Japan International Cooperation Agency (JICA) Ministry of Transport (MOT)

Main Report(II):Long-term Strategy & Master Plan

Final

The Study on the Red River Inland Waterway Transport System in the Socialist Republic of Vietnam

March 2003

The Overseas Coastal Area Development Institute of Japan (OCDI) Japan Port Consultants, Ltd. (JPC)

NO.

The following foreign exchange rates are applied in this study:

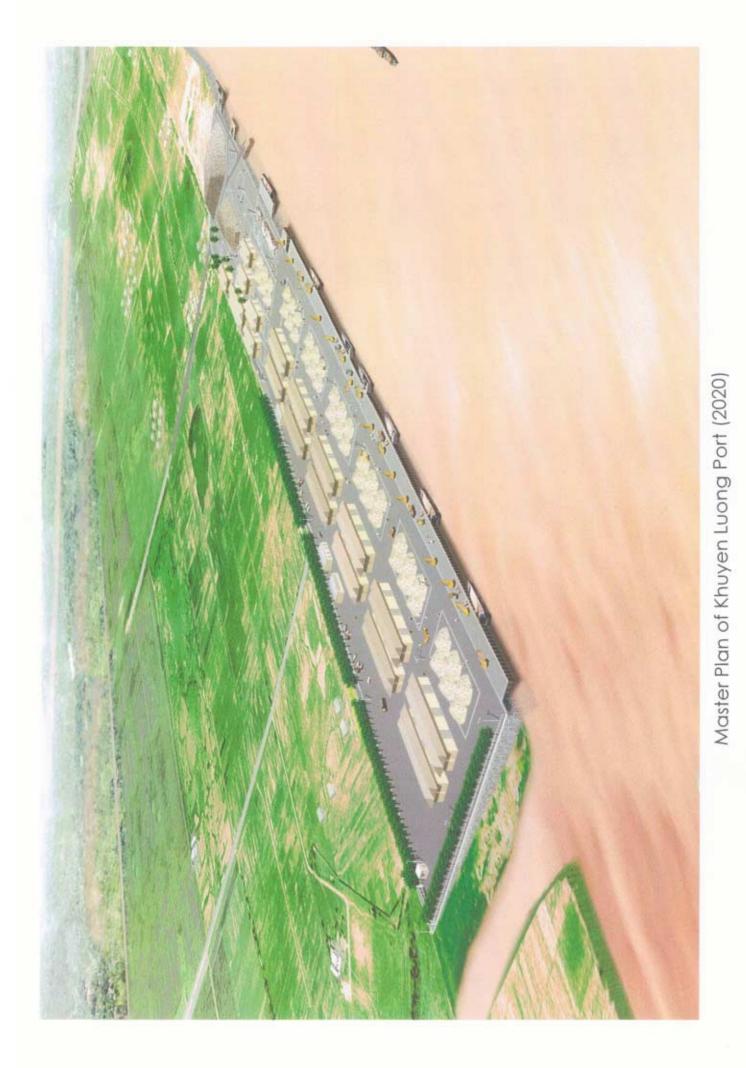
US\$1.00 = VND(Vietnam Dong)15,000 = JP¥125

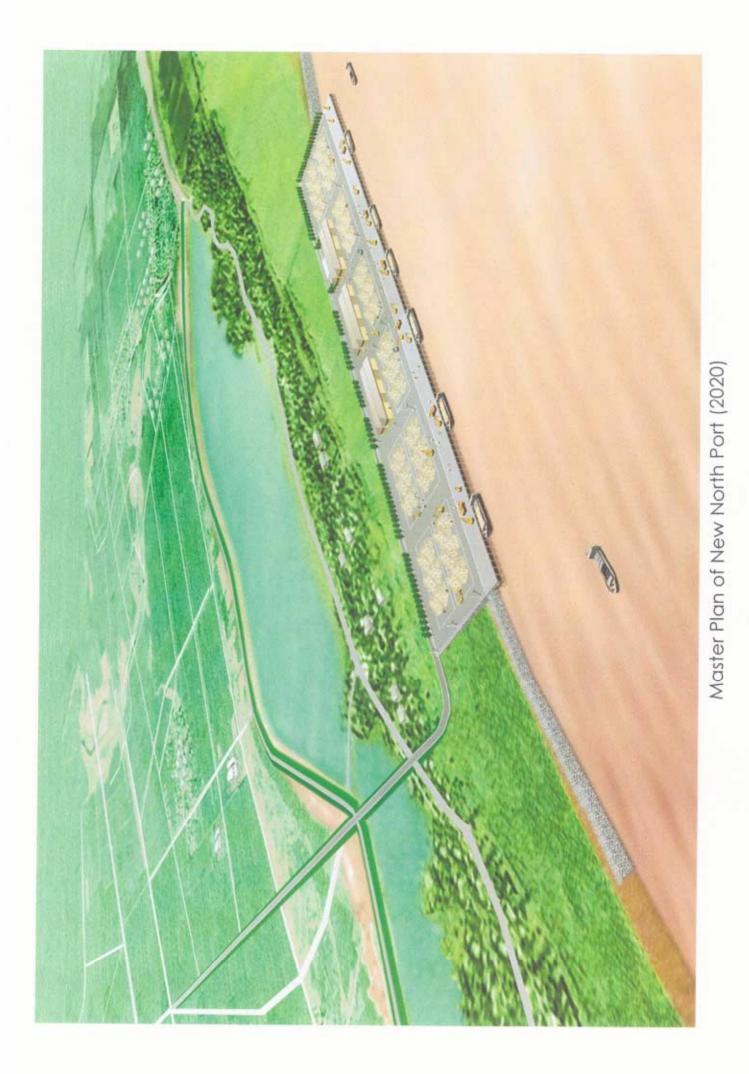
as of December 07, 2001

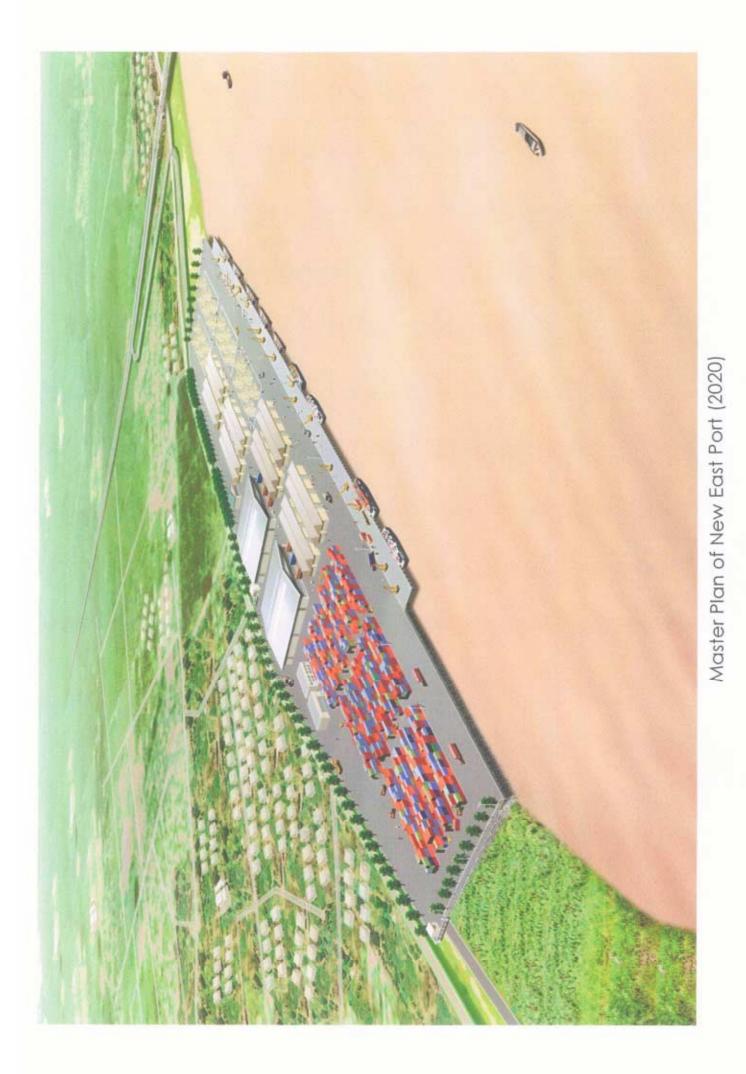
Japan International Cooperation Agency (JICA) Ministry of Transport (MOT)

Main Report (II): Long-term Strategy & Master Plan

Final


The Study on the Red River Inland Waterway Transport System in the Socialist Republic of Vietnam


March 2003


The Overseas Coastal Area Development Institute of Japan (OCDI) Japan Port Consultants, Ltd. (JPC)

Master Plan of Hanoi Port (2020)

PREFACE

In response to a request from the Government of the Socialist Republic of Vietnam, the Government of Japan decided to conduct a study on the Red River Inland Waterway Transport System in the Socialist Republic of Vietnam and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA dispatched a study team to Vietnam three times between December 2001 and January 2003, which was headed by Mr. Takechiho Tabata (December 2001 - June 2002) and Mr. Hisao Ouchi (June 2002 - January 2003) of the Overseas Coastal Area Development Institute of Japan (OCDI), and was comprised of OCDI and Japan Port Consultants, Ltd. (JPC).

The team held discussions with the officials concerned of the Government of the Socialist Republic of Vietnam and conducted field surveys at the study area. Upon returning to Japan, the study team conducted further studies and prepared this final report.

I hope that this report will contribute to this project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of the Socialist Republic of Vietnam for their close cooperation extended to the study team.

March 2003

M上管就

Takao Kawakami President Japan International Cooperation Agency

LETTER OF TRANSMITTAL

March 2003

Mr. Takao Kawakami President Japan International Cooperation Agency

Dear Mr. Kawakami:

It is my great pleasure to submit herewith the Final Report of the Study on the Red River Inland Waterway Transport System in the Socialist Republic of Vietnam.

The study team comprised of the Overseas Coastal Area Development Institute of Japan (OCDI) and Japan Port Consultants, Ltd. (JPC) conducted surveys in Vietnam over the period between December 2001 and January 2003 as per the contract with the Japan International Cooperation Agency (JICA).

The study team compiled this report, which proposes the Long-term Strategy for the Inland Waterway Transport (IWT) System in the Red River Delta for the year 2020 as well as the Master Plan and the Short-term Development Plan for the IWT System in the Red River segment through Hanoi for the year 2020 and 2010 respectively, through close consultations with officials of the Ministry of Transport (MOT) and other authorities concerned of the Vietnamese Government.

On behalf of the study team, I would like to express my heartfelt appreciation to MOT and other authorities concerned of the Government of the Socialist Republic of Vietnam for their diligent cooperation and assistance and for the heartfelt hospitality extended to the study team.

I am also very grateful to your Agency, the Ministry of Foreign Affairs, the Ministry of Land, Infrastructure and Transport and the Embassy of Japan in Vietnam for valuable suggestions and assistance through this study.

Yours faithfully,

大内

Hisao Ouchi Team Leader The Study on the Red River Inland Waterway Transport System in the Socialist Republic of Vietnam

ABBREVIATION LIST

AAGR	Average Annual Growth Rate
ADB	Asian Development Bank
AFTA	ASEAN Free Trade Agreement
APA	ASEAN Ports Association
ASEAN	Association of South East Asian Nations
BCR	Benefit Cost Ratio
BOT	Build, Operate and Transfer
CCTDI	Consulting Center for Transport Development Investment under TDSI
CCWACO	Consulting Company of Waterway Construction under VN Waterway Construction Corp
CFS	Container Freight Station
CIF	Cost, Insurance and Freight
СМВ	Construction Consulting Company for Maritime Building under VINAMARINE
CSW	Channel Stabilization Works
CV	Cheval Vapeur (French expression, = HP: horse power)
CY	Container Yard
DC	Distribution Center
DNC Canal	Day - Ninh Co Canal
DSI	Development Strategy Institute under MPI
DWT	Dead Weight Tonnage
EDI	Electronic Data Interchange
EIA	Environment Impact Assessment
EPZ	Export Processing Zone
E/S	Engineering Service
ETA	Estimated Time of Arrival
FCL	Full Container Load
FDI	Foreign Direct Investment
FIRR	Financial Internal Rate of Return
FOB	Free on Board
GDP	Gross Domestic Product
GOJ	Government of Japan
GOV	Government of the Socialist Republic of Vietnam
GPS	Global Positioning System
GRT	Gross Registered Tonnage
GSO	General Statistical Office
GT	Gross Tonnage
HCMC	Ho Chi Minh City
HDI	Human Development Index
HHWL	Highest High Water Level

HNPC	Hanoi People's Committee
HWL5%	5% Occurrence Water Level
ICD	Inland Clearance Depot
IMO	International Maritime Organization
IRR	Internal Rate of Return
IW	Inland Waterway
IWMS	Inland Waterway Management Station
IWPA	Inland Waterway Port Authority
IWT	Inland Waterway Transport
IZ	Industrial Zone
JBIC	Japan Bank for International Cooperation
JETRO	Japan External Trade Organization
JICA	Japan International Cooperation Agency
JP¥	Japanese Yen
JPC	Japan Port Consultants, Ltd.
LAD	Least Available Depth of waterway
LAW	Least Available Width of waterway
LCL	Less than Container Load
LOA	Length Overall
LSD	National Land Survey Datum
LWL95%	95% Occurrence Water Level
MARD	Ministry of Agriculture and Rural Development
MIS	Management Information System
мос	Ministry of Construction
MOSTE	Ministry of Science, Technology and Environment
MOT	Ministry of Transport
MPI	Ministry of Planning and Investment
MWL	Mean Water Level
N3	Confluence/Bifurcation
NFEA	Northern Focal Economic Area
MT	Metric Ton
NPV	Net Present Value
NOWATRANCO	Northern Waterway Transport Corporation
OCDI	Overseas Coastal Area Development Institute of Japan
O-D	Origin and Destination
ODA	Official Development Assistance
PAX	Passenger
PC	People's Committee
P/L	Profit/Loss
PMU	Project Management Unit
PMU-Waterways	Project Management Unit of Waterways

Q	Water Discharge
QGC	Quay-side Gantry Crane
RO/RO	Roll-on Roll-off
RTG	Rubber-Tired Gantry
RRD	Red River Delta
SBSTI	Shipbuilding Science & Technology Institute under VINASHIN
SCF	Standard Conversion Factor
SDL	National Survey Datum
Sh	Hydraulic Section
SOC	Ship Operation Cost
SOE	State-owned Enterprise
SPM	Suspended Particulate Matter
SRV	Sea-cum-river Vessel
SS	Suspended Solid
S/W	Scope of Work
SWR	Shadow Wage Rate
TDSI	Transport Development Strategy Institute under MOT
TEDI	Transport Engineering Design Incorporation
TEDI-Port	Port & Waterway Engineering Consultants under TEDI
TEDI-Wecco	Waterway Engineering Consultants under TEDI
TEU	Twenty-foot Equivalent Unit
US\$	US Dollar
VAT	Value Added Tax
VCCI	Vietnam Chamber of Commerce and Industry
VICT	Vietnam International Container Terminals
VINALINES	Vietnam National Shipping Lines
VINAMARINE	Vietnam National Maritime Bureau
VINASHIN	Vietnam Shipbuilding Industry Corporation
VINAWACO	Vietnam Waterway Construction Corporation
VITRANSS	Vietnam Transport Strategy Study
VIWA	Vietnam Inland Waterway Administration
VMRCC	Vietnam Maritime Regional Coordination Center
VMS	Vietnam Maritime Safety Agency
VN	Vietnam
VND	Vietnam Dong
VOC	Vehicle Operation Cost
VR	Vietnam Railway
VR	Vietnam Register
VRA	Vietnam Road Administration
VTMS	Vessel Traffic Management System

CONTENTS

INTRODUCTION

А	IntroductionI - 1
В	Background of the StudyI - 1
С	Objectives of the StudyI - 2
D	Study AreaI - 2
Е	Study ScheduleI - 2
F	Members of Steering Committee, Counterparts
	and the Study TeamI - 4

PART I PRESENT SITUATION

Chapter 1	Profile of the Study Area	1 - 1
1.1	Natural and physical condition	1 - 1
	1.1.1 Geography	1 - 1
	1.1.2 Land use	1 - 1
	1.1.3 Climate	1 - 3
1.2	Socio-economic profile	1 - 3
	1.2.1 Population	1 - 3
	1.2.2 Gross domestic product	1 - 5
	1.2.3 Employment	1 - 6
1.3	Transport network	1 - 8
	1.3.1 Road	1 - 8
	1.3.2 Railway	1 - 8
	1.3.3 Inland waterway	1 - 8
	1.3.4 Seaport	1 - 9
	1.3.5 Airport	1 - 9
Chapter 2	Regional and Industrial Development Plan	2 - 1
2.1	Overview of the regional development plan	2 - 1
2.2	Development of industrial zones	2 - 3
	2.2.1 Hanoi	2 - 3
	2.2.2 NH No. 21A	2 - 3
	2.2.3 NH No. 18	2 - 3
	2.2.4 Hai Phong and Hai Duong corridor	2 - 3

2.3	Master plan for Hanoi2 - 6			
2.4	Development of major industrial plants2-10			
	2.4.1 Steel plants2-10			
	2.4.2 Cement plants2-11			
	2.4.3 Fertilizer plants2-11			
	2.4.4 Thermal power plants2-12			
Chapter 3	Present Situation and Development Plans of Roads			
	and Railways3 - 1			
3.1	Present situation of roads and railways			
	3.1.1 Road and railway network in the Red River Delta			
	3.1.2 Roads and railways in Hanoi City			
	3.1.3 Modal split			
3.2	Development plans of roads and railways			
	3.2.1 Road development plans			
	3.2.2 Railway development plans			
3.3	Traffic of related road and railway			
	3.3.1 Road traffic volume at the existing ports in Hanoi			
	3.3.2 Road and railway traffic volume at Duong Bridge			
Chapter 4	National Basic Policy for the IWT System4 - 1			
4.1	, , , , ,			
	up to 20204 - 1			
4.2	Draft law on inland waterway transport4 - 3			
Chapter 5	Existing Development Plans of the IWT System in the Red			
	River Delta5 - 1			
5.1	Previous studies and recommendations5 - 1			
	5.1.1 National Transportation Sector Review (1992, UNDP)5 - 1			
	5.1.2 M/P Study on Transport Development in the Northern			
	Part of Vietnam (June 1994, JICA)5 - 2			
	5.1.3 Red River Delta M/P (June 1995, UNDP)5 - 3			
	5.1.4 M/P Study on Coastal Shipping Rehabilitation			
	and Development Project (March 1997, JICA)5 - 4			
	5.1.5 Red River Waterways Project (January 1998, ADB)5 - 5			
	5.1.6 Transport Sector Report 1998 (January 1999, WB)5 - 6			
	5.1.7 Study on the National Transport Development Strategy			
	(July 2000, JICA)			
5.2	Master Plan on Vietnamese Waterway Transport Development			
	up to 20205 - 8			

	5.2.1 Plan for main ports in the Northern region (Appendix 1)5 - 8
5.3	Pre-F/S on Red River - Hanoi Section Rehabilitation Project5-10
Chapter 6	Current IWT Demand Characteristics
6.1	Historical trend of IWT demand
0.1	6.1.1 Nationwide IWT demand
	6.1.2 IWT demand in the North
	6.1.3 Demand elasticity
6.2	Transport demand at ports and on rivers
0.2	6.2.1 Cargo throughput at ports
	6.2.2 Transport demand on rivers
6.3	Region and commodifies
0.0	6.3.1 Gross output by province
	6.3.2 Commodities
6.4	Coastal shipping
0.4	6.4.1 Current situation
	6.4.1 Content should not accepted and characteristics 6.4.2 Transport demand characteristics
	6.4.2 Iransport demand characteristics
Chapter 7	Present Situation of Ports in the Red River Delta7 - 1
7.1	Outline of ports in the Red River Delta7 - 1
7.2	Ports in the Red River Hanoi segment7 - 7
	7.2.1 Hanoi Port
	7.2.2 Khuyen Luong Port
	7.2.3 Other ports and berths7-17
7.3	Major river ports outside Hanoi
	7.3.1 Viet Tri Port
	7.3.2 Ninh Binh & Ninh Phuc Ports
	7.3.3 Nam Dinh Port7-33
7.4	Identified problems and issues7-35
Chapter 8	Present Situation and Development Plans of Major Sea Ports8 - 1
8.1	Major sea ports
	8.1.1 Hai Phong Port8 - 1
	8.1.2 Cai Lan & Quang Ninh Ports8 - 7
	8.1.3 Cam Pha Port
	8.1.4 Da Nang Port
8.2	Master plan for the development of Vietnamese seaport system
	up to 2010
8.3	General indicators of maritime transport in 2001-2005
	by VINAMARINE8-16

Chapter 9	Present Situation of Inland Waterways in the Red River Delta9 - 1
9.1	Overview of inland waterways9 - 1
9.2	Inland waterways in the Red River Delta9 - 3
	9.2.1 River system
	9.2.2 Major IWT corridors
9.3	Major restrictions of navigation channel in the Red River Delta9-11
	9.3.1 Bridges and electric wires
	9.3.2 River bottlenecks
9.4	Waterway traffic accidents in the Red River Delta9-22
9.5	Navigation aid system9-24
Chapter 10	Management and Operation System of Ports and Inland
	Waterways in the Red River Delta10-1
10.1	General10-1
10.2	Port and inland waterway administration10-2
10.3	Port operation10-11
10.4	Charges and dues10-17
10.5	Legal framework10-21
10.6	Identified problems and issues10-23
Chapter 11	Financial Situation of Organization Relating to the Study11-1
11.1	Financial situation11-1
Chapter 12	Cargo Handling System of Ports in the Red River Hanoi Segment
Chapter 13	Land Use and Transport Situation behind Ports and along
	the River in the Red River Segment through Hanoi
13.1	Outline of Hanoi City
	13.1.1 Topographic condition
	13.1.2 Social condition
10.0	13.1.3 Traffic condition
13.2	Master plan of Hanoi City up to the year 2020 13-9
	13.2.1 Urban development plan of Hanoi City
	13.2.2 Industrial development plan
	13.2.3 Land use plan
	13.2.4 Priority project on urban development plan
13.3	Present land use inside the Red River in Hanoi City13-17
	13.3.1 Present land use

	13.3.2	Hanoi City planning			
13.4	Social o	consideration necessary to examine			
	13.4.1	Law on land			
	13.4.2	Compensation criteria and land price	13-33		
Chapter 14	Natural	Conditions in the Red River Delta	14- 1		
14.1	River bo	River basin and tributaries of the Red River Delta14-1			
	14.1.1	Geographical conditions	14-1		
	14.1.2	Administrative conditions	14-3		
14.2	Meteor	ology	14-3		
	14.2.1	Climate	14-3		
	14.2.2	Temperature and rainfall	14-3		
14.3	Water o	and flood levels, and flood protection	14-4		
	14.3.1	Water levels	14-4		
	14.3.2	Floods	14-8		
	14.3.3	Flood protection and river training facilities	14-13		
	13.3.4	Dams	14-15		
14.4	Chang	e of river configuration and depth in Hanoi segmer	nt14-17		
	14.4.1	Available topographic/bathymetric Information	14-17		
	14.4.2	Change in the configuration from 1901 to 1958			
		on maps	14-18		
	14.4.3	Changes confirmed on the aerial photographs	14-20		
	14.4.4	Changes occurred in the past two years	14-25		
	14.4.5	Hydraulic section	14-35		
14.5	Charac	cteristics of flow and sediment of the Red river	14-36		
	14.5.1	General features of flow and sediment	14-36		
	14.5.2	Characteristics of the flow and sediments			
		in Hanoi segment	14-38		
	14.5.3	Stability of the sediments	14-45		
	14.5.4	Results and analysis of the hydro-sedimentologica	al		
		survey	14-49		
	14.5.5	Hydraulic analysis	14-51		
14.6	Hydrau	lics at the Day River estuary	14-55		
	14.6.1	General features	14-55		
	14.6.2	Hydro-sedimentology of the Day River estuary	14-56		
	14.6.3	Navigation in the Day River mouth	14-59		
	14.6.4	Plans for the new access-channel in Day River est	uary.14-60		
14.7	Strandii	ng of ships and dredging	14-60		
Chapter 15	Environ	mental Conditions in the Red River Delta	15 1		
Chapter 13					

15.1	Enviror	nmental quality and public hazards in the Red River b	asin
			15-1
	15.1.1	General	15-1
	15.1.2	Environmental issues related to the agriculture activ	vities
			15-1
	15.1.3	Environmental issues related to the industrial and	
		mining activities	
	15.1.4	Environmental issues related to the transport activiti	
	15.1.5	Environmental issues related to the domestic activit	
15.2		nmental issues in Hanoi	
	15.2.1	Rapid growth of the population in Hanoi	
	15.2.2	River and canal water pollution	
	15.2.3	Lake water pollution	15-10
	15.2.4	Ground water pollution	
	15.2.5	Land shifting in Hanoi	
	15.2.6	Industrial pollution	15-11
	15.2.7	Air pollution	15-11
	15.2.8	Solid wastes	15-11
	15.2.9	Historical relics	15-11
15.3	Measu	res for the sustainable development	
	in the F	Red River basin	15-12
	15.3.1	Environmental Issues	15-12
	15.3.2	Measures	15-12
15.4	Enviror	nmental Laws, legislation on Environmental Impact	
	Assessr	ment (EIA) and quality standards in Vietnam	15-14
	15.4.1	Environmental protection law	15-14
	15.4.2	Government decrees	15-14
	15.4.3	Circulars on guidelines and decisions issued by MOS	STE
			15-17
	15.4.4	Environmental standards	15-18
15.5	Biologi	cal resources	15-18
	15.5.1	Legal documents on protection of rare fauna and f	lora15-18
	15.5.2	Status of flora and fauna in the survey areas	15-19
15.6	Socio-e	economic conditions	15-23
	15.6.1	Social conditions in the Red River Delta	15-23
	15.6.2	Economic conditions	15-29
	15.6.3	Land utilization	15-38

PART II LONG-TERM STRATEGY FOR IWT SYSTEM IN THE RED RIVER DELTA

Chapter 16	Socio-economic Framework16-1
16.1	Population
16.2	GDP
	16.2.1 Methodology16-3
	16.2.2 National GDP estimate16-4
	16.2.3 Sectoral and regional breakdown
	16.2.4 Provincial breakdown
	16.2.5 Comparison with DSI projection16-10
Chapter 17	Basic Policy for the IWT System in the Red River Delta17-1
17.1	Advantages and potential of the IWT system
17.2	Necessity of improving the IWT system
17.3	Identified problems and issues on IWT system
	17.3.1 Problems and issues on navigation channels
	17.3.2 Problems and issues on ports17-7
	17.3.3 Problems and issues on management and operation
	aspects17-8
17.4	Basic policy for the IWT system in the Red River Delta17-10
Chapter 18	Transport Demand Forecast
18.1	Methodology18-1
18.2	Cargo transport demand18-4
	18.2.1 Summary of cargo transport demand forecast18-4
	18.2.2 River section traffic volume
	18.2.3 Cargo throughput by province
	18.2.4 Comparison with past studies18-9
18.3	Passenger transport demand18-10
	18.3.1 Current situation18-10
	18.3.2 Selection of potential routes
	18.3.3 Results of passenger demand forecast
	18.3.4 Comparison with relevant study
Chapter 19	Future Vessel Size of the IWT Fleet
19.1	Existing vessel fleet
19.2	Future vessel size in the Red River Delta19-11
	19.2.1 Standard dimensions of navigation channel
	19.2.2 Future vessel size
	19.2.3 Future fleet mix

Chapter	20	Future Performance of Major River Ports	.20- 1
Chapter	21	Future Performance of Major Inland Waterways	.21- 1
Chapter	22	Scenario for Improving IWT System	.22- 1
2	2.1	Measures for improving IWT system	.22- 1
2	2.2	Organization and investment fund	.22- 2

PART III MASTER PLAN FOR IWT SYSTEM IN HANOI SEGMENT FOR 2020

Roles and Functions of the IWT System in Hanoi Segment	23-1
Basic requirements for developing the IWT system	
in Hanoi segment	23- 1
23.1.1 Navigation channel	23- 1
23.1.2 Ports	23- 7
Distribution of roles and functions among Ports/Berths	23-10
23.2.1 Geographic arrangement of ports/berths	23-10
23.2.2 Distribution of roles and functions among ports/berth	ns23-19
23.2.3 Location of passenger berth	23-27
Transport Demand in Hanoi	24- 1
Introduction	24- 1
Potential demand of SRV	24- 1
24.2.1 Current issues on SRV	24- 1
24.2.2 Cargo movement of coastal shipping	24- 2
24.2.3 SRV's preferred areas	24- 4
24.2.4 Potential transport demand of SRV	24- 5
Container	24- 6
24.3.1 Export and import at northern ports	24- 6
24.3.2 Potential container demand toward Hanoi	24- 7
24.3.3 Potential container demand through IW	24- 8
Summary of transport demand in Hanoi	24-10
Potentiality of river cruise in and around Hanoi City	24-11
Master Plan of Navigation Channel for 2020	25- 1
Dimensions of navigation channel	25- 1
Alignment of navigation channel	25- 5
Vertical clearance improvement of Duong Bridge	25-10
Navigation safety measures for Duong Bifurcation	25-13
	Basic requirements for developing the IWT system in Hanoi segment

25.5	Navigo	ition aids	25-19
Chapter 26	Stabiliz	ation Measures of the Navigation Channel	26- 1
26.1		ical simulation model	
	26.1.1	Characteristics of the simulation model applied	
	26.1.2	Mathematical model	
26.2		s on stability of the present river channel	
	26.2.1	Purpose of analysis	
	26.2.2	Re-production of the present conditions	
	26.2.3	Prediction of extreme phenomena by computer	
		simulations	
26.3	Chann	el dredging plan	
	26.3.1	Capital dredging volume	
	26.3.2	Maintenance dredging volume	
	26.3.3	Dredging plan	
26.4	Chann	el stabilization plan	
	26.4.1	Basic policy of stabilization countermeasures	
	26.4.2	Intensions of countermeasures	
26.5	Means	of river regulation works	
	26.5.1	River Training facilities	
	26.5.2	Hydraulic characteristics and training philosophy	
26.6	Prelimi	nary Analyses on the effect of essential river training	
	works		
	26.6.1	Arrangement of essential river training works	
	26.6.2	Expected effects of essential countermeasure fac	ilities
26.7	Analys	es on channel stabilization plans	
	26.7.1	Proposed alternatives of channel stabilization faci	lities.26-52
	26.7.2	Positioning of proposed structures	
	26.7.3	Conceptual cross-sectional profiles of proposed	
		structures	
	26.7.4	Evaluation of channel stabilization plan by compu	ter
		simulations	
26.8	Revisio	n of arrangement of channel stabilization facilities	
	26.8.1	Subjects to be reviewed	
	26.8.2	Permeability of groins	
	26.8.3	Optimum channel width	
	26.8.4	Confirmation by computer simulations	
26.9	Additic	onal analyses and comments	
	26.9.1	Hydraulic phenomena	26-101

	26.9.2	Maintenance dredging	26-108
	26.9.3	Scope of surveys and monitoring works	26-109
Chapter 27	Master	Plan of Ports for 2020	27- 1
27.1	Require	ed port facilities and equipment for major ports	
	in Hanc	i segment	27- 1
	27.1.1	Required length and depth of berth for major ports	27- 1
	27.1.2	Required handling equipment for major ports	27- 4
	27.1.3	Required land space for major ports	27- 4
	27.1.4	Required number of access road lanes for major po	rts27- 5
	27.1.5	Required elevation of port facilities for major ports	27- 6
27.2	Hanoi P	Port	27- 8
27.3	Khuyen	Luong Port	27-10
27.4	New No	orth Port	27-12
27.5	New Ec	ist Port	27-17
27.6	New po	assenger berth	27-19
	27.6.1	Service schedule and required passenger boats	27-19
	27.6.2	Passenger terminal	27-26
27.7	Chem E	Berths	27-30
Chapter 28	Pecom	mendation on Institutional Arrangement	28 1
28.1		stration, management and operation of ports	
20.1	28.1.1	Classification of ports	
	28.1.2	Role sharing for port management and operation	
	28.1.2	Proper port management	
	28.1.4	Restriction of new berth construction	
	28.1.5	Strengthening competitiveness of state operated po	
	28.1.6	Introduction of Management Information System (N	
	28.1.7	Improvement of port statistics	,
	28.1.8	Setting appropriate port dues/charges	
	28.1.9	Organization chart of Major Port operators	
	28.1.10	Council Meeting of 5 Major Ports	
	28.1.11	Introduction of support system for private company	
		participation in IW sector	
28.2	Adminis	stration and management of Inland Waterway	28-17
	28.2.1	Classification of IW	28-17
	28.2.2	Role sharing for IW management	28-18
	28.2.3	Introduction of appropriate management equipme	nt.28-18
	28.2.4	Introduction of Management Information System (M	1IS) 28-21
	28.2.5	Information Service System	28-23

 28.2.7 Strict control for illegal sand exploitation	7 1 1 5 0 1 1 9
bridge clearances 28-2 Chapter 29 Preliminary Structural Design and Cost Estimate 29- 29.1 Conceptual structural design 29- 29.1.1 Design conditions 29- 29.1.2 Preliminary design of possible structures 29- 29.2 Preliminary cost estimate 29- 29.2 Preliminary Economic Analysis 30- 30.1 Principle of economic analysis 30- 30.2 Valuation of economic costs and benefits 30-1 30.3 Prerequisite of the economic analysis 30-1 30.4 Economic viability test for whole IWT System in the RRD 30-1	1 1 5 0 1 1 9
Chapter 29 Preliminary Structural Design and Cost Estimate	1 1 5 0 1 1 9
29.1Conceptual structural design29-29.1.1Design conditions29-29.1.2Preliminary design of possible structures29-29.2Preliminary cost estimate29-1Chapter 30Preliminary Economic Analysis30-30.1Principle of economic analysis30-30.2Valuation of economic costs and benefits30-30.3Prerequisite of the economic analysis30-130.4Economic viability test for whole IWT System in the RRD30-1	1 5 0 1 9
29.1Conceptual structural design29-29.1.1Design conditions29-29.1.2Preliminary design of possible structures29-29.2Preliminary cost estimate29-1Chapter 30Preliminary Economic Analysis30-30.1Principle of economic analysis30-30.2Valuation of economic costs and benefits30-30.3Prerequisite of the economic analysis30-130.4Economic viability test for whole IWT System in the RRD30-1	1 5 0 1 9
29.1.1Design conditions	1 5 0 1 1 9
29.1.2 Preliminary design of possible structures	5 0 1 1 9
29.2Preliminary cost estimate	0 1 1 9
Chapter 30 Preliminary Economic Analysis	1 1 9
 30.1 Principle of economic analysis	1 9
 30.1 Principle of economic analysis	1 9
 30.2 Valuation of economic costs and benefits	9
30.3 Prerequisite of the economic analysis	
30.4 Economic viability test for whole IWT System in the RRD	3
Chapter 31 Initial Environmental Examination for Master Plan	6
	1
31.1 Environmental conditions	
31.1.1 Location of the work sites	
31.1.2 Sampling and analysis methods	
31.1.3 Results of the measurements/surveys	-
and activities performed	5
31.1.4 Evaluation of results of the measurements/surveys	-
and activities performed	2
31.2 Identification of the environmental issues to be examined	
in EIA report31-1	5
31.3 Conclusion and recommendation	7
31.3.1 Necessity of Environmental Impact Assessment (EIA)31-1	
31.3.2 Contents of EIA	
31.3.3 Recommendation	7

PART IV SHORT-TERM DEVELOPMENT PLAN FOR IWT SYSTEM IN HANOI SEGMENT FOR 2010

Chapter 32	Transport Demand for 2010	
32.1	River section traffic volume	
32.2	Transport demand in Hanoi	
32.3	Projection of passenger demand (2010)	

32.4	Passenger demand for the river cruise	32-2
Chapter 33	Future Vessel Size of IWT Fleet in Hanoi Segment for 2010	33- 1
33.1	Future vessel size	33- 1
33.2	Future fleet mix	33- 1
Chapter 34	Short-term Development Plan of Navigation Channel for 2010	34- 1
34.1	Dimensions of navigation channel	34- 1
34.2	Alignment of navigation channel	34- 3
34.3	Navigation safety measures for Duong Bifurcation	34- 7
34.4	Navigation aids	.34-11
Chapter 35	Short-term Development Plan of Channel Stabilization	
	Measures	
35.1	Selection of priority facilities	
35.2	Staged construction plan	
35.3	Notes to be considered	35-2
Chapter 36	Short-term Development Plan of Ports for 2010	36- 1
36.1	Required port facilities and equipment for major ports	
	in Hanoi Segment	
	36.1.1 Distribution of cargo to each Port/Berth	
	36.1.2 Required length and depth of berth for major ports	36- 4
	36.1.3 Required handling equipment for major ports	36- 5
	36.1.4 Required land space for major ports	36- 6
	35.1.5 Required number of access road lanes for major ports	36-7
	36.1.6 Required elevation of port facilities for major ports	36-7
36.2	Hanoi Port	.36-10
36.3	Khuyen Luong Port	.36-12
36.4	New North Port	.36-14
36.5	New East Port	.36-14
36.6	New passenger berth	.36-18
Chapter 37	Management and Operation Scheme	37- 1
37.1	Administration, management and operation of ports	37- 1
	37.1.1 Classification of ports	37- 1
	37.1.2 Role sharing for port management and operation	37- 1
	37.1.3 Proper port management	
	37.1.4 Restriction of new berth construction	
	37.1.5 Strengthening competitiveness of state operated ports	
		=

	37.1.6	Introduction of Management Information System (MIS) .37-1
	37.1.7	Improvement of port statistics
	37.1.8	Setting appropriate port dues/charges
	37.1.9	Organization chart of Major Port operators
	37.1.10	Council Meeting of 5 Major Ports
	37.1.11	Introduction of support system for private company
		participation in IW sector
37.2	Adminis	stration and management of Inland Waterway
	37.2.1	Classification of IW
	37.2.2	Role Sharing for IW management
	37.2.3	Introduction of appropriate management equipment37-4
	37.2.4	Introduction of Management Information System (MIS) .37-5
	37.2.5	Information Service System
	37.2.6	Revision of IW cargo transport tariff
	37.2.7	Strict control for illegal sand exploitation
	37.2.8	Enactment of legal framework to regulate newly-built
		bridge clearances
Chapter 38	Prelimin	ary Design, Cost Estimation and Construction Schedule .38-1
38.1 Prelimi		ary design
	38.1.1	Natural design conditions
	38.1.2	Channel stabilization facilities
	38.1.3	Port facilities
38.2	Cost es	timation
38.3	Constru	ction schedule
38.4	Foreign	/local currency portions of project cost and investment
	sched	ule
38.5	Recom	mendations
Chapter 39	Environ	mental Impact Assessment (EIA)
	and So	cial Consideration
39.1	Introdu	ction
39.2	Current	state of the environment at the proposed project area.39-1
	39.2.1	Natural conditions
	39.2.2	Environmental conditions
	39.2.3	Preset land use behind short-term ports development
		area and social consideration
39.3	Environ	mental impact prediction and assessment
	of the p	project
	39.3.1	Description of potential sources of environmental

		pollution and degradation	39-17
	39.3.2	Assessment of potential impacts during the	
		implementation of the project	39-19
39.4	Negati	ve impact mitigation measures	39-21
39.5	Follow-	up environmental monitoring and management	39-23
	39.5.1	Environmental management and training programs	39-23
	39.5.2	Environmental monitoring programs	39-24
39.6	Conclu	usions and recommendations	39-27

PART V FEASIBILITY STUDY ON THE PRIORITY PROJECTS

Chapter	40	Econor	nic Analysis of the Project40-1
40	0.1	Method	d of economic analysis40-1
40	0.2	Econor	nic cost
40	0.3	Econor	nic benefit40-2
4(0.4	Econor	nic viability40-4
Chapter	41	Financi	al Analysis of the Project41-1
4	1.1	Method	d of financial analysis41-1
4	1.2	Financi	al costs41-1
4	1.3	Project	ed revenue41-2
4	1.4	Financi	al viability
Chapter	42	Compre	ehensive Environmental Evaluation42-1
42	2.1	Introdu	ction
42	2.2	Waste p	oollution
		42.2.1	Waste pollution loads
		42.2.2	Waste pollution control42-4
42	2.3	Oil spill	control
42	2.4	Fire and	d exploitation control42-7
42.5 Cost estimation		timation42-8	
		42.5.1	Cost estimation for waste pollution control42-8
		42.5.2	Cost estimation for oil spill control
		42.5.3	Cost estimation for fire and exploitation fighting
		42.5.4	Total cost for pollution control and risk response
42	2.6	Positive	environmental effect of the project42-11
42	2.7	Conclu	sions and recommendations42-11

PART VI OVERALL EVALUATION AND RECOMMENDATIONS

Chapter	43	Overall	Evaluation and Recommendations	43-1
4	3.1	Importo	ance and urgency of the project in the Hanoi segment	43-1
		43.1.1	Development of ports and waterways	43-1
		43.1.2	Channel stabilization	43-3
4	3.2	Project	risks and recommendation on project implementation	43-4
		43.2.1	Channel stabilization	43-4
		43.2.2	Ports and waterways	43-5
4	3.3	Recom	mendation on management and operation system	.43- 6
		43.3.1	Ports	43-7
		43.3.2	Inland waterways	43-8

List of Tables

Table 1.1.1	Present Land Use	1-3
Table 1.2.1	Population and Its Average Annual Growth Rate	1- 4
Table 1.2.2	GDP Growth Rate by Sector	1- 5
Table 1.2.3	GDP and Its Sectoral Composition at Current Price, 1999	1-6
Table 1.2.4	Employment by Region and Sector, 1997	1-7
Table 1.3.1	Road Network	1-8
Table 1.3.2	Inland Waterway Neteork	1-9
Table 2.1.1	Major Sectoral Actions recommended in the Master Plan	2- 2
Table 2.2.1	Major Industrial Zones	2- 4
Table 2.3.1	Existing and Proposed Industrial Zones	2- 7
Table 2.4.1	Major Steel Plants in the North (Existing and Planned)	2-10
Table 2.4.2	Major Cement Plants in the North (Existing and Planned)	2-11
Table 2.4.3	Major Fertilizer Plants in the North (Existing and Planned)	2-12
Table 2.4.4	Existing Power Plants in the North, 1999	2-12
Table 2.4.5	Planned Thermal Power Plants in the North	2-13
Table 3.1.1	Existing Highways in Comparison with Railways and Waterw	ays3- 3
Table 3.2.1	Master Plan of Road Development	
	in The Red River Delta up to 2020	3-12
Table 3.3.1	Surveyed Railway Traffic on the Duong Bridge	3-19
Table 5.1.1	List of Projects	5- 3
Table 5.1.2	IWT Cargo Forecasts in Northern Vietnam	5- 3
Table 5.2.1	Development Program of Major River Ports	5- 9
Table 5.3.1	Summary Sheet of the Training Position Configuration	5-12
Table 5.3.2	Port and Berth System	5-13
Table 6.1.1	Outline of the River System in the North	6- 2
Table 6.1.2	Transport Demand in 1999	6- 3
Table 6.2.1	Transport Demand on Major Inland Waterway Routes	6- 8
Table 6.3.1	Gross Output, 1999	6-10
Table 6.4.1	Domestic Seaborne Traffic in 1995	6-14
Table 6.4.2	Traffic Volumes for 1995 – 1998	6-16
Table 6.4.3	Traffic in Major Ports	6-17
Table 6.4.4	Total Throughput and Output by Vietnam's Ships	6-17
Table 7.1.1	Location & Operator of Ports in the Northern Region	7- 2
Table 7.1.2	Shipcalls to River Ports & Berths counted	
	by IWPA Zone I & II (2001)	7- 4
Table 7.1.3	Cargo Throughput of River Ports/Berths	
	in the Red River Delta(2001)	7- 6

Table 7.2.1	Outline of Hanoi Port7-	7
Table 7.2.2	Berths of Hanoi Port7-	8
Table 7.2.3	Cargo Throughput of Hanoi Port7-	8
Table 7.2.4	Major Commodities & Flow Pattern at Hanoi Port (2001)7-	8
Table 7.2.5	Outline of Khuyen Luong Port7-1	2
Table 7.2.6	Berths of Khuyen Luong Port7-1	3
Table 7.2.7	Cargo Throughput of Khuyen Luong Port7-1	3
Table 7.2.8	Major Commodities & Flow Pattern at Khuyen Luong Port (2001).7-1	3
Table 7.2.9	Shipcalls & Vessel Size at Khuyen Luong Port7-1	3
Table 7.2.10	Existing Ports/Berths in Hanoi Segment7-1	9
Table 7.2.11	Throughput Estimation of Berth Groups (2001)7-2	20
Table 7.2.12	Estimated Throughput of Berth Groups by Cargo Type (2001)7-2	20
Table 7.3.1	Outline of Viet Tri Port7-2	21
Table 7.3.2	Berths of Viet Tri Port7-2	21
Table 7.3.3	Cargo Throughput of Viet Tri Port7-2	22
Table 7.3.4	Major Commodities & Flow Pattern at Viet Tri Port7-2	22
Table 7.3.5	Shipcalls & Vessel Size at Viet Tri Port7-2	22
Table 7.3.6	Outline of Ninh Binh & Ninh Phuc Ports7-2	26
Table 7.3.7	Berths of Ninh Binh & Ninh Phuc Ports7-2	27
Table 7.3.8	Cargo Throughput of Ninh Binh & Ninh Phuc Ports7-2	27
Table 7.3.9	Major Commodities & Flow Pattern	
	at Ninh Binh & Ninh Phuc Ports7-2	27
Table 7.3.11	Outline of Nam Dinh Port7-3	33
Table 7.3.12	Berths of Nam Dinh Port7-3	33
Table 7.3.13	Cargo Throughput of Nam Dinh Port7-3	33
Table 8.1.1	Cargo Throughput of Hai Phong Port8-	3
Table 8.1.2	Commodity-wise Throughput of Hai Phong Port (2001)8-	3
Table 8.1.3	Port Facilities & Equipment of Hai Phong Port8-	4
Table 8.1.4	Container Terminals of Hai Phong Port8-	5
Table 8.1.5	Distance from Hai Phong Port8-	5
Table 8.1.6	Cargo Throughput of Cai Lan & Quang Ninh Ports8-	8
Table 8.1.7	Cargo Throughput of Cai Lan Port8-	8
Table 8.1.8	Port Facilities & Equipment of Cai Lan Port & Quang Ninh Port8-	8
Table 8.1.9	Existing Port Facilities & Development Plan of Cam Pha Port8-1	0
Table 8.1.10	Cargo Throughput of Da Nang Port8-1	2
Table 8.1.11	Port Facilities and Throughput of Da Nang Port8-1	2
Table 8.2.1	Cargo Throughput of Vietnamese Seaports by Commodity8-1	5
Table 8.2.2	Cargo Throughput of Vietnamese Seaports by Port Group8-1	5
Table 8.2.3	Some Main Project of Vietnamese Seaports (2000-2010)8-1	5
Table 9.1.1	Technical Classification of Inland Waterways9-	1

Table 9.2.1	Major IWT Corridors in the Red River Delta
Table 9.2.2	Passing Vessels in the Red River Delta counted by IWMS (2001)9-6
Table 9.2.3	Passing Vessels in Sections nearby Hanoi
	counted by IWMS (2001)
Table 9.2.4	Temporary Classification of Waterways
	in the Northern Region (1)9-8
Table 9.2.5	Temporary Classification of Waterways
	in the Northern Region (2)9-9
Table 9.2.6	Management Class of Waterways in the North9-10
Table 9.3.1	Bridge Spanning the Major IWT Corridots9-12
Table 9.3.2	Bridge Clearance in the Red River Delta9-13
Table 9.3.3	Electric Wires spanning the IWT Corridors9-15
Table 9.3.4	Capital & Maintenance Dredging proposed in ADB study9-16
Table 9.3.5	Existing Bends with Radius less than 700m9-17
Table 9.4.1	Seasonal Change of Waterway Traffic accidents9-22
Table 9.4.2	Waterway Traffic Accidents in Major Corridors (1999 – 2001)9-23
Table 9.5.1	Inventory of Navigation Aids in the Major corridors9-24
Table 10.1.1	Basic Demarcation in Port Administration, Management
	and Operation10-1
Table 10.3.1	River Ports
Table 10.4.1	List of Charges and Dues Related to Inland
	Waterway Transport10-17
Table 10.4.2	Procedure Charge10-18
Table 10.4.3	Cargo Handling Charges (Excluding Container and Car)10-19
Table 10.4.5	Cargo Handling Charges for Container and Automobile
Table 10.5.1	Principle Decisions and Decrees Related to
	Inland Waterway Sector (1)10-22
Table 10.5.2	Principle Decisions and Decrees Related to
	Inland Waterway Sector (2)10-23
Table 11.1.1	Budget Implement Plan of VIWA in the Northern Region11-2
Table 12.1.1	Cargo Handling Equipment of Hanoi & Khuyen Luong Ports12-2
Table 12.1.2	Cargo Handling Method of Hanoi & Khuyen Luong Ports12-2
Table 12.1.3	Cargo Handling Productivity12-3
Table 12.1.4	Average Cargo Handling Productivity12-3
Table 12.1.5	Standard Gang Composition of Khuyen Luong Port12-3
Table 13.1.1	Land Area and Population in Hanoi City by Districts13-2
Table 13.1.2	Road Condition in Hanoi City13-5
Table 13.1.3	List of Berths and Ports in the Red River Segment
	through Hanoi Ciry13-7
Table 13.2.1	Framework of Population and Area13-9

Table 13.2.2	Urban Development Master Plan and Detailed Plan	13-10
Table 13.2.3	Existing Industrial Estate in Hanoi city	13-11
Table 13.2.4	The Outline of New Industrial Zones	13-12
Table 13.2.5	Land Use Area List	13-14
Table 13.3.1	Outline of the Study River Space	13-17
Table 13.3.2	Land Use Inside the Red River	13-19
Table 13.3.3	Land Area and Population inside the Red River	13-21
Table 13.3.4	People Living near Dyke	13-28
Table 13.4.1	Land Price	13-33
Table 13.4.2	Land Price in Hanoi City	13-34
Table 13.4.3	Summary of Items of Compensation and Subsidy	13-35
Table 14.3.1	Maximum and Minimum Water Levels Recorded in Hanoi St	ation14-7
Table 14.3.2	Maximum and Minimum Water Levels and Discharges	
	Recorded in the past	14-9
Table 14.3.3	Statistical Maximum and Minimum Water Levels at Hanoi Sta	ation
	(1956 – 2001)	14-9
Table 14.3.4	Water Levels at Hanoi Station for Design Purposes (1956 – 20	01) 14-10
Table 14.3.5	Warning Water Levels in the Red River Basin	14-10
Table 14.3.6	Damages by Floods in the Red River and the Duong River	
	(in August 2002)	14-12
Table 14.3.7	Water Level for Dyke Design defined by MARD	14-13
Table 14.5.1	General Flow and Sediment-Transport Characteristics of	
	the Major Tributaries of the Red River	14-37
Table 14.5.2	Some Indicative Average Current Velocity Values	
	in the Hanoi Section of the Red River (MOT TEDIPort, 2001)	14-38
Table 15.1.1	Water Quality of the Cau River	15-3
Table 15.1.2	Urban Distribution on the Northern Focal Zone and	
	Red River Delta	15-7
Table 15.2.1	Population in the Inner Hanoi	15-8
Table 15.2.2	Population in Hanoi City by the Year of 2020	15-8
Table 15.2.3	Waste Water Volume and Loads of the Organic Matter	15-9
Table 15.2.4	Pollution Levels in the To Lich and Kim Nguu Rivers	15-10
Table 15.2.5	Air Quality in Hanoi city	15-11
Table 15.4.1	Specifications of Projects Requiring EIA and Appraisal	
	Organizations	15-16
Table 15.4.2	Circulations and Decisions Effected	15-17
Table 15.6.1	Total Area, Population and Population Density of	
	the Study Area	15-23
Table 15.6.2	Urban and Rural Populations in the RRD (in 2000)	15-24
Table 15.6.3	Families and Holdings affected per Location	15-28

Table 15.6.4	Agriculture Gross Outputs15-30
Table 15.6.5	Fishery Gross Outputs15-31
Table 15.6.6	Fish and Shrimp gross Outputs and Breeding Areas in 2000 Year 15-32
Table 15.6.7	Number of Establishments and Industrial Gross Outputs15-33
Table 15.6.8	List of Existing Industrial Parks in the Red River Basin
Table 15.6.9	Detailed Plan for Development of Industrial Parks in
	the Red River Delta15-35
Table 15.6.10	LocalTransport in the RRD in 2000 Year15-38
Table 15.6.11	Present Land Use in the RRD15-38
Table 16.1.1	Summary of Population Forecast16-2
Table 16.1.2	Population Forecast by Rrovince16-2
Table 16.2.1	Input Data for National GDP Estimate16-5
Table 16.2.2	Economic Development Alternatives16-6
Table 16.2.3	GDP Estimate Results
Table 16.2.4	Sectoral Growth during Project Period16-7
Table 16.2.5	GDP Estimation Results by Region16-8
Table 16.2.6	GDP Estimate Results by Province
Table 16.2.7	Comparison of Economic Development Estimates16-10
Table 17.1.1	International Comparison of Inland Waterways
Table 17.1.2	Distance Table among Major Ports in the RRD17-2
Table 17.1.3	Energy Consumption and CO2 Discharge by Transport Mode 17-3
Table 17.2.1	Historical GDP & Population Change17-5
Table 18.2.1	Summary of Cargo Demand Forecast
Table 18.2.2	Traffic volume on the Selected River Sections
Table 18.2.3	Comparison with Other Studies
Table 18.3.1	IW Potential Route Selection
Table 18.3.2	Total Number of Passenger Trips in the North
Table 18.3.3	Summary of Passenger Transport Demand Forecast
Table 18.3.4	Sensitivity Analysis
Table 18.3.5	Passenger Demand Forecast for Existing IW Route
Table 18.3.6	Comparison with VIWA's Study
Table 19.1.1	Fleet Capacity of IWT in Vietnam (GSO data)19-2
Table 19.1.2	Vessel Fleet for IWT in Vietnam by Type (VR data)19-3
Table 19.1.3	Vessel Fleet for IWT in Vietnam by Region (VR data)19-3
Table 19.1.4	Size of Barge Train System (NOWATRANCO)19-4
Table 19.1.5	Size of Barge Train System (Ninh Binh Port)19-4
Table 19.1.6	Size of Sea-cum-River Vessel (Ninh Binh Port)19-5
Table 19.1.7	Size of Sea Vessel (900 – 1100 DWT)19-5
Table 19.1.8	Standard Vessel Size for IWT (VIWA)19-6
Table 19.1.9	Trial Calculation of Vessel Size for IWT

Table 19.2.1	Annual Operating Cost of Barge Train	3
Table 19.2.2	Trial Calculation of Least Dimensions of Waterways19-14	4
Table 19.2.3	Possible Future Dimensions of Waterways19-13	5
Table 19.2.4	Future Fleet Mix in the Red River Delta	
	(DWT share by size class)	7
Table 19.2.5	Future Fleet Mix in Hanoi Segment	
	(DWT share by size class)	7
Table 20.1.1	Major River Ports in the Red River Delta (2020)20-2	2
Table 20.1.2	Cargo Throughput by Province in the Northern Region (2001) 20-3	3
Table 20.1.3	Cargo Throughput by Province in the Northern Region (2020) 20-3	3
Table 20.1.4	Cargo Throughput excluding Specialized Ports,	
	Seaports, etc. (2001)	4
Table 20.1.5	Cargo Throughput excluding Specialized Ports,	
	Seaports, etc. (2020)	4
Table 20.1.6	Handling Capacity of Berth for Bulk (2020 at ports)20- of	6
Table 20.1.7	Handling Capacity of Berth for Non-bulk (2020 at ports)20-	6
Table 21.1.1	Vessel Traffic by Stretch (2001, case-1:Fleet Mix=RRD)21-	5
Table 21.1.2	Vessel Traffic by Stretch (2020, case-1:Fleet Mix=RRD)21-	6
Table 21.1.3	Vessel Traffic by Stretch (2001, case-2:Fleet Mix=Hanoi)21-2	7
Table 21.1.4	Vessel Traffic by Stretch (2020, case-2:Fleet Mix=Hanoi)21-8	8
Table 21.1.5	Average Interval of Vessels (case-1:Fleet Mix=RRD)21-9	9
Table 21.1.6	Traffic Capacity of Double-way Channel	
	(case-1, Fleet Mix:RRD)21-9	9
Table 21.1.7	Average Internal of Vessels (case-2, Fleet Mix=Hanoi)21-9	9
Table 21.1.8	Traffic Capacity of Double-way Channel	
	(case-2, Fleet Mix=Hanoi)21-10	С
Table 21.1.9	Future Performance of Major IWT Corridors21-10	С
Table 21.1.10	Future Waterway Classification of Major IWT Corridors21-1	1
Table 23.1.1	Cargo Flow in Hanoi Segment (2001)23-2	2
Table 23.1.2	Section Traffic (2001)	2
Table 23.1.3	Cargo Flow in Hanoi Segment (2010)23-2	2
Table 23.1.4	Section Traffic (2010)	2
Table 23.1.5	Cargo Flow in Hanoi Segment (2020)23-3	3
Table 23.1.6	Section Traffic (2020)23-3	3
Table 23.2.1	Cargo Throughput of Ports/Berths in Hanoi Segment (2001)23-1	1
Table 23.2.2	Basic Data of Hanoi City23-1	1
Table 23.2.3	Distance between Dykes in Hanoi Segment	4
Table 23.2.4	Land Use of Flood Plane in Hanoi Segment23-1	5
Table 23.2.5	Evaluation of River Bank for Port Site	
	in Hanoi Segment (Right Bank)23-16	6

Table 23.2.6	Evaluation of River Bank for Port Site	
	in Hanoi Segment (Left Bank)23-12	7
Table 23.2.7	Future Main Hinterland of Ports/Berths in Hanoi Segment23-20	С
Table 23.2.8	Cargo Throughput of Ports/Berths	
	in Hanoi Segment (2001, 2020)23-23	3
Table 24.2.1	Development Plan of Sea-Cum-Riverways	2
Table 24.2.2	Cargo Volume by Coastal Shipping, 199924-3	3
Table 24.2.3	Economic Transport Cost	4
Table 24.2.4	Summary of SRV Transport Demand Forecast	6
Table 24.3.1	Export and Import by Commodity Item at Northern Ports24-2	7
Table 24.3.2	Volume of Container Cargo24-8	8
Table 24.3.3	Volume of Container Cargo between Hanoi and Port Group24-8	8
Table 24.3.4	Cost and Time Comparison, Hanoi – Hai Phong	9
Table 24.3.5	Potential IWT Container Demand24-9	9
Table 24.3.6	Comparison Between Growth Rates and Other Indicators24-10	С
Table 24.4.1	Summary of Transport Demand in Hanoi24-10	С
Table 24.5.1	Change of Tourist Arrived by Year (1996 – 2000)24-12	2
Table 24.5.2	Projection of Tourist Arrivals to Hanoi	2
Table 24.5.3	Projection of River Cruise Tourism in Hanoi24-13	3
Table 24.5.4	Type of River Cruise	3
Table 24.5.5	Typical Attraction for River Cruise in Hanoi	4
Table 25.1.1	Future Dimension of Navigation Channel in Hanoi Segment25-	1
Table 25.1.2	H5% Water Level at Bridges (cm)25-	4
Table 25.1.3	Vertical Clearance of Bridges (m)25-	4
Table 25.2.1	Historical Change of River Form	6
Table 25.2.2	Evaluation of River Alignment Alternatives	6
Table 25.3.1	Decrease of Regulated Period by Improving Duong Bridge25-1	1
Table 25.4.1	Evaluation of Crossing Point Alternative at Duong Bifurcation25-18	8
Table 25.5.1	Proposed Number of Main Navigation Aids25-19	9
Table 26.1.1	Boundary Conditions (Dry Season)	3
Table 26.3.1	Estimated Volume of Capital Dredging	4
Table 26.3.2	Estimated Volume of Capital Dredging along Basic Sinuosity26-22	7
Table 26.7.1(1)) Hydraulic Characteristics of Alternatives (Flood Season)	2
Table 26.7.1(2)) Hydraulic Characteristics of Alternatives (Dry Season)	4
Table 26.7.2	Increase in Flood Water Level due to Channel Stabilization	
	Facilities (Water depth: 12.5m at Hanoi H-M Station	6
Table 26.7.3	Summary and Comparison of Hydraulic Characteristics	
	(H=3.3m, 9.2m and 12.5m, Alternative 1)	7
Table 26.7.4	Change in Flood Water Level due to Channel Stabilization	
	Facilities Taken Account of Effect of Riverbed Erosion	

	(Water depth: 13.4m at Hanoi H-M Station)26-80
Table 26.7.5	comparison of Hydraulic Parameters for Extremely High Flood
	(H=13.4m) (Present Condition and Alternative 5s)26-81
Table 26.8.1	Required Channel Width based on
	Theoretical Balance Equation
Table 26.8.2	Hydraulic Characteristics of the Flow (Dry Season)
Table 26.8.3	Hydraulic Characteristics of the Flow (Flood Season)
Table 26.9.2	Rate of Sedimentation in Planned Channel Assessed by
	Numerical Simulation
Table 27.1.1	Cargo Throughput of Ports/Berths in Hanoi Segment (2020)27-1
Table 27.1.2	Converted Berth Length of Hanoi & Khuyen Luong Ports27-2
Table 27.1.3	Required Length of Cargo Berth in 202027-2
Table 27.1.4	Required Handling Equipment for Major Ports (2020)27-4
Table 27.1.5	Required Land Space for Major Ports (2020)27-5
Table 27.1.6	Required Number of Access Road Lanes for Major Ports (2020)27-6
Table 27.1.7	Required Elevation of New Port Facilities27-6
Table 27.2.1	Master Plan of Hanoi Port (2020)27-8
Table 27.3.1	Master Plan of Khuyen Luong Port (2020)27-10
Table 27.4.1	Evaluation of Alternatives on New North Port
Table 27.4.2	Master Plan of New North Port (2020)27-13
Table 27.5.1	Master Plan of New East Port (2020)27-17
Table 27.6.1	Potential Passenger Demand from Hanoi27-19
Table 27.6.2	Sensitivity Analysis on Passenger Demand from Hanoi27-19
Table 27.6.3	Existing Bus Transport Service
Table 27.6.4	Tentative Service Schedule of Passenger Boat (HN-HY-TB)27-22
Table 27.6.5	Required Seats of Passenger Boat and Estimated Revenue
	(HN-HY-TB, Case-1 : IWT fare = Bus fare)27-22
Table 27.6.6	Required Seats of Passenger Boat and Estimated Revenue
	(HN-HY-TB, Case-2: IWT fare = Bus fare + VND 10,000)27-23
Table 27.6.7	Required Seats of Passenger Boat and Estimated Revenue
	(HN-HY-TB, Case-3 : IWT fare = Bus fare with 50% raised)27-23
Table 27.6.8	Tentative Service Schedule of Passenger Boat (HN-VT-PT)
Table 27.6.9	Required Seats of Passenger Boat and Estimated Revenue
	(HN-VT-PT, Case-1 : IWT fare = Bus fare)27-24
Table 27.6.10	Required Seats of Passenger Boat and Estimated Revenue
	(HN-VT-PT, Case-1 : IWT fare = Bus fare + VND 10,000)27-25
Table 27.6.11	Required Seats of Passenger Boat and Estimated Revenue
	(HN-VT-PT, Case-1 : IWT fare = Bus fare with 50% raised)27-25
Table 27.6.12	Master Plan of New Passenger Terminal (2020)27-26
Table 27.6.13	Conceptual Dimensions of Passenger Terminal Building27-26

Table 27.6.14	Major Tourist Attractions in and around Hanoi Segment	27-28
Table 27.7.1	Preliminary Desirable Features of Chem Berths (2020)	27-30
Table 28.1.1	Type of Port Management and Operation	28- 2
Table 28.1.2	Merits and Demerits of Each Type from the Viewpoint of	
	the Government	28- 3
Table 28.1.3	Participation and Financial Burden of the Government by Po	rt
	Management and Operation Type	28- 4
Table 28.1.4	Desirable Type of Port Management and Operation	28- 4
Table 28.1.5	Comparison of Cargo Handling Efficiency	28- 6
Table 28.1.6	Areas covered by MIS	28- 8
Table 28.1.7	Example of Article Classification	28-11
Table 28.1.8	Investment for Ports/Berths by Private Sector	28-16
Table 28.2.1	Competent Authority by IW classification	28-18
Table 28.2.2	Vessels Required to be introduced in 2020 by Sub-stations	28-19
Table 28.2.3	Management Equipment Required to be Introduced in the H	anoi
	Segment in 2020	28-20
Table 28.2.4	Proposed Number of Staff of Chem Sub-station	28-20
Table 28.2.5	Proposed Number of Staff of Hanoi Sub-station	28-21
Table 28.2.6	Proposed Number of Staff of Khuyen Luong Sub-station	28-21
Table 28.2.7	Comparison of Media for IW Information Service	28-26
Table 29.1.1	Dimensions of Design Vessels	29- 1
Table 29.1.2	Unit Weight of Primary Construction Materials	29- 2
Table 29.1.3	LWLs at in the Red River Hanoi Segment	29- 4
Table 29.2.1	Summary of Cost Estimation for Master Plan Project (2020)	29-10
Table 29.2.2	Cost Estimation Sheet (1)	29-11
Table 29.2.3	Cost Estimation Sheet (2)	29-12
Table 29.2.4	Cost Estimation Sheet (3)	29-13
Table 29.2.5	Cost Estimation Sheet (4)	29-14
Table 30.1	Standard Conversion Factors and Cost Demarcation	30-11
Table 30.2	Summary of Economic Transport Cost	30-12
Table 30.3	Average Cost of Cargo Handling and Port Operation	30-16
Table 30.4	Change of Fleet Mix and Saved SOC	30-17
Table 30.5	Result of Economic Analysis (Whole System)	30-17
Table 30.6	Transport Cost Comparison for Corridor 4B	30-18
Table 30.7	Result of Economic Analysis (Corridor 4B for SRV)	30-18
Table 30.8	Transport Cost Comparison for Corridor 3NB	30-19
Table 30.9	Result of Economic Analysis (Corridor 3NB for SRV)	30-19
Table 31.1.1	Sites for Monitoring of Sedimentation Levels	30- 1
Table 31.1.2	Sites for Water Sampling and In Situ Measurement	31-2
Table 31.1.3	Sites for Monitoring of Benthos in Riverbed	31-2

Table 31.1.4	Sites for Air Sampling
Table 31.1.5	Results of Measurement of Sediment Materials Quality
Table 31.1.6	Results of Measurement of Water Quality
Table 31.1.7	Results of Distribution of Particle Size of Suspended Solid
Table 31.1.8	Results of Measurement of Benthos in Riverbed
Table 31.1.9	Results of Measurement of Air Quality (in the first day)31-11
Table 31.1.10	Results of Measurement of Air Quality (in the second day)31-12
Table 31.2.1	Initial Environmental Examination Check List
Table 32.1	Transport Volume on the Selected River Section
Table 32.2	Summary of Transport Demand in Hanoi up to 2010
Table 32.4	Projection of Tourist Arrivals and River Cruise Demand (2010)32-3
Table 33.1.1	Possible Future Dimensions of Waterways for 2010
Table 33.2.1	Future Fleet Mix in Hanoi Segment (DWT share by size class)33-2
Table 34.1.1	Dimensions of Navigation Channel in Hanoi Segment (2010)34-1
Table 34.3.1	Evaluation of Crossing Point Alternatives at Duong Bifurcation34-10
Table 34.5.1	Proposed Number of Main Navigation Aids
Table 35.2.1	Construction Sequences of Channel Stabilization Facilities35-4
Table 36.1.1	Cargo Throughput of Ports/Berths Groups in Hanoi Segment
	(2010)
Table 36.1.2	Required Length of Cargo Berth in 2010
Table 36.1.3	Required Handling Equipment for Major Ports (2010)36-6
Table 36.1.4	Required Land Space for Major Ports (2010)
Table 36.1.5	Required Number of Access Road Lanes for Major Ports (2010)36-7
Table 36.1.6	Required Elevation of New Port Facilities
Table 36.2.1	Short-term Development Plan of Hanoi Port (2010)
Table 36.3.1	Short-term Development Plan of Khuyen Luong Port (2010)
Table 36.4.1	Short-term Development Plan of New North Port (2010)
Table 36.5.1	Short-term Development Plan of New East Port (2010)
Table 36.6.1	Short-term Development Plan of New Passenger Terminal
Table 37.2.1	Vessels Required to be Introduced in 2010 (Chem Sub-station)37-4
Table 37.2.2	Vessels Required to be Introduced in 2010 (Hanoi Sub-station) 37- 4
Table 37.2.3	Vessels Required to be Introduced in 2010
	(Khuyen Luong Sub-station)
Table 37.2.4	Vessels Required to be Introduced in 2010 by Sub-stations
Table 37.2.5	Management Equipment Required to be Introduced in Hanoi Segment in 2010
Table 38.1.1	Water Levels for the Design Purpose
Table 38.1.2	General Conditions of the Ports
Table 38.1.3	Mooring Force
Table 38.1.4	Berthing Energy

Table 38.1.5	Reaction Force of Rubber Fender	38-13
Table 38.1.6	Crown Height of Berths at Ports	38-14
Table 38.1.7	Minimum Front Depths at Ports	38-14
Table 38.1.8	Design Criteria of Structural Materials	38-15
Table 38.1.9	Comparative Design of Pile Materials	38-17
Table 38.1.10	Surveyed Pier Structures	38-23
Table 38.2.1	Summary of Cost Estimate for Short Term Project (2010)	38-27
Table 38.2.2	Allowance Rate for Quantity	38-27
Table 38.2.3	Cost Estimation Sheet	38-28
Table 38.3.1	Necessary Surveys and Analysis during Implementation Stag	e38-32
Table 38.4.1	Currency-wise Ratios of Major Construction Items	38-34
Table 38.4.2	Investment Schedule by Currency	38-34
Table 39.3.1	Activities Causing Potential Environmental Pollution and	
	Degradation	39-17
Table 39.3.2	Potential Environmental Impacts	39-19
Table 39.4.1	Negative Impact Mitigation Measures	
Table 39.5.1	Environmental Monitoring Program	
Table 40.2.1	Initial Capital Investment Amount (2010)	40-1
Table 40.3.1	Hauling Distance of Commodity by IWT and by Truck	40-2
Table 40.3.2	Average Size of Vessel and Truck by Commodity	40-3
Table 40.3.3	Difference of Transport Cost in SOC and VOC	40-3
Table 40.3.4	Cargo Volume Projection by Commodity in Hanoi Segment	40-3
Table 40.3.5	Economic Benefit by Commodity per Ton	40-4
Table 40.4.1	Results of Economic Viability	40-4
Table 40.4.2	Results of Economic Sensitivity Analysis	
Table 41.2.1	Estimated Operation Cost (2010)	41-1
Table 41.3.1	Cargo Handling Charge by Commodity	
Table 41.3.2	Projected Revenue of Each Port	41-2
Table 41.3.3	Projected Revenue of Passenger Terminal Charge	
	In Hanoi Port	
Table 41.4.1	Results of Financial Viability (2010)	41-4
Table 41.4.2	Result of Sensitivity Analysis	41-5
Table 42.2.1	Dust Emission Factors	
Table 42.2.2	Estimation of Dust Loads Emitted from Loading/Unloading th	
	Cargo at the Planned Ports	
Table 42.2.3	Estimation of Dust Loads Emitted from Loading/Unloading th	
	Non-Bulk Cargo at the Planned Ports	
Table 42.2.4	Estimation of Total Dust Loads Emitted from Loading/Unload	-
	Cargo at the Planned Ports	
Table 42.2.5	Waste Water Pollution Factors	42-3

Table 42.2.6	Waste Water Pollution Loads (2010)	42-3
Table 42.2.7	Waste Water Pollution Concentration	42-4
Table 42.2.8	Solid Waste Quantity	42-4
Table 42.5.1	Cost Estimation for Pollution Control	42- 8
Table 42.5.2	Cost Estimation for Oil Spill Control at Each Port	42- 9
Table 42.5.3	Installation of Main Fire Prevention and Fighting Equipment	
	at Each Port	42-10
Table 42.5.4	Total Cost for Pollution Control and Risks Response	42-10
Table 42.6.1	Effect of Project on Decrease in CO ₂ Discharge	41-11
Table 43.1.1	Summary of Port Development in Hanoi Segment	43-2

List of Figures and Photos

Figure 1.1.1	Topography1-2
Figure 1.1.2	Present Land Use1-2
Figure 1.2.1	Population Density by District, 19961-4
Figure 1.2.2	Relation of Labor Force and GDP1-7
Figure 1.3.1	Transport Network1-10
Figure 2.2.1	Major Industrial Zones and Industrial Plants
Figure 2.3.1	Existing and Proposed Industrial Zones in
	the Hanoi Master Plan2- 9
Figure 3.1.1	Highways, Railway and Inland Waterway Network
	in Red River Delta3- 4
Figure 3.1.2	Hanoi Transport Map3- 7
Figure 3.1.3(1)	Transport Volume in Vietnam (1990-2000)
Figure 3.1.3(2)	Transport Volume by Road and Railway
	in the Red River Delta by Province (1999)3- 9
Figure 3.1.4	Modal Share by Trip Distance in Total Cargo Volume
Figure 3.2.1	Plan of Ring Road 3 and Thanh Tri Bridge
Figure 3.3.1	Vehicle Traffic into/out of Hanoi Port (January 2002)3-16
Figure 3.3.2	Surveyed Road Traffic on the Duong Bridge
	(From 7h 00 25/8 to 7h 00 27/8/2002)
Figure 5.3.1	Plans of Training Alignment and Port System Development5-15
Figure 6.1.1	Transport Demand and Modal Share of
	Inland Waterway in Vietnam6- 1
Figure 6.1.2	Transport Demand and Modal Share of
	Inland Waterway in the North6-3
Figure 6.1.3	Relation of GDP and IWT Demand6- 5
Figure 6.2.1	Location of Major Inland Waterway Ports in the North6-6
Figure 6.2.2	Cargo Throughput Structure in the North6- 6
Figure 6.2.3	Major Inland Waterway Stretches and Their Traffic
figure 6.3.1	Cargo Traffic Structure, 20016- 9
Figure 6.3.2	Port-to-Port Movement, 20016-12
Figure 7.1.1	Location of Ports7-3
Figure 7.1.2	Shipcalls to River Ports & Berths counted by
	IWPA zone I & II (2001)7-4
Figure 7.2.1	Layout of Hanoi Port7-9
Figure 7.2.2	Master Plan of Hanoi Port for 20107-10
Figure 7.2.3	Master Plan of Hanoi Port for 20207-11
Figure 7.2.4	Layout of Khuyen Luong Port7-14

Figure 7.2.5	Master Plan of Khuyen Luong Port for 2010	7-15
Figure 7.2.6	Master Plan of Khuyen Luong Port for 2020	7-16
Figure 7.3.1	Layout of Viet Tri Port	7-23
Figure 7.3.2	Master Plan of Viet Tri Port for 2010	7-24
Figure 7.3.3	Master Plan of Viet Tri Port for 2020	7-25
Figure 7.3.4	Layout of Ninh Binh Port	7-28
Figure 7.3.5	Master Plan of Ninh Binh Port for 2010	7-29
Figure 7.3.6	Layout of Ninh Phuc Port	7-30
Figure 7.3.7	Master Plan of Ninh Phuc Port for 2010	7-31
Figure 7.3.8	Master Plan of Ninh Phuc Port for 2020	7-32
Figure 7.3.9	Layout of Ham Dinh Port	7-34
Figure 8.1.2	Layout of Hai Phong Port	8- 6
Figure 8.1.3	Location of Cai Lan Port & Quong Ninh Port	8- 9
Figure 8.1.4	Layout of Cai Lan Port (JBIC project)	8- 9
Figure 8.1.5	Layout of Cam Pha Port	8-11
Figure 8.1.6	Location of Da Nang Port	8-13
Figure 8.1.7	Layout of Tien Sa Port (within Da Nang Port)	8-13
Figure 9.2.1	Major IWT Corridors in the Red River Delta	9- 7
Figure 9.3.1	Location of Bridges	9-14
Figure 9.3.2	Location of Bends with Radius less than 700 m (1)	9-19
Figure 9.3.3	Location of Bends with Radius less than 700 m (2)	9-20
Figure 9.3.4	Location of Bend Cutting Proposed in ADB Study	9-21
Figure 10.1.1	Policy-making procedure	
Figure 10.2.1	Organization Chart of MOT	
Figure 10.2.2	Relationship between VIWA and Other Agencies	10- 5
Figure 10.2.3	Organization Chart of VIWA	
Figure 10.2.4	Organization Chart of IWPA Zone-II	
Figure 10.3.1	Organization Chart of NOWTRANCO	10-14
Figure 10.3.2	Organization Chart of Khuyen Luong Port	10-16
Figure 13.1.1	Hanoi City	13-3
Figure 13.1.2	Transport Infrastructure Development Plan	13-8
Figure 13.2.1	Long Term Industrial Development Plan	13-13
Figure 13.2.2	Locations of Priority Project Sites	13-15
Figure 13.2.3	Master Plan up to the year 2020	13-16
Figure 13.3.1	Land Use inside the Red River	13-18
Figure 13.3.2	Composition of Each Land Use inside the Red River	13-19
Photo 13.3.1	Overview of Farm Land Inside the Left Bank of the	
	Red River from Tam Xa Village	13-23
Photo 13.3.2	Outer Dyke Road around Long Bien Village on the	
	Left Bank of the Red River	13-23

Photo 13.3.3	A Brick Factory, Road and Houses inside the
	Dyke near Long Bien Village13-23
Photo 13.3.4	The Left Shore of the Red River of Ba Tran Pottery
	and Ceramic Factories Site13-23
Photo 13.3.5	Land Use near Tang Long Bridge along the
	Right Side of the Red River13-24
Photo 13.3.6	House and Farm Land in North To Lien Commune13-24
Photo 13.3.7	House on the Waterfront of Red River
	near Chuong Duong Do13-24
Photo 13.3.8	Approach Road to Passenger and Tourist Floating Berth at
	Chuong Duong Do13-24
Photo 13.3.9	The Houses along the Shore of the Red River
	near Chuong Duong Do13-25
Photo 13.3.10	Approach Road to Passenger Berth and Bach Dang Road
	near Chuong Duong Do13-25
Photo 13.3.11	Congested Bach Danbg Road When
	HNPC is sweeping out Discharged13-25
Photo 13.3.12	Cleaning Drain Ditch after taking out
	Mud & Storage Yard for Waste Rubber Tires13-25
Photo 13.3.13	Garbage Stock Spot and Garbage on the
	Slope at Van Kiep Road13-26
Photo 13.1.14	Present Slope Dumped with Garbage Just
	in Upstream Area of Van Kiep13-26
Photo 13.3.15	Place where Construction Material handled in Van Kiep13-26
Photo 13.3.16	Ha Noi Port and Khuyen Luong Port13-26
Photo 13.3.17	Scenery of the Right Bank from Long Bien Bridge13-27
Photo 13.3.18	Submerged Areas on the Right and
	Left Bank of the Foot of Long Bien Bridge13-27
Photo 13.3.19	Scene of Submerged Area at Chuon Duong Do13-27
Photo 13.3.20	Near the Dyke at Long Bien Bridge &
	the Entrance Area of Ba Trang Ceramic Village13-27
Figure 13.3.3	Red River Right Bank Area Plan in Central Hanoi City13-30
Figure 13.3.4	Red River City of General Plan13-31
Figure 14.1.1	Red and Thai Binh River Basin14-2
Figure 14.2.1	Temperature and Rainfall in Lao Cai and Hanoi (1999)14-4
Figure 14.3.1	Locations of Hydro-Meteorological
	Stations in the Red River Delta14- 5
Figure 14.3.2	Distribution of Water Levels in the
	Red River Delta (1971 Flood)14- 6

Figure 14.3.3	Monthly Highest and Lowest Water
	Levels observed at Hanoi Station (1999)14-7
Figure 14.3.4(1)	Variation of Daily Average Water Level
	at Thuong Cat Station in 197114-11
Figure 14.3.4(2)	Variation of Hourly Water Level at Hanoi Station in 199914-11
Figure 14.3.5	Arrangements of Flood Protection
	Facilities in the Red River14-16
Figure 14.4.1	Three River Alignment Alternatives in Hanoi14-22
Figure 14.4.2	Basic Sinuosity of the Red River14-23
Figure 14.4.3	Comparison of Aerial Photographs14-24
Figure 14.4.4	Comparison of River Bed Contour Lines in 1999 and 2002
	(5m interval)14-27
Figure 14.4.5	Changes in Riverbed at the Central
	Hanoi Portion from 1999 to 200214-28
Figure 14.4.6	Locations of Cross Sectional Analysis14-29
Figure 14.4.7(1)	Cross Sectional Comparison of Riverbed
	between 1999 and 200214-30
Figure 14.4.7(2)	Cross Sectional Comparison Riverbed
	between 1999 and 200214-31
Figure 14.4.7(3)	Cross Sectional Comparison Riverbed
	between 1999 and 200214-32
Figure 14.4.7(4)	Cross Sectional Comparison Riverbed
	between 1999 and 200214-33
Figure 14.4.7(5)	Cross Sectional Comparison Riverbed
	between 1999 and 200214-34
Figure 14.4.8	Evolution of (stable) cross-section 2 Thang Long Bridge14-35
Figure 14.4.9	Evolution of (dynamic) cross-section 4 Bai Tu Lien14-36
Figure 14.5.1(1)	Longitudinal Cross Section along Red River
	Talweg through Hanoi City (January 2002)14-40
Figure 14.5.1(2)	Water Depth Datum along the Talweg in the Red River14-41
Figure 14.5.2	Co-relation between d50 on Riverbed and
	50 cm below the Bottom14-42
Figure 14.5.3	Average Daily Discharge at Hanoi Station since 195614-43
Figure 14.5.4	Hydrological Rating Curve H=f(Q) for the Hanoi Station
	(period 1991-1995+Extreme Historic Values and the
	Thuong Cat station on the Duong River, 2001
	(ref TEDI Port and Hydromet)14-44
Figure 14.5.5	Example of a Fixed Station Profiling in Upstream Part of
	Red River Segment 'Hanoi Section'
	(Vert V2 on 15 th of January 2002)14-46

Figure 14.5.6	Relationship between River Discharge (Q in m3/sec) and
	Suspension Concentration (Section in mgds/I) at Hanoi
	Station (1957-2000) ref Hydromet14-46
Figure 14.5.7	Current vs. Particle Size after Gilluly's Curve
Figure 14.5.8	Hydraulic Section for Different Water Levels (m above LSD)
	at the Different Cross-sections for the Year 199914-51
Figure 14.5.9	Hydraulic Section for Different Water Levels (m above LSD)
	at the Different Cross-sections for the Year 200214-52
Figure 14.5.10	Double Rating Curve at Hanoi Station
	(data from 1956 till 2002)14-53
Figure 14.5.11	Rating Curve at Thuong Cat Station
	(data from 1957 till 2000)14-54
Figure 14.5.12	Extrapolated Rating Curve at Cross-section 1
	on the Red River (data from 1956 till 2000)14-55
Figure 14.7.1	Locations of Stranded Ships and Proposed Bend
	Cutting in the Red River Delta (January 2002)14-61
Figure 14.7.2	Locations of Sand Pits where Dredging are
	Carried out (January 2002)14-62
Figure 16.2.1	GDP/GRDP Projection Model (Klein-Kosobud Model)16-3
Figure 16.2.2	GDP Forecast Results Between 1997 and 202016-7
Figure 16.2.3	Historical Trend of Hanoi's GDP Share to RRD's16-8
Figure 17.1.1	Transport Cost Comparison17-3
Figure 17.4.1	Basic Policy for the IWT System in the Red River Delta17-11
Figure 18.1.1	General Framework for Transport Demand Forecast
Figure 18.2.1	Cargo Transport Demand Forecast
Figure 18.2.2	Cargo Transport Demand on River Sections, 2010
Figure 18.2.3	Cargo Transport Demand on River Sections, 202018-7
Figure 18.2.3	Cargo Throughput by Province18-8
Figure 18.3.1	Impact of Fare and Walling Time on
	IW Passenger Demand
Figure 19.1.1	Dimensions of Barge for IWT in the Northern Region19-7
Figure 19.1.2	Dimensions of Self-propelled vessel for
	IWT in the Northern Region19-8
Figure 19.1.3	Dimensions of Tugboat for IWT in the Northern Region
Figure 20.1.1	Cargo Throughput excluding Specialized Ports,
	Seaports, etc
Figure 21.1.1	Numbering of Inland Waterway Stretches21-4
Figure 21.1.2	Future Performance of Major IWT Corridors21-12
Figure 23.1.1	Kilometerage & Coordinates for Hanoi Segment23-5

Figure 23.1.2	Location of Major Landmark in Hanoi Segment23-6
Figure 23.2.1	Location of Ports and Berth Groups in Hanoi Segment23-12
Figure 23.2.2	Skeleton Roads in Hanoi City23-13
Figure 23.2.3	Alternatives for New Port Site in Hanoi Segment23-18
Figure 23.2.4	Cargo Throughput of Ports/Berths in
	Hanoi Segment (2001, 2020)23-24
Figure 23.2.5	Cargo Share of Ports/Berths in Hanoi Segment (2001, 2020)23-24
Figure 23.2.6	Temporary Berth Restricted Banks
	and Potential Areas for Transferred Temporary Berths
Figure 23.2.7	Alternative Locations of Passenger Terminal23-28
Figure 24.2.1	SRV's Preferred Areas from HCMC24-5
Figure 24.3.1	Increase in Manufactured and Other Miscellaneous Goods24-7
Figure 24.4.1	Cargo Traffic Flow in Hanoi Segment24-11
Figure 25.1.1	Typical Cross Section of Navigation Channel25-1
Figure 25.1.2	Cumulative Frequency of Water Level25-3
Figure 25.2.1	Alternative River Alignment25- 5
Figure 25.2.2	Alignment of Navigation Channel in Hanoi Segment
	(case-1)25-8
Figure 25.2.3	Alignment of Navigation Channel in Hanoi Segment
	(case-2)25- 9
Figure 25.3.1	Conceptual Design of Duong Bridge (Alternative-2)25-12
Figure 25.4.1	Daily Vessel Traffic in Hanoi Segment (2001)25-15
Figure 25.4.2	Daily Vessel Traffic in Hanoi Segment
	(2020, Present Pattern)25-15
Figure 25.4.3	Daily Vessel Traffic in Hanoi Segment (2020, MP)25-15
Figure 25.4.4	Daily Vessel Traffic at Duong Bifurcation (2001)25-16
Figure 25.4.5	Daily Vessel Traffic at Duong Bifurcation
	(2020, Present Pattern)25-16
Figure 25.4.6	Daily Vessel Traffic at Duong Bifurcation (2020, MP)25-16
Figure 25.4.7	Crossing Point Alternatives at Duong Bifurcation25-17
Figure 26.1.1	Two-dimensional Cylindrical Coordinate System26-2
Figure 26.2.1(1)	Current Vectors (Dry Season: Present Conditions
	with Existing Groins)26-5
Figure 26.2.1(2)	Ratio of Current Speeds (Dry Season: Present Conditions
	with Existing Groins/without Existing Groins)26-6
Figure 26.2.1(3)	Change of Riverbed (Dry Season: Present Conditions
	with Existing Groins)26-7
Figure 26.2.1(4)	Current Vectors (Dry Season: Present Conditions
	with Existing Groins)26-8
Figure 26.2.1(5)	Ratio of Current Speeds (Flood Season: Present Conditions

	in Flood Section / Dry Season)26-9
Figure 26.2.2(1)	Comparison of Simulated and Measured Present
	Current Velocities
Figure 26.2.2(2)	Comparison of Simulated and Measured Present SS
Figure 26.2.3(1)	Current Vectors (Dry Season: Deviation of Direction
	to the right at Thang Long Bridge)26-13
Figure 26.2.3(2)	Ratio of Current Speeds (Dry Season: Deviation of Direction
	to the Right at Thang Long Bridge / Present Condition with
	Existing Groins)
Figure 26.2.4(1)	Current Vector (Dry Season: Deviation of Direction to the
	Left at Thang Long Bridge)26-15
Figure 26.2.4(2)	Ratio of Current Speeds (Dry Season: Deviation of Direction
	to the Left at Thang Long Bridge / Present Condition
	with Existing Groins)26-16
Figure 26.2.5(1)	Current Vector (Dry Season: Cut of Sand Bar-Case A)26-17
Figure 26.2.5(2)	Ratio of Current Speeds (Dry Season: Cut of Sand Bank
	Case A / Present Condition with Existing Groins)
Figure 26.2.6(1)	Current Vector (Dry Season: Cut of Sand Bar-Case B)
Figure 26.2.6(2)	Ratio of Current Speeds (Dry Season: Cut of Sand Bank
	Case B / Present Condition with Existing Groins)26-20
Figure 26.2.7	Effects of a Cut at Tu Lien-Trung Ha Sand Bar
	on Current Field
Figure 26.2.8	Effects of a Cut at Tu Lien-Trung
	Ha Sand Bar on Riverbed Field
Figure 26.3.1	Areas of Capital Dredging along Talweg26-25
Figure 26.3.2	Areas of Capital Dredging along the Basic Sinuosity26-26
Figure 26.4.1	Basic sinuosity of the Red River Channel
Figure 26.4.2	Trend of Erosion/Accretion from 1999 to 2002)
Figure 26.5.1	River Bank Stabilization with Groins
Figure 26.5.2	Hydromorphological parameters of
	the Red River Ha Noi section
Figure 26.5.3	Comparison of Discharge in Ha Noi Station in the Red River
	and Discharge of Thuong Cat Station in The Duong River 26-39
Figure 26.5.4	Mean Velocities at Different Initial Water Levels at Section 1
	(Existing cross-sections with an indication of bottom profile
	of the Study area)
Figure 26.5.5	Mean Velocities at Different Initial Water Levels at Section 1
	(Full closure of the secondary channels in cross sections 3, 4,
	4s and 5, with an indication of the bottom profile of
	the study area)26-41

Figure 26.5.6	Mean Velocities at Different Initial Water Levels at Section 1
	(Partial closure of the secondary channels in cross sections 3,
	4, 4s and 5, with an indication of the bottom profile of the
	study area)
Figure 26.5.7	Mean Flow Velocities over the Red River Each with Channel
	Construction at Section 4s by the Training Wall of
	Tu Lien – Trung Ha Sand Bank (together with the
	submerged weirs at the secondary channels)
Figure 26.6.1	Proposed Arrangement of Essential Channel
	Stabilization Facilities
Figure 26.2.1(1)	Current Vectors (After Construction of Urgent
	Stabilization Facilities)
Figure 26.6.2 (2)	Ratio of Current Speeds (Before and after Construction of
	Urgent Stabilization Facilities)
Figure 26.6.2(3)	Change of Riverbed (After Construction of Urgent
	Stabilization Facilities)
Figure 26.6.3(1)	Difference of Riverbed Variation (Present Condition versus
	of Urgent Stabilization Facilities)26-50
Figure 26.6.3(2)	Difference of Riverbed Variation (Present Condition
	versus Cut of Tu Lien-Trung Ha Sand Bar)26-51
Figure 26.7.1(1)	Alternative 1 (Dual Channel System)26-54
Figure 26.7.1(2)	Alternative 2 (Narrow Single Channel System)26-55
Figure 26.7.1(3)	Alternative 3 (Wide Single Channel System)26-56
Figure 26.7.2(1)	Conceptual Cross-sectional View of Groins
Figure 26.7.2(2)	Conceptual Cross-sectional View of Submerged Weir
Figure 26.7.2(3)	Conceptual Cross-sectional View of Training Wall
Figure 26.7.2(4)	Conceptual Cross-sectional View of
	the River Bank Revetment26-58
Figure 26.7.3	Locations of Comparison of Hydraulic Parameters26-61
Figure 26.7.4(1)	Current Vectors (Flood Season: Alternative 1)26-66
Figure 26.7.4(2)	Current Vectors (Flood Season: Alternative 2)
Figure 26.7.4(3)	Current Vectors (Flood Season: Alternative 3)26-68
Figure 26.7.5(1)	Ratio of Current Speeds
	(Flood Season: Alternative 1 / Present Condition)26-69
Figure 26.7.5(2)	Ratio of Current Speeds
	(Flood Season: Alternative 2 / Present Condition)26-70
Figure 26.7.5(3)	Ratio of Current Speeds
	(Flood Season: Alternative 3 / Present Condition)26-71
Figure 26.7.6(1)	Current Vectors (Dry Season: Alternative 1)26-72
Figure 26.7.6(2)	Current Vectors (Dry Season: Alternative 2)26-73

Figure 26.7.7(1)	Ratio of Current Speeds (Dry Season:
	Alternative 1 / Present Conditions)
Figure 26.7.7(2)	Ratio of Current Speeds (Dry Season:
	Alternative 2 / Present Conditions)
Figure 26.7.8(1)	Flow Vector of Very High Flood (H=12.5 m, Alternative 1)26-78
Figure 26.7.8(2)	Sedimentation/Erosion Pattern of Very High Flood
	(H=12.5 m, Alternative 1)26-79
Figure 26.7.9(1)	Deepened Areas Assumed as Effect of
	Facilities and Dredging (Alternative 5s)26-82
Figure 26.7.9(2)	Flow Vector of Extremely High Flood
	(H=13.4m, Alternative 5s)26-83
Figure 26.8.1(1)	Permeability of Groins
	(Mound height: 3 m, Permeability of Piles: 0.6)
Figure 26.8.1(2)	Permeability of Groins
	(Mound height: 4m, Permeability of Piles: 0.6)
Figure 26.8.2(1)	Dimensional Characteristics of the Existing Channels in
	the Transitional Season (Water level: CDL + 6.00 m)26-87
Figure 26.8.2(2)	Relationship between Channel Width and Depth26-88
Figure 26.8.3	Current Vector (Dry Season, Alternative 1d
	(Dong Ngoc Groin: Original Location)26-91
Figure 26.8.4	Current Vector (Dry Season, Alternative 4
	(Dong Ngoc Groin: Original Location)26-92
Figure 26.8.5	Current Vector (Dry Season, Alternative 5
	(Dong Ngoc Groin: Moved upstream)26-93
Figure 26.8.6	Locations of the Cross Sections to
	Compare Hydraulic Characteristics
Figure 26.8.7	Longitudinal Distribution of Velocity along
	Talweg (Dry Season)26-96
Figure 26.8.9	Current Vector (Flood Season: H=9.09m, Alternative 5s)26-97
Figure 26.8.10	Ratio of Current Speed
	(Flood Season: H= 9.09m, Alternative 5s)
Figure 26.8.11	Riverbed Variation
	(Flood Season: H= 9.09m, Alternative 5s)
Figure 26.9.1	Profile at the Deepest Point in the
	Tu Lien – Trung Ha Channel26-108
Figure 27.1.1	Location of Ports/Berths (2020)27-3
Figure 27.1.2	Proposed Elevation of Port Facilities
Figure 27.2.1	Master Plan of Hanoi Port (2020)
Figure 27.3.1	Master Plan of Khuyen Luong Port (2020)
Figure 27.4.1	Location of New North Port (2020, Alternative-1)27-14

Figure 27.4.2	Location of New North Port (2020, Alternative-2)
Figure 27.4.3	Master Plan of New North Port (2020)27-16
Figure 27.5.1	Master Plan of New East Port (2020)
Figure 27.6.1	Bus Fare (Service Distance: 40-200 km)27-20
Figure 27.6.2	Layout Image of New Passenger Terminal (2020)27-27
Figure 28.1.1	Organization Chart of Hanoi Port Operator
Figure 28.1.2	Organization Chart of Khuyen Luong Port Operator28-14
Figure 28.1.3	Organization Chart of New North Port Operator28-15
Figure 28.1.4	Organization Chart of New East Port Operator
Figure 28.1.5	Organization Chart of Council Meeting28-16
Figure 28.2.1	Structure of Information Service System in Hanoi Segment 28-23
Figure 29.1.1	Soil Conditions at Van Kiep and Khuyen Luong Ports29-4
Figure 29.1.2(1)	Possible Structure of Passenger Berth in Hanoi Port
Figure 29.1.2(2)	Possible Structure of Passenger Berth in Hanoi Port29-7
Figure 29.1.3	Possible Structure of Cargo Berth29-8
Figure 29.1.6	General Plan of River Training Structures
Figure 34.1.1	Typical Cross Section of Navigation Channel (2010)
	(Red River Hanoi Segment)34- 1
Figure 34.2.1	Alternative River Alignment
Figure 34.2.2	Alignment of Navigation Channel in Hanoi Segment
	(case-1)34- 5
Figure 34.2.3	Alignment of Navigation Channel in Hanoi Segment
	(case-2)
Figure 34.3.1	Crossing Point Alternatives at Duong Bifurcation
Figure 35.1.1	Arrangement of Channel Stabilization Facilities
Figure 36.1.1	Cargo Throughput of Ports / Berths in Hanoi Segment
	(2001, 2010, 2020)
Figure 36.1.2	Cargo Share of Ports/Berths in Hanoi Segment
	(2001, 2010, 2020)
Figure 36.1.3	Proposed Elevation of Port Facilities
Figure 36.1.4	Location of Ports / Berths (2010)
Figure 36.2.1	Short-term Development Plan of Hanoi Port (2010)
Figure 36.3.1	Short-term Development Plan of Khuyen Luong Port (2010)36-13
Figure 36.4.1	Short-term Development Plan of New North Port (2010)36-15
Figure 36.5.1	Short-term Development Plan of New East Port (2010)
Figure 36.6.1	Layout Image of New Passenger Terminal (2010)
Figure 37.1.1	Organization Chart of Hanoi Port Operator
Figure 37.1.2	Organization Chart of Khuyen Luong Port Operator
Figure 37.1.3	Organization Chart of New North Port Operator
Figure 37.1.4	Organization Chart of New East Port Operator

Figure 38.1.1	Investigated Sub-soil Structures in the Ports
Figure 38.1.2	Simulated Current Velocity (Very High Flood)
Figure 38.1.3	Typical Profiles of Groins (Groin-1)
Figure 38.1.4	Typical Profiles of Training Walls (Training Wall-1 and 2)
Figure 38.1.5(1)	Typical Profiles of Bank Protections (Bank Protection 2,3,5,6)38-9
Figure 38.1.5(2)	Typical Profiles of Bank Protections (Bank Protection 7)
Figure 38.1.6	Loading Conditions to Bitt and Fender
Figure 38.1.7	Image of Structural Elevations
Figure 38.1.8	Required Driving Depth of Steel Sheet Piles
	(Khuyen Luong Port)
Figure 38.1.9(1)	Typical Cross Section of Hanoi Port Passenger Berth
Figure 38.1.9(2)	Typical Cross Section of Khuyen Luong Port Cargo Berth38-19
Figure 38.1.9(3)	Typical Cross Section of New North Port Cargo Berth
Figure 38.1.9(4)	Typical Cross Section of New East Port Cargo Berth
Figure 38.1.10	Typical Cross Section of Revetment
Figure 38.1.11	Typical Type of Pavement
Figure 38.1.12(1)	Typical Cross Section of Access Road – 2 Lanes
Figure 38.1.12(2)	Typical Cross Section of Access Road – 3 Lanes
Figure 38.1.13	Estimated Concrete Strengths
Figure 38.3.1	Construction Schedule for Short Term Project (2010)
Photo 39.3.1	The area where a new passenger berth will be
	constructed
Photo 39.3.2	Upstream Scenery and Downstream End of
	Existing Facilities
Photo 39.3.3	Future Port Expanding Area along the
	Shore & Wide behind Area
Figure 39.3.1	New North Port Plan
Photo 39.3.4	Entrance into Hai Boi Commune and
	New North Port from the Dyke
Photo 39.3.5	The Location of the future Access Road from
	the Dyke and Hai Boi
Photo 39.3.6	The Existing Access Road to the Shore Bank of
	the new New North
Photo 39.3.7	The Areas where New North Port will be constructed
Figure 39.3.2	New East Port Plan
Photo 39.3.8	New East Port Developing Area, Downstream of
	Existing Pumping Station
Photo 39.3.9	Wide Area behind the Berth from
	Water Front Line to the Dyke
Photo 39.3.10	Upstream and Downstream Areas of

	Port Structure will be Constructed	
Photo 39.3.11	Access Road will run at the Foot of Dyke and	
	Parallel to Phu Dong Bridge	

PART II

LONG-TERM STRATEGY FOR IWT SYSTEM IN THE RED RIVER DELTA

Chapter 16 Socio-economic Framework

16.1 Population

There are several government documents dealing with population forecast. These documents include population forecast issued by the National Committee for Population and Family Planning (NCPFP) and the Ministry of Construction (MOC). After reviewing the two documents' features, the VITRANSS revised future population, indicating the following points:

(1) The NCPFP is a reliable source and was used as the primary basis for relevant projections, but it is still likely to underestimate rural-to-urban migration caused by urbanization. For instance, provinces considered as growth poles, such as Quang Ninh, Da Nang and Ba Ria – Vung Tau were assumed to have a lower growth rate than other regions to which they belong. Therefore, there is a need to adjust the three provinces' forecast population with that of neighboring provinces to meet urbanization trends.

(2) The MOC expected a sharp increase in the number of urban residents, ie 30.4 million in 2010 and 46 million in 2020 compared with 14.7 million now. This sharp increase which envisions will develop small to medium-sized urban centers all over the country in spite of emerging mega cities, however, does not reflect the trend forecast by the NCPFP and the provincial breakdown made by the MPI/DSI. Therefore, a moderate urbanization trend is needed. The VITRANSS assumed that urban residents would increase up to 35.6 million in 2020, about a third of the country's population.

This study fully adopted the VITRANSS's projection. In conclusion, population will increase from 77.6 million in 2000 to 94.5 million in 2010 and 109.5 million in 2020 at the national level with growth rates of 1.73 for 1997-2010 and 1.48 for 2010-2020. Also the number of urban centers with a population of more than 10,000 will increase from 569 in 1998 to 1,226 in 2010 and 1,953 in 2020. Urban migration will continuously head for the two national centers, i.e., Hanoi and HCMC. In the north, population will increase 28.3 million in 2000 to 38.8 million in 2020. Three million urban residents will reside in Hanoi until the year 2020, strengthening its economic relations with Hai Phong and Ha Long at the same time.

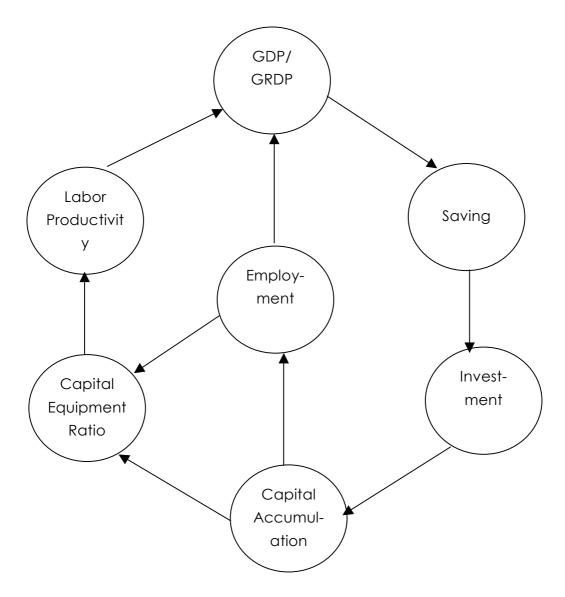
				1		
Year	20001/	2010	2020	AAGR (%)		
Region	200017	2010	2020	1997/2010	2010/2020	
Red River Delta	14,971	17,699	20,024	1.44	1.24	
Northeast	10,998	13,616	15,613	1.76	1.38	
Northwest	2,287	2,764	3,158	1.87	1.34	
Whole country	77,686	94,548	109,521	1.73	1.48	

Table 16.1.1 Summary of Population Forecast

(Unit: '000 persons)

Note) 1/ obtained form "Statistical Yearbook(2000)"

Table 16.1.2 Population Forecast by Province


				(Unit: '000 persons)
Region	Province	20001/	2010	2020
	Hanoi	2,736.0	2,988.7	3,590.3
	Hai Phong	1,691.0	1,984.3	2,199.6
	Hai Duong	1,668.0	2,035.1	2,275.3
	Hung Yen	1,082.0	1,300.3	1,453.2
Red River	Thai Binh	1,792.0	2,144.9	2,383.2
Delta	Nam Dinh	1,905.0	2,290.5	2,570.6
	Ninh Binh	888.0	1,103.4	1,249.2
	Ha Nam	798.0	988.4	1,069.8
	Ha Tay	2,411.0	2,863.3	3,232.9
	Subtotal	14,971.0	17,698.9	20,024.1
	Cao Bang	497.0	664.7	740.2
	Lang Son	711.0	815.3	871.7
	Quang Ninh	1,018.0	1,455.7	1,845.3
	Thai Nguyen	1,054.0	1,104.2	1,183.6
	Bac Can	280.0	378.9	419.6
	Bac Ninh	949.0	1,131.2	1,270.1
North Fast	Bac Giang	1,509.0	1,649.7	1,805.6
North East	Phu Tho	1,274.0	1,715.0	1,998.8
	Vinh Phuc	1,103.0	1,311.1	1,487.3
	Lao Cai	613.0	738.3	842.6
	Yen Bai	686.0	954.8	1,128.1
	Tuyen Quang	686.0	937.5	1,114.4
	Ha Giang	618.0	759.5	905.8
	Subtotal	10,998.0	13,615.9	15,613.1
	Son La	907.0	1,037.8	1,187.1
North West	Lai Chau	613.0	716.8	827.4
	Hoa Binh	767.0	1,009.1	1,143.9
	Subtotal	2,287.0	2763. 7	3,158.4

Note) 1/ obtained from "Statistical Yearbook (2000)"

16.2 GDP

16.2.1 Methodology

Since the Vietnamese economy considerably changed since the Doi Moi initiatives, economic indicators are relatively unstable and their relationships are quite difficult to establish. Nevertheless, the challenge taken in VITRANSS enables to capture the Vietnamese economy based on the available economic data in the past decade. In this study the same methodology was adopted in order to make economic projection. Its base concept is that labor productivity is determined by the level of capital equipment ratio (accumulated capital stock per employee). The outline of the model is depicted in **Figure 16.2.1**.

The model can be described in detail as follow:

Internal Variables:

Y	:	GDP	

- S : Gross Saving
- K : Capital Stock
- K : Increase in Capital
- N : Gross Investment
- N_h : Total Employment
- δ : Annual Working Hours
 - : Employment Parameter

External Variables:

- P : Total Population
- W_h : Average Daily Working Hours a Day
- L_d : Annual average Working Days per Person

Klein-Kosobud Model:

(1)	S(t)/Y(t) = f[Y(t)/P(t)]	(4)	$K(\dagger) = K(\dagger\text{-}1) + \DeltaK(\dagger)$
(2)	$Y(t)/N_{h}(t) = g[K(t-1)/N(t)]$	(5)	S(t) = I(t)
(3)	$\Delta K(\dagger) = f[I(\dagger)]$	(6)	$N(t) = \delta(t)P(t)$
		(7)	$N_{h}(t) = W_{h}(t)^{*}L_{d}(t)^{*}N(t)$

Formula 1 shows that gross saving ratio is influence by the change of GDP per capital. Formula 2 is the most important one in this model, stating that labor productivity is determined by capital-equipment ratio. One year is assumed as capital gestation period. Formula 3 presents the relationship between increment in capital stock and gross investment, which includes investment for replacement and rehabilitation. Formula 4 to 7 are easily deduced by the definition of variables or the definition itself. National GDP was at first estimated by applying the econometric model above and after it was broken down to regional/provincial levels.

16.2.2 National GDP estimate

Parameters of the econometric model are based on VITRANSS's 1990 data collected for parameter calibration of the econometric model, and taking into

account the differences in statistical definition and its reliability¹. The calibrated results are summarized as follows:

- Formula (1) S(t)/Y(t) = 0.4/[1+exp(-2.1341*(Y(t)/P(t))+4.2187)]
- Formula (2) $Y(t)/N_h(t) = 0.3442^*(K(t-1)/N(t))+3.088$
- Formula (3) $\Delta K(t) = a(I(t))$, where a, which was as high as 0.6 as of 1997, was assumed to decline to 0.4 until the year 2020 since future investment will replace and repair old stock.
- Formula (4)(5) Additional parameters are not needed.
- Formula (6) Employment parameter, $\delta(t)$, was assumed to increase from 49% in 1997 to 54% in 2020.
- Formula (7) Additional parameters are not needed.

Values for exogenous variables were assumed as Table 16.2.1.

Year	Sunday	Holiday	Saturda	Paid	Total	Working	Daily	Annual	Populati
rear	Sunday	пошаду	У	Holiday	TOTAL	Days	W.H.	W.H.	on
1997	52	8	26.0	3.9	89.9	275.1	7.5	2,063	78,059
1998	52	8	26.8	4.0	90.8	274.2	7.4	2,039	78,864
1999	52	8	27.7	4.1	91.8	273.2	7.4	2,014	79,677
2000	52	8	28.6	4.2	92.7	272.3	7.3	1,990	80,499
2001	52	8	29.5	4.3	93.7	271.3	7.2	1,966	81,815
2002	52	8	30.4	4.4	94.7	270.3	7.2	1,941	83,152
2003	52	8	31.4	4.5	95.8	269.2	7.1	1,917	84,512
2004	52	8	32.3	4.6	96.9	268.1	7.1	1,893	85,893
2005	52	8	33.4	4.7	98.0	267.0	7.0	1,869	87,297
2006	52	8	34.4	4.8	99.2	265.8	7.0	1,861	88,702
2007	52	8	35.5	4.9	100.4	264.6	7.0	1,852	90,128
2008	52	8	36.6	5.0	101.6	263.4	7.0	1,844	91,578
2009	52	8	37.8	5.1	102.9	262.1	7.0	1,835	93,051
2010	52	8	39.0	5.2	104.2	260.8	7.0	1,826	94,548
2011	52	8	40.1	5.3	105.5	259.5	7.0	1,817	95,678
2012	52	8	41.3	5.4	106.8	258.2	7.0	1,808	96,821
2013	52	8	42.5	5.6	108.1	256.9	7.0	1,798	97,977
2014	52	8	43.8	5.7	109.4	255.6	7.0	1,789	99,148
2015	52	8	45.0	5.8	110.9	254.1	7.0	1,779	100,332
2016	52	8	46.3	5.9	112.3	252.7	7.0	1,769	101,919
2017	52	8	47.7	6.1	113.8	251.2	7.0	1,759	103,531
2018	52	8	49.1	6.2	115.3	249.7	7.0	1,748	105,168
2019	52	8	50.5	6.4	116.9	248.1	7.0	1,737	106,832
2020	52	8	52.0	6.5	118.5	246.5	7.0	1,726	108,521

 Table 16.2.1
 Input Data for National GDP Estimate

¹ Details concerning the parameter calibration can be obtained from the VITRANSS, Main Text Vol. 2, Transport Demand Forecast, 2000.

In the econometric model above, it should be noted that GDP growth heavily relies on investment and investment in turn largely depends on saving. Experiences showed that an increase in GDP by 1% requires a corresponding investment increase in investment of 3% in developing countries. In Viet Nam where foreign investment has offset insufficient gross saving, such available resources should be sufficiently encompassed. Thus Viet Nam enjoyed large investments during the period 1992-1997, ranging from 30% to 40% per GDP. However, this seems to be continuing, judging from the economic performance of the country since 1998. The regional economic perspective is also unclear. Experiences of neighboring countries, whose market economies were built much earlier than Vietnam's, showed that economic recession at intervals are inevitable and that there is a need for continuous economic reform.

Under this consideration, GDPs were estimated according to the following assumptions: i) scenario 1: Economic growth will continue at the same pace as current (trend-based forecast), ii) scenario 2: Foreign investment will decline to half of the current amount (low-assumption forecast) and iii) scenario 3: Investment amount will be placed between scenario 1 and scenario 2 (high-assumption forecast). Reflecting scenarios' features, investment per GDP rate was set up as **Table 16.2.2**.

		Scenario 1	Scenario 3	Scenario 2	
Investment	-2005	Ascending to 40%	31-32%	25%	
per	2006-2010	40%	Declining to 28%	Declining to 20%	
GDP Rate	2011-2020	40%	28%	20%	

 Table 16.2.2
 Economic Development Alternatives

The estimate results are indicated in **Table 16.2.3** and **Figure 16.2.2**. Their annual growth rates during the project period are 9.28% for the trend-based forecast, 7.39% for the high-assumption forecast and 6.20% for the low-assumption forecast. As economy is thought to increase at a growth rate of trend-based forecast, the high- and low-assumption scenarios were mainly taken for transport demand forecast.

				mon al 1994 constant filce)
Scenario	2005	2010	2020	Annual Growth Rate
Scenario 1	454,253	730,550	1,709,072	9.28
Scenario 2	385,046	531,225	885,634	6.20
Scenario 3	409,327	598,574	1,143,799	7.39

Table 16.2.3 GDP Estimate Results

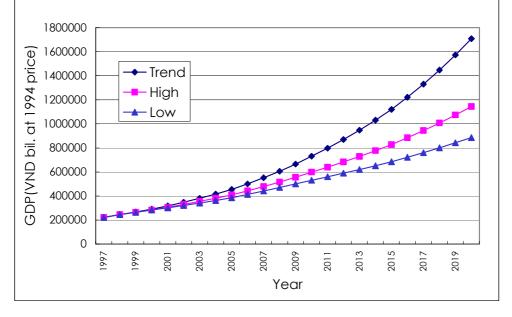


Figure 16.2.2 GDP Forecast Results Between 1997 and 2020

16.2.3 Sectoral and regional breakdown

The economy has become less dependent on the primary sector and more on secondary and tertiary sectors during the past 10 years. This trend will continue in the future. In estimating sectoral GDP, the sectoral growth rates were set up as Table 16.2.4, taking into account historical growth rate of sectoral GDPs and population growth in urban and rural areas.

				(Unit: % p.a.)	
	Primary	Secondary	Tertiary	All Sectors	
High-assumption Scenario					
2000-2005	4.95	8.82	8.03	7.62	
2005-2010	5.10	8.91	8.30	7.90	
2010-2020	3.76	7.44	7.09	6.69	
Low-assumption Sc	enario				
2000-2005	3.01	7.40	7.42	6.35	
2005-2010	3.78	7.34	7.42	6.63	
2010-2020	2.66	5.84	5.70	5.24	

Further, sectoral GDPs were broken down into regional levels with consideration of present labor productivity (GDP/labor force). **Table 16.2.5** shows regional breakdown results.

Year	Scen		GDP Estimates Annual Grow (bil. VND at 1994) Rate (%)				Capital
	ario	(DII. VNI) at 1994)	Rate	(%)	(mii.	VND)
Region	uio	2010	2020	1998-10	2010-20	2010	2020
Red River	Low	94,879	158,957	7.00	5.29	5.36	8.98
Delta	High	107,360	207,356	8.11	6.80	6.95	11.72
Northeast	Low	40,634	67,036	6.36	5.13	2.98	4.92
Nonneusi	High	44,989	84,919	7.27	6.56	3.87	6.24
Northwest	Low	6,795	11,180	7.09	5.11	2.46	3.11
NOITIWESI	High	7,318	13,720	9.37	6.49	4.05	4.96
Subtotal	Low	142,308	237,173	6.82	5.24	4.18	6.11
30010101	High	159,667	305,995	7.85	6.72	4.69	7.89
Whole	Low	531,255	885,634	6.67	5.24	5.62	9.37
Country	High	598,574	1,143,800	7.74	6.69	7.44	12.10

Table 16.2.5 GDP Estimation Results by Region

16.2.4 Provincial breakdown

GDP at provincial level estimated in the VITRANSS seems to fail in reflecting historical trend of each province's GDP share in each region. **Figure 16.2.3** shows the historical trend of Hanoi's GDP share in RRD's GDP. It reveals that its share steadily increased during 1995-2000 and will continue. However, the VITRANSS estimated that the share would decline in 2010 and 2020.

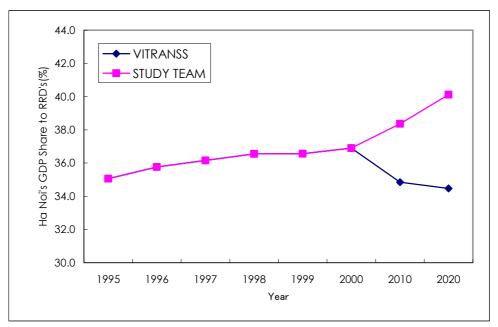


Figure 16.2.3 Historical Trend of Hanoi's GDP Share to RRD's

For this reason, GDP at the provincial level was newly estimated by the study team taking into account each province's per-capita GDP share to region's. As a result, Hanoi's GDP share to RRD's was, as shown in **Figure 16.2.3**, estimated to increase to 38% in 2010 and 40% in 2020 respectively. Conclusively, GDP results by province were estimated as **Table 16.2.6**.

Region	Province		2	010		2020			
Regui		Total	Primary	Secondary	Tertiory	Totd	Primary	Secondary	Tertiory
	Hanoi	38683.9	570.1	18449.7	19664.1	73271.2	339.8	35944.9	36986.5
	Haiphong	14143.6	1531.9	6765.3	5846.4	24720.1	1753.0	10408.9	12558.2
	Hai Duong	9271.2	1733.1	4387.3	31 <i>5</i> 0.8	16343.5	1868.1	7994.3	6481.1
	Hung Yen	5913.1	1526.8	2399.4	1986.9	10419.6	1717.3	4280.6	4421.7
Red River	Thai Binh	8065.3	2062.6	3042.7	2960.0	14129.6	2289.4	5580.9	6259.3
Delta	NamDinh	7872.8	1159.9	3123.0	3590.0	13931.3	1255.6	5499.2	7176.5
	Ninh Binh	2996.0	736.3	1449.4	810.3	5348.1	897.6	2678.2	1772.3
	HaNam	3458.3	657.0	1407.5	1393.8	5901.8	698.1	2327.6	2876.1
	HaTay	10724.0	2334.1	5146.1	3243.8	19091.4	2789.9	9346.2	6955.2
	Subtotal	101128.3	12311.8	46170.4	42646.1	183156.6	13608.8	84060.9	85486.9
	Cao Bang	2005.0	1053.2	306.0	645.7	3426.4	1557.8	621.0	1247.6
	LangSon	2669.7	1271.9	461.7	936.1	4380.4	1812.1	911.4	1656.9
	Quang Ninh	7978.9	534.4	3849.1	3595.4	15521.8	895.1	7495.7	7131.0
	Thai Nguyen	2928.9	1051.7	1045.7	831.6	4817.9	1283.6	2040.1	1494.2
	Bac Can	686.6	439.2	141.3	106.1	1166.9	712.7	295.4	158.8
	Bac Ninh	4227.1	862.5	2083.3	1281.2	7283.6	974.7	3796.9	2512.0
North Font	Bac Giang	4074.9	1480.1	1557.1	1037.7	6844.4	2347.0	2769.5	1727.8
North East	PhuTho	5495.0	1123.5	2301.1	2070.3	9828.1	1498.6	4425.3	3904.2
	Vinh Phục	4746.4	1574.4	936.5	2235.5	8262.8	2125.3	1789.0	4348.5
	Lao Cai	1745.1	694.9	497.9	552.2	3056.5	1041.8	1012.5	1002.2
	Yen Bai	2482.2	1045.6	967.3	469.3	4500.6	1449.1	2178.7	872.8
	iuyen Ouroro	2412.3	951.5	642.3	818.4	4400.4	1552,1	1387.8	1460.5
	Ha Giang	1359.4	739.4	324.9	295.1	2487.9	1202.4	706.2	579.3
	Subtotal	42811.5	12822.4	15114.2	14874.8	75977.6	18452,4	29429.4	28095.7
	Son La	2509.9	1666.3	503.8	339.7	4435.2	2837.1	958.3	639.8
North Mart	Lai Chau	1665.7	508.3	724.3	433.1	2970.3	739.0	1408.8	822.4
North West	Hoa Binh	2880.6	1154.7	1008.4	717.4	5044.6	1845.7	1859.9	1339.0
	Subtotal	7056.2	3329.4	2236.5	1490.2	12450.2	5421.8	4227.0	2801.3
To	tal	150995.9	28463.6	63521.1	59011.1	271584.3	37483.1	117717.3	116383.8

Table 16.2.6	GDP Estimate	Results by Province
--------------	--------------	----------------------------

(Unit: VND billion at 1994 constant price)

Note) Figures mean the average of high- and low-assumption forecasts.

16.2.5 Comparison with DSI projection

The Development Strategy Institute (DSI) under MPI worked out an estimate of long-term economic growth to review and modify the target down ward after the regional economic crisis. Master plan of inland waterway sector1 published in 2000 is based on the DSI estimate. The economic growth estimate proposed in this study is needed to compare with the DSI projection.

The DSI estimate is based on the following assumptions:

- Low assumption
 - Average consumption per capital will maintained at the growth rate of 4% in 2001 2010; and
 - Share of domestic funds will be about 55% and 60% of total investment capital in 2001 2005 and 2006 2010 respectively
- High assumption
 - FDI growth rate will be about 10% and ODA growth rate will be disbursed by 6%; and
 - Total investment capital will increase by 8%.

The economic development proposed by DSI is illustrated in **Table 16.2.7**. The estimate of the study has wider range particularly during the period 2010 - 2020 and the DSI estimate falls between the low and high assumption of the estimate in the study.

(Unit: VND Billion at 1994 Constant Price)

Year	Estimate o	f the study	Estimate	by DSI
	Low High		Low	High
2005	385,046 409,327		366,109	389,054
2010	531,225	598,574	460,774	535,540
2020	885,634	1,143,199	961,540	

Chapter 17 Basic Policy for the IWT System in the Red River Delta

17.1 Advantages and potential of the IWT system

The IWT system in the Red River Delta plays an important role in the socio-economic development as well as bettering the lives of people living there, by making full use of its advantage such as:

- Dense and convenient waterway network
- Low utilization of inland waterways
- Ideal port locations
- Low energy consumption
- Low CO₂ discharge

There are two major river systems of Red River and Thai Binh River in the Northern region. Together with Duong and Luoc Rivers which link these two major river systems, both make a convenient waterway network.

The density of exploited inland waterways in Vietnam is 0.034 km/sq.km equivalent to almost 2 times of that of 6 countries in Europe where the IWT system is considerably developed. The density of inland waterways in Northern region is 0.170 km/sq.km equivalent to almost 2 to 14 times of those of nearby countries (see **Table 17.1.1**).

Country	Land Area	Population		Inland Waterway					
	(sq. km)	(million persons)	Total Length (km)	IW Density per area (km/sq.km)	IW Density per person (km/ million persons)	Exploited Length (km)	Exploited IW Density per area (km/sq.km)	Exploited IW Density per person (km/million persons)	Exploited Ratio
Vietnam	331,688	77.7	41,900	0.126	539	11,226	0.034	144	27%
Northern Region				0.170					
Central Region				0.070					
Southern Region				0.190					
Bangladesh	144,000	126.9	9,000	0.063	71	5970	0.041	47	66%
Myanmar	600,000	46.4	8,251	0.014	178	3238	0.005	70	39%
China	9,600,000	1265.8	430,000	0.045	340	108600	0.011	86	25%
Thailand	514,000	61.8	6,000	0.012	97	2633	0.005	43	44%
6 countries in Europe	1,520,054	283.8	(-)	(-)	(-)	28,055	0.018	99	(-)
Egypt	1,000,000	66.5	(-)	(-)	(-)	3,100	0.003	47	(-)

 Table 17.1.1
 International Comparison of Inland Waterways

Note) 6 countries in Europe: France, Germany, Nederland, Belgium, Italy and UK.

Source) M/P on Vietnam Waterway Transport Development up to 2020 (Dec. 2000, VIWA) and other sources

Furthermore, there is a great potential to exploit the inland waterways since at present only 27% of inland waterways in Vietnam are being utilized.

There are also dozens of river ports such as Hanoi, Khuyen Luong, Viet Tri, Ninh Binh & Ninh Phuc, Pha Lai, as well as sea ports such as Hai Phong, Cai Lan, Quang Ninh. These ports connected by the inland waterways are located at capitals of province, other major cities, major industrial plants or major mines where cargoes such as coal, construction material, cement and fertilizer are produced or consumed.

Port	Mode	Cam Pha (Cua Ong)	Cai Lan & Quang Ninh	Hai Phong	Hanoi	Viet Tri
Cai Lan &	Road	30 (H18)		ll		<u> </u>
Quang Ninh	Railway	-				
Qualigram	IWT	37				
	1 * * 1					
Hai Phong	Road	116 (H18+H10)	86 (H18+H10)			
	Railway	-	277 (A+C+A)			
	IWT	99	62			
Hanoi	Road	160 (H18)	130 (H18)	106 (H5)		
	Railway	-	175 (A+C+B)	102 (A)		
	IWT	249 (Duong)	212 (Duong)	150 (Duong)		
		309 (Luoc)	272 (Luoc)	210 (Luoc)		
		368 (Cua Day)	363 (Cua Day)	337 (Cua Day)		
Viet Tri	Road	244 (H18+H2)	214 (H18+H2)	190 (H5+H2)	84 (H2)	
	Railway	-	226 (A+C+B)	164 (A+C+A)	73 (A+C+A)	
	IWT	304 (Duong)	267 (Duong)	205 (Duong)	75	
		364 (Luoc)	327 (Luoc)	265 (Luoc)		
		443 (Cua Day)	438 (Cua Day)	412 (Cua Day)		
Ninh Binh	Road	233 (H18+H10)	203 (H18+H10)	117 (H10)	94 (H1)	178 (H1+H2)
	Railway	-	289 (A+C+B)	216 (A)	114 (A)	187 (A+C+A)
	IWT	318 (Luoc)	281 (Luoc)	219 (Luoc)	161	236
		266 (Cua Day)	261 (Cua Day)	235 (Cua Day)		

Table 17.1.2 Distance Table among Major Ports in the RRD

(km)

194km (105NM) 2. Three types of railway are used in Vietnam (A: 1m, B: 1.435m, C: triple rails)

Cam Pha

(Cua Ona)

181km (98NM)

Source) 1. Temporary Classification of Waterways (Decision No.862/QD-CDS issued by Director of VIWA on 25/5/2000)

Cai Lan &

Quang Ninh

176km (95NM)

189km (102NM)

Hai Phona

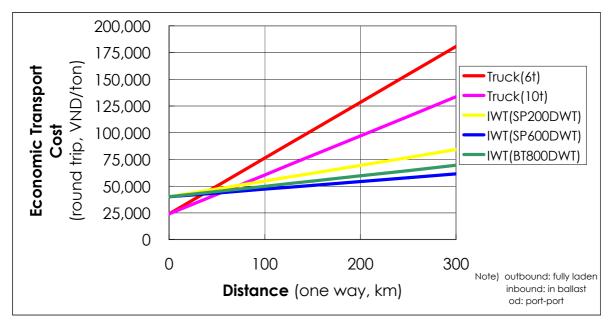
150km (81NM)

163km (88NM)

2. Vietnam Transport Infrastructure 2000, published by MOT

Lach Giang

Cua Day


3. Chart: Gulf of Tongking, Admiralty 3990 (latest correction: 2001)

In addition, it should be noted that energy consumption of road transport by commercial truck is about 6 times as much as that of railway and waterway transport according to the investigation conducted by Japanese Ministry of Transport. As to CO₂ discharge, railway and waterway transport have also significant advantage (see **Table 17.1.3**). In other words, these factors bring about an another advantage in terms of transport cost (see **Figure 17.1.1**).

Transport Mode	Energy Consumption	CO ₂ Discharge
	(kcal/ton-km)	(g/ton-km)
Railway	118	6
Waterway (domestic)	126	10
Road (long-haul service truck)	(-)	22
Road (commercial truck)	696	48
Road (commercial small truck)	(-)	180
Road (private truck)	2,298	(-)
Road (private small truck)	(-)	599
Air	(-)	402

 Table 17.1.3
 Energy Consumption and CO2 Discharge by Transport Mode

Source) Japanese Ministry of Transport, 1995

Source) JICA Study Team

Figure 17.1.1 Transport Cost Comparison

17.2 Necessity of improving the IWT system

Vietnam has been undergoing major economic changes as part of its transition from a centrally planned economic system to a more market oriented economy since the formal adoption of "Doi Moi Policy" in 1986. Deregulating policies towards a market economy have greatly encouraged economic development in Vietnam and has resulted in high economic growth.

The GDP in 2000 reached VND 276 trillion which is more than double compared with that in 1990. Once beset with a serious scarcity of goods, Vietnam can now produce enough to satisfy the essential needs of the population and the economy, increase exports and have some reserves.

The economic structure in GDP share has also made a shift in these 10 years. The share of agriculture has dropped from 38.7% to 24.3%, that of industry and construction has risen from 22.7% to 36.6%, and that of services from 38.6% to 39.1%.

In the Strategy for Socio-economic Development (2001 - 2010), the target of GDP is set to have at least doubled the level of 2000 and the economic and labor structures been vigorously transformed toward industrialization and modernization. The Five -year Plan for Socio-economic Development (2001 - 2005) also strives for high average GDP growth rate of 7.5% a year.

Along with high economic growth that is expected to continue for the future, the transport demand is constantly increasing and therefore the capacity of the transport sector has to be strengthened to cope with the increasing transport demand.

Reflecting the above situation, the IWT system in the Red River Delta is expected to play an important role in the socio-economic development as well as bettering the lives of people living in Vietnam and in the Northern region in particular, by making full use of its potential and peculiarity as an environment friendly and cost effective mode of transport.

				0	
Year	GDP	GDP	Population	Population	GDP
	(billion VND)	Growth	(1,000)	Growth	per Capita
		Rate		Rate	(million VND)
1990	131,968	5.1%	66,017	1.92%	2.0
1991	139,364	5.8%	67,242	1.86%	2.1
1992	151,782	8.7%	68,450	1.80%	2.2
1993	164,043	8.1%	69,645	1.75%	2.4
1994	178,534	8.8%	70,825	1.70%	2.5
1995	195,567	9.5%	71,996	1.65%	2.7
1996	213,833	9.3%	73,157	1.61%	2.9
1997	231,264	8.2%	74,307	1.57%	3.1
1998	244,596	5.8%	75,456	1.55%	3.2
1999	256,272	4.8%	76,597	1.51%	3.3
2000	273,582	6.8%	77,686	1.42%	3.5

 Table 17.2.1
 Historical GDP & Population Change

Note) In constant 1994 prices. Data of 2000 are estimated.

Source) Statistical Yearbook 2000, GSO

17.3 Identified problems and issues on IWT system

The IWT system in the Red River Delta is facing difficulties such as insufficiency of port facilities and related services as well as insufficiency and instability of navigation channel due to topographical restrictions, hydrological effects and sedimentation. Management and operation aspects of IWT system also have some problems and issues to be solved.

17.3.1 Problems and issues on navigation channels

The rivers are subject to the meteorological and hydrological regime of the Northern region. Peculiarity of rivers in the Northern region are summarized as follows:

- Minimum width of channel bottom: 30m 60m
- Minimum depth: 1.5m 2m
- The flood season: from June to October
- The low water season: from November to May
- The water level difference between the two seasons: 5m 7m (over 10m in some parts)
- In the flood season, the flow speed is high.

- In the low water season, the depth and the curving radius are limited.
- After the flood, shoals are usually formed, which change year by year.
- In river mouths, the sediments develop complicatedly.

There are many rivers that can be used to enhance living standards and promote socio-economic development, but they have not been fully exploited. General problems related to the navigational channel are as follows:

(1) Severe river conditions

The rivers are exploited mainly in their natural state. They meander largely and sometimes change their course. In some areas, the water depth in dry season is shallow and width is insufficient. They do not meet the technical standards in water depth, width and bend radius.

(2) Shortage of clearance

Many bridges have not met the clearance height and span requirements for vessel. Bridge piers become new horizontal obstacles when the alignment of navigational channel is forced to change due to natural forces. Some electric power lines are also short of clearance.

(3) Obstacles

There are many trees from upstream, dumped scrap iron and other objects that need to be removed from the channels.

(4) Sedimentation

The river mouths, that of the Red river in particular, are shallow in water depth and unable to accommodate large vessels. Other parts of the rivers suffer from sedimentation problems. Sedimentation in rivers is serious and complicated. To cope with this issue, dredging is usually carried out rather than constructing facilities such as groins. However, there are some cases where the construction of such facilities is more economical in the long term.

(5) Accidents

Vessel accidents occur frequently in narrow sections of the Red River Hanoi segment, Kinh Thay River, Lach Tray River, Phi Liet River, etc., although main reasons

of accidents are reported to be carelessness and violation of traffic regulations.

(6) Inadequate navigation aids

The navigation aids system and equipment are still inadequate. The navigation aids equipment should be replaced as the need arises, but this is not being done or not being done properly in some cases.

(7) Shortage of investment fund

Above-mentioned problems are mainly due to a shortage of investment funds.

17.3.2 Problems and issues on ports

Major river ports in the Red River Delta do not make full use of their designed capacity in general except some ports. The main reasons why these ports cannot make full use of their designed capacity can be summarized as follows:

(1) Competition among major ports and other berths

Since different economic sectors participate in IWT after Doi Moi Policy was adopted, about 68% of vessel fleet in total DWT in the Northern region are said to be private vessels. Other berths tend to be operated 24 hours a day and handle cargos in three shifts, and their handling fee may be cheaper. Therefore, private vessels can call at other berths than major ports taking account of service cost and quality of major ports and other berths.

(2) Outdated and Inefficient handling equipment

Handling equipment such as quay crane, mobile crane and forklift is very old. For example, some cranes in Hanoi Port have been used for more than 30 years. In addition, there is a lot of equipment which is not dedicated for port but diverted from road transport means (at second-hand). Frequent breakdown or troubles make handling efficiency decline. Moreover, there is no handling equipment which can handle container box of 40ft nor 20ft.

(3) Low mechanization

Mechanization of packed cargo handling in port area is still at a low level, since the unitization is not introduced. Human-wave tactics by porters in cargo handling are sometimes observed.

(4) Insufficient and damaged port facilities

Some port facilities such as quay and fender system are damaged or lacking. The capacity of warehouse is insufficient. Many yards are in natural condition and paved yards are few. There is no clear distinction between berth and yard for dirty and dusty bulk cargoes and for other clean cargoes. In Hanoi Port, there is no enough space for future development.

(5) Poor access to hinterland

Some ports are poorly connected to the national transport network due to insufficient road access. It makes smooth access to hinterland difficult.

(6) Shortage of investment fund

Above-mentioned problems are mainly due to a shortage of investment fund.

17.3.3 Problems and issues on management and operation aspects

As to management and operation aspects, identified problems and issues can be summarized as follows:

(1) Absence of comprehensive law

To date there hasn't been a comprehensive law in the IWT sector. Administration of inland waterways has been done by decisions and decrees according to needs. Consequently, some inconsistencies among such decisions and decrees can occasionally be found. To rectify this situation, MOT is currently drafting a new law covering the IWT sector.

(2) Complicated management and operation body of ports

Since the adoption of the Doi Moi Policy in 1986, more and more private sector participation has been observed in Vietnam. In addition state organizations have been restructured or privatized. Consequently, organizations in charge of management and operation are various and complicated. As the relations between organizations become increasingly complex, responsibilities tend to be obscured and this is accompanied by a decline in efficiency. From now on, the number of newcomers is expected to increase with the progress of privatization. It is therefore necessary to regulate and consolidate organizations in charge of management and operation.

(3) Lack of adequate information service

In order to transport cargo safely and efficiently, it is indispensable to know the condition of inland waterways, specifically the condition of navigation channel (position, width, depth, clearance, obstacles etc.) and condition of river (water level, current velocity etc.). Generally an authority makes this information available to users by chart, buoy, beacons, facsimile, radio, etc. And unlike a sea channel, the navigation channel of a river changes frequently. Especially in Red River Delta, the channel (particularly the water depth) changes not only by year but also by seasons (dry season, flood season). Accordingly, more precise information is required.

(4) Insufficient port statistics

Port statistics is the information systematically recorded about vessels (number, size, type etc.) and cargoes (volume, commodity, origin/destination etc.). Port statistics are indispensable not only for planning and management of port but also for city planning, transport planning, energy planning etc. However, at river ports, reliable port statistics about vessels and cargoes are not kept. In particular, activities at the privately owned small-scale landing stages, which are scattered at various places, are hardly known.

17.4 Basic Policy for the IWT System in the Red River Delta

Taking account of advantages and potential of the IWT system, necessity of improving the IWT system as well as its identified problems and issues, the basic policy for the IWT system in the Red River Delta should include the following items:

- (1) To contribute to socio-economic development aiming at industrialization and modernization of Vietnam as well as international and regional integration in closer connection with other modes of transport.
- (2) To meet the transport demand with higher quality and efficient services as well as safety navigation.
- (3) To gradually improve the IWT system consisting of navigation channels, ports with handling equipment and transport means in a synchronous manner.
- (4) To contribute to environmental preservation by making full use of its peculiarity as an environment friendly mode of transport.
- (5) To enhance state management of the IWT system and to develop its capacity by allocating proper budget, personnel and equipment.

Dense c	ind convenient waterway network	Doi Moi Policy
.ow utili	zation of inland waterways	High economic growth
deal po	prt locations	Toward industrialization and modernization
_ow ene	ergy consumption	Expected transport demand
ow CO	2 discharge	Important role of IWT in socio-economic development
Problem	s on Navigation Channel	Problems on Ports
Severe r	iver condition	Competition among major ports and other berth:
Shortag	e of clearance	Outdated and inefficient handling equipment
Obstacl	es	Low mechanization in cargo handling
Sedimer	ntation	Insufficient and damaged port facilities
Accider	nts	Poor access to hinterland
nadequ	uate navigation aids	Shortage of investment fund
ack of	investment fund	Problems on Management & Operation Aspects
		Absence of comprehensive law
		Complicated management & operation body of port
		Lack of adequate information service
		Lack of adequate information service Insufficient port statistics
(1)	To contribute to socio-economic dev	System in the Red River Delta relopment aiming at industrialization and international and regional integration in closer
(1)	To contribute to socio-economic dev modernization of Vietnam as well as connection with other modes of trans	System in the Red River Delta relopment aiming at industrialization and international and regional integration in closer
	To contribute to socio-economic dev modernization of Vietnam as well as connection with other modes of trans To meet the transport demand with h navigation.	Insufficient port statistics System in the Red River Delta relopment aiming at industrialization and international and regional integration in closer sport. high quality and efficient services as well as safe consisting of navigation channels, ports with
(2)	To contribute to socio-economic dev modernization of Vietnam as well as connection with other modes of trans To meet the transport demand with h navigation. To gradually improve the IWT system handling equipment and transport m	System in the Red River Delta relopment aiming at industrialization and international and regional integration in closer sport. high quality and efficient services as well as safe consisting of navigation channels, ports with eans in a synchronous manner. rvation by making full use of its peculiarity as an

Source) JICA Study Team

Figure 17.4.1 Basic Policy for the IWT System in the Red River Delta

Chapter 18 Transport Demand Forecast

18.1 Methodology

This study applied the methodology¹ developed in the VITRANSS to estimate the future passenger and cargo transport demand of inland waterway in the Red River Delta region. Taking into account the strong relationship between transport demand and socio-economic activities, the methodology used socio-economic indicators, such as GDP and population, as exogenous variables. This procedure follows the conventional four-step method:

- Generation and attraction of transport demand;
- Traffic distribution;
- Modal split; and
- Traffic assignment.

Models for generation and attraction of transport demand were developed based not only on socio-economic indicators but also on surplus and deficit of commodities in all provinces. The surplus and deficit can also be calculated from production and consumption of commodities. Then OD traffic in terms of interprovincial movement was estimated by applying future generation and attraction of transport demand as a control total. Transport demand by mode and on inland waterway routes was at the same time calculated while assigning OD traffic on each mode's route to minimize total transport costs composed of operating and maintenance cost, loading/unloading cost and time-related cost to some extent.

Transport demand of inland waterway is estimated through the following steps:

Step-1 Generation and attraction of transport demand

Regarding cargo transport, applicable and suitable commodities for IWT were at first selected and then their production and consumption were carefully examined. Only when production and consumption of commodities were determined were they used as an exogenous variable with socio-economic indicators together to forecast generation and attraction of commodities in each province. It should be noted that a province with positive surplus would ship out supplementary amount of commodities to other areas and with negative surplus would absorb

¹ In detail, refer to "VITRANSS Main Text Vol. 2, Transport Demand Forecast", 2000

surplus amount from other areas. Additionally, location and future capacity of industrial plants were considered when determining generation and attraction of IWT. Regarding passenger transport, socio-economic indicators, such as per capita GDP and urban population, were used to determine its amount of generation and attraction.

Step-2 Traffic distribution

With a control total of generation and attraction of passenger and cargo transport, future OD traffic was estimated through the "Fratar" approach for cargo transport and the "Gravity Model" for passenger transport. In applying the "Fratar" approach on cargo transport, if generation and attraction will take place in a province where no generation and attraction are present, future generation and attraction are considered.

Step-3 Modal split

If competition between other transport modes is thought to be considerable for OD pairs, cargo volume of inland waterway is determined by taking into account transport cost of OD pairs, commodity characteristic itself and other factors such as accessibility and convenience. Nested binary logit model was adopted for determining probability to choose IWT in terms of passenger transport.

Step 4 Traffic assignment

Traffic volume of inland waterway is assigned on the shortest inland waterway routes in terms of generalized cost.

Step-5 Adjustment and check

The cargo volume assigned on stretches are examined with reliable and proven data, eg cargo-handling volume at ports, anticipated macro cargo volume increase due to economic growth, etc.

It should be noted that the approach above was taken to forecast future cargo demand, but OD traffic of IWT was adjusted considering loading/unloading cargo throughput at major IW ports. In other words, OD traffic of IWT estimated through the above procedure was adjusted to satisfy the condition that it should be equal to or higher than the loading/unloading cargo throughput at IW ports.

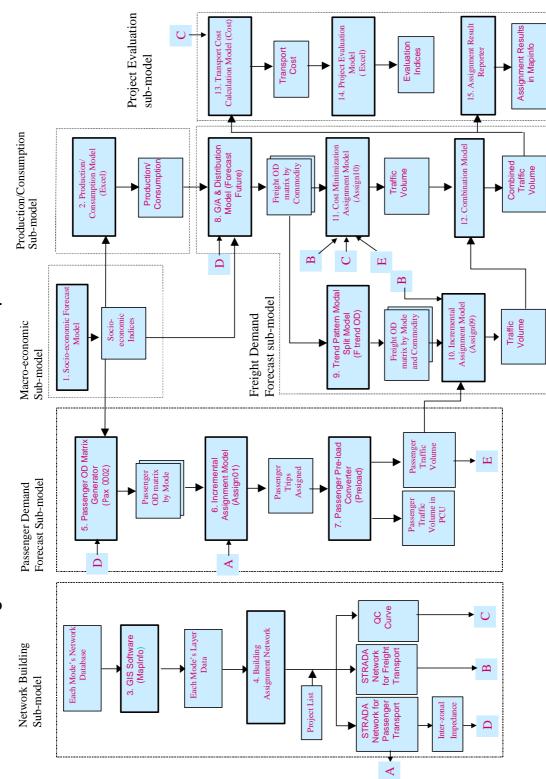


Figure 18.1.1 General Framework for Transport Demand Forecast

18.2 Cargo transport demand

18.2.1 Summary of cargo transport demand forecast

Through the above processes, cargo transport demand in 2010 and 2020 was forecast. Its results are summarized in **Table 18.2.1** and **Figure 18.2.1**. According to the results, the total cargo transport demand will increase to 32.3 million tons in 2010 and 51.2 million tons in 2020 with annual growth rate of 6.3% in 2001-2020 and 4.7% in 2010-2020. Values of elasticity to GDP were calculated at 0.87 in 2001-2010 and 0.78 in 2010-2020. Both the growth rate and value of elasticity are lower than those of the present and will continue to decrease over time.

In Viet Nam, although cargo transport demand steadily increased at a growth rate of 7.47% during 1991-2000, modal share of inland waterway is predicted to be low since the cargo volume transported by truck will substantially increase, resulting in a decline of cargo transport demand of inland waterway, as experiences in developing and developed countries showed. Economic growth certainly increases transport demand, but it is believed that it will not increase the annual growth rate of inland waterway. In fact, it will even decrease over time.

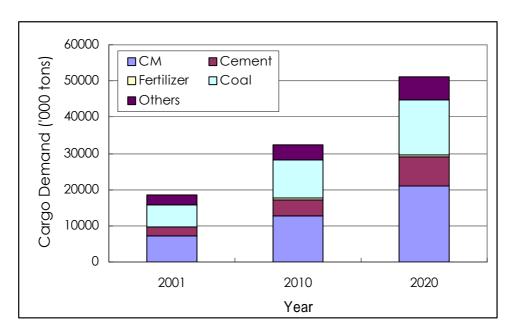


Figure 18.2.1 Cargo Transport Demand Forecast

Table 18.2.1 Summary of Cargo Transport Demand Forecast

					(Unit: '	000 tons/year)
Ite	m	2001	2010	2020	AAGR('01-'10)	AAGR('10-'20)
Construction	stone	916	1,763	2,851	7.5	4.9
Material	sand	5,122	9,527	16,061	7.1	5.4
Cen	nent	1,897	3,627	7,034	7.5	6.8
Fert	ilizer	175	371	563	8.7	4.3
Сс	bal	5,594	9,642	14,057	6.2	3.8
Others		1,955	3,077	4,681	5.2	4.3
То	tal	15,659	28,007	45,247	6.7	4.9

(a) Interprovincial movement

(b) Intraprovincial movement

(Unit: '000 tons/year) 2001 2020 AAGR('01-'10) AAGR('10-'20) Item 2010 stone 227 322 439 4.0 3.1 Construction Material sand 794 1,191 1,633 4.6 3.2 Cement 596 787 1,015 3.1 2.6 Fertilizer 27 45 65 5.8 3.7 855 1,193 5.6 3.4 Coal 522 785 1,129 4.1 4.0 Others 1,672 2,951 4,329 4.3 Total 6,017 3.3

(c) Total

(Unit: '000 tons/year)

						., ,
Ite	m	2001	2010	2020	AAGR('01-'10)	AAGR('10-'20)
Construction	stone	1,143	2,085	3,290	6.9	4.7
Material	sand	5,916	10,718	17,694	6.8	5.1
Cen	nent	2,493	4,414	8,049	6.6	6.2
Ferti	lizer	202	416	628	8.4	4.2
Co	bal	6,116	10,497	15,250	6.2	3.8
Oth	ners	2,740	4,206	6,353	4.9	4.2
Total		18,610	32,336	51,264	6.3	4.7
Ton-Km	(million)	2,010	3,446	5,580	6.2	4.9

18.2.2 River section traffic volume

Traffic volume on river sections is obtained after traffic assignment calculation. Assigned results of selected river sections are seen in **Table 18.2.2** (regarding section number, refer to **Figure 21.1.1**). They show that the importance of Quang Ninh-Hanoi, Quang Ninh-Ninh Binh and Hanoi-Viet Tri sections will further strengthen.

Stretch No. Name of River 2001 2010 2020 2010/2001 2020/2001 1 Coastal 8.3 12.6 18.8 1.5 2.3 2 Chanh 4.4 6.1 7.6 1.4 1.7 3 Da Bach 4.5 6.1 7.6 1.4 1.7 4 Mao Khe 0.5 0.7 1.1 1.5 2.3 5 Mao Khe 1.1 2.1 3.9 1.9 3.5 6 Phi Liet 4.0 5.3 6.5 1.3 1.6 7 Bach Dang - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.5 9.9 1.4.7 1.5 2.1						(Unit: mill	ion tons/year)
2 Chanh 4.4 6.1 7.6 1.4 1.7 3 Da Bach 4.5 6.1 7.6 1.4 1.7 4 Mao Khe 0.5 0.7 1.1 1.5 2.3 5 Mao Khe 1.1 2.1 3.9 1.9 3.5 6 Phi Liet 4.0 5.3 6.5 1.3 1.6 7 Bach Dang - - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 9.9 14.7 1.5 2.3 11 Kinh Thay 6.5 9.9 14.7 1.5 2.1 14 Thai Binh 4.7 7.1 9.9 1.5 2.1 14<	Stretch No.	Name of River	2001	2010	2020	2010/2001	2020/2001
3 Da Bach 4.5 6.1 7.6 1.4 1.7 4 Mao Khe 0.5 0.7 1.1 1.5 2.3 5 Mao Khe 1.1 2.1 3.9 1.9 3.5 6 Phi Liet 4.0 5.3 6.5 1.3 1.6 7 Bach Dang - - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3	1	Coastal	8.3	12.6	18.8	1.5	2.3
4 Mao Khe 0.5 0.7 1.1 1.5 2.3 5 Mao Khe 1.1 2.1 3.9 1.9 3.5 6 Phi Liet 4.0 5.3 6.5 1.3 1.6 7 Bach Dang - - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3	2	Chanh	4.4	6.1	7.6	1.4	1.7
5 Mao Khe 1.1 2.1 3.9 1.9 3.5 6 Phi Liet 4.0 5.3 6.5 1.3 1.6 7 Bach Dang - - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1	3	Da Bach	4.5	6.1	7.6	1.4	1.7
6 Phi Liet 4.0 5.3 6.5 1.3 1.6 7 Bach Dang - - - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 <td>4</td> <td>Mao Khe</td> <td>0.5</td> <td>0.7</td> <td>1.1</td> <td>1.5</td> <td>2.3</td>	4	Mao Khe	0.5	0.7	1.1	1.5	2.3
7 Bach Dang - - - - - 8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19	5	Mao Khe	1.1	2.1	3.9	1.9	3.5
8 Cam 3.9 6.6 11.2 1.7 2.9 9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20	6	Phi Liet	4.0	5.3	6.5	1.3	1.6
9 Cam 1.7 2.8 4.9 1.7 2.9 10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 2	7	Bach Dang	-	-	-	-	-
10 Han 5.6 8.2 11.4 1.5 2.0 11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 <	8	Cam	3.9	6.6	11.2	1.7	2.9
11 Kinh Thay 6.8 10.3 15.3 1.5 2.3 12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 <t< td=""><td>9</td><td>Cam</td><td>1.7</td><td>2.8</td><td>4.9</td><td>1.7</td><td>2.9</td></t<>	9	Cam	1.7	2.8	4.9	1.7	2.9
12 Kinh Thay 6.5 9.9 14.7 1.5 2.2 13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 22 Luoc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 24 <td>10</td> <td>Han</td> <td>5.6</td> <td>8.2</td> <td>11.4</td> <td>1.5</td> <td>2.0</td>	10	Han	5.6	8.2	11.4	1.5	2.0
13 Thai Binh 4.7 7.1 9.9 1.5 2.1 14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 22 Luoc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 24 Dao ND 2.6 4.0 7.3 1.5 2.8 25	11	Kinh Thay	6.8	10.3	15.3	1.5	2.3
14 Thai Binh 0.9 1.6 2.3 1.8 2.7 15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 22 Luoc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 24 Dao ND 2.6 4.0 7.3 1.5 2.8 25 Day 0.6 1.2 2.3 2.1 3.8 27	12	Kinh Thay	6.5	9.9	14.7	1.5	2.2
15 Duong 3.1 4.7 7.3 1.5 2.3 16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 22 Luoc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 24 Dao ND 2.6 4.0 7.3 1.5 2.8 25 Day 2.6 4.0 7.3 1.5 2.8 26 Day 0.6 1.2 2.3 2.1 3.8 27 D	13	Thai Binh	4.7	7.1	9.9	1.5	2.1
16 Red 4.7 8.4 14.1 1.8 3.0 17 Lo 4.5 8.2 14.0 1.8 3.1 18 Red (Thao) 0.2 0.9 0.9 4.0 4.0 19 Da 0.1 0.8 0.8 5.7 5.8 20 Lach Tray 2.4 4.1 6.9 1.7 2.8 21 Van Uc 2.5 4.2 7.1 1.7 2.9 22 Luoc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 24 Dao ND 2.6 4.0 7.3 1.5 2.8 25 Day 0.6 1.2 2.3 2.1 3.8 27 Day 0.6 1.2 2.3 2.1 3.8 28 Ninh Co 0.1 0.2 0.3 2.0 3.0 29 <td< td=""><td>14</td><td>Thai Binh</td><td>0.9</td><td>1.6</td><td>2.3</td><td>1.8</td><td>2.7</td></td<>	14	Thai Binh	0.9	1.6	2.3	1.8	2.7
17Lo4.58.214.01.83.118Red (Thao)0.20.90.94.04.019Da0.10.80.85.75.820Lach Tray2.44.16.91.72.821Van Uc2.54.27.11.72.922Luoc2.54.27.11.72.923Red3.05.39.71.83.224Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.03.029Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	15	Duong	3.1	4.7	7.3	1.5	2.3
18Red (Thao)0.20.90.94.04.019Da0.10.80.85.75.820Lach Tray2.44.16.91.72.821Van Uc2.54.27.11.72.922Luoc2.54.27.11.72.923Red3.05.39.71.83.224Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	16	Red	4.7	8.4	14.1	1.8	3.0
19Da0.10.80.85.75.820Lach Tray2.44.16.91.72.821Van Uc2.54.27.11.72.922Luoc2.54.27.11.72.923Red3.05.39.71.83.224Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	17	Lo	4.5	8.2	14.0	1.8	3.1
20Lach Tray2.44.16.91.72.821Van Uc2.54.27.11.72.922Luoc2.54.27.11.72.923Red3.05.39.71.83.224Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	18	Red (Thao)	0.2	0.9	0.9	4.0	4.0
21 Van Uc 2.5 4.2 7.1 1.7 2.9 22 Luoc 2.5 4.2 7.1 1.7 2.9 23 Red 3.0 5.3 9.7 1.8 3.2 24 Dao ND 2.6 4.0 7.3 1.5 2.8 25 Day 2.6 4.0 7.3 1.5 2.8 25 Day 0.6 1.2 2.3 2.1 3.8 26 Day 0.6 1.2 2.3 2.1 3.8 27 Day 0.6 1.2 2.3 2.1 3.8 28 Ninh Co 0.1 0.2 0.3 2.0 3.0 30 Red 0.1 0.2 0.3 2.0 3.0 31 Tra Ly 0.3 1.3 2.5 4.1 7.6 32 Red 0.7 1.4 2.9 1.9 4.0	19	Da	0.1	0.8	0.8	5.7	5.8
22Luoc2.54.27.11.72.923Red3.05.39.71.83.224Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.029Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	20	Lach Tray	2.4	4.1	6.9	1.7	2.8
23Red3.05.39.71.83.224Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.029Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	21	Van Uc	2.5	4.2	7.1	1.7	2.9
24Dao ND2.64.07.31.52.825Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.029Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	22	Luoc	2.5	4.2	7.1	1.7	2.9
25Day2.64.07.31.52.826Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.029Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	23	Red	3.0	5.3	9.7	1.8	3.2
26Day0.61.22.32.13.827Day0.61.22.32.13.828Ninh Co0.10.20.32.03.029Ninh Co0.10.20.32.03.030Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	24	Dao ND	2.6	4.0	7.3	1.5	2.8
27 Day 0.6 1.2 2.3 2.1 3.8 28 Ninh Co 0.1 0.2 0.3 2.0 3.0 29 Ninh Co 0.1 0.2 0.3 2.0 3.0 30 Red 0.1 0.2 0.3 2.0 3.0 31 Tra Ly 0.3 1.3 2.5 4.1 7.6 32 Red 0.7 1.4 2.9 1.9 4.0	25	Day	2.6	4.0	7.3	1.5	2.8
28 Ninh Co 0.1 0.2 0.3 2.0 3.0 29 Ninh Co 0.1 0.2 0.3 2.0 3.0 30 Red 0.1 0.2 0.3 2.0 3.0 31 Tra Ly 0.3 1.3 2.5 4.1 7.6 32 Red 0.7 1.4 2.9 1.9 4.0	26	Day	0.6	1.2	2.3	2.1	3.8
28 Ninh Co 0.1 0.2 0.3 2.0 3.0 29 Ninh Co 0.1 0.2 0.3 2.0 3.0 30 Red 0.1 0.2 0.3 2.0 3.0 31 Tra Ly 0.3 1.3 2.5 4.1 7.6 32 Red 0.7 1.4 2.9 1.9 4.0	27	Day	0.6	1.2	2.3	2.1	3.8
30Red0.10.20.32.03.031Tra Ly0.31.32.54.17.632Red0.71.42.91.94.0	28		0.1	0.2	0.3	2.0	3.0
31 Tra Ly 0.3 1.3 2.5 4.1 7.6 32 Red 0.7 1.4 2.9 1.9 4.0	29	Ninh Co	0.1	0.2	0.3	2.0	3.0
32 Red 0.7 1.4 2.9 1.9 4.0	30	Red	0.1	0.2	0.3	2.0	3.0
	31	Tra Ly	0.3	1.3	2.5	4.1	7.6
33 Red 3.1 4.8 9.8 1.6 3.2	32	Red	0.7	1.4	2.9	1.9	4.0
18-6	33	Red	3.1		9.8	1.6	3.2

Table 18.2.2	Traffic Volume on the	e Selected River Sections
--------------	-----------------------	---------------------------

(Unit: million tons/year)

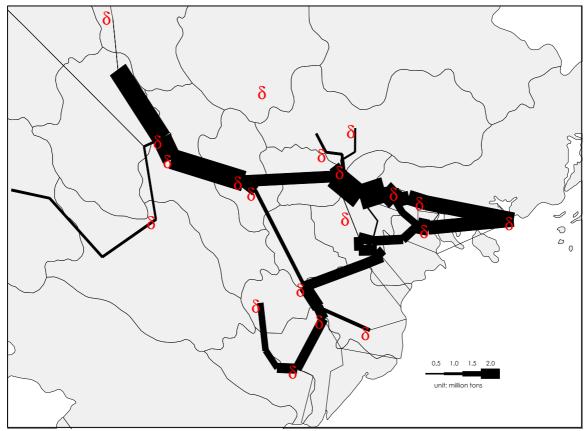


Figure 8.2.2 Cargo Transport Demand on River Sections, 2010

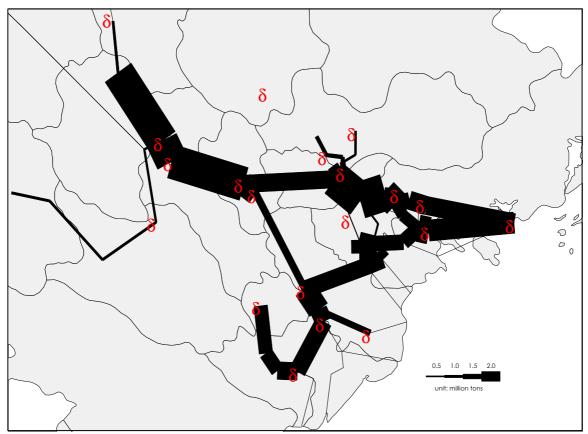
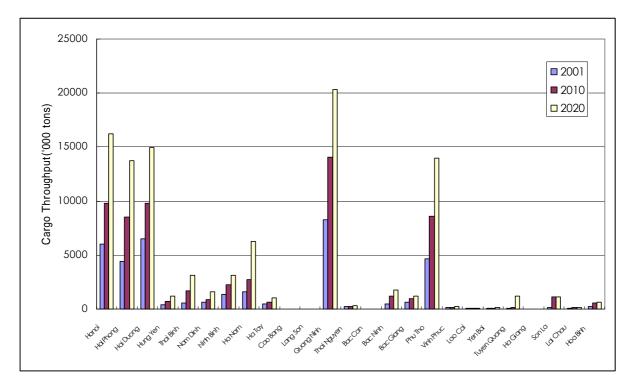



Figure 8.2.3 Cargo Transport Demand on River Sections, 2020

18.2.3 Cargo throughput by province

Based on cargo transport demand forecast, cargo throughput including loading and unloading cargo volume was accumulated by province, which helps to implement the IW port plan. Provinces including IW ports which will handle a cargo volume of more than 10 million tons in 2020 include Hanoi, Hai Phong, Hai Duong, Quang Ninh, and Phu Tho (see Figure 18.2.3). Quang Ninh province will continue to provide a lot of coal to other provinces via inland waterway for industrial plants such as thermal power, cement and fertilizer plants. In 2020, coal's share to cargo throughput in Quang Ninh will amount to 80.9%. The growth of construction and industry in Hanoi and neighboring provinces needs construction materials especially from Phu Tho. Its share will account for about 90% in 2020. On the other hand, Hai Phong and Hai Duong will produce a great deal of cement in 2020 with a new construction or extension plan of cement plants, requiring coal. More than 50% will be occupied by cement and coal in these provinces. Whereas, as an economic center, Hanoi will need construction materials and cement to satisfy the construction and industrial sector's demand. In the north, these provinces will be key IW port zones for cargo movement via inland waterway.

note) not considering sea-cum-river vessel and container's effects.

Figure 18.2.3 Cargo Throughput by Province

18.2.4 Comparison with past studies

Relevant studies which worked out the master plan for the RRD region were done by ADB (1998) and VIWA (2000). Each study's results on transport demand are mutually compared in **Table 18.2.3**.

The VIWA's estimate is twice than the ADB's. That is, the former estimated cargo transport demand would reach 61.7 million tons in 2020, whereas the latter forecast about 30 million tons. There remains a substantial gap between the two studies. The ADB took a very conservative approach, resulting in an annual growth rate of less than 4% during 2001-2020. On the contrary, VIWA's approach seems to be too generous with an annual growth rate of more than 7% even in 2010-2020. Values of elasticity are 0.4 for ADB and 1.15 for VIWA. Judging from the historical trend of cargo transport demand and empirical evidences in other countries, the former value is too low and the latter too high.

The study team's approach is more moderate, lying between ADB's and VIWA's with an annual growth rate of 6.3% in 2001-2010 and 4.7% in 2010-2020. Transport demand in 2010, forecast at 32.3 million tons, is almost the same as the VIWA's but that in 2020, estimated at 51.3 million tons, is lower than the VIWA's. As mentioned earlier, the value of elasticity will decline from 0.87 in 2001-2010 to 0.78 in 2010-2020, which is higher than the ADB's but lower than the VIWA's.

Study	Traffic Type	1995	2001	2010	2016	2020	AAGR('01-'10)	AAGR('10-'20)
	Inter-provincial	-	15.7	28.0	-	45.2	6.7	4.9
JICA ^{1/}	Intra-provincial	-	3.0	4.3	-	6.0	4.3	3.3
	Total	-	18.6	32.3	-	51.3	6.3	4.7
	Inter-provincial	7.2	11.9	-	21.5	-	4.1	4.1
ADB ^{2/}	Intra-provincial	3.0	4.0	-	6.2	-	3.0	3.0
	Total	10.2	15.9	-	27.7	-	3.8	3.8
	Inter-provincial	-	-	-	-	-		
VIWA ^{3/}	Intra-provincial	-	-	-	-	-		
	Total	-	-	31.4	-	61.7	7.8	7.0

 Table 18.2.3
 Comparison with Other Studies

(Unit: million tons/year)

Note) 1/ "The Study on the Red River Inland Waterway Transport System", JICA, 2002

2/ "Red River Waterways Project Vietnam", ADB, 1998

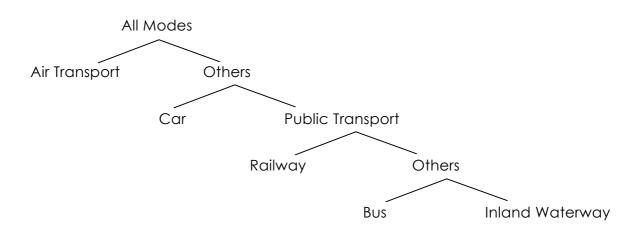
3/ "Master Plan of Inland Waterway in Vietnam to the Year 2020", VIWA&TDSI, 2000

18.3 Passenger transport demand

18.3.1 Current situation

Hanoi passenger port was constructed in Chung Dung in 1998 to serve passengers in the provinces of Hanoi, Hung Yen, Nam Dinh, Thai Binh, and Viet Tri. Until now, it has been mainly operated for tourism, connecting Hanoi and the provinces. It is expected that when a regular passenger ferry operates in the future, it will attract transport demand from the neighboring areas of Red River.

Besides there are regular passenger ferries which ply between Quang Ninh and Hai Phong. The number of passengers using inland waterway between these two provinces was 0.2 million passengers. Transport demand on this route is expected to progressively increase in the future since it also has a potential for tourism.


In general, the facilities and service level of inland waterway for passenger transport are considerably poor and its usage will reduce, if no actions are taken. If there are potential routes ensuring sufficient passengers to assure financial viability, they will certainly be connected with the economic and political center that is Hanoi. Therefore, passenger transport demand of inland waterway was herein forecast for the routes proposed to be connected with Hanoi, some of which were already included in the "Passenger Demand Forecast for Hanoi Passenger Port (2000)", as follows:

- To-east route, which will operate between Hanoi and Quang Ninh or Ha Phong via Hai Duong, Bac Ninh and Bac Giang;
- To-south route, which will operate between Hanoi and Hung Yen or Ninh Binh via Thai Binh and Ha Nam; and
- To-west route, which will operate between Hanoi and Phu Tho via Vinh Phuc and Viet Tri.

The passenger demand forecast for existing route plying between Quang Ninh and Hai Phong was also done.

18.3.2 Selection of potential routes

Among the routes above, potential routes that will attract sufficient passengers to ensure financial viability were chosen based on road conditions, service characteristics of alternative transport modes and so on. Nested logit model was also applied with the following binary choice structure:

At the final stage of estimating, inland waterway will be in competition with bus transport, which can be interpreted as a binary choice of bus and inland waterway. Against the service level of bus, the probability of choosing inland waterway can be calculated through the binary choice model, which could be a clue to determine potential inland waterway routes, expressed as:

$P_{iw} = \exp(U_{iw}) / (\exp(U_{iw}) + \exp(U_{bus}))$

where, P_{car} = Probability of Choosing Inland Waterway U_{iw} = Utility of Inland Waterway U_{bus} = Utility of Bus

In general, the utility of the alternative transport modes is a function of attributes, including access time, waiting time, in-vehicle time and fare, weighted by estimated parameters reflecting the importance attached to each attribute. A constant can also be included to represent the net effect of other attributes not explicitly included in the model (eg comfort, status, safety, reliability, etc.). Parameters for binary choice model were herein borrowed from the VITRANSS. However, as it was developed for macro analysis model, there are some limitations, ie though a lot of factors have an impact on transport behavior, it only took into account travel time and mode specific variable. Therefore, trade-off of travel cost and travel time was considered by converting travel cost (fare) into travel time according to value of time.

Disculture	0.5	Distanc	ce(Km)	Travel	Speed	Travel T	ime(hr)	Probability	Road	Dalla Da ail	Potential
Direction	OD	Road	IW	Bus	IW	Bus	IW	of IW(%) ^{1/}	Accessibility	Path Road	Route ^{2/}
	Ha Noi <> Hai Phong	106	150	36	29	2.9	5.2	3.5	Very Good	NH5	Х
	Ha Noi <> Hai Duong	56	95	36	29	1.6	3.3	5.3	Very Good	NH5	Х
To East	Ha Noi <> Quang Ninh	130	212	36	29	3.6	7.3	1.1	Very Good	NH18	Х
	Ha Noi <> Bac Ninh	31	117	34	29	0.9	4.0	1.7	Good	NH1	Х
	Ha Noi <> Bac Giang	69	114	34	29	2.0	3.9	4.6	Good	NH1	Х
	Ha Noi <> Hung Yen	64	60	30	29	2.1	2.1	19.6	Poor	Local Road	0
	Ha Noi <> Thai Binh	109	101	32	29	3.4	3.5	18.0	Moderate	NH1, NH21, NH10	0
To South	Ha Noi <> Nam Dinh	90	106	34	29	2.6	3.7	0.1	Good	NH1, NH21	Х
	Ha Noi <> Ninh Binh	94	161	34	29	2.8	5.6	2.2	Good	NH1	Х
	Ha Noi <> Ha Nam	55	204	36	29	1.5	7.0	0.2	Very Good	NH1	Х
	Ha Noi <> Viet Tri	84	75	34	29	2.5	2.6	17.5	Good	NH2	0
To West	Ha Noi <> Phu Tho	123	115	32	29	3.8	4.0	17.4	Moderate	NH2	0
10 Mesi	Ha Noi <> Vinh Phuc	52	77	34	29	1.5	2.6	8.3	Good	NH2	Х
	Ha Noi <> Hoa Binh	78	148	32	29	2.4	5.1	1.3	Moderate	NH6	Х

 Table 18.3.1
 IW Potential Route Selection

Note) 1/ Calculated by binary logit model

2/ Routes with probability of more than 15% were selected.

The probability of choosing inland waterway was calculated under the assumption that bus operates at a speed of 30-36 km/h according to road condition and passenger ferry operates at a constant speed of 29 km/h. Then the probability of choosing inland waterway was calculated as shown in **Table 18.3.1**. The probability to choose to-east route is very low since travel distance of road is shorter than that of inland waterway and the road network is well developed. Also, the IW route between Hanoi and Ninh Binh is less preferred due to the same reason. As potential IW routes for passenger transport, to-south route operating between Hanoi and Thai Binh via Hung Yen and to-west route operating between Hanoi and Phu Tho via Viet Tri were selected because of the comparatively high probability of passengers choosing inland waterway. Thus passenger demand of inland waterway was forecast, given that passenger ferry will ply on the two potential routes.

18.3.3 Results of passenger demand forecast

According to the VITRANSS, total passenger demand traveling in the northern region was estimated at 142.7 million trips in 2010 and 202.2 million trips in 2020. Then OD traffic, which was calculated based on gravity model, shows that about 2 million trips in 2010 and 3 million trips will take place between OD pairs for potential routes which were selected in the previous section (see **Table 18.3.3**). As a result of applying nested binary choice model, potential passenger demand of inland waterway was estimated at 0.6 million passengers in 2010 and 0.9 million passengers in 2020.

Year	1999	2010	2020	AGR (1999-10)	AGR (2010-20)
No. of Passenger Trips(million)	71.4	142.7	202.2	6.5	3.5

 Table 18.3.2
 Total Number of Passenger Trips in the North

Note) excluding intraprovincial trips.

Source) VITRANSS

Table 18.3.3 Summary of Passenger Transport Demand Forecast

Direction	Section	Distanc	ce(Km)	Travel T	ime(hr)	All Mod	es('000)	IW('000)	
Direction	36C11011	Road	IW	Bus	IW	2010	2020	2010	2020
	Ha Noi <> Hung Yen	64	60	2.1	2.1	1,691	2,516	210	309
	Ha Noi <> Thai Binh	109	101	3.4	3.5	2,391	3,436	159	224
To South	Hung Yen <> Thai Binh	45	41	1.3	1.6	299	590	32	64
	subtotal					4,381	6,542	402	597
	Ha Noi <> Viet Tri	84	75	2.5	2.6	1,285	1,794	135	189
	Ha Noi <> Phu Tho	123	115	3.8	4.0	964	1,345	101	141
To West	Viet Tri <> Phu Tho	39	40	1.4	1.4	25	45	3	5
	subtotal					2,274	3,184	239	335
	Total					6,655	9,725	641	932

It should be noted that passenger demand of inland waterway was estimated under the following assumptions:

- Travel cost of inland waterway is the same as that of bus. Fare of high-speed ferry operating between HCMC and Vung Tau is about three times costlier than bus.
- Passengers can get on a passenger ferry without waiting at terminals, ie waiting time of inland waterway is almost the same as that of bus.

In reality, inland waterway fare would be more expensive than that of bus and the waiting time at passenger ports would be longer than at bus terminals due to fewer trips of passenger ferry. A sensitivity analysis reveals that passenger demand will, if waiting time is 30 minutes longer or if fare is more than VND 5,000, decrease up to about 30%. Therefore, focus should be given on providing the same service level as that of bus to ensure as many passengers as possible, eg increasing travel speed of passenger ferry, minimizing waiting time at passenger port or setting up a fare at the same level as that of bus. For instance, if passenger ferry operates at a speed of 40 km/h from 29 km/h, passenger demand of inland waterway is estimated to increase by around 30%.

		Waiting Time Difference(IW-Bus)							
		0	0.5	1	1.5	2			
	0	_	-29.8	-51.7	-67.2	-78.0			
Fare	5000	-27.8	-50.2	-66.2	-77.3	-84.8			
Differenc	10000	-48.7	-65.1	-76.5	-84.3	-89.6			
e (IW-B∪s)	15000	-64.1	-75.8	-83.8	-89.3	-92.8			
	20000	-75.0	-83.3	-88.8	-92.6	-95.2			

Table 18.3.4 Sensitivity Analysis

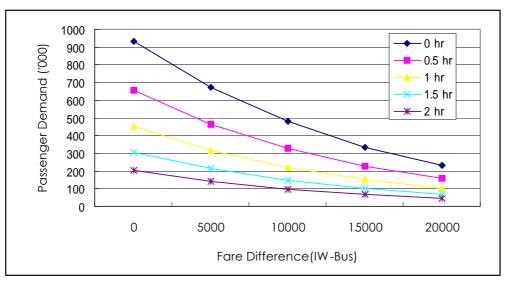


Figure 18.3.1 Impact of Fare and Waiting Time on IW Passenger Demand

As for existing IW passenger route between Hai Phong and Quang Ninh, it was, as shown in **Table 18.3.5**, estimated to have a potential demand of 0.4 million passengers in 2010 and 0.6 million passengers in 2020.

(Unit: '000 passengers)

Year	1999	2010	2020	AGR (1999-10)	AGR (2010-20)
Hai Phong <> Quang Ninh	237.25	421.21	603.71	5.4	3.7

18.3.4 Comparison with relevant study

The VIWA (2000) also estimated passenger demand of inland waterway for some selected routes from Hanoi toward Hung Yen, Thai Binh and Phu Tho, in the master plan of inland waterway. Demand forecast for existing route of Quang Ninh to Hai

Phong was also done. The results are summarized in **Table 18.3.6**. Although there are some differences between the two studies, these are minor.

			(Unit: '000	passengers/year)
Section	JICA ^{1/}		VIWA ^{2/}	
	2010	2020	2010	2020
Hanoi <> Hung Yen	210	309	190	320
Hanoi <> Thai Binh	159	224	95	160
Hanoi <> Phu Tho	101	141	37	60
Hai Phong – Quang Ninh	421	603	500	850

Table 18.3.6 Comparison with VIWA's study

Note) 1/ "The Study on the Red River Inland Waterway Transport System", JICA, 2002

2/ "Master Plan of Inland Waterway to the Year 2020", VIWA&TDSI, 2000