

TYPICAL CROSS-SECTION
1:50

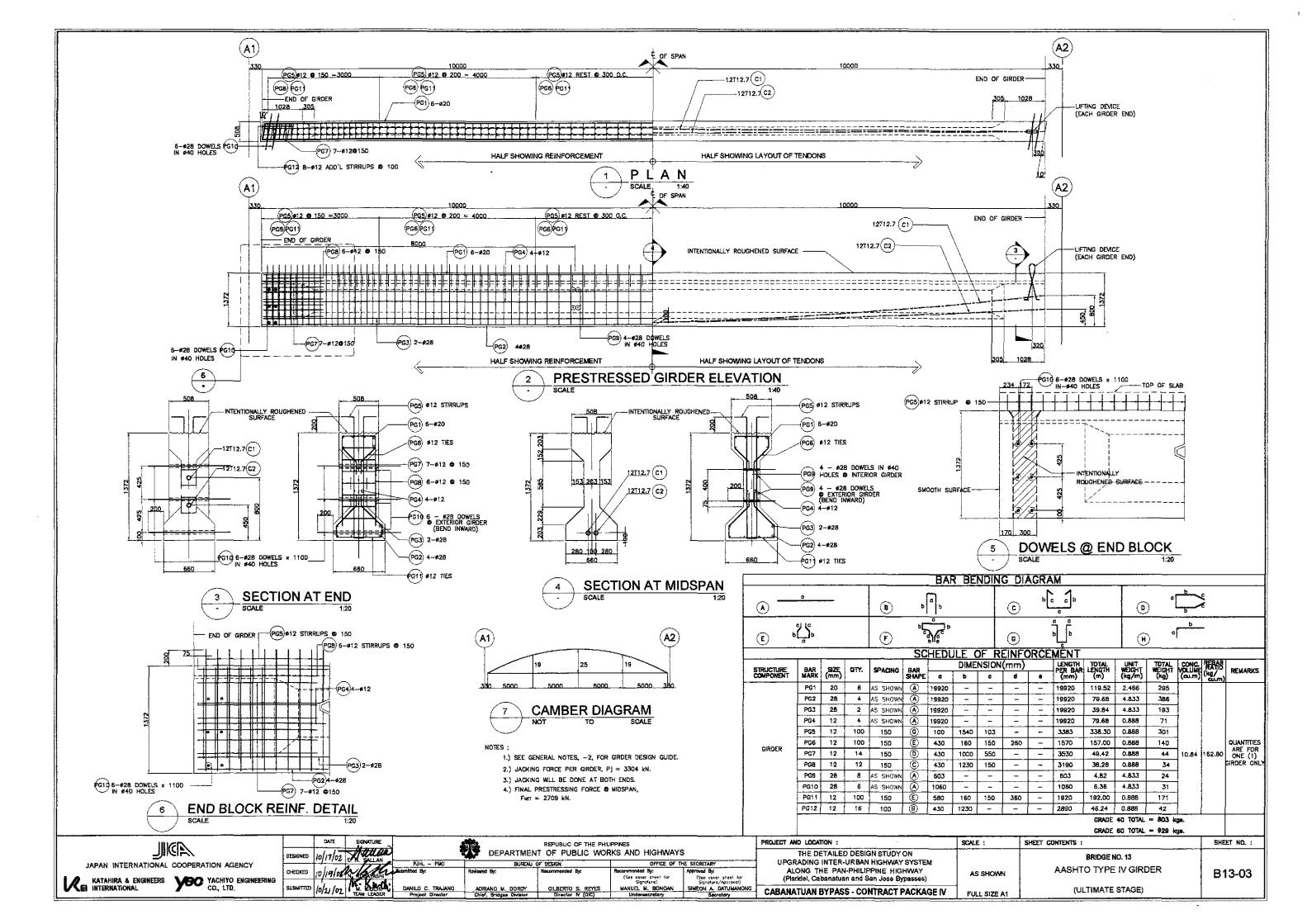
LOCATION	CONCRETE	BAR MARK	BAR	QTY.	COLONIC	BAR	DMENS	IONS (m	m) OUT	TO OUT	LENGTH EACH BAR	TOTAL	UNIT WT.	WEIGHT	REBA
LIXATION	CONCRETE VOLUME (m²)	MARK	SIZE	urr.	SPACING	SHAPE	•	b	c	d	(mm)	(w)	UNIT WT. (kg/m)	WEIGHT	REBA RATIO
		G1	16	10	AS SHOWN	(A)	19900	_		_	19900	199.00	1.579	315	
		SI	16	61	300	©	145	11600	145	-	11890	725.29	1.579	1146	
		510	16	14	300	©	145	6590	145	-	6880	96.32	1.579	153	
		S2	16	122	300	B	145	2000	-	-	2145	261.69	1.579	414	
		S20	16	183	300	(A)	1700	_	_	ļ —	1700	311.10	1.579	492	1
DECK SLAB 55		S2b	16	244	300	(A)	1950	-	-	-	1950	475.80	1.579	752	
		S3	16	61	300	(A)	11500	-	_	-	11600	707,60	1.579	1118	1
		S3a	16	14	300	A	6590	_		ļ —	6590	92.26	1.579	146	
	55.44	\$4	16	48	150	(A)	19900			-	19900	955.20	1.579	1509	164.7
		S 5	16	48	150	(A)	19900	_	_	_	19900	955.20	1.579	1509	1
		S6	16	12	AS SHOWN	(A)	19900	-	_	-	19900	238.80	1.579	378	1
		\$7	16	12	AS SHOWN	(A)	19900	_	-	-	19900	238.80	1.579	378	
		Sa	16	20	AS SHOWN	(Ē)	11780		_	i -	11780	235.60	1.579	373	3
		59	16	28	AS SHOWN	(A)	6590	_	_	-	6590	184.52	1.579	292	1
	1	510	12	90	450	Ē	145	900	600	300	1945	175.05	0.885	156	3
TOTAL	55.44				•						GR	ADE 40	TOTAL =	9,131	CTIE.

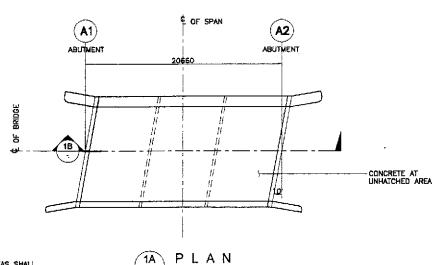
ADIIL	DA	E SICNATURE	. 4		REPUBLIC OF THE PHIL			PROJECT AND LOCATION :	SCALE :	SHEET CONTENTS :	SHEET NO. :
JAPAN INTERNATIONAL COOPERATION AGENCY	DESIGNED 10/17	OZ E. A. SLUAN	PUNL - PMO	DEPARTMEN BUREAU	T OF PUBLIC WOF		E SECRETARY	THE DETAILED DESIGN STUDY ON UPGRADING INTER-URBAN HIGHWAY SYSTEM		BRIDGE NO. 13	
KATAHIRA & ENGINEERS VACHIYO ENGINEERING	CHECKED /0/14	but the	Submitted By:	Reviewed By:	Recommended By:	Recommended By: (See cover sheet for Signoture)	Approved By: (See cover sheet for Signature/Approval)	ALONG THE PAN-PHILIPPINE HIGHWAY (Plaridel, Cabanatuan and San Jose Bypasses)	AS SHOWN	DECK FRAMING PLAN AND SECTIONS	B13-02
CO, LTD.	SUBMITTED /0/2	/02 M. KIUCHI TEAM LEADER	DANILO C. TRAJANO Project Director	ADRIANO M. DOROY	GILBERTO S. REYES Director N (OIC)	MANUEL M. BONCAN Undersecretory	SIMEON A. DATUMANDING Secretory	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)	

11.18

53.19

13.39

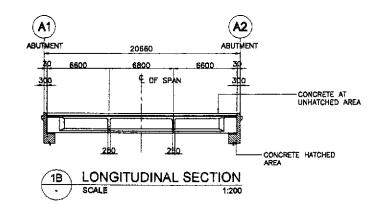

35.22

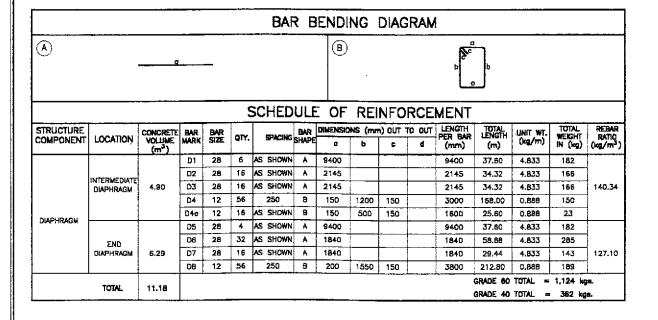

DIAPHRAGM

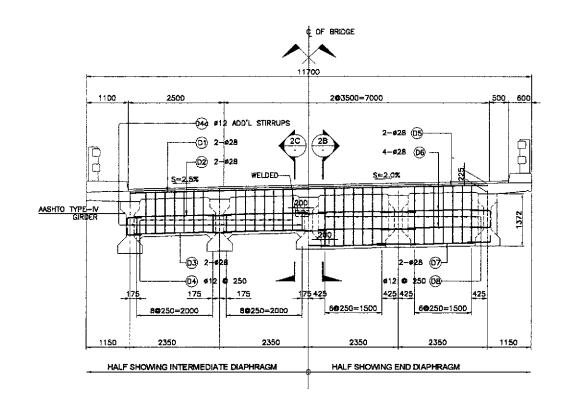
APPROACH SLAB

SIDEWALK, RAILING, & POST

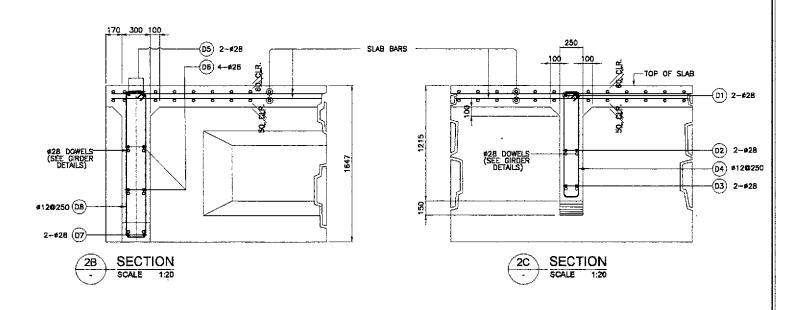
GIRDER



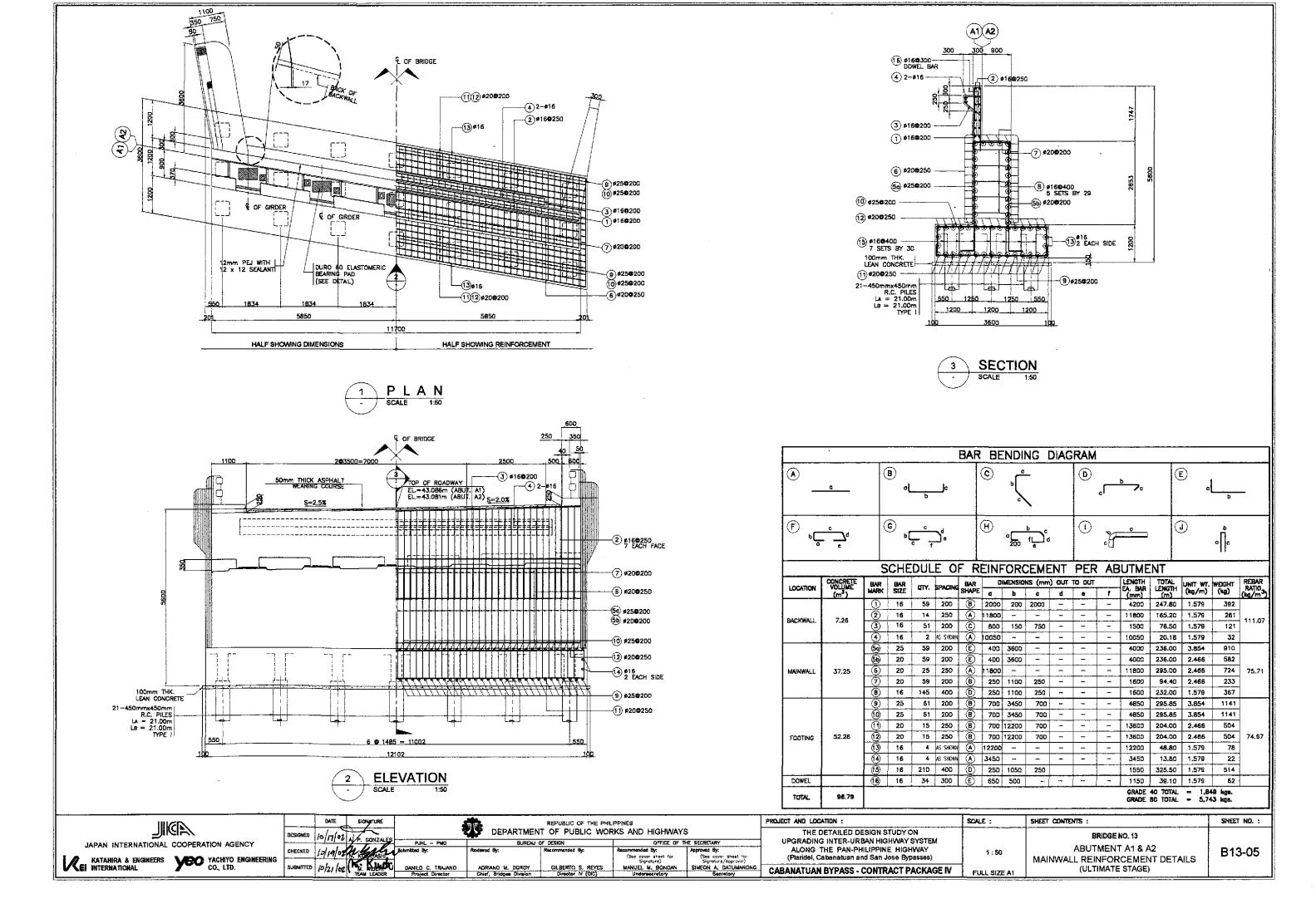

SCALE 1:200

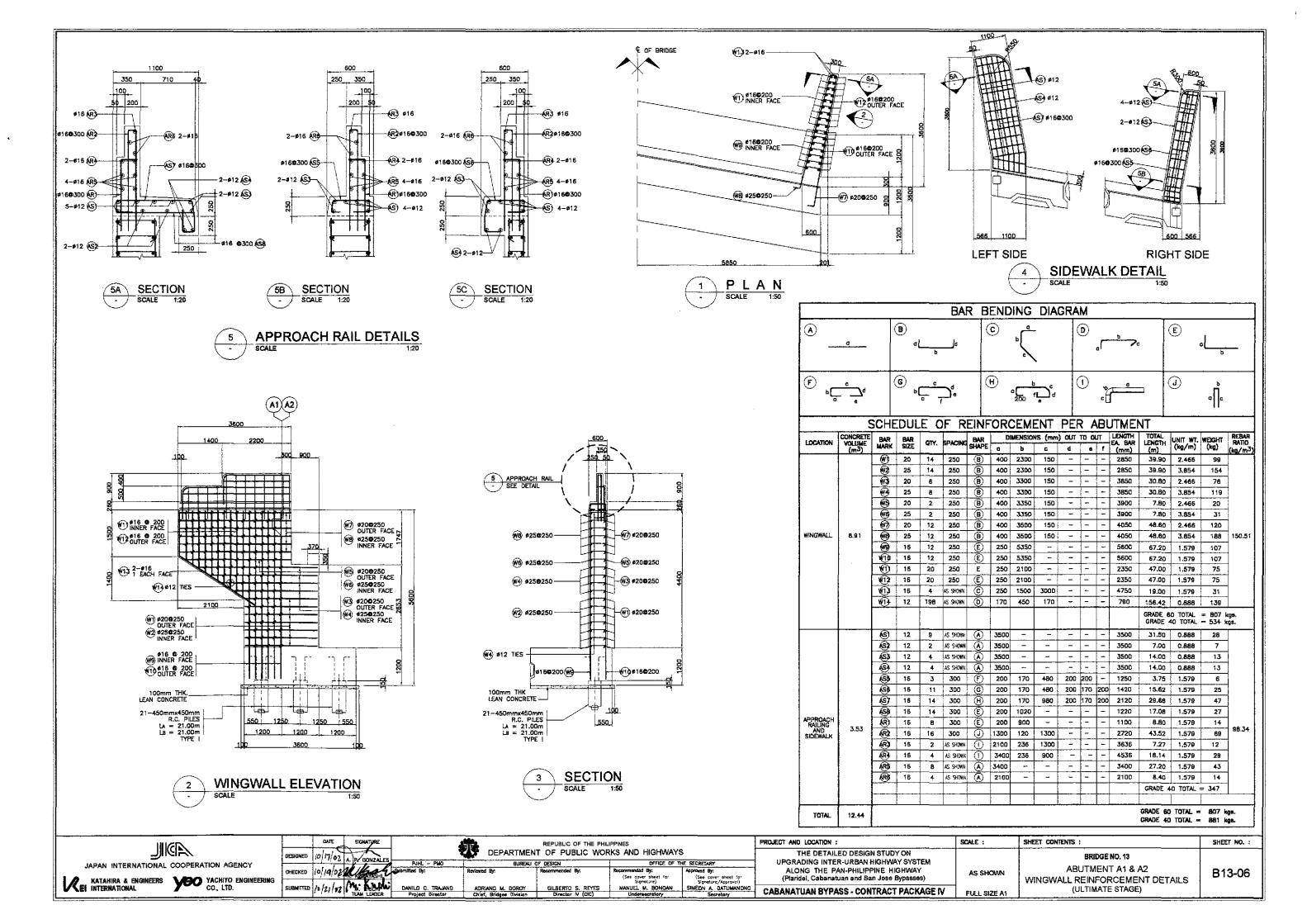

NOTES:

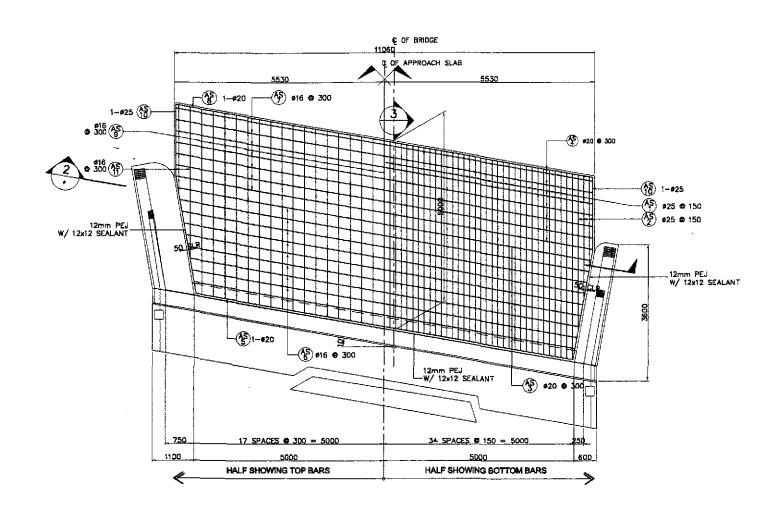
- CONCRETE AT HATCHED AREAS SHALL BE PLACED AT LEAST TWENTY ONE (21) DAYS AHEAD OF CONCRETE AT UNHATCHED AREAS.
- 2. SEE GIRDER DETAILS FOR SPACING OF #28 DOWELS.



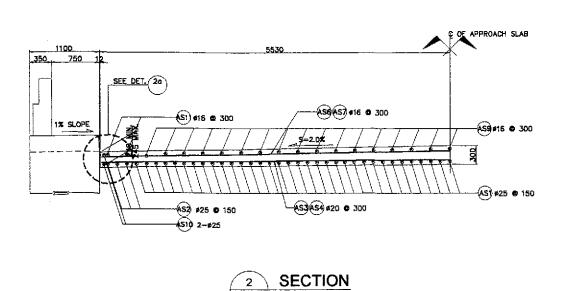
1 CONCRETE POURING SEQUENCE 1:200

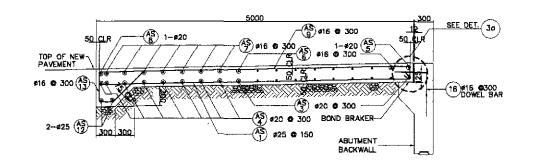


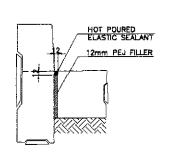

ELEVATION SCALE 1:50

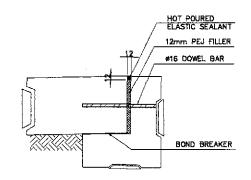


2 DETAIL OF END & INTERMEDIATE DIAPHRAGM
- SCALE AS SHOWN

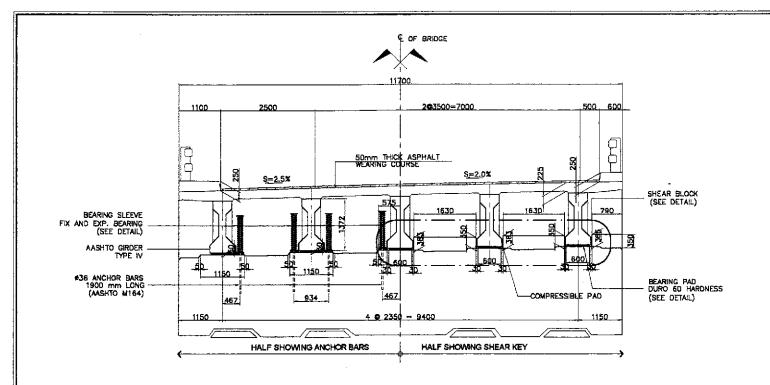

IIIGN	DATE	SIGNATURE		REPUBLIC OF THE PHI			PROJECT AND LOCATION:	SCALE :	SHEET CONTENTS :	SHEET NO. :
	DESIGNED 10/17/02 E	N SALAN		IT OF PUBLIC WO			THE DETAILED DESIGN STUDY ON		BRIDGE NO.13	
JAPAN INTERNATIONAL COOPERATION AGENCY	CHECKED /0/19/02	Bubmitted By:	Hoviewed By:	OF DESIGN Recommended By:	Recommended By:	HE SECRETARY Approved By:	UPGRADING INTER-URBAN HIGHWAY SYSTEM ALONG THE PAN-PHILIPPINE HIGHWAY	AS SHOWN	CONCRETE POURING SEQUENCE	B13-04
KATAHIRA & ENGINEERS YOU YACHIYO ENGINEE	SUBMITTED /0/21/02	DANILO C. TRAJANO	ADRIAND M. DOROY	GILBERTO S. REYES	(See cover sheet for Signature) MANUEL M. BONOAN	(See cover sheet for Signature/Approval) SIMEON A. DATUMANONG	(Plaridel, Cabanatuan and San Jose Bypasses) CABANATUAN BYPASS - CONTRACT PACKAGE IV	<u> </u> 	AND DIAPHRAGM DETAILS (ULTIMATE STAGE)	
	1 14 102	TEAM LEADER Project Director	Chief, Bridges Division	Director V (QIC)	Undersecretory	Secretary	CABANATUAN BIPASS - CONTRACT FACRAGETY	FULL SIZE A1	(02110772 077102)	



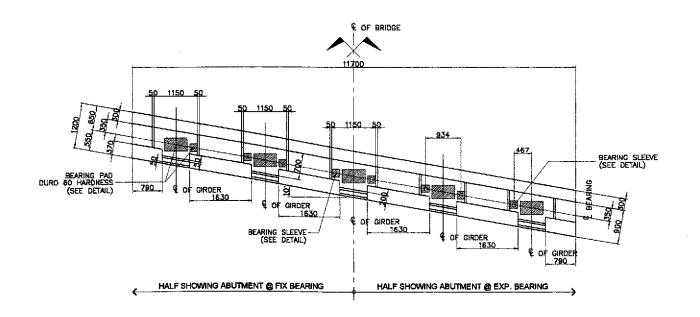




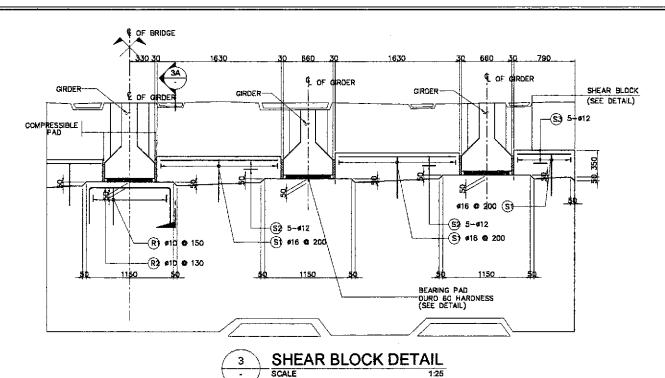
SCALE

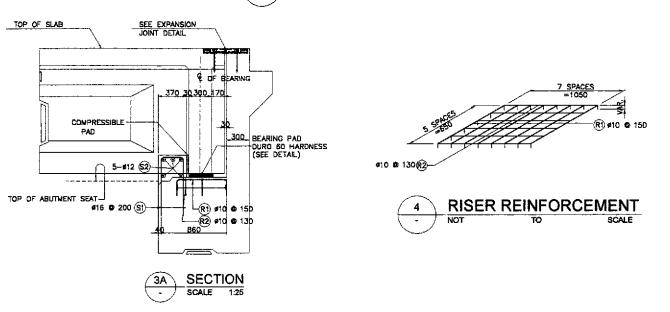


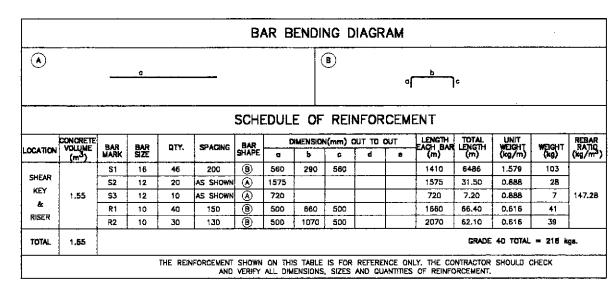


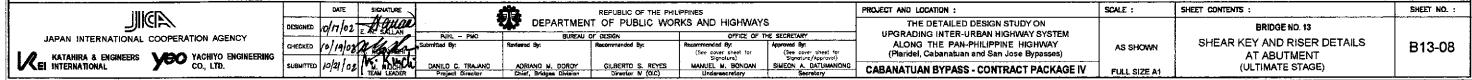


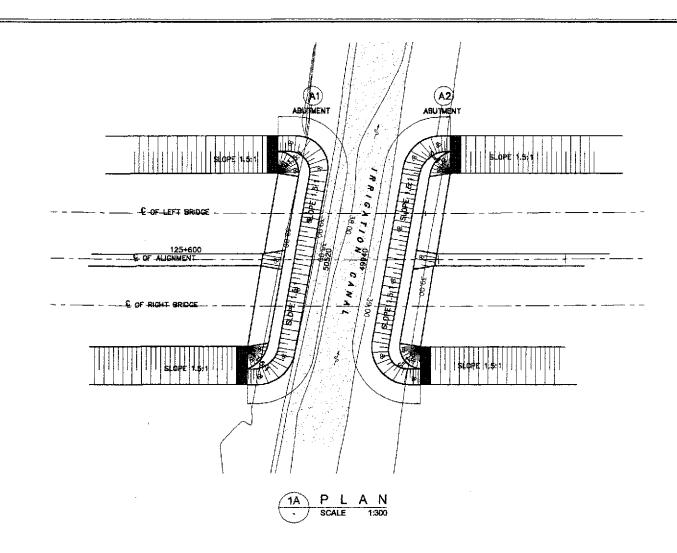
						BAR	BEI	NDIN	G D	IAG	RA	М					
A	a			8		٥	þ		•		٥	\		0		2_/	
		SCH		LE ()F R	EIN								CH S		,	
LOCATION	CONCRETE VOLUME (m ³)	BAR MARK	BAR SIZE	QTY.	SPACING	BAR SHAPE	DIM	ENSIONS b	(mm)	OUT T	0 0	JT f	LENGTH EA. BAR (mm)	TOTAL LENGTH (m)	WEIGHT (kg/m)	WEIGHT (kg)	REBAR RATIO (kg/cill)
		(S)	25	68	150	B	4900	200	-	-	-	-	5100	346.80	3,854	1337	
		(S2	25	6	150	B	3250	200	-	-	-	-	3450	20.70	3.854	80	1.
		(<u>S</u>)	20	10	300	(10700	-	-		Ŀ	-	10700	107.00	2.466	264	
		ASA 20 8 300 A 11300 1130	11300	90.40	2.466	223											
		453	20	1	AS SHOWN	9	10150		_	-	<u>-</u>	-	10150	10.15	2.466	26	
APPROACH 17.6	17,61	(S)	16	9	300	<u>(A)</u>	10800	-			<u> </u>	-	10800	97.20	1.579	154	159.55
SLAB	17.01	(S)	16	7	300	<u>(A)</u>	11800				-	-	11800	79.10	1.579	125	138.50
	ł	Æ8 <u></u>	20	1	AS SHOWN	<u>(A)</u>	11300	-		-	-	-	1130D	11.30	2.456	28	
		€	16	34	300	<u>B</u>	4900	200	-	-	<u> </u>	_	5100	173.40	1.579	274	
		A \$10	25	+ <u>-</u>	AS SHOWN	0	2000	3100	-	-	-	-	5100	20.40	3.854	79	
		AS)1	16	4	300	(B)	3150	200	-		<u> -</u>		3350	13.4D	1.579	22	
		A\$1)2 A\$1)3	25 16	38	as shown		11300	-	200	700	 - -	_	11300	22.60	3,854	88	-
		4510	16	38	300	0	400	500	200	700		<u> </u>	1800	68.40	1.579	109	<u> </u>
TOTAL	17.61														40 TOTAL 60 TOTAL		kgs. kgs.

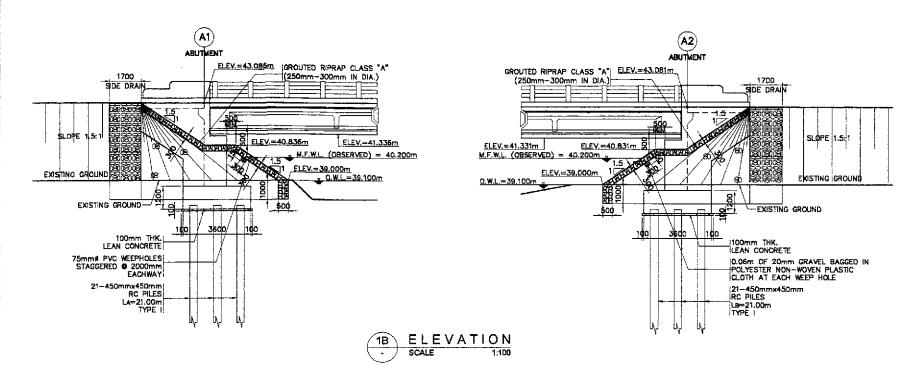

		CATE	SIGNATURE -			REPUBLIC OF THE PH			PROJECT AND LOCATION:	SCALE :	SHEET CONTENTS :	SHEET NO. :
JAPAN INTERNATIONAL COOPERATION AGENCY	DESIGNED	10/17/02	E.M. SALLAN	PJHL - PMO		OF DESIGN	-	THE SECRETARY	THE DETAILED DESIGN STUDY ON UPGRADING INTER-URBAN HIGHWAY SYSTEM	<u> </u>	BRIDGE NO. 13	
KATAHIRA & ENGINEERS YOU YACHIYO ENGINEERING CO., LTD.	CHECKED	10/14/02		Submitted By:	Raylowed By:	Recommended By:	Recommended By: (See cover sheet for Signoture)	Approved By: (See cover sheet for Signature/Approval)	ALONG THE PAN-PHILIPPINE HIGHWAY (Plaridel, Cabanatuan and San Jose Bypasses)	AS SHOWN	APPROACH SLAB PLAN, SECTIONS & DETAIL	B13-07
CO, LTD.	SUBWITTED	16/21/02	TEAM LEADER	DANIES C. HOLLAND	ADRIANO M. BOROY Chief, Bridges Division	GILBERTO S. REYES Director W (OIC)	MANUEL M. BONGAN Undersecratory	SIMEON A. DATUMANONG Secretory	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)]

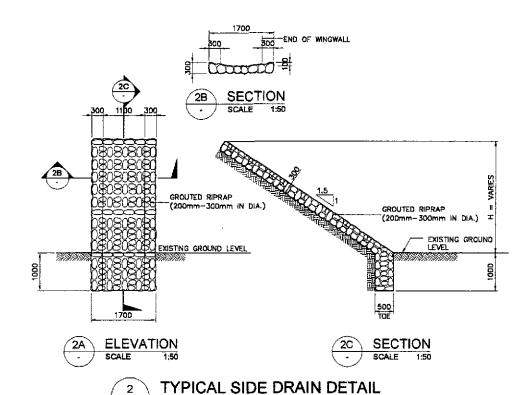







PLAN AT ABUTMENT SEAT
SCALE 1:50

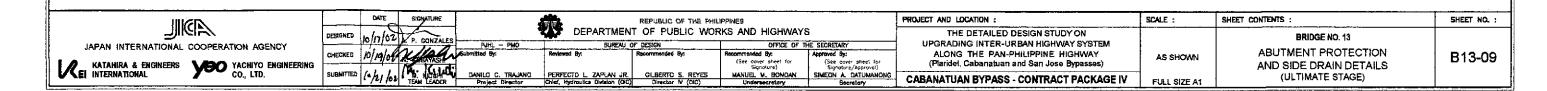


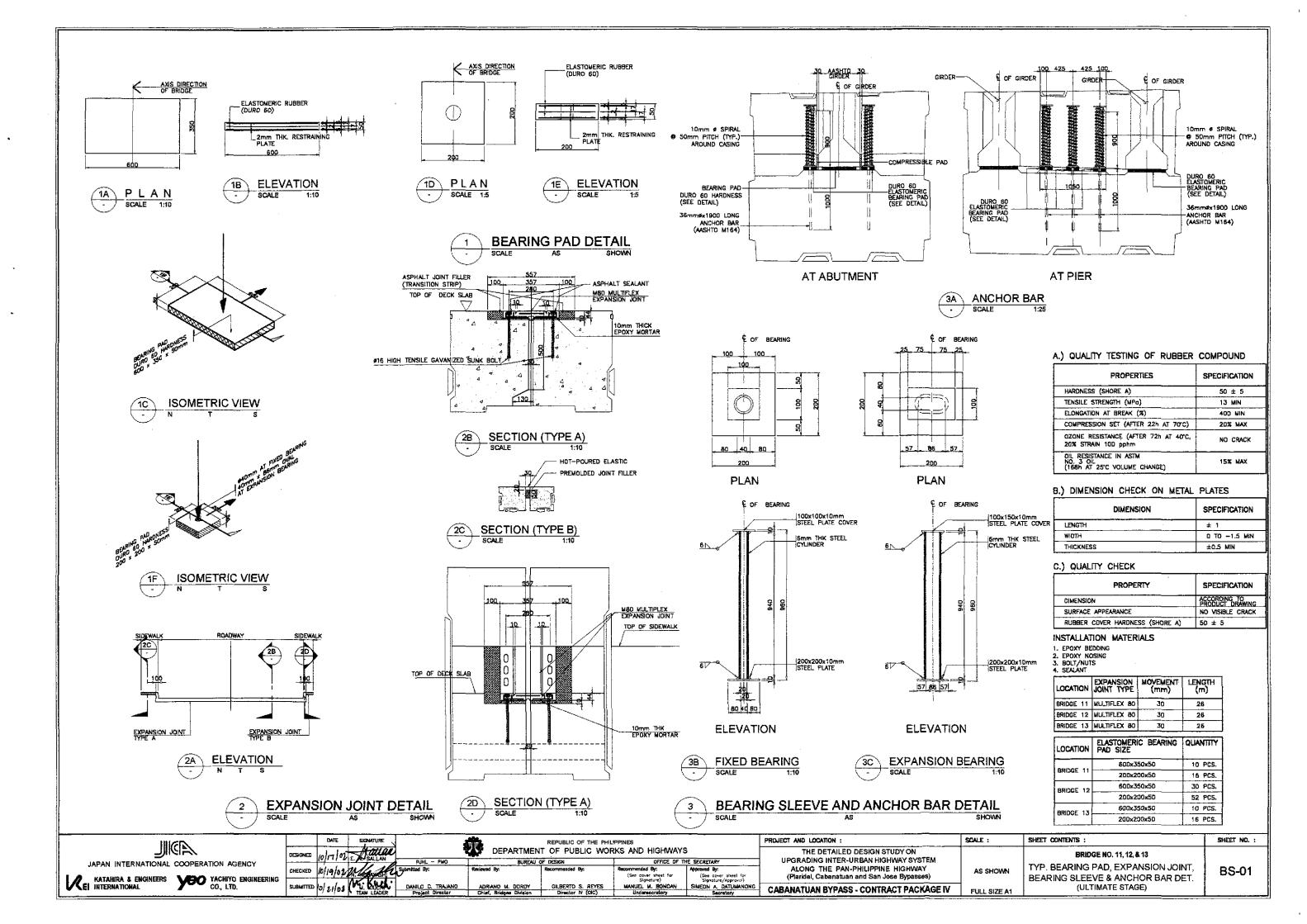

ABUTMENT SLOPE PROTECTION

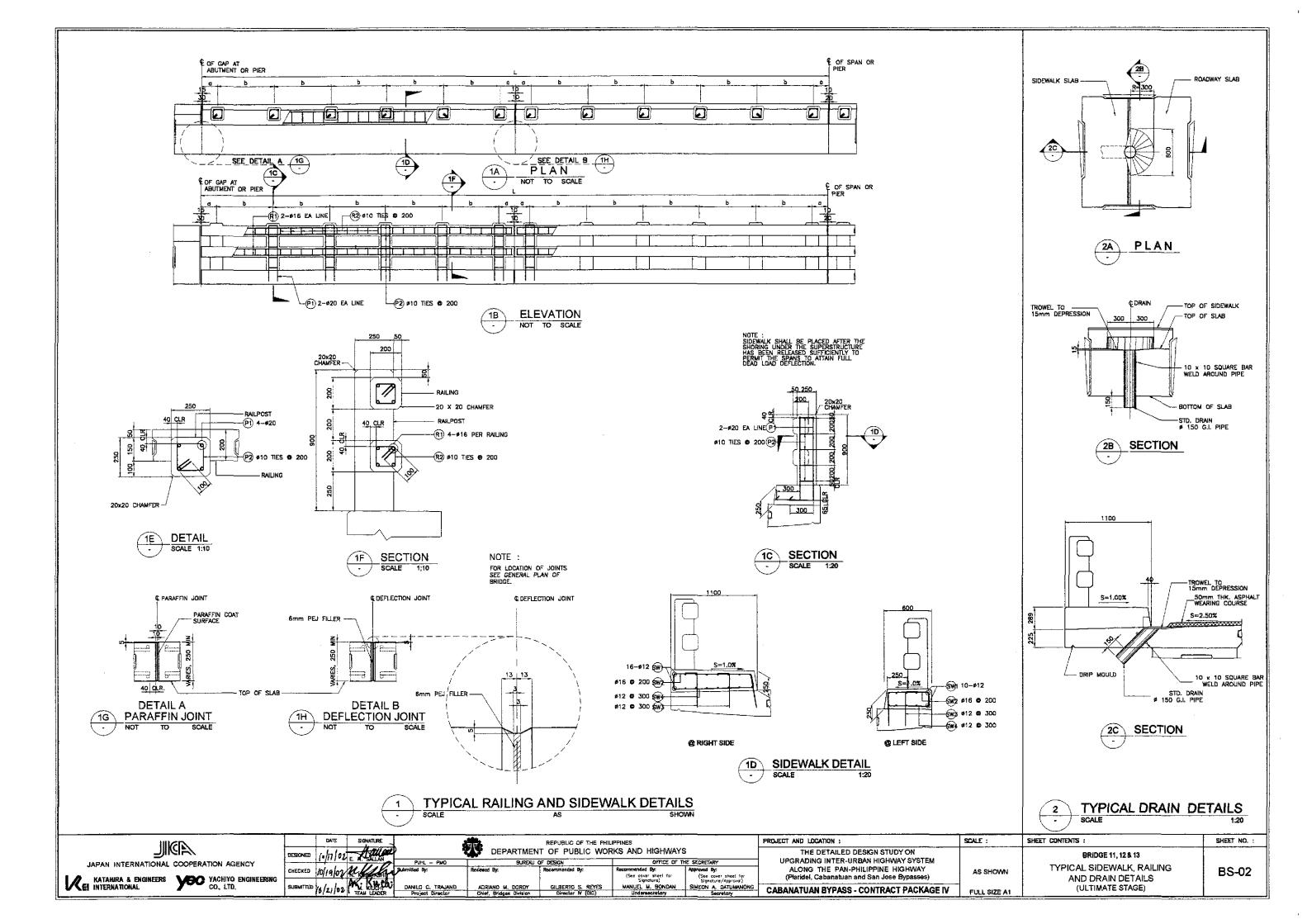
GENERAL NOTES:

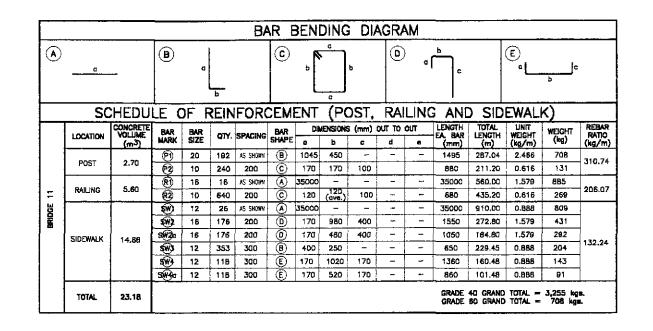
- 1. GROUTED RIPRAP (250mm-300mmDIA.) SHALL BE USED FOR THE FACING AND SHALL BE CAREFULLY HANDLAID WITH THE LONGEST DIMENSIONS PERPENDICULAR TO THE SLOPE AND FIRMLY BEDDED INTO THE SLOPE AND ADJACENT TO THE ADJOINING BOULDERS SPACED BETWEEN THE BOULDERS. THE SPACE BETWEEN THE BOULDERS SHALL BE COMPLETELY FILLED WITH MORTAR. THE OUTSIDE SURFACE OF THE BOULDERS SHALL BE LEFT EXPOSED AND THE SURFACE OF THE MORTAR SHALL BE SWEPT WITH A STIEFE BROOM
- 2. GEOTEXTILE
- THE FOLLOWING SPECIFICATIONS ARE REQUIRED:
- 1. POLYESTER OR POLYPROPELINE 100%
- 2. MECHANICALLY BONDED/HEAT BONDED 6. WEIGHT -
- IDED 6. WEIGHT 200g/sq. m. (MIN.)
 7. CBR PUNCTURE STRENGTH 400N (MIN.)

5. THICKNESS UNDER PRESSURE - 0.80mm (MIN.)

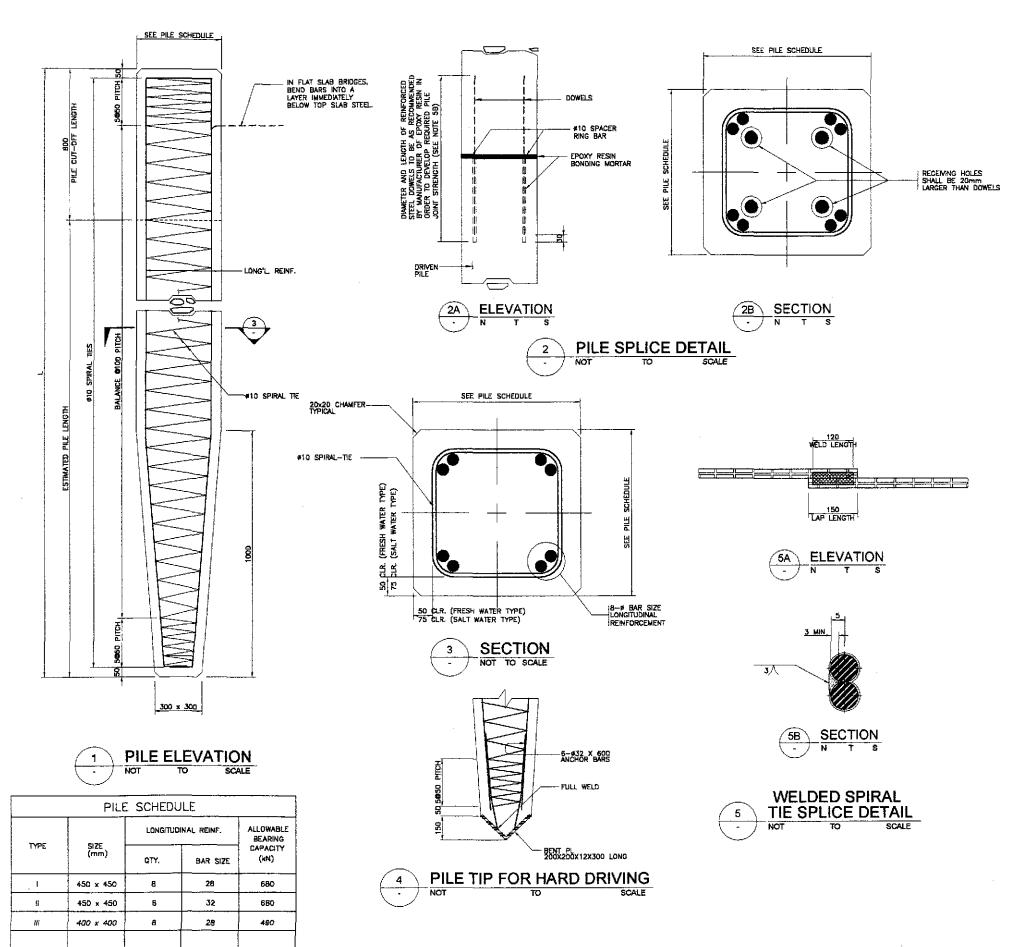

- 4. EFFECTIVE OPENING SIZE 110 MICRONS (MAX.) 8. MULTI-DIRECTIONAL TENSILE STRENGTH 13KN/m
- GRAVEL FILTER SHALL BE COARSE AGGREGATES MATERIALS WHICH SATISFY THE REQUIREMENTS FOR ITEM 4D5, STRUCTURAL CONCRETE, GRADING 8 OF TABLE 405.1 AS REVISED.
- 4. NO CONCRETING UNDER WATER SHALL BE PERMITTED.
- 5. PROVIDE 1.0 m BERM WHEN HEIGHT (H) IS > 4.0 m.




VELOCITY	ROCK SIZE (m	m)
(m/sec)	VERY TURBULENT FLOW	SMOOTH FLOW
1.00	40	-
1.50	135	-
2.00	170	-
2.50	255	137
3.00	370	197
3.50	515	270
4.00	690	350
4.50	825	425
5.00	>900	590


PER ABUTMENT

LOCATION	SIZES	QUA	YTITN
LUCA HON	31223	ABUT. A1	ABUT. A2
SIDE DRAIN	200mm-300mm IN DIA.	10.28 cu. m.	10.77 cu. m.
GROUTED RIPRAP	250mm~300mm IN DIA.	53.88 cu. m.	53.88 cu. m.


						B/	AR E	BEN	DING	DIA	\GRA	M	_				
A	a	-	В	a	Ь		©	•	a •	b	©	a	b c		E		:
	SC	HEDU	LE C)F F	REIN	FOR	CEM	ENT	(PC	OST,	RAI	LINC	AND	SID	EWALI	〈)	
	LOCATION	CONCRETE VOLUME (m3)	BAR MARK	BAR SIZE	QTY.	SPACING	BAR SHAPE	DII	IENSIONS	(mm)	or TUC	on.	LENGTH EA. BAR (mm)	TOTAL LENGTH (m)	UNIT WEIGHT (kg/m)	WEIGHT (kg)	REBAR RATIO (kg/m)
			e	20	120	AS SHOWN	₿	1045	450	~	-	_	1495	179.40	2.466	443	311.11
	POST	1.69	(2)	10	150	200	©	170	170	100			880	132.00	0.616	82	311.11
- [RAILING	3.20	<u>(R)</u>	16	16	as shown		20000	-	-		-	20000	320.00	1.579	506	205.94
₽ [RAILING	3.20	(2)	10	364	200	©	120	120	100	-	_	680	247.52	0,616	153	200.54
BRIDGE			\$₩)	12	26	AS SHOWN		20000	-	-			20000	520.00	0.888	462	
			® 2	16	101	200	0	170	980	400			1550	156.55	1.579	24B	
	SIDEWALK	8.50	SW20	16	101	200	0	170	48D	400			1050	106.05	1.579	168	133.06
			® 3	12	203	300	B	400	250				650	131.95	0.888	118	
			₩)	12	68	300	€	170	1020	170			1360	92.48	0.888	83	_
			SWA⊏	12	68	300	(E)	170	520	170	-		860	58.48	0.888	52	<u>i</u>
	TOTAL	13.39													TOTAL =		

	_	B	ä			(C)	K	<u> </u>					- 1	\sim		
00				Ь			ь	,	ь	0	۵ſ	c		E L		
3C	HEDU	LE (OF F	REIN	FOR(CEMI	ENT	(PC	ST,	RAI	LING	ANE	SID	EWAL	()	
OCATION	CONCRETE VOLUME	BAR	BAR SIZE	QTY.	SPACING	BAR						LENGTH EA, BAR	TOTAL LENGTH	WEIGHT	WEIGHT	REBAR RATIO
	(m ³)		20	576	AS SHOWN		1045	450	-	_	-	(mm) 1495	(m) 861.12	2.466	2124	(kg/m)
POST	8.10	- ĕ	10	720	200	Ö	170	170	100			880	633.60	D.616	391	310.52
DAILING.	16.00	®	16	16	AS SHOWN	(4)	10180	3	-	-	-	101B00	1628.80	1.579	2572	210.31
MALING	10,00	(2)	10	1892	200	©	120	120	100	_	_	680	1286.56	D.616	793	210.31
•.			12	26	AS SHOWN		10180) -	-	-	-	101800	2646.80	0.888	2351	
			16	510	200	0	170	980	400	•	-	1550	790.50	1.579	1249	
Incwal V	43.27		16	510	200	0	170	480	400	-	-	1050	535.50	1.579	84 6	}
SIDEWALK 43.27	10.27	\$W)	12	1020	300	(B)	400	250	-	-	**	650	663.10	0.688	5 8 9	131.88
			12	340	300		170	1020	170	-	-	1360	452.40	0.888	411	
		S₩40	12	340	300	Œ)	170	520	170	-	-	860	292.40	0.886	260	
R	POST POST	POST 8.10 POST 16.00 DEWALK 43.27	POST 8.10 (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	DOCATION VOLUME MARK SIZE	DOCATION VOLUME MARK SIZE QTY.	DOCATION VOLUME MARK SIZE QTY. SPACING	DOCATION VOLUME MARK SIZE QTY SPACING SHAPE	DCATION VOLUME MARK SIZE QTY SPACING SHAPE 0 0 0 0 0 0 0 0 0	DOCATION VOLUME MARK SIZE QTY SPACING SHAPE 0 b	DOCATION VOLUME MARK SIZE QTY SPACING SHAPE	DOCATION VOLUME MARK SIZE QTY SPACING SHAPE 0 0 0 0 0 0 0 0 0	DCATION VOLUME MARK SIZE QTY SPACING SHAPE 0 0 0 0 0 0 0 0 0	CATION VOLUME SMARK SIZE GTY. SPACING SHAPE	OCATION VOLUME MARK SIZE QTY SPACING SHAPE	VOLUME MARK SIZE GTY SPACING SHAPE 0 0 0 0 0 0 0 0 0	CATION VOLUME SAN SIZE GTY SPACING SHAPE

RAILING FOR BRIDGES

BRIDGE NO.	SPAN LENGTH (m)	NO. OF EXP. JT. INSIDE SPAN	NO. OF POST W/IN EXP. JT.	NO. OF RAIL POST PER SPAN	L (mm)	a (mm)	þ (mm)
BR. 11	35.00	3	6	48	17515	250	1652
BR. 12	25.00	2	6	36	12665	250	1589
BR. 12	25.00	2	5	36	25300	250	1587
BR. 13	20.00	2	5	30	10015	250	1545

IIIIGE	DATE	SIGNATURE -			REPUBLIC OF THE PH	ILIPPINES		PROJECT AND LOCATION :	SCALE :	SHEET CONTENTS :	SHEET NO. :
	DESKINED (0),7	1 dilar	₹	DEPARTMEN	NT OF PUBLIC WO	RKS AND HIGHWAY	'S	THE DETAILED DESIGN STUDY ON		BRIDGE 11, 12 & 13	
JAPAN INTERNATIONAL COOPERATION AGENCY	OREDAED NO (14)	1.111	PUHL - PMO aSubmitted By:	Reviewed By:	OF DESIGN Recommended But	OFFICE OF Recommended By:	THE SECRETARY Approved By:	UPGRADING INTER-URBAN HIGHWAY SYSTEM ALONG THE PAN-PHILIPPINE HIGHWAY		SCHEDULE OF REINFORCEMENT	DC 020
KATAHIRA & ENGINEERS VEO YACHIYO ENGINEERING	CHECKED 0/19/	OZ CARGO		,		(See cover sheet for Signature)	(See cover sheet for Signature/Approval)	(Plaridel, Cabanatuan and San Jose Bypasses)	AS SHOWN	(POST, RAILING AND SIDEWALK)	BS-02a
EI INTERNATIONAL CO., LTD.	SUBMITTED 10/2/	72 YEAR LEADER	DANILO C. TRAJANO Project Director	ADRIANO M. DORCY Chief, Bridges Division	GILBERTO S. REYES Director IV (CIC)	MANUEL M. BONDAN Undersecratory	SIMEON A. DATUMANONG Secretory	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)	

NOTES

1. CONCRETE :

CONCRETE SHALL CONFORM TO THE REQUIREMENTS OF CLASS AA CONCRETE, WITH 28 MPG CYUNDER STRENGTH AND 19.0mm MAXIMUM AGGREGATE SIZE.

2. REINFORCENMENT:

- A. ALL REINFORCING STEEL SHALL BE DEFORMED BARS COMFORMING TO ASSHTO M31 (ASTM A615) GRADE 40 AND 60.

 B. SPLICES OF ADJACENT LONGITUDBALL STEEL SHALL BE STAGGERRED DO BAR DIAMETERS APART. LENGTH OF SPLICES SHALL BE 1000mm FOR #25 AND 1300mm FOR #28 AND 1700mm FOR #32.
- C. SPIRAL-TIES SHALL BE WELDED AT SPLICES.

3. DRIVING :

- A PILE HEADS SHALL BE PROTECTED FROM DIRECT IMPACT OF THE HAMMER BY CUSHION BLOCKS CONSISTING OF SEVERAL BLOCKS OF WOOD OR OF OTHER APPROVED MATERIALS.

 B. PILES SHALL BE DRIVEN TO A DEPTH THAT WILL PRODUCE THE REQUIRED ALLOWABLE BEARING CAPACITY.

4. PILE FOUNDATION DESIGN:

- A. IN PILE-BENT PIERS, PILE LENGTHS SHALL BE DETERMINED BY THE ENGINEER/
 CONSULTANT BASED ON THE ALLOWABLE PILE BEARING CAPACITY SPECIFIED BELOW.
 B. IN COLUMN-BENT PIERS, THE NUMBER, LOCATION AND LENGTH OF PILES SHALL BE
 DETERMINED BY THE ENGINEER/CONSULTANT BASED ON THE LOADING INFORMATION,
 GIVEN IN THE PIER DETAILS.
- 5. PILE SPLICE :
- A. PILES MAY BE SPLICED ONLY IF STRICTLY NECESSARY AND APPROVED BY THE ENGINEER/CONSULTANT. PILE SPLICES SHALL BE LOCATED AT LEAST 10M BELOW THE EXISTING GROUND LEVEL. B. PLE SPLICE SHALL DEVELOP 100% ANAL, AND 50% BENDING OF THE CAPACITY OF THE PILE SECTION WHERE THE SPLICE IS LOCATED.
- 6. ALLOWABLE PILE BEARING CAPACITY : (SEE PILE SCHEDULE)
- 7. MINIMUM HAMMER ENERGY RATING = 55 kn-m
- 8. BASIS FOR COMPUTING ALLOWABLE PILE BEARING CAPACITY:

Poll=
$$\left(\frac{167 \text{ eh Eh}}{\text{S} + 2.54}\right) \left(\frac{\text{Wr} + 0.16 \text{ Wp}}{\text{Wr} + \text{Wp}}\right)$$

- Poll = ALLOWABLE PILE BEARING CAPACITY (kN)

- HE HAMMER EFFICIENCY

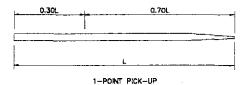
 Dh = HAMMER EFFICIENCY

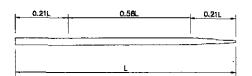
 Dh = HAMMER ENERGY RATING (kn-m)

 Wr = WEIGHT OF RAM (kn)

 Wp = WEIGHT OF PILE AND OTHER DRIVEN WEIGHTS (kn)

 S = AVERAGE PENETRATION PER BLOW FOR THE LAST

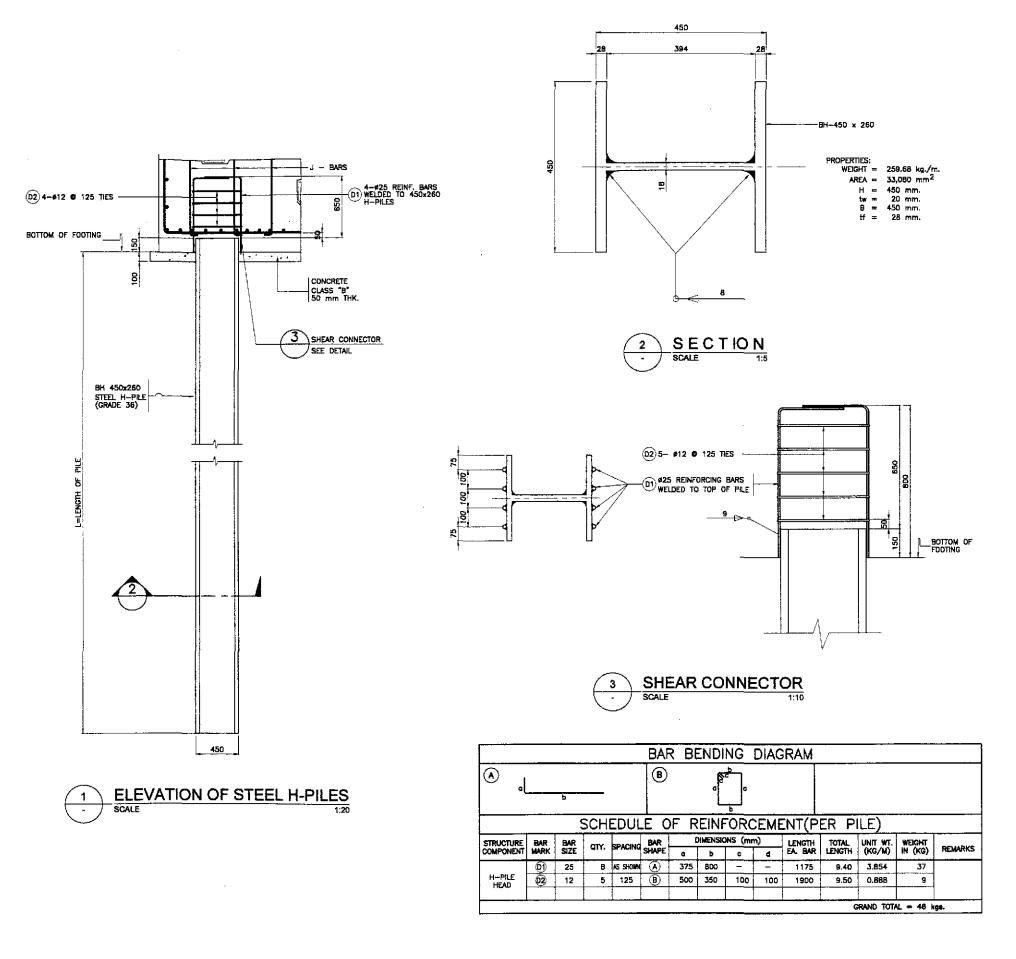

 15Dmm OF DRIVING (mm)


9. TEST PILES

TEST PILES SHALL BE DRIVEN WITH THE SAME HAMMER USED FOR DRIVING REGULAR PILES AND MAY BE PART OF FOUNDATION IF APPROVED BY THE ENGINEER/CONSULTANT.

10. PICK-UP POINTS :

 $\mbox{\rm PICK-UP}$ POINTS SHALL BE MARKED ON ALL PILES AND ALL LIFTING SHALL BE DONE AT THESE POINTS.



2-POINT PICK-UP

The use of special embedded or attached lifting devices shall be subject to the approval of the engineer/consultant.

DATE SIGNATURE PROJECT AND LOCATION: SCALE : SHEET CONTENTS : SHEET NO. : REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS THE DETAILED DESIGN STUDY ON **BRIDGE NO. 11 & 13** UPGRADING INTER-URBAN HIGHWAY SYSTEM JAPAN INTERNATIONAL COOPERATION AGENCY OFFICE OF THE SECRETARY TYPICAL PRECAST CONCRETE ALONG THE PAN-PHILIPPINE HIGHWAY AS SHOWN BS-03 KATAHIRA & ENGINEERS YACHIYO ENGINEERING CO., LTD. (Plaridel, Cabanatuan and San Jose Bypasses) PILE DETAILS MANUEL M. BONDAN Undersacretory (ULTIMATE STAGE) CABANATUAN BYPASS - CONTRACT PACKAGE IV FULL SIZE A1

NOTES

1 GENERAL

- 1.1 FOR GENERAL NOTES REFER TO SHEET 8-02.
- 2 STRUCTURAL STEEL
- 2.1 STRUCTURAL STEEL SHALL CONFORM TO AASHTO M183 (ASTM A36).
- 2.2 WELDS SHALL CONFORM TO AWS D1.1 183, E70 XX SERIES.
- 2.3 DESIGNATION OF SECTION IN ACCORDANCE WITH ASEP STEEL HANDBOOK 1994.
- 3 PILE BEARING
- 3.1 ALLOWABLE PILE BEARING CAPACITY SHALL BE BOOKN.
- 3.2 PILES SHALL BE DRIVEN TO A DEPTH OF NOT LESS THAN 1800mm PENETRATION OR TO REFUSAL, INTO THE BEARING STRATUM, THE BEARING STRATUM SHALL BE ROCK, SAND AND GRAVELS OR EQUIVALENT COHESIONLESS MATERIAL

4 PILE DRIVING

- 4.1 MINIMUM HAMMER ENERGY RATING SHALL BE 55kN-m.
- 4.2 THE PILE BEARING CAPACITY SHALL BE DERIVED AS FOLLOWS:

WHERE:

Poll = ALLOWABLE PILE BEARING CAPACITY (kn) eh = HAMMER EFFICIENCY Eh = HAMMER ENERGY RATING (kn-m)

W = WEIGHT OF RAM (kN)
Wp = WEIGHT OF PILE AND OTHER DRIVEN WEIGHTS (kn)
S = AVERAGE PENETRATION PER BLOW FOR THE LAST

- 4.3 PILE HEADS SHALL BE PROTECTED FROM DIRECT IMPACT OF THE HAMMER BY CUSHION BLOCKS CONSISTING OF SEVERAL BLOCKS OF WOOD OR OTHER
- 4.4 PILES SHALL BE DRIVEN TO A DEPTH THAT WILL PRODUCE THE REQUIRED ALLOWABLE BEARING CAPACITY.

5 PILE SPLICE

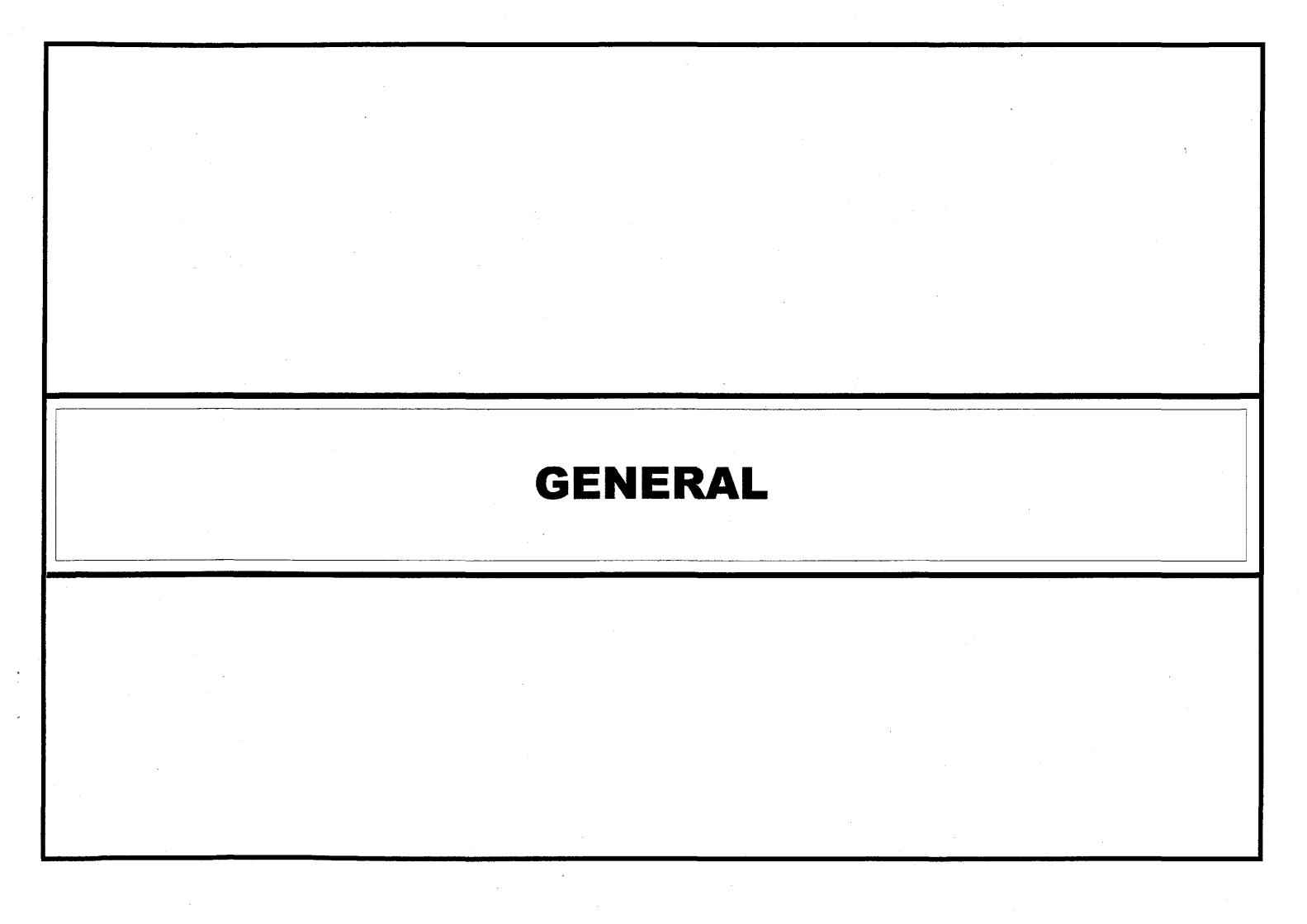
- 5.1 PILES SHALL BE SPLICED ONLY IF STRICTLY NECESSARY AND WHEN APPROVED BY THE ENGINEER/CONSULTANT PILE SPLICES SHALL BE LOCATED AT LEAST 10m BELOW THE EXISTING GROUND LEVEL.
- 5.2 PILE SPLICES SHALL DEVELOP AT LEAST 100% OF THE AXIAL CAPACITY AND 50% OF THE BENDING CAPACITY OF THE PILE SECTION WHERE THE SPLICE IS LOCATED.

- 6.1 ONE TEST PILE SHALL BE DRIVEN AT EACH BRIDGE FOUNDATION. THE LOCATION OF THE TEST PILE SHALL BE AS DIRECTED BY THE ENGINEER/CONSULTANT.
- 6.2 TEST PILES SHALL BE DRIVEN WITH THE SAME HAMMER USED FOR DRIVING REGULAR PILES AND MAY BECOME PART OF THE FOUNDATION IF APPROVED BY THE ENGINEER/CONSULTANT.
- 5.3 TEST PILES SHALL BE LOADED TO 150% OF THE ALLOWABLE BEARING CAPACITY OF THE PILE. THE TEST PILE ACCEPTANCE CRITERIA SHALL BE:

TEST LOAD

MAXIMUM SETTLEMENT

A. 100% OF ALLOWABLE PILE BEARING CAPACITY B. 150% OF ALLOWABLE PILE BEARING CAPACITY C. ON UNLOADING


15mm

10mm (RESIDUAL)

HIGE	DATE SIGNATURE	REPUBLIC OF THE PHI	LIPPINES	PROJECT AND LOCATION :	SCALE :	SHEET CONTENTS :	SHEET NO. :
JAPAN INTERNATIONAL COOPERATION AGENCY	DESIGNED 10/19/02 A.P. GONZALES BUHL - PNO	DEPARTMENT OF PUBLIC WOR	RKS AND HIGHWAYS OFFICE OF THE SECRETARY	THE DETAILED DESIGN STUDY ON UPGRADING INTER-URBAN HIGHWAY SYSTEM		BRIDGE NO. 12	
	CHECKED /0/14/ Mile Callette Supervitted By:	Reviewed By: Recommended By:	Recommended By: Approved By: (See cover sheet for Signoture) Signoture/Approval)	ALONG THE PAN-PHILIPPINE HIGHWAY (Plandel, Cabanatuan and San Jose Bypasses)	AS SHOWN	TYPICAL STEEL H-PILES DETAILS	BS-04
KATAHIRA & ENGINEERS YACHIYO ENGINEERING CO., LTD.	SUBMITTED 10/21/02 TEAN LEADER Project Director	ADRIANO M. DOROY GILBERTO S. REYES Chief, Bridges Division Director N (CIC)	MANUEL M. BONDAN SIMEON A. DATUMANDAG Undersecretary Secretary	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)	

CABANATUAN BYPASS (ULTIMATE STAGE)

BRIDGE NO. 14

GENERAL NOTES FOR BRIDGES - 1

A. DESIGN CRITERIA

- 1. DESIGN SPECIFICATION
 - A. DPWH DESIGN GUIDELINES CRITERIA AND STANDARDS FOR PUBLIC WORKS AND HIGHWAYS, VOL.II .
 - B. NATIONAL STRUCTURAL CODE OF THE PHILIPPINES, VOL. II, 2nd ED. 1997
 - C. THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO) STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES 16TH EDITION, 1996.
 - D. JAPAN ROAD ASSOCIATION SPECIFICATIONS FOR HIGHWAY BRIDGES
- 2. DESIGN METHODOLOGY

ALLOWABLE STRESS DESIGN (ASD) & LOAD FACTOR DESIGN (ULTIMATE STRENGTH DESIGN)

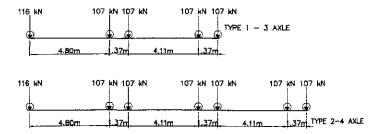
LOADING

3.1 DEAD LOADS

WEIGHT

A. CONCRETE 24,50 kN/m
B. STEEL 77,00 kN/m²
C. EARTH 19,00 kN/m³
D. WEARING SURFACE (50mm THK.) 1.10 kN/m²

3.2 LIVE LOADS


A. AASHTO MS18 (HS20) TRUCK AND EQUIVALENT LANE LOADING.

B. SIDEWALK LOAD SPAN $\leq 30.5 \text{m}$; 4.07 kN/m² SPAN $\geq 30.5 \text{m}$; (1.437 + $\frac{43.798}{L}$)(16.76-W) kN/m² < 2.874 kN/m² L: LOADED LENGTH W: SIDEWALK WIDTH

C. ALTERNATE MILITARY LOADING

107 kN 107 kN

D. PERMIT DESIGN LOAD (SPECIAL PERMIT REQUIRED BEFORE PASSING BRIDGE)

3.3 IMPACT

IN ACCORDANCE WITH DIVISION 1 OF AASHTO STANDARD SPECIFICATIONS, 1996.

3.4 SEISMIC LOAD

IN ACCORDANCE WITH DIVISION 1A OF THE 1996 AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES USING ACCELERATIONS COEFFICIENT OF 0.40 AND SEISMIC PERFORMANCE CATEGORY D.

3.5 HYDRAULIC DESIGN DATA

50-YEAR DESIGN DISCHARGE, $Q_{50}=1,570~\text{m}^3/\text{sec.}$ DESIGN FLOW VELOCITY, $V_{50}=2.08~\text{m}/\text{sec.}$ DESIGN FLOOD WATER LEVEL, DFWL = EL + 43.25 m CATCHMENT AREA, CA \approx 463 km²

3.6 TEMPERATURE RANGES

ASSUMED BASE TEMPERATURE: +28C*
MINIMUM AMBIENT AIR TEMPERATURE: +18C*
MAXIMUM AMBIENT AIR TEMPERATURE: +38C*
TEMPERATURE DIFFERENCE BETWEEN TOP OF SLAB
AND OTHER PARTS OF STRUCTURE: +10C*

3.7 CONSTRUCTION LOADS

CONSTRUCTION LOADS SHALL BE AS STIPULATED IN THE AASHTO GUIDE SPECIFICATIONS. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT THESE LOADS ARE NOT EXCEEDED AND THAT THE MEMBER STRESSES ARE WITHIN ALLOWABLE DURING CONSTRUCTION.

3.8 OTHER LOADS

IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS, 1996.

- 3.9 LOAD COMBINATION (LOAD FACTOR DESIGN)
 - A. GROUP 1 = 1.3 [1.0 D + 1.67(L+1)n + 1.0 SF]
 - B. GROUP 1B = 1.3 [1.0 D + 1.0(L+1)p + 1.0 SF]
 - C. GROUP VII = 1.3 $\hat{1}$ 1.0 D + 1.0 SF + EQ
 - D. OTHER LOAD COMBINATIONS SHALL BE IN ACCORDANCE WITH AASHTO GUIDE SPECIFICATIONS.

B. MATERIALS

1. CONCRETE

UNLESS INDICATED OTHERWISE ON PLANS, THE CONCRETE CLASS AND STRENGTH SHALL BE AS FOLLOWS:

STRUCTURAL MEMBER	CLASS	28 - DAY STREN		MAX, SIZE OF COARSE AGGREGATE	REMARKS
		MPα	PSI	mm (in.)	
CAST — IN PLACE GIRDERS, SLABS, DIAPHRACMS, WINGWALLS BACKWALLS, ABUTMENT COPINGS, COLUMNS, SLABS, SHEAR KEYS	AA2	28	4060	20	
FOOTINGS, PILE CAP, BORED PILES, APPROACH SLAB	AA1	28	4060	25	*SEE NOTE BELOW
THIN REINFORCED SECTIONS, PARAPET, RAILINGS & RAILPOST CURB AND SIDEWALK	c	21	3000	12	
PRESTRESSED CONCRETE		35	5075	20	TRANSFER
MEMBERS : AASHTO GIRDERS	PP	41	5946	20	@ SERVICE
STEEL SHEET PILE CAP	Α	21	3000	38	
RUBBLE CONC./CONC. BLOCKS FOR SLOPE PROTECTION	В	16.5	2400	50	
LEAN CONCRETE	-	17	1450	38	

* NOTE

THE CEMENT CONTENT OF THE DESIGN MIX SHALL BE ADJUSTED IN ACCORDANCE WITH THE AASHTO PROVISIONS WHEN CONCRETING UNDER WATER TO COMPENSATE FOR THE LOSS OF STRENGTH DUE TO WATER INFILITIATION.

- 2. REINFORCING STEEL
 - (a) REINFORCING STEEL SHALL CONFORM TO AASHTO M31 (ASTM A615), GRADES 40 & 60 DEFORMED WITH MINIMUM YIELD STRENGTH AS DESCRIBED BELOW.

REBAR GRADE	YIELD STRENGTH fy (MPa)	SIZE (mm)
40	276 (40 ksi)	16mmø & BELOW, UNLESS OTHERWISE NOTED
60	415 (60 ksi)	20mmø & ABOVE

(b) REINFORCING STEEL SHALL BE FREE OF MILL SCALES, OIL OR ANY SUBSTANCES WHICH WILL WEAKEN THE BOND WITH CONCRETE.

(c) REINFORCING STEEL SHALL BE WELDABLE TYPE.
WELDING REINFORCING STEEL SHALL CONFORM TO ANSI/AWS D1.4.

3. PRESTRESSING STEEL

PRESTRESSING STEEL SHALL BE SEVEN-WRE UNCOATED STRESS-RELIEVED STRANDS AND SHALL CONFORM TO AASHTO M203 (ASTM A416) WITH MINIMUM ULTIMATE STRENGTH OF Fy = 1860 MP σ (270,000psi).

PC STRESS BARS SHALL BE HIGH TENSILE COLD WORKED STRESS BAR CONFORMING TO ASTM-A722/ISO 6934 (SBPR 930/1180) WITH NOMINAL TENSILE STRENGTH OF 1176 MPg.

4. STRUCTURAL STEEL, BOLTS AND WELDS

MATERIALS	MELD STRENGTH ty (MPa)	REFERENCE SPECIFICATIONS
STRUCTURAL STEEL	250 (GRADE 36)	AASHTO M270, (ASTM A709)
HIGH STRENGTH BOLTS		AASHTO M253, ASTM A490M
WELDS	Anti-surviva and	LATEST ANSI /AASHTO/AWS D1.5 BRIDGE WELDING CODE

5. ELASTOMERIC BEARING PADS

ELASTOMERIC BEARING PADS SHALL BE 100% VIRGIN CHLOROPRENE (NEOPRENE) PADS WITH DUROMETER HARDNESS 60 AND SHALL BE LAMINATED WITH NON-CORROSIVE MILD STEEL SHEETS (ASTM A570). ELASTOMERIC PADS SHALL CONFORM TO THE REQUIREMENTS AS PRESCRIBED IN DPWH D.O. NO. 25 SERIES OF 1997 "REVISED DPWH STANDARD SPECIFICATION FOR ELASTOMERIC BEARING PAD."

SPECIFICATIONS					
STM D-2240)60±5					
D 412-175 Kg/cm ² (min)					
350 % (min)					
NEOPRENE					

C. CONSTRUCTION

THESE NOTES ARE PROVIDED FOR QUICK REFERENCE ONLY AND SHALL BE READ IN CONJUNCTION WITH THE TECHNICAL SPECIFICATIONS FOR THE PROJECT.

THE DESIGN OF BRIDGES IS BASED ON THE CONSTRUCTION SEQUENCE SHOWN IN THE DRAWINGS. ANY VARIATION FROM THE SEQUENCE MUST BE APPROVED BY THE ENGINEER.

CONSTRUCTION SHALL COMPLY WITH 1995 DPWH STANDARD SPECIFICATION FOR HIGHWAYS, BRIDGES AND AIRPORTS OR MODIFIED BY SPECIAL PROVISIONS.

1. DIMENSIONS

- 1.1 SECTION, DIMENSIONS AND DISTANCES SHALL NOT BE SCALED FOR CONSTRUCTION PURPOSES. THE INDICATED DIMENSION SHALL GOVERN UNLESS OTHERWISE SPECIFIED.
- 1.2 ALL DIMENSIONS SHOWN ARE IN MILLIMETERS UNLESS OTHERWISE NOTED.
- 1.3 ALL STATIONING ARE IN KILOMETER PLUS METER AND ELEVATION IN METER.

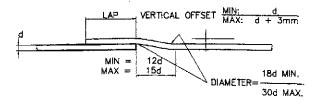
HIGE		DATE	SIGNATURE	4		REPUBLIC OF THE PHIL	IPPINES		PROJECT AND LOCATION :	SCALE :	SHEET CONTENTS :	SHEET NO. :
	CESIGNED	/0/m/02	T OF JESTIS	•	DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS		THE DETAILED DESIGN STUDY ON UPGRADING INTER-URBAN HIGHWAY SYSTEM		BRIDGE NO.14 TALAVERA RIVER BRIDGE			
JAPAN INTERNATIONAL COOPERATION AGENCY	CHECKED	Minles	750	PJHL — PMO Submitted By:	Reviewed By:	Recommended By:	OFFICE OF THE Recommended By:	Approved By:	ALONG THE PAN-PHILIPPINE HIGHWAY	AS SHOWN	GENERAL NOTES - 1 OF 3	B14G-01
KATAHIRA & ENGINEERS YACHBYO ENGINEERING	CHONITED	4/-11	Au Kurli	DANILO C. TRAJANO	ADDIANO N. DOBOV	CUBERTO S REVES	(See cover sheet for Signoture) MANUEL M. BONOAN	(See cover sheet for Signature/Approve) SIMEON A. DATUMANONG	(Plaridel, Cabanatuan and San Jose Bypasses)	710 01723111	(IN TIMATE CTACE)	D140-01
E INTERNATIONAL CO., LTD.	SOBAHIEL	10/21/02	TEAM LEADER	Project Director	Chief, Bridges Division	Director IV (OIC)	Undersecretory	Secretary	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)	

GENERAL NOTES FOR BRIDGES - 2

2. SETTING OUT

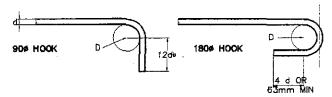
THE SETTING OUT AND THE ELEVATIONS OF THE DIFFERENT COMPONENTS OF THE STRUCTURE SHALL BE APPROVED BY THE ENGINEER PRIOR TO THE START OF ANY CONSTRUCTION WORK.

3. REINFORCED CONCRETE

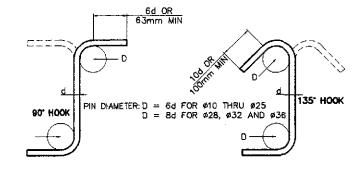

3.1 CAST IN PLACE CONCRETE SHALL BE CLASS "AA1" OR "AA2" EXCEPT RAILINGS WHICH SHALL BE CLASS "C". UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED EDGES SHALL BE CHAMFERED 25mm EXCEPT RAILINGS AND RE—ENTRANT ANGLES WHICH SHALL BE CHAMFERED AND FILLETED 13mm RESPECTIVELY.

3.2 CONCRETE MIX AND PLACING

- (1) DESIGN OF CONCRETE MIX SHALL MEET THE DESIGN CONCRETE STRENGTH GIVEN UNDER ITEM 1 OF MATERIALS.
- (2) CONCRETE SHALL BE DEPOSITED, VIBRATED AND CURED IN ACCORDANCE WITH THE SPECIFICATION.
- (3) FOR CONCRETE DEPOSITED AGAINST THE GROUND, LEAN CONCRETE WITH A MINIMUM THICKNESS OF 100mm SHALL BE LAID FIRST BEFORE INSTALLING THE REINFORCEMENT. THIS LEAN CONCRETE SHALL NOT BE CONSIDERED IN MEASURING THE STRUCTURAL DEPTH OF CONCRETE SECTION.
- (4) THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER FOR APPROVAL PLACING SEQUENCES FOR ALL CONCRETING WORK.


3.3 BAR BENDING, SPLIGNG AND PLACING

- (1) THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER, FOR APPROVAL, SHOP DRAWINGS INDICATING THE BENDING, CUTTING, SPLICING AND INSTALLATION OF ALL REINFORCING BARS.
- (2) BARS SHALL BE BENT COLD. BARS PARTIALLY EMBEDDED IN CONCRETE SHALL NOT BE FIELD BENT UNLESS PERMITTED BY THE ENGINEER
- (3) BAR SPLICING NOT INDICATED ON DRAWINGS SHALL BE SUBJECT TO THE APPROVAL OF THE ENGINEER.
- (4) WELDED SPLICES, IF APPROVED BY THE ENGINEER, SHALL DEVELOP IN TENSION AT LEAST 125% OF THE SPECIFIED YIELD STRENGTH OF THE BARS.
- (5) NOT MORE THAN 50% OF THE BARS AT ANY ONE SECTION SHALL BE SPLICED.
- (6) UNLESS OTHERWISE SHOWN ON DRAWINGS, THE CLEAR DISTANCE BETWEEN PARALLEL BARS IN A LAYER SHALL NOT BE LESS THAN 1.5 TIMES THE NOMINAL DIAMETER OF THE BAR NOR LESS THAN 1.5 TIMES THE MAXIMUM SIZE OF COARSE AGGREGATE. THE CLEAR DISTANCE BETWEEN LAYERS SHALL NOT BE LESS THAN 25mm NOR ONE BAR DIAMETER. THE BARS IN THE UPPER LAYER SHALL BE PLACED DIRECTLY ABOVE THOSE IN THE BOTTOM LAYER.
- (7) CRANKED SPLICES



(8) HOOKS AND BENDS

DIMENSIONS OF 90-DEGREE AND 180-DEGREE HOOKS

PIN DIAMETER: D \approx 6d FOR \$10 THRU \$25 D \approx 8d FOR \$28, \$32 AND \$36 DIMENSIONS FOR STIRRUPS AND THE HOOKS

3.4 CONCRETE COVER TO REINFORCEMENT

UNLESS OTHERWISE NOTED, ALL BAR DIMENSIONS ARE REFERRED TO THE CENTER OF BARS AND THE MINIMUM COVERING MEASURED FROM THE SURFACE OF THE CONCRETE TO THE FACE OF ANY BAR SHALL BE 40mm. FOR SUBSTRUCTURE PERMANENTLY EXPOSED TO EARTH, COVERING SHALL BE 75mm.

3.5 CONSTRUCTION JOINT

- (1) THE POSITION AND FORM OF ANY CONSTRUCTION JOINT SHALL BE AS SHOWN ON DRAWINGS OR AS AGREED WITH THE FINGINEER
- (2) THE INTERFACE BETWEEN THE FIRST AND SECOND POUR CONCRETE SHALL BE ROUGHENED WITH AN AMPLITUDE OF 6MM MINIMUM.

3.6 FALSEWORK

ALL FALSEWORK SHALL BE DESINED BY THE CONTRACTOR SUBJECT TO THE APPROVAL BY THE ENGINEER. FALSEWORKS SHOWN IN THE DRAWINGS SHALL SERVE AS REFERENCE ONLY.

3.7 FORMWORK

FORMWORKS SHALL BE CONSTRUCTED SUCH THAT IT WILL NOT YIELD UNDER THE LOAD AND SHALL BE SUCH AS TO AVOID THE FORMATION OF FINE. ALL CORNERS OF CONCRETE MEMBERS SHALL BE CHAMFERED TO 25mm UNLESS NOTED OTHERWISE ON DRAWINGS. STRIPPING OF FORMS AND SHORES SHALL BE AS DESIGNATED BY THE ENGINEER, THE FOLLOWING MAYBE USED AS A GUIDE.

	MIN. TIME
SHORING UNDER GIRDERS, BEAMS, FRAMES	14 DAYS
DECK SLABS	14 DAYS
WALLS	. 7 DAYS
COLUMNS	. 7 DAYS
SIDES OF BEAMS AND ALL OTHER	
VERTICAL SURFACES	. 2 DAYS

3.8 PROTECTION AND CURING OF CONCRETE

CONCRETE SURFACES SHALL BE PROTECTED FROM HARMFUL EFFECTS OF SUN, WIND AND RUNNING WATER AND SHALL BE KEPT DAMP FOR AT LEAST 7 DAYS.

4. EMBANKMENT CONSTRUCTION SEQUENCE

APPROACH EMBANKMENT SHALL BE CONSTRUCTED PRIOR TO CONSTRUCTION OF ABUTMENT PILES.

5. REINFORCED CONCRETE CAST-IN-PLACE BORED PILES

5.1 THE REQUIRED ALLOWABLE BEARING CAPACITY FOR EACH PILE DIAMETER IS AS FOLLOWS:

PILE DIA.	NORMAL	(KN)	ULTIMATE	(KN)
112 012	COMPRESSION	TENSION	COMPRESSION	TENSION
ø1000	3000	1200	9000	7200
ø1500	6000	2100	18000	13000

- 5.2 BOTTOM OF BORED PILES SHALL BE EMBEDDED AT LEAST TWO TIMES PILE DIAMETER (2D) INTO HARD STRATA CAPABLE OF DEVELOPING ALLOWABLE BEARING CAPACITY AS SPECIFIED. IF THE ABOVE CONDITION IS NOT MET DURING CONSTRUCTION. THE PILE SHALL BE INCREASED AND THE DESIGNER/CONSULTANT SHALL BE NOTIFIED FOR CONFIRMATION. AN ON-SITE SUBSURFACE INVESTIGATION SHALL ALSO BE UNDERTAKEN DURING CONSTRUCTION FOR CONFIRMATION/VERIFICATION OF DATA USED IN THE DESIGN.
- 5.3 PILE LENGTHS SHOWN ARE ESTIMATED LENGTHS DURING DESIGN. DETERMINATION OF REQUIRED PILE LENGTHS SHALL BE DETERMINED BY THE CONTRACTOR BASED ON THE RESULTS OF FIELD INVESTIGATIONS CARRIED OUT BY THE CONTRACTOR. SEE THE SPECIAL PROVISIONS OF THE TECHNICAL SPECIFICATIONS.
- 5.4 ULTRASONIC INTEGRITY TESTING (AS PER SPECIFICATIONS) SHALL BE CONDUCTED FOR ALL PILES TO VERIFY/CHECK THE CONCRETE HOMOGENEITY AND TO LOCATE/EVALUATE ANY POSSIBLE IRREGULARITY IN THE COMPLETED BORED PILES AS DESCRIBED IN THE SPECIAL PROVISIONS.
- 5.5 STATIC LOAD TEST AND HIGH STRAIN DYNAMIC LOAD TEST SHALL BE CONDUCTED AS INDICATED IN THE SCHEDULE OF PILE LOAD TEST OF THE COMPLETED BORED PILES. THE RESULT SHALL BE SUBMITTED FOR EVALUATION AND REFERENCE.

6. ADDITIONAL SOIL INVESTIGATION

ADDITIONAL SUBSURFACE INVESTIGATION (BORE HOLES) SHALL BE CONDUCTED FOR EACH PIER AND ABUTMENT LOCATION TO CONFIRM/VERIFY THE DESIGN SOIL PROFILE AND CAPACITIES. IF THE RESULTS OF THE SOIL INVESTIGATION DIFFERS FROM THE SOIL DATA USED IN DESIGN, THE CONTRACTOR SHALL NOTIFY THE ENGINEER/CONSULTANT TO MAKE THE NECESSARY ADJUSTMENTS IN THE FOUNDATION.

7. CAMBER

- 7.1 PRECAST PRESTRESSED CONCRETE GIRDERS SHALL BE CONSTRUCTED WITH CAMBER INDICATED IN THE DRAWINGS.
- 7.2 AFTER ERECTION IS COMPLETE, THE FLANGE ELEVATION OF THE GIRDERS SHALL BE SURVEYED. BASED ON THIS INFORMATION, THE CONTRACTOR SHALL DETERMINE THE HAUNCH HEIGHTS REQUIRED ALONG THE STRUCTURE IN ORDER THAT THE FINISHED GRADE SHOWN IN THE DRAWINGS WILL BE ACHIEVED, TAKING DUE ACCOUNT OF FURTHER DEFLECTIONS TO BE INCURRED WHEN THE DECK AND SIDEWALKS ARE ADDED AND THE ORDER IN ERECTION OF DECK PANEL IS TO TAKE PLACE.
- 7.3 THE CONTRACTOR SHOULD PREPARE & SUBMIT A GEOMETRY CONTROL REPORT TO THE ENGINEER INDICATING THE ASSUMPTIONS AND CALCULATION PROCEDURES THAT HAVE BEEN FOLLOWED IN DETERMINING HAUNCH HEIGHTS. THE CONTRACTOR SHOULD MONITOR AND UPDATE THIS REPORT AS NECESSARY AS ERECTION PROCEEDS.

	DATE SIGNATURE			EPUBLIC OF THE PHILIPP			PROJECT AND LOCATION :	SCALE :	SHEET CONTENTS :	SHEET NO. :
JAPAN INTERNATIONAL COOPERATION AGENCY	DESIGNED /8/11/02 F. P. DE NESUS	PUHL PMC	DEPARTMENT C	OF PUBLIC WORKS	S AND HIGHWAYS		THE DETAILED DESIGN STUDY ON UPGRADING INTER-URBAN HIGHWAY SYSTEM		BRIDGE NO.14 TALAVERA RIVER BRIDGE	
	CHECKED 10/19/02 J.C. JANTOS	Submitted By: Review	ewed By: Reco		ecommended By: (See cover sheet for Signoture)	Approved By: (See cover sheet for Singe(see/Approved))	ALONG THE PAN-PHILIPPINE HIGHWAY (Plaridel, Cabanatuan and San Jose Bypasses)	AS SHOWN	GENERAL NOTES - 2 OF 3	B14G-02
KATAHIRA & ENGINEERS YEO YACHIYO ENGINEERING CO, LTD.	SUBMITTED 10/21/02 TEAM LEADER		DRIANO M. DOROY G nief, Bridges Division	GILBERTO S. REYES Director IV (GIC)	MANUEL M. BONOAN Undersecretory	SIMEON A. DATUMANONG Secretory	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)	

GENERAL NOTES FOR BRIDGES - 3

8. STRUCTURAL STEEL

THE CONTRACTOR SHALL PREPARE AND SUBMIT SHOP DRAWINGS FOR ALL STRUCTURAL STEEL WORK, THESE SHOP DRAWINGS SHALL BE APPROVED BY THE ENGINEER BEFORE ANY FABRICATION COMMENCES.

9. SHORING

- CAMBER FOR REINFOCED CONCRETE SUPERSTRUCTURES WERE DETERMINED BASED ON THE USE OF SHORINGS DURING
- 9.2 CAMBER FOR COMPOSITE SUPERSTRUCTURES WITH PRECAST PRESTRESSED GIRDERS WERE DETERMINED BASED ON UNSHORED CONDITIONS.

10. EXCAVATION

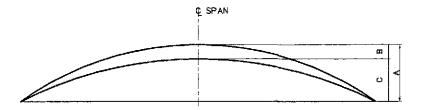
EXCAVATION FOR STRUCTURES SHALL BE TO THE NEAT LINES OF FOOTING OR AS SPECIFIED IN THE STANDARD SPECIFICATIONS.

11. WATER ELEVATION

WATER ELEVATIONS SHOWN ON PLANS ARE APPROXIMATE ONLY ANY VARIATION FOUND DURING CONSTRUCTION SHALL NOT BE CONSIDERED AS A BASIS FOR EXTRA COMPENSATION.

12. DETOUR

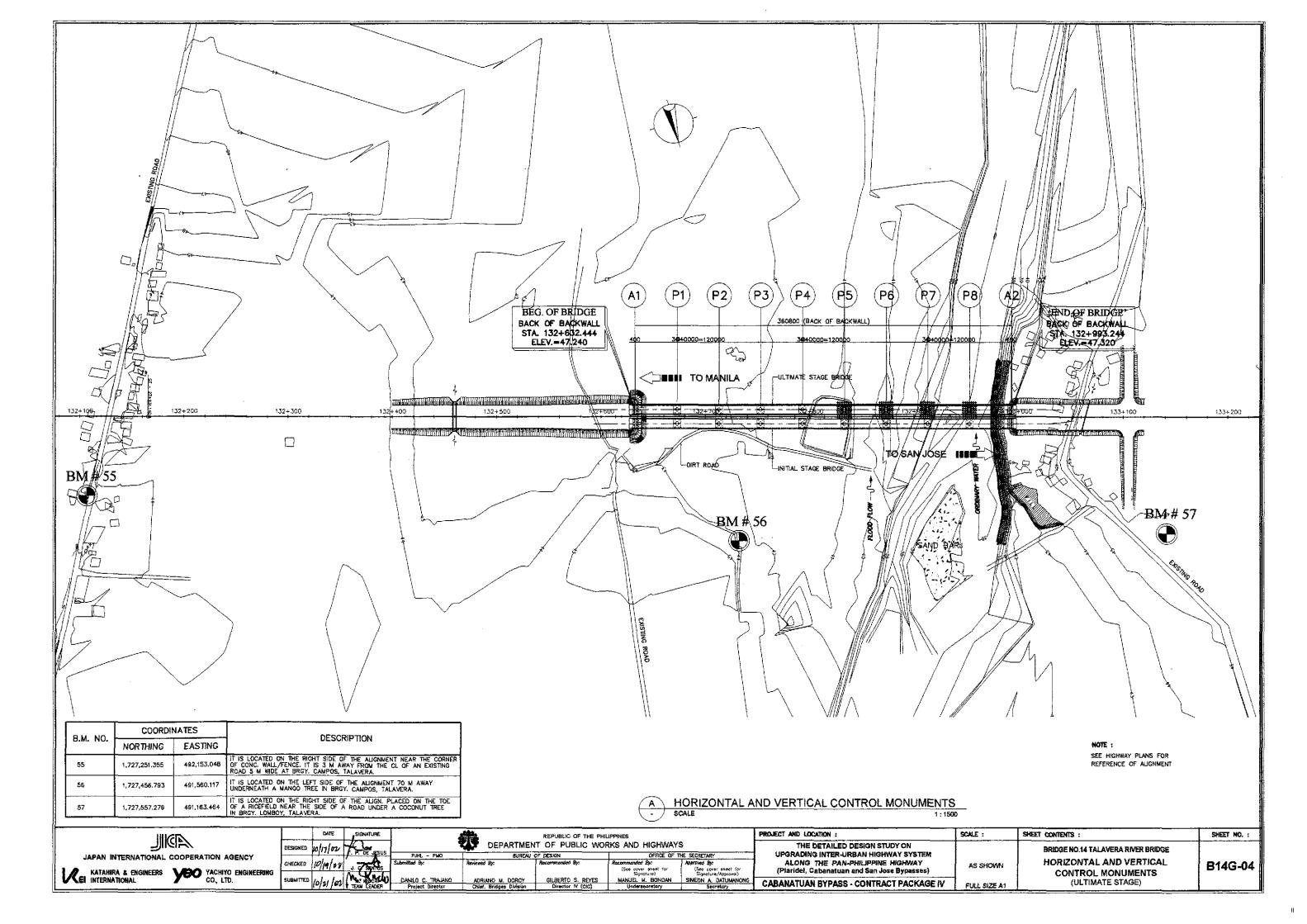
KATAHIRA & ENGINEERS
INTERNATIONAL

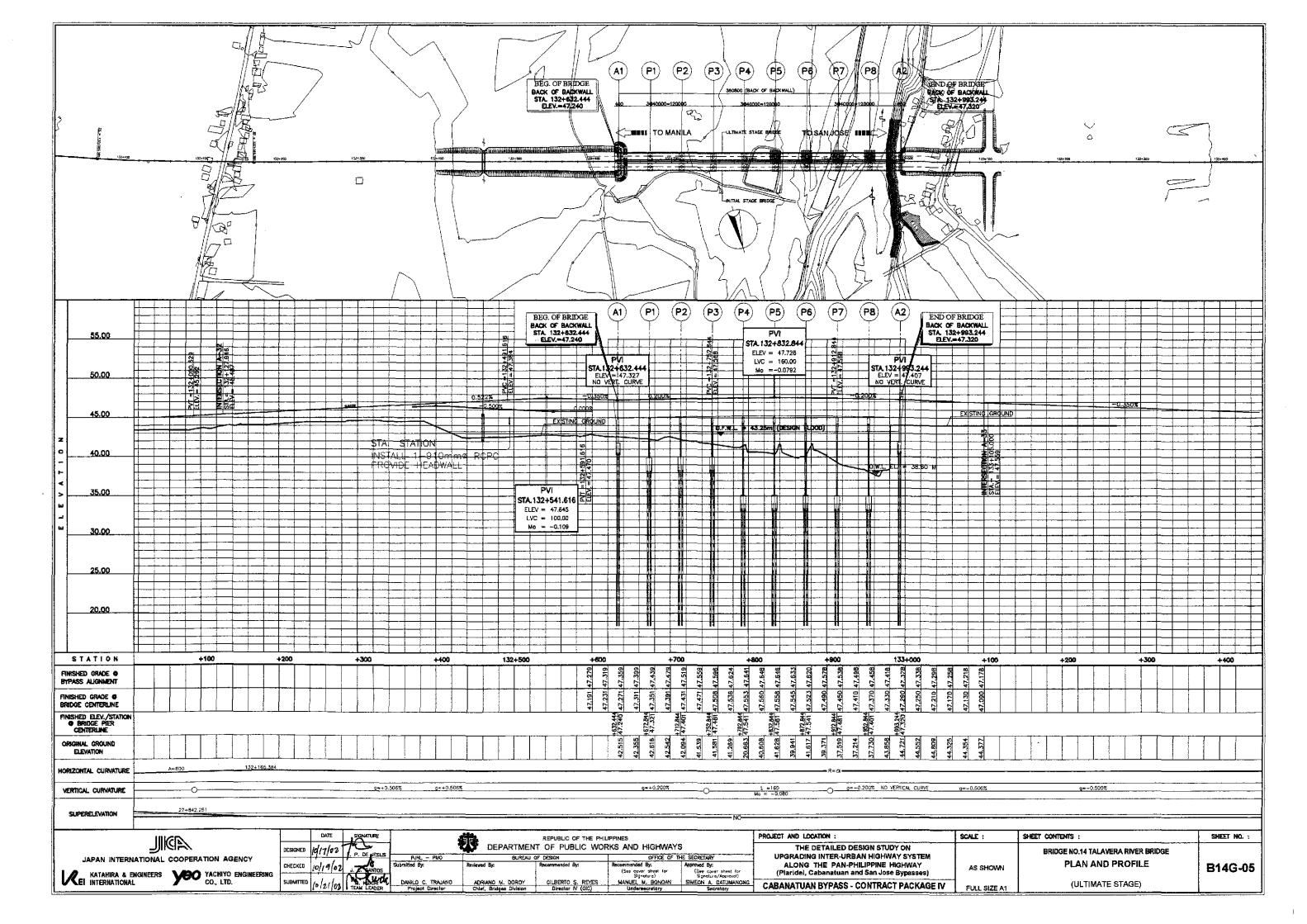

THE CONTRACTOR SHALL CONSTRUCT AND MAINTAIN DETOUR BRIDGES, AND/OR ROADS DURING CONSTRUCTION TO ALLOW CONTINUOUS FLOW OF TRAFFIC. THEY SHALL BE CONSTRUCTED ON LOCATION AS SHOWN ON PLANS OR AS DIRECTED BY THE ENGINEER. NO ADDITIONAL COST SHALL BE ALLOWED FOR ANY RELOCATION OF DETOUR.

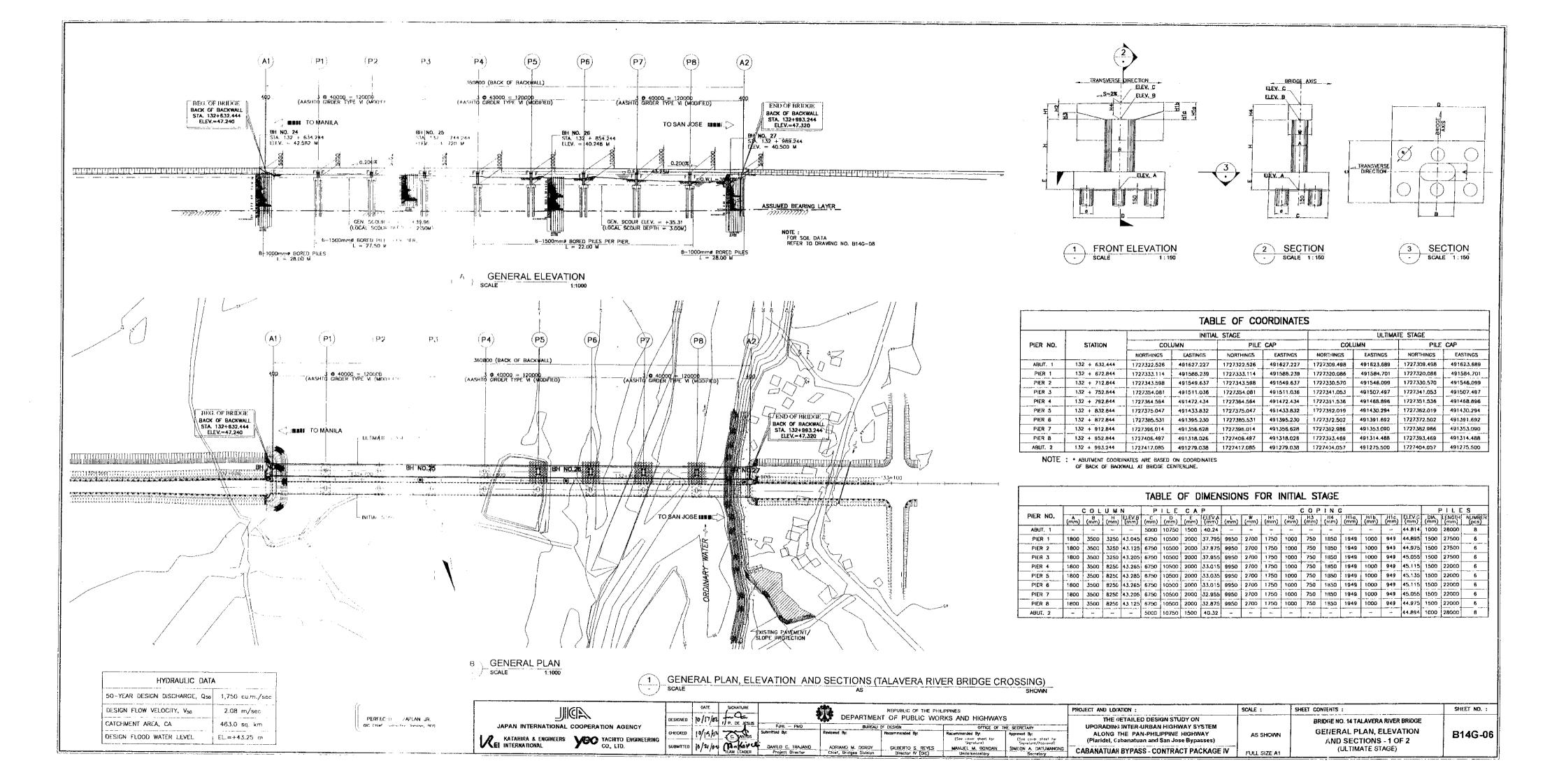
13. PRESTRESSED CONCRETE

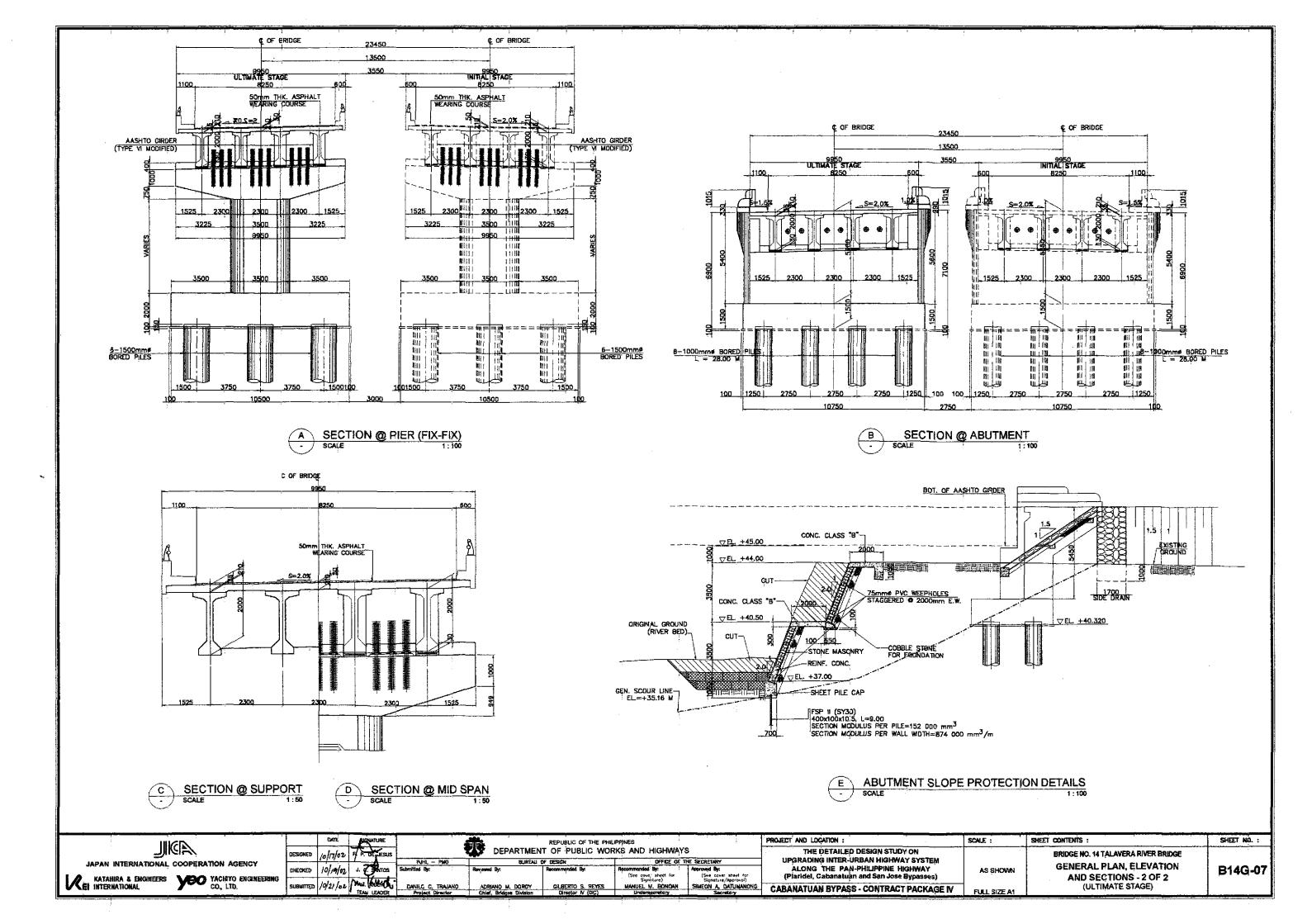
GIRDER DESIGN GUIDE

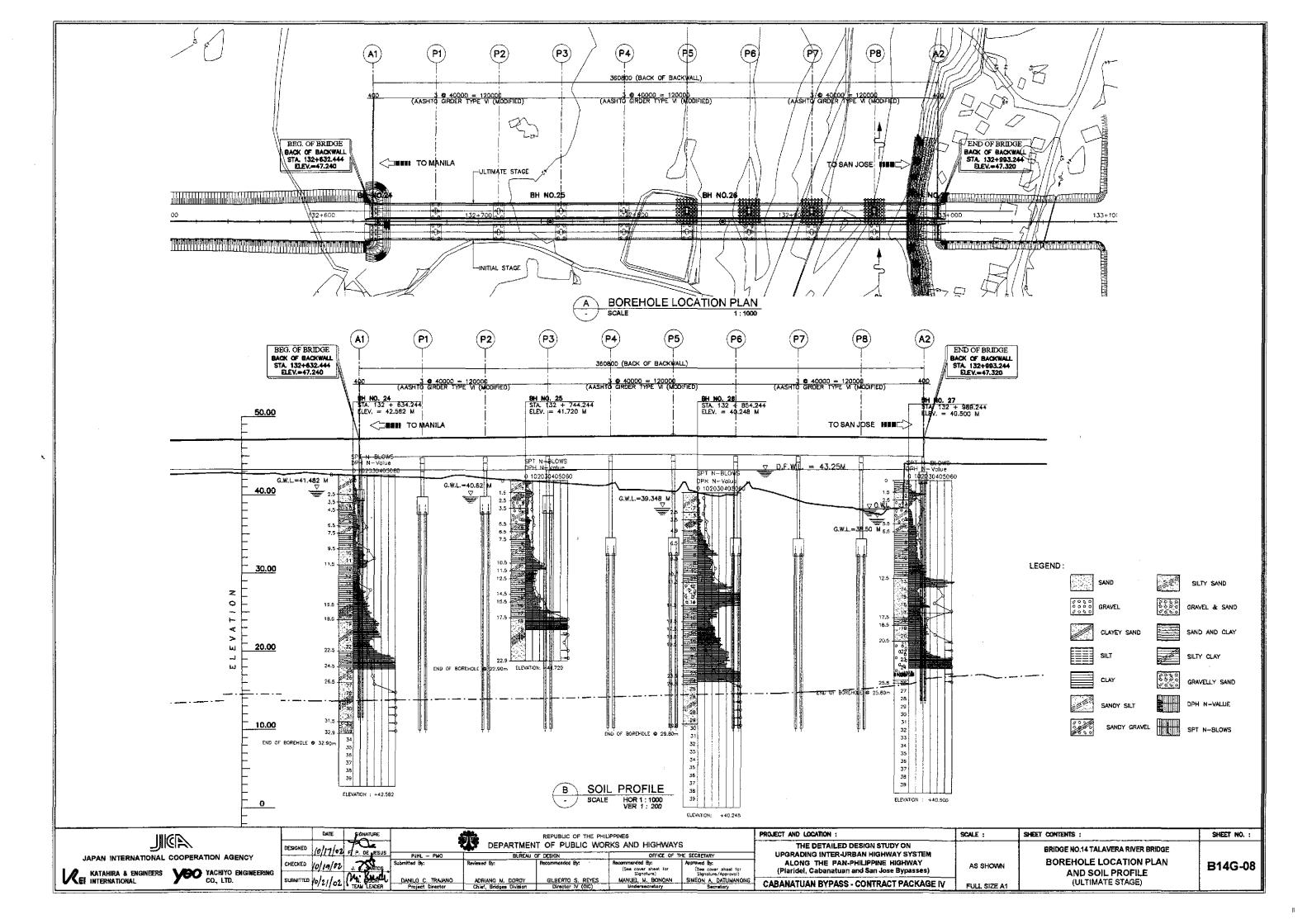
- 13.1 POST-TENSIONING ; THE PROPOSED TYPE OF TENDONS WHICH WILL BE USED IN THE POST-TENSIONED DESIGNS AND ALL NECESSARY ADDITIONAL DETAILS INCLUDING THOSE FOR END ANCHORAGES, METHODS TO BE EMPLOYED AND PROCEDURES TO BE FOLLOWED, SHALL BE AS APPROVED BY THE ENGINEER. PORTION OF THE TENDONS SHALL BE DRAPED LONGITUDINAL IN PARABOLIC PORTIONS, ALL TENDONS SHALL BE PLACED SO THAT THEIR CENTER OF GRAVITY WILL BE AT THE POSITION SHOWN ON PLANS. THE TOTAL POST-TENSION FORCE AFTER LOSSES REQUIRED. AT MIDSPAN SHALL BE PROVIDED AS CALLED FOR IN THE VARIOUS DESIGNS. THE REQUIRED FORCES AFTER LOSSES SHALL BE OBTAINED BY APPLYING INITIAL TENSILE FORCES OF SUFFICIENT MAGNITUDE TO ALLOW FOR ALL SUBSEQUENT LOSSES, INCLUDING THOSE FOR ELASTIC SHORTENING, SHRINKAGE, CREEP, RELAXATION, FRICTION, AND EFFICIENCY OF END ANCHORAGES. AFTER SECURING THE END ANCHORAGES ALL TENDONS SHALL BE PRESSURE GROUTED IN THEIR CONDUITS IN ACCORDANCE WITH THE "SPECIFICATIONS".
- 13.2 CONCRETE FOR GIRDERS SHALL BE A MINIMUM STRENGTH OF 41 N/mm² (5,945 PSI) AT THE AGE OF 28 DAYS.
- 13.3 CONCRETE FOR CAST-IN-PLACE SLAB HAVE A MINIMUM STRENGTH OF 28 N/mm2 (4,060 PSI) AT THE AGE OF 28 DAYS.
- 13.4 THE CONTRACTOR MAY PROPOSE ANY ALTERNATIVE TENDON SIZE AND LAYOUT WHICH SHALL MEET THE APPROVAL OF THE ENGINEER.
- 13.5 THE REQUIRED STRENGTH OF CONCRETE AT TIME OF TENSIONING SHALL BE 35 MPa (5,075 PSI). A GRID CONSISTING OF \$12 BARS AT 100 CENTERS IN BOTH DIRECTIONS SHALL BE PLACED NEAR EACH ANCHORAGE OF THE POST-TENSIONING SYSTEM.

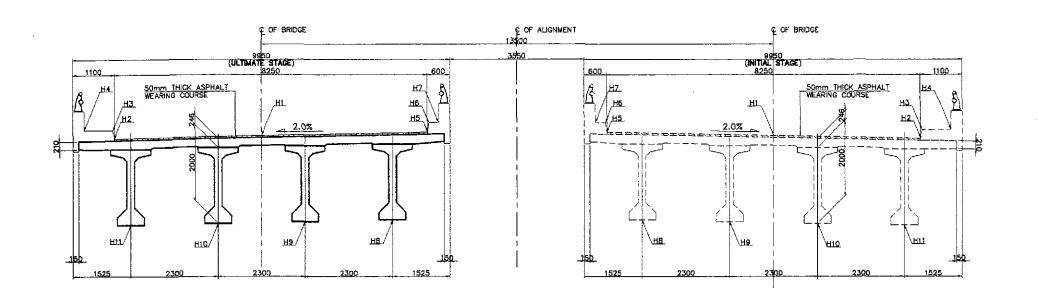

- 13.6 HANDLING PRESTRESSED CONCRETE BEAMS: THE BEAMS SHALL BE MAINTAINED IN AN UPRIGHT POSITION AND SHALL BE LIFTED BY SUITABLE DEVICES PROVIDED AT THE ENDS OF THE BEAMS, ATTENTION IS DIRECTED TO THE INCREASED DIFFICULTY OF LIFTING BEAMS WITHOUT END BLOCKS. THE CONTRACTOR'S PROPOSED LIFTING DETAILS SHOULD BE GIVEN CAREFUL CONSIDERATION BEFORE BEING SUBMITTED ON SHOP DRAWING FOR APPROVAL. THE USE OF HOLES FOR LIFTING PURPOSES WILL NOT BE PERMITTED.
- 13.7 CONTRACTOR SHALL SUBMIT FOR APPROVAL BY THE ENGINEER THE CALCULATED ELONGATION OF THE PRESTRESSING TENDONS CORRESPONDING TO THE REQUIRED JACKING FORCES.

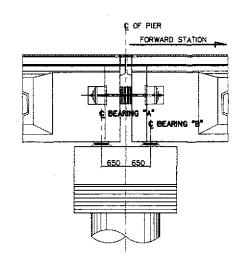


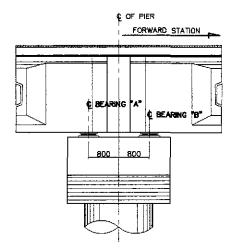

DEAD LOAD CAMBER DIAGRAM


- A = INITIAL CAMBER ESTIMATED PRESTRESS CAMBER LESS DEFLECTION DUE TO GIRDER DEAD LOAD
- B = DEFLECTION DUE TO SLAB, DIAPHRAGM, SIDEWALKS, RAILING AND RAILPOST
- C = FINAL CAMBER
- NOTE; A AND B ARE THEORETICAL VALUES AND MAY VARY WITH ACTUAL (AGE) CONCRETE STRENGTH, VARIOUS PRESTRESSING CONDITIONS, CREEP FACTOR, AND PRESTRESS LOSSES CONTRACTOR SHALL SURVEY TOP OF GIRDERS TO OBTAIN ACTUAL VALUE OF A AND ADJUST PROFILE ACCORDINGLY.
- 13.8 PRECAST GIRDERS AND DECK PANELS SHALL MEET THE TOLERANCES SPECIFIED IN THE AASHTO GUIDE SPECIFICATIONS FOR DESIGN AND CONSTRUCTION OF SEGMENTAL CONCRETE BRIDGES.
- 13.9 TRANSVERSE DEFLECTION OF PRECAST GIRDERS SHALL NOT EXCEED 1/500 H OF THE GIRDER LENGTH. WHERE DEFLECTION EXCEED THIS VALUE, PROCEDURES FOR CORRECTION SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW, IF CORRECTION BY APPROVED PROCEDURE IS NOT POSSIBLE, THE GIRDER SHALL BE REJECTED.


IIIGE		DATE	SIGNATURE			REPUBLIC OF THE PHI	LIPPINES		PROJECT AND LOCATION:	SCALE :	SHEET CONTENTS :	SHEET NO. :
	DESIGNED	10/17/02	70 de 1000	•	DEPARTMEN	T OF PUBLIC WO	RKS AND HIGHWAY	S	THE DETAILED DESIGN STUDY ON		BRIDGE NO.14 TALAVERA RIVER BRIDGE	
JAPAN INTERNATIONAL COOPERATION AGENCY	CHECKEN	10/19/02	P. St. CSUS	PJHL - PMO Submitted By:	Reviewed By:	Recommended By:	OFFICE OF T	HE SECRETARY Approved By:	UPGRADING INTER-URBAN HIGHWAY SYSTEM ALONG THE PAN-PHILIPPINE HIGHWAY		GENERAL NOTES - 3 OF 3	D44C 02
A KATAHIRA & ENGINEERS VEC YACHIYO ENGINEERING	CHOOLE	עסורו / סןי	J. g. Sylffos				(See cover sheet for Signature)	(See cover sheet for Signature/Approvol)	(Plaridel, Cabanatuan and San Jose Bypasses)	AS SHOWN		B14G-03
EL INTERNATIONAL CO., LTD.	SUBMITTED	10/21/0 <u>2</u>	TEAN LEADER	DANILO C. TRAJANO Project Director	ADRIANC M. DOROY Chief, Bridges Division	GILBERTO S. REYES Director IV (OIC)	MANUEL M. BONOAN Undersecretory	SIMEON A DATUMANONG Secretary	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATÉ STAGE)	







STATION	H1	H2	H3	H4	H5	H6	H7
132+640.000	47.934	47.852	48.102	48.110	48.017	48.267	48.270
132+660.000	47.311	47.229	47.479	47.487	47.394	47.644	47.547
132+680.000	47.351	47,269	47.519	47.527	47.434	47.684	47.687
132+700.000	47.391	47.309	47.559	47.567	47.474	47.724	47.727
132+720.000	47.431	47.349	47.599	47.607	47.514	47.764	47.767
132+740.000	47.471	47.389	47,639	47.647	47.554	47.804	47.B07
132+760.000	47,508	47.426	47,676	47.684	47.591	47.841	47.844
132+780.000	47.536	47.454	47.704	47.712	47.619	47.869	47.B72
132+800.000	47.553	47.471	47.721	47.729	47.636	47.886	47.889
132+820.000	47.560	47.478	47.728	47.736	47.643	47.893	47.896
132+840.000	47,558	47.476	47.726	47.734	47.641	47.891	47.894
132+860.000	47.545	47,463	47.713	47.721	47.628	47.878	47.861
132+880.000	47.523	47,441	47.691	47.699	47.606	47.856	47.859
132+900.000	47.490	47.408	47.658	47.666	47.573	47.823	47.826
132+920.000	47.450	47.368	47.618	47.626	47,533	47.783	47.786
132+940.000	47.410	47.328	47.578	47.586	47.493	47.743	47.746
132+960.000	47.370	47.288	47.538	47.546	47.453	47.703	47.706
132+980.000	47,330	47,248	47.498	47.506	47.413	47.663	47.666

LOCATION	BEARING	STATION	HB	H9	H10	H1
ABUT, A1	SIDE	132+633.494	45.015	44,970	44.924	44.8
ADOI. AI	A	132+672.044	45.092	45.047	45,001	44.95
PIER 1		132+673.644	45.092	45.050	45,004	44.95
		702.070.011	1			
PIER 2	<u> </u>	132+712.044	45.172	45.127	45,081	45.00
	В	132+713.644	45.176	45.130	45.084	45.03
PIER 3	Α	132+752.199	45.253	45.207	45.161	45.11
	8	132+753.489	45.255	45.210	45,164	45.11
PIER 4	A	132+792.044	45.312	45.267	45,221	45.17
	В	132+793.644	45.316	45.270	45.224	45.17
PIER 5	Α	132+832.044	45.334	45.288	45.242	45.19
LIEV 2	8	132+833.644	45.334	45.288	45.242	45.19
PIER 6	A	132+872.199	45.315	45.270	45.224	45.17
FIER D	B	132+873.489	45.313	45.267	45.221	45.17
PIER 7	A	132+912.044	45.256	45.210	45.164	45.11
FILN /	В	132+913.644	45.252	45.207	45.161	45.1
	A	132+952.044	45.176	45.130	45.084	45.03
PIER 8	В	132+953,644	45.172	45.127	45.081	45.03
ABUT. A2	Α	132+992.194	45.095	45,050	45.004	44.95

اال	AD
JAPAN INTERNATIONAL	COOPERATION AGENCY
KATAHIRA & ENGINEERS INTERNATIONAL	YACHEYO ENGINEER

IAL	COOPERA	TION AG	ENCY
RS	A eo	YACHIYO CO., LTD.	ENGINEERING

DESIGNED	DATE SIGNATURE	REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS					
CHECKED	10/19/02	J. P. DE JESUS	PJHL - PMO Submitted By:	Reviewed By:	OF DESIGN Recommended By:	Recommended By: (See cover sheet for	HE SECRETARY Approved By: (See cover
SUBMITTED	10/21/02	M. Kundu TEAN LEADER	DANILO C. TRAJANO Project Director	ADRIANG M. DORGY Chief, Bridges Division	GILBERTO S. REYES Director IV (OIC)	Signolure) MANUEL M. BONOAN Undersecretory	Signature/ SIMEON A. D Secre

	PROJECT AND LOCATION :	5	,
	THE DETAILED DESIGN STUDY ON	Т	
1	UPGRADING INTER-URBAN HIGHWAY SYSTEM	-	
	ALONG THE PAN-PHILIPPINE HIGHWAY	1	
Į	(Plaridel, Cabanatuan and San Jose Bypasses)	1	
	CARANATILAN RYDASS - CONTDACT DACKAGE IV	7	

	SCALE :	SHEET CONTENTS :	SHEET NO. :
		BRIDGE NO.14 TALAVERA RIVER BRIDGE	
'	AS SHOWN	TABLE OF ELEVATIONS	B14G-09
F IV	FINI SIZE A1	(ULTIMATE STAGE)	

SUMMARY OF QUANTITIES TALAVERA RIVER BRIDGE CROSSING (BRIDGE NO. 14)

ITEM NO.	DESCRIPTION	UNIT	QUANTITIES	REMARKS
PART F	BRIDGE CONSTRUCTION			
i	SUPERSTRUCTURE			
310(2)	Aspholt Mixture Wearing Course (t=50mm) incl. Tack Coot	m ²	2,970.00	
401(2)a	Steel Rolling Type A for (Angat, Taloverá and approach of Pampango Bridge)	m	720.00	
SPL 401(3)c	Bridge Name Plate, 1000 x 600 for Talavera Bridge	eq.	2	
404(1)	Reinforcing Steel (Grade 40)	kg.	212,163.00	· · · · · · · · · · · · · · · · · · ·
404(2)	Reinforcing Steel (Grade 60)	icg.	91,653,00	·
405(1)f	Structural Concrete Class AA2 (fc=28 Mpa, max. aggregate 20mm) for Long Bridge Superstructures	_m 3	978.69	
405(3)	Structural Concrete Class C (fc=21 MPa, max. aggregate 12mm) for Thin Reinforced Members	m ³	315.36	
406(1)	Precest Prestressed Structural Concrete Member (AASHTO Girder Type V Modified L=39.40m)	eq.	12	
406(1)m	Precast Prestressed Structural Concrete Member (AASHTO Girder Type V Modified L≠39.55m)	ea.	24	
407(1)e	Elastomeric Bearing Pad (600x400x50mm)	ed.	72	
407(2)b	Expansion Joint, Multiflex M100 (Elestometric) ±50mm movement	m	40.80	
407(4)	G.I Drain Pips Ø150mm for Bridge Oralnage	m	154.98	·
SPL 407(3)a	Restroining Bor Ø32mm x 1495mm	80.	12	
SPL 407(3)6	Restraining Bor #32mm x 1900mm	eg.	12	
11	SUBSTRUCTURE	80.	14	
103(2)a	Bridge Exception above QWL (Common Soil)	m3	2,126.43	
	Bridge Exception below DWL (Common Soil)	m ³		
103(2)c		m3	2,507.46	
104(4)	Embonkment from Borrow (Selected Granular Material) for Bridge		681.40	
200(1)	Aggregate Subbase Course	m ³	30.34	
400(15)a	Cost-In-place Concrete Bored Piles Ø 1000mm	m	448.00	
400(15)c	Cost-in-place Concrete Bared Piles & 1500mm	m	1155	
400(21)	Static Pile Load Test for Ø1500mm Bored Piles	ea.	2	<u> </u>
404(1)	Reinforcing Steel (Grade 40)	kg.	18,334.00	
404(2)	Reinforcing Steel (Grade 60)	kg.	489,578.00	
405(1)e	Structural Concrete Class AA1 (fc=28 Mpc, max. aggregate 20mm) for Long Bridge Substructures	m ³	2,160.28	
405(6)	Lean Concrete (fc=17 MPa max. oggregate 38mm)	m²	70,87	
SPL 311(2)	PCC Pavement (Reinforced) t=300mm Approach Slab	m ²	91.24	
SPL 400(23)a	High Stroin Dynamic Pile Test for Ø1000mm Bored Piles	60.	1	
SPL 400(24)	Pile Integrity Test for Bored Piles of Vorious Diarneter	ea.	22	
SPL 900(3)	Provisional Sum for Geotechnical Investigation	l.a.	1	
噴	REVETMENT (RIVERBANK PROTECTION)			
101(7)	Removal of Existing Slope Protection	w ₂	100.31	
101(8)	Remiaval of Existing Slope Protection (Hand-Laid Rock)	m ³	18.07	
101(9)	Renlayed of Existing Gobian	m ³	145.80	
103(1)	Structure Excavation	m ³	363.00	
104(3)	Emblankment from borrow pit	E _m	382,65	
405(1)a	Structural Concrete Class A (fc=21 Mpa, max. aggregate 38mm) for Heavily Reinf. Structuras	E _m	30.51	
405(2)	Structural Concrete Class 8 (fc=17 MPa, max, aggregate Somm) for Plain or Lightly Reinf, Structures	_m 3	17,47	
SPL 407(5)c	Pier Protection Concrete Blacks for Talavera Bridge	m ²	896.00	· · · · · · · · · · · · · · · · · · ·
504(5)	Granted Riprop Class A		7,03	
505(1)	Stone Mozonry	,;; m3	40.51	
506(1)	Hand Laid Rock Apron (Loase Baulder Apron)	m2	23.92	
507(2)b	Steel Sheet Piles (400mmx85mm), furnish & driven	m	756.00	
509(1)	Gobions, (2.0 x 1.0 x 0.50)	- m3	204.30	-
510(1)	Rubble Concrete Slope Protection	m ³	101.22	
IV .	TEMPORARY WORKS		191,62	
SPL 420(4)c	Temporary Craneway for Talavera Bridge Construction		80.00	· · · · · · · · · · · · · · · · · · ·
SPL 420(5)c	· · · · · · · · · · · · · · · · · · ·	m —	300.00	
SPL 420(5)c	Temporary Access Road (Couseway) for Talavera Bridge Construction	m		
	Temporary Cofferdam for Pler Construction (Talavera Bridge)	ed.	3	
V	ELECTRICAL WORKS Bridge Lighting Poles (Single Lamp)		12	
SPL 620(4)c		ea.		

IIIGIN	DATE SIGNATURE		REPUBLIC OF THE PHILIPPINES		PROJECT AND LOCATION :	SCALE :	SHEET CONTENTS:	SHEET NO. :
JAPAN INTERNATIONAL COOPERATION AGENCY A KATAHIRA & ENGINEERS NO YACHYO ENGINEERING	DESIGNED /8/17/02 S. NAVAL CHECKED /0/19/02 J. Z. ANTOS	PUHL PMQ BUREAU (Recommended By: (See cover sheet for	Approved By: (See cover sheet for	THE DETAILED DESKIN STUDY ON UPGRADING INTER-URBAN HIGHWAY SYSTEM ALONG THE PAN-PHILIPPINE HIGHWAY (Plaridel, Cabanatuan and San Jose Bypasses)	AS SHOWN	BRIDGE NO.14 TALAVERA RIVER BRIDGE SUMMARY OF QUANTITIES	B14G-10
KATAHIRA & ENGINEERS YEO YACHYO ENGINEERING CO, LTD.	SUBMITTED /6/2//02	DANILO C. TRAJANO ADRIANO M. DOROY Project Director Chief, Bridges Olyfeign	GILBERTO S. REYES MANUEL M. BONCAN Director IV (OIC) Undersecretory	Signature/Approval) SINEON A DATUMANONG Secretary	CABANATUAN BYPASS - CONTRACT PACKAGE IV	FULL SIZE A1	(ULTIMATE STAGE)	