
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

A

No. 12

MINISTRY OF TRANSPORT AND INFRASTRUCTURE REPUBLIC OF NICARAGUA

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

FINAL REPORT

Volume 1 of 5

SUMMARY

January 2008

Oriental Consultants Company Limited

Japan Engineering Consultants Company Limited

SSF JR 03-12

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN THE REPUBLIC OF NICARAGUA

FINAL REPORT

Volume 1 of 5

SUMMARY

January 2003

1172071 [1]

PREFACE

In response to a request from the Government of the Republic of Nicaragua, the Government of Japan decided to conduct the Study on Vulnerability Reduction for Major Roads in the Republic of Nicaragua and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Keigo Konno of Oriental Consultants Co., Ltd. and consist of Oriental Consultants Co., Ltd. and Japan Engineering Consultants Co., Ltd. to Nicaragua, three times between January 2002 and January 2003.

In addition, JICA set up an advisory committee consist of Mr. Tetsuo Hirose, Chief of Maintenance Planning Division, Maintenance and Facility Department, Hanshin Expressway Public Corporation and Mr. Yoshifumi Nagata, Chief of Public Relations Division, General Affairs Department, Metropolitan Expressway Public Corporation between January 2002 and January 2003, which examined the study from specialist and technical points of view.

The team held discussions with the officials concerned of the Government of Nicaragua and conducted the field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Nicaragua for their close cooperation extended to the team.

January 2003

Takao Kawakami

M上隆朗

President

Japan International Cooperation Agency

Letter of Transmittal

January 2003

Mr. Takao Kawakami President Japan International Cooperation Agency

Dear Sir,

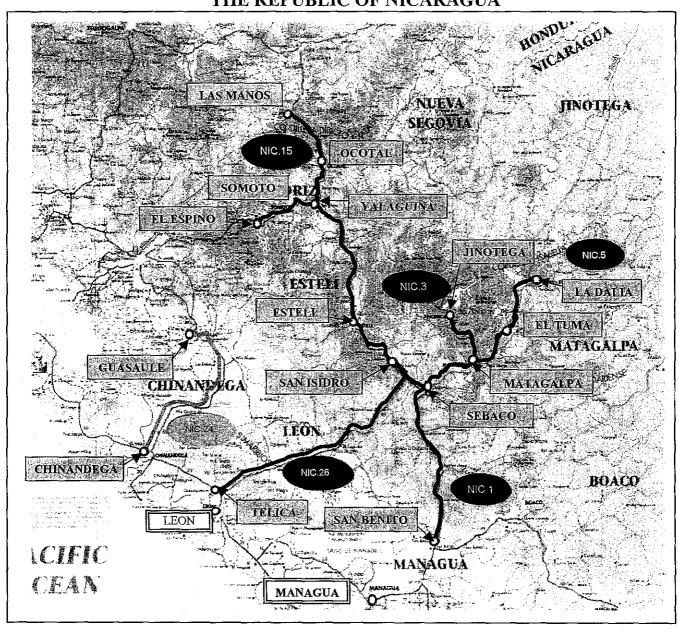
We are pleased to submit to you the final report on The Study on The Vulnerability Reduction for Major Roads in The Republic of Nicaragua.

This study was conducted by Oriental Consultants Company Limited and Japan Engineering Consultants Company Limited, under a contract to Japan International Cooperation Agency (JICA), during the period from January 2002 to January 2003. In conducting the study, we examined the feasibility and rationale of road disaster measures with due consideration to the present status of Nicaragua's roads and formulated the most appropriate project incorporating the results of the examination.

We wish to take this opportunity to express our sincere gratitude to the concerned officials of JICA, the Ministry of Foreign Affairs, the Ministry of Land, Infrastructure and Transport, Hanshin Expressway Public Corporation, and Metropolitan Expressway Public Corporation. In addition, we wish to deep thank the Ministry of Transport and Infrastructure, the JICA Nicaragua office and the Embassy of Japan in the Republic of Nicaragua for their cooperation and assistance to the study team during its stay in Nicaragua.

Finally, we hope that this report will contribute to the further promotion of the project.

Very truly yours,


Keigo Konno, Team Leader

The Study on Vulnerability Reduction for Major Roads in the Republic of Nicaragua, Oriental Consultants Company Limited

LOCATION MAP

THE STUDY ON VULNERABILITY REDUCTION FOR MAJOR ROADS IN

THE REPUBLIC OF NICARAGUA

NIC. 1 El Espino~San Benito NIC. 3 Sebaco~Jinotega NIC.5 Matagalpa~La Dalia NIC.15 Yalagüina~Las Manos NIC.24 Chinandega~Guasaule NIC.26 Telica~San Isidro NIC.26 NIC.26

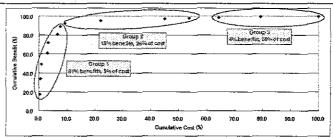
Project Summary

1. Country	Republic of Nicaragua
2. Name of Study	The Study on Vulnerability Reduction for Major Roads in The Republic of Nicaragua
3. Counterpart Agency	Ministry of Transport and Infrastructure (MTI)
4. Objective of Study	-To identify disaster critical spots of vulnerable spots on the major roads, and to conduct a Feasibility
· \	Study of disaster prevention spots due to the emergent countermeasures.
	-To prepare a disaster prevention plan and a manual for road vulnerability reduction.

1. Study Roads: There are 6 roads on NIC1, NIC3, NIC5, NIC15, NIC24 and NIC26 within major roads in Nicaragua.

2. Plan Policy of Road Disaster Prevention

- Whole Policy of the Project: Problems dissolution of vulnerability spots (Unstable cut/ embankment slopes, Bridge foundation scouring), Strengthening of maintenance system in MTI, Environmental safeguard of roadsides located in disaster critical spots, Enhancement of the PRSP and the BHN,
- Planning of vulnerability reduction: Inspection methods of Vulnerability spots, Evaluation methods of Inspection, Identification methods of disaster potential spots/ critical spots/ prevention spots,
- 3) Planning of disaster prevention countermeasures: Planning of local machines/ materials, Planning of countermeasure types,
- 4) Road maintenance plan: Strengthening of maintenance division in MTI, Efficiency road maintenance work (Establishment of rural offices, Management of efficiency relative data), Establishment/management of Database for the maintenance work.


3. Project Cost

Persege No.	SubPackage	SheNo	DNo.	Abad	Cost (USB)	Feckege No.	SubPedege	SHEND		Poed	Oner (USB) 413,370	Package No.	SubPadage	SileNo	DNh	Poed	One (USB)
	1	2	NDCIAZEO	No1	12,339	\	<u>2a</u>	1	N001A290	Not	413,370			5	Las Chanikas	Nc1	233,215
		3	Junquilla	No.	51,825		Cost				413,370			11	NDOIB170	Nc1	1,961,935
		4	San Nookas	Net	30,849	t		25	N009E370	Nc3	215,940	}	3a	13	N00!B120	Nc1	1,004,427
	la	6	SanRemon	Not	11,105		26		El Guavaran	Nc3	1,701,604	1		18	Rolneti	Nc1	1,021,702
		7	N001A240	No	32,082	i '		30	NIOE:170	No3	332,521	i		19	Ro Tapecali	Nc1	347,97
		8	N001B230	Not	7,404	2	Cost.				2,300,064		Cost		1 12	1,40,	4,509,240
l		12	ND018150	No:	33,316		2c	35	N005A010	Nc5	480,003	ļ	CLSL	29	N030230	NI-O	404,732
1	Cost				178,921	1	Cost				480,003	3		32	VUBC 50	Nc3	1.132757
	1b	24	N003B400	Nc3	49,358	-	2d	45	LaBardaita	Nc26	33,252	ł	3b			Nc3	924,221
		_27	N0033320	Nc3	294,912	i	Δu	55	Sofis	Nc26	81,440	1		33	N003C140	Nc3	
	Cost				344,230		Cost				119,692	ì	Cost				2461,711
i	i	51	ND26A160	Nc26	16,047	Padage20	pet	·	-		3313,129			44	ND254060	Nc26	389,925
	ic i	52	SanJuan	Nc26	6.170							l	3c	49	N0268140	Nc26	1,115,482
Į	- 1	_	deDos		1 1							Į.	[50	N026A150	Nc26	239,127
		54	Papaton)	Nc26	62,931							l	Cost				1,764,534
	Cost				85,142							Padage30					8795,526
Padkage 10	ost				608,333												
												Grand Total					12,716,988

30 disaster prevention spots are divided into 3 groups. Those groups provide the basis for prioritising investment, and creating work packages.

4. Benefit by Project Execution

The creation of prioritised packages of work that maximise benefits, whilst minimising costs. **Priority Group 1** account for 66% of total benefits and 12% of total costs. **Priority Group 2** make up 24% and 31% of the total benefits and costs, respectively. As for **Priority Group 3**, it accounts for 10% of the total benefits and 57% of the total cost.

5. Implementation Programme and Recommendation

1) Project Packaging

- Group 1 (construction period: 2 years): NIC1 (7 spots), NIC3 (2 spots), NIC26 (3 spots)
 - = Total 12 spots
- Group 2 (construction period: 2 years): NIC1(1 spot), NIC3 (3 spot), NIC5 (1 spot), NIC26 (2spots)
- Group 3 (construction period: 2 years): NIC1 (5 spots), NIC3 (3 spots), NIC26(3 spots)
- = Total 11 spots

2) Conclusion and Recommendation

(1) Conclusion

• Early execution of the disaster prevention spots: The disaster prevention works should be executed as early as possible in order to protect the safety of road users and the stability of traffic movement and economy.

②Recommendation

- Execution of screening, emergency/ routine/ periodic inspection survey: The screening and inspection surveys should be carried out for not only the objective roads but also other major roads and the rural roads.
- Strengthening of maintenance division in MTI: In order to carry out sustainable maintenance works, the division of road maintenance of the general division of roads in MTI should be strengthened.
- Establishment of regional offices: In order to get information of disaster quickly, regional offices should be established at main towns on major roads.
- Secure the special budget for road disasters: In order to safeguard road safety and economic development to the road users, MTI should itself secure a special budget for road disasters.

List of Abbreviations

(In alphabetical order)

AADT

: Annual Average Daily Traffic

AASHTO

: American Association of State Highway and Transportation Officials

AHP

: Analytic Hierarchy Process

ASTM

American Society for Testing and Materials

B/C

: Benefit to Cost ratio

BH

Boring Hole

BHN

: Basic Human Needs

BIT

Central American Development Bank

DID

Densely Inhabitant District

EIA

Environmental Impact Assessment

GDP

: Gross Domestic Product

GRN

: The Government of Republic of Nicaragua

ID

Identification

IDF

: Rainfall Intensity Duration Frequency

IEE

Initial Environmental Examination

INETER

: Institution of National Territorial Study

IRR

: Internal Rate of Return

ЛСА

Japan International Cooperation Agency

MARENA

: The Ministry of Natural Resources and Environment

MTI

: The Ministry of Transport and Infrastructure

OD

: Origin and Destination

PRSP

: Poverty Reduction Strategy paper

QV

: Volume capacity

ROW

: Right of Way

STRADA

System for Traffic Demand Analysis

VAT

Value Added Tax

VOC

: Vehicle Operation Cost

WB

World Bank

pcu

: Passenger Car Unit

The following foreign exchange rate is applied in the study:

1 US dollar = 14.40 Cordovas = 125.00 Japanese Yen (October 2002), or

1 Cordovas = 8.68 Japanese Yen

Summary of the Study

1. Background of the Study

Nicaragua is the frequent occurrence country of natural disaster and it influences recurs the undesirable progress of the recovery of infrastructures. Especially, about 1,500 km of the paved roads and about 6,000 km of unpaved roads were disrupted by the hurricane "Mitch" occurred in October 1998 and also as for the bridge, complete collapse on 22 bridges and partial destruction on 46 bridges suffered. In such situation, the Government of Republic of Nicaragua (hereinafter referred to as the "GRN") was established the National Transportation Plan (hereinafter referred to as the "NTP") including the improvement of the road network in February 2001. However the disaster prevention plan was not established in the NTP clearly, and the reliability of the traffic is in low condition such as the case of the bad weather.

The GRN requested assistance of the Japanese Government to implement the Study on Vulnerability Reduction for Major Roads in the Republic of Nicaragua (hereinafter referred to as the "Study"). In response to this request from the GRN, the Government of Japan has decided to carry out a study to identify disaster critical spots and execute a Feasibility Study for the Study.

Therefore, the ultimate goal of this Study is to assist the GRN in prioritising and recommending those road disaster prevention projects that are to identify disaster critical spots, to execute a Feasibility Study for urgent disaster prevention spots, to prepare the road disaster prevention plan and the manuals. The area of the Study shall cover the following Project Roads within major roads in the Republic of Nicaragua;

- 1) El Espino San Benito (NIC. 1)
- 2) Sebaco Jinotega (NIC. 3)
- 3) Matagalpa Da Lida (NIC. 5)
- 4) Yalaguina La Dalia (NIC. 15)
- 5) Chinandega Guasaule (NIC. 24)
- 6) Telica San Isidro (NIC. 26)

2. Study Approach

The major focus of the Study is to identify disaster critical spots, to identify disaster prevention spots for a Feasibility Study, and the to examine the technical, environmental and economic validity of this project in the Feasibility Study.

- 1) To collect and analyze the background and situation of the natural and environment conditions and the development plan, and to examine the relation to the road disasters.
- 2) To carry out the site investigations regarding the spots of disaster potential cut/ embankment slope damages and bridge foundation scouring, and to select disaster potential spots for disaster prevention, furthermore to identify high potential disaster critical spots.
- 3) To evaluate stability level, to forecast traffic demand, to assess environment, to examine technically for the Feasibility Study (target year: 2020).
- 4) To examine countermeasures for identified disaster prevention spots and to confirm the validity of environment, economic and countermeasures for disaster spots.
- 5) To prepare the disaster prevention manuals for maintenance work.

I. Identification of Study Spots

- 1) Review of the natural condition, related development plans, socio-economic data.
- 2) Examine of the assessment ways for road disaster spots.
- 3) Identify of the disaster potential spots and disaster critical spots by site survey.
- 4) Examine of countermeasures and estimate of rough construction costs.
- 5) Investigate of natural conditions and initial environmental examination.
- 6) Analysis of socio-economic framework.
- 7) Forecast of future traffic demand.
- 8) Identify of disaster prevention spots.

II. Feasibility Study

- 1) Arrange of the design standards.
- 2) Detailed examine of countermeasures.
- 3) Construction plan and construction cost estimate.
- 4) Assess of environmental impact.
- 5) Project evaluation.
- Implementation programme.
- 7) Management and operations system.
- 8) Conclusion and recommendation

3. Topography and Geology of Study Area

The topographical characteristic of Nicaragua is divided into three areas:

- Pacific plains area (including the volcanic mountain range area);
- Central mountains range area;
- Atlantic coast plains area.

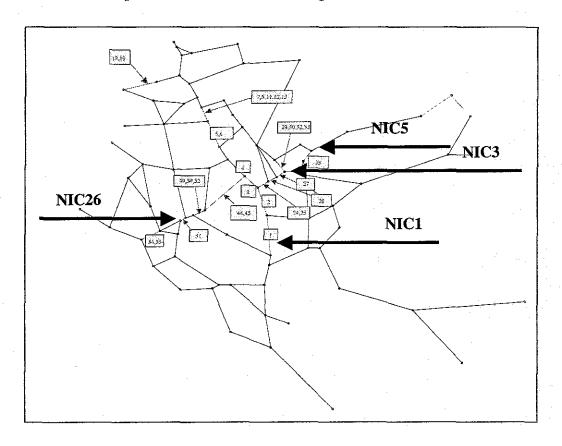
The land of the Pacific plains area is very fertile, being covered by weathered volcanic ash soil or alluvium. The Nicaraguan rift valley is laid between volcanic mountain range and central mountains range in this area and is mainly subsidence land. It contains two large lakes (Lake Managua and Lake Nicaragua). A volcanic mountain range is laid in middle of the Pacific plains area and running parallel with coast.

The main rocks of volcanic lava distributed in the Study area are basaltic, andesite-basalt, andesite, rhyolite and other lava, with such effusive rocks as tuffbreccia, dacitic agglomerate of the Palaeocene Period, and lavas of quarts-andesite, pyroclastic rock, and welded tuff belonging to the Eocene Period. They are widely distributed along NIC.1, NIC.3, and NIC.26. These lava flows display erosion in combination with tuffs. The Mesa Plateau is composed of lava on top, with tuffs underneath, which, when weathered make a sharp slope. NIC.1 displays this topography a good deal. Along NIC.24, the volcanic rocks of the Quaternary Era are recognizable by the white Pleistocene tuffs, agglomerate, tuffs with pumice, andesite-quartz/andesite, and ryyolite. Relatively new un-cemented volcanic ash covers them

4. Factors of Environmental Impact

The Study projects are not assessed as the objective project shown in the environmental impact assessment in Nicaragua. However, all of projects need the permission of the Ministry of Natural Resources and Environment (hereinafter referred to as the "MARENA") in spite of the scale of projects. Furthermore in order to apply the permission for projects, a private company and a public agency must procedure respectively under Nicaragua law. Ten items have been selected to evaluate negative impacts: resettlement, economic activity, traffic and public facilities, waste, groundwater, lakes and rivers, fauna and flora, landscape, water pollution, and noise and vibration.

5. Identification of Disaster Prevention Spots


The disaster critical spots identified in Chapter 6 of the Study require urgent, temporary or permanent countermeasures so that they can be transformed into disaster prevention spots. These spots are identified using various factors. It is difficult to designate a point a disaster

critical spot based on economics only, since there are some spots where there are low traffic volumes. Therefore, when evaluating roads and road sections for disaster criticality, a broader approach that incorporates level of stability, traffic volume, environmental impacts, development potential, natural conditions, benefits, required level of restoration, should be considered.

The evaluation score of a disaster critical spot differs depending on the scale of a disaster. Moreover, note that it is very difficult to identify disaster prevention spots in terms of cost only. Therefore, it is necessary to create an evaluation index to assess overall importance. Therefore, in this Study, the selection of disaster prevention spots is carried out using the Analytic Hierarchy Process (hereafter referred to as "AHP"). AHP is a multi-criteria decision-making technique that assigns numerical values (or weights) to various types of evaluation criteria. AHP was applied to select 30 disaster prevention spots for urgent spots and basis of disaster prevention in Nicaraguan country from the 55 disaster critical spots.

6. Proposed Project and Implementation Schedule

Locations of vulnerable spots are shown in the below figure.

Disaster prevention works are shown in the below figures.

NIC.1 Countermeasures for Slope Failure

No.	ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
1	N001A290	R.F	Removal + Prevention net + Drainage	T	m ²	23,286	335
2	N001A280	R.F	Horizontal drainage	P	m	100	10
7	N001A240	R.F	Removal + Prevention net	† T	m ²	950	26
8	N001B230	R.C	Removal + Prevention net	T :	m ²	228	6
11	N001B170	R.C	Recutting + Drainage	P	m ³	36,028	1,590
12	N001B150	R.C	Recutting + Shotcrete + Drainage	P	m ²	252	27
13	N001B120	R.C	Recutting + Drainage	P	m ³	10,655	814
Total							2,808

Note) R.F: Rock fall; R.C: Rock collapsing; P: Permanent countermeasure; T: Temporary countermeasure

NIC.1 Countermeasures for Bridge Foundation Scouring

No.	ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
3	Junquillal	Bridge	Gabion mat	T	m ³	435	42
4	San Nicolas	Bridge	Gabion mat	T	m ³	114	25
5	Las Chanillas	Bridge	Concrete block	T	m ³	288	189
6	San Ramon	Bridge	Gabion mat	T	m ³	86	9
18	Inali	Bridge	Gabion mat Revetment +Stone masonry	Т	m ³ m ²	1,138 1,758	828
19	Tapacali	Bridge	Gabion mat Revetment	Т	m ³ m ²	238 640	282
Total							1,375

Note) Bridge: Scouring of foundation; T: Temporary countermeasure

NIC.3 Countermeasures for Slope Failure

No.	ID, No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
24	N003B400	R.C	Recutting + Drainage	P	m^3	290	40
25	N003B370	R.C	Recutting + Drainage	P	m^3	1,676	175
27	N003B320	R.C	T-shaped retaining wall +Refilling+ Vegetation+ Drainage	Р	m ³	3,168	239
29	N003C230	S.S + R.C	Recutting + Cribwork + Vegetation+ Drainage Embankment + Vegetation + Drainage	P	m² m³	638 4,934	328
30	N003E170	D.F + R.C	Concrete dam + Box culvert Recutting + Drainage	P	m m³	20 2,670	310
32	N003C150	S.S + R.C	Recutting + Drainage Embankment + Vegetation + Drainage	P	m³	9,221 16,076	918
33	N003C140	S.S + R.C	Recutting +Horizontal drainage + Drainage Embankment +T-shaped retaining wall + Vegetation + Drainage	Р	m³	5,408 3,176	749
Total				•			2,759

Note) R.C: Rock collapsing; S.S: Slope Slide; D.F: Debris flow; P: Permanent countermeasure

NIC.3 Countermeasures for Bridge Foundation Scouring

No.	ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty	Cost (US\$1000)
26	El Guayacan	Bridge	New bridge construction	P	m ²	500	1,379

Note) Bridge: Scouring of foundation; P: Permanent countermeasure

NIC.5 Countermeasures for Slope Failure

No.	ID. No	Type of Disaster	Type of Countermeasur	re	Unit	Qty	Cost (US\$1000)
35	N005A010	R.F	Recutting + Drainage	; P	m ³	10,760	389

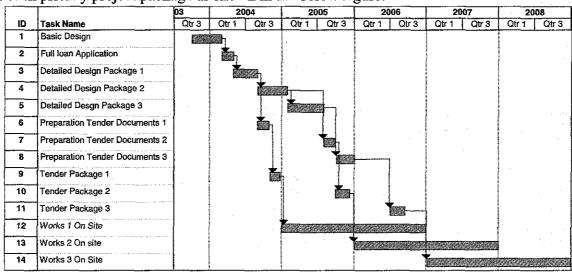
Note) R.F: Rock fall; P: Permanent countermeasure

NIC.26 Countermeasures for Slope Failure

No.	ID. No	Type of Disaster	Type of Countermeasure		Unit	Qty :	Cost (US\$1000)
44	N026A060	R.F	Recutting + Shotcrete + Drainage	P	\mathbf{m}^2	3,604	316
33	N026A140	R.C	Recutting + Horizontal drainage + Drainage	P	m ³	11,495	904
50	N026A150	R.F	Recutting +Drainage	P	m ³	2,113	210
49	N026B160	R.C	Removal + Prevention net +Drainage	T	m ²	1,568	13
Total							1,443

Note) R.F. Rock fall; R.C. Rock collapsing; P. Permanent countermeasure; T. Temporary countermeasure

NIC.26 Countermeasures for Bridge Foundation Scouring


No.	ID. No	Type of Disaster	Type of Countermeasu	re	Unit	Qty	Cost (US\$1000)
55	Solis	Bridge	Stone riprap with mortar Gabion mat	Т	m^3	72 546	66
54	Papalon	Bridge	Stone riprap with mortar Gabion mat	Т	m ³	50 408	51
52	San Juan de Dios	Bridge	Gabion mat	T	m^3	115	5
45	La Banderita	Bridge	Stone riprap wall Gabion mat	Т	m ² m ³	162 375	31
Total							153

Note) Bridge: Scouring of foundation; P: Permanent countermeasure

Total Construction Cost by Route (Direct Cost)

Objective Route		Cost (US\$1000)	
	Slope	Bridge	Total
NIC.1	2,808	1,375	4,183
NIC.3	2,759	1,379	4,138
NIC.5	389	0	389
NIC.26	1,443	153	1,596
Total	7,399	2,907	10,306

The implementation schedule was set up taking account of the construction period estimated for each priority project package as shown in the below figure.

FINAL REPORT

Preface

Volume 1 of 5: Summary

TABLE OF CONTENTS

Lette	er of Transmittal
Loca	tion Map
Proje	ect Summary
List	of Abbreviations/ Foreign Exchange Rate
Sum	mary of the Study
Chap	oter 1 Introduction
1.1	Background of the Study
1.2	Objectives of the Study1-
1.3	Area covered by the Study 1-
1.4	Work Schedule of the Study and Organization of the Study Team 1-
<pa)< td=""><td>RT A: IDENTIFICATION OF STUDY SPOTS></td></pa)<>	RT A: IDENTIFICATION OF STUDY SPOTS>
Cha	oter 2 Natural Condition of Study Area
2.1	Topography A-
2.2	Geology A-
2.3	Meteorology A-
2.4	Hydrology A-
-	oter 3 National Development Plan
	Present Situation of Development Plan
3.2	Future Perspective A-
Chai	oter 4 Assessment of Road Disaster Prevention Spots
4.1	Assessment Procedure of Road Disaster Prevention A-
4.2	Screening A-
4.3	Stability Survey A-10
4.4	Assessment of Disaster Potential Spots A-1
4.5	Identification for Disaster Critical Spots————————————————————————————————————
Faul	Additional for Dismotor Calmonic Spots
Chaj	oter 5 Identification of Disaster Potential Spots
5.1	General A-1
5.2	Disaster Potential Spots A-1e

Cha	-	Identification of Disaster Critical Spots	
6.1		Critical Spots	
6.2	Recomn	nendation of Slope Gradient to NIC.15	
Cha	pter 7	Countermeasures and Rough Cost Estimate	•
7.1			
7.2		/es	
7.3	Basic Po	olicy of Countermeasures	
7.4	Classific	cation of the Countermeasures	
7.5	Rough C	Cost Estimate	
Cha	•	Natural Condition Survey	
8.1	Purpose	of the Survey	
8.2	Hydrolo	gical Survey	.
8.3	Geologi	cal Survey	
Cha	pter 9	Environmental Survey	
9.1		v of Environmental Impact Assessment	
9.2	Conditio	on of Natural Environment and Social Environments	
9.3	Environ	mental Impact Factors	·
	~	Traffic Surveys	•
10.1	Survey I	Methodology	
		te Traffic Count Results	
10.4	Aggrega	ate Interview Result	
	-	Socio-Economic Framework	
	_	es and Method	
		ound Data and Forecasts	
		Operating Costs	
11.4	Traffic (Growth Factors	
	-	Future Traffic Demand	
12.1	General	Methodology	
		y Network	
12.3	Base Ye	ar Traffic Estimates	
12.4	Forecast	t Year Traffic	

Chapter 13 Evaluation of Traffic Forecasts
13.1 General Methodology
13.2 Simulation of Disaster Sites in Traffic Model
Chapter 14 Identification of Disaster Prevention Spots
14.1 General
14.2 Characteristics of Disaster Critical Spots
14.3 Selection Technique of Disaster Critical Spots
14.4 Identification of Disaster Prevention Spots
<part b:="" feasibility="" study=""></part>
Chapter 15 Introduction
15.1 General
15.2 Disaster Prevention Spots for the Feasibility Study
Chapter 16 Design Standard
16.1 Geometric Standard Applied
16.2 Design Standards
16.3 Standard Typical Cross-section and Right-of-Way
Chapter 17 Detailed Examination of Countermeasures
17.1 General
17.2 Review of the Status of Disaster Prevention Spots
17.3 Preliminary Engineering Design for Slope Stability
17.4 Preliminary Engineering Design for Bridge Foundation Scouring
17.5 Selection of Spot Specific Countermeasures
Charter 19 Construction Plan and Cost Estimate
Chapter 18 Construction Plan and Cost Estimate 18.1 General
18.2 Cost Estimate Assumption
18.3 Unit Rates
18.4 Spot Specific Construction Plans
18.5 Summary of Spot Specific Work Quantities and Costs
Chapter 19 Environmental Impact Assessment
19.1 Method of EIA

		on of Environmental Consideration	
19.3	The Item	as to Concern for The Next Step	
19.4	Evaluati	on at Present	
		Project Evaluation	
		ic Analysis	
20.3	Budget l	Priorities	
	•	Implementation Programme	
		ng Agency	
		Packaging	
21.3	Validity	Evaluation to Each Countermeasure	
		ction Period of Each Project Packaging	
21.5	Enginee	ring Services	
21.6	Impleme	entation Schedule	
21.7	Investme	ent Programme	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
21.8	Financin	ng Arrangements	
Cha	pter 22	Management System and Operation	
		Flow of Management and Operations System	
22.2	Organiza	ation of Maintenance Division	
		on and Maintenance Work Methods	
22.4	Methods	s of Repair/Rehabilitation	
22.5	Procure	ment	
22.6	Plan of l	Database System	
Cha	pter 23	Conclusion and Recommendation	•
23.1	Early ex	ecution of the disaster prevention spots	
23.2	Recomn	nendation	

CHAPTER 1 INTRODUCTION

1.1 Background of the Study

Nicaragua is the frequent occurrence country of natural disaster and it influences recurs the undesirable progress of the recovery of infrastructures. Especially, about 1,500 km of the paved roads and about 6,000 km of unpaved roads were disrupted by the hurricane "Mitch" occurred in October 1998 and also as for the bridge, complete collapse on 22 bridges and partial destruction on 46 bridges suffered.

In such situation, the Government of Republic of Nicaragua (hereinafter referred to as the "GRN") was established the National Transportation Plan (hereinafter referred to as the "NTP") including the improvement of the road network in February 2001. However the disaster prevention plan was not established in the NTP clearly, and the reliability of the traffic is in low condition such as the case of the bad weather.

The Nicaraguan Government requested assistance of the Japanese Government to implement the Study on Vulnerability Reduction for Major roads in the Republic of Nicaragua (hereinafter referred to as the "Study").

1.2 Objectives of the Study

The objectives of the Study are listed below;

- 1) To formulate a reduction plan of road vulnerability for the major roads in the Republic of Nicaragua,
- 2) To prepare detailed countermeasures for the high priority roads,
- 3) To prepare a manual for road vulnerability reduction, and
- 4) To execute technology transfer to the counterpart personnel in the course of the Study.

1.3 Area covered by the Study

The area of the Study shall cover the following Project Roads within major roads in the Republic of Nicaragua;

- 1) El Espino San Benito (NIC. 1)
- 2) Sebaco Jinotega (NIC. 3)
- 3) Matagalpa La Dalia (NIC. 5)
- 4) Yalaguina Las Manos (NIC. 15)
- 5) Chinandega Guasaule (NIC. 24)
- 6) Telica San Isidro (NIC. 26)

1.4 Work Schedule of the Study and Organization of the Study Team

The Study began in the beginning of February 2002 and has conducted for the draft final report at the beginning of December 2002. An overall work flow illustrating interrelationship of each activity in the Study is shown in Figure 1.4.1. The organization of the Study Team, the Advisory Committee of Japan International Cooperation Agency (hereinafter referred to as the "JICA") the Steering Committee of the GRN and the counterpart personnel assigned are summarized in Figure 1.4.2.

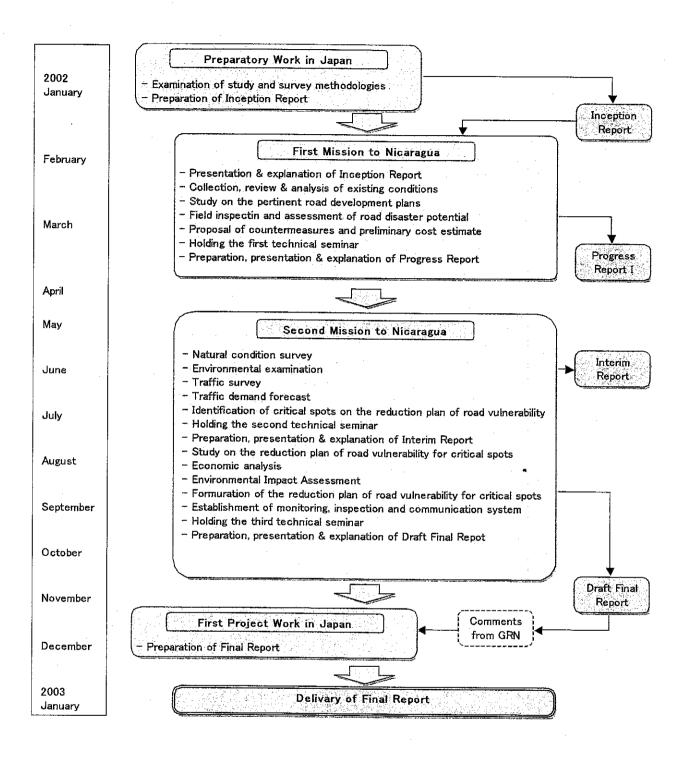
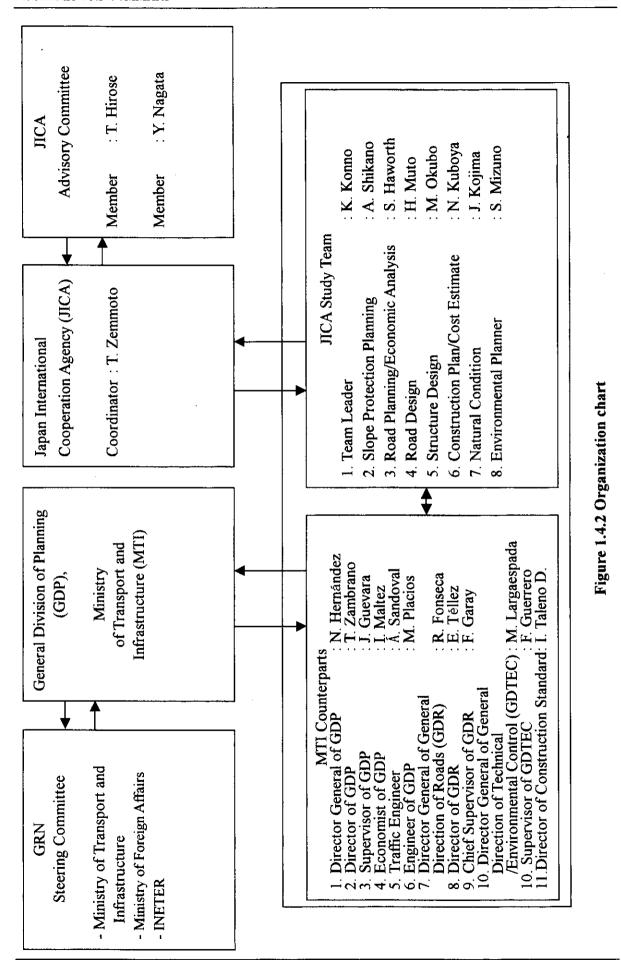



Figure 1.4.1 Work Flow

PART A IDENTIFICATION OF STUDY SPOTS

CHAPTER 2 NATURAL CONDITION OF STUDY AREA

2.1 Topography

The topographical characteristic of Nicaragua is divided into three areas:

- Pacific plains area (including the volcanic mountain range area);
- Central mountains range area;
- Atlantic coast plains area.

The land of the Pacific plains area is very fertile, being covered by weathered volcanic ash soil or alluvium. The Nicaraguan rift valley is laid between volcanic mountain range and central mountains range in this area and is mainly subsidence land. It contains two large lakes (Lake Managua and Lake Nicaragua). A volcanic mountain range is laid in middle of the Pacific plains area and running parallel with coast.

The central mountains range area consists of three Cordillera (Isabelia, Dariense and Chontalena) that radiate in all directions, with a large basin and mountain table less than 1, 500m high. This area decreases in altitude and falls to reach alluvial plains in the western lowlands.

The Atlantic coast plains area is typically 100m high, and around 150km wide. This area has many major rivers (Segovia, San Juan, Coco, Laguun de Perlas, Grande and Wawa). The south portion of this area is tropical and humid marshland.

The Study area of the roads NIC.1, NIC.3, NIC.5 and NIC.15 are located in the central mountains range area. NIC.24 and NIC.26 are located in the Pacific plains area.

2.2 Geology

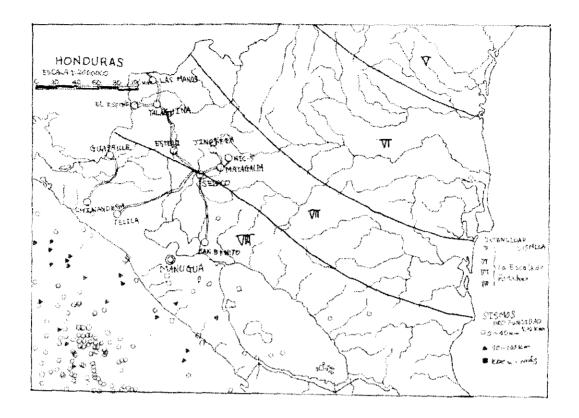
Most of the bed rock in Nicaragua is composed of Mesozoic sedimentary rock, divided into the Matagalpa Facies and Rivas Facies of Jurassic, Upper and Lower Cretaceous periods. These rocks are covered widely with volcanic rock of the Tertiary Era which subsequently gushed out. They tend to be distributed in south-east of Iyas glabious zone of metamorphic rock. The black schist of Rivas Facies is distributed in a narrow area around NIC.1, NIC.3, NIC.15 and NIC.26.

The main rocks of volcanic lava distributed in the Study area are basaltic, andesite-basalt, andesite, rhyolite and other lava, with such effusive rocks as tuffbreccia, dacitic

agglomerate of the Palaeocene Period, and lavas of quarts-andesite, pyroclastic rock, and welded tuff belonging to the Eocene Period. They are widely distributed along NIC.1, NIC.3, and NIC.26. These lava flows display erosion in combination with tuffs. The Mesa Plateau is composed of lava on top, with tuffs underneath, which, when weathered make a sharp slope. NIC1 displays this topography a good deal.

Along NIC.24, the volcanic rocks of the Quaternary Era are recognizable by the white Pleistocene tuffs, agglomerate, tuffs with pumice, andesite-quartz/andesite, and ryyolite. Relatively new un-cemented volcanic ash covers them

A hazard map is officially published based upon records of these volcanic activities. It is clear from this that NIC.24 and NIC.26 are most susceptible to volcanic activity due to the Western Nicaragua fracture. Records for all the seismic scale and seismic center distribution for 1992-1998 are also available and the distribution centres with 4.0 or more on the seismic scale is shown in Figure 2.2.1. The figure does not show the fracture but it can be used to forecast plate subsidence.


2.3 Meteorology

Nicaragua is in the tropics and semi-tropics. It has a rainy season and a dry season. The rainy season is from April to November, with the dry season period between December and March. The characteristic of precipitation and mean annual temperature around Study area are shown in Table 2.3.1.

Table 2.3.1 Annual Mean Temperature and Precipitation

Direction	Area (km²)	Annual mean Temperature (°C)	Annual mean Precipitation (mm)	Mean Altitude (m)
Chinandega	4,926	27	800 - 1,500	144
Esteli	2,335	20	800 - 1,500	645
Jinotenga	9,755	20	1,000 - 2,000	736
Leon	5,107	26	800 - 1,300	134
Matagalpa	8,523	18	700 - 1,700	490
Nueva Segovia	3,123	20	1,000 - 1,700	688
Madriz	1,602	20	800 - 1,500	700

Sources: INTER

Legend (Explanation for Seismic Intensity)

v	Most people perceive and many are awakened. Unstable things fall down.	Acceleration: 10 - 21
VI	All people perceive and many rush outdoor with surprise.	Acceleration: 21 - 44
VII	Most people rush outdoor and poorly made things are damaged.	Acceleration: 44 - 94
VIII	Strong buildings are damaged. Chimneys, monument, and walls fall down, and furniture falls sideways. Sand and mud gushes out and well water will change.	Acceleration: 94 - 202

Sources: INTER

Figure 2.2.1 Seismic Intensity

2.4 Hydrology

The hydrological watershed of Nicaragua is divided 2 directions, the Pacific watershed and Atlantic watershed. The Pacific watershed is subdivided into eight, and the Atlantic one is subdivided into 13. The characteristics of the watershed of Pacific side are generally cramped with rivers of less than 20km except for the Estero Real River. Their flows are not continuous and stream widths are narrow. Within the study area, NIC.1 NIC.3, NIC.5 and NIC.15 fall in the Atlantic watershed. NIC.24 and NIC.26 are mainly in the Pacific watershed.

CHAPTER 3 NATIONAL DEVELOPMENT PLAN

3.1 Present Situation of Development Plan

The Government operates on a five year planning cycle. In addition, MTI published a National Transport Plan in 2001. The conclusions of the study were reported to the Government by MTI in January 2002. The study for this included the following:

- Volume I ; Survey Profile,
- Volume II; Demand of Transport,
- Volume III; Inventory of Road Net,
- Volume IV; Road Net Department,
- Volume V; Water System,
- Volume VI; Air System,
- Volume VII; Road Diagnostic,
- Volume VIII; Model of Road Traffic,
- Volume IX; Infrastructure Plan,
- Volume X; Institutional Aspect, and
- Volume XI; Action Plan.

3.2 Future Perspective

3.2.1 Economic Forecasts, 2000 – 2020

The macro-economic projections are based on the hypothesis of economic growth up to 6 % per year to 2010 followed by growth of 5.0 % to 5.5 % in next decade. By controlling growth the government aims to keep inflation in the first decade to around 6.5%, falling in the second decade to an annual average of 3.7%. The annual average rate of total investment in the economy is forecast to increase to 33.2% of GDP during by 2010, decreasing thereafter to an annual average of 30.2% of GDP.

Almost 80% of the public sector debt is committed to multilateral organizations and the Paris Club. Debt exceeds GDP almost threefold in Nicaragua. In the future, loans and donations of around US\$400 million per year are expected during the 2000-2010 period. In the following second decade, external resources are expected to rise US\$590 million per year, comprising transfers and foreign investments and income from the privatization of ports, airports, roads, energy, drinking water and communications.

3.2.2 Production Forecasts

GDP is forecast to grow from US\$2,516.2 M in 2000 to US\$4,613.5 M by 2010. During the following ten years, growth will decline resulting in a GDP of US\$7,695.3 M by 2020, as shown in Table 3.2.1.

The main sectors contributing to GDP are agriculture, cattle, handicraft industry, construction, commerce, transport and communications. GDP per capita is forecast to rise from US\$491.7 in 2000 to US\$656.5 by 2010, and to US\$800.0 level by 2020.

Table 3.2.1 Production Forecasts 2000 – 2020 (Million US dollars)

CONCEPT	2000	2005	2010	2015	2020
GDP (constant)	2,516.2	3,447.4	4,613.5	6,029.5	7,695.3
Primary Sector	737.2	1,013.5	1,370.2	1,802.8	2,324.0
Agricultural & farm	681.9	951.5	1,301.0	1,718.4	2,231.6
Secundary Sector	676.8	937.7	1,259.4	1,658.1	2,108.5
Handcraft industry	503.2	706.7	955.0	1,254.1	1,608.3
Construction	130.8	179.3	244.5	331.6	423.2
Tertiary Sector	1,102.2	1,496.2	1,983.9	2,568.6	3,262.8
Commerce	451.7	620.5	830.4	1,085.3	1,369.8
General Goverment	161.0	206.8	267.6	331.6	423.2
Transport & Communication	122.0	168.9	226.1	295.4	377.1
GDP per capita	491.7	574.1	656.2	732.1	797.4

Source: Own estimation

3.2.3 Fiscal Forecasts

The government expects savings to rise to around 10% of the GDP during the forecast period. Debt alleviation in combination with public investment should reduce the fiscal deficit, from 2.2% of GDP in 2000, to 1.0% of GDP by 2020. These forecasts are amplified in Table 3.2.2.

3.2.4 Monetary Perspectives

The regeneration of the financial system to support economic growth is forecast to be characterized by private sector credit rising from 44% of GDP in 2000, to 54.2% in 2010, and 60% by 2020, shown in Table 3.2.3.

3.2.5 Economic Sustainability

The ESAF programmes for the last three years relied on IMF, World Bank and the international community for financial assistance. In the future, the country needs to execute the full programme of structural reforms agreed with the above mulit-lateral organizations in a Policy Framework Paper (PFP).

From 1994, Nicaragua was admitted to the club of countries with ESAF programs. In 1998 second ESAF was signed.

The Nicaraguan economy has maintained some sustainability and stability since 1994. It is to be hoped that a reduction in the fiscal deficit can be achieved.

Table 3.2.2 Fiscal Forecasts (Million US dolars)

CONCEPTS	2000	2005	2010	2015	2020
Current Saving of NFPS 1/	256,1	339,3	435,2	544,8	668,9
Respect to GDP %	10,0	10,0	10,0	10,0	10,0
General deficit of PS 1/	-56,1	-50,6	-64,8	-56,1	-68,9
Respect to GDP %	-2,2	-1,5	-1,0	-1,0	-1,0
General income of NFPS	953,9	1229,9	1533,9	1920,4	2358,0
Respect to GDP %	37,3	36,3	35,3	35,3	35,3
General Expense of NFPS	989,5	1280,5	1598,7	1976,5	2426,9
Respect to GDP %	38,6	37,7	36,7	36,3	36,3
Public Investment	221,2	296,5	380,3	451,1	553,9
Respect to GDP %	8,6	8,7	8,7	8,3	8,3
<u> </u>					

1/: NFPS= Non Financial Public Sector; PS= Public Sector, include Central Bank.

Source: Own Estimation.

Table 3.2.3 Monetary Forecasts (Million US dollars)

CONCEPTS	2000	2005	2010	2015	2020
Credit for Drivete Coston	1105 5	1706.6	2257.0	2106.6	4006.1
Credit for Private Sector	1125,5	1736,6	2357,0	3106,6	4036,1
Respect to GDP %	44,0	52,0	54,2	57,0	60,3
Ready Cash (M3A) 1/	1868,3	3081,4	4399,9	5836,7	7376,0
Respect to GDP %	73,0	90,8	101,1	107,1	110,3
Circulant	303,5	554,4	911,2	1391,6	2011,1
Respect to GDP%	11,9	16,3	20,9	25,5	30,1
Quasi Money	332,1	547,7	782,1	1037,4	1311,0
Respect to GDP %	13,0	16,1	18,0	19,0	19,6
Foreign Money deposits	1232,8	1979,3	2706,7	3407,7	4053,9
Respect to GDP %	48,1	58,3	62,2	62,6	60,6
<u> </u>				_ <u></u>	

^{1/:} Include deposits of Public Sector. Source: Own estimations.

CHAPTER 4 ASSESSMENT OF ROAD DISASTER PREVENTION SPOTS

4.1 Assessment Procedure of Road Disaster Prevention

Road disasters are mainly classified into the following five items;

- Rockfolls, collapsing,
- Rock collapsing,
- Slope Slide,
- Debris Flow, and
- Scouring of Bridge foundation.

In order to execute the most effective road disaster prevention and to maintain road safety, road disaster prevention should satisfy the following assessment procedures.

- Execution of the screening for suggesting vulnerable spots,
- Execution of stability survey,
- Assessment of disaster potential spots,
- Assessment of disaster critical spots,
- Studies of countermeasures to the disaster critical spots, and
- Validity evaluation of each countermeasure.

The screening, the stability survey, and the assessment of disaster potential spots and disaster critical spots are described in this Chapter. Other items are described in each chapter.

4.2 Screening

The objectives of screening are as follows:

- Objective inspection of all potentially vulnerable spots,
- Early detection of vulnerable spots, and
- Characteristic grasp of vulnerable spots.

In screening inspection spots should be made an objective assessment. The check list to select inspection spots covers:

- Locations where clear disaster potential is confirmed; and
- Spots where it is necessary to inspect against past disaster records.

Screening against each disaster item is executed as follows.

<Rockfalls, collapsing>

- Spots at a cutting or embankment with a natural slope of fifteen (15) meters height or more, or with a natural slope of more than forty-five (45) degrees;
- Spots where there are unfixed stones or boulder stones on slope surfaces,
- Spots where there are vulnerable mechanics of soil or rock mechanics, and
- Spots at old or deteriorated countermeasures or where countermeasures need to be inspected.

<Rock collapsing>

- Spots at cuts and natural slopes of seven meters or higher.

<Slope slide>

- Critical spots;
- Potential disaster sites; and
- Sites where disaster prevention measures are require

<Debris flow>

- Spots where streams cross roads, bridges, and culverts (except where the stream is taken by a sunk tunnel, or where there is a clearance under the bridge deck height of 10 metres or more, or a span width of 20 meters over the stream;
- Spots with a basin area of 0.01 km2 or more,
- Spots where the stream bed above the road has a gradient of 10 degree or more;
- Spots where the culvert gradient or stream bed beneath the road is 2 degrees or more.

<Scouring of bridge foundation>

- Where no scouring is evident at slow flowing rivers there is little risk;
- Simple span bridges without piers, with sturdy riverbank protection, and complete river improvements up and down stream are very low risk;
- Where there is no damage at scouring protection around bridge foundations, and/or there is adequate scouring protection around the bridge foundations, then prevention measures adequate;
- There is little risk where there is adequate embedment depth, (15 meters or more) or it is eight times more than the pier width of the transverse direction, for pile and caisson foundation against either the deepest riverbed or design riverbed (the depth from riverbed to bearing stratum), and
- Bridges is less than 15 meters span have a high potential disaster risk

4.3 Stability Survey

Following screening, inspection spots should be subjected to a stability survey by using the stability survey sheets. Furthermore the calibration should be carried out after taking notes of the result to the stability survey sheets to reflect a balanced view of the team. The calibration method is shown in below example.

Order	1	2	3	4	5	6	7
Inspection spot	Α	F	G	В	D	C	E
(score)	(80)	(80)	(60)	(55)	(50)	(40)	(30)
Calibration result	ditto	ditto	ditto	В	ditto	С	E
(re-score)				(70)		(60)	(40)
<u> </u>							
			\prod	-			

After both engineers checked and discussed the survey results, the order of the stability survey results was changed as below.

Order	1	2	3	4	5	6	7
Inspection spot	Α	F	В	G	C	D	Е
(score)	(80)	(80)	(70)	(60)	(60)	(50)	(40)

4.4 Assessment of Disaster Potential Spots

The stability survey sheets should be prepared in order to assess stability of each disaster potential spot. Disaster potential spots should be assessed by considering the following items:

- Topographical factors, soil/ rock mechanics, slope surface condition, its shape and transformation,
- Existing countermeasures,
- Disaster history.

The objective roads for this Study have different traffic volumes with large increases to 2020. Therefore, in this section, traffic volume is not considered as the assessment factor.

The score of each spots is different against disaster type. Therefore, selection of disaster potential spots should be assessed in order of highest score first. Where scores are higher than the threshold indicated below for each disaster type below, then the site is deemed a

JICA STUDY TEAM

potential disaster spot.

Furthermore, disaster potential spots are defined as the following items:

- To exist boulder on slope surface,
- To exist many cracks on rock surfaces,
- To exist small rocks falling, and
- To exist disaster records regarding rock-fall, rock collapsing, slope slide, scouring of bridge foundation, and so on.

Important: Total scores for each disaster type vary, and should be factored to a common total of 100. All scores should therefore be factored by the appropriate ratio.

For Bridges: 70 score over

The score should be assessed from the following (on the stability survey sheet): riverbed incline (15), bridge location (20), minimum span length (15), ratio of river flow blockage by piers (15), and clearance under the deck (10). The maximum score is 75 points. Therefore, the threshold for potential disaster spots for bridges is 70 score over. However, bridges with a score less than 70 should also be designated potential disaster spots where the bridge is located on a bend in the river, or where abutments protrude into the river, or where foundation piles are bent.

For Cut/ embankment slope: 60 score over

Rockfalls and collapsing. The most important factors are soil or rock structure (8 or 12), vulnerable mechanics (14), unfixed stones or boulder stones of slope surfaces (12), slope incline or height (18), and slope transformation (12). The maximum score of each factor is 64 or 68 points. The threshold for potential disaster spots for rockfalls and collapsing is 60 score over.

Rock collapsing. The most important factors are crack scale of rocks (30), continuous horizontal cracks (10), condition of soft or hard rocks (11 or 15), direction of bedrock (15). The maximum score 76 or 80 points. However, as total score is 126 points, an equivalent to 100 scores is calculated by 0.79. Each maximum score will be converted 60 points or 63 points. The threshold for potential disaster spots for rock collapsing is 60 score over.

For Debris Flow: 60 score over

Scoring factors are area of basin (10), steepest mountain torrents incline (10), area of slope incline of 30 degrees or more (8), and area of meadow, or trees (8). The maximum score

in this way is 36 points. However, as total score is 56 points, an equivalent to 100 scores is calculated by 1.78. The maximum score will be converted 64 points. The threshold score is 60 score over.

4.5 Identification for Disaster Critical Spots

Disaster critical spots should be identified by considering the following items:

- Disaster scale/ records at area of spots,
- Spots where emergency treatment is required,
- Critical spots for third parties
- Topographic data by preliminary topographic survey, and
- Sketch of site conditions

1) Definition of Rockfalls/ Collapsing

<u></u>	,	Factor	Talud de cort	е	Potencial	Critico
ite	em	Pactor	Clasificación	Notas	Nota de Evaluación	Nota de Evaluación
а	Topografí	G1:Talud deterítico en cono G2:Huellas de desprendimiento	Uno corresponde G1	3		
Topografía	a que	:Linea de mella (nick line) es clara	No corresponde G1	0		
	tiene	G3:Falda de terraza erosionada.	Varios corresponden G2	3 3		}
	factor del	voladizo, talud que concentra agua,	Corresponde G2,3	2		
- i	colapso	huella de flujo de sedimentos	No corresponde G2.3	0]	!
		G4:En la cresta hay cumbre, voladizo	Corresponde a G4	T	(6)	(6)
	Suelo que	Suelo que fácilmente se erosiona	Notable	8		
	se	(Suelo que pierde resistencia por	Algo notable	4	8	8
	degrada	absorver agua, otros)	No corresponde	0	(8)	(8)
	Calidad	Alta densidad de grietas o capa frágil	Notable	12		
Suelo.	de roca	Rocas blandas facilmente erosionado	Algo notable	6	12_	12_
Geologia,	erodable	Calidad de erosionarse rapidamente	No corresponde	0	(12)	(12)
structura		Capa de dirección desigable (es)ratificació	Gorresponde	4 8		7
	Estructor	ρ = linea débil)	No corresponde	0		
	- a de	Suelos sobre rocas impermeables	Notable	6		
	colapso	(Roca dura en la parte superior/la/	Algo notable	4	<u></u>	14
	er ingala	parte interior blanda	No corresponde	0	(14)	(14)
	O V	4-1	Inestable	12		
		del suelo superficial, roca desprendida	Algo inestable	6]	
	y canto ro	0800	estable	0	12	12
Condición	Roca desprer	ndida y canto rodado son inestable-algo inestable	Corresponde	1	(12)	(12)
de la			Hay manantial	8		
superficie	Situación	de agua manantial	Se rezuma un poco	4	l	
del suelo			No hay	0	(8)	(8)
			Tierra desnuda-vegetació	n <u>5</u>		
	Estado del	cubrimiento del suelo	Compuesto (vegetación, estructura	3		
			Estructuras	1	(5)	(5)
			H>30m	18		
	ľ		Suelo H≦30, i>norma	15		İ
			i≦norma,15	10		
Forma	Inclinación	(i) Altura	i≤norma,15≦HK3			
FORMA	mannacion	NI). Altura	H≧50m	18		
			Roca 30≦H<50m	16		ĺ
			15≦H<30m	12		
·i			HK15m	10		(18)
		de talud y pendiente (fisilidad, calda de rocas	authors alonesses the denote by a	- 12		
rôi		ircavas, socavación, agujero de escorrentia. ninchamiento, árbol caida, grieta, grieta abierta.	Corresponde. No tan cl			
) ac		de obres heches)	No hay	0		(12)
Deformación		ón de talud y pendiente cercanas (caí	Varios correspondentalgo cía			
õ	da de roca	ıs, derrumbe, grieta, hinchamiento,	Corresponde. No tan c			i ——
	otros)		No hay	0	(5)	(5)
		Total	talud:		62	
		Total	Total de nota	s	(A1) (

Yellow color items indicate the high factor in disaster potential spots. Therefore, the total score of each item should be 60 scores over at least.

Red color items indicate the much higher in disaster critical spots. Therfore, the total score of each item should be 70 scores over at least.

2) Rock Collapsing

[Factor A] Item	Factor	Clasificación	Nota	Potencial	Critico
	~ 4	Grande	30		
		Pequeño	15	30	30
	abierta	No existe	0	(30)	(30)
enómeno,	D: ::- d:	Hacia la dirección degradable	10		
sintoma		Hacía la dirección estable	5	_10	10
	continua nonzontai	No existe		(10)	(10)
	Derrumbe pequeño,	Existe	7		
	caída de rocas	No existe	0	(7)	(7)
		Existencia regular, distancia de cada una más de 1 m.	15		
		Existencia regular, distancia de cada una menos de 1 m.	11]	
	Roca dura	Irregular	7	15	15
Estado de		No existe	0	(15)	(15)
grietas		Existencia regular, distancia de cada una más de 1 m.	11		
-	n 11 - 1-	Existencia regular, distancia de cada una menos de 1 m.	7		
	Roca blanda	Irregular	4		
	_	No existe	0	30 0 (30) (0) 5 10 (10) 7 (10) 7 15 0 (15) 11 7 15 0 (15) 11 7 4 0 (11) 7 5 2 (7) 15 15 10 (15) 4 2 0 (4) 10 10 7 (10) 3 1 0 (4) 7 (4) 7 (4) 7 (4) 9 (7)	(11)
<u> </u>	Parte superior es dura/	parte inferior es blanda			
		5			
	Todo blanda		2		
roca	Todo dura		0	(7)	(7)
	Buzamiento quebradizo	15			
Buzamiento	Buzamiento estable			15	15
				(15)	(15)
		Voladizo	4		
	1	Más de 60°	2		
	pendiente	Menos de 60°	0	(4)	(4)
		Más de 100m.	10		
		50-100m.		l	
	Altura de precipicio	30-50m.	4	_10	_10
Fenómeno, sintoma Fenómeno, sintoma Dirección de grieta continua horizontal Derrumbe pequeño, caída de rocas Roca dura Estado de grietas Roca blanda Composición de masa de roca Parte superior es dura/parte superior es blanda Todo blanda Todo dura Buzamiento Buzamiento guebradízo Buzamiento estable No existe Inclinación de talud y pendiente Altura de precipicio		Menos de 30m.		(10)	(10)
	Rendiente de forma de cresta	4:24			
	Large of the State of the	Pendiente de talud deterítico	3		
	e orma de peridiente	Pendiente de forma de valle			_4_
		Pendiente de forma intermedia de cresta y valle		(4)	(4)
	Line de molle	Claro			
		irregular	4		
	(Nick line)	No claro		(7)	(7)
		Existe manantial	(A		
	Manantial	Después de Iluvia se sale agua.	2		_ 4
Agua freática,				(4)	(4)
	Citie Deade Friete	Dentro de grietas verticales	2		
		Límita de estratos horizontales			
	ivianantiai	Casi no se observa	0	(<u>2</u>)	(2)
		T-1-1	(A)		88
		Total	i	(126)	(126)

Yellow color items indicate the high factor in disaster potential spots. Therefore, the total score of each item should be 60 scores over at least.

Red color items indicate the much higher in disaster critical spots. Therfore, the total score of each item should be 70 scores over at least.

3) Slope Slide

	ltem	Punto de observación		Nota	Potencial	Crituco
Terreno	formado por	Pendiente formada por deslizamiento de tierra, Terreno tipo meseta,	Claro	30		
deslizam		Terreno de inclinación suave,	Algo claro	15	30	30
tierra		Desorden de curva de nivel, Terreno fluido hacia el río, etc.	No claro	7	(30)	(30)
	m.	Falla, Zona de trituración	12	. 18		
	9 <u>0</u>	Zona de alteración volcánica, Suelo so	olfatárico	18		
	700	Dirección deslizable de capa		14		
	0	dirección estable de capa		7		
etc.	Estructura geologica	Forma de bloques (Estructura de r intrusiva, de roca de cubierta)	оса	3		18
, etc	Ш	Otros	0	(18)	(18)	
Geología, etc.	ica y oca	Estrato mesozóico y paleozóico (e cristalino, roca sedimentaria)	squisto	7		
Ō	geológ tad de r madre	Estrato terciario (roca sedimentari	a)	7		
	Edad geológica y Calidad de roca madre	Estrato cuaternario (Sedimentos n solidificados o roca sedimentaria)	0	3		
	ш	Otros (Roca volcánica, Roca ígnea	a)	0	(7)	(7)
	Monantial	Hay (incluye huella)		10	10	10
	Manantial	No hay	0	(10)	(10)	
	Total				40	58
)			(65)	(65)

Yellow color items indicate the high factor in disaster potential spots. Therefore, the total score of eac should be 60 scores over at least.

Red color items indicate the much higher in disaster critical spots. Therfore, the total score of each ite should be 70 scores over at least.

4) Debris Flow

[Factor] (A)

ltem	Factor	Clasificación		Nota	Potencial	Critico
	Superficie de la cuenca dañada por	Más de 0.50km2		10		
	alud de fango. Superficie que tiene m	Más de 0.15km2 menos de 0.	50km2	8	10	10
Característica	ás de 15º de inclinación de lecho	Menos de 0,15km2		4	(1 <u>0)</u>	(10)_
de arroyo		Más de 40°		10		
	Inclinación máxima del lecho	Más de 30º menos de 40º		5	10	10
		Menos de 30º		0	(10)	(10)
	Superficie del pendiente que	Más de 0.20km2		8		
	tiene más de 30º de inclinación	Más de 0.08km2 menos de 0.2	0km2	6	8	8
	tierie mas de 30 de inclinación	Menos de 0.08km2		2	(8)	(8)
	Superficie ocupada por hierbas y	Más de 0.20km2		8]	
	arbustos (menos de 10m. de	Más de 0,02km2 menos de 0.2	0km2	4	8	8
Característica		Menos de 0.02km2		. 0	(8)	(8)
de pendiente	Existencia de obra de suelo con	Existe		5		
	suelos inestables	No		0	(5)	(5)
	Existencia de grietas y pendiente	Existe		5		
	formada por desplazamiento nuevas	No		0	(5)	(5)
	Historia de derrumbé de dimensio	Existe		10		10
	n relativamente grande	No		0	(10)	(10)
			Total	(A)	36	46
					(56)	(56)

Yellow color items indicate the high factor in disaster potential spots. Therefore, the total score of each item should be 60 scores over at least.

Red color items indicate the much higher in disaster critical spots. Therfore, the total score of each item should be 70 scores over at least.

5) Scouring of Bridge Foundation

(Items comúnes de estribo y pila de puente)

Item	Factor			Clasificación	Nota	Potencial	Critico
				Más de 1/100	15		
	Inclinación de lecho (es rápido	os)		Menos de 1/100 más de 1/250	10	15	15
				Menos de 1/250	0		L
	Sítio de construcción (Estribo y pila			Corresponde	20		
	en sitio de mayor impacto de aguas	o en sitio	'			20	20
	socavado)			No corresponde			
Caracterí				año <u>≧5</u> 0 años	10		
sticas de	Edad de puente			30≦ año<50 años	5		
lecho v				año≦30 años	0		
estructura de	1			Menos de 10m.	15		
puente	Distancia minima entre pilas			Más de 10m. menos de 20m.	10	15	15
puente				Más de 20m.	0		
				Más de 7%	15		
 	Razón de bloqueo por pila		!	Más de 5% menos de 7%	5	15	15
				Menos de 5%	0		
				Menos de 30cm.	10		
	Espacio libre debajo de viga	-		Más de 30cm. menos de 60cm.	- 5	10	10
				Más de 60cm.	0		
41738 A. J. H. G. G.	Frecuencia (Promedio)	Nota (α)	Subtotal		(A)	(100-0)	(A) (100-0)
6 \$45,000,000	Los desastres ocumen más	A-64	(15)				
5.512.65.65	de 1-vez ponicada 10 anos	- 15					
Rectificación	alrededon del puente						
por la	Los desastres ocurren más						
frecuencia de	de 1 vez por cada 5 años	10		Total		75	90
ocurrencia de	en el río	Ì	15		1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Los desastres ocurren más		1				
- Angle Color of the	de 1 vez por cada 10 años	5			}		
	en el río		İ				
2 3 7 7 7	Otros	0	1				

Yellow color items indicate the high factor in disaster potential spots. Therefore, the total score of each item should be 70 scores over at least.

Red color items indicate the much higher in disaster critical spots. Therfore, the total score of each item should be 90 scores over at least.

CHAPTER 5 IDENTIFICATION OF DISASTER POTENTIAL SPOTS

5.1 General

Based on the screening, the stability surveys were investigated at 167 vulnerable spots. As a result of the surveys, the whole disaster potential spots were identified at 90 spots. The identified spots of the objective roads are shown in from Table 5.2.1 to Table 5.2.10.

5.2 Disaster potential Spots

5.2.1 NIC. 1

1) Vulnerable Slope

Table 5.2.1 Identified Disaster potential/ Critical Spots of Slopes on NIC. 1

							-		
No	Distance from	Serial No.	Type of	Length	Height	Angle	Score	Disaster	Disaster
	Managua(disaster	(m)	(m)	(degree)		Potential	Critical
-	km)							Spot	Spot
1	50.0	30	R.F.	230	64	43°	61	*	
2	52.4		R.F.				59		
3	54.0		R.C.				54		
4	55.7		R.F.				57		
5	57.4		R.C.			1	57		
6	59.3		R.C.				59		
7	60.5		R.C.				45		
8	60.9	29	R.F.	890	24	56°	70	*	*
9	71.6		R.C.		i		42		
10	73.2	28	R.F.	350	8	40°	78	*	*
11	84.0		R.C.	:			50		
12	129.1		R.C.				42		
13	142.7	27	R.C.	370	50 ₁	63°	68	*	
14	157.0	26	R.C.	110	12	63°	68	*	
15	167.2	25	R.C.	280	8	66°	55	_	
16	168.4	24	R.F.	600	30	66°	84	*	*
17	168.6	23	R.C.	280	30	70°	72	*	*
18	169.0	22	R.F.	120	50	70°	69	*	
19	169.8	20	R.C.	200	28	60°	72	*	*
20	170.7	19	R.C.	440	64	60°	72	*	*
21	171.3	17	R.C.	460	30	63°	78	*	*
22	173.9	16	R.F.	500	30	43°	67	*	
23	175.0	15	R.C.	130	15	60°	76	*	*
24	176.2	12	R.C.	360	40	60°	74	*	*
25	178.7	11	R.F.	240	28	60°	76	*	*
26	183.5		R.F.		•		39		
27	184.3		R.C.		1		47		
28	187.3	10	R.C.	220 _i	10	60°	73	*	*
29	195.8	8	R.C.	120	8	60°	68	*	
30	204.7	7	R.C.	120	16	63°	73	*	*
31	206.4		R.C.				56		
32	214.7	5	R.F.	110	12	43°	70	*	*
33	231.9	4	R.C.	400	50	60°	66	*	
34	232.5	3	R.C.	200	50	60°	75	*	*
35	233.7	2	R.F.	230	28	50°	73	*	*
36	235.6	1	R.F.	145	9	80°	73	*	*
		1.	To				, , ,	23	16

Potential Critical

R.F. :Rock Fall : 10 : 7 R.C. :Rock Collapsing : 13 : 9 S.S. :Slop slide : 0 : 0

D.F. :Debris Flow

A -16

: 0

: 0

2) Vulnerable Bridge

Table 5.2.2 Identified Disaster Potential/ Critical Spots of Bridges on NIC. 1

No.	Station	Bridge	Length	Span Length	Year	Scor	6	Disaster Spots	
NO.	(km)	Name	(m)	(m)	1	Abutmrent	Pier	Potential	Critica
1	35+190	Los Novios	6.70	5.60	1938	50			
2	39+868	La Estatua	8.70	7.50	1938	50,			
3	40+960	Qda. Honda	7.00	5.00	1938	45			
4	42+433	El Matadero	14.30	13.50	1938	35			
5	84+430	El Venado	72.50	19+29+19	1973	30	25	-	_
6	87+437	Qda. La Chingastosa	21.00	19.50	1973	30			
7	107+992	Zajón Negro	21.70	20.70	1957	20			
8	108+980	Río Viejo	99.00	26.8+(3)22.6	1953	55	55		
9	113+190	Zanjon Blanco	29.30	9+9+9	1956	75	90	*	-
10	125+220	La Trinidad	63.80	18.7+23.4+18.7	1957	70	60		/
11	135+640	San Nicolas	18.60	17.60	1957	100		•	•
12	135+860	El Hatillo	15.50	14.50	1957	70			
13	150+330	Las Chanillas (R.Esteli)	62.00	17.8+24+17.8	1958	70	90	•	
14	150+925	El Rastro	19.00	18.00	1957	30			
15	151+850	San Ramón	15.50	13.80	1957	100		*	
16	158+650	La Sirena	54.00	14.4+21.8+14.4	1956	60	65		
17	159+470	Río El Tular	56.00	14.5+20.8+14.5*	1956	80	85	•	
18	184+670	Condega (Río Pire)	63.60	18.6+23.4+18.6	1954	70	60		
19	191+680	Ducuali(Rio Pueblo Nuevo)*	82.00	19.3+39.3+19.3	2000	45	50	*	
20	192+033	Qda. Ducualí	7.45	6.50	1954	60			
21	226+890	Río inalí	64.0	19+24+19	1954	90	100	*	*
22	233+245	RíoTapascalí	109.0	17.8+21.3+26.7+21.3+17.8	1954	75	90	*	•
		· · · · · · · · · · · · · · · · · · ·	Total					11	

^{*}The Ducuali Bridge length is less than the river width.

5.2.2 NIC. 3

1) Vulnerable Slope

Table 5.2.3 Identified Disaster potential/ Critical Spots of Slopes on NIC. 3

	Distance								
No	from	Serial No.	Type of	Length	Height	Angle	Score	Disaster	Disaster
	Managua(disaster	(m)	(m)	(degree)		Potential	Critical
	km)							Spot	Spot
1	3.9		R.C.	130		55°	74	*	*
2	5.4	41	R.C.	60			57		
3	6.9	40	R.C	170		46°	72	*	*
4	7.4	37	R.C.	90		48°	80	*	*
5	7.8	36	R.F.	93	23	46°	61	*	
6	8.3	35	R.C.	60			74	*	
7	9.3	34	R.C.		20+20		42		
8	9.6	33	R.C.	30	7+20		42		
9	22.1	32	R.C.	150	14	76°	74	*	*
10	23.5	31	R.C.	170	13	55°	69	*	
11	24.8	30	R.C.	55		53°	64	*	
12	26	29	R.C.	220	20	51°	69	*	
13	26.8	28	R.F.	50	12+20		54		
14	27.3	27	R.F.		7+20		54		
15	28.8	26	R.C.	60	10		59		
16	30.8	25	R.F.	140	23	40°	62	*	
17	32.7	24	R.C.	110	14	57°	70	*	*
18	32.9	23	S.S.	180	26	40°	73	*	*
19	33.8	22	R.F.	80	15	37°	64	*	
20	34	21	R.F.	50	15		53		
21	34.4	20	R.F.	68	12	43°	69	*	
22	34.8	19	R.F.	55		48°	67	*	
23	35	18	R.F.	125	21	49°	61	*	
24	35.2	17	D.F.	150	30	43°	83	*	*
25	35.9	16	S.S.	140	26	52°	71	*	*
26	38.9	15	S.S.	192	30	34°	90	*	*
27	39.4	14	S.S.	45	9	62°	90	*	*
28	39.8	13	R.F.	90	30		58		
29	40	12	R.C.	180	28	67°	81	*	*
30	40.7	11	R.F.	70	25		50		
31	45.9	10	R.F.	50	20		56		
32	49.5	9	R.F.	20	15		46		
33	51.2	8	R.F.	60	12	56°	57		
34	51.6	7	R.F.	20	15		56		
35	51.9	6	R.F.	40	15		59		
36	54.9	5	R.F.	90	16	50°	63	*	
37	55.3	4	R.F.	86	20	64°	63	*	
38	55.6	3	R.F.	60	15		56		
39	57.1	2	R.F.	150	10		49		
40	57.5	[]	R.C.	90	15		52		
	, 07.0	• • • • • • • • • • • • • • • • • • • •	To		10		- 52	23	11

Potential Critical

R.F. :Rock Fall : 8 : 0
R.C. :Rock Collapsing : 10 : 6
S.S. :Slop slide : 4 : 4
D.F. :Debris Flow : 1 : 1

2) Vulnerable Bridge

Table 5.2.4 Identified Disaster Potential/ Critical Spots of Bridges on NIC. 3

No.	Station	Bridge	Length	Span Length	Year	Scor	Score		r Spots
140.	(km)	Name	(m)	(m)		Abutmrent	Pier	Potential	Critical
1	119+050	El Guayacan	17.5	3.3	1945	100	100	-	*
2	122+053	Los Cocos	7.0	3.3	1945	70		•	
			Total					2	1

5.2.3 NIC. 5

Table 5.2.5 Identified Disaster potential/ Critical Spots of Slopes on NIC. 5

No	Distance from Matagalpa (km)	Serial No.	Type of disaster	Length (m)	Height (m)	Angle (degree)		Disaster Potential Spot	Disaster Critical Spot
1	24.6	1	R.F.	200	87	50°	76	*	*
			To	otal				1	1
				Potential	Critical	· - · ·			

Potential Critical

R.F. :Rock Fall : 1 : 1 :Rock Collapsing : 0 : 0 R.C. : 0 : 0 S.S. :Slop slide D.F. :Debris Flow : 0 : 0

5.2.4 NIC. 15

Table 5.2.6 Identified Disaster potential/ Critical Spots of Slopes on NIC. 15

No	Distance from Managua(km)	Serial No.	Type of disaster	Length (m)	Height (m)	Angle (degree)	Score	Disaster Potential Spot	Disaster Critical Spot
1	9.9	1 1	D.F.	45	7		70	*	*
2	11.1	2	D.F.	65	8		70	*	*
3	11.2	3	R.F.	135	50	44°	67	*	
4	11.5	4	R.F.	80	24	45°	65	*	
5	11.7	5	D.F.	70	3		70	*	*
6	13.6	6	D.F.	100	1		70	*	*
7	21.1	: 					50		
8	26.2						58		
9	26.6						50		
10	27.6						49		
11	28.0			_			46		
12	28.8						43		
13	29.5						56		
14	31.3	1			1		56		
15	32.7	[[43		
16	34.9						51		
17	41.7						54		
18	42.1	·					48		
			To	tal				6	

Potential Critical

R.F. :Rock Fall : 2 : 0 R.C. :Rock Collapsing : 0 : 0 : 0 :Slop slide : 0 S.S. :Debris Flow : 4 : 4 D.F.

5.2.5 NIC, 24

1) Vulnerable Slope

Table 5.2.7 Identified Disaster potential/ Critical Spots of Slopes on NIC. 24

No	Distance from Managua(km)	Serial No.	Type of disaster	Length (m)	Height (m)	Angle (degree)	Score	Disaster Potential Spot	Disaster Critical Spot
1	17.5	1	R.F.	190	21	44°	55		
2	28.5	2	R.C.	140	16	55°	63	*	
			То	tal				1	

Potential Critical

:Rock Fall R.F. : 1 : 0 : 1 R.C. :Rock Collapsing : 0 S.S. :Slop slide : 0 : 0 :Debris Flow D.F. : 0 : 0

2) Vulnerable Bridge

Table 5.2.8 Identified Disaster potential/ Critical Spots of Bridges on NIC. 24

No.	Station	Bridge	Length	Span Length	V	Score	8	Disaste	r Spots
NO.	(km)	Name	(m)	(m)	Year	Abutmrent	Pier	Potential	Critical
7	132+055	El Hogar (La Mora)	5.6	4.5		20			
S	143+000	San Ramon1	20.5	20.0	2001	70	55	*	
3	183+988	Chocolatero	8.6	7.7		50			
4	189+111	La Culebra	14.4	13.0		70		•	
5	197+929	Rio Negro	64.8	29+2(30)+29	2001	50	40	1	
6	198+675	San Antonio	10.3	9.0	1968	35			
7	201+520	Tecomapa	16.3	15.0	1968	40			
	•		Total					2'	

5.2.6 NIC. 26

1) Vulnerable Slope

Table 5.2.9 Identified Disaster potential/ Critical Spots of Slopes on NIC. 26

	Distance						_		· ·
No	from	Serial No.	Type of	Length	Height	Angle	Score	Disaster	Disaste
	Managua(disaster	(m)	(m)	(degree)		Potential	Critica
	km)	!				_		Spot	Spot
1	9.0	1	R.F.	105	18	43°	71	*	*
2	12.7	2	R.F.	235	13	62°	70	*	*
3	19.9	3	R.F.	160	20	53°	71	*	*
4	20.9	4	R.F.	115	19	65°	72	*	*
5	22.7	5	R.F.				64	*	
6	24.7	6	R.F.	160	16	55°	70	*	*
7	26.6	7	R.F.				37	-	
8	28.5	8	R.F.	65	12	50°	67	*	
9	29.1	9	R.F.	ŀ			59		
10	29.3	10	R.F.	77	19	41°	76	*	*
11	29.8	11	R.C.	110	13	58°	73	*	*
12	30.0	12	R.C.	100	16	66°	68	*	-
13	33.6	13	R.F.	60	11	58°	72	*	*
14	34.0	14	R.C.	300	16	65°	80	*	*
15	34.2	15	R.F.	150	52	54°	85	*	*
16	37.0	16	R.C.	90	24	76°	86	*	*
17	39.1	17	R.F.				41		
18	39.8	18	R.F.				40		
19	40.3	19	R.F.				50		
20	40.8	20	R.F.				53		
21	45.5	21	R.C.	280	32	52°	71	*	*
·	•		To					15	1

Potential Critical

R.F. :Rock Fall : 10 : 8 :Rock Collapsing R.C. : 5 : 4 S.S. :Slop slide : 0 : 0 D.F. :Debris Flow : 0 : 0

2) Vulnerable Bridge

Table 5.2.10 Identified Disaster potential/ Critical Spots of Bridges on NIC. 26

No.	Station (km)	Bridge Name	Length (m)	Span Length (m)	Year	Score		Disaster Spots	
						Abutmrent	Pier	Potential	Critical
1	104+182	La Cotorra	8.6	7.0	1963	40			
_ 2	104+657	Figueroa	9.4	5.5	1963	40			
3	105+300	Santa Ana	8.2	5.5	1963	55		.,	
4	106+020	Los Pedrones	6.4	3.7	1963	60			
5	106+687	Quimera	17.7	5+5+5	1964	65	65		
6	107+533	Solis	7.2	4.6	1963	100		*	*
7	108+154	Papalón	5.1	3.5	1963	90		*	
8	108+784	La Higuera	9.5	5.8	1963	55			
9	114+044	San Jacinto	7.6	6.9	1964	50			
10	119+963	La Milagrosa	8.6	7.0	1964	60			
11	125+674	Santa Amalia (Malpaisillo)	16.5	15.4	1964	30	**		
12	145+617	El Caimito	31.8	10+10.2+10	1966	55	45		
13	148+051	Tionoste	19	18.0	1966	30			
14	156+785	San Juan de Dios	17.9	7.5+7.5	1965	90	70	•	
15	164+125	El Jicaral	130	4(32.5)	2001	70	55	*	
16	169+544	Las Pilas	8.5	8.0	1966	70		*	
17	170+952	La Banderita	31.6	6.6+15.4+6.6	1966	100	65	*	
18	190+265	La Manga No. 1	10.6	9.3	1966	55			
			Total					6	•