3.6 Estudio de Estabilidad

3.6.1 Organización del Estudio

Un equipo del estudio debe ser formado con los siguientes miembros:

1. Ingeniero : 1 ingeniero que puede juzgar las condiciones de desastres

2. Asistentes: 2 asistentes que asisten el ingeniero con herramientas del estudio

3. Chofer : 1 chofer con vehículo

3.6.2 Ejecución del Estudio de Estabilidad

Después del tamizado de los sitios objeto, el equipo de estudio debe entrar en el puntaje de cada ítem en las hojas de estudio de estabilidad, y deben medir el tamaño de los daños y dibujarlos en la tabla de inspección. Los puntos importantes a ser estudiados son como sigue.

- Preparación de tabla de "Registro de Desastres en el Pasado",
- Confirmación de la ubicación de los sitios de inspección en el mapa,
- Dibujar y escribir los contenidos necesarios en la tabla de "Registro del Sitio de Inspección"
- Incorporar los detalles de cada ítem en la tabla de "Estudio de Estabilidad",
- Revisar las condiciones vulnerables en la tabla de "Estudio de Estabilidad",
- Puntajes para cada ítem en la tabla de "Estudio de Estabilidad",
- Dibujar la ubicación del sitio y las características en la tabla de "Figura del Resultado del Estudio", y
- Llenar todos los contenidos de la "Tabla del Resultado del Estudio".

El equipo del estudio debe ordenar los resultados del estudio de todos los sitios objeto del estudio. El ingeniero responsable debe discutir el resultado con los miembros del equipo.

3.6.3 Resultado del Estudio de las Carreteras Objeto

1) NIC.1

1) - 1. Estudio del Talud

La NIC. 1 pasa por una área montañosa al norte de San Benito, y entre Estelí y El Espino. Habían 36 sitios de inspección identificados después del tamizado, de que 13 eran de caída de rocas y 23 eran de colapso de masa de roca. Todos requieren el estudio de estabilidad.

1) - 2. Estudio de Puentes

Habían 22 puentes para la inspección de la socavación de cimientos. Los puentes objeto para la inspección tenían las siguientes características:

- La corriente del río no estaba controlada.
- La profundidad de los cimientos del estribo no pudo identificarse.
- Se observaron daños en los aletones.

2) NIC. 3

2) – 1. Estudio del Talud

La NIC. 3 está casi completamente ubicado dentro de una área montañosa con secciones del talud de corte y de terraplén. Los 40 sitios de inspección fueron registrados después del tamizado. Los ítems vulnerables fueron caída de roca, colapso de masa de roca, deslizamiento del talud y alud de fango. Había 20 sitios de caída de rocas, 15 sitios colapso de masa de roca, 4 sitios de deslizamiento del talud y un sitio de alud de fango de gran escala.

2) - 2. Estudio de Puentes

Había dos puentes, Los Cocos y Guayacán, fueron identificados después del tamizado. Una parte del cimientos del puente Guayacán se hundió debido a Hurricane Mitch.

3) NIC. 5

Había solamente un lugar identificado para la inspección después del tamizado. El ítem vulnerable es la caída de rocas, ubicado en la sección del corte 24.6 kilometros hacia oeste de Matagalpa.

4) NIC. 15

4) - 1. Estudio del Talud

NIC. 15 pasa a lo largo de la sección angosta en el área montañosa y el área de río desde Las Manos, en la frontera, a Ocotal y pasa por el área accidentada a la intersección en NIC-1 en Yalagüina. Habían 18 sitios de la inspección, de cuáles 9 sitios son de caída de rocas, 5 sitios de colapso de masa de roca y 4 sitios de alud de fango. Entre Las Manos y Ocotal, las obras de construcción se están llevando con la asistencia del Gobierno de Suecia (serán terminadas en julio de 2002).

4) - 2. Estudio de Puentes

Los sitios del puente vulnerable fueron identificados después del tamizado.

- El gradiente del lecho del río es muy aguda.
- El estribo del puente está en el cauce del río

• La ribera del río está protegida solo por gabiones

Los 4 puentes fueron identificados como sitios de inspección después del tamizado.

5) NIC. 24

5) – 1. Estudio del Talud

Habían 2 sitios de inspección, un sitio de caída de rocas y otro de colapso de masa de roca.

5) – 2. Estudio de Puentes

Habían 7 puentes identificados para la socavación del cimiento del puente después del tamizado. Los puentes objeto para la inspección tienen los problemas siguientes:

- La corriente del río no está controlada.
- Profundidad de los cimientos de los estribos sin identificar.
- Rasgos de socavación observados alrededor de los pilares.

6) NIC.26

6) - 1. Estudio del Talud

Habían 21 sitios de inspección, 15 sitios de caída de rocas y 6 de colapso de masa de roca. Todo tramo está en la sección montañosa y ondulada.

6) - 2. Estudio de Puentes

Habían 18 puentes identificados para la socavación del cimiento del puente después del tamizado. Los puentes objeto para la inspección tienen los problemas siguientes:

- La corriente del río no está controlada.
- Profundidad de los cimientos de los estribos sin identificar.
- Rasgos de socavación observados alrededor de pilares.

3.6.4 Calibración del Resultado del Estudio

1) Objetivos

En caso de que se realice la inspección de estabilidad a través de los técnicos plurales, aparecerá la diferencia individual en los resultados de la inspección y dificultará la evaluación con los mismo criterios. Cuando sólo un técnico la realiza, la evaluación del talud de corte y el talud natural posiblemente dependa de la apreciación relativa de la condición natural de los sitios de estudio. Por lo tanto, es necesario rectificarla por medio de comparación de algunos resultados de inspección de estabilidad.

2) Tiempo y Método de Realización de Calibración

- a) Tiempo y método de realización de calibración
 - ① En la etapa del inicio de inspección, cuando se haya terminado la inspección en más de diez sitios que se ubican en la misma ruta (incluido las rutas lindantes) con mismos ítems de inspección, los resultados deberán ser ordenados conforme al puntaje final de cada tabla de inspección. Luego, consultando la tabla de inspección, se verificará la pertinencia de ordenación y se revisará la puntuación de cada ítem de inspección de la tabla y la evaluación total, por necesidad. En caso de que la cantidad del sitio inspeccionado sea menos de diez por un
 - En caso de que la cantidad del sitio inspeccionado sea menos de diez por un técnico, se realizara la calibración al terminar la inspección de todos los sitios.
 - ② Es posible que aparezca la diferencia de evaluación de estabilidad debido a la condición de taludes de cada ruta, por cada mes después del inicio de inspección o cuando haya cambio de técnicos de inspección, se deberá ordenar los sitios de primero al décimo por puntaje basandose en la puntuación final de la inspección de estabilidad. Luego, se verifica la pertinencia de ordenación y se revisa la puntuación de cada ítem de inspección de la tabla y la evaluación total, por necesidad.
 - 3 Teniendo en cuenta el puntaje y la evaluación integral de los sitios en que se realizó la calibración, hay que seguir inspeccionando los otros sitios.

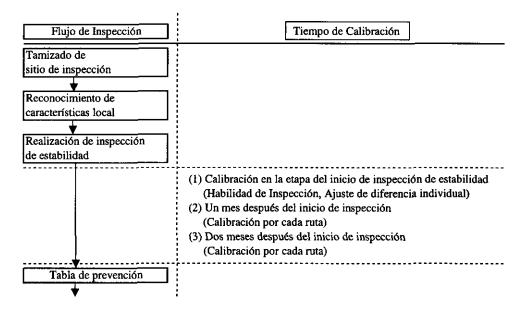


Figura 3.6.1 Flujo de Inspección y tiempo de calibración

b) Método de Calibración

En la etapa inicial de la ejecución de inspección de estabilidad, cuando se termine los más de diez sitios de inspección con los mismos ítem como se muestra en la Figura-3.6.2, los resultados serán ordenados como podemos observar en la Tabla-3.2.1 abajo mostrada.

Tabla 3.6.1 Calibración de etapa inicial de inspección. (Ejemplo)

Orden	1	2	3	4	5	6	7	8	9	10	
Sitio de inspección	A	F	G	В	D	С	H	I	J	Е	
(Puntaje)	(80)	(80)	(60)	(55)	(50)	(50)	(40)	(30)	(20)	(20)	
Ejecución de	_			В	,	С			J		
Calibración	Ídem	Ídem	Ídem	(70)	Ídem	(60)	Ídem	Ídem	(40)	Ídem	
		7			<u></u>		-	<u> </u>			
Comentario	Con	mo rest	iltado d	le calib	ración,	surgió	la dud	a de or	den de	В, С,	
	Lue	ego revi	só y cai	mbió lo	s punta	jes y or	den.				
Orden	1	2	3	4		6	7	8	9	10	
Sitio de inspecció			В	G			1	J	I	E	
(Puntaje)	(80) (80) (70) (60) (60) (50) (40) (40) (30) (20	
A B C D E F G H 1											
ealización de inspe	ección o	ie estab	ilidad -			→					
				←		-Revisi	ón del r	esultado	o de ins	pecciór	

Figure 3.6.2 Calibración del resultado de inspección de estabilidad

(Calibración)

Después de realizada la inspección de estabilidad, cada mes se deberá hacer la calibración por ruta y revisar el puntaje de inspección a fin de la adecuación de evaluación. Como se muestra en la Tabla 3.6.2.

10 Orden 5 6 Nota Ruta A: F В C \mathbf{D} J Sitio de inspección A G Н 1 Ε (80)(70)(60)(60)(50)(40)(30)(Puntaje) (80)(40)(20)Ruta B: En contraste à ь in d h con Ruta A. (20) Sitio de inspección (70)(70)(90)(90)(70)(60)(50)(30)(30)la evaluación (Puntaje) de Ruta B era un poco (80)(80)(40) baja. Ruta C:

Tabla 3.6.2 Calibración por Ruta (Ejemplo)

C) En Caso de que la Inspección se realizará por Dos (2) o Más Inspectores.

La inspección de la misma ruta y los mismos ítems deberá pasar a través de dos o más inspectores, luego se revisará y comparará la ordenación de cada uno y por necesidad modificar el puntaje a fin de ajustar la evaluación.

3) Los Ítems de Inspección que deben ser sometidos a la Calibración

Los ítems de inspección que deben ser sometidos a la calibración son los tres siguientes; en los que posiblemente haya desviación de puntajes y cantidad mayor.

- Caída de Rocas y Colapso
- Colapso de Masa de Roca

3.7 Sitios Potenciales y Críticos de Desastres

3.7.1 Generalidades

Sobre la base de Sección 3.5 "Ítems / Puntajes de Evaluación de los Sitios Potencial / Críticos" y 3.6 "Estudio de estabilidad", los sitios potenciales y los sitios críticos de desastres son identificados a través de puntajes de 60 ó 70 o más.

Los sitios identificados en las carreteras objeto se muestran en las tablas desde Tabla 3.7.1 a Tabla 3.7.10.

3.7.2 NIC. 1

1) Taludes Vulnerables

Tabla 3.7.1 Sitios Potenciales/Críticos de Desastres Identificados del Talud en NIC-1

	Distancia	Número	_					Sitio	
No	desde	de	Tipo de	Largo	Altura	Ángulo	Puntaje	Potencial	Sitio
	Managua(Serie	Desastres	(m)	(m)	(grado)		de	Unitico de
	km)							Desastres	Desastres
1	50.0	30	R.F.	230	64	43°	61	*	
2	52.4		R.F.				59		
3	54.0		R.C.				54		
4	55.7		R.F.				57		
5	57.4		R.C.				57		
6	59.3		R.C.				59		
7	60.5		R.C.	·			45		
8	60.9	29	R.F.	890	24	56°	70	*	*
9	71.6		R.C.				42		
10	73.2	28	R.F.	350	8	40°	78	*	*
11	84.0		R.C.				50		
12	129.1		R.C.				42		
13	142.7	27	R.C.	370	50	63°	68	*	
14	157.0	26	R.C.	110	12	63°	68	*	
15	167.2	25	R.C.	280	8	66°	55		
16	168.4	24	R.F.	600	30	66°	84	*	*
17	168.6	23	R.C.	280	30	70°	72	*	*
18	169.0	22	R.F.	120	50	70°	69	*	
19	169.8	20	R.C.	200	28	60°	72	*	*
20	170.7	19	R.C.	440	64	60°	72	*	*
21	171.3	17	R.C.	460	30	63°	78	*	*
22	173.9	16	R.F.	500	30	43°	67	*	
23	175.0	15	R.C.	130	15	60°	76	*	*
24	176.2	12	R.C.	360	40	60°	74	*	*
25	178.7	11	R.F.	240	28	60°	76	*	*
26	183.5		R.F.				39		
27	184.3		R.C.				47		
28	187.3	10	R.C.	220	10	60°	73	*	*
29	195.8	8	R.C.	120	8	60°	68	*	,
30	204.7	7	R.C.	120	16	63°	73	*	*
31	206.4		R.C.				56		
32	214.7	5	R.F.	110	12	43°	70	*	*
33	231.9	4	R.C.	400	50	60°	66	*	
34	232.5	3	R.C.	200	50	60°	75	*	*
35	233.7	2	R.F.	230	28	50°	73	*	*
36	235.6	1	R.F.	145	9	80°	73	*	*
	•		To			'		23	16

Potencial Crítico

R.F. Caída de Rocas : 10 : 7 R.C. :Colapso de Roca : 13 : 9 S.S. :Deslizamiento de Talud : 0 : 0 D.F. :Alud de Fango : 0 : 0

2) Puentes Vulnerable

Tabla 3.7.2 Sitios Potenciales/Críticos de Desastres Identificados del Puente en NIC-1

No.	Estación	Nombre de	Largo	Largo entre pilares	A.8	Punti	ie	Sitios de Desastres		
140.	(km)	Puente	(m)	(m)	Año	Estribo	Pilar	Potencial	Critico	
1	35+190	Los Novios	6.70	5.60	1938	50				
2	39+868	La Estatua	8.70	7.50	1938	50				
3	40+960	Qda. Honda	7.00	5.00	1938	45				
4	42+433	El Matadero	14.30	13.50	1938	35				
5	84+430	El Venado	72.50	19+29+19	1973	30	25			
6	87+437	Qda. La Chingastosa	21.00	19.50	1973	30				
7	107+992	Zajón Negro	21.70	20.70	1957	20				
8	108+980	Rio Viejo	99.00	26.8+(3)22.6	1953	55	55			
9	113+190	Zanión Blanco	29.30	9+9+9	1956	75	90	-	* ***	
10	125+220	La Trinidad	63.80	18.7+23.4+18.7	1957	70	60	*		
11	135+640	San Nicolas	18.60	17.60	1957	100		•	•	
12	135+860	El Hatillo	15.50	14.50	1957	70		*		
13	150+330	Las Chanillas (R.Estell)	62.00	17.8+24+17.8	1958	70	90	•	*	
14	150+925	El Rastro	19.00	18.00	1957	30				
15	151+850	San Ramón	15.50	13.80	1957	100		*	*	
16	158+650	La Sirena	54.00	14.4+21.8+14.4	1956	60	65			
77	159+470	Rio El Tular	56.00	14.5+20.8+14.5*	1956	80	85	*		
18	184+670	Condega (Río Pire)	63.60	18.6+23.4+18.6	1954	70	60	*		
19	191+680	Ducuali(Rio Pueblo Nuevo)*	82.00	19.3+39.3+19.3	2000	45	50	•		
20	192+033	Qda. Ducuali	7.45	6.50	1954	60				
21	226+890	Rio inali	64.0	19+24+19	1954	90	100	*		
22	233+245	RioTapascali	109.0	17.8+21.3+26.7+21.3+17.8	1954	75	90	*	*	
			Fotal			······································		11	6	

^{*}El largo de Puente Ducuali es menor que el ancho del río.

3.7.3 NIC. 3

1) Taludes Vulnerables

Tabla 3.7.3 Sitios Potenciales/Críticos de Desastres Identificados del Talud en NIC-3

No	Distancia desde Managua(km)	Núrrero de Serie	Tipo de Desastres	Largo (m)	Altura (m)	Ángulo (grado)	Puntaje	Sitio Potencial de Desastres	Sitio Crítico de Desastres
1	3.9	42	R.C.	130	13	55°	74	*	*
2	5.4	41	R.C.	60	15		57		
3	6.9	40	R.C.	170	20	46°	72	*	*
4	7.4	37	R.C.	90	20	48°	80	*	*
5	7.8	36	R.F.	93		46°	61	*	
6	8.3	35	R.C.	60	1		74	*	
7	9.3	34		90	20+20		42		
8	9.6	33	R.C.	30	7+20		42		
9	22.1	32	R.C.	150	14	76°	74	*	*
10	23.5	31	R.C.	170	13	55°	69	*	
11	24.8	30	R.C.	55	12	53°	64	*	
12	26	29	R.C.	220		51°	69	*	
13	26.8	28	R.F.	50	12+20		54		
14	27.3	27	R.F.	80	7+20		54		
15	28.8	26	R.C.	60	10		59		
16	30.8	25	R.F.	140	23	40°	62	*	
17	32.7	24	R.C.	110	14	57°	70	*	*
18	32.9	23	S.S.	180	26	40°	73	*	*
19	33.8	22	R.F.	80	15	37°	64	*	
20	34	21	R.F.	50	15		53		
21	34.4	20	R.F.	68	12	43°	69	*	
22	34.8	19	R.F.	55	15	48°	67	*	
23	35	18	R.F.	125	21	49°	61	*	
24	35.2	17	D.F.	150	30	43°	83	*	*
25	35.9	16	S.S.	140	26	52°	71	*	*
26	38.9	15	S.S.	192	30	34°	90	*	*
27	39.4	14	S.S.	45	9	62°	90	*	*
28	39.8	13	R.F.	90	30		58		
29	40	12	R.C.	180	28	67°	81	*	*
30	40.7	11	R.F.	70	25		50		
31	45.9	10	R.F.	50	20		56		
32	49.5	9	R.F.	20	15		46		
33	51.2	8	R.F.	60	12	56°	57		
34	51.6	7	R.F.	20	15		56		
35	51.9	6	R.F.	40	15		59		
36	54.9	5	R.F.	90	16	50°	63	*	· ·
37	55.3	4	R.F.	86	20	64°	63	*	
38	55.6	3	R.F.	60	15		56		
39	57.1	2	R.F.	150	10		49		·
40	57.5	1	R.C.	90	15		52		

Potencial Crítico

: 0 R.F. Caída de Rocas : 8 : 10 R.C. :Colapso de Roca : 6 S.S. :Deslizamiento de Talud : 4 : 4 : 1 :Alud de Fango : 1 D.F.

2) Puentes Vulnerables

Tabla 3.7.4 Sitios Potenciales/Críticos de Desastres Identificados del Puente en NIC-3

No.	Estación	Nombre de	Largo	Largo entre pilares	Año	Punta	je	Sitios de Desastres		
.,,,	(km)	Puente	(m)	(m)	7110	Estribo	Pilar	Potencial	Crítico	
1	119+050	El Guayacan	17.5	3.3	1945	100	100	*	-	
2	122+053	Los Cocos	7.0	3.3	1945	70		•		
			Total					2	1	

3.7.4 NIC.5

Tabla 3.7.5 Sitios Potenciales/Críticos de Desastres Identificados del Talud en NIC-5

No	Distancia desde Managua(km)	Número de Serie	Tipo de Desastres	Largo (m)	Altura (m)	Ángulo (grado)	Puntaje	Sitio Potencial de Desastres	Desectres
1	24.6	1	R.F.	200	87	50°	76	*	*
			To	tal				1	1

Potencial Crítico

R.F. Caída de Rocas : 1 : 1 :Colapso de Roca R.C. : 0 : 0 S.S. :Deslizamiento de Talud : 0 : 0 D.F. :Alud de Fango : 0 : 0

3.7.5 **NIC. 15**

Tabla 3.7. 6 Sitios Potenciales/Críticos de Desastres Identificados del Talud en NIC-15

No	Distancia desde Managua(km)	Número de Serie	Tipo de Desastres	Largo (m)	Altura (m)	Ángulo (grado)	Puntaje	Sitio Potencial de Desastres	Sitio Crítico de Desastres
1	9.9	1	D.F.	45	7		70	*	*
2	11.1	2	D.F.	65	8		70	*	*
3	11.2	3	R.F.	135	50	44°	67	*	
4	11.5	4	R.F.	80	24	45°	65	*	
5	11.7	5	D.F.	70	3		70	*	*
6	13.6	6	D.F.	100	1		70	*	*
7	21.1						50		
8	26.2						58		
9	26.6						50		
10	27.6						49		1
11	28.0						46		
12	28.8						43		†
13	29.5						56		
14	31.3				1		56		1
15	32.7						43		1
16	34.9						51	 	
17	41.7			4			54		
18	42.1						48		
			To	tal				6	Δ

Potencial Crítico

R.F. Caída de Rocas : **2** : 0 R.C. :Colapso de Roca : 0 : 0 S.S. :Deslizamiento de Talud : 0 : 0 D.F. :Alud de Fango : 4 : 4

3.7.6 NIC. 24

1) Taludes Vulnerables

Tabla 3.7.7 Sitios Potenciales/Críticos de Desastres Identificados del Talud en NIC. 24

No	Distancia desde Managua(km)	Número de Serie	Tipo de Desastres	Largo (m)	Altura (m)	Ángulo (grado)	Puntaje	Sitio Potencial de Desastres	Sitio Crítico de Desastres
1	17.5	1	R.F.	190	21	44°	55		
2	28.5	2	R.C.	140	16	55°	63	*	
			To	tal				1	0

Potencial Crítico : 0 R.F. Caída de Rocas : 1 :Colapso de Roca : 1 : 0 R.C. : 0 S.S. :Deslizamiento de Talud : 0 : 0 : 0 D.F. :Alud de Fango

2) Puentes Vulnerables

Tabla 3.7.8 Sitios Potenciales/Críticos de Desastres Identificados del Puente en NIC-24

ALC:	Estación	Nombre de	Largo	Largo entre pilares	Año	Pun	aje .	Sitios de	Desastres :
No.	(km)	Puente	(m)	(m)	Ano .	Estribo	Pilar	Potencial	Crítico
1	132+055	El Hogar (La Mora)	5.6	4.5		20			
2	143+000	San Ramon1	20.5	20.0	2001	70	55	*	
3	183+988	Chocolatero	8.6	7.7		50			
4	189+111	La Culebra	14.4	13.0		70		•	
5	197+929	Río Negro	64.8	29+2(30)+29	2001	50	40		
6	198+675	San Antonio	10.3	9.0	1968	35			
7	201+520	Tecomapa	16.3	15.0	1968	40			
			Total					2	0

3.7.7 NIC.26

1) Taludes Vulnerables

Tabla 3.7.9 Sitios Potenciales/Críticos de Desastres Identificados del Talud en NIC-26

No	Distancia desde Managua(km)	de	Tipo de Desastres	Largo (m)	Altura (m)	Ángulo (grado)	Puntaje	Sitio Potencial de Desastres	Sitio Crítico de Desastres
1	9.0	1	R.F.	105	18	43°	71	*	*
2	12.7	2	R.F.	235	13	62°	70	*	*
3	19.9	3	R.F.	160	20	53°	71	*	*
4	20.9	4		115	19	65°	72	*	*
5	22.7	5	R.F.				64		
6	24.7	6	R.F.	160	16	55°	70	*	*
7	26.6	7	R.F.				37		
8	28.5	8	R.F.	65	12	50°	67	*	
9	29.1	9	R.F.				59		
10	29.3	10	R.F.	77	19	41°	76	*	*
11	29.8	11	R.C.	110	13	58°	73	*	*
12	30.0	12	R.C.	100	16	66°	68	*	
13	33.6	13	R.F.	60	11	58°	72	*	*
14	34.0	14	R.C.	300	16	65°	80	*	*
15	34.2	15	R.F.	150	52	54°	85	*	*
16	37.0	16	R.C.	90	24	76°	86	*	*
17	39.1	17	R.F.				41		
18	39.8	18	R.F.				40		
19	40.3	19	R.F.				50		
20	40.8	20	R.F.				53		
21	45.5	21	R.C.	280	32	52°	71	*	*
			То	tal				15	12

Potencial Crítico

: 10 R.F. Caída de Rocas : 8 R.C. :Colapso de Roca : 5 : 4 : 0 S.S. :Deslizamiento de Talud : 0 D.F. :Alud de Fango : 0 : 0

2) Puentes Vulnerable

Table 3.7.10 Sitios Potenciales/Críticos de Desastres Identificados del Puente en NIC-26

No.	Estación	Nombre de	Largo	Largo entre pilares	6.8-	Pur	taje	Sitios de	Desastres
10.	(km)	Puente	(m)	(m)	Ano	Estribo	Pilar	Potencial .	Crítico
1	104+182	La Cotorra	8.6	7.0	1963	40			
2	104+657	Figueroa	9.4	5.5	1963	40			
3		Santa Ana	8.2	5.5	1963				
4	106+020	Los Pedrones	6.4	3.7	1963	60			
5	106+687	Quimera	17.7	5+5+5	1964	65	65		
6	107+533	Solis	7.2	4.6	1963	100		*	
7	108+154	Papalón	5.1	3.5	1963	90			
8	108+784	La Higuera	9.5	5.8	1963	55			
9	114+044	San Jacinto	7.6	6.9	1964	50			
10		La Milagrosa	8.6	7.0	1964	60			
11	125+674	Santa Amalia (Malpaisilio)	16.5	15.4	1964	30]		
12	145+617	El Caimito	31.8	10+10.2+10	1966	55	45		
13	148+051	Tionoste	19	18.0	1966	30			Y
14	156+785	San Juan de Dios	17.9	7.5+7.5	1965	90	70	•	
15	164+125	El Jicaral	130	4(32.5)	2001	70	55	*	
16	169+544	Las Pilas	8.5	8.0	1966	70		*	
17	170+952	La Banderita	31.6	6.6+15.4+6.6	1966	100	65	*	*
18	190+265	La Manga No. 1	10.6	9.3	1966	55			
			Total					6	4

3.7.8 Identificación de Sitios Críticos de Desastres

El número total de sitios críticos en la totalidad de las vías objeto fue de 55, de los que 20 (36%) lo fueron por colapso de masa de rocas, 15 (27%) por caída de rocas, 11 (20%) por socavación de puentes, 5 (9%) por alud de fango y 4 (7%) por deslizamientos de talud como se muestra en la Tabla 3.7.11.

Tabla 3.7.11 Número Total de Sitios Críticos de Desastres

		I	tems de Desastr	es .			K	N° de sitios
Nombre de Carretera	Caida de Rocas	Colapso de Masa de Rocas	Deslizamientos de Talud	Alud de Fango	Socavación de puentes	No. de Sitios Críticos	Distancia Total (km)	críticos por kilómetro
NIC. 1	7	9	0	0	6	22 (40%)	237	0.09
NIC. 3	0	6	4	1	1	12 (22%)	60	0.20
NIC. 5	1	0	0	0	0	1 (2%)	48	0.02
NIC. 15	0	0	0	4	0	4 (7%)	43	0.09
NIC. 24	0	0	0	0	0	0 (0%)	77	0
NIC. 26	7	5	0	0	4	16 (29%)	99	0.16
Total	15 (27.3%)	20 (36.4%)	4 (7.2%)	5 (9.1%)	(20.0%)	55 (100%)	564	0.10

El número total de sitios críticos por vía es de 22 sitios (40%) en NIC1, 12 sitios (22%) en NIC3, 4 sitios (7%) en NIC15, 1 sitio (2%) en NIC5 y ninguno en NIC24 y 16 sitios (29%) en NIC26.

Si se analiza el riesgo por números de probabilidad de desastre vial por kilómetro. El promedio de probabilidad del riesgo es 0.10 sitios/kilómetro. El valor más alto es de 0.2 sitios/kilómetro de NIC3, el segundo valor es de 0.16 sitios/kilómetro y tercero de 0.09 sitios/kilómetro en NIC1 y NIC15 y 0.02 sitios/kilómetro en NIC.5.

El riesgo más alto es de colapso de masa de roca, el segundo es de caída de rocas, el tercero es de socavación del cimiento del puente y luego alud de fango y deslizamiento del talud.

CAPÍTULO 4

CONTRAMEDIDAS /ESTIMACIÓN PRELIMINAR DE COSTOS PARA LOS SITIOS CRÍTICOS DE DESASTRES

CAPÍTULO 4 CONTRAMEDIDAS / COSTO PRELIMINAR ESTIMADO DE LOS SITIOS CRÍTICOS DE DESASTRES

4.1 Generalidades

El puntaje del estudio de los sitios críticos de desastres varía individualmente con los ítems de la situación, la escala de desastres y la frecuencia de desastres, etc. Por lo tanto, Las contramedidas de prevención de desastres viales deben ser estudiados tomando en consideración las condiciones naturales, las condiciones ambientales y los materiales/equipos de construcción en Nicaragua y el presupuesto de mantenimiento vial del MTI.

4.2 Objetivos

4.2.1 Vista de Contramedidas

Los objetivos y la vista de las contramedidas de desastres viales son como sigue.

- Evitar la ocurrencia de desastres inesperados.
- Mantener la vía libre sin cerrar ninguna sección de la carretera al tráfico ni las personas
- Preservar la propiedad pública y privada, y
- Reducir el costo de mantenimiento y rehabilitación de los caminos.

4.2.2 Definición de Contramedidas

Cada sitio crítico de desastres está en dependencia de la condición de estabilidad. Las contramedidas para los sitios críticos de desastre se dividen en tres categorías considerando las características de desastres.

- Contramedidas Permanentes,
- Contramedidas Temporales, y
- Contramedidas de Emergencia

1. Contramedidas Permanentes

Las contramedidas permanentes se definen como sigue.

- La vida útil de contramedidas permanentes debe ser, por lo menos, veinte (20) años con trabajos de mantenimiento.
- El presupuesto adecuado para las contramedidas permanentes debe ser asegurado siempre.

2. Contramedidas Tempolares

Las contramedidas tempolares se definen como sigue.

 La vida útil de contramedidas permanentes debe ser, por lo menos, diez (10) años con trabajos de mantenimiento.

3. Contramedidas de Emergencia

Las contramedidas de emergencia se definen como sigue

- Los sitios con problema serio y peligroso que requieren el mejoramiento inmediato.
- La vida útil de contramedidas será antes de próxima temporada de lluvia o menos de medio año.
- Es necesario decidirse sobre la implementación de las contramedidas temporales o permanente durante la vida de las contramedidas de emergencia.

4.3 Política Básica de Contramedidas

4.3.1 Política Básica

La política básica de las contramedidas debe ser establecida tomando en consideración los ítems siguientes.

- La mayoría de los materiales de construcción son producidos en Nicaragua.
- Los materiales especiales de construcción se pueden importar desde los países vecinos.
- El costo de construcción debe ser barato, relativamente.
- El mejoramiento de los sitios críticos de desastres necesita no sólo materiales sino también las técnicas de obras, ingenieros y obreros.

4.3.2 Adquisición de Materiales/Equipos de Construcción

Los materiales y equipos se pueden adquirir en Nicaragua y los países vecinos como se muestran en Tabla 4.3.1 y Tabla 4.3.2. Por lo tanto, muchos tipos de contramedidas se pueden aplicar en Nicaragua como se muestran en la Tabla 4.3.3.

Tabla 4.3.1 Adquisición de Materiales de Construccioón

İtems	Nicaragua	Tercer país	Observaciones
Cemento Portland	0		
Agregados gruesos	0		
Agregados finos	0		
Paneles de plywood	0		
Encofrado de acero		0	
Barras de refuerzo		0	
Aditivos		0	
Barras PC		0	

Nota: O; Posibilidad de Adquisición

Tabla 4.3.2 Adquisición de Equipos de Construccioón

Items	Capacidad	Nicaragua	Tercer país	Observaciones
Bulldozer	15t	O	Paredragazazari (Sarahan Ingaza)	
Pala mecánica	0.6m ³	0		
Aplanadora de ruedas	10t	0		
Aplanadora de caminos	10t	0		
Aplanadora vibratoria	10t	0		
Volquetes	11t	0		
Camiones	10t	0		
Soldadora	300A	0		
Camión de grúa	20t	0		
Camión de grúa	45t		0	
Trailer	20t	0		
Quebrantadora hidráulica	1300kg		0	
Camión mezcladora	4.5 m ³		0	
Quebrantadora Jumbo	1300kg		0	
Compresor	5 m ³ /min		0	
Generador	25kvA-150kvA		0	

Nota: O; Posibilidad de Adquisición

Tabla 4.3.3 Tipos de Contramedidas y Registros de Construcción en Nicaragua

Clasificación	Tipo de Contramedidas	Registro de construcción	Posibilidad de Construcción
(1)	Retiro	0	
Movimientos	Recorte	0	
de tierras	División de rocas	0	
	Terraplenado	0	
(2)	Hidrosiembra	×	
Vegetación	Vegetación	0	
(3) Drenaje	Acequia de ladera	0	
superficial	Contracuneta	0	
	Acequia de pie	0	
(4) Estructura	Enchapado en piedra	0	
•	Torcreto	×	
	Marco de concreto proyectado	×	Δ
	Muro de gabiones	0	
	Muro de mampostería	0	
	Muro de retención por gravedad	0	
	Muro de retención en T	0	
	Colocación de pilotes	0	<u> </u>
(5)	Red de prevención	X	Δ
Protección	Valla de prevención	×	
	Barrera con pared de concreto	×	
	Pernos de anclaje	X	
	Albergue contra rocas	0	-
	Presa de concreto	0	
(6)Protección de puentes	Revestimiento de concreto	0	
	Revestimiento de talud con piedras	0	
	Valla de gabiones en el pilar	0	
	Deposición de rocas	0	

Nota: O;Hay resultado . ×; No hay resultado

--; Hay resultado. □; Posible

△;. Necesidad de asesoría técnica y materiales/equipo

4.4 Estándar del Diseño

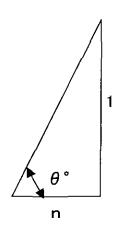
En Nicaragua, el NIC.2000 se adoptó la gradiente del talud de corte y terraplén. Por lo tanto, después del estudio de inspección de este Estudio, la gradiente se adoptó como se muestra en cada tabla.

4.4.1 Talud de Terraplén

En Nicaragua se determina la gradiente del talud de terraplén conforme al volumen del tráfico y a la altura del terraplén. En caso de que la altura del terraplén sea menos de 1.2 metros, se adopta la gradiente suave contemplando el uso de terreno a lo largo de la carretera. Se muestra el valor recomendado en la Tabla 4.4.1.

Tabla 4.4.1 El Estándar Recomendado para la Gradiente del Terraplén

Cla	ificación fu	ncional	Colector Secundario	Colector Principal	Troncal Secundario	Tropcal Principal	Troncal Especial
N	úmero de ca	ırriles	2	2	2	2	4
Promedio	futuro de t (vpd)	ráfico diario	0-400	400-1,800	1,800-3,000	3,000	3,000
Pendient	Townslés	H < 1.2 m	3:1 (2:1)	3:1 (2:1)	4:1 (3:1)	4:1 (3:1)	4:1 (3:1)
e de talud	Terraplén	H > 1.2 m	1 1/2 : 1 (1 1/2 : 1)	1 1/2 : 1 (1 1/2 : 1)	2:1 (1 1/2:1)	2:1 (1 1/2:1)	2:1 (1 1/2:1)


Las cifras entre paréntesis son valores existentes en Nicaragua.

4.4.2 Talud de Corte

En Nicaragua se determina el estándar de la gradiente del talud del corte conforme a la sanidad geológica y al volumen del tráfico. En cuanto a la sanidad geológica, se clasifica en cuatro categorías como la roca sana, el suelo desconocido, el suelo bien compactado y el suelo no compactado.como se muestra en la Tabla 4.4.2.

Tabla 4.4.2 Estándar Recomendado para el Talud de Corte

Clas	ificación	Altura de Corte (m)	gradiente de Corte θ(°)	1/tan θ	n	:	1
		10 ≧ H	80	0.1763	0.2		1
Roca dural	ΙB	10 < H ≤ 20	80	0.1763	0.2	.:	1
Noca dura	1.0	20 < H ≤ 30	60	<u>0.5</u> 774	0.6	;	1
		H > 30	60	0.5774	0.6	:	1
		10 ≧ H	65	0.4663	0.5	:	1
l i	IB	10 < H ≦ 20	65	0.4663	0.5	:	1
		20 < H ≤ 30	55	0.7002	0.8	:	1
1		H > 30	55	0.7002	0.8	:	1
1	ΙA	10 <u>≧</u> H	60	0.5774	0.6		1
Roca		10 < H ≤ 20	60	0.5774	0.6	:	1
blanda		20 < H ≤ 30	50	0.8391	1	:	1
		H > 30	50	0.8391	1	••	1
}		10 ≧ H	55	0.7002	0.8	••	1
	ПΑ	10 < H ≦ 20	55	0.7002	0.8	•	1
	ш.л.	20 < H ≤ 30	45	1.0000	1	:	1
		H > 30	<u>45</u>	1.0000	1	٠.	1
		<u>10 ≧ H</u>	45	1.0000	1	:	1
Suelo/	ш	10 < H ≦ 20	40	1.1918	1.2	:	1
Arena		20 < H ≦ 30	35	1.4281	1.5	:	1
		<u>H ></u> 30	30	1.7321	1.8		1

4.5 Clasificación de Contramedidas

4.5.1 Contramedidas Aplicables

Las contramedidas aplicables para fallas del talud se muestran en la Tabla.4.5.1 y las aplicables para la socavación del puente se muestran en la Tabla 4.5.2.

Tabla 4.5.1 Aplicabilidad de las Contramedidas a Fallas del Talud

	in Carlo (Sumaska) Statistica (Sumaska)			3.5						ente	grialisor		
Clasificación	Tipo de obra	col	Caída apsc roca	de	de	Colapso de Masa de Rocas		Daños al Talud			Alud de Fango		
		E	Т	P	E	Т	P	E	Т	P	E	Т	P
(1)	Retiro	0	0	0	0	0	0	0	0	0	0	0	0
Movimiento	Recorte	0	0	0	0	0	0	0	0	0	0	0	0
de tierras	División de rocas	0	0	0	0	0	0	×	×	×	0	0	0
	Terraplenado	0	0	0	×	X	X	0	0	0	Δ	Δ	X
(2)	Hidrosiembra	0	0	0	Δ	Δ	Δ	0	0	0	0	0	0
Vegetación	Vegetación	0	0	0	X	X	X	0	0	0	0	0	0
(3) Drenaje	Acequia de ladera	0	0	\bigcirc	Δ	Δ	0	0	0	0	X	×	X
superficial	Contracuneta	Δ	0	\bigcirc	Δ	0	0	Δ	0	0	X	X	X
	Acequia de pie	Δ	0	0	Δ	0	0	Δ	0	0	X	X	X
(4)	Enchapado en piedra	0	0	Δ	X	X	X	0	0	Δ	×	X	×
Estructura	Torcreto	Δ	0	0	Δ	0	0	Δ	Δ	Δ	Δ	0	0
	Marco de concreto proyectado	×	Δ	0	×	Δ	0	×	Δ	0	×	Δ	0
	Muro de gabiones	0	0	Δ	0	0	Δ	0	0	Δ	0	0	Δ
	Muro de mampostería	Δ	0	0	Δ	0	0	Δ	0	0	Δ	Δ	Δ
	Muro de retención por gravedad	Δ	0	0	Δ	0	0	Δ	0	0	Δ	Δ	Δ
	Muro de retención en T	×	Δ	\bigcirc	×	Δ	0	X	Δ	0	X	Δ	Δ
	Colocación de pilotes	×	X	X	X	X	X	Δ	0	0	X	X	×
(5)	Red de prevención	Δ	Δ	X	Δ	0	0	X	×	X	×	X	X
Protección	Valla de prevención	X	Δ	0	\triangle	0	0	X	×	X	X	X	×
	Barrera con muro de concreto	×	Δ	0	Δ	0	0	×	X	×	×	×	×
	Pernos de anclaje	Δ	X	X	0	0	\bigcirc	×	×	X	X	X	×
	Albergue contra rocas	X	X	Δ	X	Δ	0	X	X	X	×	Δ	0
	Presa de concreto	X	X	Χ	Х	Χ	X	X	Χ	Χ	X	0	0

Nota: E: Medida de control de emergencia; T: medida de control temporal,

P: Medida de control permanente

 \bigcirc : Muy aplicable \triangle : Aplicable \times : No aplicable

		E	istrib	O		Pilar	
Clasificación	Tipo de obra	Е	T	P	E	T	М
Protección de puentes	Revestimiento de concreto	X	0	0	×	0	0
_	Revestimiento de talud con piedras	Δ	0	0	0	0	0
	Colchón de Gavión para pilares	X	×	X	0	0	Δ
	Escollerado	0	×	X	0	X	X
	Protección de pie con concreto	X	0	Δ	X	0	Δ
	Deposición de rocas	0	×	×	0	×	×

Tabla 4.5.2 Aplicabilidad de Contramedidas para la Socavación de Cimiento de Puente

Nota: E: Medida de control de emergencia; T: medida de control temporal,

P: Medida de control permanente

 \bigcirc : Muy aplicable \triangle : Aplicable \times : No aplicable

4.5.2 Caída de Roca, Colapso

1) Contramedidas de Emergencia

En la Figura 4.5.1 se presenta un procedimiento de selección de contramedidas de emergencia en caso de caída de rocas y colapso.

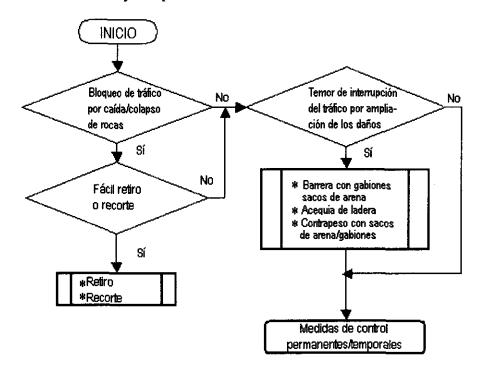


Figura 4.5.1 Selección de Contramedidas de Emergencia en caso de Caída de Rocas y Colapso

2) Contramedidas Temporales/Permanentes

Los diagramas de flujo de las Figuras 4.5.2 y 4.5.3 explican el procedimiento de selección de las medidas de control temporales y permanentes.

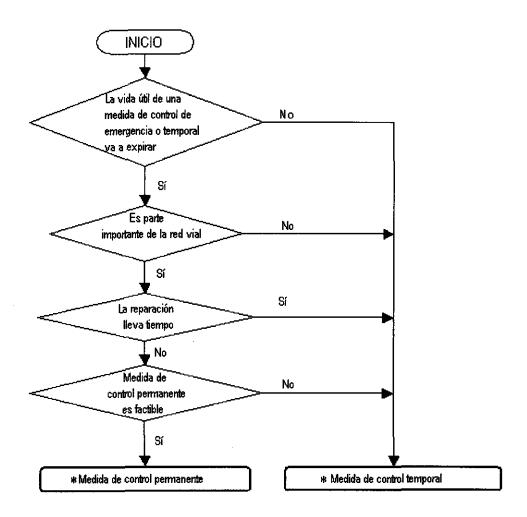


Figura 4.5.2 Selección de Contramedidas Temporales y Permanentes

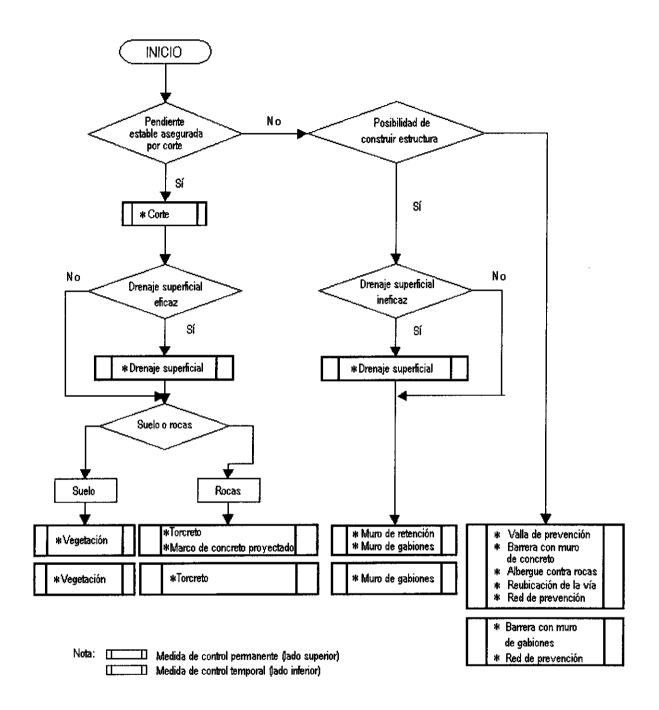


Figura 4.5.3
Selección de Contramedidas Temporales y Permanentes para Caída de Rocas y Colapso

4.5.3 Colapso de Masa de Roca

1) Contramedidas de Emergencia

En la Figura 4.5.4.se presenta un procedimiento de selección de medidas de control de emergencia en casos de colapso de rocas.

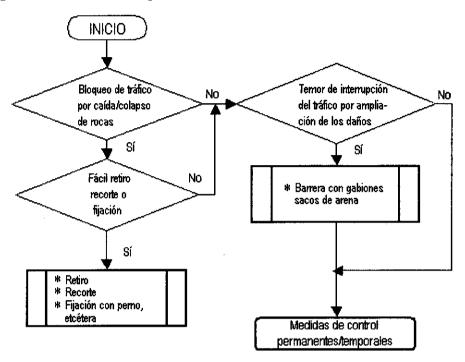
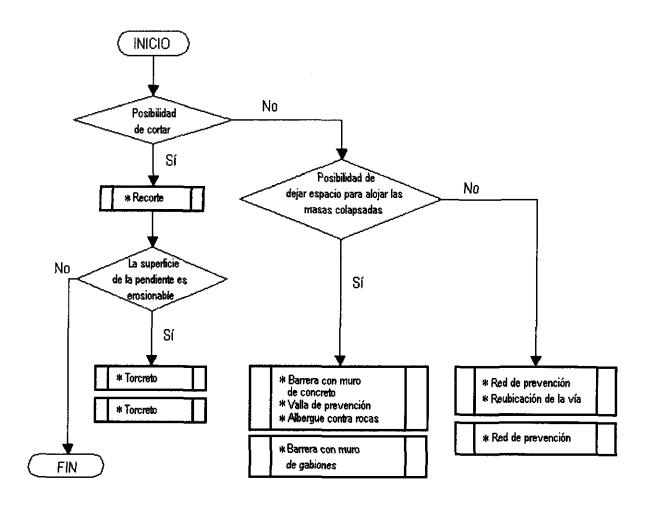



Figura 4.5.4 Selección de Contramedidas de Emergencia para Caída de Masa de Roca

2) Contramedidas Temporales/Permanentes

Los diagramas de flujo de las Figuras 4.5.2 y 4.5.5 explican el procedimiento de selección de contramedidas temporales y permanentes

Nota: Medida de control permanente (lado superior)

Medida de control temporal (lado inferior)

Figura 4.5.5
Selección de Contramedidas Temporales y Permanentes para Caída de Masa de Roca

4.5.4 Deslizamiento de Talud

1) Contramedidas de Emergencia

En la Figura 4.5.6se presenta un procedimiento de selección de contramedidas de emergencia en caso de deslizamiento de talud.

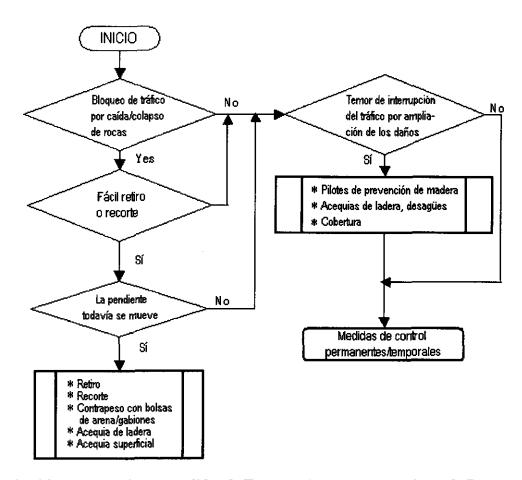


Figura 4.5.6 Selección de Contramedidas de Emergencia para Deslizamiento de Talud

2) Contramedidas Temporales/Permanentes

Los diagramas de flujo de las Figuras 4.5.2 y 4.5.7 explican el procedimiento de selección de contramedidas temporales y permanentes

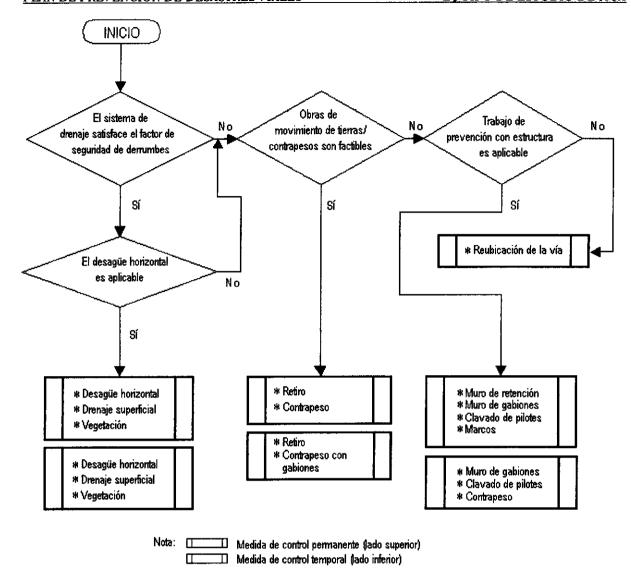


Figura 4.5.7 Selección de Contramedidas para Deslizamiento de Talud

4.5.5 Alud de Fango

1) Contramedidas de Emergencia

Las medidas de control de emergencia se centran en mantener libre la vía sin cerrar ninguna sección al tráfico ni las personas ante la ocurrencia de algún daño vial no previsto.

- -Retirar el cascajo
- -Detenerlo mediante vallas, muros de retención o presas
- -Controlar el tráfico.

2) Contramedidas Temporales/Permanentes

El diagrama de flujo de la Figura 4.5.8 explica el procedimiento de selección de medidas de control de emergencia y temporales/permanentes.

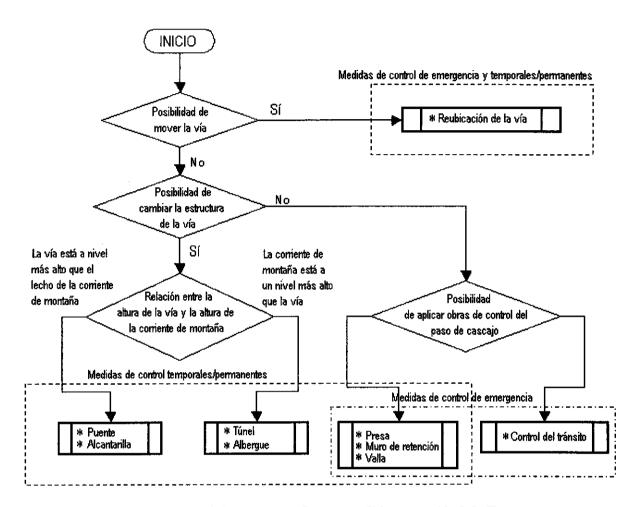


Figura 4.5.8 Selección de Contramedidas para Alud de Fango

4.5.6 Socavación de Cimiento de Puente

1) Contramedidas de Emergencia

En la Figura 4.5.9 se presenta un procedimiento de selección de contramedidas de emergencia en casos de socavación de cimiento de puente.

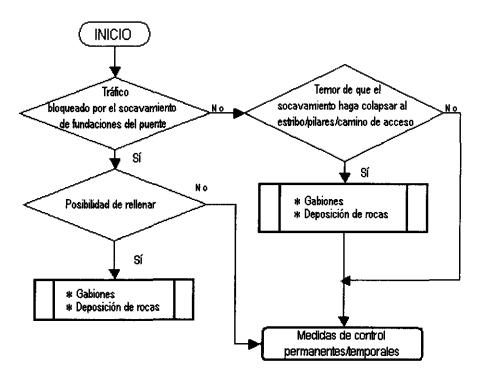


Figura 4.5.9
Selección de Contramedidas de Emergencia para la Socavación de Cimiento de Puente

2) Contramedidas Temporales/Permanentes

El diagrama de flujo de la Figura 4.5.10 explica el procedimiento de selección de medidas de control de emergencia y temporales/permanentes.

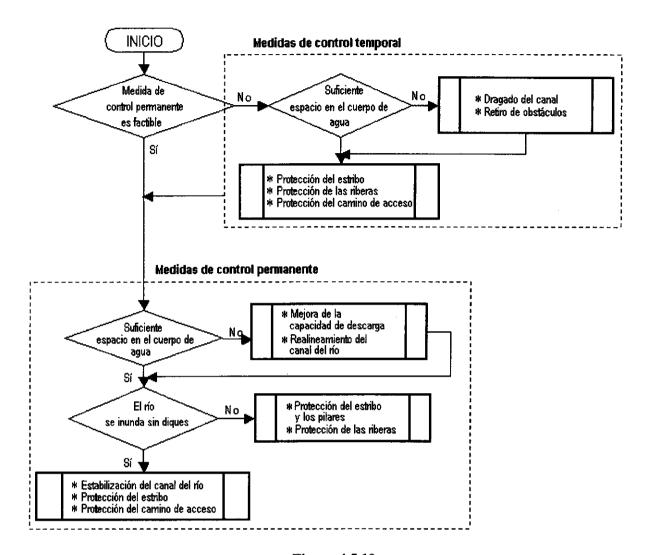


Figura 4.5.10
Selección de Contramedidas Temporales y Permanentes para Socavación de Cimiento de Puente

4.5.7 Clasificación de Contramedidas

Las contramedidas de sitios críticos de desastre se clasifican en seis grupos, atendiendo a su propósito y su aplicación. La relación entre los objetivos de las medidas de control y el tipo de las obras se ilustra en la Figura 4.5.11.

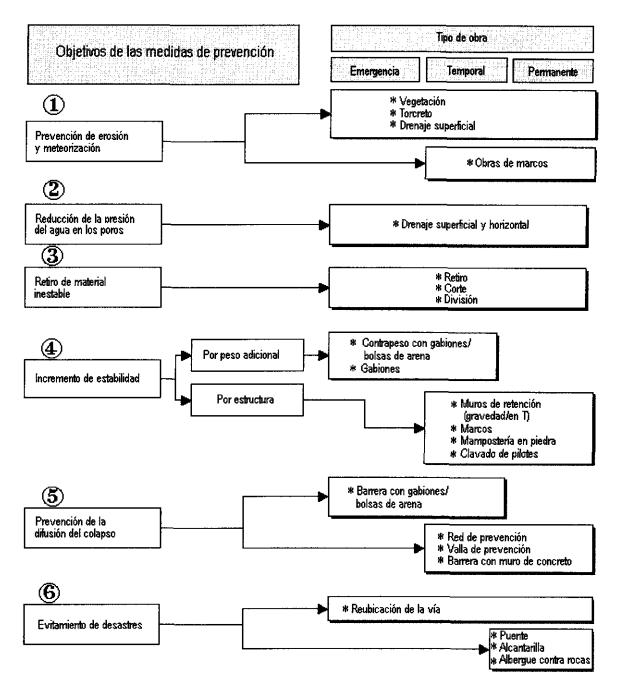


Figura 4.5.11 Relación entre los Objetivos de Contramedidas de Prevención y Tipo de Obras de Construcción

4.5.8 Contramedidas para Cada Ruta objeto de Estudio

Las contramedidas para cada sitio crítico de las carreteras objeto de estudio se muestran en las siguientes tablas. Las contramedidas presentadas fueron estudiadas en los artículos desde 4.5.3 a 4.5.10.

1) NIC. 1

Tabla 4.5.3 Tipo de Contramedidas para las Fallas del Talud en NIC1

N°	Ubicación	Clasificación de desastre vial	Puntuación	Tipo de medidas de contro	1	Cantidad (m²)
1	60.9	Caída de rocas	70	Barrera con pared de gabiones y red de prevención	T	440(m)
2	73.2	Caída de rocas	78	Red de prevención	T	7000
3	168.4	Caída de rocas	84	Red de prevención	T	19703
4	168.6	Colapso de rocas	72	Red de prevención	T	5363
5	169.8	Colapso de rocas	72	Red de prevención	T	6466
6	170.7	Colapso de rocas	72	Recorte + Torcreto	P	15242
7	171.3	Colapso de rocas	78	Recorte + Torcreto	P	8752
8	175.0	Colapso de rocas	76	Recorte + Torcreto	P	2252
9	176.2	Colapso de rocas	74	Recorte + Torcreto	P	4988
10	178.7	Colapso de rocas	76	Red de prevención	T	7760
11	187.3	Colapso de rocas	73	Recorte + Torcreto	P	2540
12	204.7	Colapso de rocas	73	Red de prevención	T	2217
13	214.7	Colapso de rocas	70	Recorte + Torcreto	P	1935
14	232.5	Colapso de rocas	75	Red de prevención	T	3695
15	233.7	Caída de rocas	73	Recorte + Drenaje superficial + Vegetación	T	8407
16	235.6	Caída de rocas	73	Recorte + Torcreto	P	1389

Nota: E: Contramedidas de emergencia, T: Contramedidas temporales

P: Contramedidas permanentes

Tabla 4.5.4 Tipo de Contramedidas para Socavación de Cimiento de Puente en NIC1

M3	Ubicación	Clasificación de desastre vial	Puntuación	Tipo de medida de cor	rtro l	Cantidad (m²)
1	113+190	Socavamiento de fundaciones de puente	90	Clochón de gaviones	Т	252
2	135+640	Socavamiento de fundaciones de puente	100	Clochón de gaviones	Т	18
3	150+330	Socavamiento de fundaciones de puente	90	Clochón de gaviones	Т	666
4	151+850	Socavamiento de fundaciones de puente	100	Clochón de gaviones	Т	117
5	226+890	Socavamiento de fundaciones de puente	100	Clochón de gaviones	Т	41
6	233+245	Socavamiento de fundaciones de puente	100	Clochón de gaviones	Т	18

2) NIC.3

Tabla 4.5.5 Tipo de Contramedidas para las Fallas del Talud en NIC.3

Ŋ.	Ubicación (Km)	Clasificación de desastre vial	Puntuación	Tipo de medida de control		Cantidad (m²)
1	3.9	Colapso de rocas	74	Recorte	T	1046
2	6.9	Colapso de rocas	72	Recorte	T	1369
3	7.4	Colapso de rocas	80	Recorte	T	1049
4	22.1	Colapso de rocas	74	Recorte	T	5287
5	32.7	Colapso de rocas	70	Recorte + Torcreto	P	1836
6	32.9	Fallas del talud		Recorte + Terraplenado +Contrapeso +Vegetación	P	3460
7	35.2	Paso de cascajo	75	Presa	P	100(m)
8	35.9	Fallas del talud	71	Recorte + Terraplenado +Contrapeso +Vegetación	P	4352
9	38.9	Fallas del talud	90	Recorte + Terraplenado +Contrapeso +Vegetación	P	4526
10	39.4	Fallas del talud	90	Recorte + Terraplenado +Contrapeso +Vegetación	P	284
11	40.0	Colapso de rocas	85	Recorte + Torcreto	P	2272

Tabla 4.5.6 Tipo de Contramedidas para Socavación de Cimiento de Puente en NIC.3

N°	Ubicación	Clasificación de desastre via	Puntuación	Tipo de medida de contr	ol	Cantidad (m²)
1	119+050	Socavación d cimiento d puente	1 400	Reconstruction del aleton del muro	P	8

3) NIC.5

Tabla 4.5.7 Tipo de Contramedidas para las Fallas del Talud en NIC.5

No	(IXIII)	arodour vim		Tipo de medidas de control	Cantidad (m²)
1	24.6	Caída/colapso de rocas	76	Recorte + Drenaje superficial + Vegetación	55600

4) NIC.15

Tabla 4.5.8 Tipo de Contramedidas para las Fallas del Talud en NIC.15

N'	Ubicación (Km)	Clasificación de desastre vial	Puntuación	Tipo de medida de c	ontrol	Cantidad (m²)
1	13.6	Paso de cascajo	70	Muro de Gaviones	T	100
2	11.7	Paso de cascajo	70	Muro de Gaviones	T	70
3	11.1	Paso de cascajo	70	Presa	T	65
4	9.9	Paso de cascajo	70	Presa	T	45

5) NIC.26

Tabla 4.5.9 Tipo de Contramedidas para las Fallas del Talud en NIC.26

Vo	Ubicación (Km)	Clasificación de desastre vial	Puntuación	Tipo de medidas de control		Cantidad (m²)
1	9.0	Caída de rocas y colapso	71	Recorte	T	841
2	12.7	Caída/colapso de rocas	70	Recorte	T	2724
3	19.9	Caída/colapso de rocas	71	Recorte	T	6683
4	20.9	Caída/colapso de rocas	72	Recorte	T	1595
5	24.7	Caída/colapso de rocas	70	Recorte + Torcreto	T	2050
6	29.3	Caída/colapso de rocas	76	Recorte	T	77(m)
7	29.8	Colapso de rocas	73	Red de prevención	T	956
8	33.6	Caída/colapso de rocas	72	Recorte + Drenaje superficial	T	780
9	34.0	Colapso de rocas	80	Recorte	T	2472
10	34.2	Caída/colapso de rocas	85	Recorte + Drenaje superficial	T	9641
11	37.0	Colapso de rocas	86	Red de prevención	T	2226
12	45.5	Colapso de rocas	71	Red de prevención	T	6472

Tabla 4.5.10 Tipo de Contramedidas para Socavación de Cimiento de Puente en NIC.26

No	Ubicación	Clasificación de desastre vial	Puntuación	Tipo de medidas de control	Cantidad (m²)
1	107+533	Socavación de cimiento de puente	100	Colchón de Gaviones	
2	108+154	Socavación de cimiento de puente	90	Colchón de Gaviones	54
3	155+785	Socavación de cimiento de puente	90	Colchón de Gaviones	248
4	170+952	Socavación de cimiento de puente	100	Colchón de Gaviones	369

4.6 Estimación Preliminar de Costos

4.6.1 Cantidad de Construcción

Las seis vías tienen 55 sitios críticos de desastre en total. Las cantidades de construcción para todos los sitios críticos se han estimado sobre la base de los tipos de medidas de control y los planos de este estudio. En la Tabla 4.6.1 se muestra una lista de las cantidades de construcción.

Tabla 4.6.1 Cantidad de Construcción

Clasificación	Tipo de obra	Comentarios	Unidad	Cantidades
(1)Drenaje	Acequia de ladera	0.5×0.5 1:1	М	670
superficial	Contracuneta	U-0.3×0.3	М	2,355
	Acequia de pie		М	715
	Desague vertical	U-0.3×0.3	М	613
(2)Drenaje horizontal	Desagüe horizontal	Tubo de PVC φ0.04	М	400
(3)Vegetación	Rociado de semillas con bomba		m ²	30,754
	Rociado de semillas y mezcla con pistola		m ²	0
(4)Estructura	Torcreto	t=10cm	m ²	53,879
	Marco de concreto proyectado		m ²	0
	Marco de bloques de concreto		m ²	0
	Gaviones		m ³	770
(5)Apoyo estructural	Muro de revestimiento de talud en piedra	7.00	m ²	0
	Muro de retención por gravedad		m³	0
	Muro de gabiones		m ³	2,440
	Muro de retención en forma de T		m ³	2,108
	Pilotes de prevención		m ³	0
	Protección de pie con revestimiento de talud con piedras		m³	0
	Protección de pie con concreto		m ³	0
(6) Movimientos de	Retiro		m³	11,087
tierra	Corte de rocas		m ³	50,017
	Precorte de rocas	Voladura de rocas	m ³	111
	Corte de suelo		m ³	79,344
	Terraplenado		m³	52,241
(7)Dispositivos para	Red de prevención		m ²	64,130
evitar la caída de	Valla de prevención		m ²	0
rocas	Barrera con gaviones		m ³	308
	Barrera con muro de concreto		m ³	0
(8) Anclaje	Pernos de anclaje		c.u.	0
(9) Protección de las	Revestimiento de concreto		m ³	0
riberas de los ríos	Gaviones		m ³	1958
	Revestimiento de talud con piedras y mortero		m ³	0
(10) Protección de	Protección de pie con gaviones		m ³	0
	Muro de pie de tablestacas		m²	0

4.6.2 Costos unitarios

Los costos unitarios de la construcción que prepararon el MTI y este equipo de estudio provienen de las estimaciones de cuatro constructoras. El equipo de estudio decidió aplicar los costos unitarios promedio de las cuatro constructoras. Sin embargo, para algunas de las obras que se señalan en el estudio no se contó con precios reales de mercado debido a la falta de experiencia al respecto en Nicaragua. Los costos unitarios de esas obras se estimaron sobre la base de su precio de mercado en Japón. En la Tabla 4.6.2 se muestra una lista de los costos unitarios

Table 4.6.2 Unit Costs

Clasificación	Tipo de obra	Comentario	Unidad	Costo unitario
(1)Drenaje superficial	Acequia de ladera	0.5×0.5 1:1	m	65.12
	Contracuneta	U-0.3×0.3	m	49.49
	Acequia de pie		m	60.78
	Desague vertical	U-0.3×0.3	m	49.49
(2) Drenaje horizontal	Desague horizontal	Tubo de PVC φ0.04	m	27.00
(3)Vegetación	Rociado de semillas con bomba		m ²	6.05
	Rociado de semillas y mezcla con pistola		m ²	8.14
(4)Estructura	Torcreto	t=10cm	m ²	48.30
	Marco de concreto proyectado		m ²	-
	Marco de bloques de concreto		m ²	-
	Gaviones		m ³	43.67
(5)Apoyo estructural	Muro de revestimiento de talud con piedras		m ²	66.91
	Muro de retención por gravedad		m ³	120.10
	Muro de gaviones		m ³	143.97
	Muro de retención en forma de T		m ³	424.24
	Pilotes de prevención		m ³	-
	Protección de pie con revestimiento de talud con piedras		m ³	66.91
	Protección de pie con concreto		m ³	391.25
(6) Movimientos de	Retiro		m ³	5.87
tierra	Corte de rocas		m ³	92.83
	Pre-corte de rocas	Voladura de rocas	m ³	109.50
	Corte de suelo		m ³	5.93
	Terraplenado		m ³	14.70
	Red de prevención		m ²	33.65
evitar la caída de rocas	Valla de prevención		m ²	-
	Barrera con gaviones		m ³	97.49
	Barrera con muro de concreto		m ³	625.13
(8)Anclaje	Pernos de anclaje	1	c.u	218.25
	Revestimientos de concreto		m ³	654.95
riberas de los ríos	Gaviones		m ³	97.49
	Revestimiento de talud con piedras y mortero		m³	66.91
(10) Protección de estribo	Protección de pie con gabiones		m ³	43.67
pilares	Muro de pie de tablestacas		m ²	

4.6.3 Estimacione Preliminar de Costos para Cada Carretera Objetivo

El costo aproximado para cada ruta sujeta de estudio esta presentada en la Tabla 4.6.3 – 4.6.10.

Tabla 4.6.3 Costo de Construcción de Contramedidas para las Fallas del Talud en Nic. 1

N	Ubicación	Clasificación de desastre vial	Tipo de medidas de control		Cantidad (m²)	Costo (x 1000 US\$)
1	60.9	Caída de rocas	Barrera con pared de gaviones y Malla de prevención	Т	440(m)	253
2	73.2	Caída de rocas	Malla de prevención	T	7000	236
3	168.4	Caída de rocas	Malla de prevención	T	19703	812
4	168.6	Colapso de rocas	Malla de prevención	T	5363	315
5	169.8	Colapso de rocas	Malla de prevención	T	6466	364
6	170.7	Colapso de rocas	Recorte + Torcreto	P	15242	1,772
7	171.3	Colapso de rocas	Recorte + Torcreto	P	8752	639
8	175.0	Colapso de rocas	Recorte + Torcreto	P	2252	184
9	176.2	Colapso de rocas	Recorte + Torcreto	P	4988	385
10	178.7	Colapso de rocas	Malla de prevención	T	7760	456
11	187.3	Colapso de rocas	Recorte + Torcreto	P	2540	197
12	204.7	Colapso de rocas	Malla de prevención	T	2217	125
_13	214.7	Colapso de rocas	Recorte + Torcreto	P	1935	175
14	232.5	Colapso de rocas	Malla de prevención	T	3695	208
15	233.7	Caída de rocas	Recorte + Drenaje superficial +Vegetación	Т	8407	116
16	235.6	Caída de rocas	Recorte + Torcreto	P	1389	152
	Total					6,389

ta: E: Medida de control de emergencia, T: Medida de control temporal

P: Medida de control permanente

Tabla 4.6.4 Costo de Construcción de Contramedidas para Socavación de Cimiento de Puente en Nic 1

N°	Ubicación	Clasificación de desastre vial	Tipo de medida control	de	Cantidad (m. 1	Costo (x 1000 US\$)
1	113+190	Socavación de cimiento de puente	Colchón de gaviones	Т	252	25
2	135+640	Socavación de cimiento de puente	Colchón de gaviones	Т	18	2
3	150+330	Socavación de cimiento de puente	Colchón de gaviones	Т	666	65
4	151+850	Socavación de cimiento de puente	Colchón de gaviones	Т	117	12
5	226+890	Socavación de cimiento de puente	Colchón de gaviones	Т	41	4
6	233+245	Socavación de cimiento de puente	Colchón de gaviones	Т	18	2
Tota	1	-				110

Tabla 4.6.5 Costo de Construcción de Contramedidas para las Fallas del Talud en NIC.3

N.	Ubicación (Km)	Clasificación de desastre vial	Tipo de medida de cor	itrol	Cantidad (m²)	Costo (x:1000 US\$)
1	3.9	Colapso de rocas	Recorte	T	1,046	70
2	6.9	Colapso de rocas	Recorte	T	1,369	91
3	7.4	Colapso de rocas	Recorte	Ţ	1,049	35
4	22.1	Colapso de rocas	Recorte	Ţ	5,287	177
5	32.7	Colapso de rocas	Recorte + Torcreto	P	1,836	174
6	32.9	Daño a la pendiente	Recorte + Terraplenado +Contrapeso +Vegetación	P	3,460	670
7	35.2	Paso de cascajo	Presa	P	100 (m)	429
8	35.9	Daño a la pendiente	Recorte + Terraplenado +Contrapeso +Vegetación	P	4,352	248
9	38.9	Daño a la pendiente	Recorte + Terraplenado +Contrapeso +Vegetación	P	4,526	191
10	39.4	Daño a la pendiente	Recorte + Terraplenado +Contrapeso + Vegetación	P	284	30
11	40.0	Colapso de rocas	Recorte + Torcreto	P	2,272	133
	Total					2,248

Tabla 4.6.6 Costo de Construcción de Contramedidas para Socavación de Cimiento de Puente en NIC.3

1	119+050	Socavación de cimiento de puente	Reconstrucción aleton del muro	del	P	8	3
N:	Ubicación	Clasificación de desastre vial	Tipo de medida control	de		Cantidad (m3)	Costo (x 1000 US\$)

Tabla 4.6.7 Costo de Construcción de Contramedidas para las Fallas del Talud en NIC.5

No	(Km)	desastre vial	Tipo de medidas de control		Cantidad (m²)	Costo (x 1000 US\$)
1	24.6	Caída/colapso de rocas	Recorte + Drenaje superficial + Vegetación	Т	55600	744

Table 4.6.8 Costo de Construcción de Contramedidas para las Fallas del Talud en NIC.15

N'	Ubicación (Km.)	Clasificación de desastre vial	Tipo de medida control	de	Cantidad (m²)	Costo (x 1000 US\$)
1	13.6	Alud de Fango	Muro de Gavione	es	100	58
2	11.7	Alud de Fango	Muro de Gavione	es	70	40
3	11.1	Alud de Fango	Presa	T	65	279
4	9.9	Alud de Fango	Presa	T	45	193
	Total			•		570

Tabla 4.6.9 Costo de Construcción de Contramedidas para las Fallas del Talud e NIC.26

Vo	Ubicación (Km)	Clasificación de desastre vial	Tipo de medidas de control		Cantidad (m²)	Costos (x 1000 US\$)
1	9.0	Caída de rocas y colapso	Recorte	Т	841	56
2	12.7	Caída de rocas y colapso	Recorte	Т	2,724	115
3	19.9	Caída de rocas y colapso	Recorte	T	6683	446
4	20.9	Caída de rocas y colapso		T	1,595	121
5	24.7	Caída de rocas y colapso	Recorte + Torcreto	T	2,050	159
6	29.3	Caída de rocas y colapso	Recorte	T	77(m)	44
7	29.8	Colapso de rocas	Red de prevención	T	956	52
8	33.6	Caída de rocas y colapso	Recorte + Drenaje superficial	T	780	60
9	34.0	Colapso de rocas	Recorte	T	2,472	191
10	34.2	colapso	Recorte + Drenaje superficial	Т	9,641	748
11	37.0	Colapso de rocas	Red de prevención	T	2,226	131
12	45.5	Colapso de rocas	Red de prevención	T	6,472	364
	Total					2,257

Tabla 4.6.10 Costo de Construcción de Contramedidas para Socavación de Cimiento de Puente en NIC.26

No	Ubicación	Clasificación de desastre vial	Tipo de medidas de control		Cantidad (m²)	Costo (x 1000 US\$)
1	107+533	Socavación de cimiento de puente	Colchón de Gaviones	Т	90	9
2	108+154	Socavamiento de fundaciones de puente	Colchón de Gaviones	Т	54	5
3	155+785	Socavamiento de fundaciones de puente	Colchón de Gaviones	Т	248	24
4	170+952	Socavamiento de fundaciones de puente	Colchón de Gaviones	Т	369	36
Tota	l					74

4.6.4 Costo Total

Las estimaciones generales de los costos para cada vía objetivo se presentan en la Tabla 4.6.11.

Table 4.6.11 Costo Tatal por Cada Ruta

Vía N'.	Costos (×1000US\$)
NIC 1	6,499
NIC 3	2,251
NIC 5	744
NIC 15	570
NIC 24	0
NIC 26	2,601
Total	12,665

US\$1=C\$13.9

CAPÍTULO 5

IDENTIFICACIÓN DE SITIOS DE PREVENCIÓN DE DESASTRES

CAPÍTULO 5. IDENTIFICACIÓN DE SITIOS DE PREVENCIÓN DE DESASRES

5.1 Estudio de Condición Natural

5.1.1 Objetivos

A los cincuenta y cinco (55) sitios críticos de desastre que se identificaron en el Capítulo 4 debe realizárseles un estudio más detallado para conocer todas las características de las condiciones de los ríos y de las condiciones geológicas. La Tabla 5.1.1 está ordenada de acuerdo al número de identificación y al tipo de desastre.

Tabla 5.1.1 Código de Número de Serie Sitios Críticos de Desastre para Investigación

Carretera N* NIC	2.1		
Número de serie de sião crítico de desastre	Número de idenlificación	Distancia desde Managua, en Km	Tipo de desastre
1	ND01A290	60.9	RE
2	N001A280	73.2	RF.
3	Jenquita i	113.19	Puente
4	San bi to hs Las Chan iks	13564	Puente
5	O.EcraEl	150.33	Puente
6	San Ramon	151.85	Puente
7	N001A240	16R4	RF.
R	N001B230	1686	RC.
9	N001B200	1698	RC.
10	100013190	1707	BC.
11	N001B170	171.3	RC.
12	N001B150	175.0	RC.
13	N001B120	1762	BC.
14	N001A110	1787	₹F.
15	N001B100	187.3	RC.
16	ND01B070	204.7	RC.
17	N0014050	214.7	RE.
18	Rio FreE	226.89	Puente
19	RíoTapacsi	233.245	Puente
20	NUUTBUR	232.5	RC.
21	N001A020	233.7	RE

Carretera N° NIC	.3		
Número de serie de sitio crítico de desastre	Número de identificación	Distancia desde Sébaco (en Km) ["Puente; desde Managua]	Tipo de desastre
23	D03E428	3.9	BC
24	003E400	6.9	RC.
25	00%E 870	7.4	RC.
26	El Guayacan	119.05	Puente
27	N 9033 326	22.1	RC
28	N 603B 240	32,7	RC.
3 54 65 9 2 6	H 003C 230	329	92
30	NGD3E178	35.2	D.F.
4	W 003C 160	35.9	- SS
32	N 003C 150	38.9	98
777	W003C140	প্ৰত্য	The Carlot
34	N 0 0 93 1 20	40.	RC.

Carretera N° NIC	Carretera N° NIC 5					
Número de serie de sitio crítico de desastre	Número de identificación	Distancia desde Matagalpa, en Km	Tipo de desastre			
35	ND05A010	24.6	RF.			

Carretera N*NIC	2.15		
Número de serie de sitio crítico de desastre	Número de identificación	Distancia desde Las Manos, en Km	Tipo de desastre
36	ND15E010	99	DF.
	N015F020	11.1	DE.
38	N015F050	11.7	DE.
79	N015E060	136	DF

Número de serie de silio crítico de desastre	Número de identificación	Distancia de I.C. entre San Isidro y Sébaco (Km) F Puente desde Managua)	Tipo de desastre
40	ND26A010	90	RF.
41	ND26A020	12.7	RF.
42	N026A030	19.9	RF.
43	N026A040	20.9	RF.
44	N026A060	24.7	RF.
45	La Benderla	170+952	Puente
46	N026A100	29.3	RF
47	N026B110	29.8	BC.
43	ND26A130	33.6	RF .
49	ND26R140	340	RC
<i>ፍ</i> ጊ	ND26A150	34.2	RF
51	N026B160	37.0	R.C.
52	San Juan de Dics	156+785	Puente
59	N026B210	45.5	RC.
54	Papaión	106+154	Puente
55	Sois	107+533	Puente

RC.	: Caida de rocas Colapso de rocas Desizamiento de pendiente	Distancia desde Matagalpa, en Km
DF.	Flujc de egua con sedimentos Socavamiento de fundaciones	

5.1.2 Estudio Hidrológico

1) Objetivos

El estudio hidrológico apuntó al río en que se seleccionó el puente por once puntos, distribuidos entre los cincuenta y cinco sitios críticos de desastre objeto de este plan. Cada dato básico se presenta en el Apéndice-3.

El propósito de la investigación principal del estudio hidrológico del río es el lugar donde se teme que exista socavamiento bajo el río, y verificar a escala apropiada la influencia del socavamiento por la velocidad del flujo de la corriente y su cantidad de flujo. Los puentes de esta investigación se muestran en la Tabla 5.1.2.

Carretera	N° de Serie	Punto desde Managua (Km)	Nombre del puente	Comentarios
NIC.1	3	113.19	El Junquillal	Vía Sébaco
	4	135.64	San Nicolás	Igual
	5	150.33	Las Chanillas	Igual
	6	151.85	San Ramón	Igual
	18	226.89	Río Inalí	Igual
	19	223.25	RíoTapacalí	Igual
NIC.3	26	119.05	El Guayacán	Vía Sébaco
NIC.26	45	170.952	La Banderita	Via León
	52	156.785	San Juan de Dios	Igual
	54	108.154	Papalón	Igual
	55	107.533	Solís	Igual

Tabla 5.1.2 Puentes a Estudiar

2) Metodologías del Estudio

a) Medición de la Velocidad

Medir la velocidad media en cada sección del río es el objetivo principal. La velocidad del flujo se mide en línea recta, en una parte del río donde la anchura y la profundidad sean constantes. La metodología de estudio cuenta con el método de flotadores de superficie y de bastón, y de medidores de corriente. En la investigación principal se ha de medir en dos días diferentes con un medidor de corriente.

b) Análisis Hidrológico

No hay una opinión tomada sobre el método del estudio hidrológico en cuanto al diseño del puente del MTI, etcétera, y usualmente se ha decidido de acuerdo a cada situación. El

establecimiento más generalmente adoptado es el de cincuenta años como parámetro anual de pico de escorrentía, pero es probable que en las carreteras se establezcan períodos de retorno de 100 y de 25 años.

La metodología es la aplicación combinada de técnicas comunes de análisis hidrológico y de modelos de simulación hidrológica para llegar a la meta del estudio. Explica el parámetro más general de la cantidad de precipitación de acuerdo con el método que se utiliza en Nicaragua y el método de fijar el título del plan de precipitaciones de la forma que sigue:

Primero se define la cuenca usando un mapa topográfico con curvas de nivel. Usualmente se utilizan mapas topográficos a escala 1:50,000. Una vez que se ha definido la cuenca, se definen las condiciones del valle y del río, las características geográficas y los tiempos de concentración de avenidas, así como las condiciones de altitud, la inclinación del río, el coeficiente de escorrentía, etcétera.

Para evitar contradicciones entre los datos climáticos de las estaciones en cuanto a clima y precipitación, se usa y analiza una curva de arrastre de doble masa. Se examina utilizando un método general para el parámetro. El cálculo de la precipitación se hace mediante una curva de intensidad-frecuencia-duración (IFD) para la precipitación regional en una cuenca, utilizando el método de isoyetas en diferentes años de establecimiento (25, 50 o 100 años).

La cantidad de escorrentía pico se calcula usando el tipo racional en diferentes años de establecimiento (períodos de retorno de 25, 40 y 100 años). Se calcula en los años de establecimiento (25, 50 o 100 años) cuando el cálculo de la etapa de inundación de cada río fuese inevitablemente diferente. Para el análisis se utiliza el modelo HEC-RAS.

3) Resultados del Estudio (Investigación de Velocidad de Flujo)

El resultado de la investigación de la velocidad de flujo se presenta en la Tabla 5.1.3. No se obtuvo un resultado de medición suficiente porque a pesar de que se estaba en la estación lluviosa no había suficiente caudal. Este resultado parece haberse producido porque en Nicaragua la lluvia se concentra entre mayo y octubre. Por lo tanto, se detiene en datos de referencia solamente.

DE LA REPÚBLICA DE NICARAGUA

Velocidad O(m3/s)N° de Velocidad Puente (para velocidad máxima) minima (m/s) Máxima (m/s) Serie 0.036 0.048 0.0348 Tapacalí 0.255 0.1860.271 4 Inalí 0.175 0.009 5 San Ramón 0.091 Las Chanillas 0.204 0.431 0.431 6 San Nicolás 0.010 0.037 0.037 18 N/A 19 El Guayacán N/A N/A 0.445 El Junquillal 0.061 26 0.037 45 0.047 Las Banderitas 0.162 0.192 52 San Juan Dios 0.103 0.186 0.017 N/A N/A 54 Solís N/A 55 Papalón N/A N/A N/A

Tabla 5.1.3 Resultados de la Investigación de Velocidad de Flujo

4) Resultados del Estudio (Análisis Hidrológico)

a) Conocimiento de las Características de la Región

En el Capítulo 2 ya se ha descrito que las vertientes hidrológicas de Nicaragua se dividen en dos direcciones: la del Pacífico y la del Atlántico, y que a su vez las vertientes se dividen en ocho cuencas en la vertiente del Pacífico y trece en la vertiente del Atlántico.

Además, según una clasificación por características del clima, el país se divide en las planicies del Pacífico, la región montañosa central (que se divide en norte y central) y la planicie costera del Atlántico. Dos puentes pequeños (Papalón y Solís) se encuentran en el área de las planicies del Pacífico, en la posición del puente objeto, y los nueve puentes restantes pertenecen a la parte norte de la cordillera central.

b) Parámetros Hidrológicos y de Talud.

La Tabla 5.1.4 presenta los parámetros del índice de condiciones hidrológicas que se calculó en cada sitio.

Tabla 5.1.4. Parámetros hidrológicos y de pendiente

Cuenca	Código de cuenca	Átea (Km²)	Perimetro (Km)	Longitud (Km)	Tiempo de concentración (H)	endiente media le la cuenca (%)	Factor de forma
Tapacalí	45 1	147.1	55.00	24.00	3.00	21	0.26
Inalí	45 – 2	84.80	47.00	17.00	2.00	21	0.29
San Ramón	45 – 3	2.70	7.00	3.00	0.50	28	0.30
Las Chanillas	45 – 4	114.6	59.53	20.52	3.00	16	0.27
San Nicolás	45 – 5	6.10	10.00	3.00	0.50	31	0.68
El Guayacán	55 – 6	28.3	18.00	12.5	2.00	19	0.18
El Junquillal	69 – 7	49.80	34.00	11.00	2.00	18	0.50
Las Banderitas	69 – 8	7.70	12.50	5.00	1.00	30	0.31
San Juan Dios	69 – 9	9.00	14.25	7.00	1.00	29	0.78
Solís	64–10	0.80	5.01	1.80	0.29	19	0.24
Papalón	64–11	0.60	3.41	1.48	0.23	16	0.27

Cuenca	Código de cuenca	Coeficiente de torrencialidad (río/Km)	Pendiente media del canal (%)	Elevación media de la ruenca (MSL)	Extensión media del flujo (Km /Km)	Altitud maxima (MSL)	Altitud minima (MSL)
Tapacalí	45 – 1	0.29	4.1	1121.61	0.19	1665	680
Inalí	45 – 2	0.28	3.9	961.69	0.28	1736	640
San Ramón	45 – 3	0.37	6.7	897.96	0.22	1005	813
Las Chanillas	45 – 4	0.27	2.7	1068.5	0.30	1380	819
San Nicólas	45 – 5	0.66	8.7	1070.0	0.22	1300	920
El Guayacán	55 – 6	0.35	4.8	866.63	0.43	1220	620
El Junquillal	69 – 7	0.18	3.3	608.4	0.30	1000	457
Las Banderitas	69 – 8	0.26	8.4	445.09	0.28	660	240
San Juan Dios	6 9 – 9	0.44	7.1	267.44	0.20	660	100
Solís	64 – 10	3.85	4.4	225	0.07	250	170
Papalón	64- 11	1.69	4.1	238.98	0.10	230	170

Además, se convirtió en punto de referencia de la cuenca de 11, y para analizar la precipitación se usaron los datos meteorológicos (1980-2000) de cuatro estaciones.

Se seleccionaron las estaciones adyacentes y cada control eligió la parte más adecuada de la cuenca mencionada según el mapa de INETER y las líneas de precipitación. La Tabla 5.1.5 presenta las estaciones que se utilizaron.

Tabla 5.1.5 Estaciones Meteorológicas

Nombre de la Estación	Código de Identificación	Duración de Registros	Número de Cuenca
Condega	45003	1958-2001	45
Ocotal	45017	1985-2000	45
León	64043	1974-2002	64
San Isidro de Barbacoa	69029	1958-2000	69

Fuente: INETER

A continuación se describe la relación entre el sitio objeto y la adopción de cada estación.

Sitios de Tapacalí e Inalí

Los sitios de Tapacalí e Inalí se encuentran entre las líneas de 800 y 1,000 mm de precipitación anual, y su media de precipitación anual ha sido de 900 mm.

A partir de ese análisis, la estación de Ocotal se seleccionó naturalmente. La estación de Ocotal indica un valor de precipitación anual media de 870.2 mm. La precipitación promedio es de 158.6 mm en septiembre y de 74.4 mm en julio, meses de la época lluviosa (que va de mayo a octubre). El valor máximo de precipitación anual de años pasados es de 1,717.1 mm (1998). El valor mínimo es de 439.5 mm (2000).

Sitios de San Ramón, Las Chanillas y San Nicolás

En estos sitios las condiciones son similares a las de Tapacalí e Inalí. Lo sitios se encuentran en la misma cuenca del río Coco (45) dentro del diagrama de precipitaciones, y su media de precipitación ronda las vecindades de 900 mm anuales. Sin embargo, para estos sitios se usó la estación de Condega, en vez de la de Ocotal, porque la primera está más próxima.

Se descartó al observatorio meteorológico más cercano, el de la estación de Estelí, tras un proceso de revisión y evaluación, por la falta y contradicción que se observó en muchos datos. La estación de Condega presenta una cantidad media de precipitación anual de 840.7 mm. La precipitación promedio mensual es de 146.1 mm en septiembre, y de 72.6 mm en julio.

El valor máximo de precipitación anual es de 1360.8 mm (1998). El valor mínimo es de 490.5 mm (1985).

Sitio El Guayacán

El sitio El Guayacán se encuentra en la cuenca del Río Grande de Matagalpa (55). Este sitio se encuentra entre las líneas de precipitación de 800 y 1,000 mm, y su media de precipitación anual es de 900 mm. Se utilizó la estación de San Isidro de Barbacoa en la cuenca del Río Grande de Matagalpa (55) porque se ubica más cerca del sitio de El Guayacán, en el valle de Sébaco. La estación de San Isidro de Barbacoa registra una precipitación anual media de 923.7 mm. La precipitación mensual promedio es de 177.1 mm en septiembre, y de 80.3 mm en julio. El valor máximo de precipitación anual es de 1,567 mm (1995). El valor mínimo es de 521.2 mm (1986).

Sitios Papalón y Solís

Los sitios de Papalón y Solís se encuentran en la cuenca del Cosigüina-Río Tamarindo (64). Naturalmente, se utilizaron los datos de la estación que se encuentra en las afuera de León. La estación de León registra un valor medio anual de precipitación de 1,606.1 mm. La precipitación mensual promedio es de 397.9 mm en septiembre, y de 107.8 mm en julio. El valor máximo anual es de 2,547 mm (1997). El valor mínimo es de 863.8 mm (1992).

Sitios Junquillal, Las Banderitas y San Juan de Dios

El Junquillal, Las Banderitas y San Juan de Dios se encuentran en la parte superior de la cuenca del río San Juan (69). También se encuentran en la línea de precipitación de 1,000 mm, en la cuenca de drenaje del río Viejo. Para el análisis se utilizó la estación de San Isidoro de Barbacoa.

En la Figura 5.1.1 se muestran las medias mensuales de precipitación de veinte años de registros en cada una de las estaciones nombradas.

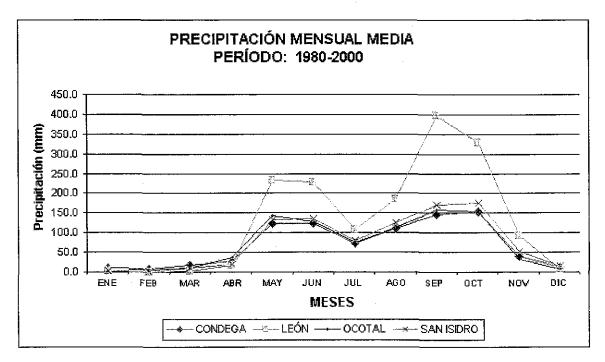


Figura 5.1.1 Datos de Precipitación de las Estaciones Objeto Fuente: INETER

c) Curvas de Intensidad-Duración -Frecuencia (IDF)

Con los datos de máxima intensidad de precipitación anual, se prepararon curvas de intensidad-frecuencia-duración (IFD) para las estaciones de León, San Isidro y Ocotal, de la red nacional que mantiene el Instituto Nicaragüense de Estudios Territoriales (INETER). Los valores se leyeron directamente de las gráficas de registro de precipitaciones.

El período de registro común que se estableció para el análisis fue de veinte años (1980-2000), con lecturas diarias de las gráficas de registro para obtener los valores de máxima intensidad de precipitación a los 5, 10, 15, 30, 60, 120 y 360 minutos. A partir de esos datos se eligieron los valores mensuales máximos, y de estos se seleccionaron los valores anuales máximos.

La consistencia de los datos se verificó mediante un análisis con el método de doble masa, y luego se computaron las medias o valores promedio, la desviación estándard y todos los parámetros de la función Gumbel α y β para cada duración. Los valores máximos anuales de cada estación meteorológica se ordenaron en orden creciente de magnitud, a fin de poder aplicar la prueba de ajuste. Se aplicaron el método de Gumbel (probabilidad teórica), el análisis de frecuencia (probabilidad empírica) y el estadístico de Smirnov-Kolmogorov. Luego se computaron las intensidades máximas de precipitación para 5, 10, 15, 30, 60, 120 y 360 minutos. Las curvas IDF se presentan en las Figuras 5.1.2 a 5.1.5.

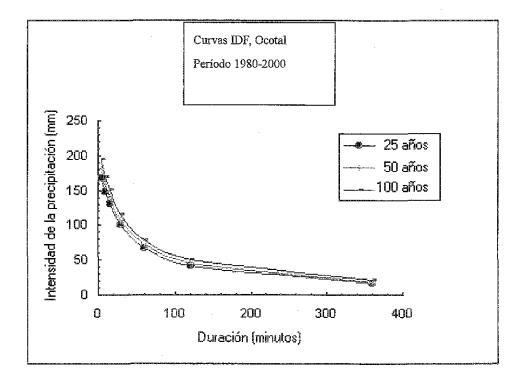


Figura 5.1.2. Curvas IDF de la Estación de Ocotal

Fuente: INETER

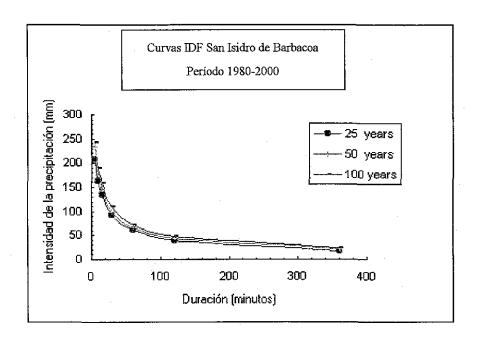


Figura 5.1.3. Curvas IDF de la Estación de San Isidoro de Barbacoa

Fuente: INETER

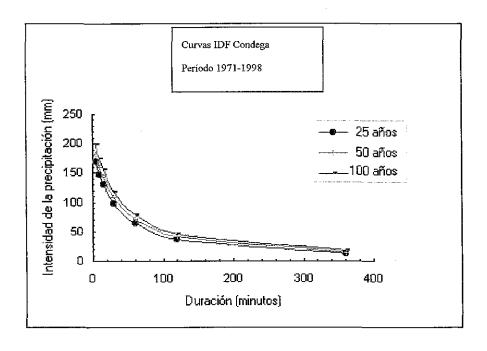


Figura 5.1.4. Curvas IDF de la Estación de Condega

Fuente: INETER

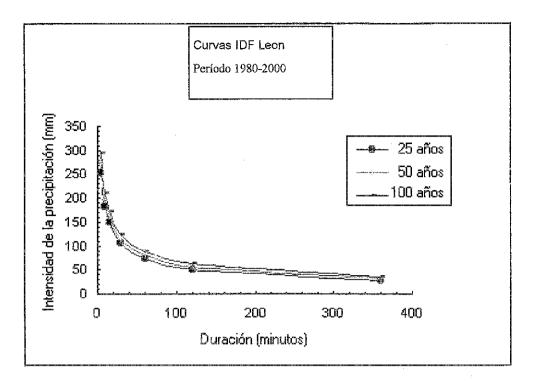


Figura 5.1.5. Curvas IDF de la Estación de León

Fuente: INETER

c) Estimación del Gasto Máximo

La estimación del gasto máximo mediante el método racional depende básicamente de la intensidad de la precipitación, que se lee de las curvas IDF (Figuras 8-2-2 a 8-2-5) para diferentes períodos de retorno (25, 50 y 100 años) y para estimar el gasto máximo en todas las cuencas.

Los parámetros necesarios para el método racional, como el área de drenaje y el tiempo de concentración, se presentan en la Tabla 5.1.4, Parámetros hidrológicos y de pendiente.

La estimación del coeficiente de escorrentía (C) se hace básicamente a partir de los valores que aparecen en la Tabla 5.1.6, que se eligieron en relación a algunas características específicas.

Tabla 5.1.6. Coeficientes de escorrentía

		Pendiente del Terreno				
Cobertura Vegetal	Tipo de Suelo	Aguda	Alta	Mediana	Suave	Despreciable
Couciuma vegetat	i i po de Suero	50	% 20	% 5	% 1	%
,	Impermeable	0.8	0.75	0.70	0.65	0.6
Sin Vegetación	Semipermeable	0.70	0.65	0.60	0.55	0.50
	Permeable	0.50	0.45	0.40	0.35	0.30
	Impermeable	0.70	0.65	0.60	0.55	0.50
Cultivos	Semipermeable	0.60	0.55	0.50	0.45	0.40
	Permeable	0.40	0.35	0.30	0.25	0.20
Doctor Vecetoriés	Impermeable	0.65	0.60	0.55	0.50	0.45
Pastos, Vegetación Escasa	Semipermeable	0.55	0.50	0.45	0.40	0.35
LSCASA	Permeable	0.35	0.30	0.25	0.20	0.15
	Impermeable	0.60	0.55	0.50	0.45	0.40
Pastos	Semipermeable	0.50	0.45	0.40	0.35	0.30
	Permeable	0.30	0.25	0.20	0.15	0.10
Passuras	Impermeable	0.55	0.50	0.45	0.40	0.35
Bosques, Vegetación Densa	Semipermeable	0.44	0.40	0.35	0.30	0.25
vegetacion Densa	Permeable	0.25	0.20	0.15	0.10	0.05

Fuente: Ministerio de Obras Públicas de Venezuela

El uso de la tierra de cada cuenca se tomó de los mapas de Estelí y Managua de uso de la tierra, a escala 1:250,000, que publica INETER. La información de dichos mapas, junto con visitas a los sitios de estudio produjo información actualizada sobre los cambios en la cobertura vegetal que no se encuentran en los mapas; por ejemplo, los cultivos históricos del oeste se convirtieron hoy en día en pastizales y muy pocos cultivos.

El tipo de suelo de cada cuenca se tomó de los mapas de Estelí y Managua de tipo de suelo, a escala 1:250,000, que publica INETER. La característica más importante es el grado de permeabilidad del suelo y la fase de pendiente para cada zona. En el estudio hidrológico se supone que los suelos son semipermeables, puesto que no existe información sobre valores de infiltración que presente una clasificación detallada. La Tabla 5.1.7 muestra los resultados de los cálculos de coeficientes de escorrentía para cada una de las cuencas.

Tabla 5.1.7. Coeficientes de Escorrentía de las Cuencas

Cuenca	Tiempo de Concentración (horas)	Coeficiente de Escorrentía
Tapacalí	3.0	0.62
Inalí	2.0	0.59
San Ramón	0.5	0.48
Las Chanillas	3.0	0.60
San Nicolás	0.5	0.42
El Guayacán	2.0	0.49
El Junquillal	2.0	0.46
Las Banderitas	1.0	0.46
San Juan de Dios	1.0	0.44
Solís	0.3	0.45
Papalón	0.3	0.46

El enfoque del método racional se usa ampliamente alrededor del mundo para la estimación de las avenidas de pequeñas cuencas de drenaje de zonas rurales, y es el método de más extendido uso para el diseño de drenaje urbano. La estimación de los flujos pico se presenta en la Tabla 5.1.8.

La formula del método racional es Qp = 0.278CIA

Qp	gasto máximo (m /s)
0.278	es un factor de conversión a unidades del SI
C	es el coeficiente de escorrentía (no se aplican unidades de medida)
1	es la intensidad de la precipitación (mm/h), estimada a partir de las curvas IDF
A	área de la cuenca de drenaje (en Km)
Tc	(Lc ³ /(Hmax-Hmin)) ^{0.385} (Fórmula de California)

Cuenca	A	TC	I(mm/h)			district Control	Qp(m³/s)		
Período de retorno (T), en años	(Km)	(horas)	25	50	100		: 25	50	100
Tapacalí	147.11	3.0	35	40	45	0.62	886.75	1013.4	1266.8
Inalí	84.80	2.0	41.7	45.7	50.0	0.59	579.58	635.18	694.94
San Ramón	2.7	0.5	96.8	107.7	117.7	0.48	34.85	38.78	42.38
Las Chanillas	114.61	3.0	35	38	42	0.6	668.61	725.92	802.33
San Nicolás	6.10	0.5	96.8	107.7	117.7	0.42	68.89	69.94	83.77
El Guayacán	28.3	2.0	38.7	43.1	48.1	0.49	149.08	166.03	185.29
El Junquillal	49.8	2.0	38.7	43.1	48.1	0.46	246.28	274.28	306.10
Las Banderitas	7.70	1.0	61.1	66.1	73.8	0.46	60.12	65.04	72.62
San Juan de Dios	9.00	1.0	61.1	66.1	73.8	0.44	67.22	72.72	81.19
Solís	0.80	0.5*	105.9	114.7	123.4	0.45	10.59	11.47	12.34
Papalón	0.60	0.5*	105.9	114.7	123.4	0.46	8.12	8.79	9.46

Tabla 5.1.8. Estimación del gasto máximo

e) Estimación de los Niveles de Agua

Generalmente los niveles del agua de cada cuenca de sitios de estudio se estima mediante una simulación HEC-RAS. Antes de presentar los resultados del modelo de simulación hidráulica, es necesario manifestar la situación particular que se tomo en cuenta para llevar a cabo la simulación.

• Grupo 1. En este grupo se incluyó a los sitios del estudio cuya cuenca de drenaje fuera inferior a 10 Km²: Solís, Papalón, Las Banderitas, San Nicolás, San Juan de Dios y San Ramón (véase la Tabla 5.1.7).

Las principales características de estos sitios son:

Las paredes de los canales de agua son casi verticales, con profundidad moderada (de 5 a 9 metros)

Las anchuras varían de 40 a 100 m

Para un período de retorno de 100 años, la mayor magnitud estimada para gastos máximos es inferior a 100 m³/s

• Grupo 2. En este grupo se incluyeron sitios de estudio con áreas de drenaje mayores, de entre 28.3 y 147.11 Km²: El Guayacán, El Junquillal, Las Chanillas, Inalí y Tapacalí (véase la Tabla 5.1.7).

Las principales características de estos sitios son:

La profundidad de los canales es inferior a 6 m


Las anchuras varían entre 40 y 120 m

Los sitios de Las Chanillas, Inalí y Tapacalí tienen anchuras de canal mayores de 100 m

^{*} En Solís y Papalón, los valores de intensidad de las curvas IFD se redondearon al valor más cercano (30 minutos)

- Datos topográficos: Las secciones verticales se numeran en orden ascendente; la primera se encuentra aguas arriba y la última aguas abajo. La sección vertical 1 corresponde al perfil de la carretera a la altura del Puente, que es donde se ha estimado el nivel de las aguas para este análisis.
- Datos de flujo: En el análisis de flujo en estado estable que se aplicó a los sitios del canal, se incluyó una aproximación a la pendiente crítica de la profundidad, que constituye el primer dato de entrada, y es el cambio de nivel entre el punto más bajo del canal principal en la sección ubicada más aguas arriba y la diferencia en la sección del puente. Bajo un regimen subcrítico, se analizaron tres perfiles para períodos de retorno de 25, 50 y 100 años. En el caso del gasto máximo para el menor período de retorno (25 años) se estimó un gasto máximo menor.
- Coeficientes de rugosidad de Manning (n): La selección de un valor para el coeficiente de rugosidad para cada uno de los canales que se estudiaron se basa en las características del material del lecho del canal. El valor se eligió comparando las fotos que se tomaron durante la visita de campo con las que aparecen en el libro de referencia "Características de rugosidad de los ríos de Nueva Zelandia" (Roughness Characterístics of New Zealand Rivers", del Water Resources Survey (por D. M. Hicks y P. D. Mason, manual que se utiliza para asignar coeficientes de rugosidad a las riberas de los ríos mediante el "enfoque de comparación visual", que se basa en las características físicas e hidráulicas de 78 ríos de Nueva Zelandia). La información que debe darse para cada río incluye fotografías, datos de sección vertical, descripciones del lecho y de las riberas, una clasificación del tamaño de los materiales de la superficie del lecho, y coeficientes de rugosidad de Manning y Chezy.

<Fotos de cada sitio bajo estudio, con coeficientes de rugosidad de Manning>

Canal principal de Solís, aguas arriba del Puente. n = 0.016