A14.4 River water flow and suspended solid

The Study Team carried out the measurements of water flow (current) and suspended solid for consecutive twenty five (25) hours in the time when tidal fluctuation was remarkable i.e. during days of the spring tide on January 15 and 16, 2002.

Measuring points consist of seven (7) main points (to obtain input data for implementation of simulation of navigational channel stabilization) and thirteen (13) supplemental points (to obtain data for checking numerical values computed from simulation) as seen in **Figure A14.4.1**.

- Main measuring points

Water flow (current) and suspended solid were measured with 0.5m water depth intervals at 1 hour intervals for twenty five (25) hours at two (2) points of main points named "two (2) key points" (one point at the end of upstream (V2) and another point at the end of downstream (V19) in the Red River segment,

Two (2) current meters of high specifications were used exclusively at two (2) key points to measure current and suspended solid with 0.5 m water depth intervals for obtaining vertical distribution data.

At the same time water flow (current) and suspended solid were measured with the three (3) water depths at 1 hour intervals for 25 hours at five (5) points of main points (two (2) points at the end of upstream (V1 and V3) and other two (2) points at the end of downstream (V18 and V20) in the Red River segment, and the remaining one (1) point at the Duong River.

Current and suspended solid at five (5) main points other than the above two (2) key points and at thirteen (13) supplementary points were measured at the following three (3) water depths.

Surface layer: 0.5 meter below the surface of water Middle layer: Intermediate depth between the surface and the bottom Bottom layer: 0.25 meter above the surface of riverbed Supplementary measuring points

Simultaneously with seven (7) main points, water flow (current) and suspended solid were measured at thirteen (13) supplementary points in the Red River segment with

the three (3) water depths at three to four hours intervals for twenty five (25) hours, totally seven (7) times at each supplementary point.

Distribution map of the maximum speed of river water flow measured at 0.25 m above riverbed is shown in **Figure A14.4.2**.

During the above measurements were being conducted, water level were simultaneously measured at intervals of every ten (10) minutes starting from 00 minute, then every 10, 20, 30, 40, 50 minutes at ten (10) units of levelling stuff set up at the points of riverside near waterline as seen in **Figure A14.4.2**.

The results of measurements of river water flow and suspended solid are respectively summarized as seen in Table A14.4.1 and Table A14.4.2.

		V20	0.68	0.59	0.50	0.59	0.53	0.50	0.50	0.44	0.38				V20	135.6	89.9	36.4	191.4	131.3	100.2	211.6
		V19	0.53	0.49	0.43	0.52	0.44	0.39	0.42	0.37	0.32				V19	149.8	85.6	55.4	195.6	126.9	74.2	210.8
		V18	0.57	0.51	0.44	0.53	0.47	0.30	0.43	0.38	0.30				V18	152.2	116.4	51.6	299.6	157.2	112.8	334.0
		V17	0.66	0.62	0.59	0.56	0.53	0.50	0.38	0.33	0.23				V17	150.6	32.3	12.4	86.4	56.3	15.0	307.6
		V16	0.63	0.61	0.58	0.60	0.57	0.52	0.42	0.33	0.30	- -		V16	53.4	120.1	82.0	72.8	48.5	121.8	314.2	
		V15	1.44	1.41	1.36	1.29	1.19	1.01	0.88	0.77	0.66		Jmen		V15	168.2	142.8	102.8	217.8	181.0	19.4	228.8
ient		V14	0.97	0.85	0.79	0.81	0.79	0.76	0.63	0.60	0.57		er Se		V14	92.8	34.3	25.8	209.8	62.6	25.4	243.8
Segn		V13	16.C	0.81	0.73	0.95 I	0.81	0.73	9.76	0.57	0.31		d Riv		V13	92.0	67.5 1	49.4	19.0 2	81.6	50.2 1	25.2 2
River		V12	0.79	0.65	0.50	0.79	0.61	0.46	0.52	0.40	0.28		he Re	(1	V12	65.0 1	18.4 1	80.4 1	242.6 2	66.3 1	37.4 1	379.0 2
Red	(s/ɯ)	V11	0.42	0.28	0.20	0.40	0.29	0.22	0.26	0.18	0.12		s) in t	/ɓw) p	V11	31.0	04.1	69.8	49.4 2	23.1 1	00.8 1	68.6 3
in the	peed	V10	0.89 () 6 <i>2</i> .0	0.68 (0.82	0.73 (0.59 (0.65 (0.58 (0.49 (lid (S	ended	V10	91.4	43.0 1	95.8	94.4	68.7 1	46.2	74.0
eed	S	67	1.05 (1.02	.97 (0.97 (0.91 (0.79 (0.71	0.62 (0.49 (ed So	Susp	67	65.8 1	42.3 1	17.2	67.4 1	51.9 1	26.0 1	29.2 2
ow Sp		V8	0.66	0.62).58 (0.62 ().57 ().53 (0.51 (0.49 (0.48 (bende		V8	20.6 1	9.4 1	59.2 1	37.0 1	10.1	96.0 1	56.8 2
ter Fl		77	1.12 0	1.01	0.94 (1.04 (0.97 (0.89 (0.72 (0.61 (0.52 (of Susp		77	32.6 1	05.7	74.4	43.0 1	18.3	36.2	48.2
er Wa		٧6	. 16.0	.86	0.82 (.84	0.80	0.77 0	0.78 (.65 ().56 (tion o		٧6	48.0 1	10.0	73.0	87.2 1	55.5 1	31.2 8	94.6 1
Rive		V5	.88	.85 0	.80 0	.84 0	.79 0	.75 0	.69 0	.62 0	.51 0		entra		V5	74.0 1	25.1 1	1.0 7	92.8 1	57.6 1.	47.6 1	47.0 1
4.4.1		V4	.55 0	.50 0	.47 0	.51 0	.47 0	.43 0	.43 0	.39 0).36 (Conc		V4	62.0 1	34.1 1	1.2 7	38.8 1	13.2 1	67.0 1	60.0 2
ole A1		V3	.63 (.58 (.49 ().58 ().52 (.44 (.45 (.35 0	0.18		4.2		V3	36.0 1	96.1 1	57.8	22.8 2	43.4 2	3.8 1	06.0 3
Tak		V2	.88	.83 0	.76 0	.86 0	.73 0	.67 0	.59 0	0.5 0	0.4 0		A14.		V2	02.2	32.1 9	1.0	81.2 2	98.8	28.8	74.4 3
		۲۱	.91 C).82 C).73 C).83 C	0.70 C).57 C).65 C	.50	.37	- C	Table		۲۱	60.4 2	35.8 1	32.8 7	16.4 2	42.9	6.8 1	88.2 3
	()	D	с ш	e C	0 E	0 E	e	m C	0 E	e	0 E	y Tean	-	(D	m l	e 8	ш 3	m 2	e 1	m 7	m 2
) heed	Maximu	Averag	Minimu	Maximu	Averag	Minimu	Maximu	Averag	Minimu	CA Stud) heed	Maximu	Averag	Minimu	Maximu	Averag	Minimu	Maximu
	Water	Depths	0.5 m	below water	surface		Middle		0.25 m	above	river bed	Source) JIC		Water	Depths	0.5 m	below water	surface		Middle denth		0.25 m

Average Minimum

above river bed

205.7 281.3 197.8 271.8 200.4 177.2 131.2 120.5 188.3 195.7 145.0 273.9 198.4 183.7 208.5 233.1 194.7 209.7 132.4 170.0 151.4 170.2 142.6 209.8 159.2 146.6 100.2 102.0 149.6 147.4 128.4 168.0 153.4 151.4 167.6 178.6 138.0 149.0 96.0 151.2

A14 - 60

A14.5 Riverbed materials

The Study Team carried out measurement of riverbed materials, these samples were taken from a total of twenty eight (28) points consisting of the same twenty (20) points as those in measurements of river water flow (current) and other eight (8) points from sand bars as seen in **Figure A14.4.1**

These samples were taken from two (2) depths comprising the surface of riverbed and 0.50 to 0.55 m below the ground. Specific gravity (ASTM, D854) and analysis of grain size distribution by sieve test and hydraulic test (ASTM D422), were carried out at the laboratory to identify grain sizes (diameter) of soil particles of d25, d50 (median diameter) and d75. These values are indispensably needed for analysis of navigation channel stabilization. Distributions map of d50 (median diameter) at surface of riverbed in the Survey Area is shown in **Figure A14.5.1**.

As can be seen in **Table A14.5.1** below, these sizes (d_{50}) at surface of river bed varies from 0.133 to 0.283 mm.

Diamatar	Median Diameter (mm)				
Didmeter	Surface of River Bed	0.5 m below River Bed			
Maximum	0.283	0.301			
Minimum	0.007	0.010			
Average	0.133	0.120			

Table A14.5.1 Median Diameter of River Bed Materials in the Red River Segment

Figure A14.5.1 Distribution Map of Grain Size (d50:Median Diameter) at Surface of Riverbed in the Red River Segment

A14.6 Topographic and bathymetric survey (Sectioning survey)

The Study Team carried out the topographic and bathymetric survey in the Survey Area by means of cross sectioning method at an average intervals in two hundred (200) m with a total two hundred (200) measuring sections. The result of the survey was incorporated in seven (7) sheets of topographic maps with a scale of 1/10,000 and 1/20,000, all levels are referred to National Land Survey Datum.

In this survey Vietnam National Grid (HN-72) was applied. The following geodetic parameters were applied in the survey.

- Spheroid : Krasovsky
- Semi major axis : 6,378,245m
- 1/flattening : 298.3
- Central meridian : 105 ° E
- False easting : 500 km

A network of control points for the survey were established based on traverse points developed from the 1999 survey by TEDI-Port and the 4th order bench mark GPS 4CT as seen in **Table A14.6.1** below.

Namo	Coordinate (HI	N-72, C.M105E)	Elevation (m)
Nume	Northing (m)	Easting (m)	(HN-72)
GPS4CT	2,322,241.584	592,908.076	14.203
H8-7/1	2,328,609.445	587,629.374	14.442
H8-6/4	2,330,141.062	586,503.963	14.288

Table A14.6.1 Coordinates and Elevation of Benchmarks

A14.7 Geotechnical conditions

(1) Existing study on geotechnical investigation

The following limited existing reports on geotechnical investigation carried out in the related areas of Red River Segment were collected by the Study Team.

- The Feasibility Study on Thanh Tri Bridge and the Southern Section of Ring Road No3 in Hanoi, JICA, September 1998 by Pacific Consultants International
- Geotechnical Investigation for Engineering Design of No. 7 Berth, No. 8 Berth and Embankment of Hanoi Port, 1999 by TEDI-Port
- Geotechnical Investigation for Engineering Design of No. 7 Berth of Hanoi Port, January 1996 by TEDI-Port
- Geotechnical Investigation for Feasibility Study of Expansion and Upgrading of Khuyen Luong Port, July 1997 by Maritime Construction Consultants Corporation

According to these existing study reports, the soil characteristics in the survey area were briefly summarized as mentioned hereinafter.

(a) Thanh Tri bridge

b) Bearing layer

According to a result of standard penetration test carried out at intervals of one (1) meter with a total boring holes of nineteen (19) at the location of the planned Thanh Tri bridge, it is found that elevation where N - value reached 50 or more (i.e. bearing layer for pile foundation) appears from -26.21m to -50.11m as shown in **Table A14.7.1** below.

Boring	Elevation of N-value	Boring	Elevation of N-value
No	reached 50 and more (m)	No	reached 50 and more (m)
1	-31.53	11	-32.59
2	-33.44	12	-40.40
3	-43.46	13	-34.39
4	-28.90	14	-26.21
5	-50.77	15	-35.32
6	-32.68	16	-35.28
7	-31.44	17	-38.06
8	-34.17	18	-39.57
9	-35.51	19	-38.10
10	-33.99		

Table A14.7.1 Elevation of Bearing Layer at the Planned Thanh Tri Bridge

Source) The Feasibility Study on Thanh Tri Bridge and the Southern Section of Ring Road No3 in Hanoi, JICA, September 1998 by Pacific Consultants International

c) Soil strength

Based on the results of direct shear, unconfined compression and triaxial compression tests of undisturbed soil samples obtained from alluvium stratum, the soil design characteristics, applied for slope stability analysis of the road/embankment structures were determined in his study as shown in **Table A14.7.2** below.

Table A14.7.2	Design Soil Strength at	t the Planned Thanh Tri	Bridge
---------------	-------------------------	-------------------------	--------

Tost	Angle of internal	Cohesion		
Test	friction ()	C (kg/fcm ²)		
Direct shear	15	0.15		
Unconfined compression	16	0.25		
Triaxial compression	12	0.26		
Design condition	15	0.25		

Source) The Feasibility Study on Thanh Tri Bridge and the Southern Section of Ring Road No3 in Hanoi, JICA, September 1998 by Pacific Consultants International, Consolidation Characteristics.

Based on the results of consolidation tests for undisturbed samples obtained from clay and silt layers, the design consolidation values were established in his study for consolidation settlement analysis as shown in **Table A14.7.3** below.

Table A14.7.3 Design Coefficient of Consolidation (Cv) and Consolidation Index(Cc) at the Planned Thanh Tri Bridge

Depth	Coefficient of consolidation	Consolidation index
(m)	Cv (cm2/sec)	Сс
0-10	0.51 x 10 ⁻³	0.10
10-20	0.43 x 10 ⁻³	0.12
20-30	0.45 x 10 ⁻³	0.14
Below 30	0.38 x 10 ⁻³	0.28

Source) The Feasibility Study on Thanh Tri Bridge and the Southern Section of Ring Road No3 in Hanoi, JICA, September 1998 by Pacific Consultants International

(b) Ha Noi port

The Study Team collected the two (2) existing reports of geotechnical investigation carried out in 1999 (4 boring logs) and 1996 (6 boring logs) around Berth No.7 and Berth No.8, in this connection standard penetration test was not carried out in this investigation at Ha Noi port as seen in **Figure A14.7.1**.

Based on the results of laboratory tests in his reports, the Study Team prepared soil profile as shown in **Figure A14.7.2**.

(c) Khuyen Luong port

The Study Team collected the existing report of geotechnical investigation carried out in 1997 (5 boring logs) along the face line of the planned berth, standard penetration test was not carried out too in this investigation at Khuyen Luong port as seen in **Figure A14.7.1**.

Based on the results of laboratory tests, the Study Team prepared soil profile as seen in **Figure A14.7.2**.

Figure A14.7.1 Location Map of Boring Holes in Existing Studies at Ha Noi Port and Khuyen Luong Port

Figure A14.7.2 Soil Profiles in Existing Studies at Ha Noi and Khuyen Luong Port

(2) Result of geotechnical investigation by the Study Team

The Study Team carried out geotechnical investigation at the three (3) candidate sites for new port construction comprising Thuong Cat port, Van Kiep port and Khuyen port (layout of borehole location shown in **Figure A14.7.3(1))**. Total six (6) holes of under-water boring with a total boring length of about 210 m was carried out.

There are, generally the following two (2) main purposes in this geotechnical investigation.

- To confirm elevation and strength of bearing layer for pile foundation structure related to the project facilities including wharf, revetment and others.
- To confirm and establish design soil condition of soil stratum at the Survey Area.

1) Confirmation of bearing Layer

It is estimated that bearing layer (sand stratum) exists below 20 m depth from ground surface in the Survey Area. It is quite important to confirm the exact elevation of this bearing layer for the determination of design conditions, therefore, at least one (1) boring hole shall reach this bearing layer, then the depth of other one (1) boring hole shall be adjusted within a total length of two hundred and ten (210) m. Standard penetration test (SPT) to measure N-value and to obtain samples of disturbed soil were carried out at every one (1) m interval. And in case cohesive soil layer was found, sampling of four (4) undisturbed soil per hole were taken.

Location	Boring	Coorc (dination m)	Ground Elevation	Boring Depth	Bearing Layer (m)	
	NO.	Е	Ν	(m)	(m)		
Thuong Cat	TC1	577192.63	2334532.98	+2.6	29.00	-23.8	
Indong Car	TC2	577287.72	2334507.68	+3.2	29.05	-24.3	
VanKien	VK1	589921.72	2325346.03	-4.4	38.20	-40.4	
van kiep	VK2	589957.92	2325229.83	-4.2	37.75	-40.7	
Khuvan Luana	TC1	592339.67	2318128.89	-0.7	32.40	-28.9	
Knuyen Luong	TC2	592277.62	2318046.89	-0.7	32.00	-28.7	

 Table A14.7.4
 Coordination and Elevation of Boring Holes

Note) Elevation of N-value reached 50 and more, express above NLSD Source) JICA Study Team

As seen in **Figure A14.7.3(2)~(4)**, elevation of bearing layer exceeds N-value fifty (50) varies from about - 24 m to - 40 m.

2) Laboratory test

All samples to be used for laboratory test were obtained and testing works are undergoing now, the result will be incorporated in Interim Report later. The laboratory tests comprises the following items.

Disturbed Sample	ASTM	Undisturbed Sample	ASTM
Bulk density	Slide caliper method	Unconfined compression test	D2116
Specific gravity	D854	Triaxial compression test	CU
Grain size analysis	D422 (D ₂₅ , D ₅₀ , D ₇₅)	Consolidation test	D2435
Moisture content test	D2216		
Atterberg limit	D423 & D424		

Table A14.7.5 Items of Laboratory Test

Figure A14.7.3 (1) Layout of Borehole Location

A14 - 72

A14 - 73

A14 - 74