>ction for<br>ns have<br>ag for las<br>Metalic<br>Metalic                                                                                                                             |
| 18<br>19<br>20<br>Uvu<br>aima<br>swite<br>year<br>1<br>2<br>3<br>4                                                                                                                                                                                                  | Kharkhorin<br>Bayaanteeg<br>Ikhangai almag communicatio<br>g and long distance communication<br>ching systems in own sum car<br>sin 3 sums installed auto-swi<br>Aimeg Carter(Daranzadgad)<br>Bayan-Ovco<br>Bulgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P1<br>P4<br>ication. Khar<br>ter. In Baya<br>tohing syster<br>P2<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.24<br>Loting 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums          | , 19 of its locate<br>communication I<br>ayan-Ulaan and<br>with manual co<br>11739<br>560                                                                                     | 0<br>ed in rural area<br>have digital m<br>Khairkhandul<br>nnection was<br>1611<br>1<br>0<br>10                                                                                                                                         | 21<br>a (18 in su<br>hicrowave r<br>laan sums<br>installed a<br>4095<br>76<br>50<br>122                                                                            | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% \text{ of comma actio transmission sy the auto switching he uto connection system VSAT(Existing) \\ \mu(2) \\ \mu(3) \\ \mu(3) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00                                                                                  | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by POM 15 sur<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metalic<br>ction for<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic                                                                                                                  |
| 18<br>19<br>20<br>Uvu<br>aima<br>switt<br>year<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                             | Kharkhorin<br>Bayaanteeg<br>khangai aimag communicatio<br>g and long distance communicatio<br>hing systems in own sum oar<br>s in 3 sums installed auto-swit<br>Aimag Center(Daranzadgad<br>Bayan-Ovco<br>Bayan-Ovco<br>Bulgan<br>Gurbantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1<br>P4<br>ication. Khar<br>ter. In Baya<br>tohing syster<br>)<br>P2<br>P2<br>P1<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.24<br>Joing 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums           | , 19 of its locate<br>communication I<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366<br>789                                                                       | o<br>din rural area<br>have digital m<br>Khairkhandul<br>nnection was<br>1611<br>1<br>0<br>10<br>0                                                                                                                                      | 21<br>a (18 in sum<br>icrowave n<br>installed a<br>4095<br>76<br>50<br>122<br>128                                                                                  | $\begin{array}{c c} \mu(1) \\ \hline ms). 100\% of commeand transmission and the auto axidon gasthe auto axidon gasthe connection systemVSAT(Existing) \\ \mu(2) \\ \mu(3) \\ \hline \mu(3) \\ \hline VSAT \\ \hline VSAT \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27                                                                          | S-DQ(60K), PV(0.6K)<br>ctor have an auto come<br>parating by PCM. 15 sur-<br>ied. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1.5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                                     |
| 18<br>19<br>20<br>Uvu<br>aima<br>switt<br>year<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                             | Kharkhorin<br>Bayaanteeg<br>Ikhangai almag communicatio<br>g and long distance communication<br>ching systems in own sum car<br>sin 3 sums installed auto-swi<br>Aimeg Carter(Daranzadgad)<br>Bayan-Ovco<br>Bulgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P1<br>P4<br>ication. Khar<br>ter. In Baya<br>tohing syster<br>P2<br>P2<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.24<br>Joing 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums           | , 19 of its locate<br>communication I<br>ayan-Uaan and<br>with manual co<br>11739<br>560<br>3066<br>789<br>645                                                                | 0<br>ed in rural area<br>have digital m<br>Khairkhandul<br>nnection was<br>1611<br>1<br>0<br>10                                                                                                                                         | 21<br>a (18 in sum<br>icrowave n<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129                                                                           | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% cl comm. \\ \text{adio transmission system the auto switching ha to connection system \\ VSAT(Existing) \\ \mu(2) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57                                                                  | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by POM. 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                               |
| 18<br>19<br>20<br>Uvu<br>aima<br>switt<br>yeaa<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                        | Kharkhorin<br>Bayaanteeg<br>khangai aimag communicatio<br>g and long distance communicatio<br>hing systems in own sum oar<br>s in 3 sums installed auto-swit<br>Aimag Center(Daranzadgad<br>Bayan-Ovco<br>Bayan-Ovco<br>Bulgan<br>Gurbantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1<br>P4<br>n office induication. Kher<br>tter. In Baya<br>tching syster<br>P2<br>P2<br>P1<br>P1<br>P2<br>P1<br>P2<br>P3                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.24<br>Joing 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums           | , 19 of its locate<br>communication 1<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529                                                         | o<br>ad in rural area<br>have digital m<br>Khairkhandul<br>nmection was<br>1611<br>1<br>0<br>0<br>10<br>0<br>23<br>0                                                                                                                    | 21<br>a (18 in su<br>nicrowave r<br>laan sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72                                                        | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% \text{ cf comma } \\ \text{radio transmission system } \\ \text{the auto switching ha } \\ \text{the connection system } \\ \text{VSAT(Existing)} \\ \mu(2) \\ \mu(3) \\ \text{VSAT} \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57<br>0.00                                                          | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by POM 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(60K), PV(1K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                    |
| 18<br>19<br>20<br>3<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                        | Kharkhorin<br>Bayaanteeg<br>khangai almag communicatio<br>ging systems in own sum oar<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadged)<br>Bayandalai<br>Bayan Ovco<br>Bulgan<br>Gurbartes<br>Mandal- Ovco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1<br>P4<br>n office induication. Khar<br>iter. In Baya<br>tohing syster<br>)<br>P2<br>P2<br>P1<br>P1<br>P1<br>P2                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.24<br>Joing 20 branches<br>-Horin and Hujirt of<br>n-Undur, Baruunb<br>ms, and in 5 sums           | , 19 of its locate<br>communication I<br>ayan-Uaan and<br>with manual co<br>11739<br>560<br>3066<br>789<br>645                                                                | 0<br>ad in rural area<br>have digital m<br>Khairkhandul<br>nnection was<br>1611<br>1<br>0<br>10<br>0<br>23                                                                                                                              | 21<br>a (18 in su<br>nicrowave r<br>laan sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72                                                        | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% cl comm. \\ \text{adio transmission system the auto switching ha to connection system \\ VSAT(Existing) \\ \mu(2) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57<br>0.00                                                          | S-DQ(60K), PV(0.6K)<br>ctor have an auto come<br>perating by PCM. 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metalic<br>ction for<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                                 |
| 18<br>19<br>20<br>Uvu<br>aimi<br>switt<br>year<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                              | Khardhorin<br>Bayaanteeg<br>khangai almag communicatio<br>ag and long distance commun<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad<br>Bayan-Oxco<br>Bulgan<br>Gurbartes<br>Mandai-Oxco<br>Mantai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1<br>P4<br>n office induication. Kher<br>tter. In Baya<br>tching syster<br>P2<br>P2<br>P1<br>P1<br>P2<br>P1<br>P2<br>P3                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>communication 1<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529                                                         | o<br>ad in rural area<br>have digital m<br>Khairkhandul<br>nmection was<br>1611<br>1<br>0<br>0<br>10<br>0<br>23<br>0                                                                                                                    | 21)<br>a (18 in su<br>incrowave r<br>lean sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202                                                | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% \text{ cf comma } \\ \text{radio transmission system } \\ \text{the auto switching ha } \\ \text{the connection system } \\ \text{VSAT(Existing)} \\ \mu(2) \\ \mu(3) \\ \text{VSAT} \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | unication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57<br>0.00                                                          | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by POM 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(10K), PV(1K), PV(1K)<br>S-DQ(10                                                                                                                                                 | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                    |
| 18<br>19<br>20<br>20<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                        | Kharkhorin<br>Bayaanteeg<br>khangai aimag communicatio<br>ag and long distance commun<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadged)<br>Bayanclatai<br>Bayan-Ovco<br>Bulgan<br>Gurbantes<br>Mandai-Ovco<br>Mantai<br>Nomgon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P1         P4           P4         P4           P4         P4           cation. Khar         Khar           ther. In Beya         P2           P2         P2           P1         P1           P2         P2           P1         P2           P3         P2           P2         P2           P3         P2           P2         P2           P1         P2           P3         P2           P2         P1                                                                                                                                   | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>commication 1<br>ayan-Uaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529<br>1530                                                    | 0<br>cd in rural area<br>have digital m<br>(Khairkhandul<br>nnection was<br>1611<br>1<br>0<br>10<br>0<br>23<br>0<br>10<br>10                                                                                                            | 21)<br>a (18 in su<br>incrowave r<br>aan sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83                                           | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% cl comm. \\ \text{adio transmission system } \\ \text{the auto switching ha } \\ \mu(a connection system \\ \text{VSAT(Existing)} \\ \mu(2) \\ \mu(3) \\ \mu($        | unication se<br>stem and q<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>0.00<br>0.65<br>0.00                                                  | S-DQ(60K), PV(0.6K)<br>ctor have an auto come<br>parating by PCM 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(0.6K),<br>S-DQ(100K), PV(0.6K),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                    |
| 18<br>19<br>20<br>20<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                  | Kharkhorin<br>Bayaanteeg<br>khangai aimag communicatio<br>g and long distance communication<br>sin 3 sums installed auto-swit<br>Aimag Center(Daranzadgad<br>Bayan-Ovco<br>Bayan-Ovco<br>Bulgan<br>Gurbantes<br>Mandal-Ovco<br>Mantai<br>Nomgon<br>Noeyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P1         P4           P4         P4           P4         P4           P4         P4           ication. Rhar         Rhar           ching system         P           P2         P2           P1         P1           P2         P3           P2         P3           P2         P2                                                                                                                                                                                                                                                            | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>comminication 1<br>ayan-Uaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529<br>1530<br>613                                           | 0<br>cd in rural area<br>have digital m<br>(Khairkhandul<br>nnection was<br>1611<br>1<br>0<br>10<br>0<br>23<br>0<br>10<br>0<br>10<br>0<br>0<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      | 21)<br>a (18 in su<br>icrowave r<br>lean sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83<br>66                                     | $\begin{array}{c c} \mu(1) \\ \hline ms). 100\% of comm. \\ actio transmission syltematic transmission syltematic transmission syltematic transmission syltematic connection system \\ VSAT(Existing) \\ \mu(2) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ \mu(3) \\ VSAT \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unication se<br>stem and o<br>as not instat<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57<br>0.00<br>0.65<br>0.00<br>0.00                                  | S-DQ(60K), PV(0.6K)<br>ctor have an auto conne<br>perating by PCM. 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(16K),<br>S-DQ(100K), PV(0.6K),<br>S-DQ(100K), PV(0.6K),<br>S-DQ(100K),<br>S-DQ(100K), PV(0.6K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(100K),<br>S-DQ(10K),<br>S-DQ(10K),<br>S-DQ(10                                                                                                                                   | Metalic<br>ction for<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                      |
| 18<br>19<br>20<br>3 aima<br>3 witt<br>year<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                 | Kharkhorin<br>Bayaanteeg<br>khangai almag communicatio<br>ag and long distance commun<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad<br>Bayan-Oxco<br>Butgan<br>Gurbartes<br>Mandai - Oxco<br>Mantai<br>Nomgon<br>Noeyn<br>Sevrei<br>Khantogd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1         P4           P4         P4           P4         P4           cation. Khar         Khar           ther. In Beya         P2           P2         P2           P1         P1           P2         P2           P1         P2           P3         P2           P2         P2           P3         P2           P2         P2           P1         P2           P3         P2           P2         P1                                                                                                                                   | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>communication 1<br>ayan-Ulaan and<br>syan-Ulaan and<br>th manual co<br>11739<br>550<br>366<br>789<br>645<br>529<br>1530<br>613<br>485                   | 0<br>cd in rural area<br>have digital m<br>(Khairkhandul<br>nmedian was<br>1611<br>1<br>1<br>0<br>10<br>0<br>23<br>0<br>10<br>0<br>23<br>0<br>10<br>0<br>23<br>0<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 211<br>a (18 in sum<br>incrower i<br>lean sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83<br>65<br>64                              | $\begin{array}{c c} \mu(1) \\ \hline ms). 100\% of comm. \\ \mbox{radio transmission system} \\ \mbox{radio transmission system} \\ \mbox{the auto switching has } \\ \hline VSAT(Existing) \\ \hline \mu(2) \\ \hline \mu(3) \\ \hline VSAT \\ \hline VSAT \\ \hline VSAT \\ \hline \\ \hline \\ VSAT \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unication setsem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>0.00<br>0.65<br>0.00<br>0.00<br>0.00                                      | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by POM. 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(10K), PV(1K)<br>S-DQ(10                                                                                                                                               | Metalic<br>ction for<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                                      |
| 18<br>19<br>20<br>4<br>5<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>11<br>12                                                                                                                                                                                  | Kharkhorin<br>Bayaanteeg<br>Khangai aimag communicatio<br>and long distance communi-<br>tring systems in own sum der<br>s in 3 sums installed auto-swi<br>Aimag Center(Daranzadged)<br>Bayanclatai<br>Bayan-Ovco<br>Balgen<br>Gurbantes<br>Mandai-Ovco<br>Mantai<br>Norngon<br>Noeyn<br>Sevrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P1         P4           P4         P4           P4         P4           patient         Normalization           Khart         Normalization           P2         P2           P1         P1           P2         P3           P2         P2           P3         P2           P2         P3           P2         P1           P2         P3           P2         P2           P2         P2           P2         P3           P2         P2           P2         P2                                                                            | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>communication 1<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529<br>1530<br>613<br>485<br>467                            | 0<br>cd in rural area<br>have digital m<br>(Khairkhandul<br>medion was<br>1611<br>1<br>0<br>10<br>0<br>23<br>0<br>23<br>0<br>10<br>0<br>23<br>0<br>0<br>23<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0             | 21)<br>a (18 in sum<br>icrowave r<br>lean sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83<br>66<br>64<br>44<br>113                 | $\begin{array}{c c} \mu(1) \\ \hline ms). 100\% cf comm. \\ and transmission system \\ the auto switching ha \\ u to connection system \\ VSAT(Existing) \\ \mu(2) \\ \mu(3) \\ VSAT \\ VSAT \\ \mu(3) \\ VSAT \\ VSAT \\ \mu(3) \\ VSAT \\ VSAT \\ \mu(3) \\ VSAT \\ VSAT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inication set<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57<br>0.00<br>0.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by POM 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(60K), PV(1K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metalic<br>ction for<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic                                                           |
| 18<br>19<br>20<br>4<br>3<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>11<br>11<br>2<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>9<br>10                                                                                            | Kharkhorin<br>Bayaanteeg<br>Ikhengai almag communicatio<br>gand long distance communi<br>ching systems in own sum can<br>sin 3 sums installed auto-swi<br>Aimeg Center(Daranzadgad<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Bayan-Ovco<br>Sevrei<br>Khanbogd<br>Kharkhorgo | P1         P4           P4         P4           P4         P4           P4         P4           office inductions         Fair Paint           ter. In Bear         P2           P2         P1           P1         P2           P3         P2           P2         P1           P2         P3           P2         P1           P2         P2           P3         P2           P4         P1           P2         P1           P3         P2           P4         P1           P5         P2           P4         P4           P5         P4 | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>communication 1<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529<br>1530<br>613<br>485<br>467<br>432                     | 0<br>cd in rural are<br>have digital m<br>(Khairkhandul<br>medion was<br>1611<br>1<br>0<br>10<br>0<br>23<br>0<br>10<br>0<br>23<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 21)<br>a (18 in sum<br>icrowave r<br>lean sums<br>installed a<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83<br>64<br>64<br>64<br>113<br>56           | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% cf comm. \\ \text{adio transmission system } \\ \text{transmission system } \\ \text{VSAT(Existing)} \\ \mu(2) \\ \mu(3) \\ $ | Inication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>0.00<br>0.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by PCM. 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(10K), P                                                                                                                                               | Metalic<br>ction for i<br>ns have<br>ag for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic             |
| 18<br>19<br>20<br>4<br>3<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>11<br>12<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>11<br>12<br>13                                                                                              | Khardvorin<br>Bayaanteeg<br>khangai almag communicatio<br>ag and long distance communicatio<br>ting systems in own sum der<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad<br>Bayan Oxoo<br>Batgan<br>Carbartes<br>Mandai Oxoo<br>Mantai<br>Nomgon<br>Noeyn<br>Sevrei<br>Khanbogd<br>Khankhongor<br>Khummen<br>Tsogt-Oxoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1         P4           P4         P4           P4         P4           P4         P4           office induication. (Near the induction gayster)         P2           P2         P1           P2         P1           P2         P3           P2         P2           P1         P2           P1         P2           P3         P2           P1         P2           P1         P2           P2         P1           P2         P2           P1         P2           P1         P2                                                            | 2.24<br>Loting 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ms, and in 5 sums<br>10.7    | , 19 of its locate<br>communication I<br>ayan-Ulaan and<br>itt manual co<br>11739<br>560<br>366<br>789<br>645<br>529<br>1530<br>613<br>485<br>485<br>485<br>485<br>485<br>499 | 0<br>cd in rural area<br>have digital m<br>(Khairkhandu)<br>1611<br>0<br>10<br>0<br>23<br>0<br>23<br>0<br>10<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                           | 211<br>a (18 in sum<br>incroweve r<br>learn sums<br>installed a<br>4096<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83<br>66<br>64<br>113<br>56<br>48         | $\begin{array}{c} \mu(1) \\ \text{ms}. 100\% cf comm. \\ \text{actic transmission system } \\ \text{the auto switching has } \\ \text{the connection system } \\ \text{vSAT(Existing)} \\ \mu(2) \\ \mu(3) \\ \mu(1) \\ \mu(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inication se<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>0.00<br>0.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | S-DQ(60K), PV(0.6K)<br>ctor have an auto conne<br>perating by PCM. 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(00K), PV(1K)<br>S-DQ(00K), PV(1K)<br>S-DQ(60K), PV(1K)<br>S-DQ(60K), PV(1K)<br>S-DQ(60K), PV(1K)<br>S-DQ(60K), PV(1K), S-DQ(60K), PV(1K)<br>S-DQ(60K), PV(1K), S-DQ(60K), PV(1K), PV(1K), S-DQ(60K), PV(1K), PV(1K), S-DQ(60K)                                                                                                                                                                                                                                                                                                                         | Metalic<br>ction for i<br>ns have<br>ag for lass<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic |
| 18           19           20           aims           swit           year           1           2           3           4           5           6           7           8           9           10           11           12           13           14           15 | Khardvorin<br>Bayaanteeg<br>khangai almag communicatio<br>ag and long distance communicatio<br>ting systems in own sum der<br>sin 3 sums installed auto-swi<br>Aimag Center(Daranzadgad<br>Bayan Oxoo<br>Batgan<br>Carbartes<br>Mandai Oxoo<br>Mantai<br>Nomgon<br>Noeyn<br>Sevrei<br>Khanbogd<br>Khankhongor<br>Khummen<br>Tsogt-Oxoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1         P4           P4         P4           P4         P4           P4         P4           particular of the system         P1           P2         P2           P1         P1           P2         P3           P2         P2           P1         P1           P2         P3           P2         P1           P2         P2           P1         P2           P2         P1           P2         P1           P2         P1           P2         P1                                                                                    | 2.24<br>Loing 20 branches<br>-Horin and Hujirt (<br>-Undur, Baruunb<br>ns, and in 5 sums<br>10.7<br> | , 19 of its locate<br>comminication 1<br>ayan-Ulaan and<br>with manual co<br>11739<br>560<br>366<br>789<br>645<br>529<br>1530<br>613<br>485<br>467<br>432<br>409<br>346       | 0<br>cd in rural area<br>have digital m<br>(Khairkhandul<br>medion was<br>1611<br>1<br>0<br>23<br>0<br>23<br>0<br>23<br>0<br>0<br>23<br>0<br>0<br>23<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | 211<br>a (18 in sums<br>incrowave r<br>learn sums<br>installed au<br>4095<br>76<br>50<br>122<br>128<br>129<br>72<br>202<br>83<br>66<br>64<br>113<br>56<br>64<br>64 | $\begin{array}{c} \mu(1) \\ \mbox{ms}. 100\% cf comm. \\ \mbox{adjo transmission system} \\ \mbox{the auto switching ha} \\ \mbox{ub connection system} \\ \mbox{VSAT(Existing)} \\ \mbox{$\mu(2)$} \\ \mbox{$\mu(3)$} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inication set<br>stem and o<br>as not instal<br>ms.<br>13.72<br>0.18<br>0.00<br>1.27<br>3.57<br>0.00<br>0.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | S-DQ(60K), PV(0.6K)<br>dor have an auto come<br>perating by PCM 15 sur-<br>led. In Uvurkhangai aim<br>A-DG<br>S-DQ(100K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(100K), PV(1K)<br>S-DQ(00K), PV(1K)<br>S-DQ(00K), PV(1K)<br>S-DQ(00K), PV(1K)<br>A-DG<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ(60K)<br>S-DQ | Metalic<br>ction for ins have<br>ag for las<br>g for las<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic<br>Metalic    |