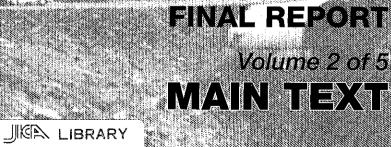


JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

No. 12


MINISTRY OF TRANSPORT AND INFRASTRUCTURE REPUBLIC OF NICARAGUA

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

January 2003

Oriental Consultants Company Limited

Japan Engineering Consultants Company Limited

SSF JR

03-12

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

FINAL REPORT

Volume 2 of 5

MAIN TEXT

January 2003

PREFACE

In response to a request from the Government of the Republic of Nicaragua, the Government of Japan decided to conduct the Study on Vulnerability Reduction for Major Roads in the Republic of Nicaragua and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Keigo Konno of Oriental Consultants Co., Ltd. and consist of Oriental Consultants Co., Ltd. and Japan Engineering Consultants Co., Ltd. to Nicaragua, three times between January 2002 and January 2003.

In addition, JICA set up an advisory committee consist of Mr. Tetsuo Hirose, Chief of Maintenance Planning Division, Maintenance and Facility Department, Hanshin Expressway Public Corporation and Mr. Yoshifumi Nagata, Chief of Public Relations Division, General Affairs Department, Metropolitan Expressway Public Corporation between January 2002 and January 2003, which examined the study from specialist and technical points of view.

The team held discussions with the officials concerned of the Government of Nicaragua and conducted the field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Nicaragua for their close cooperation extended to the team.

January 2003

Takao Kawakami

M上隆朝

President

Japan International Cooperation Agency

Letter of Transmittal

January 2003

Mr. Takao Kawakami President Japan International Cooperation Agency

Dear Sir,

We are pleased to submit to you the final report on The Study on The Vulnerability Reduction for Major Roads in The Republic of Nicaragua.

This study was conducted by Oriental Consultants Company Limited and Japan Engineering Consultants Company Limited, under a contract to Japan International Cooperation Agency (JICA), during the period from January 2002 to January 2003. In conducting the study, we examined the feasibility and rationale of road disaster measures with due consideration to the present status of Nicaragua's roads and formulated the most appropriate project incorporating the results of the examination.

We wish to take this opportunity to express our sincere gratitude to the concerned officials of JICA, the Ministry of Foreign Affairs, the Ministry of Land, Infrastructure and Transport, Hanshin Expressway Public Corporation, and Metropolitan Expressway Public Corporation. In addition, we wish to deep thank the Ministry of Transport and Infrastructure, the JICA Nicaragua office and the Embassy of Japan in the Republic of Nicaragua for their cooperation and assistance to the study team during its stay in Nicaragua.

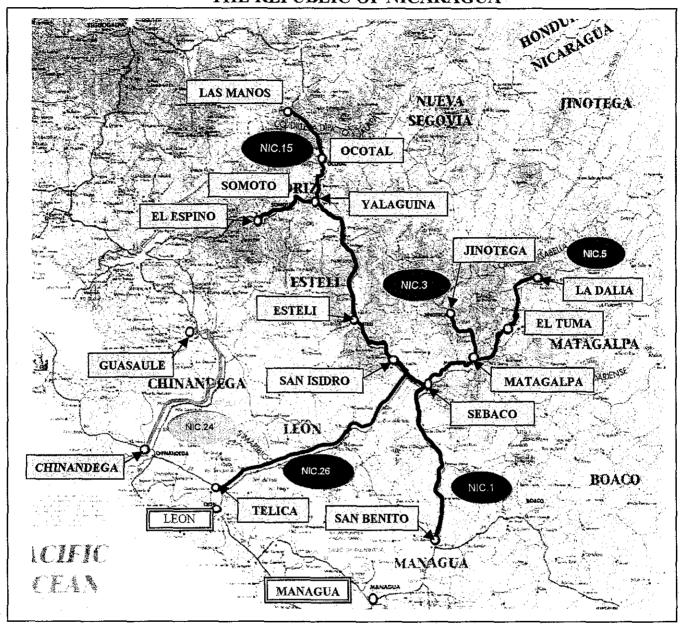
Finally, we hope that this report will contribute to the further promotion of the project.

Very truly yours,

Keigo Konno, Team Leader

The Study on Vulnerability Reduction for Major Roads in the Republic of Nicaragua,

野路悟


Oriental Consultants Company Limited

LOCATION MAP

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN

THE REPUBLIC OF NICARAGUA

Legend NIC. 1 El Espino~San Benito NIC. 3 Sebaco~Jinotega NIC.5 Matagalpa~La Dalia NIC.15 Yalagûina~Las Manos NIC.24 Chinandega~Guasaule NIC.26 Telica~San Isidro NIC.26 NIC.26

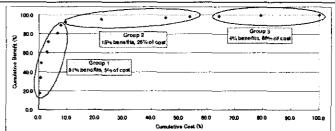
Project Summary

1. Country	Republic of Nicaragua
2. Name of Study	The Study on Vulnerability Reduction for Major Roads in The Republic of Nicaragua
3. Counterpart Agency	Ministry of Transport and Infrastructure (MTI)
4. Objective of Study	-To identify disaster critical spots of vulnerable spots on the major roads, and to conduct a Feasibility
	Study of disaster prevention spots due to the emergent countermeasures.
	-To prepare a disaster prevention plan and a manual for road vulnerability reduction.

1. Study Roads: There are 6 roads on NIC1, NIC3, NIC5, NIC15, NIC24 and NIC26 within major roads in Nicaragua.

2. Plan Policy of Road Disaster Prevention

- Whole Policy of the Project: Problems dissolution of vulnerability spots (Unstable cut/ embankment slopes, Bridge foundation scouring), Strengthening of maintenance system in MTI, Environmental safeguard of roadsides located in disaster critical spots, Enhancement of the PRSP and the BHN,
- Planning of vulnerability reduction: Inspection methods of Vulnerability spots, Evaluation methods of Inspection, Identification methods of disaster potential spots/ critical spots/ prevention spots,
- 3) Planning of disaster prevention countermeasures: Planning of local machines/ materials, Planning of countermeasure types,
- 4) Road maintenance plan: Strengthening of maintenance division in MTI, Efficiency road maintenance work (Establishment of rural offices, Management of efficiency relative data), Establishment/management of Database for the maintenance work.


3. Project Cost

Pedege No.	9.6Prologo	Sha No.	DNb.	Rust	Cont (LBB)	Perfecte No.	9.b Pichepo	SHA	IDNo.	Roud	COME (LEGG)	Pedage Na	SubPadage	SheNo	IDNb	Road	Out (LB)
		2	N001A280	Nc1	12,339		2a .	1	N001A290	Ncl	413,370			5	LasCherilles	Not	233,215
		3	Jurquilet	Net	51,825		Cost				413,370		l Ì	11	N01B170		1,961,985
1		4	Strn Nicoles	No1	30,849			25	N009370	No3	215,940	J		13	NOBIA	Nc1	1,004,427
	la:	6	San Planor	Not	11,105		2b	26	B G.Byecon	No3	1,701,604		l [™]	18	Floineti	Nc1	1,021,702
		7	N001/4240	Not	32,082			30	N003E170	No3	382,521		H	19	Flo Tacacell	No1	347,971
		8	N0018230	No1	7,404	2	Cost				2300,054		<u> </u>	_ 13	nu iaptua	IVC	
		12_	NO18150	No1	33,316		2c `	35	N0054010	Nc5	480,003		Cost		T Transfer		4,500,200
	Cost				178,921	'	Cost				480003	3	_		N003C230	Nc3	404,732
' '	14	24	N003E9400	No3	49,338	1		45	Le Bercierita	Nc26	35,252	•	3b	32	N003C150	Nc3	1,132,757
	1b	27	N003E020	No3	294,912	1 .	28	-55	Sals	Nc26	81,440	l L	1	33	NDCBC140	Nc3	924,221
	Cost				344,289		Cost			1440	19692		Cost			,	2461,711
		51	N026A160	Nc26	16,041	Package 20					3,313,129			44	N0264080	Nc26	399,925
	1c	52	SenJuan	Nc26	6,170	1 original		~			70.7,00]	3c	49	ND98B140	Nc26	1,115,482
	т.	_	deDos		′ 1							,	1	50	N026A150	Nc26	259.127
		54	Pagaton	Nc26	62,931							i i	Cost		1100		1,764,334
	Cost				85,142												
Pedage 10	wit .				608,333							Padage 30	<u> </u>				8795526
_												Grand Total					12,716,988

30 disaster prevention spots are divided into 3 groups. Those groups provide the basis for prioritising investment, and creating work packages.

4. Benefit by Project Execution

The creation of prioritised packages of work that maximise benefits, whilst minimising costs. Priority Group 1 account for 66% of total benefits and 12% of total costs. Priority Group 2 make up 24% and 31% of the total benefits and costs, respectively. As for Priority Group 3, it accounts for 10% of the total benefits and 57% of the total cost.

5. Implementation Programme and Recommendation

1) Project Packaging

- Group 1 (construction period: 2 years): NIC1 (7 spots), NIC3 (2 spots), NIC26 (3 spots)
- = Total 12 spots
- Group 2 (construction period: 2 years): NIC1(1 spot), NIC3 (3 spot), NIC5 (1 spot), NIC26 (2spots)
 - = Total 7 spots
- Group 3 (construction period: 2 years): NIC1 (5 spots), NIC3 (3 spots), NIC26(3 spots)
- = Total 11 spots

2) Conclusion and Recommendation

(DConclusion

• Early execution of the disaster prevention spots: The disaster prevention works should be executed as early as possible in order to protect the safety of road users and the stability of traffic movement and economy.

@Recommendation

- Execution of screening, emergency/ routine/ periodic inspection survey: The screening and inspection surveys should be carried out for not only the objective roads but also other major roads and the rural roads.
- Strengthening of maintenance division in MTI: In order to carry out sustainable maintenance works, the division of road maintenance of the general division of roads in MTI should be strengthened.
- Establishment of regional offices: In order to get information of disaster quickly, regional offices should be established at main towns on major roads.
- Secure the special budget for road disasters: In order to safeguard road safety and economic development to the road users, MTI should itself secure a special budget for road disasters.

List of Abbreviations

(In alphabetical order)

AADT : Annual Average Daily Traffic

AASHTO : American Association of State Highway and Transportation Officials

AHP : Analytic Hierarchy Process

ASTM American Society for Testing and Materials

B/C : Benefit to Cost ratio

BH Boring Hole

BHN : Basic Human Needs

BIT Central American Development Bank

DID Densely Inhabitant District

EIA : Environmental Impact Assessment

GDP : Gross Domestic Product

GRN : The Government of Republic of Nicaragua

ID Identification

IDF : Rainfall Intensity Duration Frequency
IEE : Initial Environmental Examination

INETER : Institution of National Territorial Study

IRR : Internal Rate of Return

JICA Japan International Cooperation Agency

MARENA : The Ministry of Natural Resources and Environment

MTI : The Ministry of Transport and Infrastructure

OD : Origin and Destination

PRSP : Poverty Reduction Strategy paper

QV : Volume capacity

ROW : Right of Way

STRADA System for Traffic Demand Analysis

VAT Value Added Tax

VOC : Vehicle Operation Cost

WB World Bank

pcu : Passenger Car Unit

The following foreign exchange rate is applied in the study:

1 US dollar = 14.40 Cordovas = 125.00 Japanese Yen (October 2002), or

1 Cordovas = 8.68 Japanese Yen

Summary of the Study

1. Background of the Study

Nicaragua is the frequent occurrence country of natural disaster and it influences recurs the undesirable progress of the recovery of infrastructures. Especially, about 1,500 km of the paved roads and about 6,000 km of unpaved roads were disrupted by the hurricane "Mitch" occurred in October 1998 and also as for the bridge, complete collapse on 22 bridges and partial destruction on 46 bridges suffered. In such situation, the Government of Republic of Nicaragua (hereinafter referred to as the "GRN") was established the National Transportation Plan (hereinafter referred to as the "NTP") including the improvement of the road network in February 2001. However the disaster prevention plan was not established in the NTP clearly, and the reliability of the traffic is in low condition such as the case of the bad weather.

The GRN requested assistance of the Japanese Government to implement the Study on Vulnerability Reduction for Major Roads in the Republic of Nicaragua (hereinafter referred to as the "Study"). In response to this request from the GRN, the Government of Japan has decided to carry out a study to identify disaster critical spots and execute a Feasibility Study for the Study.

Therefore, the ultimate goal of this Study is to assist the GRN in prioritising and recommending those road disaster prevention projects that are to identify disaster critical spots, to execute a Feasibility Study for urgent disaster prevention spots, to prepare the road disaster prevention plan and the manuals. The area of the Study shall cover the following Project Roads within major roads in the Republic of Nicaragua;

- 1) El Espino San Benito (NIC. 1)
- 2) Sebaco Jinotega (NIC. 3)
- 3) Matagalpa Da Lida (NIC. 5)
- 4) Yalaguina La Dalia (NIC. 15)
- 5) Chinandega Guasaule (NIC. 24)
- 6) Telica San Isidro (NIC. 26)

2. Study Approach

The major focus of the Study is to identify disaster critical spots, to identify disaster prevention spots for a Feasibility Study, and the to examine the technical, environmental and economic validity of this project in the Feasibility Study.

FINAL REPORT

- 1) To collect and analyze the background and situation of the natural and environment conditions and the development plan, and to examine the relation to the road disasters.
- 2) To carry out the site investigations regarding the spots of disaster potential cut/ embankment slope damages and bridge foundation scouring, and to select disaster potential spots for disaster prevention, furthermore to identify high potential disaster critical spots.
- 3) To evaluate stability level, to forecast traffic demand, to assess environment, to examine technically for the Feasibility Study (target year: 2020).
- 4) To examine countermeasures for identified disaster prevention spots and to confirm the validity of environment, economic and countermeasures for disaster spots.
- 5) To prepare the disaster prevention manuals for maintenance work.

I. Identification of Study Spots

- 1) Review of the natural condition, related development plans, socio-economic data.
- 2) Examine of the assessment ways for road disaster spots.
- 3) Identify of the disaster potential spots and disaster critical spots by site survey.
- 4) Examine of countermeasures and estimate of rough construction costs.
- 5) Investigate of natural conditions and initial environmental examination.
- 6) Analysis of socio-economic framework.
- 7) Forecast of future traffic demand.
- 8) Identify of disaster prevention spots.

II. Feasibility Study

- 1) Arrange of the design standards.
- 2) Detailed examine of countermeasures.
- 3) Construction plan and construction cost estimate.
- 4) Assess of environmental impact.
- 5) Project evaluation.
- 6) Implementation programme.
- 7) Management and operations system.
- 8) Conclusion and recommendation

3. Topography and Geology of Study Area

The topographical characteristic of Nicaragua is divided into three areas:

JICA STUDY TEAM

- Pacific plains area (including the volcanic mountain range area);
- Central mountains range area;
- Atlantic coast plains area.

The land of the Pacific plains area is very fertile, being covered by weathered volcanic ash soil or alluvium. The Nicaraguan rift valley is laid between volcanic mountain range and central mountains range in this area and is mainly subsidence land. It contains two large lakes (Lake Managua and Lake Nicaragua). A volcanic mountain range is laid in middle of the Pacific plains area and running parallel with coast.

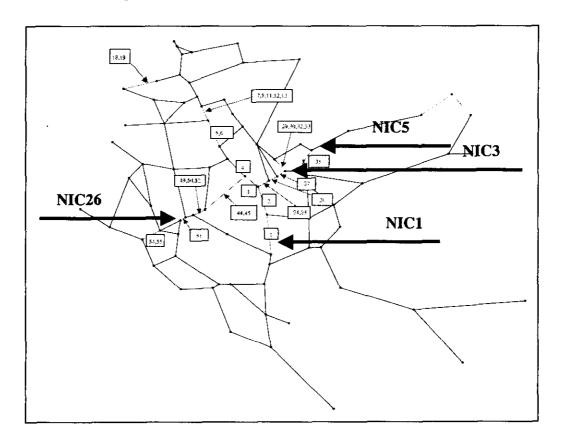
The main rocks of volcanic lava distributed in the Study area are basaltic, andesite-basalt, andesite, rhyolite and other lava, with such effusive rocks as tuffbreccia, dacitic agglomerate of the Palaeocene Period, and lavas of quarts-andesite, pyroclastic rock, and welded tuff belonging to the Eocene Period. They are widely distributed along NIC.1, NIC.3, and NIC.26. These lava flows display erosion in combination with tuffs. The Mesa Plateau is composed of lava on top, with tuffs underneath, which, when weathered make a sharp slope. NIC.1 displays this topography a good deal. Along NIC.24, the volcanic rocks of the Quaternary Era are recognizable by the white Pleistocene tuffs, agglomerate, tuffs with pumice, andesite-quartz/andesite, and ryyolite. Relatively new un-cemented volcanic ash covers them

4. Factors of Environmental Impact

The Study projects are not assessed as the objective project shown in the environmental impact assessment in Nicaragua. However, all of projects need the permission of the Ministry of Natural Resources and Environment (hereinafter referred to as the "MARENA") in spite of the scale of projects. Furthermore in order to apply the permission for projects, a private company and a public agency must procedure respectively under Nicaragua law. Ten items have been selected to evaluate negative impacts: resettlement, economic activity, traffic and public facilities, waste, groundwater, lakes and rivers, fauna and flora, landscape, water pollution, and noise and vibration.

5. Identification of Disaster Prevention Spots

The disaster critical spots identified in Chapter 6 of the Study require urgent, temporary or permanent countermeasures so that they can be transformed into disaster prevention spots. These spots are identified using various factors. It is difficult to designate a point a disaster


FINAL REPORT JICA STUDY TEAM

critical spot based on economics only, since there are some spots where there are low traffic volumes. Therefore, when evaluating roads and road sections for disaster criticality, a broader approach that incorporates level of stability, traffic volume, environmental impacts, development potential, natural conditions, benefits, required level of restoration, should be considered.

The evaluation score of a disaster critical spot differs depending on the scale of a disaster. Moreover, note that it is very difficult to identify disaster prevention spots in terms of cost only. Therefore, it is necessary to create an evaluation index to assess overall importance. Therefore, in this Study, the selection of disaster prevention spots is carried out using the Analytic Hierarchy Process (hereafter referred to as "AHP"). AHP is a multi-criteria decision-making technique that assigns numerical values (or weights) to various types of evaluation criteria. AHP was applied to select 30 disaster prevention spots for urgent spots and basis of disaster prevention in Nicaraguan country from the 55 disaster critical spots.

6. Proposed Project and Implementation Schedule

Locations of vulnerable spots are shown in the below figure.

Disaster prevention works are shown in the below figures.

NIC.1 Countermeasures for Slope Failure

No.	IB. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
1	N001A290	R.F	Removal + Prevention net + Drainage	T	m ²	23,286	335
2	N001A280	R.F	Horizontal drainage	P	m	100	10
7	N001A240	R.F	Removal + Prevention net	T	m ²	950	26
8	N001B230	R.C	Removal + Prevention net	T	m ²	228	6
11	N001B170	R.C	Recutting + Drainage	P	m ³	36,028	1,590
12	N001B150	R.C	Recutting + Shotcrete + Drainage	P	m ²	252	27
13	N001B120	R.C	Recutting + Drainage	P	m ³	10,655	814
Total							2,808

Note) R.F: Rock fall; R.C: Rock collapsing; P: Permanent countermeasure; T: Temporary countermeasure

NIC.1 Countermeasures for Bridge Foundation Scouring

No.	ID: No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
3	Junquillal	Bridge	Gabion mat	T	m ³	435	42
4	San Nicolas	Bridge	Gabion mat	T	m ³	114	25
5	Las Chanillas	Bridge	Concrete block	T	m ³	288	189
6	San Ramon	Bridge	Gabion mat	T	\mathbf{m}^3	86	9
18	Inali	Bridge	Gabion mat Revetment +Stone masonry	T	m ³ m ²	1,138 1,758	828
19	Tapacali	Bridge	Gabion mat Revetment	Т	m ³ m ²	238 640	282
Total							1,375

Note) Bridge: Scouring of foundation; T: Temporary countermeasure

NIC.3 Countermeasures for Slope Failure

No.	ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty"	Cost (US\$1000)
24	N003B400	R.C	Recutting + Drainage	P	m ³	290	40
25	N003B370	R.C	Recutting + Drainage	P	m ³	1,676	175
27	N003B320	R.C	T-shaped retaining wall +Refilling+ Vegetation+ Drainage	P	m³	3,168	239
29	N003C230	S.S + R.C	Recutting + Cribwork + Vegetation+ Drainage Embankment + Vegetation + Drainage	P	m² m³	638 4,934	328
30	N003E170	D.F + R.C	Concrete dam + Box culvert Recutting + Drainage	P	m m³	20 2,670	310
32	N003C150	S.S + R.C	Recutting + Drainage Embankment + Vegetation + Drainage	P	m³	9,221 16,076	918
33	N003C140	S.S + R.C	Recutting +Horizontal drainage + Drainage Embankment +T-shaped retaining wall + Vegetation + Drainage	P	m³	5,408 3,176	749
Total			, =				2,759

Note) R.C: Rock collapsing; S.S: Slope Slide; D.F: Debris flow; P: Permanent countermeasure

NIC.3 Countermeasures for Bridge Foundation Scouring

		F	The state of the s			
		Type of			Cost	
No.	ID. No	Disaster	Type of Countermeasure	Unit	(US\$100)	M
37050			<u> (1984) (Alice (1903) protection (Introductional Alice) (Internet Control of Control of</u>		T (Spanne)	
26	El Guayacan	Bridge	New bridge construction	P m ²	500 1,	379

Note) Bridge: Scouring of foundation; P: Permanent countermeasure

NIC.5 Countermeasures for Slope Failure

No.	ID. No	Type of Disaster	Type of Countermeasur	æ	Unit	Qty	Cost (US\$1000)
35	N005A010	R.F	Recutting + Drainage	; P	m ³	10,760	389

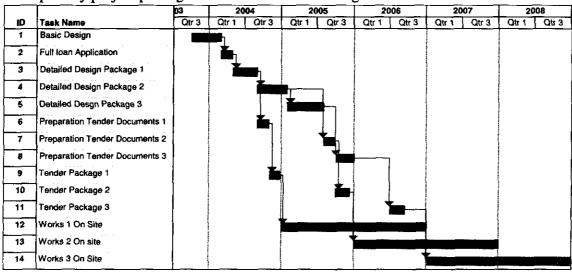
Note) R.F: Rock fall; P: Permanent countermeasure

NIC.26 Countermeasures for Slope Failure

No.	D.No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
44	N026A060	R.F	Recutting + Shotcrete + Drainage	P	m ²	3,604	316
33	N026A140	R.C	Recutting + Horizontal drainage + Drainage	P	m ³	11,495	904
50	N026A150	R.F	Recutting +Drainage	P	m ³	2,113	210
49	N026B160	R.C	Removal + Prevention net +Drainage	T	m ²	1,568	13
Total							1,443

Note) R.F: Rock fall; R.C: Rock collapsing; P: Permanent countermeasure; T: Temporary countermeasure

NIC.26 Countermeasures for Bridge Foundation Scouring


No.	ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
55	Solis	Bridge	Stone riprap with mortar Gabion mat	Т	m³	72 546	66
54	Papalon	Bridge	Stone riprap with mortar Gabion mat	T	m ³	50 408	51
52	San Juan de Dios	Bridge	Gabion mat	T	m ³	115	5
45	La Banderita	Bridge	Stone riprap wall Gabion mat	Т	m ² m ³	162 375	31
Total							153

Note) Bridge: Scouring of foundation; P: Permanent countermeasure

Total Construction Cost by Route (Direct Cost)

Objective Route		Cost (US\$1000)	
	Slope	Bridge	Total
NIC.1	2,808	1,375	4,183
NIC.3	2,759	1,379	4,138
NIC.5	389	0	389
NIC.26	1,443	153	1,596
Total	7,399	2,907	10,306

The implementation schedule was set up taking account of the construction period estimated for each priority project package as shown in the below figure.

FINAL REPORT

Volume 2 of 5: Main Text

TABLE OF CONTENTS

Prefa	ace	
Lette	er of Transmittal	
Loca	ation Map	
Proj	ect Summary	
List	of Abbreviations/ Foreign Exchange Rate	
Sum	mary of the Study	
Chap	pter 1 Introduction	
1.1	Background of the Study	1-1
1.2	Objectives of the Study	1-1
1.3	Study Area	1-2
1.4	Workflow of the Study	1-3
<pa< th=""><th>RT A: IDENTIFICATION OF STUDY SPOTS></th><th></th></pa<>	RT A: IDENTIFICATION OF STUDY SPOTS>	
Cha	pter 2 Present Situation of Study Area	
2.1	Natural Conditions	2-1
2.2	Socioeconomic Conditions	2-8
2.3	Road Network 2	2-13
2.4	Road Disaster 2	2-22
Cha	pter 3 National Development Plan	
3.1	Contract	3-1
3.2	Review of Past Development Plan	3-1
		3-2
Cha	pter 4 Assessment of Road Disaster Prevention Spots	
4.1	Classification of Road Disaster	4-1
4.2	Assessment Guideline of Road Disaster Prevention	4-8
4.3	Survey Sheet 4	-19
Cha	pter 5 Survey Result and Identification of Potential Spots	
5.1	NIC.1	5-1
5.2	NIC.3 5	5-10
5.3	NIC.55	5-16

5.4	NIC.15	5-18
5.5	NIC.24	5-25
5.6	NIC.26	5-31
Cha	apter 6 Assessment of Disaster Critical Spots	
6.1	Classification of Road Disaster	6-1
6.2	Identification of Critical Spots	6-6
Cha	apter 7 Study on Countermeasures/ Rough Cost Estimate	
7.1	Basic Policy of Countermeasures	7-1
7.2	Classification of Countermeasures	7-7
7.3	Recommendation of Countermeasures for Each Objective Route	7-18
7.4	Rough Cost Estimate	7-21
7.5	Investment Schedule	7-26
Cha	apter 8 Natural Condition Survey	
8.1	General	8-1
8.2	Hydrological Survey	8-3
8.3	Geological Survey	8-17
CI		
	expers 9 Environmental Survey	
9.1	Environmental Preservation in Nicaragua	9-1
9.2	Condition of Natural and Social Environments	9-5
9.3	Environmental Impact Factors	9-13
Cha		
	pter 10 Traffic Surveys Objectives	10.4
	Survey Methodology	10-1
	,	10-1
	Aggregate Traffic Count Results Aggregate Interview Results	10-5
10.7	Aggicgate linerview Results	10-8
Cha	pter 11 Socio-Economic Framework	
11.1	Objectives and Method	11-1
	Background Data and Forecasts	11-2
11.3	Vehicle Operating Costs	11-4
	Traffic Growth Factors	11-5
11.5	Values of Time and Cost	11-6
11.6	Evaluation Parameters	11-6

Chapter 12 Future Traffic Demand	
12.1 General Methodology	
12.2 Highway Network	
12.3 Base Year Matrices	
12.4 Base Year Traffic Estimates	
12.5 Forecast Year Traffic	
Chapter 13 Evaluation of Traffic Forecasts	
13.1 General Methodology	
13.2 Simulation of Disaster Sites in Traffic Model	
13.3 Incorporation of Risk	
Chapter 14 Identification of Disaster Prevention Spots	
14.1 General	
14.2 Characteristics of Disaster Critical Spots	
14.3 Selection Technique of Disaster Critical Spots	
14.4 Identification of Disaster Prevention Spots	.======
<part b:="" feasibility="" study=""></part>	
Chapter 15 Introduction	
15.1 General	·
15.2 Disaster Prevention Spots for the Feasibility Study	
Chapter 16 Design Standard	
16.1 General (Applicable Geometric Design Standard)	
16.2 Design Standards	
16.3 Standard Typical Cross-section and Right-of-Way	·]
Chapter 17 Detailed Examination of Countermeasures	
17.1 General	
17.2 Confirmation of the Status of Disaster Prevention Spots	
17.3 Preliminary Engineering Design of Slope Stability	
17.4 Selection of Countermeasure for Slope Disaster	
17. 5 Preliminary Engineering Design for Bridge Foundation Scouring	
17.6 Selection of Spot Specific Countermeasures	

	er 18 Construction Plan and Cost Estimate	
	eneral	
18.2 C	ost Estimate Assumption	18
	nit Rates	
18.4 S	pot Specific Construction Plans	18
	Vork Quantities	
18.6 S	ummary of Spots Specific Costs	18
-	er 19 Environmental Impact Assessment	
	fethod of EIA	
	valuation of Environmental Consideration	
19.3 T	he Points to Concern for The Next Step	19
19.4 E	valuation at Present	19-
	er 20 Project Evaluation	
	eneral	
	conomic Analysis	
20.3 B	udget Priorities	20-
-	er 21 Implementation Plan	
	eneral	
	xecuting Agency	
	roject Packaging	
	alidity Evaluation to Each Countermeasure	
	onstruction Period of Each Project Packaging	
	ngineering Services	
	nplementation Schedule	
	vestment Programme	
21.9 F	inancing Arrangements	21-
Chapte	<u>-</u>	
	eneral	
	Sethod for Establishing Maintenance Programme	
	Organization of Maintenance Division	
	spection and Maintenance Work Methods	
	rocurement	
22 6 P	lan of Database System	22-

Chapter 23	Conclusion and Recommendation	
23.1 Early ex	ecution of the disaster prevention spots	23-1
23.2 Recomn	nendation	23-3
Appendices		
Appendices-	Part A	
Appendix A1	Stability Survey Sheet (Chapter 4)	A1-1
Appendix A2	Type of Countermeasures (Chapter 7)	A2-1
Appendix A3	Hydrological Data (Chapter 8)	A3-1
Appendix A4	Data for AHP (Chapter 14)	A4- 1
Appendices-	Part B	
Appendix B1	Bridge Conditions (Chapter 17)	B1-1
Appendix B2	Formulary of Solicitude of Environment Permission (Chapter 19)	B2-1
Appendix B3	Cost/Benefit Data (Chapter 20)	B3-1

LIST OF TABLES

Chapter 2	Present Situation of Study Area
Table 2.1.1	Main Composite Volcano Eruption in Nicaragua
Table 2.1.2	Annual Mean Temperature and Precipitation
Table 2.1.3	Frequency of Tropical Cyclones in Nicaragua
Table 2.1.4	Pacific River watershed of Nicaragua
Table 2.1.5	Atlantic River Watershed of Nicaragua
Table 2.2.1	Characteristics of Land Use
Table 2.2.2	Vehicle Registration of by Vehicle Type and Region (year 2000)
Table 2.3.1	National Road Network in Nicaragua (1999)
Table 2.3.2	Road Classifications
Table 2.3.3	Road Physical Geometric Characteristic
Table 2.3.4	Elements of Geometric Design of Regional Roads
Table 2.3.5	Geometric Specifications of Reference
Table 2.3.6	Number of Staff and Budget for 2002 under the
	General Direction of Road (Million Cordobas)
Table 2.3.7	Various Work Target and Budget of Road Maintenance
Table 2.3.8	Traffic Volume on Objective Road
Table 2.4.1	Past Disaster Record
Table 2.4.2	Classification of Objective Roads by Seismic Zone
Chapter 3	National Development Plan
Table 3.3.1	Production Forecasts 2000- 2020 (Million US dollars)
Table 3.3.2	Payment Balance
Table 3.3.3	Fiscal Forecasts (Million US dolars)
Table 3.3.4	Monetary Forecasts (Million US dollars)
Chapter 4	Assessment of Road Disaster Prevention Spots
Table 4.1.1	Route Studied for Road Disaster Prevention and Length
Table 4.1.2	Geology and Topography of the Routes for Road Disaster Prevention -
Table 4.1.3	Type of Rockfalls and Collapse on the Study Route
Table 4.1.4	Types of Rock Collapse on the Study Route
Chapter 5	Survey Result and Identification of Potential Spots
Table 5.1.1	Bridge Inventory for NIC.1
Table 5.1.2	Natural Conditions on NIC.1
Table 5.1.3	Identified Disaster Potential Spots on NIC.1

Table 5.1.4	Field Survey Results on NIC.1
Table 5.1.5	Disaster Potential Spots for Bridges on NIC.1
Table 5.2.1	Identified Disaster Potential Spots on NIC.3
Table5.2.2	Field Survey Results for Bridges on NIC.3
Table 5.3.1	Identified Disaster Potential Spots on NIC.5
Table 5.4.1	Bridge Inventory for NIC.15
Table 5.4.2	Identified Disaster Potential Spots on NIC.15
Table5.4.3	Field Survey Results for Bridges on NIC.15
Table 5.5.1	Bridge Inventory for NIC.24
Table 5.5.2	Bridges on NIC.24
Table 5.5.3	Identified Disaster Potential Spots on NIC.24
Table5.5.4	Field Survey Results for Bridges on NIC.24
Table5.5.5	Disaster Potential Spots for Bridges on NIC.24
Table 5.6.1	Bridge Inventory for NIC.26
Table 5.6.2	Identified Disaster Potential Spots on NIC.26
Table5.6.3	Field Survey Results for Bridges on NIC.26
Table5.6.4	Disaster Potential Spots for Bridges on NIC.26
Chapter 6	Assessment of Disaster Critical Spots
Table 6.2.1	Total Number of Disaster Critical Spots
Table 6.2.2	Road Functions of Objective Roads
Table 6.2.3	Production of Main Export Agricultural Products
Table 6.2.4	Transport Role Agro-Export Production by Objective Roads
Table 6.2.5	Existing Population Directly Influenced by the Objective Roads
Table 6.2.6	Assessment of Direct Impact
Table 6.2.7	Assessment of Indirect Impact
Chapter 7	Study on Countermeasures/ Rough Cost Estimate
Table 7.1.1	Type of Countermeasure and Construction Record and
	Possibility in Nicaragua
Table 7.1.2	Procurement of Construction Material
Table 7.1.3	Procurement of Construction Equipment
Table 7.1.4	Investment by Sources (1990-2001) in Millions
Table 7.1.5	Road Infrastructure Development Plan 2002- 2006
Table 7.1.6	General Perspective of Expenditure of Central Government
Table 7.1.7	Applicability of Countermeasures against Slope Failures
Table 7.1.8	Applicability of Countermeasures against
	Bridge Foundation Scouring

Table 7.3.1	Type of Countermeasure for Slope Failure on NIC.1
Table 7.3.2	Type of Countermeasure for Bridge Foundation Scouring on NIC.1
Table 7.3.3	Type of Countermeasure for Slope Failure on NIC.3
Table 7.3.4	Type of Countermeasure for Bridge Foundation Scouring on NIC.3
Table 7.3.5	Type of Countermeasure for Slope Failure on NIC.5
Table 7.3.6	Type of Countermeasure for Slope Failure on NIC.15
Table 7.3.7	Type of Countermeasure for Slope Failure on NIC.26
Table 7.3.8	Type of Countermeasure for Slope Failure on NIC.26
Table 7.4.1	Construction Quantity
Table 7.4.2	Unit Costs
Table 7.4.3	Construction Cost of Countermeasure for Slope Failure on NIC.1
Table 7.4.4	Construction Cost of Countermeasure for
	Bridge Foundation Scouring on NIC.1
Table 7.4.5	Construction Cost of Countermeasure for Slope Failure on NIC.3
Table 7.4.6	Construction Cost of Countermeasure for
	Bridge Foundation Scouring on NIC.3
Table 7.4.7	Construction Cost of Countermeasure for Slope Failure on NIC.5
Table 7.4.8	Construction Cost of Countermeasure for Slope Failure on NIC.15
Table 7.4.9	Construction Cost of Countermeasure for Slope Failure on NIC.26
Table 7.4.10	Construction Cost of Countermeasure for
	Bridge Foundation Scouring on NIC.26
Table 7.4.11	Total Cost of Each Route
Chapter 8	Natural Condition Survey
Table 8.1.2	Serial Number of Study Areas (Disaster Critical Spots)
	Requiring Investigation
Table 8.2.1	Contents of Nominated Bridges
Table 8.2.2	The Result of Flow Velocity Investigation Result
Table 8.2.3	Morophometric Parameters
Table 8.2.4	Meteorologic Stations
Table 8.2.5	Runoff Coefficients
Table 8.2.6	Runoff Coefficients for the Watersheds
Table 8.2.7	Peak Flow Estimation
Table 8.2.8	Water Level at the Bridge Cross Section for Group 1
Table 8.2.9	Water Level at the Bridge Cross Section for Group 2
Table 8.3.1	Classification Item of Boring Exploration (Slope)
Table 8.3.2	Classification Item of Boring Exploration (Bridge)
Table 8.3.3	Arrangement of Boring Exploration

Table 8.3.4	The Survey Result	8-22
Table 8.3.5	Evaluation Items and Categories	
Table 8.3.6	Evaluation of the Natural Conditions Survey	
Chapter 9	Environment Survey	
Table 9.1.1	List of Environmental Standards and Acts for Road Construction	9-3
Table 9.3.1	Evaluation of Each Site	9-19
Chapter 10	Traffic Surveys	
Table 10.2.1	Traffic Survey Locations and Dates	10-1
Table 10.2.2	Response Codes in Origin-Destination Survey	10-2
Table 10.2.3	Origin and Destination Zone Coding	10-3
Table 10.2.4	Interview Rates	10-4
Table 10.3.1	Aggregate Traffic Counts, June 2002, 06.00 to 18.00 Hours	10-5
Table 10.3.3	Daily to Weekly Adjustment Factors	10-7
Table 10.3.4	AADT Conversion Factors	10-7
Table 10.3.5	Annual Average Daily Traffic Volumes, Surveyed Sites	10-8
Table 10.4.1	Total Valid Interviews by Site	10-8
Table 10.4.2	Average Observed Vehicle Occupancies	10-9
Table 10.4.3	Average Loads by Truck Type (unit: tons)	10-9
Table 10.4.4	Cargos Carried by Truck Type Surveyed	10-10
Table 10.4.5	Frequency Distribution of Origins and Destinations	10-11
Chapter 11	Socio-Economic Framework	
Table 11.1.1	Socio-economic Variables Used to Determine Traffic Growth	11-1
Table 11.2.1	GDP Forecasts by Sector, Nicaragua, 2000 to 2020, US\$ Millions	11-2
Table 11.3.1	Vehicle Operating Costs and Passenger Costs, Nicaragua 2002	11-5
Table 11.4.1	Traffic Growth Factors to 2010 and 2020	11-5
Table 11.4.2	Traffic Growth Factors (sensitivity test)	11-6
Table 11.5.1	Growth Factors Applied to Value of Time, at 2002 US\$ Values	11-6
Table 11.6.1	Evaluation Parameters	11-7
Chapter 12	Future Traffic Demand	
Table 12.2.1	Zone Connectors	12-3
Table 12.4.1	Base Year Validation, 12-hour Vehicle Flows, June 2002	12-4
Table 12.4.2	Base Year (2002) Network Statistics, Estimated AADT	12-5
Table 12.5.1	Forecast Year AADT Totals by Mode	12-5
Гable 12.5.2	Network Statistics for Forecast Year Traffic	12-7

Chapter 13	Evaluation of Traffic Forecasts	
Table 13.2.1	Potential Disaster Links in Traffic Model	13-3
Table 13.2.2	Benefit-to-Cost Ratio by Disaster Site	13-5
Table 13.2.3	Sensitivity Tests on Benefit-to-Cost Ratio	13-5
Chapter 14	Identification of Disaster Prevention Spots	
Table 14.2.1	Characteristics of Disaster Critical Spots	14-3
Table 14.3.1	Magnitude and Definition of Importance	14-5
Table 14.3.2	Magnitude of Pair Comparison	14-5
Table 14.4.1	Disaster Prevention Spots	14-6
Chapter 15	Introduction	
Table 15.2.1	Disaster Prevention Spots and Countermeasures	
	for Feasibility Study	15-3
Table 15.2.2	Relationship between Objective Roads and	
	No. of Disasters by Type	15-3
Chapter 16	Design Standard	
Table 16.1.1	Results of Traffic Volume Survey	16-2
Table 16.1.2	Applicable Geometric Standards	16-2
Table 16.2.1	Recommended Standards for Embankment Gradients	
	by Road Type	16-3
Table 16.2.2	Concept for Rock Classification	16-4
Table 16.2.3	Recommended Standards for Cut Slopes in Nicaragua	
	Based on Rock Classification	16-5
Table 16.2.4	Cut Slope Gradient Standards by Road Type	16-5
Table 16.2.5	Relationship between Weight of Blocks	
	and Velocity of Water Flow	16-13
Table 16.3.1	Typical Cross-section and Right-of-Way	16-14
Table 16.3.2	Status of Existing Road Width	16-15
Chapter 17	Close Examination of Countermeasures	
Table 17.2.1	Review Results List of the Stability Survey	
	based on the Phase 2 Study	17-3
Table 17.2.2	Ritchie's Design Case for Rock Fall Protection Works	
	and This Survey-Based Rock Fall Analysis Calculation	17-4
Table 17.2.3	Cut Slope Standard in Nicaragua	

Table 17.2.4 (1) Difference between the Conditions of Individual Slope Surfaces durin	g
Dry and Rainy Seasons and Countermeasures against Slope Surfaces for NIC.1	17-7
Table 17.2.4 (2) Difference between the Conditions of Individual Slope Surfaces during	<u>;</u>
Dry and Rainy Seasons and Countermeasures against Slope Surfaces for NIC.3	17-8
Table 17.2.4 (3) Difference between the Conditions of Individual Slope Surfaces during	ŗ
Dry and Rainy Seasons and Countermeasures against Slope Surfaces for NIC.5	17-9
Table 17.2.4 (4) Difference between the Conditions of Individual Slope Surfaces during	
Dry and Rainy Seasons and Countermeasures against Slope Surfaces for NIC.26	17-10
Table 17.2.5 Present Condition of Objective Bridges (1/3)	17-12
Table 17.2.5 Present Condition of Objective Bridges (2/3)	17-13
Table 17.2.5 Present Condition of Objective Bridges (3/3)	17-14
Table 17.3.1 Laboratory Test Items and Results	17-18
Table17.3.2 (1) NIC.1 Soil and Rock Test Results	17-19
Table 17.3.2 (2) NIC.3 Soil and Rock Test Results	17-20
Table17.3.2 (3) NIC.5 Soil and Rock Test Results	17-21
Table17.3.2 (4) NIC.15 Soil and Rock Test Results	17-21
Table 17.3.2 (5) NIC.26 Soil and Rock Test Results	17-22
Table 17.3.3 Execution Completion Year	17-24
Table 17.3.4 Secondary Alteration-Based Lithology Category	17-25
Table 17.3.5 (1) NIC.1 Analysis on Loosened Speed in a Weathering Layer	17-26
Table 17.3.5 (2) NIC.3 Analysis on Loosened Speed in a Weathering Layer	17-26
Table 17.3.5 (3) NIC.5 Analysis on Loosened Speed in a Weathering Layer	17-27
Table 17.3.5 (4) NIC.15 Analysis on Loosened Speed in a Weathering Layer	17-27
Table 17.3.5 (5) NIC.26 Analysis on Loosened Speed in a Weathering Layer	17-27
Table 17.3.6 Hardness-Based on Lithology Classification	17-28
Table 17.3.7 (1) NIC.1 Suitability of Current Slopes	17-31
Table 17.3.5 (2) NIC.3 Suitability of Current Slopes	17-31
Table 17.3.7 (3) NIC.5 Suitability of Current Slopes	17-32
Table 17.3.7 (4) NIC.26 Suitability of Current Slopes	17-32
Table 17.3.8 Rock Fall and Stability Calculation Conditions List	17-33
Table 17.3.9 Current Factor of Safety	17-34
Table 17.3.10 (1) NIC.1 Stability Analysis Results	17-36
Table 17.3.10 (2) NIC.3 Stability Analysis Results	17-36
Table 17.3.10 (3) NIC.5 Stability Analysis Results	17-37
Table 17.3.10 (4) NIC.26 Stability Analysis Results	17-37
Table 17.3.11 Slope Gradient Applicable Stratums	17-38
Table 17.4.1 Condition of Fallen Stone	17-40
Table 17.4.2 Jumping Height and Rolling Distance Calculations	17_41

Table 17.4.3	Structure Required for Protection Wall	17-4
Table 17.4.4	Relationship between Type of Protection Wall & Natural Conditions	17-4
Table 17.4.5	Required Dimensions for Prevention Nets	17-4
Table 17.4.6	Results of Survey on Distance to Roadside Obstacles	17-4
Table 17.4.7	Curvature Radius of Each Spot	17-4
Table 17.4.8	Alternative Route Comparison for N003E170	17-4
Table 17.4.9	Final Countermeasure Selection (1/4)	
Table 17.4.9	Final Countermeasure Selection (2/4)	17-5
Table 17.4.9	Final Countermeasure Selection (3/4)	
Table 17.4.9	Final Countermeasure Selection (4/4)	17-5
Table 17.5.1	Correction Factor Concerning Front-end Shape of Pier	17-5
Table 17.5.2	Free Space under Beam	17-5
Table 17.5.3	Estimation of Scouring	17-6
Table 17.5.4	Relation between Block Weight and Velocity of Water Flow	17-6
Table 17.5.5	Comparison of Prevention Measures for Foundation Scouring	17-6
Table 17.5.6	Countermeasure Applicability by Bridge	17-6
Table 17.5.7(1) Disaster Prevention Spot Issues & Countermeasures (1/2)	17-6
Table 17.5.7(2) Disaster Prevention Spot Issues & Countermeasures (2/2)	17-6
Table 17.6.1	Countermeasure Alternatives for NIC.1	17-7
Table 17.6.2	Countermeasure Alternatives for NIC.3 (Mountainside)	17-7
Table 17.6.3	Countermeasure Alternatives for NIC.3 (Valleyside)	17-7
Table17.6.4	Countermeasure Alternatives for NIC.5	17-7
Table17.6.5	Countermeasure Alternatives for NIC.26	17-7
Table17.6.6	Selection of Prevention Countermeasure Method	17-7
Table17.6.7	Selection of Prevention Countermeasure Method	17-7
Table17.6.8	Selection of Prevention Countermeasure Method	17-7
Table17.6.9	Selection of Prevention Countermeasure Method	17-8
Table17.6.10	Selection of Prevention Countermeasure Method	17-8
Table17.6.11	Selection of Prevention Countermeasure Method	17-8
Table17.6.12	Selection of Prevention Countermeasure Method	17-83
Table17.6.13	Selection of Prevention Countermeasure Method	17-8
Table17.6.14	Selection of Prevention Countermeasure Method	17-8
Table17.6.15	Selection of Prevention Countermeasure Method	17-80
Table17.6.16	Selection of Prevention Countermeasure Method	17-87
Table17.6.17	Selection of Prevention Countermeasure Method	17-8
Table17.6.18	Selection of Prevention Countermeasure Method	17-89
Table17.6.19	Selection of Prevention Countermeasure Method	17-90
Table17.6.20	Selection of Prevention Countermeasure Method-	17-01

Table19.2.1	Consideration Items for Avoidance of Inhabitant Resettlement	19-1
Chapter 19	Environmental Impact Assessment	
Table 18.6.8	Total Construction Cost by Route	18-9
	Bridge Foundation Scouring on NIC.26	18-9
Table 18.6.7	Construction Cost for Countermeasures for	
Table 18.6.6	Construction Cost for Countermeasures for Slope Failure on NIC.26	18-9
Table 18.6.5	Construction Cost for Countermeasures for Slope Failure on NIC.5	18-9
	Bridge Foundation Scouring on NIC.3	18-8
Table 18.6.4	Construction Cost for Countermeasures for	
Table 18.6.3	Construction Cost for Countermeasures for Slope Failure on NIC.3	18-8
	Bridge Foundation Scouring on NIC.1	18-8
Table 18.6.2	Construction Cost for Countermeasures for	
Table 18.6.1	Construction Cost for Countermeasures for Slope Failure on NIC.1	18-7
	Bridge Foundation Scouring on NIC.26	18-7
Table 18.5.8	Work Quantities for Countermeasures for	
Table 18.5.7	Work Quantities for Countermeasures for Slope Damage on NIC.26	18-7
Table 18.5.6	Work Quantities for Countermeasures for Slope Damage on NIC.5	18-6
	Bridge Foundation Scouring on NIC.3	18-6
Table 18.5.5	Work Quantities for Countermeasures for	
Table 18.5.4	Work Quantities for Countermeasures for Slope Damage on NIC.3	18-6
	Bridge Foundation Scouring on NIC.1	18-6
Table 18.5.3	Work Quantities for Countermeasures for	
Table 18.5.2	Work Quantities for Countermeasures for Slope Damage on NIC.1	18-5
Table 18.5.1	Summary of Work Quantities	18-4
Table 18.4.2	Main Equipment List for Bridge Damage Repair	18-4
Table 18.4.1	Main Equipment List for Slope Damage Repair	18-3
Table 18.3.1	Unit Rates	18-2
Chapter 18	Construction Plan and Cost Estimate	
Table 17.6.28	Examination of Type of Guayacan Bridge	17-110
Table 17.6.27	Problems at Guayacan Bridge	17-107
Table 17.6.26	Countermeasures for Tapacali Bridge	17-105
Table 17.6.25	Countermeasures for Inali Bridge	17-102
Table17.6.24	Selection of Prevention Countermeasure Method	17-95
Table17.6.23	Selection of Prevention Countermeasure Method	17-94
Table17.6.22	Selection of Prevention Countermeasure Method	17-93
Table17.6.21	Selection of Prevention Countermeasure Method	17-92

Table 19.2.2	Consideration Items for Avoidance of Inhabitant Resettlement	19-2
Table19.2.3	Consideration Items for Economic Activity	19-3
Table19.2.4	Consideration Items for Ground Water	19-3
Table19.2.5	The Drainage Structure in Consideration of	
	the Underground Permeation	19-4
Table19.2.6	Consideration Item for River Use	19-4
Table19.2.7	Consideration Items for Fauna and Flora	19-5
Table19.2.8	Method of Mitigation	19-6
Table19.3.1	Control Method of Waste Material	19-8
Table19.4.1	Evaluation of Each Site for Environmental Impact	19-12
Chapter 20	Implementation Plan	
Table 20.1.1	Vehicle Operating Costs and Passenger Costs, Nicaragua 2002	20-1
Table 20.1.2	Full Cost Breakdown of Countermeasures	20-2
Table 20.1.3	Costs of Countermeasures by Site	20-2
Table 20.1.4	Economic Evaluation Parameters	20-3
Table 20.2.1	Maximum Annual Hourly Rainfall for the Past 20 Years	20-4
Table 20.2.2	Construction Period for Road Disaster Prevention	
	Measures (With Project)&Road Restoration Costs(Without Project) -	20-5
Table 20.2.3	Road Improvement Schemes	20-7
Table 20.2.4	Result of Economic Evaluation	20-8
Table 20.2.5	High Priority Site(EIRR) for Disaster Prevention Measures	20-8
Table 20.3.1	Ranked Schemes with B/C	20-11
Table 20.3.2	Ranked Schemes with EIRR	20-12
Table 20.3.3	Priority Groups of Disaster Prevention Schemes	20-13
Table 20.3.4	Example Internal Rates of Return for Work Packages	20-13
Chapter 21	Project Evaluation	
Table 21.3.1	Package Group and Disaster Spots	21-1
Table 21.4.1	Annual Maintenance Budget Estimates (US\$, 2002 prices)	21-3
Table 21.4.2	Validity of Economic and Financial Evaluation	21-3
Table 21.4.3	Total Investment in Disaster Prevention Measures	
	(US \$, 2002 prices)	21-6
Table 21.4.4	Project Internal Rate of Return (IRR) in Preventing Disasters	
	on Each Road Link: Full Project Cost in Each Case	21-6
Table 21.5.1	Construction Work of Package 1	21-7
Table 21.5.2	Construction Work of Package 2	21-8
Table 21.5.3	Construction Work of Package 3	21-8

Table 21.8.1	Allocation of Costs	21-9
Table 21.8.2	Potential Expenditure Profile for Disaster Prevention Measures	
	(\$US, 2002 prices)	21-10
Table 21.9.1	Proposed MTI Budget Provision for Implementation and	
	Maintenance of Disaster Prevention Measures ('000s Cordoba)	21-11
Chapter 22	Management System and Operation	
Table 22.4.1	Inspection and Record Items	22-7
Chapter 23	Conclusion and Recommendation	
Table 23.1.1	Priority Order of Project Packages	23-2

LIST OF FIGURES

Chapter 1	Introduction	
Figure 1.4.1	Study Workflow	
Chapter 2	Present Situation of Study Area	
Figure 2.1.1	Geological Map of Nicaragua	
Figure 2.1.2	The Seismic Intensity	
Figure 2.2.1	Land Use Map	2
Figure 2.2.2	Roadside Population in 1998	2
Figure 2.2.3	Roadside Population Between 1971 and 2019	2
Figure 2.2.4	Vehicle Registration of Main Region	2
Figure 2.3.1	National Road Network in Nicaragua	2
Figure 2.3.2	National Transportation Plan	2
Figure 2.3.3	Organization of the General Direction of Road in MTI	2
Figure 2.4.1	The Route of Past Cyclones	2
Figure 2.4.2	Distribution of Seismic Center in Nicaragua	2
Figure 2.4.3	Classification of Seismic	2
Figure 2.4.4	Location Map of Landslides	2
Chapter 4	Assessment of Road Disaster Prevention Spots	
Figure 4.1.1	River Width at the Bridge	
Figure 4.1.2	Both Abutments in the River	
Figure 4.1.3	Pier Scouring	
Figure 4.2.1	Investigation Procedure of Road Disaster Prevention	
Chapter 5	Survey Result and Identification of Potential Spots	
Figure 5.1.1	Schematic Profile of NIC.1	
Figure 5.2.1	Schematic Profile of NIC.3	5
Figure 5.3.1	Schematic Profile of Collapse Site on NIC.5	5.
Figure 5.4.1	Schematic Profile of NIC.15	5
Figure 5.5.1	Schematic Profile of NIC.24	5.
Figure 5.6.1	Schematic Profile of NIC.26	5.
Chapter 6	Assessment of Disaston Cuitical Su-4-	
Figure 6.1.1	Assessment of Disaster Critical Spots Monthly Precipitation	
Figure 6.1.1	Monthly Precipitation Annual Precipitation	e
* 15 UI V V. I. Z	. Milium I IVVIVII alivii	- 1

Figure 9.1.1	Organizational Chart of MARENA
Chapter 9	Environment Survey
Figure 8.3.2	Example for the Classification Item of Boring Exploration (Bridge)
Figure 8.3.1	Example for the Classification Item of Boring Exploration (Slope)
Figure 8.2.5	IDF Curve in Leon Station
Figure 8.2.4	IDF Curve in Condega Station
Figure 8.2.3	IDF Curve in San Ishidorode Barbacoa Station
Figure 8.2.2	IDF Curve in Ocotal Station
Figure 8.2.1	Rainfall Data in Object Observatory Stations
Figure 8.1.1	Flowchart for the National Condition Survey
Chapter 8	Natural Condition Survey
	and Type of Work
Figure 7.2.11	Relation between Objects of Prevention Countermeasures
	the Case of the Bridge Foundation Scouring
Figure 7.2.10	Selection of Tenporary/ Permanent Countermeasure in
	Bridge Foundation Scouring
Figure 7.2.9	Sellection of Emergency Countermeasure in Case of
Figure 7.2.8	Selection Countermeasure for Debris Flow
Figure 7.2.7	Selection of Countermeasure for Slope Damage
Figure 7.2.6	Selection of Emergency Countermeasure in Case of Slope Damage
	Rock Collapsing
Figure 7.2.5	Selection of Temporary and Permanent Countermeasures for
•	Rock Collapsing
Figure 7.2.4	Selection of Emergency Countermeasure in Case of
	Rockfall/ Collapsing
Figure 7.2.3	Selection of Temporary and Permanent Countermeasure for
Figure 7.2.2	Selection of a Temporary and Permanent Countermesure
	Rackfall/ Collapsing
Figure 7.2.1	Selection of Emergency Countermeasure in Case of
Chapter 7	Study on Countermeasures/ Rough Cost Estimate
Figure 6.2.2	Decomposed Granite
Figure 6.2.1	Volcanic Clastic Rock
	Important Items
Figure 6.1.3	Distribution of Points Gained through Re-Evaluation for

Figure 9.1.2	Organization of Division of Environmental Administration and	
	Technical Control	ç
Figure 9.1.3	Environmental Evaluation Process	ç
Figure 9.2.1	Conservation of Precious Fauna and Flora	ç
Figure 9.2.2	National Park Map	ç
Figure 9.2.3	Conservation of Areas for Indigenous People	9-
Figure 9.2.4	Historical Locations/ Cultural Assets	9-
Chapter 10	Traffic Surveys	
Figure 10.3.1	Aggregate Traffic Counts, June 2002, 06.00 to 18.00 Hours	10
Figure 10.3.2	Hourly Total Traffic Variations, 06.00 to 18.00 Hours, All Sites	10
Figure 10.3.3	Hourly Total Traffic Variations, 24 Hours, Sites 2 and 6	10
Figure 10.3.4	Observed Relationships between 12-hour and 24-hour Counts	10
Figure 10.3.5	Motorized Traffic Growth at Surveyed Sites	10
Figure 10.4.1	Distribution of Observed Loads Carried by Truck Type	10
Figure 10.4.2	Number of Interviews at Each Site by Journey Purpose	10-
Chapter 11	Socio-Economic Framework	
Figure 11.2.1	Nicaragua population, 1980 to 2002, Millions	11
Figure 11.2.2	Forecast population of Nicaragua to 2020, Millions	11
Figure 11.2.3	Annual Growth Rates by Sector of the Economy, 2000 to 2020	11
Figure 11.2.4	Average GDP per Head (US\$), Nicaragua, 1980 to 2020	11
Figure 11.2.5	Vehicle Ownership (per 1000 population)	11
Figure 11.2.6	GDP per Head and Vehicle Ownership per 1,000 Population	11
Figure 11.3.1	Vehicle Operating Costs, Nicaragua 2002, US \$ per 1000 km	11
Chapter 12	Future Traffic Demand	
Figure 12.2.1	Base Year Highway Network	12
Figure 12.2.2	Base Year Network, Major Roads	12
Figure 12.4.1	2002 Estimated AADT Flows	12
Figure 12.5.1	Traffic Forecast, 2003, AADT	12-
Figure 12.5.2	Forecast Traffic, 2010, AADT	12-
Figure 12.5.3	Forecast Traffic, 2020, AADT	12-
Chapter 13	Evaluation of Traffic Forecasts	
Figure 13.1.1	Example Cost/ Benefit Calculation Sheet	13-
Figure 13.2.1	Disaster Sites	13-
Figure 13.2.2	Forecast AADT Volumes, 2010. No Link 94	13_

Figure 13.2.3	Cost/Benefit Ratios of Disaster Sites (Log-scale)	13-4
Chapter 14	Identification of Disaster Prevention Spots	
Figure 14.3.1	AHP Structure	14-2
Chapter 16	Basic Design Standard	
Figure 16.1.1	Relation of Sight Distance and Radius	16-3
Figure 16.2.1	Beam Standard in Nicaragua	16-6
Figure 16.2.2	Area of Scouring	16-7
Figure 16.2.3	Assumption for Scouring Depth (ho/D = 0.5-0.7)	16-8
Figure 16.2.4	Assumption for Scouring Depth (ho/D = 0.75-1.25)	16-9
Figure 16.2.5	Assumption for Scouring Depth (ho/D = $1.75 \sim 2.25$)	16-10
Figure 16.2.6	Assumption for Scouring Depth (ho/D = $2.75 \sim 3.5$)	16-11
Figure 16.2.7	Relationship between Average Grain Size and Angle of Repose	16-12
Figure 16.2.8	Relationship between Size of Debris and Velocity of Water Flow	16-13
Figure 16.3.1	Standard Typical Cross-section and Right-of-way	16-14
Chapter 17	Close Examination of Countermeasures	
Figure 17.2.1	Selection Flow of Counter Measures against Slope Surface	17-2
Figure 17.2.2	Rock Fall Locus Model	17-4
Figure 17.2.3	Horizontal Boring Drainage	17-6
Figure 17.2.4	Disaster Prevention Spots Requiring Countermeasures	
	for Bridge Foundation Scouring	17-11
Figure 17.3.1	Analysis Method for Slope Gradient in a Bedrock Loosening Area	17-16
Figure 17.3.2	Grouping of Rock	17-23
Figure 17.3.3	Analysis on Slope Gradients of a Loosened Area	
	in a Weathering Layer	17-29
Figure 17.3.4	Stability Analysis by Sliding Circular Arc Method	
	at Non-earthquake Condition	17-35
Figure 17.3.5	Geological Area	17-39
Figure 17.4.1	Distribution of Jumping Height and Rolling Distance	17-42
Figure 17.4.2	Flow of Countermeasure of Road Alignment Shift	17-45
Figure 17.4.3	Route Comparison for N003E170	17-48
Figure 17.5.1	Change in Flow Caused by Pier	17-52
Figure17.5.2	River Flow & Pier Shape	
	(When Flow and Direction of Pier Axis Different)	17-54
Figure 17.5.3	Installation of Bulkhead	17-54
Figure 17.5.4	Calculation Method for River Obstruction Ratio	17-55

Figure 17.5.5	Case where Abutment Extends into River	- 17-55
Figure 17.5.6	Span Length	- 17-57
Figure 17.5.7	Minimum Distance Between Piers and between Pier	
	& Abutment (Span Length)	- 17-58
Figure 17.5.8	Distance of Guard to Protect around Bridge	- 17-59
Figure 17.5.9	Size of Guard to Protect Riverbank below Bridge	- 17-59
Figure 17.5.10	Case where River Width near a Bridge is Narrower than	
	Upstream/Downstream River Width	17-60
Figure 17.5.11	Relationship between River Condition	
	& Bridge Foundation Scouring	17-61
Figure 17.5.12	Embedment of Spread Foundation into Bearing Stratum	17-62
Figure 17.5.13	Embedment of Pile Foundation, Caisson Foundation,	
	and Steel-Pipe-Sheet Pile Foundation into Bearing Stratum	17-62
Figure 17.5.14	Relation between Size of Rubble and Velocity of Water Flow	17-64
Figure 17.5.15	Revetment by Concrete (1:2)	17-67
Figure 17.5.16	Revetment by Concrete (1:0.4) H≤5m	17-67
Figure 17.5.17	Protection for Dike Approaches	
	(Case where Dike Approach Extends into River)	17-67
Figure 17.6.1 F	low Chart for the Selection of Disaster Prevention Countermeasures	17-70
Figure 17.6.2	Area of Protection Work	17-97
Figure 17.6.3	Concrete Revetment (1:1)	17-97
Figure 17.6.4	Stone Masonry Revetment (1:0.4)	17-97
Figure 17.6.5	San Nicolas counter measure	17-98
Figure 17.6.6	Protection Range around Piers	17-100
Figure 17.6.7	Abstract of Counter Measure	17-101
Figure 17.6.8	Protection Range around Abutment and Piers	17-103
Figure 17.6.9	Reinforcement for approach	17-104
Figure 17.6.10	Groyne	17-104
Figure 17.6.11	Protection Range around the Pier	17-105
Figure 17.6.12	Abstractive Layout of Countermeasure	17-106
Figure 17.6.13	The Vertical Alignment of Riverbed at Solis Bridge	
	and Papalon Bridge	17-108
Figure 17.6.14	Abstract of Countermeasure at Solis and Papalon	17-111
Figure 17.6.15	Abstractive Layout of Countermeasure of San Juan de Dios	17-113
Figure 17.6.16	The Existing Bridge at La Banderita	17-113
Figure 17.6.17	The Installation of Partition Wall	17-114
Figure 17.6.18	Protection Range against the Scouring	17-115

Chapter 19	Environmental Impact Assessment	
Figure 19.2.1	e.g. Planting in the Concrete Frame	19-5
Chapter 20	Implementation Plan	ı
Figure 20.1.1	Locations of 30 Vulnerable Road Sites for Evaluation	20-3
Figure 20.2.1	Impact of Jinotega-Guayacan Link on Benefits	
	of Disaster Sites between Jintoega and Matagalpa	20-9
Figure 20.2.2	Impact of Jinotega-Guayacan Link on Disaster Site	
	between Matagalpa and Guayacan	20-9
Figure 20.3.1	Scattergram of Ranked Schemes by Link	20-9
Figure 20.3.2	Summary of Work Package Costs by Road	20-14
Chapter 21	Project Evaluation	
Figure 21.7.1	Proposed Implementation Schedule	
	for Disaster Prevention Measures	21-9
Figure 21.8.1	Potential Expenditure Profile for Disaster Prevention Measures	21-10
Figure 21.9.1	Proposed MTI Budget Provision for Implementation and	
	Maintenance of Disaster Prevention Measures ('000s Cordoba)	21-11
Chapter 22	Management System and Operation	
Figure 22.2.1	Concept of Management and Operations System	22-1
Figure 22.2.2	Method of Data Processing	22-2
Figure 22.3.1	Organizational Chart of Maintenance Division	22-4
Figure 22.2.1	Flow Chart for Maintenance Management	22-9
Figure 22.4.2	Method of Repair/ Rehabilitation of Crack and Damage on Slope	22-10
Figure 22.4.3	Method of Repair/ Rehabilitation of Boulder Stone	
	and Unfixed Stone on Slope	22-10
Figure 22.4.4	Method of Repair/ Rehabilitation of Defects in Drainage Facility	
	and Weathering of Shotcrete	22-11
Figure 22.4.5	Method of Repair/ Rehabilitation of Slope Damage from	
	Road Surface Water Inflows	22-11
Figure 22.4.6	Method of Repair/ Rehabilitation of Damage from Landslides	22-12
Figure 22.6.1	Management of Database System for Road Maintenance	22-14

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background of the Study

Republic of Nicaragua, which has 129,541 square kilometers in area, 5 million population, is

located in the center of the Central America, the agriculture and stock farming are key

industries in the country. Since the 1990's after the civil war termination of the 1980's, the

democratization and the reconstruction of the domestic economy has been promoted by the

Government of Republic of Nicaragua (hereinafter referred to as "GRN"). However, there are

many subjects that the Nicaragua is having a voluminous foreign debt and should solve

increase of unemployment rate, poverty layers etc. Therefore the GRN has been setting the

improvement of infrastructure as the urgent subject for the recovery of domestic economy.

On the other hand, Nicaragua is also the frequent occurrence country of natural disaster and it

influences recurs the undesirable progress of the recovery of infrastructures. Especially, about

1,500 km of the paved roads and about 6,000 km of unpaved roads were disrupted by the

hurricane "Mitch" occurred in October, 1998 and also as for the bridge, complete collapse on

22 bridges and partial destruction on 46 bridges suffered.

In such situation, the GRN was established the National Transportation Plan including the

improvement of the road network in February, 2002. The main major road network will

become the important lifeline in case of emergency, and establishment of the sufficient

antidisaster plan is necessary.

However the disaster prevention plans was not established in the National Transportation Plan

clearly, and the reliability of the traffic is in low condition such as at the case of the bad

weather.

Therefore, the ultimate goal of this study is to assist the GRN in prioritizing and

recommending vulnerability reduction plans that are crucial for the economic development of

the country.

1.2 Objectives of the Study

The objectives of the Study are as follows;

1) To formulate a reduction plan of road vulnerability for the major roads in the

Republic of Nicaragua,

THE STUDY

PAGE 1-1

ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA ORIENTAL CONSULTANTS CO., LTD. in association with

JAPAN ENGINEERING CONSULTANTS CO., LTD.

2) To prepare detailed countermeasures for the high priority roads,

- 3) To prepare a manual for road vulnerability reduction, and
- 4) To pursue technology transfer to the counterpart personnel in the course of the Study.

Objective disasters in the Study shall be those related to roads such as slope failure, rock fall, land slide, debris flow and scouring around bridge foundation.

1.3 Study Area

The area of the Study shall cover the following Project Roads within major roads in the Republic of Nicaragua.

- i) El Espino San Benito (NIC. 1)
- ii) Sebaco Jinotega (NIC. 3)
- iii) Matagalpa Da Lida (NIC. 5)
- iv) Yalaguina Las Manos (NIC. 15)
- v) Chinandega Guasaule (NIC. 24)
- vi) Telica San Isidro (NIC. 26)

1.4 Workflow of the Study

The workflow of the Study is shown in Figure 1.4.1.

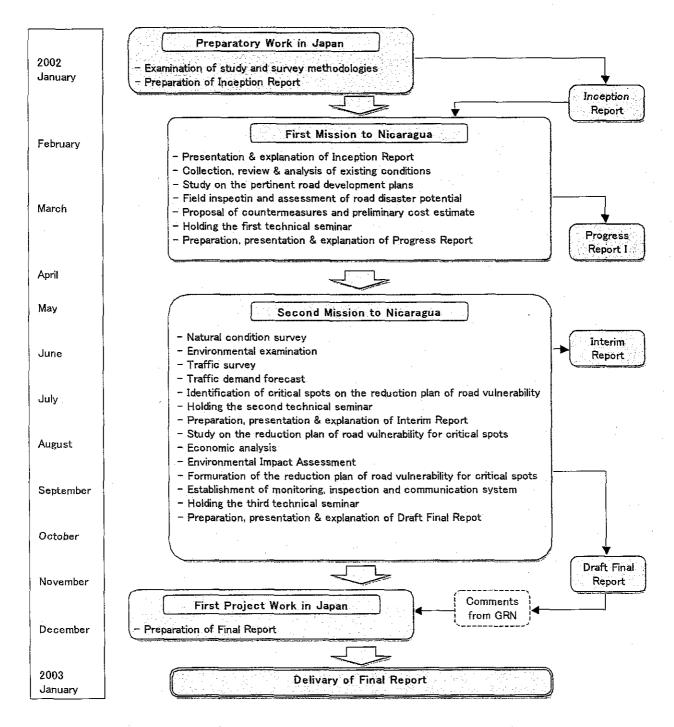
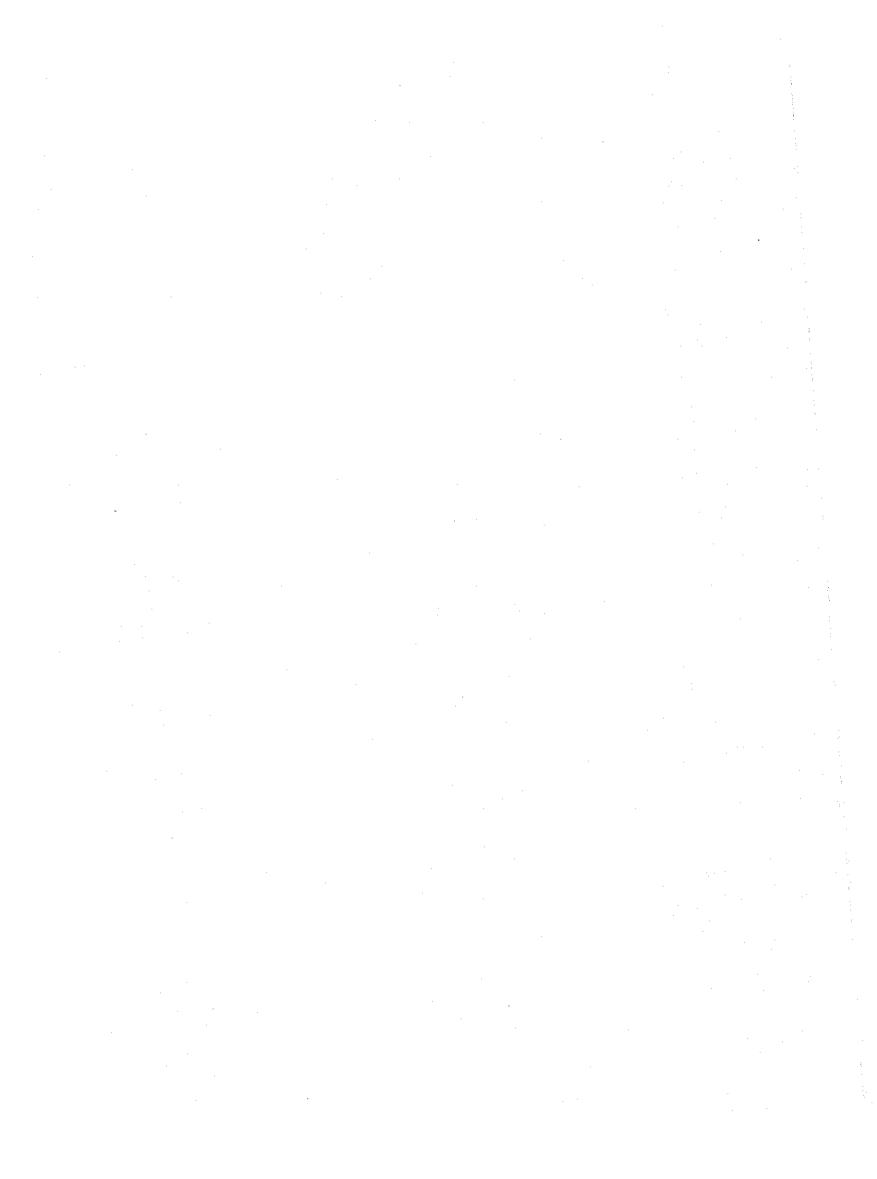



Figure 1.4.1 Study Workflow

PART A IDENTIFICATION OF STUDY SPOTS

CHAPTER 2

PRESENT SITUATION ON STUDY AREA

CHAPTER 2 PRESENT SITUATION OF STUDY AREA

2.1 Natural Conditions

2.1.1 Topography

The Republic of Nicaragua is located in the middle of Central America (10.45-15.05 degrees of North latitude, 83.11-87.42 degrees of West longitude) South of Honduras and North of Costa Rica. Its area is 120,349 km².

The topographical characteristic of Nicaragua is divided into three areas:

- Pacific plains area (including the volcanic mountain range area);
- Central mountains range area;
- Atlantic coast plains area.

The Pacific plains area runs around 350km along the coast from Gulf Fonseca in a North-West to South-East direction, around 70 to 100km wide. The land is very fertile, being covered by weathered volcanic ash soil or alluvium. The Nicaraguan rift valley is laid between volcanic mountain range and central mountains range in this area and is mainly subsidence land. It contains two large lakes (Lake Managua and Lake Nicaragua). A volcanic mountain range is laid in middle of the Pacific plains area and running parallel with coast. The Maribios volcanic mountain range occupies the North-East side of the area. The major volcanos are Consiguina, San Cristobal, Casita, Telica, and Momotombo. There is a gap in the range at Managua, and this lead to Masaya, Mombacho, Mt.Conception and Maderas.

The central mountains range area consists of three Cordillera (Isabelia, Dariense and Chontalena) that radiate in all directions, with a large basin and mountain table less than 1, 500m high. Mt. Mogoton, the highest mountain in Nicaragua (2,107m), is located on the border of Honduras. This area decreases in altitude and falls to reach alluvial plains in the Western lowlands.

The Atlantic coast plains area is typically 100m high, and around 150km wide. The West part of this area is called "Costa de Misquitos". This area has many major rivers (Segovia, San Juan, Coco, Laguun de Perlas, Grande and Wawa). The South portion of this area is tropical and humid marshland.

The study area the roads NIC.1, NIC.3, NIC.5 and NIC.15 are located in the central mountains range area. NIC.24 and NIC.26 are located in the Pacific plains area.

2.1.2 Geology

1) Geology

The oldest bed rock of Nicaragua is considered to be the metamorphic rock and granite etc. as stretched toward North-East/South-West along the border with Honduras judging from the geological and topographical distribution of Nicaragua. They develop less than 10% of the whole area but it is presumed that they were subject to repeated complicated tectonic movement and continued upheaval movement even after quaternary era thereby CoCo River slid into South-West direction. And Quizuli River and Achuapa River flow South-East crossing for long the diluvium terrace and alluvial fan as distributed widely along the said CoCo River. Meantime, a structure line is predicted around some 3 km South-West of Ocotal which is stretching into North-East/South-West direction. This area is faced with the Palaeozoic strata as bordered with this structure line. In other words, faults and joints are in existence with large and small fracture width as caused by such tectonic movement, and these are geological factors to affect the stability of cutting slope. One of another features of this area rests with the rise of sea level in the Quaternary period, that is, it deposited during interglacial period consisted of the terrace sand and gravel of the Pleistocene Epoch along CoCo River and its branch Depilto River, and distributed on the metamorphic rock and partly on the weathering zone of granite. This granite has become decomposed granite soil through weathering and the particle size of weathered crystal grains is so large and called as coarse grains granite soil in Japan. Due to angular shape of crystals remained, it can resist against rain to some extent as a slope. At present, only gully erosion is seen but it is weak for strong rain. As a matter of course, top layer has become soil through weathering so it made a geological factor to cause debris flow during typhoon season on some of the mountainside slope. NIC.15 Line is running through these areas, where terrace sand and gravel is distributed on the slope, and various combination for rock and Quaternary deposits is seen such as metamorphic rock and terrace sand/gravel, or decomposed granite soil and terrace sand/gravel. However, at present, only gully erosion is seen for the slope with some 70 But displacement is also seen in some natural slope where decomposed granite soil is distributed so its stability should be taken notice.

Similarly to these old rocks, most of the bed rock in Nicaragua are composed of Mesozoic sedimentary rock, which are divided into Matagarpa Facies and Rivas Facies of Jurassic upper-lower Cretaceous. These rocks are covered widely with volcanic rock of Tertiary Era which gushed out thereafter therefore the they are distributed in South-East of Iyas glaben zone of metamorphic rock. It is confirmed through this Study that the black schist of Rivas Facies is distributed in narrow area in NIC.1, NIC.3, NIC.15 and NIC.26. The black schist in this district is fissile which is characteristics to schist but it makes sound slope because it was formulated in older era and is highly sticking and through such coincidence that rocks not

fractured by tectonic movement are distributed on the slope or schistosity shows anti-dip slope. It is not certain if these black schist exist in volcanic rock here because the surface layer was eroded or it was lifted up by dislocation or volcanic activities. It is commonly said that the bedrock as distributed along the project road is under good conditions as the slope by chance but, in many cases, they are fractured or become unstable and collapsed like landslide when they are cut.

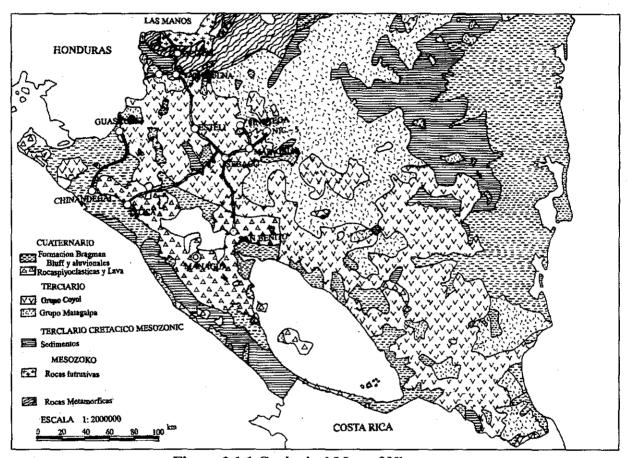


Figure 2.1.1 Geological Map of Nicaragua

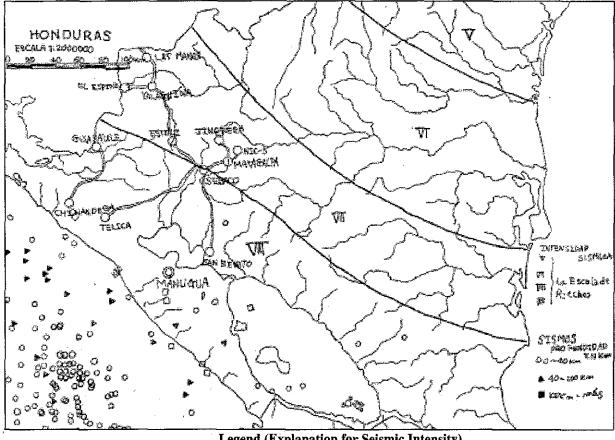
More than 50% of the rocks in Nicaragua are volcanic rocks and they are classified as effusive rocks of Palaeogene and, Neogene of Tertiary, and Quaternary. There are some differences petrographic in effusive rock according to the time of activities but they are categorized similar rocks in terms of road engineering. The strength of the lava of andesite as erupted out in a great volume is similar when it is hit with a hammer. However, sufficient observation should be made where the factors for collapse are to be studied because the weathering, joint peculiar to volcanic rock, or bedding plane and structure of lava flow, or crack interval are quite varied depending upon the era of eruption and the place of distribution. In this connection, the main rocks distributed in the Study area and surrounding area are basaltic, andesite-basalt, andesite, rhyolite and other lava and such effusive rocks as tuffbreccia, dacitic agglomerate belonging to Palaeogene, and lava of quarts-andesite, pyroclastic rock, welded tuff belonging to Eeocene. They are widely distributed in NIC.1,

NIC.3, NIC.26 etc. Moreover, these lava flow indicates various eroded topography by combination with tuffs. And the most peculiar is the plain plateau called Mesa and strong lava flow as strong against erosion is seen on the top, thereunder tuffs are distributed making sharp slope made through weathering. Especially, NIC.1 has close connection with this topography.

The volcanic rocks of Quaternary Era are recognized with white tuff of Plaistocene, agglomerate, tuff with pumice, andesite-quartz/andesite, and ryolite. And new un-cemented volcanic ash is distributed to cover them. NIC.24 Line is related with this layer.

Alluviam is distributed around Managua Lake, Nicaragua Lake and surrounding area, and the existing rivers valleies. Especially, there exists flat plains around the Lakes and the shore line fluctuates owing to subsidence of big graben and change in sea water level, and it is supposed that the transverse continuity of sediments soil is bad due to effusive material of active volcano. Therefore, it is desired to carry out a boring survey newly when embankment or structures are prepared in such low areas.

2) Instability and the Recent Seismic Scale due to Quaternary Volcanic Activities


In Nicaragua, a large rift valley zone is stretching in North-West/South-East along the Pacific sea shore. And various phenomena have been recognized such as the penetration of sea water along with the subsidence thereof. At present, there exist seven active volcanoes in this rift valley zone in addition to Managua Lake and Nicaragua Lake. According to the plate tectonics theory, Cocos Plate is said to be sliding into Americas Caribbean Plate. Cocos plate is the one which is stretching into Guatemala and Costa Rica. Near Nicaragua, there exist fracture which is directly crossing with volcanic line 40 km North-West of Managua, around the borders of Honduras and Costa Rica. The plates as sandwiched between them are said to be classified into fracture zone of Western Nicaragua and Eastern The width of each fracture is 60 % for the Pacific coast (about 300 km) of Western Nicaragua fracture and 40 % in Eastern Nicaragua fracture. In Western Nicaragua fracture, there exist seven composite volcanoes including Cosiguina, San Cristobal, Telica, Cerro Negro, Las Pilas, Momotombo, Apoyeque in North-West direction. Similarly, Eastern Nicaragua fracture has four composite volcanoes including Masaya, Momotombo, Concepcion and Madera in North-West direction. It is said that in the boundary area of the fracture there happened vast eruption of Consigiuna in 1835 near the border with Honduras and Sta Maria in 1902 near the border with Costa Rica. In recent years, Masaya volcano near Managua will correspond although a little bit away from these locations. Table 2.1.1 shows the records of eruption in Nicaragua in recent years.

A hazard map is officially published based upon these records of volcanic activities.

Table 2.1.1 Main Composite Volcano Eruption in Nicaragua

Name of	Mountain	First	Eruption	n e
Composite	Height	Eruption	Eruption Type	PersonsAffected
Cosiguina	846.7 m.	1835	Karakatoan	Unknown
San Cristobal 1,745.0 m.		1680	1680-1982 (have) 1971-1984 (volcanic gas)	70,000
Telica 1,040.0 m.		1529	1981-1982 (lava) 1982 (Estrombolia)	100,000
Cerro Negro	490.0 m.	1850 1850-1968(have) 1971,1992 (volcanic ash)		20,000
Las Pilas	1,072.0 m 1952 1952(gas) 1954(volcanic ash)		Unknown	
Momotombo	1,258.0 m.	Unknown	1609-1909 (lava) 1976 (volcanic gas)	20,000
Masaya 637.0 m. 1529 1529		1529-1989 (lava) 1965-1988 (volcanic gas)	20,000	
Concepcion	1,610.0 m.	1833	1833-1957 (lava) 1906-1988(volcanic ash)	500,000

Sources: INETER

	Legend (Explanation for Seishic	intensity)
V	Most people perceive and many are awakened. Unstable things fall down.	Acceleration: 10 - 21
VI	All people perceive and many rush outdoor with surprise.	Acceleration: 21 - 44
VII	Most people rush outdoor and poorly made things are damaged.	Acceleration: 44 - 94
VIII	Strong buildings are damaged. Chimneys, monument, and walls fall down, and furniture falls sideways. Sand and mud gushes out and well water will change.	Acceleration: 94 - 202

Sources: INTER

Figure 2.1.2 The Seismic Intensity

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA PAGE 2-5

It is clear through this Figure that NIC.24 and NIC.26 will make large traffic trouble depending upon the size of volcanic activities as related with Western Nicaragua fracture. Records for all the seismic size and seismic center distribution for 1992-1998 are also available but here the distribution of more than magnitude 4.0 is shown in Figure 2.1.-1. There is no special feature showing deep connection with the fracture in this Fig but the results are obtained to forecast the plate subsidence through the distribution map showing the seismic depth. The seismic intensity in Nicaragua is shown hereunder and the distribution is also shown as Figure 2.1.1.

2.1.3 Meteorology

Nicaragua is in the tropics and semi-tropics. It has a rainy season and a dry season. The rainy season is from April to November, with the dry season period between December and March.

The Pacific plains area is divided 2 seasons clearly and precipitation totals around 800-1,500mm. The mean annual temperature in this area is approx. 27-29°C.

The central mountains range area is cooler because of its higher altitude. The mean annual temperature is approx.22-26 °C. The precipitation around NIC.1 and NIC.3 in this covered savannah area is lower. The West ridgeline of this mountain area receives much precipitation, and is covered by forest as well as being the source of many rivers.

The Atlantic coast plains area has more precipitation, (more than 2,500 mm per year) and is generally tropical. The Southeast portion of this area is very humid area with rainfall in the region of 4,000 - 6,000mm per year.

The characteristic of precipitation and mean annual temperature around study area are shown in Table 2.1.2.

Table 2.1.2 Annual Mean Temperature and Precipitation

Direction	Area (km²)	Annual mean Temperature (°C)	Annual mean Precipitation (mm)	Mean Altitude (m)
Chinandega	4,926	27	800 - 1,500	144
Esteli	2,335	20	800 - 1,500	645
Jinotenga	9,755	20	1,000 - 2,000	736
Leon	5,107	26	800 - 1,300	134
Matagalpa	8,523	18	700 - 1,700	490
Nueva Segovia	3,123	20	1,000 - 1,700	688
Madriz	1,602	20	800 - 1,500	700

Sources: INTER

Table 2.1.3 Frequency of Tropical Cyclones in Nicaragua

Generally, the routes of hurricanes stall on the Atlantic or the Pacific, and skirt around Nicaragua. Where high winds cross Nicaragua, it is usually in the form of a tropical cyclone. However, Nicaragua has often taken a direct hit by hurricane. Of the recorded instances of tropical cyclones in the country, 45% were Hurricane category, 50% were Tropical Storms and 5% were Tropical Depressions. The frequency distribution by month is shown in Table 2.1.3.

Month	Frequency (%)
September	30
October	25
June	12.5
July	10
December	10
May	7.5
August	5
Total	100

The region with the highest impact of Tropical Cyclones is the North Atlantic Coast. The case of Mitch, which is forth-largest hurricane recorded in the Atlantic area, crossed the Honduras on 26 and 27 September 1998, and caused great damage. In the study area, there are some rock collapse along the road, and massive bridge damage along NIC.24.

2.1.4 Hydrology

The hydrological watershed of Nicaragua is divided 2 directions, the Pacific watershed and Atlantic watershed. The Pacific watershed is subdivided into eight, and the Atlantic one is subdivided into 13. The characteristics of the watershed of Pacific side are generally cramped with rivers of less than 20km except for the Estero Real River. Their flows are not continuous and stream widths are narrow. The watershed on the Atlantic side is much larger with river sources in the central mountains range area, except for the San Juan River. This river has its source in the Nicaraguan rift valley and it feeds both Lake Managua (1,040km²) and Lake Nicaragua (8,200km²). Table 2.1.4 shows the Pacific River watershed and Table 2.1.5 shows the Atlantic River watershed.

Table 2.1.4 Pacific River watershed of Nicaragua

Code	Pacific watershed	Area (km²)	Precipitation (mm)
58	Negro	1,428	1,859
60	Estero Real	3,690	1,682
. 62	Btween Estero Real & Volcan Cosiguina	429	1,881
64	Bttween Volacan cosiguina & Tamarindo	2,950	1,670
66	Tamarindo	317	1,175
68	Between Tamarindo & Brito	2,768	1,537
70	Brito	276	1,316
72	Btween Brito & Sapoa	325	1,625

Sources: Cencas Hidrograficas, INETER

Table 2.1.5 Atlantic River Watershed of Nicaragua

Code	Atlantic watershed	Area (km²)	Precipitation (mm)
45	Coco	19,969	1,937
47	Ulang	3,777	2,405
49	Wawa	5,372	2,820
51	Kukalaya	3,910	3,800
53	Prinzapolka	11,292	2,586
55	Grande de Matagalpa	18,445	2,095
57	Kurinwas	4,457	2,725
59	Betweene Kurinwas & Escondido	2,034	3,564
61	Escondio	11,650	2,772
63	Btween Escondido & Punta Gorda	1,593	3,710
65	Punta Gorda	2,868	3,552
67	Btween Punta Gorda & San Juan	2,229	4,510
69	Sun Juan	29,824	1,694

Sources: Cencas Hidrograficas, INETER

Within the study area, NIC.1 NIC.3, NIC.5 and NIC.15 fall in the Atlantic watershed. NIC.24 and NIC.26 are mainly in the Pacific watershed. The recent inundation of the Estero Real River severely damaged NIC.24. It caused reduced capability for run-off by deforestation and affecting agricultural land. It is one of main factors causing floods and landslides.

2.2 Socioeconomic Conditions

2.2.1 Land Use

According to the National Transport Plan (NTP) of February 2001 land use in Nicaragua is shown in Figure 2.2.1. The detailed characteristics are presented in Table 2.2.1.

2.2.2 Population

In 1990, the population was 3.871 million, according to the NTP, and the density was 32 inhabitants per square kilometers. By 1998 the population had grown to a total 4.803 million. Populatio forecasts indicate that it will grow to 9.53 million by 2019 and to 7.6 million inhabitants by 2025. Certainly, the population in Nicaragua is experiencing rapid growth.

The current birth rate in Nicaragua is 4.6%, more than the Latin American average (2.9%), and the world average (2.7%). The death rate in Nicaragua is 0.8 %, similar to the Latin American average of 0.7. It is estimated that 30% of the population died in the civil war between 1975 and 1986. Average life expectancy is 66 years, and the average age is extremely young at 16.1 years.

Table 2.2.1 Characteristics of Land Use

Symbols	Characteristics	Area	%
A	Proper land for annual cultivation: corn, bean, rice, potatoes, linseed, camomile, fresh- weather garden vegetables; semi-	176.86	1.5%
	perennials cultivation: sugar caine, pineapple, banana; perennial		
	cultivation: coffe, citrics, cacao; double purpose cattle, and/or fo-		
	restal production. Soils with cliff less than 15%; altitude wea-	1	
	•		
	ther conditions without mid summer warm period.		÷
	(>500 meter over sea level)	250.125	2.00
A-1	Proper land for annual cultivation: cotton, soja, peanut, corn, rice, tobacco, sesame, sorghum, garden vegetables of warm weather; semi-	359.135	3.0%
	perennials cultivation: sugar caine, prennials: citrus and fruits; double		
	purpose cattle and/or forest production (fine wood). Soils with cliffs less		
•	than 15%, warm weather (<300 m.o.s.l.) and benign mid summer heat.		
	and so we will not be so the sound and so had so ha		
A-2	Land for annual cultivation: corn, sorghum, cotton, sesame, soya,	291.770	2.4%
• •	peanut, perennials; citrus and fruits; double purpose cattle and forestal		
	production (fine wood). Solis with cliffs less than 15%, warm weather to	,	
	hot and defined summer heat period.		
A-3	Similar to the previous but with a hard weather risks on the first seed	-	-
	time. Annual cultivation: sorghum, and sesame (last seed time), fruits of		
	dry zones (tamarind, avocado, fat cattle and/or forest production (fine		
	wood and energy). Soils with cliffs less than 15%; warm weather to hot		
	with hard mid summer heat.		
A-4	Similar to the previous but with a hard severe weather risks on the first	-	-
	seed time, annual cultives: sorghum and sesame (last seed time), frutals		
	on a dry zone (tamarind, scourge in high and intermediate zones; fat	1	
	cattle and/or forest production (energy). Soils with a cliffs less than		
	15%; weather from warm to hot, with severe mid summer heat. Soils	· .	
	prioritised for irrigation.		
A-5	Proper lands for perennial cultivation of forest environment (coffe,	553.425	4.5%
	cardamon, citrus, fruits); double purpose cattle and/or forest production		
	(fine woods). Soils with cliffs between 15 and 50%, from fresh to cold	1	Í
	weather. (>500 m.o.s.l.)		
	Total agriculture and farmer vocation	1,381,190	11.4%

Source: the National Transport Plan in Nicaragua, February 2001

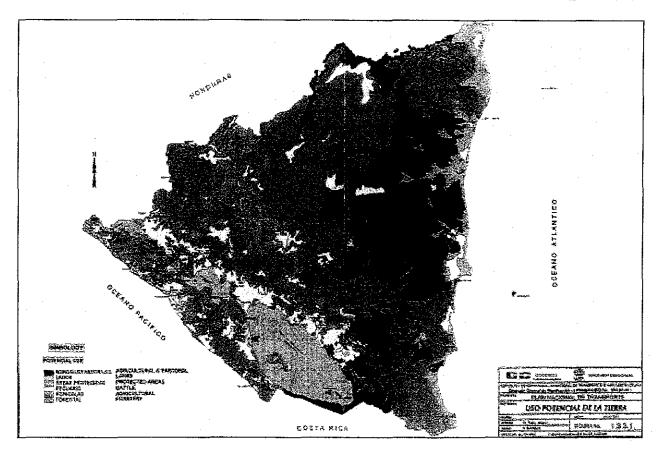


Figure 2.2.1 Land Use Map

The population in towns and villages alongside the objective roads in 1998 is shown in Figure 2.2.2. NIC.1, NIC.3 and NIC.24 are comparatively more densely populated than the other routes. Tipitapa and Esteli on NIC.1, Matagalpa on NIC.3 and Chinandega on NIC.24 contain approximately 60 % of the total roadside populations on these roads. Figure 2.2.3 shows how this population is expected to grow to 2019. The growth rate of population from Year 1971 is approximately 30 % over against Year 1998. The growth between 1998 and 2019 is over 80%. This highest growth area is expected to be Matagalpa.

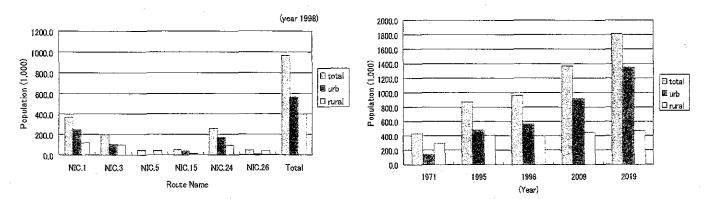


Figure 2.2.2 Roadside Population in 1998

Figure 2.2.3 Roadside Population Between 1971 and 2019

2.2.3 Economy

During the period 1960 to 1977 Gross Domestic Product (GDP) increased by three times, to

its peak in 1977 of US\$2,934.3 millions. Per capita income at that time was US\$1,169.8,

and recorded exports were worth US\$941.6 millions. The fiscal deficit was only 9.8% of

GDP, the current account was in deficit at 8.1% of GDP, and external Debt was almost 39.0%

of GDP.

During the 1980's, the economy of Nicaragua registered a sharp decline. Headline inflation

1988 was 33%, and GDP slumped to 62% if the 1977 value. The value of exports and per

capital income were 40% of their 1977 values. The fiscal deficit of the non-financial public

sector was 20.3% of GDP. The deficit of the current account of the balance of payments

increased to 59.4% by 1992, and losses of the state financial system increased to a staggering

48% of GDP. Technically, the state-owned banks were insolvent.

Since 1990, Nicaragua has attempted to fight hyperinflation and started building the bases for

firm economic development of the country. A stability program and structural adjustments

were put in place, and the support of international community external funds were provided.

Fiscal and monetary controls were implemented to halt the currency slide and to counter

inflation. These were coupled with a massive privatization process, financial reforms to the

public sector, and a reduction in state beaurocracy.

Monetary reform in February 1991 introduced the golden Cordoba, (C\$1.0 golden Cordoba =

US\$1.0 and C\$5.0 millions of olds cordobas) and a macro-devaluation of 400%. This was

accompanied by a freeze on public sector salaries in an attempt to reduce demand for goods

and counter inflation.

The reform package also included strengthening financial markets. The Government

stopped setting interest rates, and adjusted the credit policy of Central Bank. The economic

system reforms were designed to support private sector banks, and to reduce the role of the

state in the management of financial resources.

These measures started to create the conditions for a strong economy with price stability. By

1998 total deposits in private banks had grown to 61.0% of GDP, and foreign currency

deposits represented 41.8% of GDP.

THE STUDY

DY PAGE 2-11

ON VULNERABILITY REDUCTION FOR MAJOR ROADS

IN THE REPUBLIC OF NICARAGUA

in association with JAPAN ENGINEERING CONSULTANTS CO., LTD.

ORIENTAL CONSULTANTS CO., LTD.

2.2.4 Vehicle Registration

Figure 2.2.4. shows vehicle registrations in selected Departments from 1995 to 2000. Nearly 75% of the country's vehicles are registered in Managua. The growth rate is forecast to be around 74% between in 1995 and in 2000, with a growth in Managua of 80%.

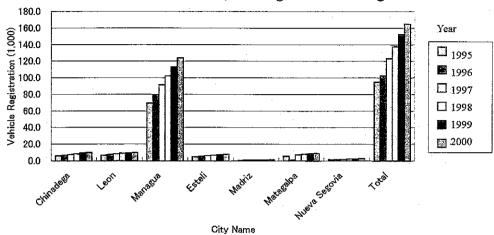


Figure 2.2.4 Vehicle Registration of Main Region

Table 2.2.2 shows forecast vehicle registrations by vehicle type in the year 2000. Managua region will take around 76 % of all registrations. Car and pick up vehicles will be about 70 % of all vehicles in Managua, a much a higher ratio than other Departments.

Table 2.2.2 Vehicle Registration of by Vehicle Type and Region (year 2000)

	Chinadega	Leon	Managua	Esteli	Madriz	Matagalpa	Nueva Segovia	Total
Rooute	24	26	1	1	1,15	1,3,5	15	
Bus	320	343	2,875	213	48	271	79	4,149
Саг	1,729	2,519	45,820	1,245	145	1,251	212	52,921
Heavey Truck	402	31	1,636	82	0	75	14	2,240
Right Truck	933	928	7,971	1,030	146	1,580	403	12,991
Pick up	2,953	3,331	40,380	3,642	572	4,086	1,008	55,972
Small Pick up	31	- 11	1,584	14	0	34	0	1,674
Small Bus	336	350	3,368	113	11	98	6	4,282
Mini Trailer	0	0	0	0	4	0	0	4
Motorcycle	1,337	1,138	12,803	1,005	184	1,046	399	17,912
Trailer Truck	298	138	1,595	116	2	82	19	2,250
Back hoe	. 0	0	1	1	0	0	0	2
Tractor	701	465	312	23	7	74	22	1,604
Trailer	705	735	5861	509	112	713	205	8,840
Total	9,745	9,989	124,206	7,993	1,231	9,310	-2,367	164,841

Souse: Statistics Indicator of Transport Sector

July 2001, Ministry of Transport and Infrastructure