CHAPTER 17 DETAILED EXAMINATION OF COUNTERMEASURES

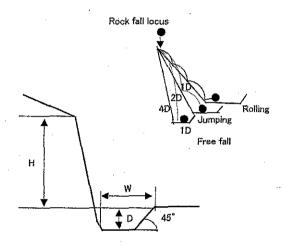
17.1 General

The objectives of this chapter are to review the examination of Part A, and to confirm the stability of cut/ or embankment slopes and bridge foundation scouring in more detail. And most suitable countermeasures are to be selected against the each damage.

17.2 Review of the Status of Disaster Prevention Spots

17.2.1 Measures to the Seeped Water and Weathered Rocks in Rainy and Dry seasons

Just after rainy season, surface water, spring water with some hydraulic gradient and water film oozing were found to contain on wet conditions of slope surface. These wet conditions affect principally weathered layers consisting of a tuff group. The review of such as phenomenon for countermeasures is shown in Table 17.2.1.


Table 17.2.1 Influence Level of Slope Surface by Seeped Water and Weatheringin Rainy and Dry Season

Route No.			Nic.1			Natura	Natural	Route No.			NIC.5			Natural	Natura
Serial Number of Disaster Gritoal spots	Score of first fhase	Score of Second Phase	ID.No	Kilome (ar from Managus (km)	Type of disaster	Condition	Condition Score	Serial Number of Disaster Critical spots	Score of first Phase	Score of Second Phase	ID,No	Distance from Matacalopa (km)	Type of disaster	Condition Evaluation	Conditio Score
	70	78	N001 A290	60.9	ŔF	A	10	95	76	80	N006A010	24.6	RF	A	10
2	78	84	N001 4280	73.2	RF	A	10	Sub-total			and the second secon	1 scots			
3	90		Jan to Ball	113.19	Bridge	в	6							-	
4	100	100	San Notins	135.64	Erioge	e l	2	Route No			Nic.15				
	1.1		Maxilla y					Serial Mamber	Score of	Score at		ì		Natural	Natura
가슴 눈물다				1.1.1.1.2.2.		1 1		of Disaster	first	Second	ID.No	Distance from Les Mangs (km)	Тусе ог	Condition	Conditio
5	90	90	Les Diveller (REHet)	150.33	Sridge	в	5	Critical spots	Phase	Phase		(, is Minds (im)	disaster	Evaluation	Score
6	100		Sen Rembe	151,85	Sindge	C C	2	36	70	70	NOISEDIO	9.9	OF	S.A.S.	10
777 7 747 75	81	84	N001 A240	16E.4	RE		8	37 23 42	70		N015E020	111	DF	1000	10
مرا(منتخذ مان£د (مر) Β	72	75	NDC1 8230	1586	RC	8+	8	S SB	70		N015E050	117	DF	₽	- 4
- P	72	72	NOO1 520G	169.8	RC	C	2	39	70		NO15ED60	136.1	0F	6	4
10	72		NOOLEISO	1707	RC	8-	4	Sub-total				450015			28
	78	81	NOOLES 70	1713	RO.	8	6				L.,	1.000		·	
12	76		NOCI BISO	175.0	RC.	A	10	Route No.			Nic.26				
	£.¥.					h						Distance from I.D.			<u>.</u>
•		1.1		1	i .		1 · 1	Serial Number	Score of	Score of		& Sebeas Qen)		Hatural Condition	Natur: Conditi
				ł · .		1 ·	1.	of Disaster	first	Second		C Sedection	Type of	Evaluation	Score
13	74		N001 Bt 20	\$762	RO	A	10	Cristical spots	Phase	Phase	IDNe	Manapiai	disaster		
	76		NO A ALLO	176.7	RE		8	40		<u>. 7</u> 1	N0264010	90	RE	F 🔒	6
15	73	73	NOCI EL 00	187.3	RC.	<u>. 9-</u>	1	Sec. Sec.			10264020	12.7	RF	E	5
16	73	76	NOO1 2070	2047	RC	B+	5	1. 1. 42 (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	71		10264030	199	HE -	<u> </u>	2
ومشرقت أأست شرو	70	70	N007 A050	214.7	PF.		10	43,	12		10264040	209		ļ	2
18	100	100	Righted	225,89	Bridge	<u>a</u>						24.7	R.F.	<u> </u>	
15	100	100	RioTescal	233 245	Bridge	C i	2	45	190		La Danzante	170-952	Bridge	C	2
20	75		N001 2020	2325	RC.	B	6	46	76	78	1028A100	29.5	RF.	в	6
21	74		N001 A020	2337	RE	0	1.2.2	47		73	N025B110	29.8	RC	C	. 2.
22	73	73	1006 A010	255 6	RF.	8	4	4B	72	72	100264130	335	RF	в	6
Sub-total	L			22spots				49	- 80		N026B140	34.0	RC.	. A	10
								50		87	N0264150	34.2	RF		. 10
Route No			Nic.3					51	86	. 86	N026E160	370	AC	A .	10
Serial Number	Score of	Score of		Distance from	1	Natural	Natural							1	
of Disaster	trai	Second	ID.No	Sebooc6m)	Type of	Condition	Condition				San Juini de Dios	1564785	11 N 3	1	
Ordical spots	Phase	Phase		("Bridge, from Manapule)	disaster	Evaluation	Score	52	90	99	[Bridge	E-	4
23	-74		0038420	35	RC	C.	2	53	71		N028B210	455	RC	в	6
21	72	75	0039408	6.9	RC.	3+	5	54	50			105+154	Bridge	c	2
25	80	80	0038370	74	RC	B+	B	55	190	190	Safe	107+533	Bridge	c	2
26	100	100	El Ossayacan	119 65	Bridge	A	10	Sub-total				1 6spots		1	
27	74	76	ND038320	22.1	RC.	8+	6	Total				Nic1,35,15,26			
28	70	72	H0038248	32.7	RC.	8-	4								
	100	7К	A HOUSE AND	120 120	CASE D	S AND	16.0								
30	83	63	NODSET70	35.2	DF	A	10								
	1.2.10.20		nemple stopse	1000	AND SEL	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8 Stor. 2	R	[.]	冠にもの	Rock Palling	adar birta			
	1		4. <u>177</u> STA	2.3	1.15.6		11.16 2.2	RC			Pock Collection	¥.			
177 Sec. 12 - 200	100.00	1.0	1. 1. 1. 2 (m 1 (m 1			12 11 12		Sec. 1			Silonaka	No. of Street,	L		
34	81	83	N0039120	1 60	RC	8	6	DF:	1. 1. 4	1.11	Debris Flow			-	

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

17.2.2 Measures to the Jumping and Rolling of Unstable Rocks

The wet conditions of slope surface induce new fall of rocks due to repeated dry and wet conditions, reduce bearing capacity due to hair crack-based spalling promotion or collapse due to increasing pore water pressure. This weathering process of the tuff group shifts much-cracked andesite rocks overlaid to overhanging blocks or generates toppling, which will soon lead to falling of the andesite rocks as shown in Figure 17.2.1 and Table 7.2.2. In addition, since the andesite rocks were originally produced by lava flow, they include vertical cooling joints (generates shrinkage cracks generated from lava cooling), the development of their weathering provides a causative factor to cause rock fall. The result of calculation for jumping height and rolling distance, and examination of shifting for road alignment are presented in Sub-section 17.3.7.

	Slope gradient	Slope height		tion example	Ratchie's d	
	() <u>(</u>	(m)	Rolling quantity -	Jumping quantity	Groove width	Groove depth
		5~ 10	2.0	5.0	3.7	1.0
)	80	10~ 20	2.5	8.0	4.6	1.2
	•	>20	3.0	10.0	6.1	1.2
		0~10	1.5	2.8	3.7	1.0
	70	10~ 20	1.6	3.9	4.6	1.2
	70	>20	1.7	5.8	6.1	1.8'
		>30	2.0	6.5	7.6	1.8'
Bedrock slope		5~10	1.2	2.8	3.7	1.2
	60	10~ 20	1.3	3.1	4.6	1.8'
	00	20~ 30	1.4	3.8	6.1	1.8
		>30	1.7	3.9	7.6	2.7'
[0~ 10	0.4	0.0	3.7	1.0
	50	10~20	0.7	1.0	4.6	1.2
		>20	0.8	1.3	4.6	1.8'
		0~ 10	0.3	0.0	3.7	1.0
	40	10~20	0.3	0.0	3.7	1.5'
		>20	0.7	0.5	4.6	1.8'

([°]): In case of using prevention fences, 1.2m shall be applied.

In this calculation case, a block diameter shall be 1m.

ORIENTAL CONSULTANTS CO., LTD. in association with JAPAN ENGINEERING CONSULTANTS CO., LTD.

17.3 Preliminary Engineering Design for Slope Stability

17.3.1 General

Based on the result of geological observation, how to determine weathered and loosened slope gradients by height and by rock type is shown in Figure 17.3.1.

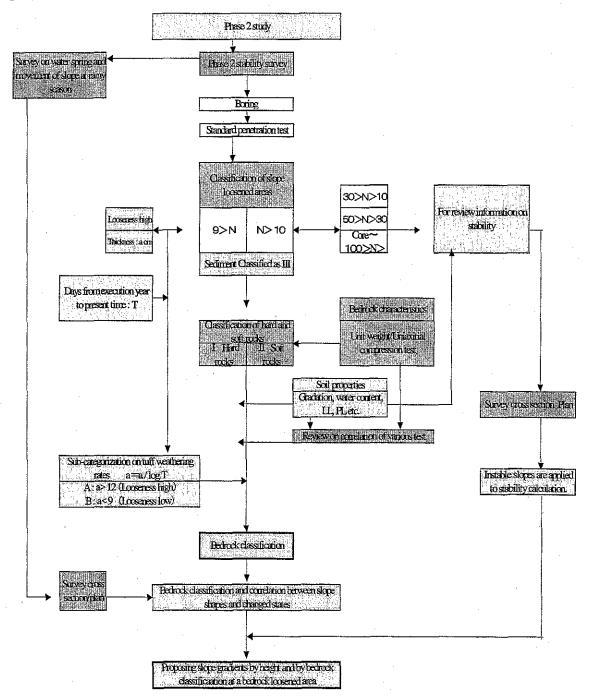


Figure 17.3.1 Analysis Method for Slope Gradient in a Bedrock Loosening Area

B -11

17.3.2 Analysis of Tuff and Andesite Groups

When incorporating slope condition where test samples were collected into the following correlation diagram of unit weight and uniaxial compression strength, the clear difference between slope collapses was considered on reaching uniaxial compression strength of 100kg/cm² and unit weight of 2.5t/cm³ as shown in Figure 17.3.2.

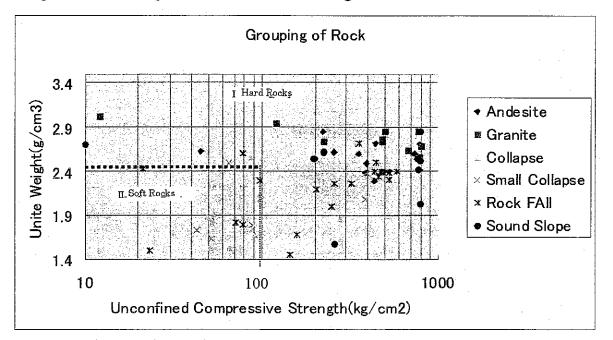


Figure 17.3.2 Grouping of Rock

Based on this figure, it was determined as follows;

Group IAndesite, Granite, Welded tuff, Qquartz sandstone, and Paleozoic/
Mesozoic stratums, Solider mudstone, ShaleGroup IITerteary tuff/mudstone/shale including metamorphic rock.Group III (Sediment)Granite weathered soil, talus deposits.

17.3.3 Analysis of Loosening Rate in a weathered Layer

Focusing on the existence of very loose weathered layers with N < 10 in N-values based on the standard penetration test, it was determined that the layers were determined to be probably part of a weathered layer of stress released at least with cut. Information for those judgments are based on N-values resulting from boring conducted at a slope toe. The loosening rate in a weathered layer,

α		a /log T
α	:	Loosening rate
a	:	N < 10 in thickness (cm)
Т	:	Days from completion to the present time

These calculation conditions were summarized in Table 17.3.1 Analysis on loosening rate. This result is shown as followed:

$\alpha > 12$	Fast loosening group
$\alpha < 9$	Slow loosening group

Table 17.3.1 Secondary Alteration-Based Lithology Category

Category	Descriptions	Loosing rate
A	Without any protection, it always causes secondary strength reduction after cutting.	
В	Under normal conditions, its secondary strength reduction is low and does not damage slope stability.	1 1

Based on this category, local bedrocks were classified into four groups, I B, II B, I A and II A as shown in Table 17.3.2.

Lithology Class	Rock Appearance	Hammer Approach	Representative Rock Types
I	It is hard and dense, and has fresh colors, hardly including weathered brown portinos. Rock structure can be perfectly found.	It has clear sound or dull sound. The head of a hammer cannot penetrate into it due to its hardness. Mudstone and siltstone can be broken only with difficult by hand. Block rock samples can be obtanied.	Plutonic rocks such as granite, fresh metamorphic rocks such as schist group, volcanic rocks such as andesite, rhyolite, agglomerate and basalt, hard sedimentary rocks such as sandstone
Ш	Softened rocks by weathering, low consolidation rocks. Fine structure of the rocks is difficult to identify.	It sounds dull when being struck. The head of a hammer is struck into it. It is easily broken, and its small pieces are broken with fingers. Large samples are difficult to take.	Terteary mudstone, shell, siltstone, and tuff. Weathered parts of the Class I rocks
Ш	Rocks strongly exposed to weathering and alteration, or they show no rock feature. They should be treated as sediment.	When being struck by a hammer, it will be broken as if being collapsed, or the hammer will stick into it. The head of a hammer is easily struck into it. A piece of rock is crushed with figures.	Unconsolidated layers, bedrocks weathered into soil, and talus

Table 17.3.2 Hardness-Based on Lithology Classification

17.3.4 Analysis of Slope Gradients

Figure 17.3.3 shows the results of analysis on slope gradients of a loosened area in a weathered layer. tuff rocks, which alternately co-exist with andesite rocks and are partially by weathering force, increase their slope stability. So, this geologic structure could be reflected in measures against slope surfaces.

A step-wise line in the chart shows a proposed value that around 5 $^{\circ}$ can be added to, when tuff rocks alternately co-exist with andesite rocks and when tuff spalling little occurs.

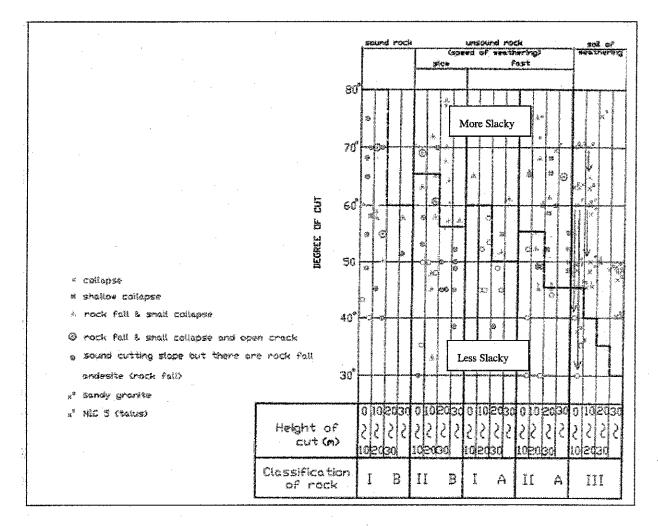


Figure 17.3.3 Analysis on Slope Gradients of a Loosened Area in a Weathering Layer

B -14

17.3.5 Results of Slope Stability Analysis

Stability analysis for circular failure is conducted, generally using the slice method assuming a circular sliding surface shown in Figure 17.3.4.

Calculate formula

$Fs = \Sigma$	C·	L + (W -	$-\mathbf{u}\cdot\mathbf{b}$) cos α · tan $\Phi \mid \swarrow \Sigma \mathbf{W} \cdot \sin \alpha$
	\mathbf{F}	:	Factor of Safety
	C	:	Cohesion
	ϕ	•	Internal friction angle (°)
	1	:	Sliding surface length cut by a slice (m)
	W	:	Total weight of slices
	U	:	Pore water pressure
	b	:	Slice width
	α	:	Angle between a line-linking a middle point and a center of a sliding surface and a plumb line

The methods for stability calculation include total stress and effective stress Experience shows that the methods. two methods are currently used appropriately according to drainage environments such as ground materials, structure and target grounds due to easy selection of a strength constant and a pore water pressure.

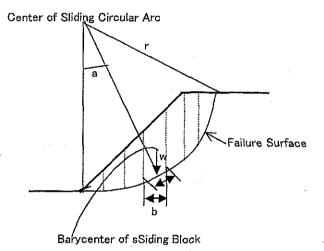


Figure 17.3.4

17.3.4 Stability Analysis by SlidingCircular Arc Method at Non-earthquake Condition

If a landslide type is identified from local topographical and geological features and if it is determined on the basis of a field survey whether landslide is active or not, lands with current safety factor shown in Table 17.3.3 can be roughly identified.

	Bedrock landslide	Weathered rock landslide	Colluvial deposit landslide	Clayer soil landslide
Unmoving	1.10	1.05~1.10	1.03~1.05	1.0~1.03
Sliding	0.99	0.95~0.99	0.93~0.95	0.9~0.93

Table 17.3.3 Current Factor of Safety

The stability results of disaster prevention spots are shown in Table 17.3.10 in the main text. However because the safety factors of some spots exceed the value of above-mentioned table, it is necessary to take countermeasures certainly.

17.3.6 Versatility of Slope Gradient in a Loosened Bedrock in Nicaragua

Table 17.3.4 shows a list of stratums to which these analysis results can be applied. In addition, these bedrocks spread two-dimensionally as shown in Figure 17.3.5. It was found that these results could be used very widely.

E	ra	West,	Center	East	North East	
	Holocene	Volcanic and Alluvium	Alluvium	Alluvial a	nd Deposits	
Quaternary	Pleistocene	Group Las Sierras	Indistinct	Residuals		
·	Pliocene	Fm.El Salto	Group Covol	Fm.Bluefields	Group Court	
		- Fm Fm	Group Coyor	T III. Diuerieius	Citoup Coyor	
	Miocene	El Fraile Tamarindo			Group Matagalpa	
	Oligocene	Fm.Masachopa	T≓ Group ⊂ Matagalpa	Fm.Cukra		
	Eocene	Fm,Brito	. Wategalpa		, wiatagaipa	
Tertiary	Paleocene		Group Pre—Matagalpa			
	Superior	Fm.Rivas				
		Completo Nicola en Costa			Fm.Metapan	
Cretaceous	Inferior	Rica		·	1 m. wietapan	

 Table 17.3.4
 Slope Gradient Applicable Stratums

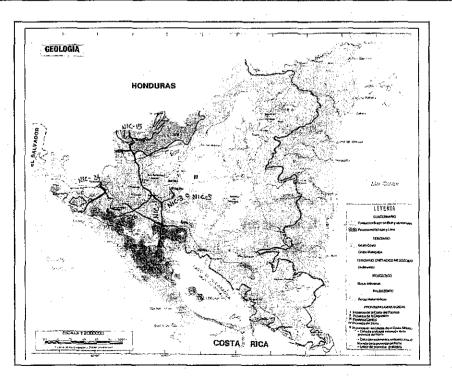


Figure 17.3.5 Geological Area

B -16

17.3.7 Selection of Countermeasure for Slope Disaster

1) Calculation of Jumping Height and Rolling Distance

Based on geological characteristics of the above-mentioned results, conditions of falling stones are shown in Table 17.3.5. And calculation result of jumping height and rolling distance, and size of protection wall and prevention net are shown in Table 17.3.6, 17.3.7 and 17.3.8. However spots that need to shift the road alignment for rockfallings exists at only N003E170 on NIC.3.

Final countermeasures are presented in Table 17.4.9 in the main text.

	Slone Gradient	Slope Gradient							
ID №.	(degree)	Slope Height (m)	Slope Gradient (degree)	Size of Rock	Kind of Rock	Density(t/m3)	Conversion to Density (t/m3)	the Volume ϕ (m)	
N001A290	45~52	4()	50	1.0m*1.0m*0.8m	Andesite IIB	2,5	2.6	1.50	
N001A240	45~57		50	1.0m*1.0m*0.8m	Andesite IIB	2.5	2.6	1150	
N001B230	40~65	30	70	2.0m*1.5m*0.5m	Andesite IIB	2.5	26	1.50	
N001B170	42~70	40		2.0m*1.5m*0.5m	Andesite IIB	2.5	2.6	5, 1505 6	
N001B150	50~90	20	70	2.0m*1.5m*0.5m	Andesite IIB	2.5	2.6	1.50	
N001B120	50~70	50	70	2.0m*1.5m*0.5m	Andesite IIB	2.5	2.6	1.50	
	<u></u>								
N003B400	33~90	20	69	2.0m*1.5m*0.5m	Tuff IIB	1.7	2.6	1.50	
N003B370	45~90	20	60	2.0m*1.5m*0.5m	Tuff IIB	1.7	2.6	1.50	
N003E170	45~62	20	60	2.0m*1.5m*0.5m	Tuff IIB	1.7	2.6	1.50	
								-	
N005A010	41~48	40	50	2.0m*1.5m*0.5m	Andesite IIB	2.5	2.6	1.50	
N026A060	53~63	204	70:	1.0m*1.0m*0.8m	Tuff IB	1.7	2,6	1.60,	
N026B140	50~60	40	60	2.0m*1.5m*0.5m	Tuff IB	1.7	2.6	1.50	
N026A150	48~70	50	70	2.0m*1.5m*0.5m	Tuff IB	1.7	2.6	1.50	
N026B160	53~70	20	2 a - 70	1.0m*1.0m*0.8m	Tuan IIB	1.7	2.6	00.E	

Table17.3.5 Condition of Fallen Stone

ID No.	Range of Jumping qt	The ninth value	Range of Rolling qt.	The ninth value	f (m)	Slope H (m)	Slope G (deg.)
N026A060	0.72 . 0.07-	2.95	0.40 - 2.68m	2.01	1.00		
N026A160	0.73 - 2.88m	2.85m	0.40 - 2.68m	2.61m	1.00	20.0	70.0
N001A240	1.05 -3.44m	2.72m	0.38 -3.97m	0.95m	1.50	20.0	50.0
N001A290	100.0.00	2.09	0.40.0.07	0.07	1.50	40.0	
N005A010	1.08 - 3.62m	2.98m	0.40 - 2.67m	0.97m	1.50		50.0
N003B400		3.27m	0.39 - 4.50m	3.04m	1.50	20.0	
N003B370	1.16 - 4.33m						60.0
N003E170							
N026B140	1.28 - 4.45m	3.78m	0.45 - 4.00m	3.20m	1.50	40.0	60.0
N001B150	1.67 - 6.14m	5.08m	0.73 - 5.12m	4.77m	1.50	20.0	70.0
N001B230	1.54 - 7.70m	6.31m	0.52 - 7.80m	6.88m	1.50	30.0	70.0
N001B170	1.57 - 14.56m	6.77m	1.05 - 14.17m	7.43m	1.50	40.0	70.0
N001B120	1.00 14.65-	10.82	0.50 10.10-	6.07	1.50	50.0	70.0
N026A150	1.89 - 14.65m	10.82m	0.56 - 12.13m	6.97m	1.50		70.0

Table 17.3.6 Jumping Height and Rolling Distance Calculations

.

			<u>o structure</u>		Size (m)						
	Туре	:		h	b1	b2	Nf	Em (KJ)			
b		А		2.00	0.50	1.50	0.50	8.94			
		В		2.50	0.75	2.00	0.50	21.01			
		С		3.00	1.00	2.50	0.50	40.90			
		D		3.50	1.25	3.00	0.50	70.21			
1: Nf	h	E		4.00	1.50	3.50	0.50	110.41			
		F		4.50	1.75	4.00	0.50	163.21			
		G		5.00	2.00	4.50	0.50	229.76			
	<u>*</u>	Н		5.50	2.25	5.00	0.50	310.77			
		I		6.00	2.50	5.50	0.50	406.73			
ь		J		6.50	2.75	6.00	0.50	518.11			

Table 17.3.6 Structure Required for Protection Wall

Em: Allowable Absorable Energy

Table 17.3.8 Relationship between Type of Protection Wall & Natural Conditions

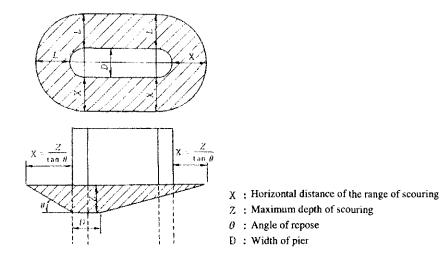
Boulder Weight	Slope Height			Slope Gradi	ent (degree)						
(kN)	(m)	30	40	50	60	70	80				
	10										
	20										
1.7 (φ=0.5m)	30										
	40		, 		1						
	50										
(kN)	(m)	30	40	50	60	70	80				
	10										
	20			and a standard The standard		N026A066 N026B060					
13.6 (ϕ =1.0m)	30										
	40		and an			- Paratesere					
	50						. 1 . 96 (2019)				
(kN)	(m)	30	40	50	60	70	80				
	10		autorial and a		a la companya da seria	(3.20 F)	10.0				
	20			N001A240	N003B400 -N003B370 N003E170	NOOIBLSO					
45.9 (φ=1.5m)	30				and a second second second second	N001B230					
	40			N001A290 N005A010	N026B140	N001B170					
	50				5 . A. A. A. S.	N001B120 N026A150					
(kN)	(m)	30	40	50	60	70	80				
	10		and the second	1		Sale Section	Cara-a				
	20	A PARAMA	10.000	la se reale							
108.9 (φ=2.0m)	30										
	40										
	50					Prostant Charles					

	Rope f 12 Mesh f 2.6									
ID No.		Ne	t Data		Rocl	c Data	Slope Data			
	Main Rope	Auxiliary Rope	Wire Mesh	Maximum Capacity	f (m)	W (kN)	Slope H (m)	Slope G (deg		
N026A060	f 12	f 12	f 2.6	- 10	1.00	12.61	20.0			
N026A160	- 112	Г1 <u>∠</u>	1 2.0	n=1.0	1.00 13.61	20.0	70.0			
N001A240	f 12	f 12	f 2.6	NG	1.50	45.92	20.0	50.0		
N001A290	610	510	60.0	NG	1 50	45.00	10.0	50.0		
N005A010	f 12	f12	f 2.6	NG	1.50	45.92	40.0	50.0		
N003B400								1		
N003B370	f12	f 12	f 2.6	NG	1.50	45.92	20.0	60.0		
N003E170	-									
N026B140	f 12	f 12	f 2.6	NG	1.50	45.92	40.0	60.0		
N001B150	f 12	f 12	f 2.6	NG	1.50	45.92	20.0	70.0		
N001B230	f 12	f12	f 2.6	NG	1.50	45.92	30.0	70.0		
N001B170	f 12	f 12	f 2.6	NG	1.50	45.92	40.0	70.0		
N001B120	610	610	60.0	NG	1 50	45.00	50.0	70.0		
N026A150	f 12	f 12	f 2.6	NG	1.50	45.92	50.0	70.0		

Table 17.3.8 Required Dimensions for Prevention Nets	Table 17.3.8 Required	Dimensions for	Prevention Nets
--	-----------------------	-----------------------	-----------------

				Rope f 18 Mesh	f 18 Mesh f 4.2								
ID No.		Ne	t Data		Rock	c Data	Slop	e Data					
	Main Rope	Auxiliary Rope	Wire Mesh	Maximum Capacity	f (m)	W (kN)	Slope H (m)	Slope G (deg.					
N026A060	- f 18	f18	f 4.0	n=6.0	1.00	13.61	20.0	70.0					
N026A160	1 10	110	1 4.0	n=0.0	1.00	13.01	20.0	10.0					
N001A240	f 18	f 18	f 4.0	n=1.0	1.50	45.92	20.0	50.0					
N001A290	- f 18	f 18	f 4.0	-10	1.50	45.00	40.0	50.0					
N005A010	1 10	110	14.0	n=1.0	1.50	45.92	40.0	50.0					
N003B400													
N003B370	f 18	f18	f 4.0	n=1.0	1.50	45.92	20.0	60.0					
N003E170													
N026B140	f 18	f18	f 4.0	n=1.0	1.50	45.92	40.0	60.0					
N001B150	f 18	f18	f 4.0	n=1.0	1.50	45.92	20.0	70.0					
N001B230	f 18	f 18	f 4.0	n=1.0	1.50	45.92	30.0	70.0					
N001B170	f 18	_f18	f 4.0	n=1.0	1.50	45.92	40.0	70.0					
N001B120	f 18	f 18	f 4.0	7=10	1.50	45.92	50.0	70.0					
N026A150	1 110	611	14.0	n=1.0	1.50	43.92	50.0	70.0					

17.4 Preliminary Engineering Design for Bridge Foundation Scouring


There are many factors for scouring of bridge foundations as follows:

- Change in river flow caused by piers,
- Obstruction ratio of river by piers shape,
- River obstruction ratio by pier width,
- Abutments located in the river flow,
- Lack of the free space under beam, and
- Lack of depth between footing face of bridge foundation and riverbed, etc.

Calculation results of scouring on bridge foundation are shown in Table 17.4.1. The bridges detected with scouring are Junquillal Bridge, LasChanilas Bridge, and Tacapali Bridge.

River Name		UNIT	Junquillal	Las Chanillas	Inali	Tacapari	El Guayacan	San Juan de Dios	La Banderita
Width of river W:		m	29.3	62	64	109	17.5	17.9	31.6
Width of pier D :		m	0.4	0.7	0.8	1	0.9	0.4	1.1
flow velocity of High wate level V :	r	m3/s	246.28	668.61	579.58	886.75	149.08	67.22	60.12
Average level of road surface		m	457.3	822	638.2	299.62	614	96.4	226.7
Average level of riverbed		m	453.65	815	631.27	292	609.6	94	217.8
of High water level in flood		m	458.01	817.765	634.27	295.952	614.59	96.25	220.47
Mean water depth in flood ho :	1	m	4.36	2.765	3	3.952	4.99	2.25	2.67
Average grain diameter of riv dm :	erbed materials	mm	0.5	6	13	10	15	1	3
ho/D		-	10.90	3.95	3.75	3.95	5.54	5.63	2.43
$Fr = (V/(W \cdot ho))/v(g \cdot ho) =$		-	0.29	0.75	0.56	0.33	0.24	0.36	0.14
ho/dm		-	8720.0	460.8	230.8	395.2	332.7	2250.0	890.0
Z/D		-	1.48	1.8	1.68	1.45	1.2	1.55	0.8
Z		m	1.776	2.16	2.016	1.74	1.44	1.86	0.96
Angle of repose ?		Deg	31.0	34.0	40.0	40.0	40.0	31.0	32.0
tan?		-	0.60	0.67	0.84	0.84	0.84	0.60	0.62
X=Z/tan?		m	2.96	3.20	2.40	2.07	1.72	3.10	1.54
	Width(X)	m	3.0	3.0	-	2.0	-	-	-
Result of site survey	Length(L)	m	4.0	4.0	-	2.0	-	-	-
	Depth(Z)	m	0.7	0.8	-	1.0	-	-	•

Table 17.4.1 Calculation Result of Scouring

As described in above-mentioned table, expected scouring locations are as follows:

- 1) Around piers,
- 2) Around abutments, and
- 3) Embankment for approaches.

Based on the result of calculation result, a range and a depth of bridge foundation by scouring are protected as shown in Table 17.4.2 and 17.4.3.

Material	Illustration	Remarks
Rubble and gabion	Gabion Rubble	This measure is for temporary works and for works in rivers with slow velocity. Economically efficient. Facility for construction is simple and easy (manual labor only is basically sufficient). The advantage of rubble is that it can change its form in response to differential settlement of the riverbed if the foundation is soft. Maintenance is necessary.
Protection by the Concrete	Concrete	This measure is applied at sites with fast flows and strong riverbed foundations. This measure is inappropriate for sites with soft riverbed foundations because the structure might collapse due to differential settlement. Because, this measure requires the pouring of concrete on site, it is impossible to execute in the rainy season.
Protection by precast concrete block	Concrete block	By changing the size of concrete block in accordance with the velocity of water flow, this measure can be applied to all kinds of rivers. Because precast concrete is applied, construction can be implemented at any time except during floods. Maintenance is not necessary. This measure can bear small differential settlement.

Table 17.4.2 Comparison of Prevention Measures for Foundation Scouring

· · · · · · · · · · · · · · · · · · ·		Commette		
Name	Rubble Gabion	Concrete	Concrete Block	Explanatory Remarks
Junqillal	A	С	С	It is predictable that the settlement will occue due to the soft riverbed. The velocity of water flow is slow. The river always has water flow.
San Nicolas	A	С	С	The velocity of water flow is slow. The river always has water flow.
Las Chanillas	С	В	Α	The velocity of water flow is fast.
San Ramon	Α	С	С	It is predictable that the settlement will occue due to the soft riverbed.
Inali	С	В	Α	The velocity of water flow is fast.
Tapacali	С	В	Α	The velocity of water flow is rather fast. The river always has water flow.
El Guayacan	Α	Α	Α	The velocity of water flow is slow. There is a season when the water flow in the river dissapears.
Solis	С	Α	В	The velocity of water flow is fast. The riverbed is consisted of soft rock. The block is not economical because the width of river is narrow.
Papalon	С	А	В	The velocity of water flow is fast. The riverbed is consisted of soft rock. The block is not economical because the width of river is narrow.
San Juan de Dios	Α	С	С	It is predictable that the settlement will occue due to the soft riverbed. The economical advantage is excellent.
La Banderita	Α	С	С	The velocity of water flow is relatively fast. The economical advantage is excellent.

A : Advisable measure

B : Applicable measure

 $\mathbf{C}:$ Measure difficult to apply

17.5 Selection of Spot Specific Countermeasures

The selection of countermeasures for slope damages and bridge foundations are presented in Section 17.6 in the main text. Spot specific countermeasures are in detail selected taking into account the alternative countermeasures against disaster features.

CHAPTER 18 CONSTRUCTION PLAN AND COST ESTIMATE

18.1 General

The following work items will be taken up in this chapter:

- Clarification of assumptions for making cost estimates,
- Estimate of quantities for each prevention spot,
- Examination of the unit rate for each prevention countermeasure,
- Drawing up of construction costs for each prevention spot, and
- Drawing up of maintenance costs for each Study route.

The lifespan of road disaster prevention measures, which take into account the probability of road-related disasters occurring, are as described below.

- Permanent disaster prevention measure: Effective for 20 years
- Temporary disaster prevention measure: Effective for 10 years

18.2 Cost Estimate Assumptions

Construction unit rates obtained from MTI were first reviewed and adjusted as necessary. The Study team then examined unit rates for new work items. As part of this work, the Study team requested unit rate quotations from three general contractors.

Construction costs for each prevention spot are estimated as a direct cost. Note that direct cost includes direct variable cost, which consists of costs for temporary facilities and is greatly dependent on the conditions of a particular spot. Therefore, construction cost is estimated by averaging direct costs.

18.3 Unit Rates

Unit rates for different types of work and their corresponding work items are as shown in Table 18.3.1.

Unit rates, which are based on the costs derived in Chapter 7, are revised in the Feasibility Study by considering additional work items and disaster prevention measures. Note that the types of prevention measures are the same as those in Chapter 7. The revised unit rates of the work items, the additional work items and the additional measures are shown in below.

- Work items with a revised unit rate are marked with a \bigcirc and are as follows:
 - (7) Rock-fall prevention device: Net
 - (9) Riverbank protection: Concrete revetment
- Additional work items are marked with a \Box and are as follows:
 - (4) Structure: Concrete cribwork
 - (9) Riverbank protection: Concrete cribwork for riverbed
- Additional measures are as follows:
 - (11) Bridge structure
 - (12) Box culvert

Type of Work	Work Item	Remarks	Unit	Unit Rate	Reason for Modifying Unit Rate						
	Shotcrete	T=10cm	m ²	48.30	Vegetation is used to						
(4) Structure	Concrete cribwork ?	0.3×0.3 @2.0m	m ²	100.00	harmonize with a nearby natural park.						
	Gabion mat		m ³	43.67							
(7) Rock-fall	Prevention net ?		m ²	8.53	Estimate changed to						
prevention	Barrier with gabion mat		m ³	97.49	reflect prices from three local construction						
device	Barrier with concrete wall		m ³	625.13	companies instead of just						
(9) Riverbank	Concrete revetments ?		m ³	654.95	Estimate based on prices from two local						
	Gabion mat		m³	97.49	construction companies was changed to one based on prices from four local construction companies.						
-	Stone riprap with mortar		m ³ 6		Concrete cribwork adopte						
	Concrete cribwork for riverbed ?		m ²	39.49	for rapid river flows.						
	Steel bridge with concrete slab		m^2	406.24	Bridge is considered as an						
(11) Bridge structure	Gravity-type abutment		m ³	37.15	alternative.						
	Reversal T-type abutment(RC)		m ³	197.26							
(12) Box culvert	Cast in place	3m×2m	m	1740.6	Box culvert type is considered as an alternative.						

Table 18.3.1 Unit Rates

18.4 Spot Specific Construction Plans

The main types of equipment used for construction at each of the disaster prevention spots are as shown in tables 18.4.1 and 18.4.2.

									·	
	and and a second se			ļ	5			ller	ker	line
ID. No	Type of Disaster	Type of Countermeasure	Zer	loe	mmn	ete	crane	ion ro	Brea	mac
			Bulldozer	Back hoe	Pick hummer	Shotcrete achine	Truck crane	Vibration roller	Jumbo Breaker	Boring machine
N001A290	R.F	Recutting + Prevention net + Drainage		0	0	<u>, 1</u>	0			
N001A280	R.F	Horizontal drainage			<u> </u>				- · · · ·	0
N001A240	R.F	Recutting + Prevention net		0	0		0			
N001B230	R.C	Recutting + Prevention net		0	0		0			
N001B170	R.C	Recutting + Drainage		0	0				0	
N001B150	R.C	Recutting + Shotcrete + Drainage		0	0	0				
N001B120	R.C	Recutting + Drainage		0	0				0	
N003B400	R.C	Recutting + Drainage		0	$\overline{\circ}$					
N003B370	R.C	Recutting + Drainage		0	0				0	
N003B320	R.C	Embankment + Concrete retaining wall + Vegetation	0	0	0			0	0	
N003C230	S.S + R.C	Recutting + Cribwork +Drainage Embankment + Vegetation + Drainage	0	0	0		0	0	0	
N003E170	D.F + R.C	Dam Recutting + Drainage	0	0	0		0	0	0	
N003C150	S.S + R.C	Recutting + Drainage Embankment +Vegetation	0	0	0			0	0	
N003C140	S.S + R.C	Recutting + Drainage Embankment +Concrete retaining wall + Vegetation + Drainage	0	0	0		0	0	0	
N005A010	R.F	Recutting + Drainage		0	0				0	
N026A060	R.F	Recutting + Shotcrete + Drainage		0	0	0				
N026B140	R.C	Recutting + Horizontal drainage + Drainage		0	0				0	0
N026A150	R.F	Recutting +Drainage		0	0				0	
N026B160	R.C	Recutting + Prevention net		0	0		0			

B-26

Table 18.4.1 Main Equipment List for Slope Damage Repair

Note) R.F: Rock-fall/collapsing; R.C: Rock collapsing; S.S: Slope Slide; D.F: Debris flow

	Bridge Name	Type of Disaster	Type of Countermeasure	Bulldozer	Back hoe	Concrete breaker	Truck crane	Jumbo breaker
	Junquillal	Bridge	Gabion mat		0		0	
	San Nicolas	Bridge	Gabion mat		0		0	
	Las Chanillas	Bridge	Concrete block		0		\circ	
NIC.1	San Ramon	Bridge	Gabion mat		0	0	0	
	Inali	Bridge	Gabion mat Revetment +Stone masonry		0	0	0	
	Tapacali	Bridge	Gabion mat Revetment		0	0	0 0 0 0 0	
NIC.3	Guayacan	Bridge	New bridge construction	0	0	0	0	0
	Solis	Bridge	Stone riprap with mortar Gabion mat		0		0	
NIC.26	Papalon	Bridge	Stone riprap with mortar Gabion mat		0		0	
	San Juan de Dios	Bridge	Gabion mat		0		Ο	
	La Banderita	Bridge	Stone riprap wall Gabion mat		0		0	

Table 18.4.2 Main Equipment List for Bridge Damage Repair

Note) Bridge: Scouring of foundation

18.5 Summary of Spot Specific Work Quantities and Costs

18.5.1 NIC.1

Costs for each disaster prevention spot are as shown in Table 18.5.1- Table18.5.7.

ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)	
N001A290	R.F	Removal + Prevention net + Drainage	т	m ²	23,286	335	
N001A280	R.F	Horizontal drainage	P	m	100	10	
N001A240	R.F	Removal + Prevention net	Т	m ²	950	26	
N001B230	R.C	Removal + Prevention net	T	m^2	228	6	
N001B170	R.C	Recutting + Drainage	P	m ³	36,028	1,590	
N001B150	R.C	Recutting + Shotcrete + Drainage	Ρ	m^2	252	27	
N001B120	R.C	Recutting + Drainage	Р	m ³	10,655	814	
Total		·				2,808	

Table 18.5.1	Construction Cost for Countermeasures for Slope Failure
--------------	--

Note) R.F: Rock fall; R.C: Rock collapsing; P: Permanent countermeasure; T: Temporary countermeasure

ID. No	Type of Disaster	Type of Countermeasu	re	Unit	Qty	Cost (US\$1000)
Junquillal	Bridge	Gabion mat	Т	m ³	435	42
San Nicolas	Bridge	Gabion mat	T	m ³	114	25
Las Chanillas	Bridge	Concrete block	Т	m ³	288	189
San Ramon	Bridge	Gabion mat	Т	m ³	86	9
Inali	Bridge	Gabion mat Revetment +Stone masonry	Т	m^3 m^2	1,138 1,758	828
Tapacali	Bridge	Gabion mat Revetment	Т	m^3 m^2	238 640	282
Total		· · · · · · · · · · · · · · · · · · ·	·			1,375

Note) Bridge: Scouring of foundation; T: Temporary countermeasure

18.5.2 NIC.3

ID. No	Type of Disaster	Type of Countermeasure	e	Unit	Qty	Cost (US\$1000)
N003B400	R.C	Recutting + Drainage	P	m ³	290	40
N003B370	R.C	Recutting + Drainage	Р	m ³	1,676	175
N003B320	R.C	T-shaped retaining wall +Refilling+ Vegetation+ Drainage	Р	m ³	3,168	239
N003C230	S.S + R.C	Recutting + Cribwork + Vegetation + Drainage Embankment + Vegetation + Drainage	Р	m ² m ³	638 4,934	328
N003E170	D.F + R.C	Concrete dam + Box culvert Recutting + Drainage	Р	m m ³	20 2,670	310
N003C150	S.S + R.C	Recutting + Drainage Embankment + Vegetation+ Drainage	Р	m ³	9,221 16,076	918
N003C140	S.S + R.C	Recutting +Horizontal drainage + Drainage Embankment +T-shaped retaining wall + Vegetation + Drainage	Р	m ³	5,408 3,176	749
Total				L I		2,759

Table 18.5.3	Construction Cost for Co	ountermeasures for	Slope Failure
14010 10.0.0	Construction Cost for C	ounter measures for	Slope ranare

Note) R.C: Rock collapsing; S.S: Slope Slide; D.F: Debris flow; P: Permanent countermeasure

Table 18.5.4 Construction Cost for Countermeasures for Bridge Foundation Scouring

ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
El Guayacan	Bridge	New bridge construction	P	m ²	500	1,379

Note) Bridge: Scouring of foundation; P: Permanent countermeasure

18.5.3 NIC.5

ID. No	Type of Disaster	Type of Countermeasu	ıre	Unit	Qty	Cost (US\$1000)
N005A010	R.F	Recutting + Drainage	P	m ³	10,760	389

Table 18.5.5 Construction Cost for Countermeasures for Slope Failure

Note) R.F: Rock fall: P: Permanent countermeasure

18.5.4 NIC.26

Table 18.5.6 Construction Cost for Countermeasures for Slope Failure

ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
N026A060	R.F	Recutting + Shotcrete + Drainage	Р	m²	3,604	316
N026A140	R.C	Recutting + Horizontal drainage + Drainage	Р	m ³	11,495	904
N026A150	R.F	Recutting +Drainage	P	m ³	2,113	210
N026B160	R.C	Removal + Prevention net +Drainage	т	m ²	1,568	13
Total						1,443

Note) R.F. Rock fall; R.C. Rock collapsing; P: Permanent countermeasure; T: Temporary countermeasure

ID. No	Type of Disaster	Type of Countermeasure	•	Unit	Qty	Cost (US\$1000)
Solis	Bridge	Stone riprap with mortar Gabion mat	Т	m ³	72 546	66
Papalan	Bridge	Stone riprap with mortar Gabion mat	Т	m ³	50 408	51
San Juan de Dios	Bridge	Gabion mat	Т	m ³	115	5
La Banderita	Bridge	Stone riprap wall Gabion mat	Т	m ² m ³	162 375	31
Total		•				153

Note) Bridge: Scouring of foundation; P: Permanent countermeasure

18.5.5 Total Cost

Total construction cost for each route is as shown in Table 18.5.8.

Objective	(Cost (US\$1000)	
Route	Slope	Bridge	Total
NIC.1	2,808	1,375	4,183
NIC.3	2,759	1,379	4,138
NIC.5	389	0	389
NIC.26	1,443	153	1,596
Total	7,399	2,907	10,306

Table 18.5.8 Total Construction Cost by Route

US\$1=C\$14.4 (exchange rate as of October 14, 2002)

CHAPTER 19 ENVIRONMENTAL IMPACT ASSESSMENT (EIA)

19.1 Method of EIA

The EIA assesses the level of consideration given by countermeasures to the environmental negative factors selected for each spot in Chapter 9. Validity of the method of environmental consideration is judged based on "The summary of general matters for environment observance in the construction stage" (Chapter 5 of NABCV in NIC 2000).

19.2 Evaluation of Environmental Consideration

19.2.1 Resettlement

Resettlement (a hotel under construction) was originally forecast at one spot (Nic3) among the target spots. However, this was averted by revising works as shown in Table 19.2.1.

Spot No.		measure
Shor 140.	Initial Idea	Final Idea
N003B320	It was forecast that the hotel would fall on in the excavation line due to cutting works.	Cantilever retaining wall was adopted to ensure backfilling at the rear

Land acquisition needs to be carried out at some of objective spots presented in Table 19.2.2 in the main text. However there are no spots where expropriation causes a trouble judging from present conditions of use. Land acquisition is done in accordance with the Nicaraguan law.

19.2.2 Economic Activity

Concern was raised over the impact on economic activities at four of the spots; however, measures were taken at each spot to avert this economic impact as indicated in Table 19.2.2.

19.2.3 Ground Water

Concern was raised over the impact on three shallow wells that utilize non-artesian ground water. However countermeasures were devised to minimize impact on the water catchment volumes shown in Tables 19.2.3 and 19.2.4.

B-30

Smot No	Counter	measure
Spot No.	Initial Idea	Final Idea
Junquillal (Nic1)	An influence on the service water for rice fields on the downstream side was forecast by the shutoff of water under the construction.	It is the plan to secure the service water by half-section construction.
N003B320	As mentioned in the Table 19-1.	As mentioned in Table 19-1.
N003C140	It was forecast that a coffee field under the embankment will be affected by the construction.	It is the plan to avoid an influence by the wall.
N003C150	A coffee field was confirmed at the top of the slope as a result of the site re-survey.	Influence was minimized by countermeasures matched to the existing slope as much as possible.

Table19.2.3 Consideration Items for Ground Water

C	Counter	measure
Spot No.	Initial Idea	Final Idea
N005A010	Re-cutting + Vegetation + Drainage	Concrete Frame + Vegetation + Drainage (permeation catch pit)
N026B140	Re-cutting	Concrete Frame + Cobble + Drainage (permeation catch pit)
N026B160	Judgment as use of the non-artesian water	Use of confined water.

Table19.2.4 The Drainage Structure in Consideration of the Underground Permeation

e.g. Structure	General Outline
Barrel	Permeation Catch Pit
Filler	Permeation catch pit is the structure composed of catch pit that it has perforations on the side and the bottom, and filling material on the circumference. And, rainwater is made to permeate from the sides and bottom to the ground.
Penetration Sheet	Permeation Trench
Filler	Permeation trench is the structure composed of permeation pipe and filling material of the circumference. And, rainwater is made to permeate from the sides and bottom to the ground.
Penetration Sheet	Permeation Side Ditch
Filler	A permeation side ditch is the structure composed of sides and bottom made from permeable or perforated concrete, and circumference made from filling material. And, rainwater is made to permeate from the sides and bottom to the ground.

19.2.4 Lake and River

Concern was raised over the impact on the river (river use) in one place. However, the structure was revised so that impact on river flow was avoided as shown in Table 19.2.6.

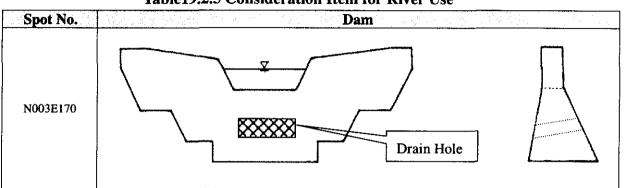


 Table19.2.5 Consideration Item for River Use

19.2.5 Fauna and Flora

Concern was raised over the direct and indirect impact on the national conservation area (precious animals and plants) in the following two spots. However, it is the plan to avoid any influence as shown in Table 19.2.6.

Spot No.	Pending Issue	Measure
San Nicolas (Nic1)	There was concern that water supply to the animals will decrease due to shutoff of water by the construction to the Cerro Tomabu national conservation area on the downstream side.	Carry out construction in the dry season without resorting to water shutoff.
N003C230	Because the spot was located in Cerro El Arenal national conservation area, countermeasures had to take vegetation regeneration into consideration.	It is the plan to regenerate vegetation by doing planting in the concrete frame. (Refer to Fig. 19.2.1) The planting is carried out using native species or latent natural seedings. And, the embankment is planted with trees to harmonize with the surrounding landscape.

Table19.2.6 Considerat	ion Items for l	Fauna and Flora
------------------------	-----------------	-----------------

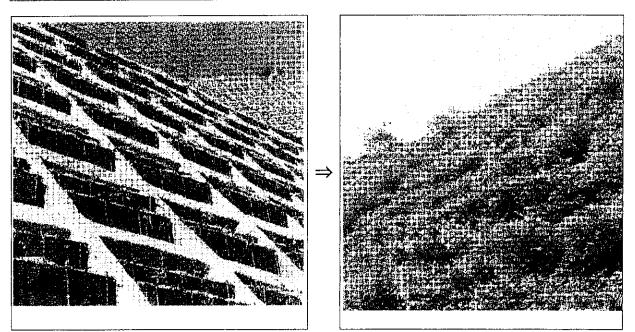


Figure 19.2.1 e.g. Planting in the Concrete Frame

19.2.6 Landscape

N003C230, where countermeasures are enforced directly in the national conservation area, was made the target for careful consideration to the landscape. As above mentioned, it is planned to take countermeasures here that give careful consideration to vegetation that matches with the surrounding natural landscape.

19.3 The Items to Concern for The Next Step

Concerning responsibility to the legal environment must be referred to the section 108 of NIC2000 in the construction contract stage. Furthermore, as for the items of concern with the environment in the stage of the basic design, the detailed design and the construction, it is important to confirm the mentioned items of NABCV fully. Detailed contents are described in the main text.

19.4 Evaluation at Present

It is judged that adequate countermeasures are being taken with respect to items that are immediately pertinent to minimization of environmental impact. Final evaluation of all site is shown in Table 19.4.1.

			Lč	(D)	IC I	.9.	.	LI		410	141	10		UI	ĽA		L O	γh	л.	IVI		.11	¥ II	Uli		en	L.a	11	ш	рa	u	
							· · ·									St	age	of II														
	Envi	roment Item	<u> </u>						Nic.	_				·						c.3				5	-				:.26	, . _	,	<i>.</i>
			1	2	3	[5	6	7	8	9	10	11	-12	13	14	15	16	17	18	19	20	2.1	22	23	24	25	26	27	28	29	30
	1	Inhabitant Transfer	D*	B	D	D	D	D	в	в	в	в	в	D	D	B	ij	D	A	в	в	в	B	в	в	a	В	в	B	D	D	D
hronnent	2	Economic Activity	D	D	A	D	D	D	Ð	D	D	D	D	D	D	D	D	D	A	D	D	D	A	D	D	D	D	D	D	D	D	D
Social Eavironment	3	Facility for Life and Traffic	в	в	B	в	Б	в	в	в	8	B	В	в	в	в	в	B	B	в	Ħ	в	в	B	Б	в	B	в	B	B	в	в
	4	Waste	в	в	в	ß	8	в	в	B	B	в	в	в	в	в	B	в	B	в	в	B	Б	B	в	Б	в	Е	Б	в	В	в
	5	Ground Water	D	D	D	D	D	D	D	D	D	Ð	D	D	D	D	D	D	D	D	D	D	D	B .	D	D	₿	D	в	D	D	D
vironmen	6	Lake/Liver	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	в	D	D	D	D	D	D	D	D	D	D	D
Natural Environment	7	Fauna/Flora	D	D	D	A	D	D	D	D	D	D	D	D	D	D	D	D	D	B	D	D	D	D	D	D	D	D	D	D	D	D
Z	8	Landscape	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	B	D	D	D	D	ם	D	D	D	מ	D	D	D
	9	Air Pollution	D	D	D	D	D	D	D	D	D	D	D	D	D	g	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Politition	10	Water Pollution	в	в	B	в	в	8-	в	в	в	B	В·	в-	в-	в	G	в	в	B	в	в	в	в-	в	в	в	н	B″	в	в	в
	11	Noise/Vibration	D	D	D	D	в	D	D	D	D	D	D	D	D	D	D	Ŗ	в	D	D	D	D	D	D	D	D	D	8	D	D	D
Cou		asure by Primary Survey	ଟ୍ୟ	PN	GM	Ģ	GM	GM		PN	R+S	R+S	R+S	GN	64	R		₿¥.	R.	R+R E+C W+V	D	R+R E+C W+V	E+C	R+S D+V		(B)		R+5	PN	CM.	GS1	

Table19.4.1 Evaluation of Each Spot for Environmental Ir

Stage of ELA Enviroment Item Nic.1 7 NIC.1 15 Nic.26 Nic.3 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 N001A290 1 2 3 4 5 2 N001A280 Inhabitant D D D D tunquidal . в D D D в в в D D - B в в в B в в в B в DB в H D D 1 в Transfer San Nicolas. Las Chaultas ×. Economic D D D D D D D D D D D D 2 D D D D D D D D D D D D D D D D D ¢ Sur Ramon в Activity 2 N001A240 Gnvire 8 N001B230 Facility for Life and Traffic з вів в ВВ в в в в в в в в в в в 8 ₽ в в В в в вв в BB в В N001B170 Social 9 10 N001B150 11 N001B120 4 Waste B B в B в в в B в в в в в В B в ₿ в в в ₿ в в Э В B в ĥ 8 в 12 Rin Inali Riorapacat 13 NIC.3 Ð D Ground Water D Ď D 14 003B400 5 15 003B370 16 17 El Guayican D 6 Lake/Liver D D D Ð D D D D Ð D D D D D D D D D D \mathcal{D} D D D D D D D D D N003B320 18 N003C230 Envir 19 N003E170 Natural 1 7 Fauna/Flora D Ð D D D D D 20 N003C150 21 N003C140 NIC.5 D 8 D D D N005A001 Landscape 22 NIC.26 23 N026A006 D 24 La Banderita Air Pollution D 9 25 N026B140 26 N026A150 Pollution в B. в-27 N026B160 B 5 8º 8 в в В В в ₿ в В в B B-B В в 10 Water Pollution в 8 В в в в ₿ в iΒ⁼ 28 Sur Jeas de Drev --- Papalon Solis 10 11 Noise/Vibration D D D D : B D D D D D D D D D D в D D D D D D D D Ð ы D D D В 14 SF+ CF+ SD+ BR R+C D+I R+C R+C F+S D+G D+B P+V F+V F+V +SD +SD +SF +GD +GD +SF +RE +CW R+C R+C F+V F+S F+S BR+ D+G D+G PN D D Countermeasure by Fainal F+V NB CW R+S D+V +œ GM BR BR. PN GM GM G GM GM CM GS: Q14 F+V +SD G§. BR.+ SD Survey PN +SD +SD +v+ sd +SD +SD +œ $\mathbf{U}_{\mathbf{g}}^{(1)} = \mathbf{g}^{(1)}$

 BR
 < RW (Reconstruction Wing Wall) RE (Re-embankment) SF (Slope Fairing) BP (Bank Protection)

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

CHAPTER 20 PROJECT EVALUATION

20.1 General

As noted in Chapter 13 the traffic benefits that would result from disaster prevention measures are evaluated by calculating the dis-benefits to traffic of a disaster occurring. When traffic re-routes to avoid the closed link it potentially incurs two types of dis-benefit;

- increased vehicle operating costs due to additional distance; and
- increased passenger time costs.

These two parameters are evaluated by the JICA STRADA model by running the model for two cases : with the affected link in place (a common base), and without the link in place. These are converted to monetary benefits using the parameters developed in the Chapter 11 and set out in Table 20.1.1.

Vehicle type	Operating Cost per 1000 km, US \$	Passenger Costs per vehicle hour
Car	185.5	2.84
Utility	215.1	1.09
Average Bus	529.7	14.90
Light Goods	549.1	1.04
Medium Goods	768.2	1.04
Heavy Goods	878.5	0.75

 Table 20.1.1 Vehicle Operating Costs and Passenger Costs, Nicaragua 2002

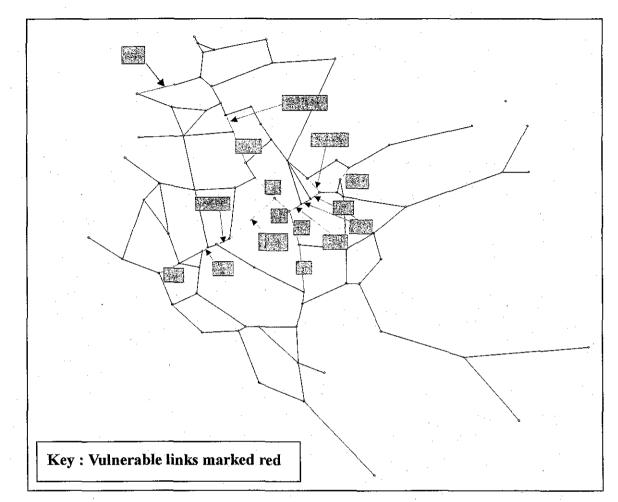

Source : NIC2000 Transport Plan and year 2002 prices

Table 20.1.2 lists the parameters used in the economic evaluation.

Parameter	Value	Source
Discount Rate	10%	International Norm
Discount period	18 years	2003 to 2020
Maintenance cost for works	2% of capital cost per year	Assumption
Implementation of measures	2003	Assumption
Start year of benefit flow	2004	Assumption

Table 20.1.2 Economic Evaluation Parameters

20.2 Economic Analysis

Locations of vulnerable sites are shown in Figure 20.2.1.

Figure 20.2.1 Locations of 30 Vulnerable Road Sites for Evaluation

The economic evaluation relies on quantifying disadvantages that flow from road closures due to a natural disaster. Moreover, the scale of the dis-benefits is a function of the amount of traffic and the length and quality of alternative routes available to traffic.

The Study has selected locations that urgently require the implementation of disaster prevention measures. Note, however, that although these locations recurrently experience disasters, it is difficult to quantify in terms of probability the frequency that disasters will occur. In Nicaragua, the "rainy" season (which includes the onslaught of typhoons) lasts from April to October. As a result of this six-month period of rains, it is unavoidable that some roads will become impassable due to land and rock slides, severe scouring of bridge foundations, etc. For this reason, it has been decided that the frequency of disasters should be derived applying past data that experienced the heaviest rains. Maximum hourly rainfall data for the past 20 years are as shown in Table 20.2.1. As the table indicates, there are

variations in the figure. For example, the figure for maximum hourly rainfall in the year that experienced Hurricane Mitch is abnormally large as compared to the figures for the previous and following years. Accordingly, after much consideration, the Study has selected 200 mm/h of rain or more as the figure for when rock foundations experience cracking due to water infiltration, land and rock slides occur, etc. Based on this, it can be seen that there were seven times that this figure was exceeded over the twenty year period from 1980 to 2000, meaning that every three years a road disaster would occur at the locations requiring disaster prevention measures.

Year	Amount of Rainfall (mm/h)	Comments
1980	283.3	
1981	98.9	
1982	85.1	······································
1983	37.3	
1984	48.5	······
1985	245.9	
1986	50.1	
1987	47.5	
1988	2171	·····
1989	50.0	
1990	143.6	
1991	96.3	
1992	57.6	· · · · · · · · · · · · · · · · · · ·
1993	129.4	
1994	112.4	
1995	324.9	
1996	340.4	······································
1997	157.7	
1998	888,4	Hurricane Mitch
1999	2150	
2000	82.6	

 Table 20.2.1 Maximum Annual Hourly Rainfall for the Past 20 Years

In addition, as described in Chapter 18, the lifespan of disaster prevention measures shown below are reflected in investment costs.

- Permanent disaster prevention measure: Effective for 20 years
- Temporary disaster prevention measure: Effective for 10 years

The construction period required for implementing road disaster prevention measures (With Project) and the costs for road restoration when no measures are implemented (Without Project) are as shown in Table 20.2.2. Furthermore, note that there are substantial variations in the construction period required for prevention measures depending on the scale and content of the work involved. For example, installation of the netting to prevent rocks from falling on to the surface a road requires little time, while re-cutting a slope or reinforcing embankments at certain locations will require up to two years.

The costs for road restoration for the "Without Project" case consists of the investment needed to restore a road to its previous condition prior to a disaster. In this case, it is assumed that there is no road closure, and the costs and scale for restoration work will vary depending on whether or not one lane of the existing road can be used or if a temporary detour road has to be built. For example, the use of locally available rock to deal with the scouring of bridges is an inexpensive method of restoration.

Item No.	Site	Construction Period	Road Restoration Costs
		(Days)	(US\$)
1	N001A290	195	2,000
2	N001A280	449	2,000
3	Junquillal	1663	1,000
4	San Nicolás	596	1,000
5	Las Chanillas	296	1,000
6	San Ramón	1023	1,000
7	N001A240	223	2,000
8	N001B230	213	2,000
11	N001B170	26	2,000
12	N001B150	204	2,000
13	N001B120	43	7,000
18	Rio Inalí	2	5,000
19	Rio Tapacalí	4	1,000
24	003B400	715	2,000
25	003B370	351	2,000
26	El Guayacán	59	1,000
27	N003B320	309	2,000
29	N003C230	44	3,000
30	N003E170	52	2,000
32	N003C150	22	2,000
33	N003C140	27	2,000
35	N005A010	33	2,000
44	N026A060	32	2,000
45	La Banderita	73	1,000
49	N026B140	32	2,000
50	N026A150	92	2,000
51	N026B160	1211	2,000
52	San Juan de Dios	198	1,000
54	Papalón	357	1,000
55	Solís	371	1,000

Table 20.2.2 Construction Period for Road Disaster Prevention Measures (With Project) & Road Restoration Costs (Without Project)

It is thought that Nicaragua will continue to gradually increase the size of its arterial and local road network and raise the overall quality of its road infrastructure. Furthermore, with the construction of new roads, it is envisioned that travel times in the case of disasters when

B -38

alternative routes are used will become shorter. Based on this, the following two future schemes were taken into consideration in the building of the traffic demand model with JICA's STRADA.

- NIC. 7, between San Benito and San Lorenzo (the Managua Boaco road), will be upgraded to a high-standard road.
- The road between Santa Cruz and San Nicolas in the vicinity of Esteli will be paved.

As for the proposed rehabilitation and improvement of the Guayacan - Jintoega link, this should be taken into consideration in the economic evaluation. On the other hand, at the time of drafting of this report, the status of this scheme, which will have a major effect on the amount of the benefits from the disaster prevention measures for NIC.3 on the Jinotega-Matagalpa-Guayacan section, was not known. At the same time, it is known that the improvement of NIC.3 will affect the economic evaluation of the Jintoga-Guayacan link. Therefore, the evaluation of sites on NIC.3 was undertaken by varying the economic benefits of disaster prevention measures depending on when the improvements to the Jinotega-Guayacan link are completed.

The results of the economic evaluation for each of the Study's links are as shown in Table 20.2.3.

			Table 20.2	2.3 Results of	Results of Economic Evaluation	valuation					
		Cost (US4)	(t st)	Benefits(\$USM)	s(\$USM)					Average	Se est
Site No	ID No.	Total Cost (US\$)	Total Dis- counted Cost	Total Benefits	Total Dis- counted Benefits	benefits - Cost (\$US)	Net Present Value (\$US)	an A	Š	EIRR	B/C
+	N001A290	959,018	616,618	6,747,338	3,276,470	5,788,319	2,659,851	4%	5.31		
N	N001A280	16,535	14,190	516,136	454,254	499,601	440,064	44%	32.01		
e	Junquillal	120,235	77,307	2,189,560	1,091,941	2,069,325	1,014,634	12%	14.12		
4	San Nicolas	71,569	46,016	1,141,730	584,712	1,070,161	538,695	12%	12.71		
5	Las Chanillas	541,058	347,883	1,015,448	510,686	474,390	162,803	0.4%	1.47		
9	San Ramon	25,765	16,566	1,015,448	510,686	989,684	494,120	30%	30.83		
2	N001A240	74,431	47,857	1,855,991	937,770	1,781,559	889,914	19%	19.60		-
8	N001B230	17,176	11,044	472,346	241,134	455,169	230,091	24%	21.83		
F	N001B170	2,629,033	2,256,222	2,670,153	2,401,084	41,120	144,861	0.3%	1.06		
12	N001B150	44,644	38,313	823,606	730,977	778,962	692,664	24%	19.08		
13	N001B120	1,345,933	1,155,072	1,589,184	1,394,328	243,252	239,256	0.5%	1.21	<u> </u>	
18	Rio Inali	2,370,350	1,524,059	857,206	420,114	-1,513,143	-1,103,945	%0	0.28		
19	Rio Tapacali	807,293	519,064	454,892	223,324	-352,401	-295,740	0%0	0.43	13.1%	12.3
24	N003B400	66,139	56,760	2,022,393	1,809,886	1,956,254	1,753,125	41%	31.89		
25	N003B370	289,359	248,326	1,023,196	910,609	733,837	662,283	4%	3.67		
26	El Guayacan	2,280,149	1,956,812	10,398,159	9,353,209	8,118,010	7,396,397	5%	4.78		
27	N003B320	395,182	339,143	531,581	468,155	136,400	129,012	69%	1.38		
6 <u>7</u>	N003C230	542,341	465,435	662,039	580,433	119,698	114,999	0.5%	1.25		
ଚ	N003E170	512,579	439,892	785,681	696,845	273,102	256,952	1.0%	1.58		
32	N003C150	1,517,894	1,302,649	1,547,361	1,382,357	29,467	79,708	0.3%	1.06		
g	N003C140	1,238,456	1,062,837	1,276,078	1,138,202	37,621	75,365	0.3%	1.07	15.1%	5.8
35	N005A010	643,204	551,994	1,051,918	936,458	408,714	384,464	1.1%	1.70	1.1%	1.7
44	N026A060	522,500	448,406	734,632	650,901	212,132	202,494	0.8%	1.45		
45	La Banderita	51,258	43,989	188,552	161,995	137,294	118,006	4%	3.68		
49	N026B140	1,494,746	1,282,783	2,132,684	1,909,148	637,938	626,365	0.9%	1.49		
20	N026A150	347,231	297,992	475,861	418,007	128,630	120,015	0.7%	1.40		
51	N026A160	37,216	23,928	1,528,606	774,707	1,491,390	750,778	33%	32.38		
52	San Juan de Dios	14,314	9,203	466,350	236,538	452,036	227,335	26%	25.70		
27	Papalon	146,000	93,873	4,004,273	2,057,405	3,858,273	1,963,531	21%	21.92		
	Solis	188,941	121,483	2,008,137	1,031,535	1,819,196	910,052	‰ ∠	8.49	11.7%	12.1
		19,310,546	15,415,719	52,186,537	37,293,870	32,875,991	21,878,151			12.8%	10.2

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

ORIENTAL CONSULTANTS CO.,LTD. in association with JAPAN ENGINEERING CONSULTANTS CO.,LTD. As the results of the economic evaluation indicate in the above table, the net present value figures for sites 18 and 19 are negative. This is due to the effectiveness of the alternative route, meaning that the existing route is not much more attractive than the alternative route even during normal times.

20.3 Budget Priorities

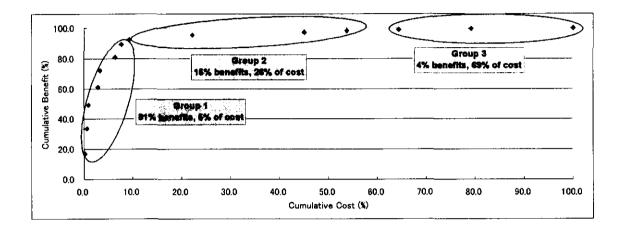
The analysis of a potential budget for the implementation of disaster prevention measures has been carried out in two stages:

- i) The creation of prioritized packages of work that maximize benefits, whilst minimizing cost;
- ii) Linking the funding packages to potential funding sources.

Table 20.3.1 and 20.3.2 list the links (and their disaster prevention schemes) in the order of largest to smallest in terms of benefit/cost ratio and EIRR, respectively.

It should be noted, however, that in the case where there is an existing road and relatively little new investment is needed, together with benefits occurring soon after project completion, the EIRR, which gives no indication of the size of costs or benefits, tends to overrate a project and is not such an appropriate indicator for comparison. Therefore, prioritization is carried out by grouping projects into three bands of benefit/cost (B/C) ratios: 1) a B/C ratio 10 or above, 2) a B/C ratio 1.5 or above but less than 10, and 3) a B/C ratio less than 1.5.

	Average	BC					Priority	Group 7					23.8			Priority	Group2			4.2						Priority	Group3					1.1	10.2
		B/C	32.38	32.01	31.89	30.83	25.70	21.83	21.92	19.60	19.08	14.12	12.71	8.49	5.31	4 78	3.67	3.68	1.70	1.58	1.49	1.47	1.45	1.40	1,38	1.25	1.21	1.07	1.06	1.06	0.43	0.28	
		EIRR	33%	44%	41%	30%	26%	24%	21%	19%	24%	12%	12%	2%	4%	5%	4%	4%	1.1%	1.0%	0.9%	0.4%	0.8%	0.7%	69%	0.5%	0.5%	0.3%	0.3%	0.3%	%0	%0	
		Net Present Value (\$US)	750.778	440,064	1,753,125	494,120	227,335	230,091	1,963,531	889,914	692,664	1,014,634	538,695	910,052	2,659,851	7,396,397	662,283	118,006	384,464	256,952	626,365	162,803	202,494	120,015	129,012	114,999	239,256	75,365	79,708	144,861	-295,740	-1,103,945	21,878,151
.1 Ranked Schemes with B/C		Benefits - Cost (\$US)	1,491,390	499,601	1,956,254	989,684	452,036	455, 169	3,858,273	1,781,559	778,962	2,069,325	1,070,161	1,819,196	5,788,319	8,118,010	733,837	137,294	408,714	273,102	637,938	474,390	212,132	128,630	136,400	119,698	243,252	37,621	29,467	41,120	-352,401	-1,513,143	32,875,991
	WSD\$	Total Dis- counted Benefits	774,707	454,254	1,809,886	510,686	236,538	241,134	2,057,405	937,770	730,977	1,091,941	584,712	1,031,535	3,276,470	9,353,209	910,609	161,995	936,458	696,845	1,909,148	510,686	650,901	418,007	468,155	580,433	1,394,328	1,138,202	1,382,357	2,401,084	223,324	420,114	37,293,870
	Benefits(\$USM)	Total Benefits	1,528,606	516,136	2,022,393	1,015,448	466,350	472,346	4,004,273	1,855,991	823,606	2,189,560	1,141,730	2,008,137	6,747,338	10,398,159	1,023,196	188,552	1,051,918	785,681	2,132,684	1,015,448	734,632	475,861	531,581	662,039	1,589,184	1,276,078	1,547,361	2,670,153	454,892	857,206	52,186,537
Table 20.3.1	JS\$)	Total Dis- counted Cost	23,928	14,190	56,760	16,566	9,203	11,044	93,873	47,857	38,313	77,307	46,016	121,483	616,618	1,956,812	248,326	43,989	551,994	439,892	1,282,783	347,883	448,406	297,992	339,143	465,435	1,155,072	1,062,837	1,302,649	2,256,222	519,064	1,524,059	15,415,719
	Cost (US\$	Total Cost (US\$)	37,216	16,535	66,139	25,765	14,314	17,176	146,000	74,431	44,644	120,235	71,569	188,941	959,018	2,280,149	289,359	51,258	643,204	512,579	1,494,746	541,058	522,500	347,231	395,182	542,341	1,345,933	1,238,456	1,517,894	2,629,033	807,293	2,370,350	19,310,546
		ID No.	N026A160	N001A280	N003B400	San Ramon	San Juan de Dios	N001B230	Papalon	N001A240	N001B150	Junquillal	San Nicolas	Solis	N001A290	El Guayacan	N003B370	La Banderita	N005A010	N003E170	N026B140	Las Chanillas	N026A060	N026A150	N003B320	N003C230	N001B120	N003C140	N003C150	N001B170	Rio Tapacali	Rio Inali	
		Site No	51	2	24	9	25	8	54	~	12	en	4	55	-	26	25	45	35	80	49	2	4	20	27	ស្ត	ب	33	32	-	19	18	


B-42

Average	EIR					6	Priority Group 1					<u> </u>	30%			Priority	Group2			4%					Priority	Group3					0.4%	12.8
	B/G	1.38	32.01	31.89	32.38	30.83	25.70	21.83	19.08	21.92	19.60	14.12	12.71	8.49	4.78	5.31	3.67	3.68	1.70	1.58	1.49	1.45	1.40	1.25	1.21	1.47	1.07	1.06	1.06	0.43	0.28	
	ERK	69%	44%	41%	33%	30%	26%	24%	24%	21%	19%	12%	12%	%L	5%	4%	4%	4%	1.1%	1.0%	0.9%	0.8%	0.7%	0.5%	0.5%	0.4%	0.3%	0.3%	0.3%	%0	%0	
	Net Present Value	129,012	440,064	1,753,125	750,778	494,120	227,335	230,091	692,664	1,963,531	889,914	1,014,634	538,695	910,052	7,396,397	2,659,851	662,283	118,006	384,464	256,952	626,365	202,494	120,015	114,999	239,256	162,803	75,365	144,861	79,708	-295,740	-1,103,945	21,878,151
	Benefits - Cost (\$US)	136,400	499,601	1,956,254	1,491,390	989,684	452,036	455, 169	778,962	3,858,273	1,781,559	2,069,325	1,070,161	1,819,196	8,118,010	5,788,319	733,837	137,294	408,714	273,102	637,938	212,132	128,630	119,698	243,252	474,390	37,621	41,120	29,467	-352,401	-1,513,143	32,875,991
tusm)	Total Disconted Benefits	468,155	454,254	1,809,886	774,707	510,686	236,538	241,134	730,977	2,057,405	937,770	1,091,941	584,712	1,031,535	9,353,209	3,276,470	910,609	161,995	936,458	696,845	1,909,148	650,901	418,007	580,433	1,394,328	510,686	1,138,202	2,401,084	1,382,357	223,324	420,114	37,293,870
Benefits(\$USM)	Total Benefits	531,581	516,136	2,022,393	1,528,606	1,015,448	466,350	472,346	823,606	4,004,273	1,855,991	2,189,560	1,141,730	2,008,137	10,398,159	6,747,338	1,023,196	188,552	1,051,918	785,681	2,132,684	734,632	475,861	662,039	1,589,184	1,015,448	1,276,078	2,670,153	1,547,361	454,892	857,206	52,186,537
JS\$)	Total Dis- counted Cost	339,143	14,190	56,760	23,928	16,566	9,203	11,044	38,313	93,873	47,857	77,307	46,016	121,483	1,956,812	616,618	248,326	43,989	551,994	439,892	1,282,783	448,406	297,992	465,435	1,155,072	347,883	1,062,837	2,256,222	1,302,649	519,064	1,524,059	15,415,719
Cost (US\$)	Total Cost (US\$)	395,182	16,535	66,139	37,216	25,765	14,314	17,176	44,644	146,000	74,431	120,235	71,569	188,941	2,280,149	959,018	289,359	51,258	643,204	512,579	1,494,746	522,500	347,231	542,341	1,345,933	541,058	1,238,456	2,629,033	1,517,894	807,293	2,370,350	19,310,546
	DNo.	N003B320	N001A280	N003B400	N026A160	San Ramon	San Juan de Dios	N001B230	N001B150	Papalon	N001A240	Junquillal	San Nicolas	Solis	El Guayacan	N001A290	N003B370	La Banderita	N005A010	N003E170	N026B140	N026A060	N026A150	N003C230	N001B120	Las Chaniltas	N003C140	N001B170	N003C150	Rio Tapacali	Rio Inali	
	Site No	27	2	24	51	9	52	œ	12	54	7	0	4	55	26	-	25	45	35	99	49	44	50	29	13	5	ŝ	÷	32	19	18	

Table 20.3.2 Ranked Schemes with EIRR

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA B-43

ORIENTAL CONSULTANTS CO., LTD. in association with JAPAN ENGINEERING CONSULTANTS CO., LTD. The schemes can be seen to fall into three distinct groups, which indicate the priorities for investment. These groups are shown in Figure 20.3.1. Note that in **Priority Group 1** there are 12 sites on 9 links, which account for 81% of total benefits and 5% of total costs. In **Priority Group 2** there are 7 sites located on 4 different links, which make up 15% and 26% of the total benefits and costs, respectively. As for **Priority Group 3**, it contains 11 sites on 3 links, and accounts for 4% of the total benefits and 69% of the total cost.

The above three priority groups provide the basis for prioritizing investment and creating work packages for disaster prevention. The schemes for each group are as described in Table 20.3.3

As for the assumptions of the economic evaluation for each of the work packages, they are as follows:

- Total disaster prevention facility costs were calculated by work package.
- Benefits accrue from preventing the adverse effects of a single disaster at a particular site for each respective package.
- As an example to illustrate the benefit stream, calculations were carried out for several locations with disaster prevention facilities for each package. That is, Site 51 (NIC.26) for Package 1, Site 26 (NIC.3) for Package 2, and Site 7,8,11,12, and 13 (NIC.1) for Package 3 were taken up.
- Benefits were considered to occur after the completion of construction of the disaster prevention facilities.

Sub Package	Link	Site	Road	Cost (US\$)
	2	N001A280	Nic1	12,339
	3	Junquillal	Nic1	51,825
	4	San Nicolas	Nic1	30,849
1a	6	San Ramon	Nic1	11,105
		N001A240	Nic1	32,082
				7,404
				33,316
Cost	<u> </u>			178,921
· · · · · · · · · · · · · · · · · · ·	24	N003B400	Nic3	49,358
1b	1			294,912
Cost		1100000000		344,269
	51	N0264160	Nie26	
				16,041
10				6,170
<u></u>	54	Papalon	NIC20	62,931
Cost		<u> </u>		85,142
		<u>.</u>		608,333
Sub Package	Link	Site	Road	Cost (US\$)
2a	1	N001A290	Nic1	413,370
Cost				413,370
				215,940
2b				1,701,604
		N003E170	Nic3	
Cost				2,300,064
	35	N005A010	Nic5	480,003
Cost		· · · · · · · · · · · · · · · · · · ·		480,003
2d				38,252
	55	Solis	Nic26	81,440
Cost				119,692
				0 010 100
				3,313,129
Sub Package	Link	Site	Road	Cost (US\$)
Sub Package	and the second			Cost (US\$)
Sub Package	Eink 5 11	Site Las Chanillas N001B170	Road Nic1 Nic1	Cost (US\$) 233,215
Sub Package	5	Las Chanillas	Nic1	Cost (US\$) 233,215 1,961,965
	5 11	Las Chanillas N001B170	Nic1 Nic1	Cost (US\$) 233,215 1,961,965 1,004,427
	5 11 13	Las Chanillas N001B170 N001B120	Nic1 Nic1 Nic1	Cost (US\$) 233,215 1,961,965
	5 11 13 18	Las Chanillas N001B170 N001B120 Rio Inali	Nic1 Nic1 Nic1 Nic1	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702
3a	5 11 13 18	Las Chanillas N001B170 N001B120 Rio Inali	Nic1 Nic1 Nic1 Nic1	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971
3a	5 11 13 18 19	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali	Nic1 Nic1 Nic1 Nic1 Nic1	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280
3a Cost	5 11 13 18 19 29	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230	Nic1 Nic1 Nic1 Nic1 Nic1 Nic3	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732 1,132,757
3a Cost	5 11 13 18 19 29 32	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230 N003C150	Nic1 Nic1 Nic1 Nic1 Nic3 Nic3	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732
3a Cost 3b	5 11 13 18 19 29 32	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230 N003C150	Nic1 Nic1 Nic1 Nic1 Nic3 Nic3	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732 1,132,757 924,221
3a Cost 3b	5 11 13 18 19 29 32 33	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230 N003C150 N003C140	Nic1 Nic1 Nic1 Nic1 Nic3 Nic3 Nic3	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732 1,132,757 924,221 2,461,711
3a Cost 3b Cost	5 11 13 18 19 29 32 33 44	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230 N003C150 N003C140 N026A060	Nic1 Nic1 Nic1 Nic1 Nic3 Nic3 Nic3 Nic3	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732 1,132,757 924,221 2,461,711 389,925 1,115,482
3a Cost 3b Cost	5 11 13 18 19 29 32 33 44 49	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230 N003C150 N003C140 N026A060 N026B140	Nic1 Nic1 Nic1 Nic1 Nic3 Nic3 Nic3 Nic3 Nic26	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732 1,132,757 924,221 2,461,711 389,925 1,115,482 259,127
3a Cost 3b Cost 3c	5 11 13 18 19 29 32 33 44 49	Las Chanillas N001B170 N001B120 Rio Inali Rio Tapacali N003C230 N003C150 N003C140 N026A060 N026B140	Nic1 Nic1 Nic1 Nic1 Nic3 Nic3 Nic3 Nic3 Nic26	Cost (US\$) 233,215 1,961,965 1,004,427 1,021,702 347,971 4,569,280 404,732 1,132,757 924,221 2,461,711 389,925 1,115,482
	la Cost lb Cost lc Cost Sub Package 2a Cost 2b	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline 2 & N001A280 \\ \hline 3 & Junquillal \\ \hline 4 & San Nicolas \\ \hline 5an Ramon \\ \hline 7 & N001A240 \\ \hline 8 & N001B230 \\ \hline 12 & N001B150 \\ \hline Cost \\ \hline \hline 1b & 24 & N003B400 \\ \hline 1b & 27 & N003B320 \\ \hline Cost \\ \hline \hline 1c & 51 & N026A160 \\ \hline 1c & 52 & San Juan de Dios \\ \hline 54 & Papalon \\ \hline Cost \\ \hline \hline \hline 2a & 1 & N001A290 \\ \hline Cost \\ \hline \hline 2b & 26 & El Guayacan \\ \hline 30 & N003E170 \\ \hline Cost \\ \hline \hline 2c & 35 & N005A010 \\ \hline Cost \\ \hline \hline 2d & 45 & La Banderita \\ \hline 55 & Solis \\ \hline \end{tabular}$	2 N001A280 Nic1 3 Junquillal Nic1 4 San Nicolas Nic1 1a 6 San Ramon Nic1 7 N001A240 Nic1 8 N001B230 Nic1 12 N001B150 Nic1 Cost 12 N003B400 Nic3 1b 24 N003B400 Nic3 Cost 1 N026A160 Nic26 1c 52 San Juan de Dios Nic26 Cost 1 N001A290 Nic1 2a 1 N003B370 Nic26 Cost 2 1 N001A290 Nic1 Cost 2 1 N001A290 Nic1 Cost 2 2 N003B370 Nic3 2b 2 1 N003B370 Nic3 2b 2 1 N003B370 Nic3 30 N003E170 Nic3 30 N003E170

Table 20.3.3 Proposed Work Sub-packages in Priority Order

CHAPTER 21 IMPLEMENTATION PROGRAMME

21.1 Execution Agency

The General Division of Planning, Ministry of Transport and Infrastructure (GDP), is the responsible government agency for the execution of the implementation of the Project. The Cooperation and Economic Relationship Office, Ministry of Foreign Affairs, is also the executing agency for supporting the Ministry of Transport and Infrastructure in donor assisted projects.

21.2 Project Packaging

As described in Chapter 20, three work packages result from the economic evaluation, and cost-effectiveness considerations. Package One contains disaster spots of NIC.1, NIC.3 and NIIC.26. Package Two contains sites on NIC.3, NIC.5 and NIC.1. Package Three sites are restricted to NIC.1 and NIC.3. The order of implementation is related to the cost effectiveness of the construction works. The relationship of the package groupings and the disaster spots are shown in Table 21.2.1.

· · · · · · · · · · · · · · · · · · ·		eservel an else els	Ovorp und Dis		
	Nic1	Nic3	Nic5	Nic26	Total
	N001A280				
	Junquillal				
	San Nicolas	N003B400		N026A160	
Package1	San Ramon	N003B320		San Juan de Dios	12
	N001A240			Papalon	
	N001B230				
	N001B150	· · · · · · · · · · · · · · · · · · ·			
	N001A290	N003B370	N005A010	La Banderita	
Package2		El Guayacan		Solis	7
		N003E170			
	Las Chanillas				
	N001B170	N003C230		N026A060	
Package3	N001B120	N003C150		N026B140	11
	Rio Inali	N003C140		N026A150	
L	Rio Tapacali				

 Table 21.2.1 Package Group and Disaster Spots

21.3 Validity Evaluation to Each Countermeasure

21.3.1 Review to Environmental Issue

The four environmental impacts on NIC.3 have been identified. However these issues have been reviewed in consideration of the following countermeasures:

- The hotel of "N003B320 spot" will be safeguarded by constructing a retaining wall without re-cutting the slope,
- The natural park of "N003C230 spot" will be protected by planting vegetation into the cribwork after re-cutting the slope,
- The downstream area of "N003E170 spot", where the mountain stream could be blocked, will be continue to be irrigated through an opening in the dam, and
- The coffee field of "N003C140 spot" will be safeguarded by constructing a retaining wall in order to reduce the embankment reach.

Thus, the issues related to the environment of each disaster spot have been completely settled by appropriate mitigation measures. Therefore each countermeasure is valid in relation to the environment aspects.

21.3.2 Validity of the Result of Economic and Financial Analysis

The construction costs, including measures to compensate for environmental impacts, have been included in the economic evaluation (Chapter 20). Most of the schemes will require some maintenance. The costs of maintenance of the permanent schemes were included in the economic evaluation at 2% of capital cost as shown in Table 20.1.4 of the main text. The resultant maintenance cost requirements are summarised in Table 21.3.1.

Package	Annual Maintenan	ce Cost (\$)
1	12,167	
2	66,263	
3	175,911	
Total	254,340	

 Table 21.3.1 Annual Maintenance Budget Estimates (US\$, 2002 prices)

Source : 2% of capital costs of permanent works

The sum total in Table 21.3.1 should be safeguarded for maintenance, to be deployed after the capital works have been undertaken. This sum is accounted for in the economic evaluation and hence the economic evaluation is valid. In addition, the sum in Table 21.3.1 will be sufficient to cover the required maintenance works identified in Table 21.4.2

B-47

of the main text. At the spots listed above where there will be a need for single-lane traffic working during construction, it is assumed that this will be controlled by temporary traffic signals, or manually. In both cases, traffic can expect to be delayed, depending on the length of road affected. This length affects the time taken for vehicles to clear when both directions are halted, and increases the disbenefit. Even a relatively long section (150m) should clear in 30 seconds. The maximum resultant disbenefits for each of the sires would be less 30 vehicle-hours per day. In monetary values these will always be much less than 1% of the potential benefits of the works, and the traffic disbenefits can be considered to be negligible. Hence the economic evaluation is valid.

21.3.3 Validity Evaluation of the Countermeasures

As above-mentioned, the countermeasures are have been validated from the results of the environmental impacts and the economic analyses. Furthermore, almost all of the construction materials and the construction machines are readily available in Nicaragua.

The benefits from this investment are due to the prevention of disasters at all 30 sites. The Internal Rate of Return of this project in avoiding disasters at each of the following sites over the next 10 years is set out in Table 21.3.2.

Link	Road	EIRR(%)
Malpaisillo	NIC.26	27.9
Sebaco to Chagatuillo	NIC.3	28.2

NIC.1

Table 21.3.3 Project Internal Rate of Return (EIRR) in Preventing Disasters on Each Road Link : Full Project Cost in Each Case

Source : Project Evaluation Spreadsheets

La Sirena to Condega

Average

The average EIRR for all the sites is 23.5%. This means that the project rate of return for the prevention of just one disaster is 23.5%, and the rate of return for preventing more than disaster will be higher. Therefore, the countermeasures planned through this Study are highly applicable to preventing the road disasters in Nicaragua.

21.4 Construction Period of Each Project Packaging

The construction period for each project package was estimated taking account of the work volume, site condition, weather condition, right-of-way situation, etc. The disaster spots have been divided into three categories, described as follows.

B -48

<u>15.5</u> 23.5

Package 1: Priority Site 1

The disaster spots of Priority Site 1 are composed of NIC.1, NIC.3 and NIC.26. The main work items are to install gabion mats to prevent scouring of bridge foundations, to cut the weathered and steep slope surfaces, and to installation drainage and retaining walls. The detailed works are shown in Table 21.4.1. The estimated construction period for this package is 2 years.

Road No.	ID No.	Countermeasure	Total
	N001AA280	Horizontal drainage	
	Junquillal	Gabion mat]
	San Nicolás	Gabion mat	1
Nic.1	San Ramón	Gabion mat	7
	N001A240	Removal of loose rocks, installation of netting]
	N001B230	Removal of loose rocks, installation of netting	1
	N001B150	Cutting, shotcrete and drainage	
NIC.3	N003B400	Cutting and drainage	2
NIC.5	N003B320	Retaining wall and fill, drainage and re-vegetation	- <i>L</i>
	N026B160	Removal of loose rocks, Installation of netting and drainage	
NIC.26	San Juan de Dios	Gabion mat	3
	Papalón	Gabion mat and riprap with mortar	

Table 21.4.1	Construction	Work o	f Package 1
--------------	--------------	--------	-------------

Package 2 : Priority Site 2

The disaster spots of Priority Site 2 are composed of NIC.3, NIC.5 and NIC.26. The main work items are the construction of a new bridge, to install gabion mats, to cut the weathered and steep slope surfaces, and to install drainage. The detailed works are shown in Table 21.4.2. The estimated construction period for this package is 2 years.

Road No.	ID No.	Countermeasure	Total
NIC1	N001A290	Removal of loose rocks, Installation of netting and drainage	1
	N003B370	Cutting and drainage	
NIC.3	El Guayacán	New bridge	3
	N003E170	Cutting and drainage, concrete dam and Box culvert	
NIC.5	N005A010	Cutting and drainage	1
NIC.26	La Banderita	Masonry wall and gabion mat	- 2
TAIC.20	Solis	Gabion mat and riprap with mortar	

Table 21.4.2 Construction Work of Package 2

Package 3 : Priority Site 3

The disaster spots of Priority Site 3 are composed of NIC.1 and NIC.3. The main work items are to install gabion mats to prevent scouring of bridge foundations, to cut the weathered and steep slope surfaces, and to install drainage. The detailed works are shown in Table 21.4.3. The estimated construction period for this package is 2 years.

Road No.	ID No.	Countermeasure	Total
	Las Chanillas	Concrete brocks	
Γ	N001B170	Cutting and drainage	
NIC.1	N001B120	Cutting and drainage	5
	Rio Inali	Gabion mat and stone masonry	
	Rio Tapascali	Gabion mat	
	N003C230	Cutting and concrete protect with vegetation, Lower down embankment with drainage	
NIC.3	N003C150	Cutting and drainage above road, embankment, Vegetation and drainage below	3
	N003C140	Cutting with drainage and horizontal drainage above road, embankment, vegetation and drainage below	
	N026A060	Cutting, shotcrete and drainage	
NIC.26	N026B140	Cutting, drainage and horizontal drainage	3
	N026A150	Cutting and drainage, lateral carriageway drainage	

Table 21.4.3 Construction	Work of Package 3
---------------------------	-------------------

21.5 Engineering Services

The proposed Engineering Services comprise two main components, which are included a detailed design and a tendering for the construction works. The total required period of the Engineering Services is 5 years.

21.6 Implementation Schedule

The implementation schedule was set up taking account of the construction period estimated for each project package and for the engineering services. The recommended implementation schedule is shown in Figure 21.6.1.

B -50

		03	20	104	20	105	20	206	20	07	20	08
ID	Task Name	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3
1	Basic Design	1078										
2	Full loan Application											
3	Detailed Design Package 1											
4	Detailed Design Package 2					-						
5	Detailed Desgn Package 3				Andrea							
6	Preparation Tender Documents 1			են								
7	Preparation Tender Documents 2											
8	Preparation Tender Documents 3					TELE	ļ	1				
9	Tender Package 1				h							
10	Tender Package 2											
11	Tender Package 3											
12	Works 1 On Site						57.57 Mari					
13	Works 2 On site						1865-1657.05		-13 TODO			
14	Works 3 On Site							•	120002223			

Figure 21.6.1 Proposed Implementation Schedule for Disaster Prevention Measures

21.7 Investment Programme

The investment programme of the Project has been made on the basis of the implementation schedule. The cost breakdown set out in Table 20.1.2 has been allocated to engineering services and construction works as follows;

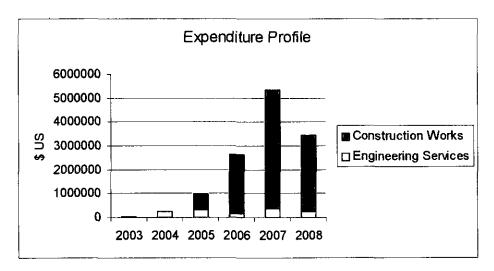

Component	Allocation
Engineering works	Construction works
Design	Engineering Services
Construction Supervision	Engineering Services
Client Costs	Construction Works
Transport of materials	Construction works
Contingency	Construction Works

Table 21.7.1 shows the tentative investment programme for the proposed disaster spots and structural strengthening projects.

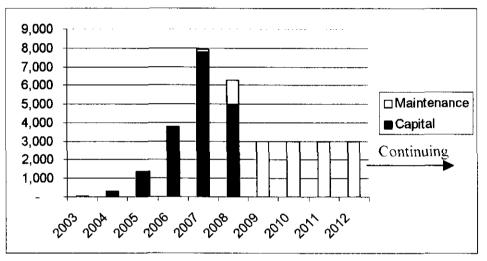
	(\$US, 2002 prices)							
Year	Engineering Services	Construction Works	Total					
2003	30,918	-	30,918					
2004	235,330	-	235,330					
2005	293,840	672,110	965,950					
2006	166,100	2,466,136	2,632,236					
2007	341,803	5,042,143	5,383,945					
2008	220,491	3,248,117	3,468,608					
Total	1,288,482	11,428,506	12,716,988					

Table 21.7.1 Potential Expenditure Profile for Disaster Prevention Mea	asures
(SUS, 2002 nrices)	

Source : Allocation of Capital Costs (Table 20.3.3) to Implementation Schedule (Figure 21.7.1) in the main text

Source : Table 21.7.1

Figure 21.7.1 Potential Expenditure Profile for Disaster Prevention Measures


21.8 Financing Arrangements

As a result, it is anticipated that the necessary works can be funded by an International Donor, and the proposed implementation plan provides for the processing of an appropriate grant application. Typically, in Nicaragua grant aided highway projects are co-financed by the Government of Nicaragua at an average rate of 10% of the total project cost It is therefore recommended that MTI makes budget provision for the implementation and maintenance of this project in accordance with Table 21.8.1 and Figure 21.8.1

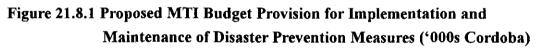
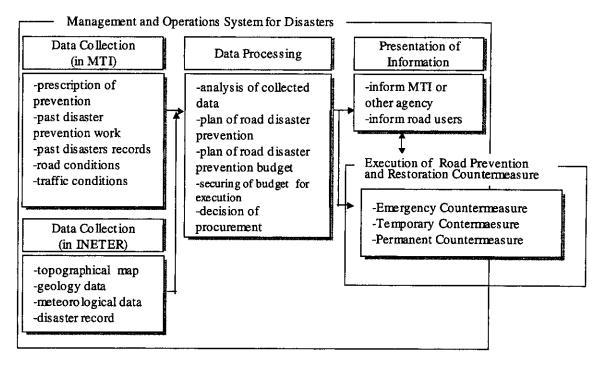

Year	Capital	Maintenance
2003	45	-
2004	339	-
2005	1,391	
2006	3,790	-
2007	7,753	165
2008	4,995	1,301
2009	-	2,984
2010	-	2,984
2011	-	2,984
2012	-	2,984

Table 21.8.1 Proposed MTI Budget Provision for Implementation and

Source : Capital budget 10% of total of Table 21.8.1, Maintenance Budget as Table 21.4.1, both converted at \$1 = 14.4 Cordoba of the main text


Source : Table 21.8.1

CHAPTER 22 MAINTENANCE AND OPERATIONS SYSTEM

22.1 General Flow of Maintenance and Operations System

Taking into consideration the present status of road maintenance in MTI, an overall concept for a system of road maintenance and operations is proposed as shown in Figure 22.1.1.

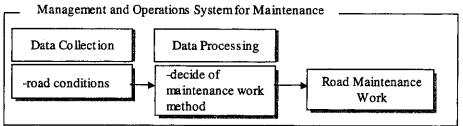


Figure 22.1.1 Concept of Maintenance and Operations System

22.2 Organization of Maintenance Division

1) Present Status of General Division of Roads

The General Division of Roads (GDR) is comprised of five departments: 1) Department of Road Construction, 2) Department of Road Maintenance, 3) Department of Road Management, 4) WB Affairs Department, and 5) IDB Affairs Department. Although the Department of Road Maintenance (DORM) is in charge of all aspects of maintenance work, most of the work carried out consists of road surface restoration.

As for when there is damage to road structure, road users and/or local authorities report directly to a Disaster Prevention Technical Unit that comes directly under the MTI, which then reports to the Minister. However, together with many other outstanding issues, GDR receives information too late under this system, resulting in materials and manpower to deal with a disaster being slow and behind schedule. Moreover, as for road inspections in local areas, road inspectors have to be dispatched from the head office, who then return to said office to study the field results and draw up the appropriate response. Given this background, there is insufficient planning overall, an insufficient budget, and a lack of technical capability in the GDR to deal with road disasters. Furthermore, problems continue to pile up as a result of this situation.

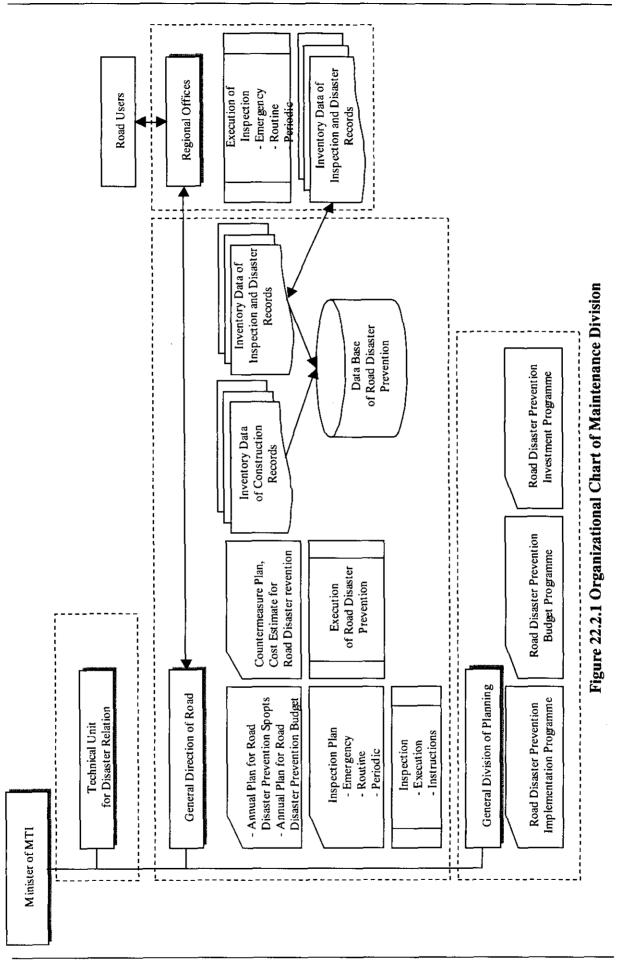
2) The Role of GDR

In order to firmly carry out road disaster prevention, it is important for the DORM to plan on how to acquire the necessary information and technologies, to draw up annual plans indicating locations requiring road disaster prevention, to secure a sufficient budget, to plan inspections, to store data, etc., and to report regularly to the GDR.

3) The Role of Local Offices

In order to realize effective road inspections and maintenance, it is proposed that consideration be given to having the responsibility for this work be moved from the head office to the local offices to reduce costs, as well as establishing local offices. The role of local offices is to carry out inspections for their respective jurisdictions, to compile data from their fieldwork, to keep records of disasters, to keep the head office well informed, etc.

In order for the above to be executed without fail, the four personnel described below should be assigned to local offices for road disaster prevention purposes. However, other road maintenance experts can also be assigned to these offices.


- ? Director: 1 (engineer)
- ? Engineer: 1 (to establish and confirm locations requiring disaster prevention measures)
- ? Technicians: 2 (to transport inspection tools and assist the engineer)

Further, it is recommended that local offices be established in the following major cities: Managua, Leon, Matagalpa, Ocotal, Granada, and Juigalpa.

4) The Role of the General Division of Planning

The role of the General Division of Planning is to secure the budget for road disaster prevention, establish an investment plan for this, and to carry out the said plan.

The organizational chart and role of the DORM in MTI to be involved with future road prevention countermeasures is as shown in Figure 22.2.1.

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

22.3 Inspection and Maintenance Work Methods

22.3.1 General

It is important to understand that insufficient maintenance not only affects road facilities such as slopes and bridges, which in turn can affect the flow of road traffic, but can also threaten life and property should they collapse, resulting in large costs being incurred for restoration, etc.

22.3.2 Types of Maintenance Inspection

Maintenance inspection consists of the following types:

- Routine inspection
- Periodic inspection
- Urgent inspection

Below, the purpose of each of these types of inspection is explained.

1) Routine Inspection

The purpose of routine inspection is to detect at an early stage minor damage and the potential for such damage to become more severe. The main work items in a routine inspection are as follows:

- Confirmation of smooth traffic flows
- Checking for rock and/or debris on roads.
- Inspection of the status of road structures, slopes, and drainage facilities. If damage and/or abnormalities are detected, execution of more detailed inspection and recording and reporting of results.
- In case of emergency, execution of urgent countermeasures.

2) Periodic Inspection

The purpose of periodic inspection is to inspect defects or potential defects of slopes, bridges, etc. close up and in detail. The main work items in a periodic inspection are as follows:

- Inspection of slope stability, damage to road facilities, level of damage and/or deterioration
- Check for seepage water from slopes and inspection of drainage system during rainy season to confirm functionality.
- Recording of results in a database.
- Decision on whether or not it is necessary to have further inspection by an engineer, technician, or specialist.

B - 58

3) Urgent Inspection

The purpose of urgent inspection is to check for damage that poses a danger to road users and the surrounding community after the a natural disaster, such as a hurricane or earthquake, or when existing damage threatens to become a danger. The main work items in an urgent inspection are described below.

- More than one expert should do thorough detailed inspections simultaneously.
- Sketches indicating the locations, direction, and widths of cracks, together with present condition photographs and crack distribution charts, should be drawn up. Moreover, measurements should be performed if needed and topographical maps, cross-section sketches, etc. drawn up.
- Urgent inspections should be carried out rapidly after a disaster such as a rainstorm, hurricane, earthquake, etc., since road facilities such as slopes can be easily damaged in such circumstances. Should damage be detected, appropriate measures should be carried out.
- When symptoms of deformation appear, a partial or full detailed inspection of the object facility should be executed. Measurement equipment, such as an extensometer and inclinometer to check for soil movements and the progress of cracking, should be used.
- If soil movement is ongoing, it should be carefully monitored. It is assumed to factor of the stability judgment. From the result of factors, the part with the possibility of the occurrence of the disaster is separately inspected in detail. Strengthening of the countermeasure and observation is examined.
- When slope damage, landslides, etc. occur, boring should be carried out in order to ascertain present conditions. That is, boring should provide data to investigate the direction of soil movement, the existence of slide surface groundwater, soil composition, etc.

4) Inspection System

As described above, by executing inspections that are purpose oriented, it is possible to avoid a road disaster from occurring. For this reason, the following inspection team system is recommended:

- Total no. of members per inspection team: 3
- No. of engineers: 1 (to establish and confirm locations requiring disaster prevention measures)
- No. of technicians: 2 (to transport inspection equipment and assist engineer)

B-59

22.4 Methods of Repair/ Rehabilitation

Priority work items for repair and rehabilitation are listed below:

- The secondary disaster prevention gives priority after confirmation of dread of secondary disaster and work safety,
- Confirmation of detour road,
- Confirmation of appropriate amount of repair and rehabilitation work, and
- Selection of appropriate repair and rehabilitation methods taking into consideration availability of materials.

In determining the cause of road facility deformation or collapse, various inventory data are used.

Each type of repair and rehabilitation methods is presented in Figure 22.4.2 to Figure 22.4.6 of the main text. These types of countermeasures are the cracking of slopes, the boulder stone and loose stones on slopes, defect in drainage facility and weathering of shotcrete, slope damage from road surface water inflow, and landslide.

22.5 Procurement

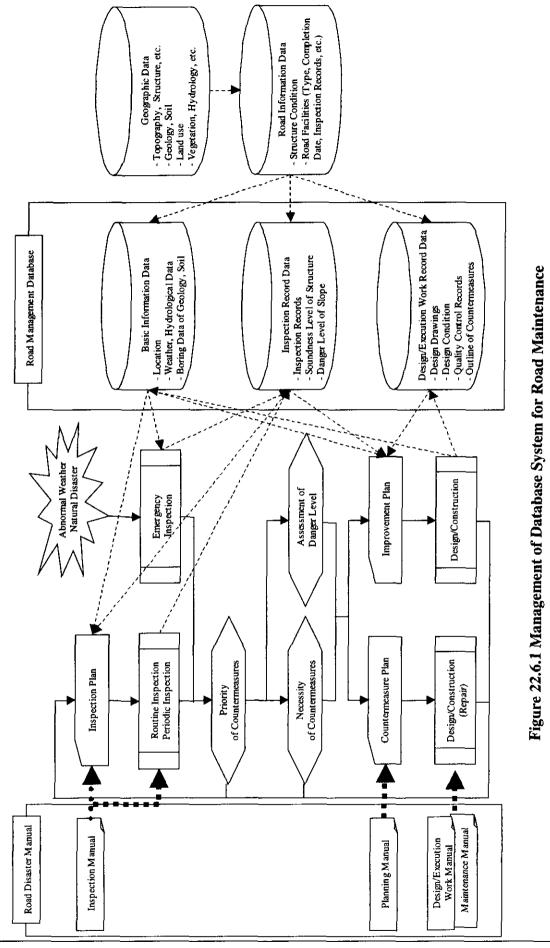
Based on countermeasures, the Study team was able to confirm that all of the materials for the countermeasures could be procured in Nicaragua. As for equipment, everything could be procured except for a shotcrete machine.

As for contractual matters when the countermeasures are executed, two cases are considered. The first case is contracting with a private company and the second case with COERCO (or a public entity). The selection of the contract type is to be decided by MTI and will depend on the amount of construction work required.

22.6 Plan of Database System

It is important that the maintenance records, the facility conditions, condition of geological and weather characteristics are grasped in order to achieve the effective road maintenance. And several relative data, which are geology, topography and hydrology, should be arranged to use smoothly. Therefore the various database should be established promptly.

All of the data collected in this Study should be used for near future. The database of road maintenance in MTI is recommended as shown in Figure 22.6.1. The arranged data are as follows;


- Basic data (route number, distance, coordinates, type of structure, photographs),
- Survey records (topography, geology, weather, hydrology, traffic volume,

B-60

socio-economic index, etc.),

- Facility, road inventory,
- Construction records (as-built drawings, qualities, applied standards, construction method, etc.),
- Inspection frequency, inspection schedule, and
- Repair/ restoration records and its schedule.

The Bridge Management System (BMS), which was donated to the General Direction of Roads by DANIDA in October 2001, is operated and managed efficiently now. Therefore, in the future, this plan of database system should be managed in cooperation with BMS.

FINAL REPORT SUMMARY

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA B -62 ORIENTAL CONSULTANTS CO., LTD. in association with JAPAN ENGINEERING CONSULTANTS CO., LTD.

CHAPTER 23 CONCLUTION AND RECOMMENDATION

The feasibility study proved that project spots of Package 1, 2 and 3 are technically, environmentally and economically feasible. The information and data surveyed in this Study can be finally concluded as follows.

23.1 Early execution of the disaster prevention spots

The identified disaster prevention spots are highly critical. Therefore, the disaster prevention work should be executed as early as possible in order to protect the safety of road users and the stability of traffic movement and the economy.

Therefore, the priority order of the project package should be considered as grouped in the following Table 23.1.1.

Priority Order	Package No.	Road No.	ID No.	Cuntermeasure	Tota	
			N001AA280	Horizontal drainage]	
	Nic.1	Junquillal	Gabion mat	7		
		San Nicolás	Gabion mat			
		San Ramón	Gabion mat			
		N001A240	Removal of loose rocks, installation of netting			
		1	N001B230	Removal of loose rocks, installation of netting		
1 1	1		N001B150	Cutting, shotcrete and drainage		
			N003B400	Cutting and drainage	<u> </u>	
		NIC.3	N003B320	Retaining wall and fill, drainage and re-vegetation	2	
	-		10050520	Removal of loose rocks,		
			N026B160	Installation of netting and drainage		
		NIC.26	San Juan de Dios	Gabion mat	3	
			Papalón	Gabion mat and riprap with mortar		
			N001A290	Removal of loose rocks,	1	
		2 NIC.3		Installation of netting and drainage		
	1 1		N003B370	Cutting and drainage		
2 2			El Guayacán	New bridge	2	
	NIC.3		NIC.3	21.000,000	Cutting and drainage,	3
			N003E170	Concrete dam and Box culvert		
		NIC.5	N005A010	Cutting and drainage	1	
		NIC 26	La Banderita	Masonry wall and gabion mat	2	
		NIC.26	Solis	Gabion mat and riprap with mortar	2	
<u>.</u>			Las Chanillas	Concrete brocks		
3 3			N001B170	Cutting and drainage		
		NIC.1	N001B120	Cutting and drainage	5	
			Rio Inali	Gabion mat and stone masonry		
			Rio Tapascali	Gabion mat		
				Cutting and concrete protect with vegetation,		
	3 NIC.3	N003C230	Lower down embankment with drainage	3		
		N003C150	Cutting and drainage above road, embankment,			
			Vegetation and drainage below			
		N003C140	Cutting with drainage			
			N003C140	and horizontal drainage above road,		
				embankment, vegetation and drainage below		
			N026A060	Cutting, shotcrete and drainage		
		NIC.26	N026B140	Cutting, drainage and horizontal drainage	3	
			N026A150	Cutting and drainage, lateral carriageway drainage	-	
	1		Total Disaster Preve		30	

Table 23.1.1 Priority Order of Project Packages

23.2 Recommendation

In order to execute the projects, the MTI has been recommended to take the following actions.

• Execution of Screening, Emergency/ Routine/ Periodic Inspection Survey,

Approximately 80 over disaster potential spots were identified by the inspection survey on the objective six (6) roads, which are NIC.1, NIC.3, NIC.5, NIC.15, NIC.24 and NIC.26, in this Study. The screening and inspection surveys should be carried out for not only the objective roads but also other major roads and the rural roads.

• <u>Understanding Manuals and Standard Drawings</u>,

The manuals are composed of five (5) parts as below.

- ➢ An Inspection Manual,
- > A Planning Manual,
- > A Design/ Execution Works Manual,
- > A Maintenance Manual, and
- > A Design Standards/ Standard Drawings.

Each manual is applicable to conditions on Nicaraguan roads, and users must understand the contents of all 5 manuals.

• <u>Strengthening of Maintenance Division in MTI</u>,

The Direction of Road Maintenance is organized in General Division of Roads of MTI. However, its main work is only minor maintenance works of road surfaces on major roads. Almost all of major maintenance works are carried out by donations from the foreign counties.

In order to build up a strong maintenance organization, the following actions are recommended.

- Clarification of roles and responsibilities in the range of Direction and Division with a role in road maintenance,
- > Establishment/ management of Database for the maintenance work, and
- > Reorganization of reporting and liaison lines.

<u>Establishment of Regional Offices, and</u>

In order to get information of disaster quickly, regional offices should be established at main towns on major roads. The roles of regional offices will be to carry out screening, and other inspection surveys for emergency, routine and periodic maintenance. Data collected from inspection surveys should be analysed in regional offices and be reported to the main maintenance division in MTI. Thus the regional offices should take responsibility for major roads in their local areas.

<u>Secure the Special Budget for Road Disasters</u>

A special budget for roads disaster should be established to a safeguard against possible loss. MTI should take on great responsibility for the management and control of major and rural roads in Nicaragua. If traffic accidents occur within MTI's responsibility, it is likely to be a result of very bad carriageway surfaces, very dangerous slope surfaces, very risky bridge condition, etc.

Therefore, in order to safeguard road safety and economic development to the road users, MTI should itself secure a special budget for road disasters.

.

-