CHAPTER 3

CONTENTS OF THE PROJECT

CHAPTER 3 CONTENS OF THE PROJECT

3.1. Basic Concept of the Project

3.1.1. Objectives of the Sindhuli Road Construction Project

The objectives of the Sindhuli Road Construction Project are as follows:

- To ensure further national security and further economic development through the utilization of the project road as an alternative trunk way, a "second back bone", which connects Kathmandu and the frontier to India via Terai Plain.
- To reduce the travel distance/time of the traffic between the Kathmandu Valley and Eastern Terai Plain, especially for the traffic conveying agricultural products.
- To upgrade and stimulate social and economic activities in the remote hill areas of the Central Development Region, particularly in the Sindhuli, Ramechhap and Kavrepalanchok Districts, and, consequently, to fulfill the basic human needs of the villagers living in the areas.

The Sindhuli Road Construction Project has been made a priority project by HMG/N. The Department of Roads had therefore-scheduled in its Twenty years plan to complete the entire section of the road within the 10th Five Year Plan period.

3.1.2. Objective of the Project

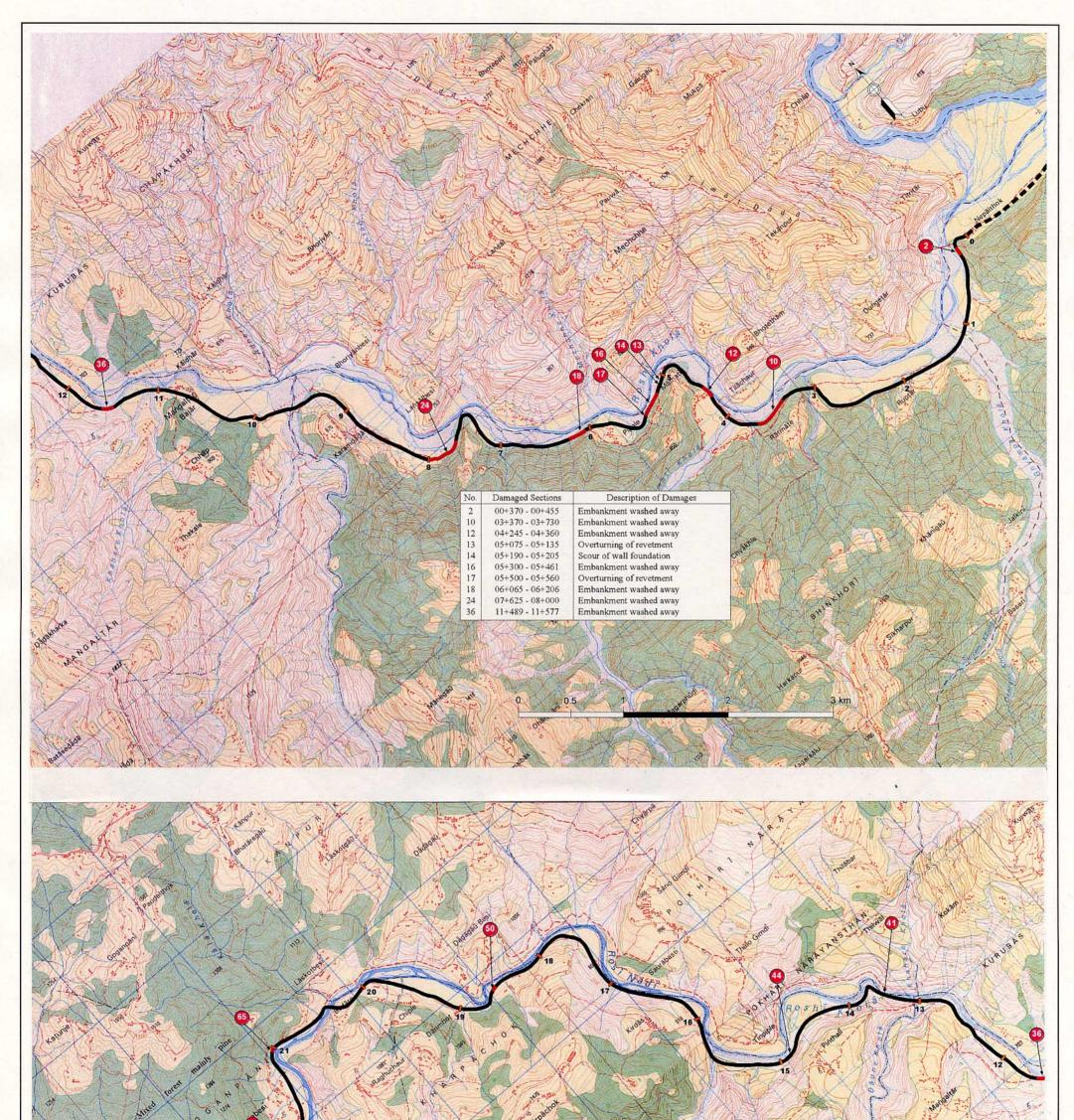
The Project (Urgent Rehabilitation of the Sindhuli Road Section IV) aims to restore the damage of the Project Road caused by the heavy rain during July 2002 to achieve the objectives of the Sindhuli Road Construction Project stated in Chapter 3.1.1.

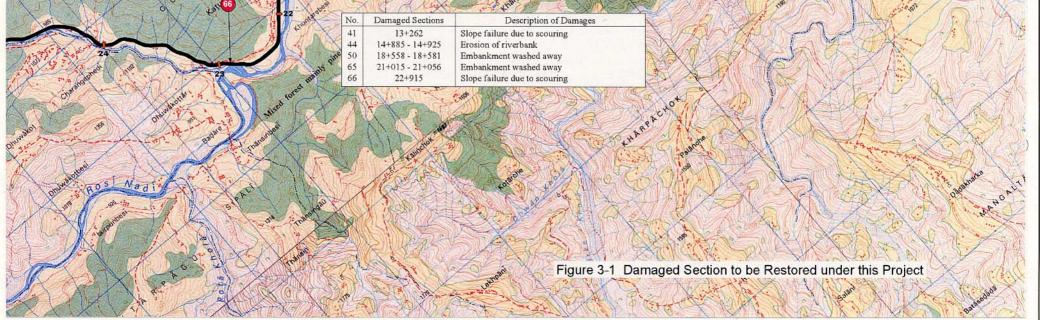
3.1.3. Description of the Project

(1) Components of the Project

The Project (Urgent Rehabilitation of Sindhuli Road Section IV) will cover the following sites.

- Damaged sites from the recent disaster along Section IV Phase 2 Project and portions of road section that remained incomplete because of budgetary issues.
- The portion of Section IV Phase 1 Project which was completed and handed over to DOR but susceptible to obstruction of traffic flow due to the expansion of damages caused by the recent disaster and incomplete sites due to technical and budgetary


reasons from the DOR side.


(2) Project Sites

The damaged sections selected by the criteria mentioned above and to be restored under the Project are listed in Table 3-1 and shown in Figure 3-1.

Tuste of Tournaged Sections to be restored under time project				
Damaged section	Length(m)	Description		
00+370 - 00+455	85	Embankment washed away		
03+370 - 03+730	360	Embankment washed away		
04+245 - 04+360	115	Embankment washed away		
05+075 - 05+135	60	Overturning of revetment		
05+190 - 05+205	15	Scour of wall foundation		
05+300 - 05+461	161	Embankment washed away		
05+500 - 05+560	60	Overturning of revetment		
06+065 - 06+206	141	Embankment washed away		
07+625 - 08+000	375	Embankment washed away		
11+489 - 11+577	88	Embankment washed away		
13+262	-	Slope failure due to scouring		
14+885 - 14+925	-	Erosion of riverbank		
18+558 - 18+581	23	Embankment washed away		
21+015 - 21+056	41	Embankment washed away		
22+915		Slope failure due to scouring		
	$\begin{array}{c} 00+370-00+455\\ 03+370-03+730\\ 04+245-04+360\\ 05+075-05+135\\ 05+190-05+205\\ 05+300-05+461\\ 05+500-05+560\\ 06+065-06+206\\ 07+625-08+000\\ 11+489-11+577\\ 13+262\\ 14+885-14+925\\ 18+558-18+581\\ 21+015-21+056\\ \end{array}$	00+370 - 00+45585 $03+370 - 03+730$ 360 $04+245 - 04+360$ 115 $05+075 - 05+135$ 60 $05+190 - 05+205$ 15 $05+300 - 05+461$ 161 $05+500 - 05+560$ 60 $06+065 - 06+206$ 141 $07+625 - 08+000$ 375 $11+489 - 11+577$ 88 $13+262$ - $14+885 - 14+925$ - $18+558 - 18+581$ 23 $21+015 - 21+056$ 41		

Table 3-1 Damaged sections to be restored under this project

3-3

3.2. Basic Design of the Requested Japanese Assistance

3.2.1. Assumed Causes of the Failures

(1) Comparison between Original Design Consideration of Section IV and situation after this Flood

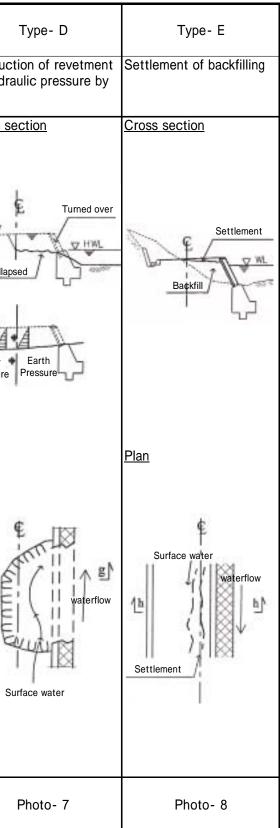
The original design concept of Section IV and its situation after this flood by incessant rain in July, 2002 are summarize in Table 3-2

It	em	Original design	This flood		
H.W.L and Precipitation	Diurnal precipitation		3 days: 312 mm(21~23 rd , July) Return Period: 50 years		
	Discharge of Roshi river	774 ~ 1,080m3/s Return Period: 50 years	No data (Closing of observatory)		
	Consideration	Since observed data are not available, it is impossible to compare between B/D concept and this flood directly. However, it is presume that flood level of July 20, 2002 was approximately equal to the original design H.W.L according to flood mark and calculation result in this study.			
Design Criteria for	Top level of wall structures	H.W.L. + 1.2m	Standard section will not be overtopped.		
Revetment Structures	Freeboard	Standard section: = (Analyzed value,0 ~ 0.8m) Bend section: = (Analyzed value,0 ~ 0.8m) + (value added at Bend section only)	Standard section: Water level was below designed H.W.L. Bend section: No overflow at section where radius of curvature is small. (Overflow occurred at 4 locations. Extent of damages at 2 locations is severe.)		
	Estimated Max Scouring depth Embedded depth	Standard section :1.0m Bend section: 1.5m = (Lowest riverbed) - (2.0 ~ 2.5 m)	Damages by scouring were immense only at bend Section Damages by scouring were immense only at bend Section		
	Foot protection	3t concrete blocks installed at bend section.	Washed away partially		
	Consideration	In the original plan, design standards considering character	com tributary and long lasting rainfall		

Table 3-2 Comparison between Original design and situation after this flood

Item		Original design	This flood	
Maintenance Policy	Scale of Maintenance	It is assumed that DOR can sustain maintenance works using grant equipment.	Long continuous damages of road at six locations were occurred.	
	Maintenance Works	DOR will sustain maintenance works, such as removal of Debris, Concrete pavement at Causeway, Gabions, Retaining walls and DBSD	5 5	
	Consideration	Maintenance requirement of damages on 20 July 2002 at several locations is beyond the capacity of DOR. Particularly the damages between STA.0 and STA. 8 are of large scale.		

(2) Classification of Damages along river


The types of damages in road structures along Roshi-river can be classified as follows:

- Type-A: Erosion of road surface by surface water
- Type-B: Scouring (can be further classified into following 4 types)
 - B-1: Crack and/or settlement of road surface
 - B-2: Depression of road surface
 - B-3: Overturning of revetment
 - B-4: Washing away of embankment
- Type-C: Washing away by overflow
- Type-D: Destruction of revetment due to excessive hydraulic pressure
- Type-E: Settlement of backfilling
- Damage of gabion box, concrete pavement, approach road and deposition of Debris at causeways

Figure 3-2 through Figure 3-4 show illustrations and photos of the different types of damages mentioned above.

			Тур	e- B			
Descriptions	Туре- А	B-1	B-2	B-3	B-4	Type- C	
	Erosion of road surface by surface water	Scouring: Crack and/or settlement of road surface	Scouring: Depression of road surface	Scouring: Overturning of revetment	Scouring: Washing away the embankment	Washing away by overflow	Destruct by hydra water
Improve of	Cross section	Cross section	Collapse Collapse Collapse Collapsed Eroded	Cross section	Cross section Missing Collapsed Eroded Eroded	Cross section Overflow Flood level Washed out Eroded	Cross se Collaps Water Presssure
Images of Destruction	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>
	La Eroded	Settlement Settlement	Le Waterflow	1d Waterflow	Collapsed Missing	Waterflow Flood level Washed out Missing	18 CALLULUN SI
Photos	Photo- 1	Photo- 2	Photo- 3	Photo- 4	Photo- 5	Photo- 6	

Figure 3-2 Types of Damages

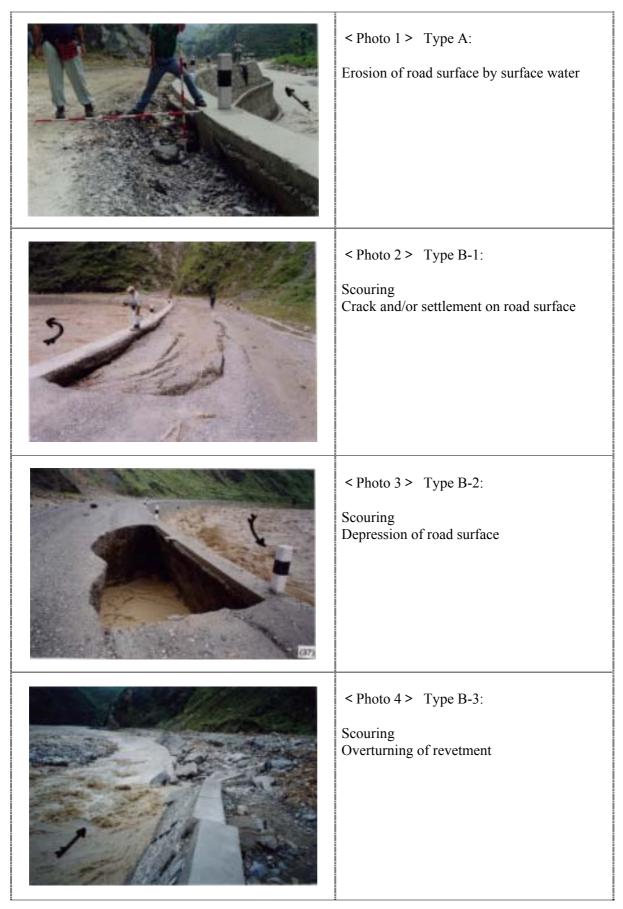


Figure 3-3 Types of Damages (Photo 1/2)

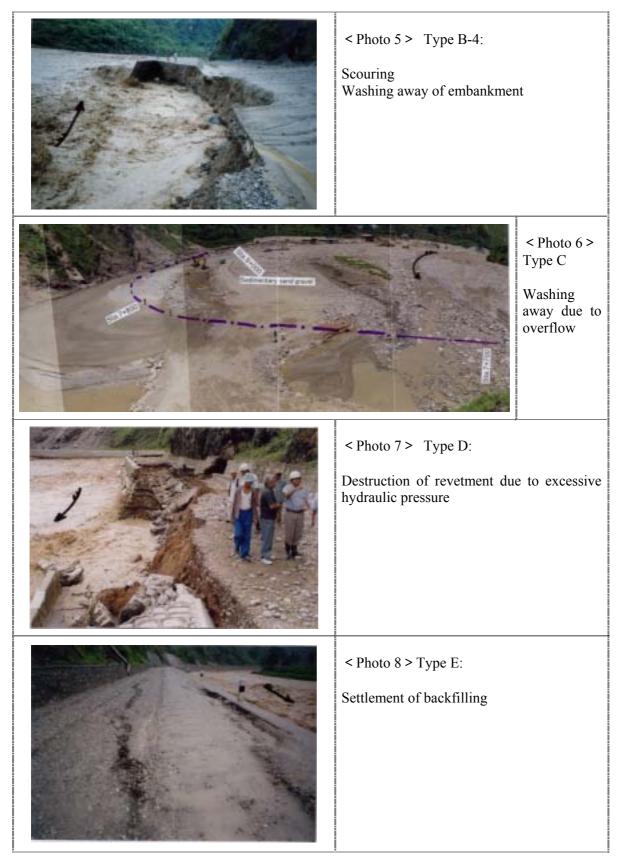
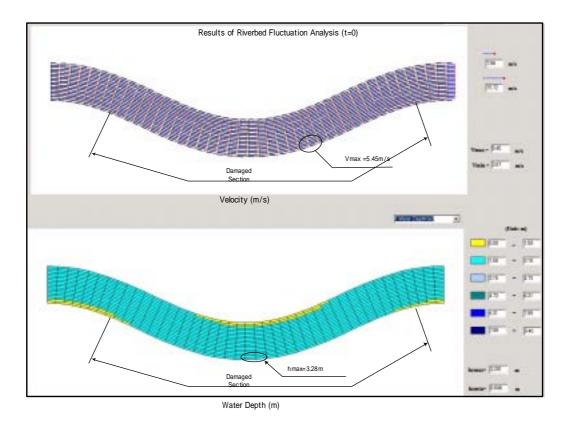
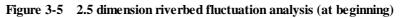


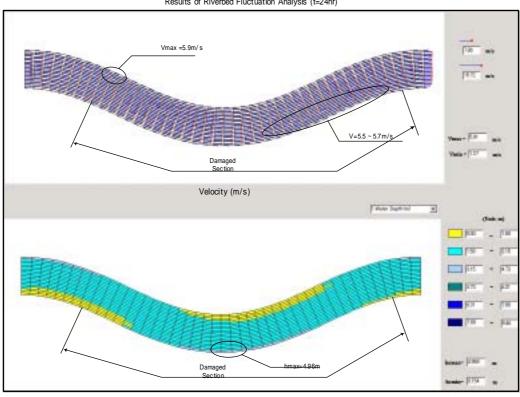
Figure 3-4 Types of Damages (Photo 2/2)

(3) Assumed Causes of the Failures

Based on the evidence described in Chapter 2.3.2, it can be concluded that the damages during July 2002 Flood were caused by the complicated and unanticipated hydrological mechanism and heavy rain lasting three days. This justification is supported by the evidence that there are no damage as shown in photo 9, and that the flood levels were also within the estimated high water level in the river sections where the flow was normal.

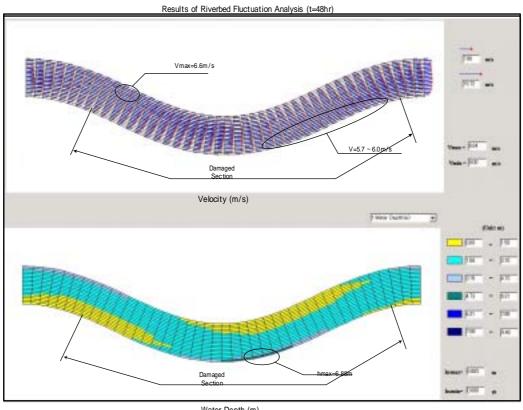



Dhulikel direction seen fromSta.13+800 Nepalthok direction seen from Sta.16+700 Photo 9 No Damaged Section


A typical example of the simulated sequences of failure process of revetment based on a preliminary 2.5 dimension riverbed fluctuation analysis at the section between STA. 3+370 and STA. 3+730 as shown in Figure 3-5 through to Figure 3-8 and described below. The foundation of the revetment was set at 3 meter below the riverbed with foot protection blocks. The structures were designed for a 5.5 m/s of flow velocity.

- Just after the occurrence of the flood, the velocity and water depths are within the design conditions.
- After 24 hours of the continuous flood, maximum velocity is 5.7m/sec and maximum water depth is 5.0m almost equivalent to design level.
- After 48 hours of the continuous flood, maximum velocity and maximum water depth reached 6m/sec and 6.9m respectively. At this point, the revetment is very vulnerable to being washed away. It was observed that the actual failure of structures at the site only started after 48 hours from the beginning of the flood event justifying the results of the analysis.
- After 72 hours from the beginning of the flood, maximum velocity reaches 6.9m/sec and maximum water depth is 8.8m.

The preliminary 2.5 dimension riverbed fluctuation thus justifies the assumption that the July 2002 event was a hydrologically unforeseen case, caused by the heavy rainfall lasting over a three day period.



Results of Riverbed Fluctuation Analysis (t=24hr)

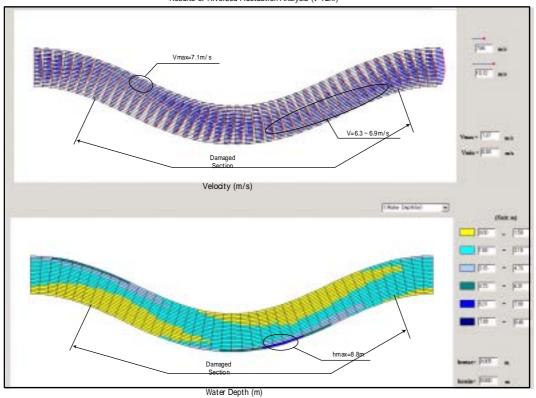

Water Depth (m)

Figure 3-6 2.5 dimension riverbed fluctuation analysis (after 24hours)

Water Depth (m)

Figure 3-7 2.5 dimension riverbed fluctuation analysis (after 48hours)

Results of Riverbed Fluctuation Analysis (t=72hr)

Figure 3-8 2.5 dimension riverbed fluctuation analysis (after 72hours)

3.2.2. Restoration Policy

(1) Design Consideration in the Original Plan

Design high water level was estimated by a hydrological analysis based on the flood record at Panauti Station in original plan. The 50-year return-period flood for Roshi River was applied for the analysis. The 3-days average precipitation over the Roshi River basin was estimated to be 312mm, which is equivalent to the 50-year return-period 3-days average precipitation. Therefore, it can be judged that the flood in July 2002 is almost equivalent to the design flood.

Since the observed flood water levels were below the design level and there had been no serious damage in the sections along the normal river condition, it can be judged that the original design conditions, such as the design high water level, the depth of revetment's foundation, etc. are based on adequate basis.

(2) Design Principles of Restoration Works

As described in Chapter 3.2.1, the main cause of the problem was the deposit of huge amounts of debris in the tributaries. The villagers had also reported that the same magnitudes of debris flow have occurred in about 20-year intervals in the past. The damage in the July 2002 flood was mainly caused by a complicated and unforeseen hydrological mechanism, triggered by heavy incessant rain lasting three days. The design of the Restoration Works should therefore be carried out using high water level and velocity of flood calculation based on the hydrological analysis from the July 2002 flood experience rather than the approaches used during the original design.

(3) Maximum Utilization of existing undamaged Structures

As the Project aims to only restore the damaged structures, the scope of works should be limited to restoration of the damaged portions only and not extend to reconstruct the existing structures under fine conditions.

The implementation of a new road profile will be limited to the washed away sections only. Double Bituminous Surface Treatment will then be applied to the road surfaces for achieve waterproofing of these sections.

3.2.3. Design Policy of Revetment Works

Based on the policies described in Clause3.2.2 and a 50-year return period flood, the basic design of restoration works will be carried out. The design will be done with consideration

to the following hydrological conditions.

- Rise of flood water at bend sections
- Flood velocity and scouring depth
- Suction of backfill

(1) Design Criteria for Countermeasures against Rise of Flood Level at Bend

As a countermeasure against the rising of flood levels at curve sections, the vertical alignment shall be reviewed considering high water level estimated in the chapter.

1) Design Flood

50 years flood (Q50) estimated in this study is 25 % larger than that predicted during the previous study, for the following reasons;

- The data period considered during the previous design was from 1964 to 1985 whereas the major flood event occurred in July 2002.
- The methodologies of the estimation of the flood peak in this study and the previous study are different as explained in Chapter 2.3.1.
- The flood peak value estimated in this study has some allowances depending upon the selection of hyetograph.

The estimated flood peak values are therefore judged as realistic taking into account the considerations mentioned above. It is therefore recommended that the design of related structures is reviewed considering the modified Q50 (based on recent data) estimated in this study. However for undamaged portion of road stretches, the Original Design flood criteria are applicable. Table 3-3 illustrates the comparison of Q50 estimated by both methods at different locations of the Roshi River.

Location	CA	Original Design	This Study	Difference
	(km ²)	(m ³ /s)	(m^{3}/s)	
Dapcha	400	774	977	26%
Narke	446	861	1,086	26%
Daune	465	899	1,130	26%
Bhyakure	503	972	1,213	25%
Mamuti	536	1,035	1,289	25%
Nepalthok	560	1,080	1,344	24%

Table 3-3 Comparison of 1/50 Probable Flood Peak

2) High Flood Level (HFL) at river bend

The high flood level at bends will be adopted from whichever of following is greater:

- The water level calculated by non-uniform flow analysis plus additional rise in water level in river bend.
- High flood level during recent flood event.
- i) Non-uniform Analysis

Boundary Condition

Since the flow condition of the river under study is supercritical, uniform water depth is assumed as upstream boundary condition.

Coefficient of Roughness

Table 3-4 shows the relationship between d_{60} and coefficient of roughness (n). Since the size of riverbed material ranges from 10mm to 43mm, a coefficient of roughness of 0.035 has been adopted.

Riverbed material and d ₆₀		Coefficient of	of Roughness	Riverbed Condition
		А	В	
Rock		0.035	~ 0.050	A: flatness without big
cobbled	d_{60} = 40 cm to 60 cm	0.037		Stone on the riverbed.
stone	$d_{60} = 20 \text{cm} \sim 40 \text{cm}$	0.037	0.042	B: rugged with big Stone
	$d_{60} = 10 cm \sim 20 cm$	0.037		on the riverbed.
coarse	$d_{60} = 5 cm \sim 10 cm$	0.0	35	
	$d_{60} = 2cm \sim 5cm$	0.029	0.034	

 Table 3-4
 Relationship between d₆₀ and coefficient of roughness

ii) Rise in Water Level at the Bend of the River

The rise in water level at the river bend is calculated from the following equation.

$$\Delta h = \frac{B \cdot U^2}{2 \cdot g \cdot r_c}$$

Where,	Δh	: Rise in water level at the outside of bend (m).
	В	: Width of river channel (m)
	U	: Average Velocity (m/s)
	g	: Gravitational acceleration (m/s2)
	rc	: Radius of Curvature of the river channel (m)

iii) Freeboard

According to the Japanese Criteria, the freeboard for discharge between 500 and 2000 $\,m^3\!/\!s$ is 1.0m.

Due to the severe hydraulic condition around the river bend, a freeboard of 1.2m has will be adopted, which is 1 rank higher than the recommended 1.0 m freeboard for specified discharge, as per Japanese Criteria.

3) Results

The calculation results are listed in Table 3-5.

The adoption of new HFL should be determined considering site conditions of damaged road structures.

River Cross Sec.No.	Road Sta. No.	h (m)	U (m/s)	B(m)	rc(m)	∆h (m)	h+∆h (m)	HFL on Jul.2002 (m)	Estimated H.W.L.
Sec-1	STA.0+350	555.380	4.99	80	1,000	0.102	555.482	-	555.482
Sec-2	STA.0+475	556.250	5.74	140	1,000	0.235	556.485	-	556.485
Sec-3	STA.0+750	560.280	3.56	200	1,000	0.129	560.409	-	560.409
Sec-4	STA.1+025	563.650	3.95	150	1,000	0.119	563.769	-	563.769
Sec-5	STA.1+275	566.400	3.84	140	1,000	0.105	566.505	-	566.505
Sec-6	STA.2+025	573.630	4.13	170	1,000	0.148	573.778	-	573.778
Sec-7	STA.2+475	579.570	3.34	140	0	0.000	579.570	-	579.570
Sec-8	STA.3+275	589.630	4.82	100	350	0.338	589.968	591.002	591.002
Sec-9	STA.3+525	592.770	5.25	100	350	0.402	593.172	594.766	594.766
Sec-10	STA.3+775	595.540	4.66	100	350	0.317	595.857	597.572	597.572
Sec-11	STA.4+100	598.320	5.37	100	400	0.368	598.688	-	598.688
Sec-12	STA.4+300	601.450	5.75	120	350	0.578	602.028	-	602.028
Sec-13	STA.4+700	607.420	4.79	140	0	0.000	607.420	-	607.420
Sec-14	STA.4+875	611.180	5.53	90	0	0.000	611.180	-	611.180
Sec-15	STA.5+050	613.590	5.15	90	0	0.000	613.590	-	613.590
Sec-16	STA.5+225	615.700	7.24	70	500	0.374	616.074	-	616.074
Sec-17	STA.5+350	619.060	4.70	70	500	0.158	619.218	-	619.218
Sec-18	STA.5+500	619.630	5.40	100	500	0.298	619.928	-	619.928
Sec-19	STA.5+800	622.370	4.35	100	500	0.193	622.563	-	622.563
Sec-20	STA.5+900	623.180	5.93	100	550	0.326	623.506	-	623.506
Sec-21	STA.6+150	627.080	4.23	120	800	0.137	627.217	-	627.217
Sec-22	STA.6+550	632.070	3.94	130	800	0.129	632.199	-	632.199
Sec-23	STA.6+800	634.770	6.70	140	800	0.401	635.171	-	635.171
Sec-24	STA.7+375	641.690	5.12	120	800	0.201	641.891	-	641.891
Sec-25	STA.7+625	646.900	4.65	120	350	0.378	647.278	648.266	648.266
Sec-26	STA.7+900	649.490	4.53	140	350	0.419	649.909	650.467	650.467
Sec-27	STA.8+450	654.380	5.18	160	350	0.626	655.006	-	655.006

Table 3-5 Estimated High Water Level

River Cross Sec.No.	Road Sta. No.	h (m)	U (m/s)	B(m)	rc(m)	∆h (m)	h+∆h (m)	HFL on Jul.2002 (m)	Estimated H.W.L.
Sec-28	STA.9+450	675.490	4.19	130	0	0.000	675.490	-	675.490
Sec-29	STA.9+900	679.640	8.94	170	0	0.000	679.640	-	679.640
Sec-30	STA.10+400	688.170	4.33	160	0	0.000	688.170	-	688.170
Sec-31	STA.10+900	696.330	5.53	120	220	0.851	697.181	-	697.181
Sec-32	STA.11+400	706.570	6.23	40	200	0.396	706.966	-	706.966
Sec-33	STA.11+850	709.290	7.63	40	200	0.594	709.884	-	709.884
Sec-34	STA.13+050	730.800	6.61	50	0	0.000	730.800	-	730.800
Sec-35	STA.14+450	756.110	5.57	50	0	0.000	756.110	-	756.110
Sec-36	STA.14+900	763.050	6.25	50	100	0.996	764.046	-	764.046
Sec-37	STA.15+325	768.810	5.96	80	0	0.000	768.810	-	768.810
Sec-38	STA.16+500	780.710	6.61	40	0	0.000	780.710	-	780.710
Sec-39	STA.16+850	793.160	6.30	50	400	0.253	793.413	-	793.413
Sec-40	STA.17+725	809.100	4.73	80	0	0.000	809.100	-	809.100
Sec-41	STA.18+350	816.180	6.98	40	0	0.000	816.180	_	816.180
Sec-42	STA.18+600	820.800	5.58	110	0	0.000	820.800	823.200	823.200
Sec-43	STA.18+750	821.310	5.83	130	80	2.818	824.128	823.710	823.710
Sec-44	STA.19+000	824.020	5.66	90	0	0.000	824.020	-	824.020
Sec-45	STA.20+125	838.730	6.11	50	0	0.000	838.730	-	838.730
Sec-46	STA.21+000	851.480	5.83	50	80	1.084	852.564	-	852.564
Sec-47	STA.21+150	852.420	6.74	90	80	2.607	855.027	854.960	855.027
Sec-48	STA.21+350	854.980	5.40	80	200	0.595	855.575	-	855.575
Sec-49	STA.22+000	861.230	9.02	90	0	0.000	861.230	-	861.230
Sec-50	STA.22+675	878.320	4.49	80	0	0.000	878.320	-	878.320
Sec-51	STA.23+000	881.320	7.00	90	0	0.000	881.320	-	881.320

(2) Design Criteria for Countermeasures against Scouring[K.S4]

1) Assumed Maximum Scouring Depth

For the design of a countermeasure against scouring, estimation of maximum scouring is required. The embedment level of wall foundation is set up with reference to maximum scouring depth. The maximum scouring depth is adopted from whichever is greater among the following.

- Scouring depth due to the recent flood event.
- Estimated scouring depth based on water depth calculated by non-uniform flow analysis.
- Scouring depth based on the 2.5-dimension river bed fluctuation analysis computed with 48-hour average flood discharge.

2) Non-uniform Analysis

Boundary Condition

The boundary condition is taken as uniform water depth at the upstream section.

Coefficient of Roughness

The coefficient of roughness is adopted 0.035.

3) Estimated scouring depth based on water depth

The scouring depth is estimated by following equation

$$H_{\text{max}} = C \times H_d$$

Where,	Hmax	: Maximum scouring depth (m)
	Hd	: Design water depth (m)
	С	: Proportion of Hmax and Hd estimated from
		the following figure by substituting the "b/r"
	b	: Width of river channel (m)
	r	: Radius of the river channel (m)

Figure 3-9 Proportions of Hmax and Hd

4) Input Data Set for of 2.5-dimension River Bed Fluctuation Analysis

The input data required for 2.5-dimension riverbed fluctuation analysis is as follows;

- River bed slope
- Average discharge (maximum 48-hour average flood discharge among the 72-hour duration flood hydrograph)
- Coefficient of roughness (n=0.035)
- Average diameter of river bed material

5) Results

Sample results from 2.5-dimension riverbed fluctuation analysis are shown in Figure 2-1. Details of the result for each damaged section are shown in Appendix-6.

Estimated Maximum Scouring Depth is listed in Table 3-6.

	Assumed Maximum Scouring Depth (m)					
Damaged Section	Scouring depth at the recent flood event	non-uniform flow analysis	2.5-dimension fluctuation analysis	Applied Depth		
Sta.00+370 - 00+455	2.3	0.7	2.6	2.6		
Sta.03+370 - 03+730	2.0	1.5	1.4	2.0		
Sta.04+245 - 04+360	-	2.4	1.2	2.4		
Sta.05+300 - 05+205 Sta.05+500 - 05+560	2.2	1.5	3.0	3.0		
Sta.06+065 - 06+206	2.3	0.6	1.8	2.3		
Sta.07+625 - 08+000	-	1.3	2.0	2.0		
Sta.11+489 - 11+577	-	1.4	5.0	5.0		
Sta.13+262	-	0.5	-	0.5		
Sta.14+885 - 14+925	-	4.0	4.2	4.2		
Sta.22+915	-	3.9	-	3.9		

 Table 3-6 Estimated Maximum Scouring Depth (without foot protection)

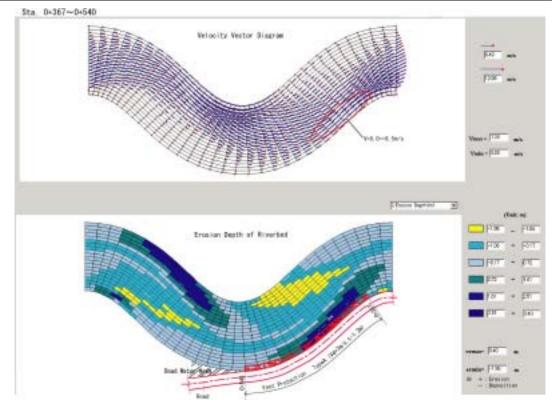


Figure 3-10 Calculation result of 2.5-dimension riverbed fluctuation analysis

6) Embedment level for wall foundation

The embedment level of wall foundation is usually set at a maximum scour depth measured below the lowest level between mean riverbed level and existing ground. Since the assumed maximum scouring depths for all cases exceed 2 m. And it is difficult excavate more than 2 m, the design embedment level is thus set as 2 m in conjunction with foot protection works.

The two cases of embedment level with respect to the relationship between the Mean River Bed level (MRB) and the existing ground level (EG) are illustrated in Figure 3-11.

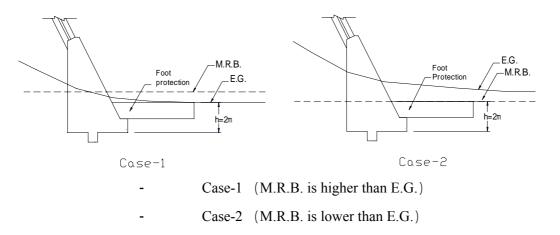


Figure 3-11 Design policy for Embedment level with foot protection

7) Design Velocity for Foot Protection

The greater among the following velocity has been adopted as the design velocity for foot protection;

- Velocity, estimated by multiplying adjustment coefficient, and velocity calculated by non-uniform flow analysis
- Local velocity estimated using the 2.5-dimension river bed fluctuation analysis with 48-hour average flood discharge.
- i) Non-uniform flow Analysis

Boundary Condition:

The boundary condition is taken as the critical water depth at the upstream section.

Coefficient of Roughness:

The coefficient of roughness is adopted as 0.035.

ii) Maximum Velocity based on Non-uniform flow analysis.

The estimated maximum velocity based of the non-uniform flow is calculated using the following equations;

$$V_{d} = \alpha_{1} \times \alpha_{2} \times V_{m}$$

$$\alpha_{1} = 1 + \frac{\Delta Z}{2H_{d}} + \frac{B}{2r} \quad \text{(outside of bend, without toe protection)}$$

$$\alpha_{1} = 1 + \frac{B}{2r} \quad \text{(inside of bend, with toe protection)}$$

Where,	Vd	: Design Velocity (m/s)
	α1	: adjustment coefficient at bend in the river.
	α2	: adjustment coefficient of toe protection
		bw / Hd >1: $\alpha 2 = 0.9$, bw/Hd <=1: $\alpha 2 = 1.0$
	bw	: Total width of toe protection (m)
	Vm	: Average velocity calculated by non-uniform flow analysis (m)
	ΔZ	: Scouring Depth (m)
		In case applying toe protection, $\Delta Z=0$
	Hd	: Water depth calculated by non-uniform flow
		analysis (m)
	В	: Width of river channel (m)
	r	: Radius of river channel (m)

iii) Input data set for 2.5-dimension River Bed Fluctuation Analysis

As mentioned earlier.

iv) Results

Calculation results are listed in Table 3-7

	Foot Protection Section	Design Velocity for foot Protection(m/s)			
Damaged Section		non-uniform analysis with adjustment factor	2.5-deminsio n riverbed fluctuation analysis	adoption	Note
Sta.00+370 - 00+455	Sta.00+367 - 00+540	5.5	6.5	7.0	
Sta.03+370 - 03+730	Sta.03+320 - 03+370	5.0	5.4	6.0	

Table 3-7 Design Velocity for Foot Protection

	Design Velocity for foot Protection(m/s)		ction(m/s)		
Damaged Section	Foot Protection Section	non-uniform analysis with adjustment factor	2.5-deminsio n riverbed fluctuation analysis	adoption	Note
	Sta.03+370 - 03+600	5.4	6.2	7.0	
Sta.03+370 - 03+730	Sta.03+600 - 03+730	4.8	4.2	6.0	Since there is a possibility in changes in the flow direction, the actual velocity should be more than calculated one. The design velocity is thus adopted 6m/s which is 1 rank higher than calculated velocity.
	Sta.04+254 - 04+360	6.0	5.9	6.0	
Sta.04+245 - 04+360	Sta.04+390 - 04+420	-	-	5.0	There are deposited shoal and not flow channel from STA. 4+390 to 4+420. Since the section will become flow channel due to the erosion by anticipated flood, the design velocity at the section is adopted 5m/s which is one rank less than the value adopted in the upstream section.
Sta.05+190 - 05+205	Sta.05+137 - 05+223	-	-	4.0	The flow condition around the revetment by previous flood was incidental. Therefore the design velocity is adopted 4m/s which is one-rank less than the value adopted in the upstream section. This value is
	Sta.05+300 - 05+550	5.3	6.8	7.0	least among the design velocity.
Sta.05+300 - 05+205 Sta.05+500 - 05+560	Sta.05+550 - 05+600	-	-	6.0	There are deposited shoal and not flow channel from STA. 5+550 to 4+600. Since the section will become flow channel due to the erosion by anticipated flood, the design velocity at the section is adopted 6m/s which is one rank less than the value adopted in the upstream section.
Sta.06+065 - 06+206	Sta.06+000 - 06+100	4.1	4.8	5.0	
	Sta.06+100 - 06+250	4.1	5.5	6.0	
	Sta.06+250 - 06+300	3.8	4.8	5.0	

		Design Veloc	city for foot Protect	ction(m/s)	
Damaged Section	Foot Protection Section	non-uniform analysis with adjustment factor	2.5-deminsio n riverbed fluctuation analysis	adoption	Note
	Sta.07+550 - 07+620	5.0	6.0	6.0	
	Sta.07+620 - 07+800	5.0	6.3	7.0	
Sta.07+625 - 08+000	Sta.07+800 - 07+850	5.0	4.5	6.0	Since there is a possibility in changes in the flow direction, the actual velocity should be more than calculated one. The design velocity is thus adopted 6m/s which is 1 rank higher than calculated velocity.
	Sta.07+850 - 07+900 -	5.0	4.0	5.0	
	Sta.11+450 - 11+500	-	5.6	6.0	
Sta.11+489 -	Sta.11+500 - 11+600	6.9	5.8	7.0	
11+577	Sta.11+500 - 11+650	-	5.2	6.0	
	Sta.11+650 - 11+700	-	4.2	5.0	
Sta.13+262	Sta.13+200 - 13+250	-	straight river channel	5.0	There is impingement protection from STA. 13+200 to 13 +250. The design velocity is adopted 5m/s which is one rank less than the value adopted in the upstream section.
	Sta.13+250 - 13+300	5.9	straight river channel	6.0	
Sta.13+262	Sta.13+300 - 13+350	-	straight river channel	5.0	There is impingement protection from STA. 13+300 to 13 +350. The design velocity is adopted 5m/s which is one-rank less than the value adopted in the upstream section.
Sta.14+885 - 14+925	Sta.14+715 - 14+825	6.7	6.2	7.0	
	Sta.14+875 - 14+925 -	6.7	5.8	7.0	
	Sta.14+925 - 14+975 -	-	5.2	6.0	
Sta.22+915		6.3	impossible	7.0	

8) **Design of Foot Protection Structure**

[Weight and Thickness]

Since the design velocity for the foot protection is too high and the weight of toe protection is too heavy, the in-site casting of foot protection works was adopted. The required weight of foot protection works was estimated using the following equations.

.

6

[Check for stability against sliding]

$$W > Fs \cdot \left(\frac{C_1 C_D + C_2 \mu C_L}{2\mu}\right)^3 \cdot \frac{1}{K_V^2} \cdot \left(\frac{\rho_W}{\rho_b - \rho_W}\right)^3 \cdot \frac{\rho_b}{g^2} \cdot \left(\frac{V_d}{\beta}\right)^6$$

[Check for stability against tipping]

W

$$> Fs \cdot \left(\frac{C_1C_D + C_2C_Ll_b / h_b}{2L_s / h_b}\right)^3 \cdot \frac{1}{K_V^2} \cdot \left(\frac{\rho_W}{\rho_b - \rho_W}\right)^3 \cdot \frac{\rho_b}{g^2} \cdot \left(\frac{V_d}{\beta}\right)^6$$
Where, W : Weight of the block (ton)
 F_s : safety factor
 C_1 : Ratio between projected areas of the block along
the drag force and area of square lb(m) on side.
 C_2 : Ratio between area of top face of the block and area
of square lb(m) on side.
 C_D : Coefficient of drag force of the block
(0.7 for square type)
 C_L : Coefficient of lift force of the block (m)
 h_b : Flagship length of the block (m)
 h_b : Thickness of the block (m)
 L_s : horizontal length between supporting point
to gravity point of the block. (m)
 K_V : Ratio between actual volume and volume of
rectangular solid b(m) on side.
 ρ_w : Density of concrete block (2.3*102 kgf s²/m⁴)
 μ : Coefficient of compound (1.5 for square type)

The calculation results are listed in Table 3-8, where Type A, B and C are concrete block

type based on above calculation.

Items	Type-A	Type-B	Type-C
Туре		Concrete block	
Design Velocity (m/s)	7.0	6.0	5.0
Width of a single block (m)	2.0	2.0	2.0
Length of a single block (m)	2.5	2.5	2.5
Thickness (m)	1.2	0.9	0.6
Weight (ton)	13.8	10.3	6.9

Table 3-8 Parameters of Foot Protection Structures

Note: In case design velocity is lower than 4m/s, small scale foot protection structure will be adopted.

[Width of Foot Protection]

Total width of foot protection is estimated by the following equation.

$B_C =$	$L_n + \Delta Z /$	$\sin heta$
Where,	B_c	: Total width of foot protection structure (m)
	L_n	: Width of flat portion in front of the revetment.
		(adopting width of a single block of 2m)
	ΔZ	: Calculated scoring depth.(m)
		: River bed slope of river after scouring.
		(adopting angle of repose of sand 30°)

The width of foot protection structure is estimated using an adopted scour depth of 2.0m

 $B_C = 2(m) + 2(m) / \sin 30 = 6(m)$

Hence, the total width of foot protection structure is 6.0m consisting of three blocks of 2m-width each as mentioned Figure 3-12.

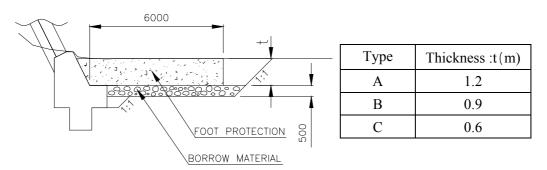


Figure 3-12 Typical cross section of Foot Protection Structure

(3) Design Principles for Countermeasures against Suction

As foot protection structure with proper embedment levels were adopted, the revetment structures will have resistance against suction. Beside that, boulders will be used for backfilling the wall and foot protection structure to increase the resistance of structure against suction.

3.2.4. Basic Plan

(1) Road Design

Following design criteria for the Urgent Rehabilitation of Section IV will be adopted, as per the original plan of section IV.

Design speed	: 30km/hr
Formation width	: 4.75m (Exceptional 4.00m)
Camber	: 4% (Gravel), 2.5% (Double surface treatment)
Minimum curvature	; 25m. (30km/hr)
Widening on curves	: To be widened by adequate width for semi-trailer
Minimum vertical curve radius	; 300m
Maximum grade	: 9%
Interval of passing place	: To be constructed by adequate interval according to the site condition

(2) Earth Works

Cut and embankment slopes will be selected from the following table according to the EarthWork Manual, Japan Road Association, as per the original plan of section IV.

[Cut slope]		
	Classification	Applied slope
Rock		1:0.3 ~ 1:0.8
Soft rock		1:0.5 ~ 1:1.2
Sandy Soil	Dense	1:0.8 ~ 1:1.0
	Loose	1:1.0 ~ 1:1.2
Gravel, Soil	Dense	1:0.8 ~ 1:1.0
	Loose	1:1.0~1:1.2

			_
[Emban]	kment	slon	el.
Linoun	KIIICIII	siop	

		r
Classification	Height	Applied slope
Well graded sand, Gravel	<5m	1:1.5 ~ 1:1.8
	5 ~ 15m	1:1.8 ~ 1:2.0
Poorly graded sand	<10m	1:1.8 ~ 1:2.0
Crushed Rock	<10m	1:1.5 ~ 1:1.8
	10 ~ 20m	1:1.8 ~ 1:2.0
Sandy soil	<5m	1:1.5 ~ 1:1.8
	5 ~ 10m	1:1.8 ~ 1:2.0

(3) Drainage works

The types of side ditch and cross drainage structures will be applied in the Urgent Rehabilitation as per the original plan of section IV.

(4) Pavement Structure

A gravel pavement structure, consisting of river gravel in the 15cm thick lower layer and crusher-run in the 15cm thick upper layer will be applied for this project.

Double Bituminous Surface Dressing (DBSD) will be applied along the steep gradient (>5%) sections, as per the original plan of section IV

And for the section, having possibility of overflow, DBSD will be applied for the purpose of protection for road surface.

(5) Revetment structures

Masonry work is a commonly used in road construction for retaining walls, revetments and slab-culvert walls in Nepal. Furthermore, masonry is effective from the view of maximum usage of locally available materials.

Masonry had been applied for the revetment works at almost all damaged sections. Through observation of each damaged section, it was judged that the cause of road wash-away was not because of the weakness of the masonry but due to the scouring of the riverbed since gravity foundations suffered damaged. Therefore, as per the original design, masonry work will be applied for revetment works as much as possible.

(6) Associated Facilities

Traffic signs, distance signs and delineators will be installed, following the original plan of section IV.

(7) Slope Protection Works at STA.13+300

Damages around STA.13+300 were due to scouring of the slope below the constructed wall foundations. These foundations now lack stability. Since the slope grade is not so steep (1:0.8) revetment and concrete crib works will be applied as a countermeasure to arrest further scouring as shown in Figure 3-13.

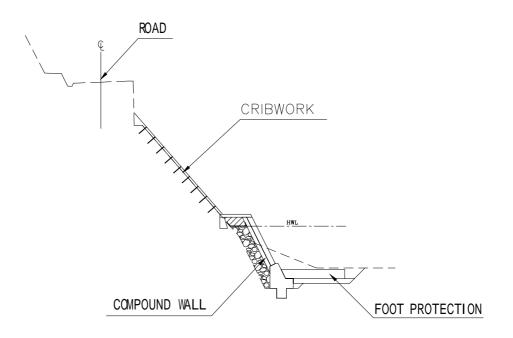


Figure 3-13 Countermeasure for slope failure due to scouring around Sta.13+300

(8) Slope Protection Works at STA.22+900

High water pressure during the flood has triggered a landslide on the natural slope below the road, destabilizing the riverside retaining wall. The size of slope failure is small and about 15m in width. Further extension of the failure will cause serious traffic disturbance since the road is located 25m above the riverbed.

The geology of the project site is characterized by the fault adjoining gneiss and granite. The hill slopes over granite rock are very fragile. There is an abrupt change in flow at the site just down stream of Dapcha River and Roshi River confluence. As there are existing deposits at the foot of the slope (riverbank), countermeasures should be planned as mentioned below:

- Construction of revetments as countermeasures against the erosion of deposit from flood and for further possible slope failure
- Slope protection work (crib work) as countermeasures against the erosion of deposit from surface water
- Against further slope failure just below the road

There are three options of countermeasure against the further slope failure just below the road. These are a retaining wall, anchor work or soil-nailing work. For the protection of the small size slope failures, the soil-nailing method is usually applied as the most

economic.

The soil-nailing work will be designed as per the design guideline "Design and Construction Guideline for Soil-nailing Work" Japan Highway Corporation, Oct. 1999. An outline of the countermeasure for the site is shown in Figure 3-14.

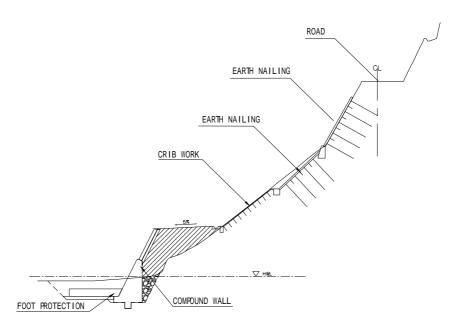


Figure 3-14 Countermeasures for slope failure due to scouring around STA.22+900

3.2.5. Comparison between design details of this project and the original plan of Section IV

A comparison between design details of this project and the original plan of section IV is summarized in Table 3-9.

1) Horizontal Alignment

Along the damaged area, the horizontal alignment will be moved up the mountain side as far as the right of way allows for the purpose of reducing the impact of the Roshi River current on revetment structures.

2) Vertical Alignment and DBSD

Along the damaged sections lying below H.W.L.+ freeboard subject to high runoff, the vertical alignment will be moved up to reduce the erosive impact of surface water and overtopping river flow.

For the stretches not subject to high runoff flowing over it and/or the move-up of the alignment force to destroy the existing structures, only DBSD will be applied to protect the road surface rather than moving the alignment.

3) Cross Section

The cross section will be designed as follows;

- Embedment levels are the depths studied in 3.2.3.
- Boulder and rubble are used for backfilling material to lower down the residual water level.
- Embankment Slopes in mountainous side will be leveled to prevent water accumulation.
- In two sections having damaged high slope under the road, compound wall, crib works and earth nailing will be applied.
- 4) Drainages

Pipe culverts used as cross drainage will be moved up to prevent them from being flooded. Pipe culverts will be set with some degree turning down stream.

5) Foot protection

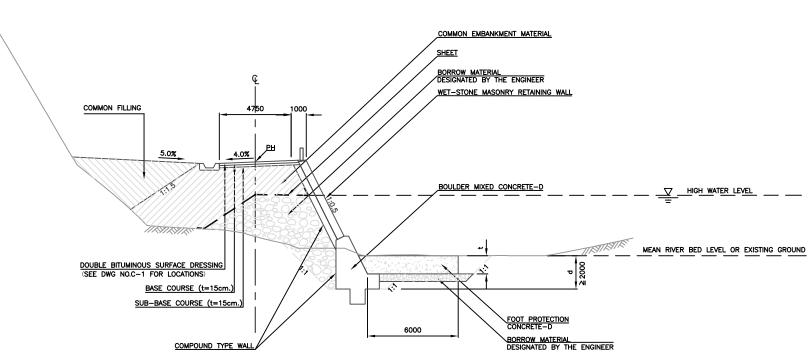
Foot protections works will be designed as per 3.2.3.

	Horizontal	Vartical Alianment and			Foo	t Protection		Wall type
Section	Alignment	Vertical Alignment and DBSD	Cross section	Drainage	Install	Section (TYPE)	type	Condition of existing Foundation
00+370 - 00+455	No change	No change	Strengthening backfill against suction (boulder and rubble)	Cross drainage Set with some degree turning down stream Cross drainage Shifted up	Re-Installed	00+367 - 00+540 (A)	Compound	Re-constructed due to serious damages
03+370 - 03+730	Shifted up to mountain side	1 11	Strengthening backfill against suction (boulder and rubble)	Cross drainage Set with some degree turning down stream Cross drainage Shifted up	Re-Installed	03+320 - 03+370 (B) 03+370 - 03+600 (C) 03+600 - 03+750 (C)	Compound	Re-constructed due to serious damages
04+245 - 04+360	Shifted up to mountain side	No change	Strengthening backfill against suction (boulder and rubble)	Cross drainage Set with some degree turning down stream Cross drainage Shifted up	Added	04+254 - 04+390 (B) 04+390 - 04+420 (C)	Compound	Re-constructed due to serious damages
05+075 - 05+135	No change	No change	Strengthening backfill against suction (boulder and rubble)	Cross drainage Shifted up to upper side	-	-	Met masonry	Re-constructed due to serious damages
05+190 - 05+205	No change	No change	Strengthening backfill against suction (boulder and rubble)	-	Added	05+137 - 05+223 (D)		
05+300 - 05+461	No change	DBSD	Strengthening backfill against suction (boulder and rubble) Back filling mountain side slope	Settled with some degree turning down stream Shifted up to upper side	Re-Installed	05+300 - 05+550 (A)	Compound	Re-used partially
05+500 - 05+560	No change	No change	Strengthening backfill against suction (boulder and rubble)	-	Added	05+550 - 05+600 (B)		
06+065 - 06+206	No change	No change	Strengthening backfill against suction (boulder and rubble)	Cross drainage Set with some degree turning down stream Cross drainage Shifted up	Added	06+000 - 06+100 (C) 06+100 - 06+250 (B) 06+250 - 06+300 (C)	Compound	Re-constructed due to serious damages
07+625 - 08+000	Shifted up to mountain side	1 11	Strengthening backfill against suction (boulder and rubble) Back filling mountain side slope	Cross drainage Set with some degree turning down stream Cross drainage Shifted up	Added	07+550 - 07+620 (B) 07+620 - 07+800 (A) 07+800 - 07+850 (B) 07+850 - 07+900 (C)	Compound	Re-constructed due to serious damages
11+489 - 11+577	No change	DBSD	Strengthening backfill against suction (boulder and rubble) Back filling mountain side slope	Cross drainage Set with some degree turning down stream Cross drainage Shifted up	Re-Installed	11+450 - 11+500 (B) 11+500 - 11+600 (A) 11+600 - 11+650 (B) 11+650 - 11+700 (C)	Met masonry	Re-used
13+262	No change	No change	Reinforcing high slope under the road	-	Added	13+200 - 13+250 (C) 13+250 - 13+300 (B) 13+300 - 13+350 (C)	Compound	Re-used
14+885 - 14+925	No change	No change	Strengthening backfill against suction (boulder and rubble)	-	Added	14+850 - 14+925 (A) 14+925 - 11+975 (B)	Compound	Constructed newly because there are no wall structure in original design
18+558 - 18+581	No change	DBSD	Strengthening backfill against suction (boulder and rubble)	-	Completed in Phase2	18+580 - 18+700 (A)	Met masonry	Re-constructed due to washing away
21+015 - 21+056	No change	DBSD	Strengthening backfill against suction (boulder and rubble)	-	Completed in Phase2	21+040 - 21+165 (A)	Compound	Re-used
22+915	No change	No change	Reinforcing high slope under the road Constructing wall at shore	-	Added	22+830 - 22+930 (A)	Compound	Constructed newly because there are no wall structure in original design

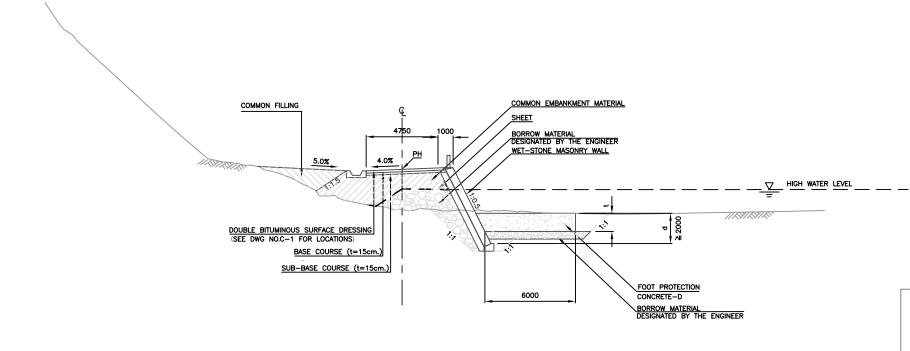
Table 3-9 Comparison of design between original plan and this study

Note: Foot protection type (A), (B) and (C) correspond to types in Table 3-8. Type D indicates a type for the section where design velocity is less than 4m/s.

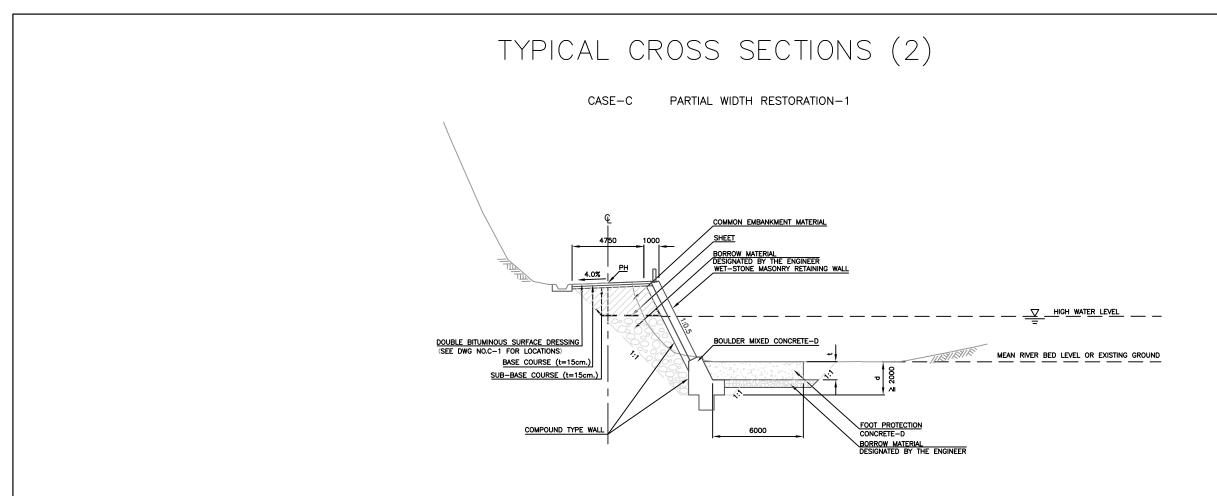
3.2.6. Basic Design Drawing

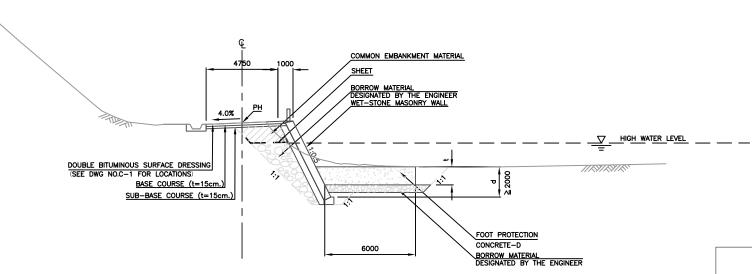

The following drawings have been prepared for the purpose of cost estimation and construction management and planning.

- A Typical Cross Section

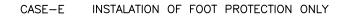

-	В	Plan, Profile, Cross Sections and Cross Drainages
		Plan
		Profile
		Cross Sections
		Corss Drainages
-	С	Details of Structures
		Pavement Works
		Foot Protection Structures
		Drainage Structures
		Wet Masonry Wall
		Compound Wall
		Slope Protection Works
		Traffic Sign and Traffic Safety Facilities

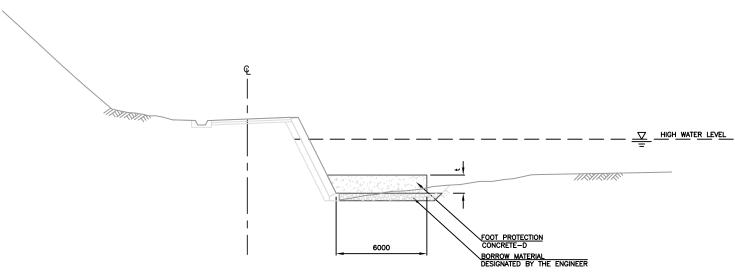
TYPICAL CROSS SECTIONS (1)


CASE-A FULL WIDTH RESTORATION-1

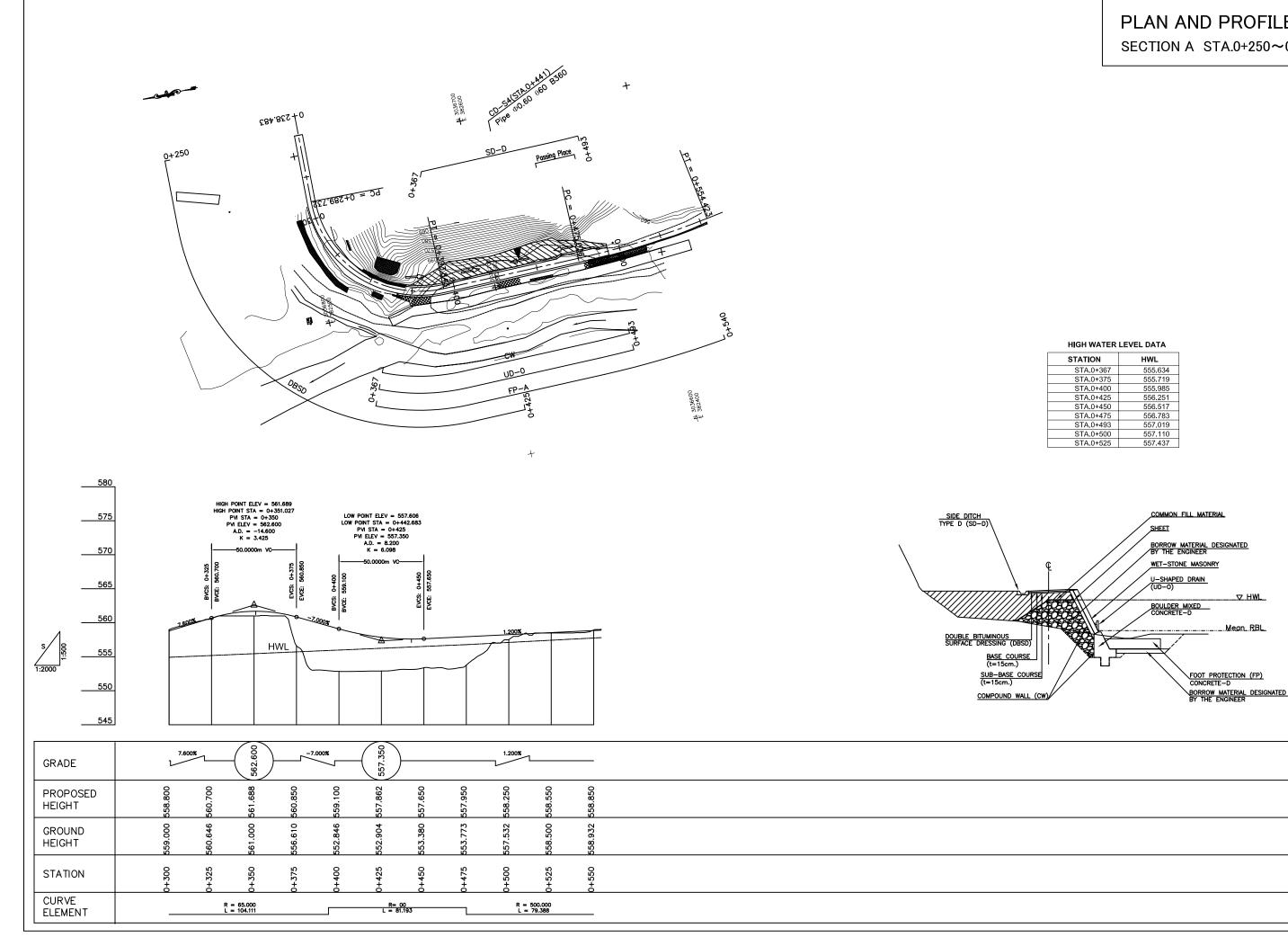

CASE-B FULL WIDTH RESTORATION-2

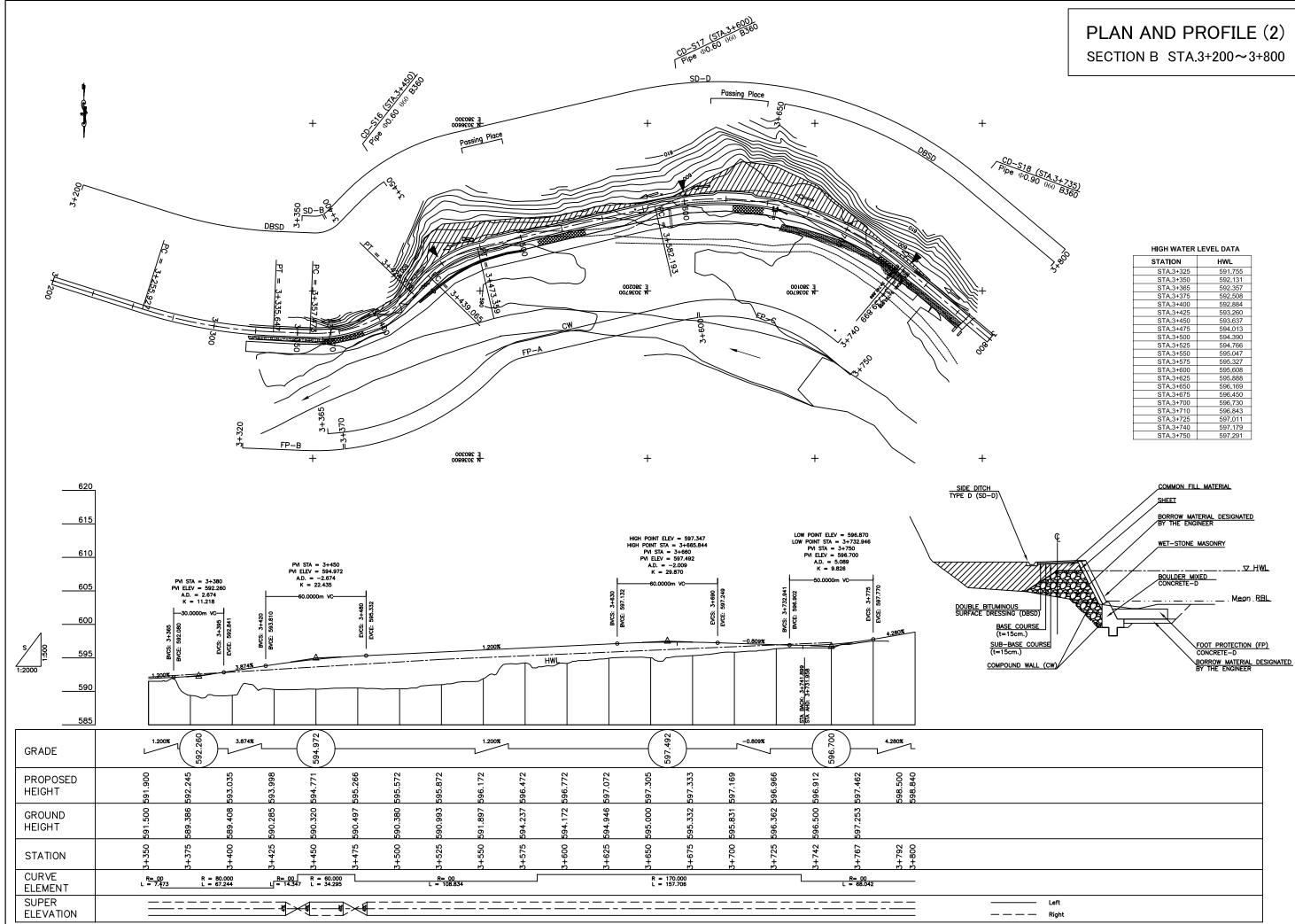
TYPICAL CROSS SECTIONS (1)



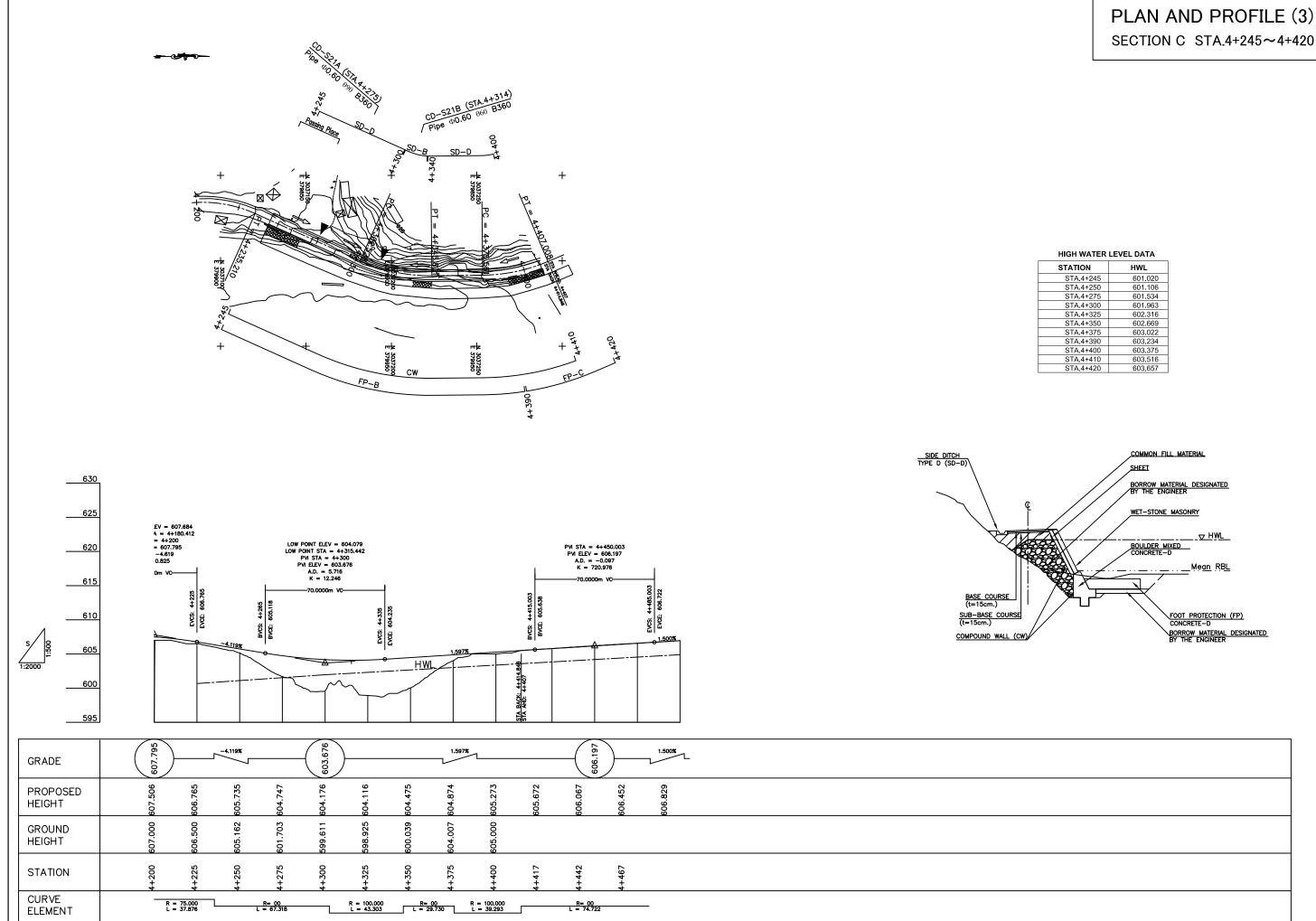

CASE-D PARTIAL WIDTH RESTORATION-2

TYPICAL CROSS SECTIONS (2)



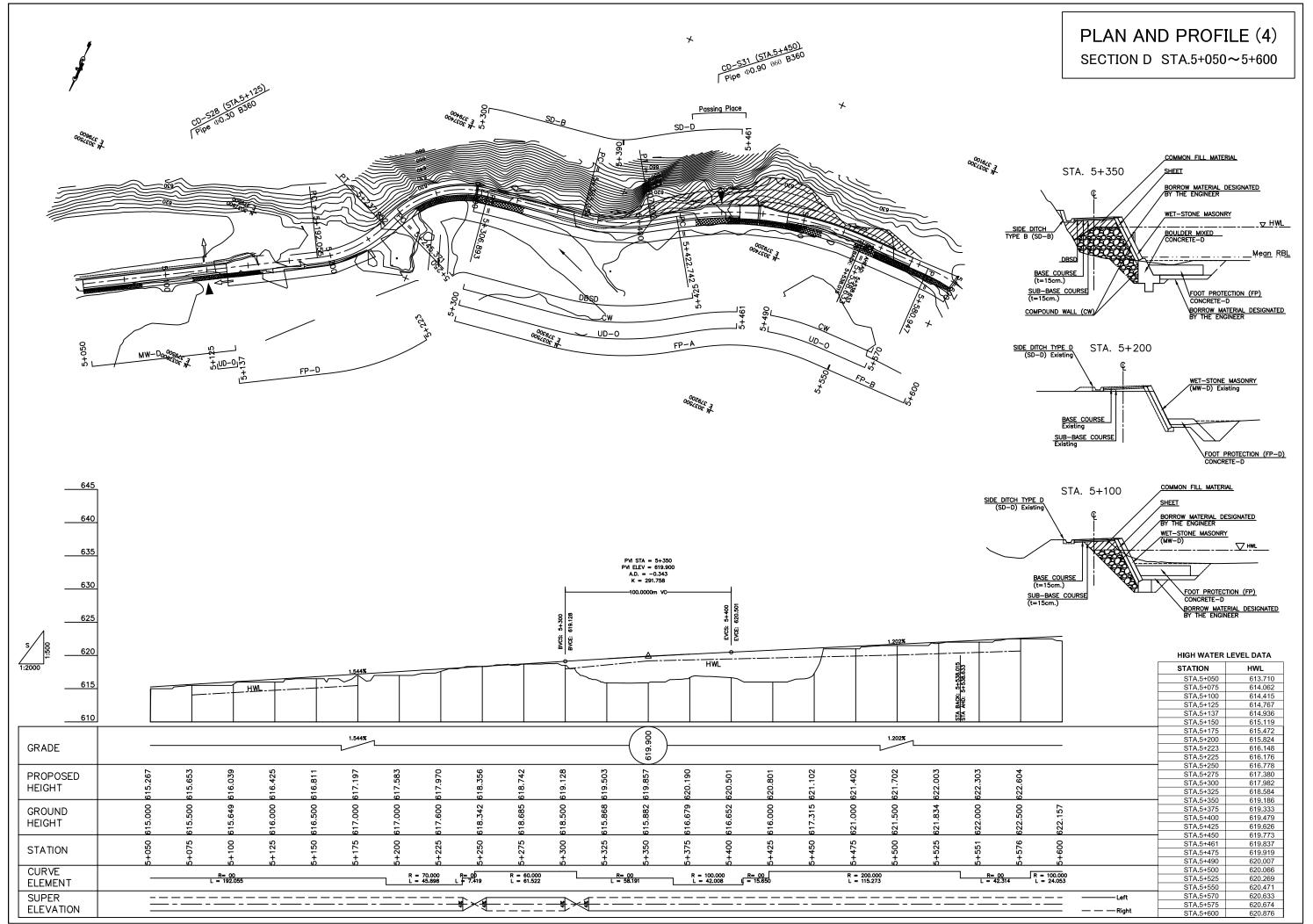

<u>EVEL _ _</u>

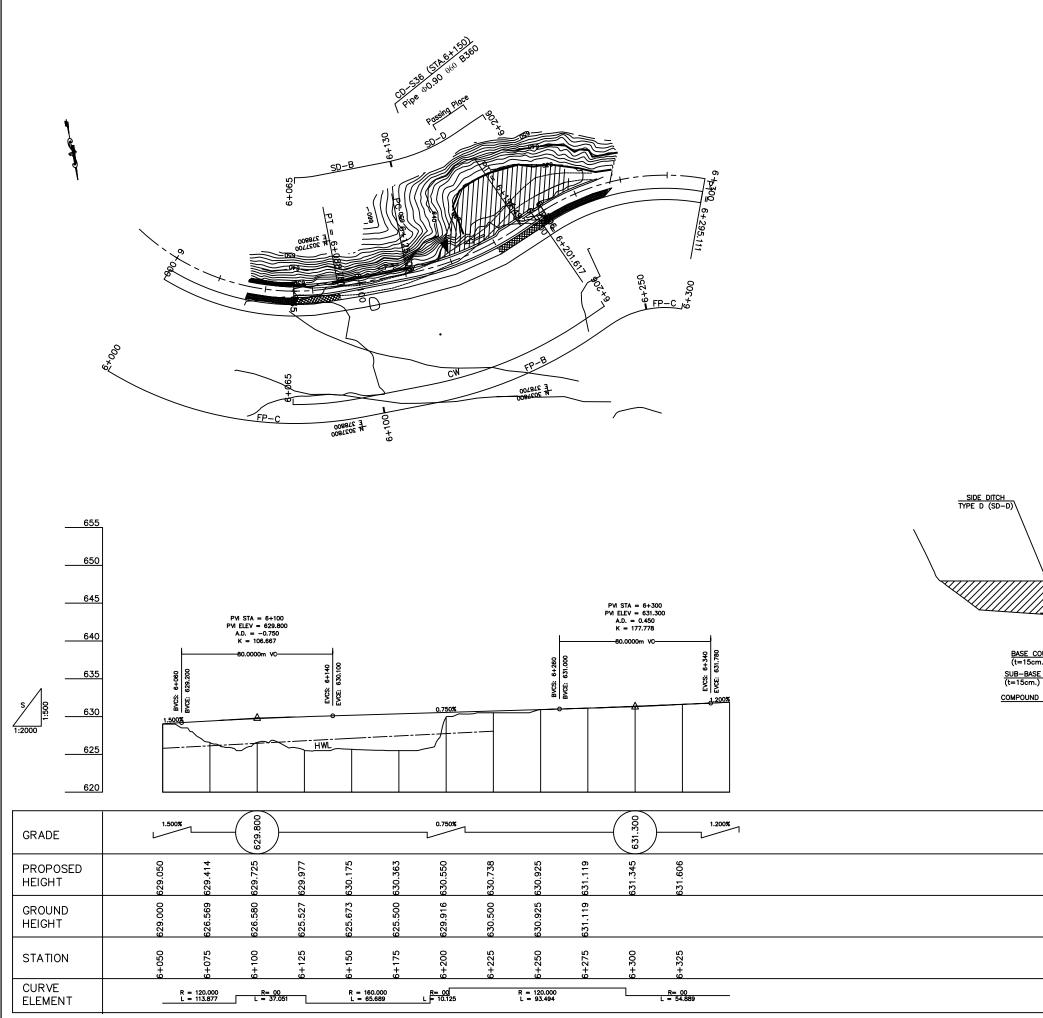
TYPICAL CROSS SECTIONS (3)



PLAN AND PROFILE (1) SECTION A STA.0+250~0+540

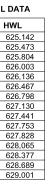
STATION	HWL
STA.0+367	555.634
STA.0+375	555.719
STA.0+400	555.985
STA.0+425	556.251
STA.0+450	556.517
STA.0+475	556.783
STA.0+493	557.019
STA.0+500	557.110
STA.0+525	557.437

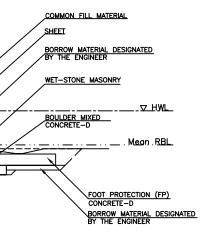


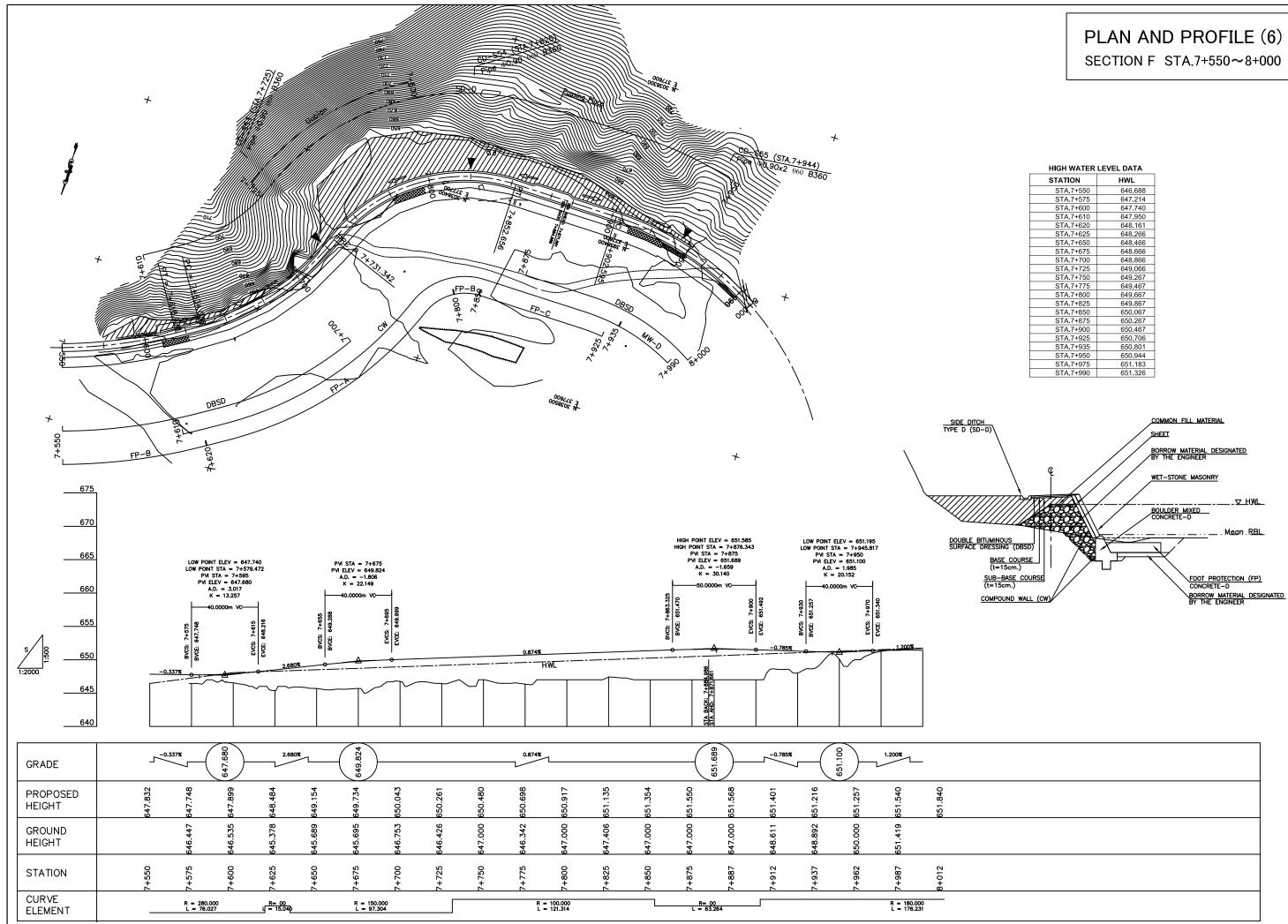

HIGH WATER LEVEL DATA				
STATION	HWL			
STA.3+325	591.755			
STA.3+350	592.131			
STA.3+365	592.357			
STA.3+375	592.508			
STA.3+400	592.884			
STA.3+425	593.260			
STA.3+450	593.637			
STA.3+475	594.013			
STA.3+500	594.390			
STA.3+525	594.766			
STA.3+550	595.047			
STA.3+575	595.327			
STA.3+600	595.608			
STA.3+625	595.888			
STA.3+650	596.169			
STA.3+675	596.450			
STA.3+700	596.730			
STA.3+710	596.843			
STA.3+725	597.011			
STA.3+740	597.179			
STA.3+750	597.291			

SECTION C STA.4+245~4+420

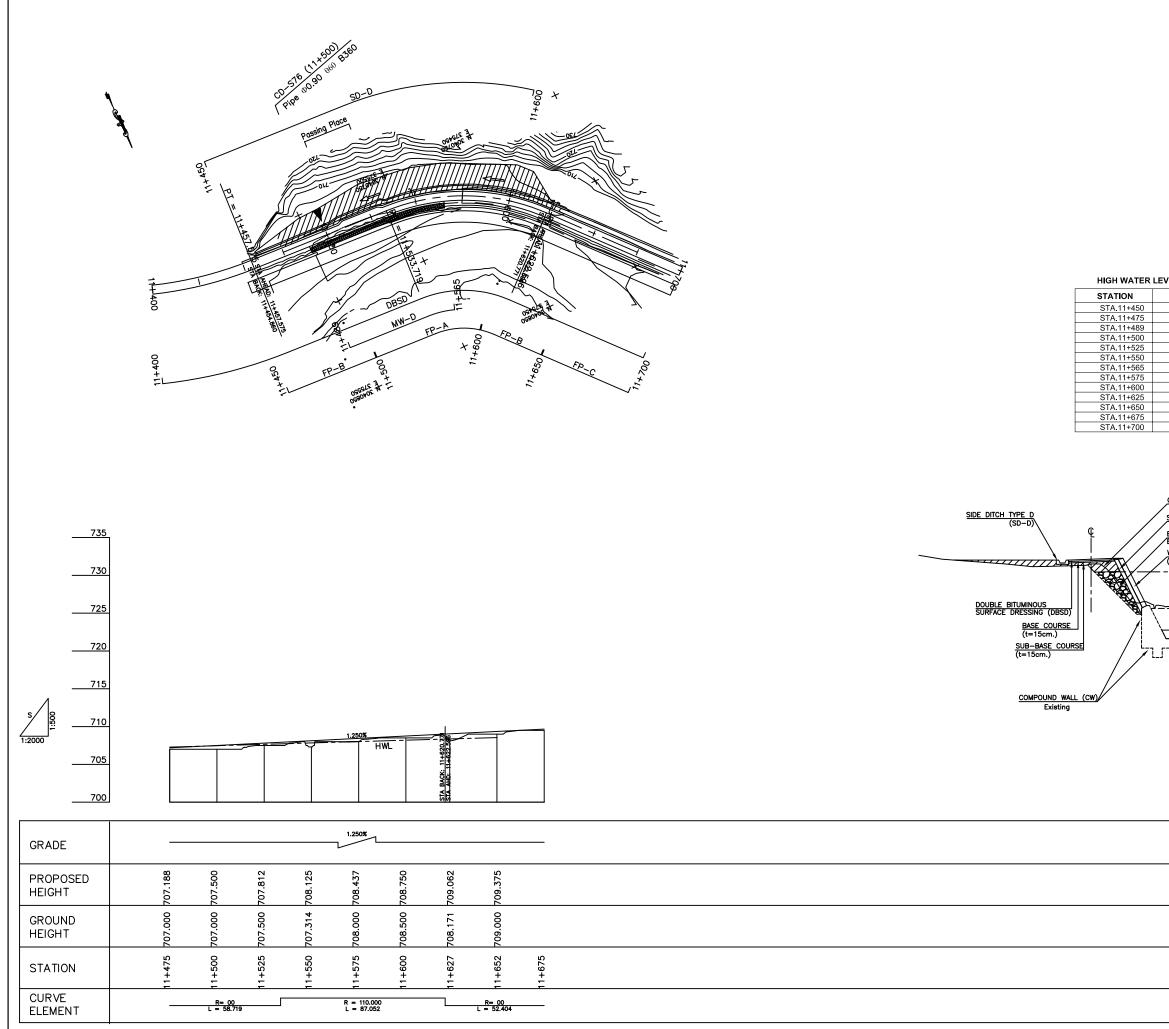
STATION	HWL
STA.4+245	601.020
STA.4+250	601.106
STA.4+275	601.534
STA.4+300	601.963
STA.4+325	602.316
STA.4+350	602.669
STA.4+375	603.022
STA.4+390	603.234
STA.4+400	603.375
STA.4+410	603.516
STA.4+420	603.657




HIGH WATER LEVEL DATA

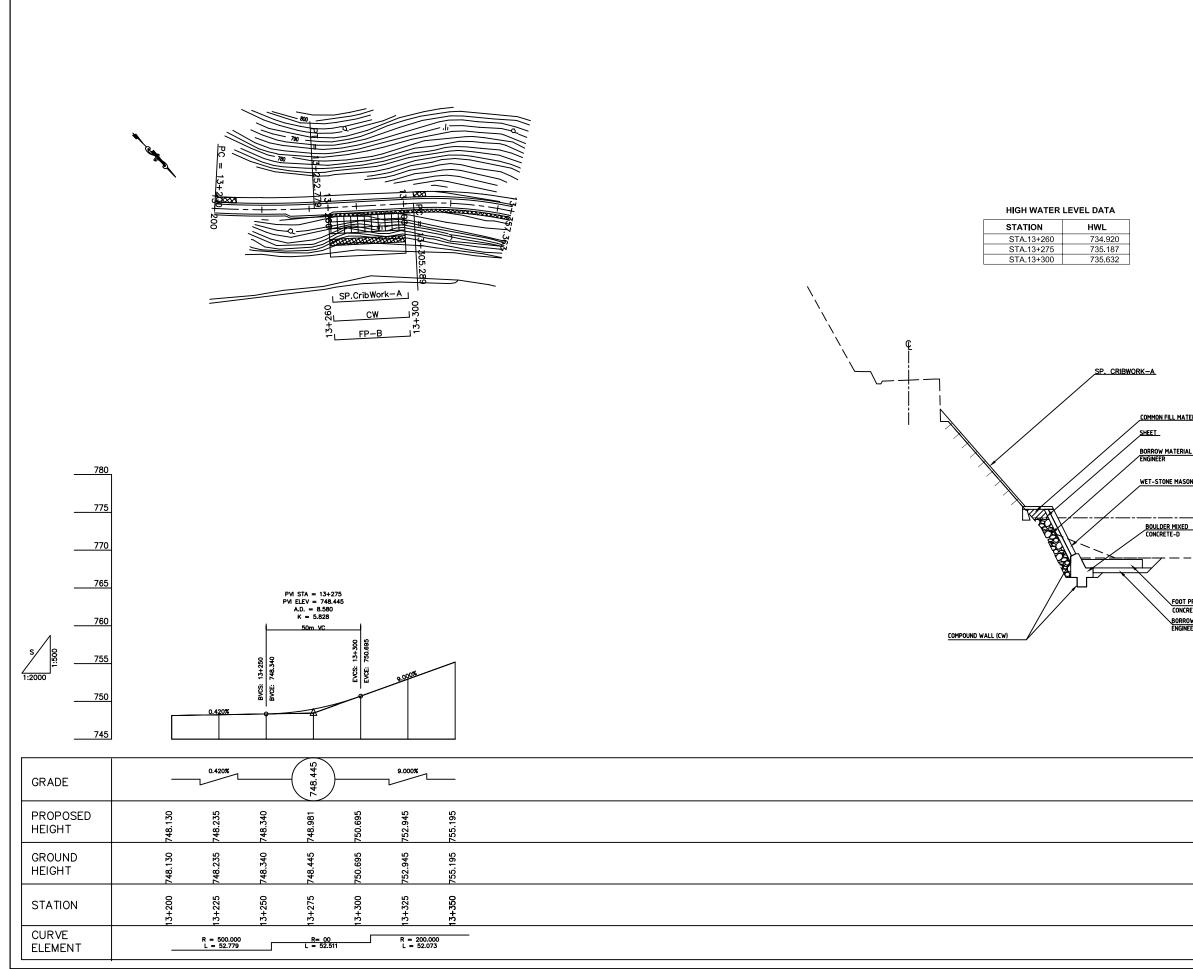

STATION	н١
STA.6+000	62
STA.6+025	62
STA.6+050	62
STA.6+065	62
STA.6+075	62
STA.6+100	62
STA.6+125	62
STA.6+150	62
STA.6+175	62
STA.6+200	62
STA.6+206	62
STA.6+225	62
STA.6+250	62
STA.6+275	62
STA.6+300	62

BASE COURSE (t=15cm.) SUB-BASE COURS COMPOUND WALL (CW)


PLAN AND PROFILE (5) SECTION E STA.6+000~6+300

HIGH WATER LEVEL DATA			
STATION	HWL		
STA.7+550	646.688		
STA.7+575	647.214		
STA.7+600	647.740		
STA.7+610	647.950		
STA.7+620	648.161		
STA.7+625	648.266		
STA.7+650	648.466		
STA.7+675	648.666		
STA.7+700	648.866		
STA.7+725	649.066		
STA.7+750	649.267		
STA.7+775	649.467		
STA.7+800	649.667		
STA.7+825	649.867		
STA.7+850	650.067		
STA.7+875	650.267		
STA.7+900	650.467		
STA.7+925	650.706		
STA.7+935	650.801		
STA.7+950	650.944		
STA.7+975	651.183		
STA.7+990	651.326		

PLAN AND PROFILE (7) SECTION G STA.11+400~11+700


HWL
707.108
707.288
707.388
707.468
707.648
707.828
707.936
708.008
708.188
708.368
708.548
708.728
708.908

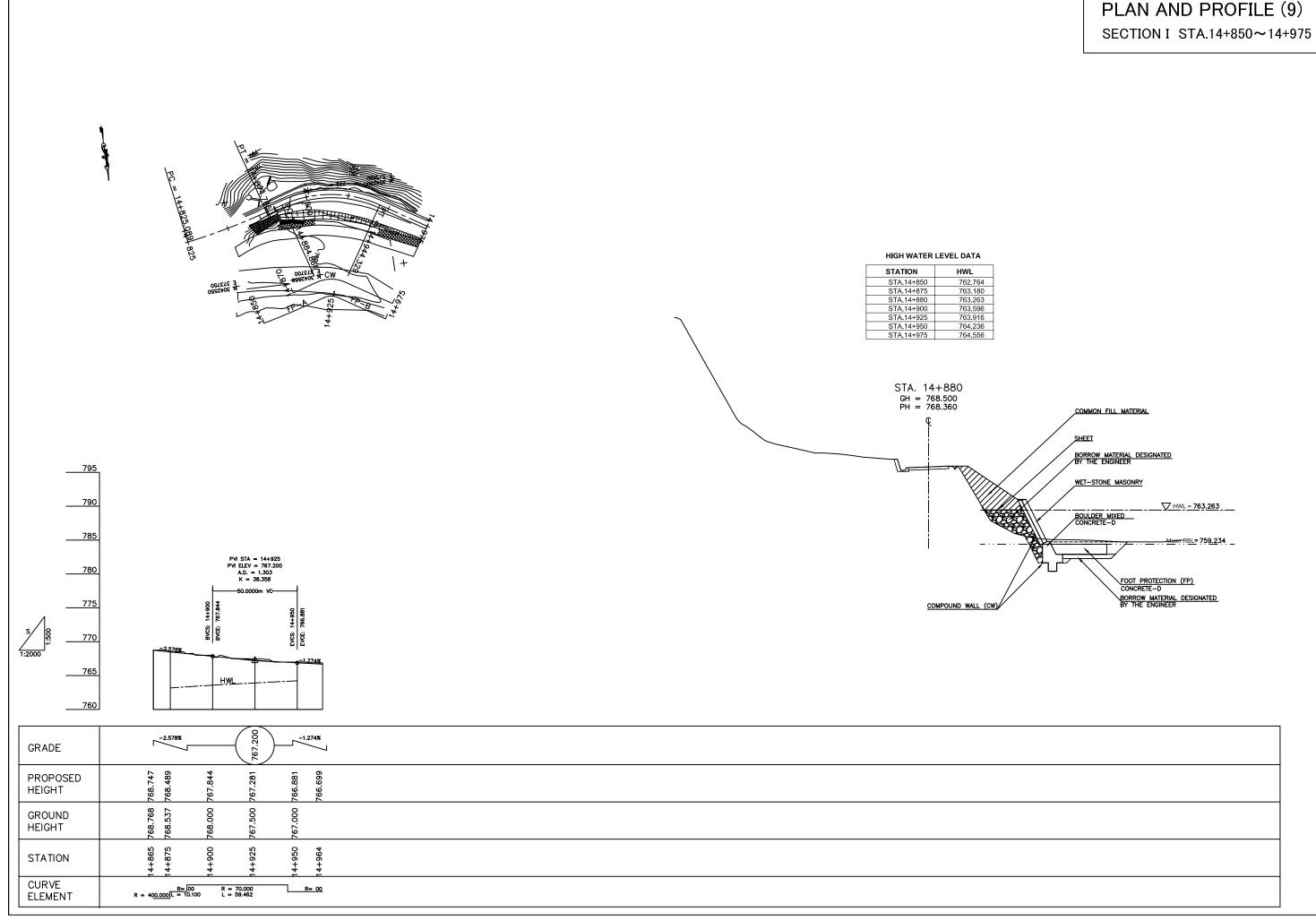
COMMON FILL MATERIAL

SHEET

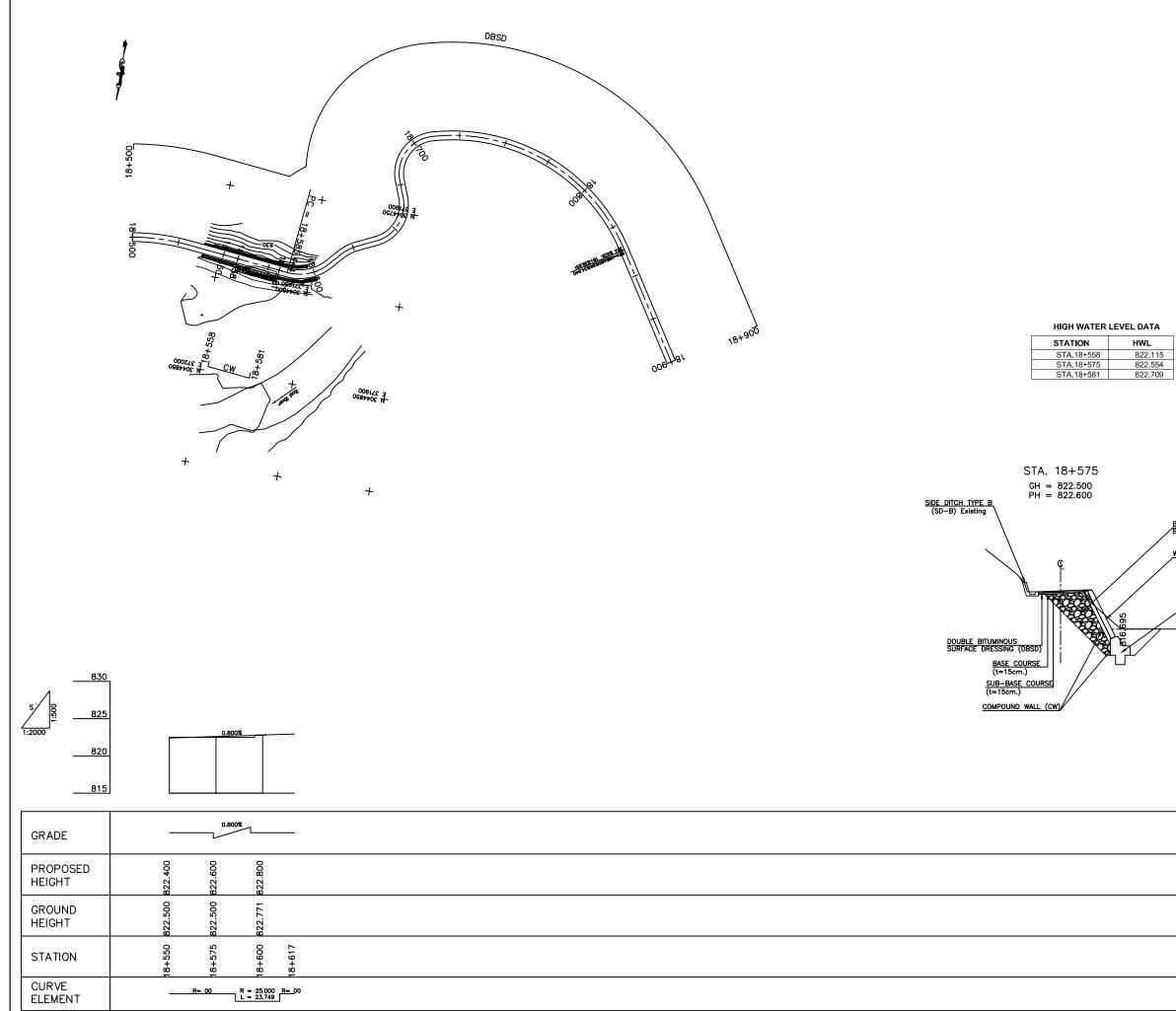
BORROW MATERIAL DESIGNATED BY THE ENGINEER WET-STONE MASONRY (MW-D) ______ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FOOT PROTECTION (FP) CONCRETE-D BORROW MATERIAL DESIGNATED BY THE ENGINEER

PLAN AND PROFILE (8) SECTION H STA.13+260~13+300


COMMON FILL MATERIAL

BORROW MATERIAL DESIGNATED BY THE

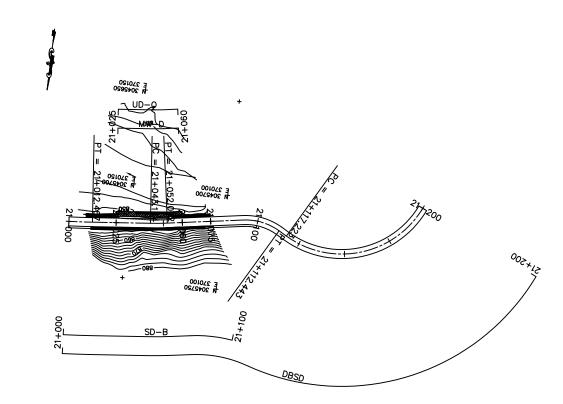

WET-STONE MASONRY

__HWL

FOOT PROTECTION (FP) CONCRETE-D BORROW MATERIAL DESIGNATED BY THE

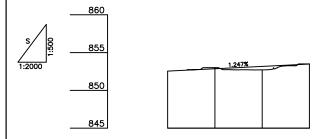
PLAN AND PROFILE (9)

PLAN AND PROFILE (10) SECTION J STA.18+500~18+800



BORROW MATERIAL DESIGNATED BY THE ENGINEER

WET-STONE MASONRY


BOULDER MIXED

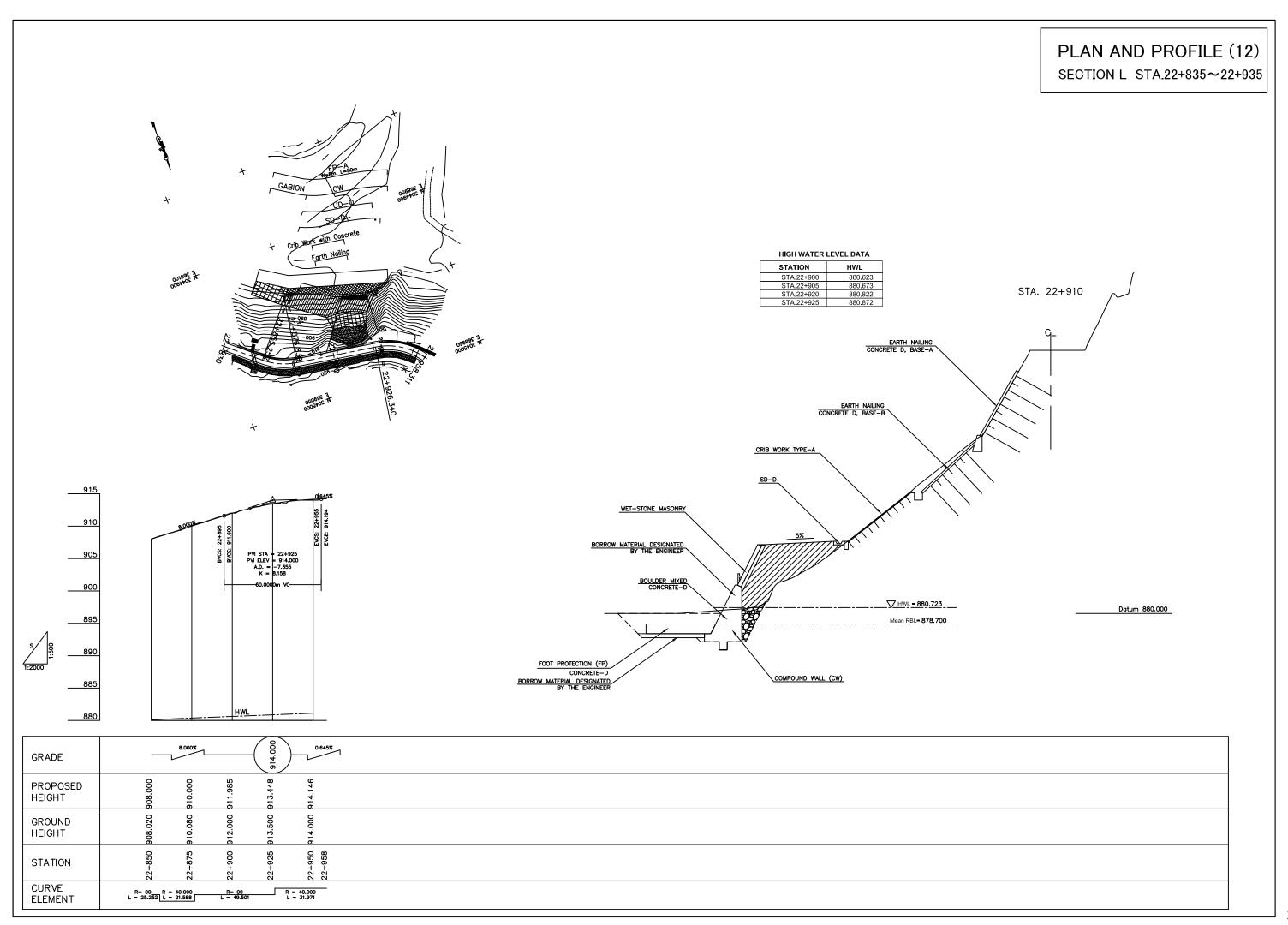
<u>Datum = 815.0</u>

HIGH WATER LEVEL DATA		
STATION	HWL	
STA.21+025	853.891	
STA.21+050	854.129	
STA.21+060	854.225	

BORROW MATERIAL DESIGNATED BY THE ENGINEER U-SHAPED DRAIN (UD-0) WET-STONE MASONRY	STA. 21+050 GH = 856.427 PH = 853.172
Datum = 845.0	E POUR SURF. (t=1: (t=1:
	COMPOUND WALL Existing

GRADE	1.247%
PROPOSED HEIGHT	852.548 853.172 853.483 853.483
GROUND HEIGHT	852.548 853.000 853.500 853.500
STATION	21+000 21+050 21+075
CURVE ELEMENT	$R = \frac{400.000}{L} = \frac{150.000 R}{L} = \frac{00}{30.677} L = \frac{8.919}{L}$

PLAN AND PROFILE (11) SECTION K STA.21+000~21+200



SIDE DITCH TYPE B (SD-B) Existing

UBLE BITUMINOUS RFACE DRESSING (DBSD) <u>SE_COURSE</u> =15cm.) <u>IB-BASE</u>_COURSE =15cm.)

. (CW)

