GROUNDWATER

GROUNDWATER MEASUREMENT REPORT

Project:	Solid Waste Management Plan for Panama City
Date:	
Site:	
Lunes 29 de julio de 2002	
Sample $\#$	

Coordenadas:	657699
	1000871
Hora de Inicio:	10:30 a.m.
Hora de Salida:	1:00 p.m.

Field Parameters:
Volume of purge: \qquad Depth: 2.03 mts
Color: Semi claro - amarillo

Time Hr. Min	Flow (gal/min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
0	4.125	3210	0.10	30.1	3.7	7.3	líquido amarillento
0 10	4.125	3210	0.10	30.1	2.1	7.2	líquido amarillento
020	4.125	3230	0.10	30.1	1.8	7.1	líquido amarillento
030	4.125	3230	0.20	30.1	1.7	7.1	líquido amarillento
040	4.125	3240	0.20	30.1	1.6	7.0	líquido amarillento
$0 \quad 50$	4.125	3256	0.20	30.1	1.5	7.0	líquido amarillento
10	4.125	3258	0.20	30.1	1.5	6.9	líquido amarillento
110	4.125	3260	0.20	30.0	1.3	6.9	líquido amarillento
120	4.125	3265	0.20	30.0	1.2	6.9	líquido amarillento
30	4.125	3268	0.20	30.0	1.2	6.9	líquido amarillento
40	4.125	3270	0.20	30.0	1.1	6.9	líquido amarillento
150	4.125	3271	0.20	30.0	1.1	6.9	líquido amarillento
20	4.125	3271	0.20	30.0	1.1	6.9	líquido amarillento

Parameters to be analyzed at the lab:

X	Turbidity	X	PCB
X	Alkalinity	X	Total Phosphorus
X	Oil and Grease	X	Important lons
x	Fecal Coliforms		($\mathrm{Na}+, \mathrm{Ca} 2+$, $\mathrm{HCO} 3-, \mathrm{SiO} 2, \mathrm{Cl}-$)
X	BOD5	X	Heavy Metals
X	COD		(Cadmium, Cyanide, Lead, Total Chromium,
X	Suspended Solids		Hexavalent Chromium, Arsenic, Total
X	Ammonia Nitrogen		Mercury, Copper, Zinc, Iron, Manganese)
X	Total Nitrogen		Dissolved Oxygen

Observations (*)En este tiempo se cambió la altura del tanque receptor del agua.

GROUNDWATER MEASUREMENT REPORT

Project: \qquad Solid Waste Management Plan for Panama City

Date: Jueves 01 de agosto de 2002
Site: Por la calle de las oficinas-aprox 645 m (después de la Casa de reciclaje)
Sample \# del pozo \#2

Coordenadas: 657945
1001477
Hora de Inicio: 11:00 a.m.
Hora de Salida: 1:30 p.m.

Field Parameters:

Volume of purge: \qquad Depth: 2.90 mts
Color: Chocolate rojizo

Time Hr. Min	Flow (gal/min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
0 0	1.58	417	0.20	30.0	5.9	7.5	Chocolate
09	1.58	414	0.20	29.4	5.6	7.5	Chocolate-rojizo
$0 \quad 30$	1.58	316	0.10	28.7	6.0	7.5	Chocolate-rojizo
115	1.58	308	0.10	28.7	6.0	7.2	Chocolate-rojizo

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	TotalNitrogen

x	PCB
x	Total Phosphorus
x	Important lons
	$($ Na+,Ca2+,HCO3-,SiO2,Cl-)

Observations Después de 9 mín se detuvo el bombeo. Luego de esperar 20 mín, se inició el 20 bombeo pero se precipitó una lluvia a las 11:45 a.m. Se hizo un tercer bombeo para tomar la 3 parte de la muestra a las 12:15 p.m. y finalizó la toma de muestras por lluvia.

GROUNDWATER MEASUREMENT REPORT

Project: \qquad Solid Waste Management Plan for Panama City

Date: Martes 13 de agosto de 2002
Site: Por la calle de las oficinas-aprox a 170 m
Sample \# del pozo \#5

Coordenadas: 657753
1001041
Hora de Inicio: 10:00 a.m.
Hora de Salida: 12:15 p.m.

Field Parameters:
Volume of purge: \qquad Depth: 3.74 mts

Color: Chocolate

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
02	2.2	536	0.30	30.6	3.3	6.5	Chocolate
06	2.2	545	0.30	30.6	3.0	6.4	Chocolate
17	2.2	785	0.30	30.4	5.6	6.3	De color chocolate
115	2.2	816	0.40	30.3	4.3	6.2	De color chocolate
138	2.2	847	0.40	30.8	4.5	6.2	De color chocolate

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	Total Nitrogen

x	PCB
x	Total Phosphorus
x	Important lons
	$(\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO} 3-, \mathrm{SiO} 2, \mathrm{Cl}-$ -

Observations En el primer bombeo se agotó a los 6 mín 50 seg , con una columna de agua $\mathrm{h}=7.30 \mathrm{~m}$. Se esperó 1 hr 6 mín 15 seg , para tener una columna de agua recuperada de $\mathrm{h}=4.55 \mathrm{~m}$, con lo que se inició el segundo bombeo que duró aproximadamente 9 mín (1 hr 15 mín 20 seg). El tercer bombeo se realizó con una columna recuperada de $\mathrm{h}=5.00$. El personal encargado del bombeo tiene por norma suspender el proceso una vez que la columna de agua llegue del 70 al 75% de su profundidad (para este caso es de 7.00 a 7.50 m), para para proteger la bomba de posibles daños y evitar el efecto de cono alrededor de pozo.

GROUNDWATER MEASUREMENT REPORT

Project:	Solid Waste Management Plan for Panama City
Date:	Sábado 27 de julio de 2002
Site:	Por la calle de las oficinas-aprox a 570 m (al lado de la Casa de reciclaje)
Sample \#	del pozo \#1

Coordenadas:	657793
	1001441
Hora de Inicio	10:45 a.m.
Hora de Salida	12:00 p.m.

Sample \# del pozo \#1
Field Parameters:
Volume of purge: Depth: __ Color: Chocolate - lodoso

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
0 0	6.35	540	0.20	28.7	0.0	7.5	Chocolate con sedimentos
$0 \quad 10$	6.35	456	0.20	28.8	0.0	7.4	Chocolate con sedimentos
$0 \quad 20$	6.35	424	0.20	28.7	0.0	7.3	Chocolate con sedimentos
					(*) 4.5		

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	TotalNitrogen

X	PCB
X	Total Phosphorus
X	Important lons ($\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO} 3-, \mathrm{SiO} 2, \mathrm{Cl}-)$
X	Heavy Metals (Cadmium, Cyanide, Lead, Total Chromium, Hexavalent Chromium, Arsenic, Total Mercury, Copper, Zinc, Iron, Manganese)
	Dissolved Oxygen

Observations Se realizaron 4 intentos de bombeo.
(*) Se tomó una última medición de O.D., ya que se tuvo problemas con el aparato (en el cable). Este dato es el de preferencia.

GROUNDWATER MEASUREMENT REPORT

Project:
Salid Waste Management Plan for Panama City
Site: $\overline{\text { Viernes } 26 \text { de julio de } 2002}$
Sntrando por la calle de la garita de control - aprox a 285 m
Sample \# del pozo \#8

Coordenadas:	657449
Hora de Inicio:	$\frac{1001132}{11: 30 \text { a.m. }}$
Hora de Salida:	$2: 30$ p.m.

Field Parameters:
Volume of purge: \qquad Depth: 1.82 mts
Color: Agua de apariencia clara

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
00	6.35	440	0.20	28.7	4.5	7.3	Claro -líquido fluido
$0 \quad 10$	6.35	435	0.20	28.6	4.3	7.4	Claro -líquido fluido
$0 \quad 20$	6.35	430	0.20	28.6	4.1	7.3	Claro -líquido fluido
$0 \quad 30$	6.35	444	0.20	28.5	3.4	7.4	Claro -líquido fluido
$0 \quad 40$	6.35	476	0.20	28.5	3.2	7.3	Claro -líquido fluido
$0 \quad 50$	6.35	446	0.20	28.5	3.1	7.3	Claro -líquido fluido
0	6.35	450	0.20	28.5	3.2	7.3	Claro -líquido fluido
120	6.35	480	0.20	28.5	3.2	7.3	Claro -líquido fluido
140	6.35	485	0.20	28.5	3.2	7.3	Claro -líquido fluido
20	6.35	488	0.20	28.5	3.2	7.3	Claro -líquido fluido

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	TotalNitrogen

x	PCB
x	Total Phosphorus
x	Important lons
	$(\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO} 3-, \mathrm{SiO} 2, \mathrm{Cl}-$)

Observations Se realizó la instalación de la tubería 2 veces antes de iniciar el bombeo.

GROUNDWATER MEASUREMENT REPORT

Project: \quad Solid Waste Management Plan for Panama City
Date: $\overline{\text { Martes } 30 \text { de julio de 2002 }}$
Site:
Sample $\#$ Endo por la calle de la garita de control - aprox a 580 m
del pozo existente \#2

Coordenadas:	657470
	1001454
Hora de Inicio	10:30 a.m.
Hora de Salida:	3:00 p.m.

Field Parameters:
Volume of purge: __ Depth: $\underline{4.06 \mathrm{mts}} \quad$ Color: Gris

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
00	5.00	1173	0.50	29.7	3.2	7.4	Color grisáceo
130	2.50	1204	0.50	29.7	4.2	7.0	Color grisáceo
415	2.50	1170	0.50	30.2	5.7	7.2	Color grisáceo

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	Total Nitrogen

x	PCB
x	Total Phosphorus
x	Important lons
	$(\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO} 3-, \mathrm{SiO} 2, \mathrm{Cl}-$-)

Observations Se detuvo el bombeo para una $\mathrm{h}=7.49 \mathrm{~m}$, se tomó la muesta y los datos de campo. Se esperó 1 hr 15 mín para la recuperación del pozo. El segundo bombeo duró 5 mín con una columna inicial de agua de 5.21 m , para detenerlo al llegar a $\mathrm{h}=7.55 \mathrm{~m}$ El tercer bombeo se realizó a las $2: 45$ p.m. (en ese tiempo de espera se tomó la muestra de agua superficial \#1-cerca al puesto de control), con una $\mathrm{h}=5.62 \mathrm{~m}$ y luego de 9 mín se detuvo para $\mathrm{h}=7.47 \mathrm{~m}$. El personal encargado del bombeo tiene por norma suspender el proceso una vez que la columna de agua llegue del $70 \mathrm{al} 75 \%$ de su profundidad (para este caso es de 7.00 a 7.50 m), para proteger la la bomba de posibles daños y evitar el efecto de cono alrededor de pozo.

GROUNDWATER MEASUREMENT REPORT

Project:	Solid Waste Management Plan for Panama City
Date: $\overline{\text { Miércoles 31 de julio de 2002 }}$	
Site:	
Sample \#	
Slado del puesto de control	

Coordenadas:	657313
	1000894
Hora de Inicio:	11:00 a.m.
Hora de Salida:	12:30 p.m.

Field Parameters:
Volume of purge: \qquad Depth: 2.90 mts
Color: Chocolate claro

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
00	4.30	648	0.30	29.0	0.5	7.7	Chocolate - líquido espeso
07	4.30	741	0.30	29.5	0.4	7.4	Chocolate - líquido espeso
014	4.30	905	0.40	29.2	0.5	7.0	Chocolate - líquido espeso
025	4.30	990	0.40	29.2	0.6	7.0	Chocolate claro
028	4.30	1008	0.50	29.3	0.5	7.0	Chocolate claro
035	4.30	1015	0.50	29.3	0.6	7.0	Chocolate claro
045	4.30	1017	0.50	29.3	0.5	7.0	Líquido semi - claro
055	4.30	1029	0.50	29.4	0.5	7.0	Líquido semi - claro
15	4.30	1052	0.50	29.5	0.5	6.9	Líquido semi - claro
115	4.30	1055	0.50	29.5	0.7	6.9	Líquido semi - claro

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	Total Nitrogen

x	PCB				
x	Total Phosphorus				
x	Important lons				
	$(\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO} 3-, \mathrm{SiO} 2, \mathrm{Cl}-)$	$	$	x	Heavy Metals (Cadmium, Cyanide, Lead, Total Chromium, Hexavalent Chromium, Arsenic, Total Mercury, Copper, Zinc, Iron, Manganese)
:---:	:---				

Observations La primera toma de muestras fue a los 14 mín. El caudal disminuyó notablemente. La segunda muestra se tomó a los 35 mín. Y la última muestra fue al final ($1 \mathrm{hr} 15 \mathrm{mín}$). El personal encargado del bombeo tiene por norma suspender el proceso una vez que la columna de agua llegue del 70 al 75% de su profundidad (para este caso es de 7.00 a 7.50 m), para proteger la bomba de posibles daños y evitar el efecto de cono alrededor de pozo.

GROUNDWATER MEASUREMENT REPORT

Project:	Solid Waste Management Plan for Panama City
Date:	
Site: $\overline{\text { Sábado 10 de agosto de 2002 }}$ Camino a Kuna Nega	
Sample \#	

Field Parameters:

Volume of purge: \quad Depth: $\underline{0.64 \mathrm{mts}} \quad$ Color: Gris

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
00	3.30	529	0.20	30.2	2.3	8.3	De color gris
02	3.30	534	0.20	30.2	2.3	8.1	De color gris
0 0	3.30	545	0.30	30.2	4.2	7.8	De color gris
02	3.30	690	0.30	30.2	4.2	7.8	De color gris
00	3.30	695	0.30	30.1	5.5	7.6	De color gris

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	TotalNitrogen

x	PCB
x	Total Phosphorus
x	Important lons
	$(\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO}-, \mathrm{SiO} 2, \mathrm{Cl}-)$

Observations En el primer intento se secó a los 3 mín 25 seg con una $\mathrm{h}=7.75 \mathrm{~m}$. Se esperó hasta $1 \mathrm{hr} 15 \mathrm{mín}$ a partir de la hora de inicio con una $\mathrm{h}=2.47 \mathrm{~m}$ se realizó el segundo intento durando 2 mín. Se esperó 40 mín para realizar el tercer bombeo con una $\mathrm{h}=4.51 \mathrm{~m}$, el cual duró 1 mín 30 seg. El personal encargado del bombeo tiene por norma suspender el proceso una vez que la columna de agua llegue del 70 al 75% de su profundidad (para este caso es de 7.00 a 7.50 m), para proteger la bomba de posibles daños y evitar el efecto de cono alrededor de pozo.

GROUNDWATER MEASUREMENT REPORT

Project:	Solid Waste Management Plan for Panama City
Date: $\overline{\text { Viernes 09 de agosto de 2002 }}$	
Site:	
Samino a Kuna Nega (antes del puente peatonal)	
Sample \# del pozo \#4	

Coordenadas:	$\frac{658208}{\frac{1001016}{}}$
Hora de Inicio:	
Hora de Salida:	$\frac{10: 15 \mathrm{a} . \mathrm{m} .}{1: 45 \mathrm{p.m} .}$

Field Parameters:
Volume of purge: Depth: $\underline{3.81 \mathrm{mts}} \quad$ Color: Chocolate espeso

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
00	1.70	755	0.30	29.3	5.5	7.9	Chocolate espeso
04	1.70	759	0.30	30.5	5.5	7.9	Chocolate espeso
26	1.70	760	0.30	29.5	4.7	7.4	Chocolate con sedimentos
29	1.70	779	0.30	30.9	4.7	7.6	Chocolate con sedimentos

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	Total Nitrogen

X	PCB
X	Total Phosphorus
X	Important lons (Na+,Ca2+,HCO3-,SiO2,Cl-)
X	Heavy Metals (Cadmium, Cyanide, Lead, Total Chromium, Hexavalent Chromium, Arsenic, Total Mercury, Copper, Zinc, Iron, Manganese)
	Dissolved Oxygen

Observations Se detuvo a los 4 mín 20 seg, con una columna de agua de 7.87 m . Se esperó 2 hrs , para que el pozo se recuperará con una $\mathrm{h}=4.60 \mathrm{~m}$. Se arrancó para la toma de la segunda muestra (Se tomó muestra compuesta en dos partes). El personal encargado del bombeo tiene por norma suspender el proceso una vez que la columna de agua llegue del $70 \mathrm{al} 75 \%$ de su profundidad (para este caso es de 7.00 a 7.50 m), para proteger la bomba de posibles daños y evitar el efecto de cono alrededor de pozo.

GROUNDWATER MEASUREMENT REPORT

Project: | Solid Waste Management Plan for Panama City |
| :--- |
| Date: |
| Site: |
| Sunes 05 de agosto de 2002 |
| Sample \# aprox 215 m del pozo existente \#1 (cerca de lagos) |
| del pozo \#7 |.

Coordinates:	657548
	1000938
Start Time:	10:00 a.m.
Finish Time:	11:30 a.m.

Sample \# del pozo \#7
Field Parameters:
Volume of purge: __ Depth: $\underline{0.67 \mathrm{mts}} \quad$ Color: brown clear

Time Hr. Min	Flow (gal / min)	Conductivity ($\mu \mathrm{s}$)	Salinity (ppt)	Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Appearance
00	3.16	1026	0.50	29.8	3.2	7.3	Chocolate claro con sedimentos
120	3.16	1087	0.50	29.6	5.9	7.4	Chocolate claro con sedimentos

Parameters to be analyzed at the lab:

x	Turbidity
x	Alkalinity
x	Oil and Grease
x	Fecal Coliforms
x	BOD5
x	COD
x	Suspended Solids
x	Ammonia Nitrogen
x	Total Nitrogen

x	PCB
x	Total Phosphorus
x	Important lons
	$(\mathrm{Na}+, \mathrm{Ca} 2+, \mathrm{HCO}-, \mathrm{SiO} 2, \mathrm{Cl}-$-)

Observations Se detuvo a los 4 mín 20 seg, con una columna de agua de 7.87 m . Se esperó 1 hr , para que el pozo se recuperará con una $\mathrm{h}=3.50 \mathrm{~m}$. Se arrancó para la toma de la segunda muestra (Se tomó muestra compuesta en dos partes). El personal encargado del bombeo tiene por norma suspender el proceso una vez que la columna de agua llegue del $70 \mathrm{al} 75 \%$ de su profundidad (para este caso es de 7.00 a 7.50 m), para proteger la bomba de posibles daños y evitar el efecto de cono alrededor de pozo.

Photo 1. Well \#1 Pump Test preparation.

Photo 3. Sampling and Análisis Equipment.

Photo 5. Turbid water from well \#1.

Photo 2. Well \#6 work area.

Photo 4. Sampling containers.

Photo 6. Water from Existing Well \#1

Photos 7 \& 8. Water from Existing Well \#2

Photo 9. Water from well \#6

Photo 10. Water from well \#2

AIR QUALITY

CAIIEC

\title{

AIR MONITORING REPORT

Gas Concentrations

Sulfur Dioxide $\left(\mathbf{S O}_{2}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	1.8
Corrected first test reading (ppm):	0.45
Second test reading (ppm):	1.6
Corrected second test reading (ppm):	0.4

Total Nitrogen Oxides $\left(\mathrm{NO}+\mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/2
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.025
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.025

Measurement of Air Borne Particles

Equipment: DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$10: 03: 02 \mathrm{a} . \mathrm{m}$.	$10: 33: 25 \mathrm{a} . \mathrm{m}$.
Duration $(\mathrm{minutes}):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.009	0.013
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.005	0.006
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.122	0.24

CAEC CONSULTORES EN AMBIENTE Y TECNOLOGÍA, S.A.

\author{

AIR MONITORING REPORT
 \begin{tabular}{|c|c|c|c|c|c|}

\hline \multirow[t]{3}{*}{| Project |
| :--- |
| Fecha |
| Sitio: |} \& \multicolumn{5}{|c|}{Solid Waste Management Plan for Panama City}

\hline \& \multicolumn{5}{|c|}{August 26, 2002}

\hline \& \multicolumn{5}{|c|}{Kuna-Nega Community, near Mocambo River}

\hline Coordinates: \& 17 P \& 0658534 \& East \& Point \#: \& 2

\hline \& UTM \& 1001477 \& North \& \&

\hline
\end{tabular}

Gas Concentrations

Sulfur Dioxide $\left(\mathbf{S O}_{2}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	2.2
Corrected first test reading (ppm) :	0.55
Second test reading (ppm):	2.8
Corrected second test reading (ppm):	0.7

Total Nitrogen Oxides $\left(\mathrm{NO}+\mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/2
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.025
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.025

Measurement of Air Borne Particles

Equipment:
DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$09: 33: 32 \mathrm{a} . \mathrm{m}$.	$10: 03: 50 \mathrm{a} . \mathrm{m}$.
Duration $(\mathrm{minutes}):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.014	0.013
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.002	0.003
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.058	0.228

CAEC CONSULTORES EN AMBIENTE Y TECNOLOGÍA, S.A.

AIR MONITORING REPORT				
Project:	Solid Waste Management Plan for Panama City			
Fecha:	August 25, 2002			
Sitio:	"Y" Intersection of Mocambo River Afluents			
Coordinates: 17 P	0658289	East	Point \#:	3
UTM	1001013	North		

Gas Concentrations

Sulfur Dioxide $\left(\mathbf{S O}_{2}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	3.3
Corrected first test reading (ppm):	0.825
Second test reading (ppm):	1.8
Corrected second test reading (ppm):	0.45

Total Nitrogen Oxides $\left(\mathrm{NO}+\mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/2
First test reading (ppm):	
Corrected first test reading (ppm):	0
Second test reading (ppm):	
Corrected second test reading (ppm):	0

Measurement of Air Borne Particles

Equipment: DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$08: 12: 02 \mathrm{a} . \mathrm{m}$.	$08: 43: 29 \mathrm{a} . \mathrm{m}$.
Duration $(\mathrm{minutes}):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.023	0.029
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.018	0.021
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.049	0.105

CAEC CONSULTORES EN AMBIENTE Y TECNOLOGÍA, S.A.

Gas Concentrations

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	0.3
Corrected first test reading (ppm):	0.075
Second test reading (ppm):	0.5
Corrected second test reading (ppm):	0.125

Total Nitrogen Oxides $\left(\mathrm{NO}+\mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/2
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.025
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.025

Measurement of Air Borne Particles

Equipment: DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$10: 36: 47 \mathrm{a} . \mathrm{m}$.	$10: 05: 44 \mathrm{a} . \mathrm{m}$.
Duration $($ minutes $):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.025	0.035
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.014	0.012
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.155	0.68

CAEC CONSULTORES EN AMBIENTE Y TECNOLOGÍA, S.A.

AIR MONITORING REPORT				
Project:	Solid Waste Management Plan for Panama City			
Fecha:	August 22, 2002			
Sitio:	Quarry - CUSA			
Coordinates: 17 P	0657298	East	Point \#:	5
UTM	1000841	North		

Gas Concentrations

Sulfur Dioxide $\left(\mathbf{S O}_{2}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	0.8
Corrected first test reading (ppm):	0.2
Second test reading (ppm):	0.6
Corrected second test reading (ppm):	0.15

Total Nitrogen Oxides $\left(\mathrm{NO}+\mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide ($\mathrm{H}_{2} \mathrm{~S}$)

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/2
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.025
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.025

Measurement of Air Borne Particles

Equipment: DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$01: 11: 47 \mathrm{p} . \mathrm{m}$.	$01: 44: 48 \mathrm{p.m}$.
Duration $(\mathrm{minutes}):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.029	0.031
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.017	0.017
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.285	1.057

CAEC CONSULTORES EN AMBIENTE Y TECNOLOGÍA, S.A.

Gas Concentrations

Sulfur Dioxide $\left(\mathbf{S O}_{\mathbf{2}}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	0.7
Corrected first test reading (ppm):	0.175
Second test reading (ppm):	0.6
Corrected second test reading (ppm):	0.15

Total Nitrogen Oxides $\left(\mathrm{NO}+\mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide ($\mathrm{H}_{2} \mathrm{~S}$)

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm)	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos)	1 minute
Number of pump strokes used:	8
Correction factor according to strokes	1/2
First test reading (ppm)	0.05
Corrected first test reading (ppm)	0.025
Second test reading (ppm)	0.05
Corrected second test reading (ppm)	0.025

Measurement of Air Borne Particles

Equipment: DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$01: 24: 24 \mathrm{p} . \mathrm{m}$.	$12: 23: 06 \mathrm{p} . \mathrm{m}$.
Duration $(\mathrm{minutes}):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.025	0.02
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.013	0.012
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.493	0.542

CAIIEC

\title{

AIR MONITORING REPORT
 | Project: Fecha: | Solid Waste Management Plan for Panama City | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | August 26, 2002 | | | | |
| | Entrance to Cerro Patacon - Weight Station | | | | |
| Coordinates: | 17 P | 0657825 | East | Point \#: | 7 |
| | UTM | 1000117 | North | | |

Gas Concentrations

Sulfur Dioxide $\left(\mathbf{S O}_{2}\right)$

Change in Tube Coloration	Yellowish Green -----> Yellow
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/4
First test reading (ppm):	2
Corrected first test reading (ppm):	0.5
Second test reading (ppm):	2.3
Corrected second test reading (ppm):	0.575

Total Nitrogen Oxides $\left(\mathrm{NO}_{+} \mathrm{NO}_{2}\right)$

Change in Tube Coloration	White -----> Yellowish orange
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	2 minutes
Number of pump strokes used:	8
Correction factor according to strokes:	1/5
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.01
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.01

Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$

Change in Tube Coloration	Pale Yellow -----> Reddish Brown
Detection Range (ppm):	0.05 ppm -----> 5 ppm
Time per pump stroke (minutos):	1 minute
Number of pump strokes used:	8
Correction factor according to strokes:	1/2
First test reading (ppm):	0.05
Corrected first test reading (ppm):	0.025
Second test reading (ppm):	0.05
Corrected second test reading (ppm):	0.025

Measurement of Air Borne Particles

Equipment:
DustTrack Aerosol Monitor 8520

Description	Test with Filter	Test without Filter
	Particles $<4 \mu \mathrm{~m}$	Particles between $4 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$
Start Time:	$10: 59: 42 \mathrm{a} . \mathrm{m}$.	$11: 33: 35$ a.m.
Duration $(\mathrm{minutes}):$	30	30
Average $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.014	0.022
Minimum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.006	0.007
Maximum $\left(\mathrm{mg} / \mathrm{m}^{3}\right):$	0.154	0.379

NOISE AND VIBRATION

CAIEC

Summary of Daytime Noise Levels in the Study Area

POINT	DESCRIPTION	dBA max. (Linear)	dBA max. (SPL)	dBA min.	dBA avg.
1	Chivo Chivo Road, near Exist. Well \#1	80.4	91.3	32.3	52.0
2	Kuna-Nega Community, near Mocambo River	84.5	83.7	34.6	50.7
3	"Y" intersection of Mocambo River Affluents	74.6	83.0	28.0	45.8
4	DIMAUD Offices, near Existing Well \#2	78.2	80.9	43.9	60.3
5	Quarry - CUSA	88.4	83.3	38.1	55.9
6	Camino de Cruces, under Transmission Lines	62.8	66.3	34.3	43.7
7	Entrance to Cerro Patacon - Weight Station	86.9	89.1	43.9	59.9

Summary of Night Time Noise Levels in the Study Area

POINT	DESCRIPTION	dBA máx. (SPL)	dBA mín.	dBA prom.
1	Chivo Chivo Road, near Exist. Well \#1	73.6	44.5	53.8
2	Kuna-Nega Community, near Mocambo River	54.6	45.0	46.9
3	"Y" intersection of Mocambo River Affluents	75.2	52.3	53.6
4	DIMAUD Offices, near Existing Well \#2	74.4	48.3	53.5
5	Quarry - CUSA	65.8	35.8	41.3
6	Camino de Cruces, under Transmission Lines	63.7	40.2	45.7
7	Entrance to Cerro Patacon - Weight Station	73.2	47.4	49.3

VIBRATION GRAPH

(SUMMARY)

Frecuency (Hz)	AVERAGES OF EACH POINT OF SAMPLING						
	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7
$\mathbf{3 1}$	49.6	57.3	59.6	63.5	55.9	51.9	60.9
$\mathbf{6 3}$	50.3	53.6	57.7	66.8	56.6	54.9	62.2
$\mathbf{1 2 5}$	41.5	44.0	44.5	61.7	52.4	47.7	58.2
$\mathbf{2 5 0}$	29.5	35.8	31.7	55.6	41.0	36.7	46.4
$\mathbf{5 0 0}$	30.9	38.5	33.7	50.4	37.5	28.2	44.6
$\mathbf{1 ~ K}$	27.9	39.8	32.8	50.3	38.6	29.0	50.3
$\mathbf{2 ~ K}$	35.7	38.7	32.1	48.4	34.5	30.3	50.8
$\mathbf{4 ~ K}$	44.4	45.1	34.5	35.9	27.4	28.4	46.8
$\mathbf{8 ~ K}$	46.6	36.9	36.0	29.8	29.7	30.8	32.9
$\mathbf{1 6 ~ K}$	34.0	30.5	29.5	33.1	33.0	33.0	30.8

Octave Band Analysis Chart

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad August 14, 2002
Site: \qquad Chivo Chivo Road, near Exist. Well \#1

Coordinates: | 17 P | 0657453 | East | |
| :--- | :--- | :--- | :--- |
| | UTM | 1001532 | North |

Point \#: \qquad

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Max.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{am}$.	$\mathrm{Hi}=11: 00 \mathrm{am}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=06: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02000 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=07745 \mathrm{a} . \mathrm{m}$.
00:00:00	56.2 dB	53.2 dB	42.5 dB	47.6 dB	80.4 dB	48.6 dB
00:00:30	52.4	52.1	48.9	49.3		44.5
00:01:00	53.8	55.3	54.3	48.6		50.2
00:01:30	54.0	66.0	83.8	49.3		48.4
00:02:00	55.2	76.7	43.1	50.9		48.0
00:02:30	66.6	54.8	40.1	47.0		48.3
00:03:00	58.5	55.1	46.8	49.1		48.9
00:03:30	54.6	56.0	45.9	61.9		48.8
00:04:00	54.1	71.0	47.7	86.8		47.8
00:04:30	52.6	55.2	72.7	57.5		49.8
00:05:00	52.2	50.0	47.8	40.8		63.6 birds
00:05:30	52.7	51.0	42.4	38.0		57.6
00:06:00	52.3	49.9	46.1	42.3		62.8
00:06:30	51.5	51.6	49.7	43.4		55.7
00:07:00	52.2	52.3	50.0	47.1		61.2
00:07:30	52.3	52.6	49.2	44.6		60.9
00:08:00	56.1	52.5	46.9	48.1		62.8
00:08:30	53.7	52.2	47.0	49.8		63.4
00:09:00	52.8	52.2	50.2	50.7		50.1
00:09:30	53.8	52.1	50.5	49.8		48.0
00:10:00	51.7	52.3	50.4	40.8		48.4
00:10:30	50.2	55.7	49.3	46.3		51.6
00:11:00	50.5	63.2	47.6	52.3		49.0
00:11:30	50.3	66.7	48.6	54.4		47.5
00:12:00	51.1	58.7	49.7	54.0		45.4
00:12:30	52.7	51.5	48.4	56.1		49.7
00:13:00	53.0	52.3	48.5	53.4		50.1
00:13:30	51.6	49.6	47.5	54.7		49.0
00:14:00	52.4	49.3	48.3	64.3		48.1
00:14:30	52.3	47.7	49.1	65.3		49.3
00:15:00	50.4	47.6	49.0	58.8		52.3
00:15:30	51.1	46.4	48.3	67.9		54.6
00:16:00	49.7	50.0	47.6	57.6		49.9
00:16:30	51.9	47.1	50.4	64.9		48.8
00:17:00	52.0	47.7	48.9	61.8		53.4
00:17:30	53.7	49.3	47.5	53.1		49.1
00:18:00	50.7	50.0	48.8	59.6		52.3
00:18:30	51.7	50.1	53.8	70.7		54.7
00:19:00	41.4	51.4	49.8	54.8		54.6
00:19:30	51.1	49.4	47.3	60.1		51.3
00:20:00	52.9	48.3	52.1	60.8		51.1
00:20:30	56.9	51.4	76.3	58.4		54.6

POINT \# 1 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Max.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=06: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00$ a.m.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=07: 45 \mathrm{a} . \mathrm{m}$.
00:21:00	61.1 dB	52.5 dB	48.9 dB	65.7 dB		55.1
00:21:30	61.8	51.9	53.4	91.3		54.9
00:22:00	50.6	51.4	87.6	53.6		56.8
00:22:30	48.5	51.7	50.7	54.4		58.7
00:23:00	51.0	47.8	48.1	56.1		52.6
00:23:30	49.7	49.3	46.3	59.0		53.1
00:24:00	49.3	46.5	49.8	60.5		54.5
00:24:30	46.7	48.6	51.9	43.5		54.7
00:25:00	44.3	51.6	46.0	47.1		57.0
00:25:30	45.3	74.8	48.5	48.0		58.5
00:26:00	46.5	60.0	51.6	40.4		60.0
00:26:30	47.2	45.9	47.5	43.8		51.0
00:27:00	49.7	45.8	45.8	45.9		52.7
00:27:30	47.6	49.5	45.9	46.0		54.8
00:28:00	47.2	50.2	49.9	49.3		52.2
00:28:30	48.2	46.7	51.3	50.1		53.6
00:29:00	50.2	47.5	49.5	53.0		52.7
00:29:30	50.0	49.9	48.1	57.7		53.0
00:30:00	50.4	50.7	49.4	69.2		54.4
00:30:30	53.1	48.4	57.7	76.1		54.8
00:31:00	54.4	49.5	72.4	80.1		55.0
00:31:30	52.9	49.6	49.2	56.1		54.7
00:32:00	50.9	50.0	47.1	58.0		51.1
00:32:30	51.4	44.3	32.3	61.4		52.8
00:33:00	51.7	46.6	43.0	65.2		52.9
00:33:30	52.5	49.4	57.7	51.9		52.6
00:34:00	53.9	45.8	48.4	55.1		51.7
00:34:30	54.5	49.1	53.6	62.4		52.3
00:35:00	54.2	58.7	57.2	61.4		50.5
00:35:30	53.4	65.8	64.5	54.3		53.5
00:36:00	56.9	52.4	53.0	48.7		54.2
00:36:30	56.2	47.1	50.2	50.8		51.9
00:37:00	62.3	49.3	58.7	48.9		56.3 airplane
00:37:30	63.9	48.4	56.7	51.0		54.0
00:38:00	54.2	48.2	54.6	50.4		53.0
00:38:30	51.4	48.4	51.3	51.9		52.2
00:39:00	51.9	47.7	61.7	55.6		60.6 bugs
00:39:30	52.2	50.5	44.4	51.2		56.6
00:40:00	50.9	50.3	40.3	48.7		59.3
00:40:30	52.0	50.6	48.9	48.1		60.4
00:41:00	51.4	50.0	51.2	54.6		59.0
00:41:30	53.2	72.6	67.9	55.6		58.5
00:42:00	56.8	50.2	44.9	54.2		57.3
00:42:30	69.5	42.3	45.4	48.4		57.5
00:43:00	55.5	44.8	44.3	53.6		57.2
00:43:30	53.6	46.7	49.0	60.3		58.1
00:44:00	53.4	48.9	53.0	59.4		57.5
00:44:30	52.6	48.6	50.1	51.0		57.9
00:45:00	53.8	48.3	48.7	52.2		57.4
00:45:30	52.8	49.2	48.0	54.2		57.1
00:46:00	53.0	48.5	45.4	49.9		58.1
00:46:30	51.5	49.8	49.8	49.4		59.3
00:47:00	50.9	41.5	50.4	49.6		60.2
00:47:30	51.3	46.3	50.1	51.4		61.0
00:48:00	52.2	44.1	46.0	52.0		68.0 bugs

POINT \# 1 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Max.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=06: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00$ p.m.	$\mathrm{Hf}=07: 45 \mathrm{a} . \mathrm{m}$.
00:48:30	52.8 dB	38.1	47.3 dB	44.7 dB		71.3 bugs
00:49:00	52.7	42.2	45.2	44.5		73.6
00:49:30	52.8	40.1	48.3	46.8		58.9
00:50:00	58.5	42.4	46.4	48.7		65.4
00:50:30	58.0	43.7	44.6	51.8		51.7
00:51:00	55.3	47.8	44.8	52.9		50.9
00:51:30	54.1	48.2	49.2	55.2		56.3
00:52:00	53.7	53.8	45.6	63.1		48.4
00:52:30	53.2	49.5	49.7	57.1		48.2
00:53:00	52.4	48.9	51.9	44.3		46.3
00:53:30	53.8	49.5	51.7	46.5		48.1
00:54:00	56.0	49.2	47.7	50.8		45.1
00:54:30	70.6	48.9	50.4	52.4		44.6
00:55:00	78.2	50.0	51.0	45.7		45.0
00:55:30	56.5	51.0	49.2	44.1		44.8
00:56:00	50.3	50.4	38.3	49.4		48.3
00:56:30	52.3	47.8	40.1	51.4		51.6
00:57:00	56.1	49.8	42.8	47.5		51.4
00:57:30	54.0	54.9	41.1	47.7		51.9
00:58:00	55.5	85.3	42.1	50.7		50.8
00:58:30	52.6	52.9	43.7	75.6		49.5
00:59:00	51.7	49.6	47.8	44.3		49.8
00:59:30	50.6	49.3	63.9	41.7		52.4
01:00:00	51.6	48.5	40.8	49.9		53.3

Observations: \qquad

Maximum:	DAYTIME		NIGHT TIME	
	91.3	dB (Mode SPL)	73.6	dB (Mode SPL)
Minimum:	32.3	dB (Mode SPL)	44.5	dB (Mode SPL)
Average:	52.0	dB (Mode SPL)	53.8	dB (Mode SPL)

Maximum of Test 5: 80.4 dB (Mode Linear)

Vibration Test
Point \#: \qquad Date: \qquad
Coordinates

17 P	0657453	East
UTM	1001532	North

	$\Delta \mathrm{t}=90 \mathrm{~s}$								
Frequency (Hz)		est 1		st 2		st 3		st 4	Average
	$\mathrm{Hi}=$	09:15 a.m.	$\mathrm{Hi}=$	09:30 a.m.	$\mathrm{Hi}=$	09:45 a.m.	$\mathrm{Hi}=$	07:45 a.m.	
	$\mathrm{Hf}=$	09:30 a.m.	$\mathrm{Hf}=$	09:45 a.m.	$\mathrm{Hf}=$	10:00 a.m.	$\mathrm{Hf}=$	08:00 a.m.	
	dBA:	X	dBA:	X	dBA:	X	dBA:	X	(dBA)
	dB LIN:		dB LIN:		dB LIN:		dB LIN:		
31	49.3	48.5	48.7	50.0	49.7	51.6	49.2	50.0	49.6
63	50.5	50.9	50.1	49.6	50.3	50.4	50.4	49.9	50.3
125	41.6	42.8	41.8	42.4	43.6	41.4	38.7	40.0	41.5
250	27.5	31.5	28.6	29.4	28.6	29.2	30.7	30.1	29.5
500	28.7	28.8	29.6	28.8	31.6	38.8	32.8	27.9	30.9
1 K	26.2	26.8	25.0	29.6	30.9	26.1	29.8	28.6	27.9
2 K	36.6	38.8	36.1	32.4	35.8	33.6	35.9	36.3	35.7
4 K	46.7	47.8	40.8	41.8	42.3	45.9	45.3	44.8	44.4
8 K	44.3	45.2	45.1	48.7	44.1	46.8	53.2	45.6	46.6
16 K	33.2	33.2	34.4	34.6	33.7	34.6	35.2	33.2	34.0

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad August 15, 2002
Site: \qquad Kuna-Nega Community, near Mocambo River

Coordinates: $17 \mathrm{P} \quad 0658534$ East | UTM | 1001477 | North |
| :--- | :--- | :--- |

Point \#: \qquad

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{am}$.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=04: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02000 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=05: 45 \mathrm{a} . \mathrm{m}$.
00:00:00	43.1 dB	71.8 dB	54.0 dB	50.5 dB	84.5 dB	46.0 dB
00:00:30	40.5	74.8	54.6	49.2		51.3
00:01:00	42.4	64.7	51.7	46.1		45.7
00:01:30	43.3	58.3	62.8	44.2		50.5
00:02:00	53.8	60.9	58.1	44.9		45.5
00:02:30	42.9	56.2	83.7	51.6		46.3
00:03:00	46.1	53.2	58.6	55.7		45.2
00:03:30	45.5	54.7	52.8	44.4		45.5
00:04:00	51.9	53.1	49.8	45.8		45.8
00:04:30	52.7	51.4	48.5	46.6		45.7
00:05:00	45.8	45.3	45.5	57.6		45.2
00:05:30	48.2	47.8	49.1	48.0		48.2
00:06:00	47.8	47.7	53.1	48.9		46.0
00:06:30	45.4	43.8	46.7	51.6		45.7
00:07:00	44.3	48.9	62.1	49.7		45.7
00:07:30	45.7	47.4	48.4	46.5		45.2
00:08:00	47.9	47.7	50.1	46.4		45.9
00:08:30	45.4	51.8	51.2	46.3		47.9
00:09:00	53.1	45.6	46.6	43.4		45.6
00:09:30	49.7	48.6	45.9	48.5		45.1
00:10:00	46.7	49.9	47.9	46.8		47.3
00:10:30	50.1	48.6	50.6	46.4		50.5
00:11:00	45.8	54.6	49.2	45.5		46.8
00:11:30	43.8	58.8	49.8	48.8		45.5
00:12:00	44.3	60.9	47.9	52.0		45.6
00:12:30	56.4	56.4	55.3	55.2		45.5
00:13:00	51.1	55.3	66.8	56.1		46.3
00:13:30	48.8	50.3	58.7	56.4		50.3
00:14:00	49.3	48.8	51.0	56.3		45.1
00:14:30	46.2	52.7	52.3	56.5		46.0
00:15:00	47.9	53.1	49.3	58.7		45.6
00:15:30	52.3	45.9	49.1	66.0		45.9
00:16:00	48.9	46.7	49.8	75.7		50.4
00:16:30	45.4	48.0	49.9	82.6		46.1
00:17:00	43.0	50.1	50.4	57.3		45.4
00:17:30	47.3	44.3	49.0	50.3		49.3
00:18:00	48.1	45.9	48.7	52.4		45.5
00:18:30	51.9	49.3	50.8	53.1		46.1
00:19:00	46.4	50.2	52.7	55.3		45.5
00:19:30	50.5	46.8	50.8	46.9		46.8
00:20:00	72.6	46.3	53.5	53.8		46.1
00:20:30	36.1	48.2	50.8	47.2		45.1

POINT \# 2 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 00$ a.m.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=04: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00$ a.m.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00$ p.m.	$\mathrm{Hf}=05: 45 \mathrm{a} . \mathrm{m}$.
00:21:00	47.0 dB	60.9 dB	52.7 dB	48.9 dB		46.8 dB
00:21:30	34.6	61.7	49.4	47.1		45.5
00:22:00	52.7	52.7	64.7	46.6		45.0
00:22:30	47.9	56.7	48.9	51.6		46.2
00:23:00	48.5	49.5	48.3	44.1		46.0
00:23:30	44.1	48.8	49.9	47.4		47.3
00:24:00	48.0	45.4	49.0	44.6		45.6
00:24:30	46.6	46.4	50.4	48.3		49.4 people
00:25:00	44.6	54.9	50.6	46.9		45.3
00:25:30	49.7	49.3	49.7	49.4		45.2
00:26:00	44.8	44.7	52.3	45.9		46.3
00:26:30	47.7	46.6	47.4	48.6		47.7
00:27:00	43.8	60.6	47.8	47.8		48.9
00:27:30	44.7	48.6	48.2	48.0		47.5
00:28:00	65.4	61.7	48.3	41.7		46.4
00:28:30	57.1	67.3	52.4	45.1		46.0
00:29:00	46.5	66.2	48.8	43.1		46.9
00:29:30	55.5	66.9	47.9	50.5		46.7
00:30:00	45.8	50.6	46.8	41.6		46.5
00:30:30	45.9	46.9	49.2	49.3		47.1
00:31:00	47.9	49.5	46.7	44.0		49.2 birds
00:31:30	49.7	47.0	48.2	46.0		46.1
00:32:00	56.4	45.4	46.9	46.9		46.5
00:32:30	50.8	46.2	58.3	50.9		45.9
00:33:00	48.1	46.9	47.6	42.0		48.3
00:33:30	49.5	47.5	49.6	44.5		46.1
00:34:00	47.5	48.1	54.6	52.7		45.8
00:34:30	52.3	46.6	50.3	46.7		51.2 people
00:35:00	48.0	46.5	46.6	50.5		50.0
00:35:30	50.1	45.6	45.0	47.0		50.0
00:36:00	53.5	47.1	49.0	48.8		45.5
00:36:30	49.6	43.9	46.0	50.1		45.9
00:37:00	47.8	44.8	47.1	48.0		47.2
00:37:30	47.4	50.4	46.7	46.9		47.1
00:38:00	48.1	49.8	46.2	45.6		45.8
00:38:30	45.7	55.1	49.2	52.3		45.9
00:39:00	48.1	50.1	53.1	49.5		49.2
00:39:30	50.4	48.6	52.5	48.0		46.5
00:40:00	53.1	47.7	54.3	47.4		46.5
00:40:30	58.3	49.1	51.2	53.4		46.8
00:41:00	51.8	64.1	51.9	58.1		47.2
00:41:30	56.8	75.6	50.6	68.6		46.2
00:42:00	52.5	62.0	47.8	76.2		48.7
00:42:30	48.0	46.2	49.5	61.9		47.0
00:43:00	50.3	52.1	51.7	65.8		46.1
00:43:30	47.4	53.4	48.3	52.8		45.8
00:44:00	51.9	49.6	50.5	53.4		54.6 birds
00:44:30	48.6	49.3	49.6	53.6		48.0
00:45:00	46.4	46.3	48.5	48.6		47.2
00:45:30	47.4	51.2	47.6	50.3		46.9
00:46:00	46.5	51.5	48.8	48.2		47.8
00:46:30	48.7	49.7	47.9	47.1		46.9
00:47:00	52.5	48.5	49.2	46.3		48.0
00:47:30	56.0	50.8	48.9	48.8		45.9
00:48:00	60.7	47.7	47.6	48.9		48.6

POINT \# 2 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00$ a.m.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=04: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=05: 45 \mathrm{a} . \mathrm{m}$.
00:48:30	54.3 dB	46.5 dB	49.1 dB	48.7 dB		46.2 dB
00:49:00	56.8	46.7	51.6	48.5		46.3
00:49:30	64.7	47.4	49.5	45.6		49.1
00:50:00	50.6	68.3	49.6	52.4		46.2
00:50:30	53.1	47.6	48.4	51.0		48.0
00:51:00	51.9	49.3	49.0	52.2		47.2
00:51:30	52.8	58.8	48.5	46.7		46.6
00:52:00	51.4	48.9	47.0	48.2		46.9
00:52:30	53.7	50.3	47.6	49.0		46.5
00:53:00	48.4	48.4	50.6	50.7		47.0
00:53:30	51.4	44.9	51.6	49.0		46.8
00:54:00	49.0	56.1	48.8	48.6		46.1
00:54:30	52.3	51.7	52.7	50.6		48.6
00:55:00	62.4	47.5	49.0	47.1		46.8
00:55:30	50.3	47.9	49.7	49.7		47.9
00:56:00	63.2	48.7	50.4	46.2		46.3
00:56:30	49.5	48.7	48.7	49.8		46.0
00:57:00	48.9	53.6	50.4	49.0		47.7
00:57:30	47.8	62.4	50.2	49.7		46.1
00:58:00	58.7	56.9	52.3	52.3		47.8
00:58:30	51.7	52.7	51.8	51.4		46.6
00:59:00	49.4	51.9	50.8	54.9		46.7
00:59:30	55.6	49.9	49.3	51.0		45.8
01:00:00	57.3	48.8	50.8	62.3		46.8

Observations: \qquad

Maximum:	DAYTIME		NIGHT TIME	
	83.7	dB (Mode SPL)	54.6	dB (Mode SPL)
Minimum:	34.6	dB (Mode SPL)	45.0	dB (Mode SPL)
Average:	50.7	dB (Mode SPL)	46.9	dB (Mode SPL)

Maximum of Test 5: 84.5 dB (Mode Linear)

Vibration Test
Point \#: \qquad 2

Date: \qquad
Coordinates \qquad

17 P	0658534	East
UTM	1001477	North

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Octave Band Analysis Chart

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad " Y " Intersection of Mocambo River Afluents

Coordinates: $17 \mathrm{P} \quad 0658289$ East | UTM | 1001013 | North |
| :--- | :--- | :--- |

Point \#: \qquad

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 30 \mathrm{am}$.	$\mathrm{Hi}=11: 30 \mathrm{am}$.	$\mathrm{Hi}=12: 30$ p.m.	$\mathrm{Hi}=01: 30 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hi}=02: 30$ p.m.	$\mathrm{Hi}=06: 30 \mathrm{amm}$.
	$\mathrm{Hf}=11: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12 \mathrm{l}: 30 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01: 30 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 30 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 30 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=07: 30 \mathrm{a} . \mathrm{m}$.
00:00:00	76.3 truck	83.0 truck	46.0 dB	41.4 dB	74.6 dB	53.0 dB
00:00:30	44.8	62.4	45.9	65.4 Car		52.9
00:01:00	50.6 Car	62.1	44.7	42.4		60.6
00:01:30	41.1	48.8	43.4	37.6		75.2 bus
00:02:00	41.8	41.6	43.8	38.4		55.4
00:02:30	49.7	47.0	35.6	36.8		53.1
00:03:00	44.8	47.8	35.8	38.5		55.7
00:03:30	48.1	49.8	38.8	41.4		52.9
00:04:00	47.6	67.7 Bus	43.8	40.7		52.7
00:04:30	49.7	47.2	66.2 Car	39.0		52.6
00:05:00	51.4	50.5	43.9	35.4		52.7
00:05:30	47.7	48.8	44.6	36.0		53.3
00:06:00	45.1	48.7	44.2	36.6		59.5
00:06:30	46.2	52.6	44.7	35.3		67.4 Car
00:07:00	45.4	46.4	44.3	41.9		54.0
00:07:30	50.6	43.1	45.1	33.7		52.9
00:08:00	45.0	43.3	52.7	34.5		52.8
00:08:30	47.6	41.9	63.6 Car	36.4		52.7
00:09:00	54.6 Car	42.8	39.0	41.1		52.8
00:09:30	51.8	45.8	43.0	40.5		53.1
00:10:00	50.9	44.7	41.7	39.2		52.5
00:10:30	49.8	38.3	41.1	48.3		53.0
00:11:00	50.5	46.1	44.6	64.9 Bus		52.4
00:11:30	42.9	45.5	65.1 Bus	40.0		52.7
00:12:00	45.4	48.4	54.7	39.7		52.6
00:12:30	45.7	47.6	45.3	42.5		52.6
00:13:00	55.5	46.7	50.3	43.3		52.5
00:13:30	49.7	47.6	45.1	56.9 Bus		52.5
00:14:00	47.3	58.1	43.7	45.3		52.7
00:14:30	44.2	41.8	37.9	68.1 Bus		52.4
00:15:00	63.3 Car	49.1	38.3	34.0		52.6
00:15:30	56.0	59.8	36.9	33.8		53.4
00:16:00	51.9	73.3 bugs	39.4	31.5		52.6
00:16:30	51.6	43.0	38.6	35.4		52.7
00:17:00	48.1	42.2	36.1	37.2		53.0
00:17:30	51.2	65.4 bus	38.4	39.8		53.0
00:18:00	49.2	49.9	39.0	35.6		52.8
00:18:30	45.4	65.3 bus	50.1	36.0		53.2
00:19:00	51.4	53.6	66.6 truck	37.9		52.7
00:19:30	63.1 truck	53.9	50.8	50.4		52.5
00:20:00	61.6 Bus	46.8	40.5	41.9		52.7
00:20:30	50.7	49.5	57.0 Car	45.6		52.6

POINT \# 3 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 30$ p.m.	$\mathrm{Hi}=01: 30$ p.m.	$\mathrm{Hi}=02: 30$ p.m.	$\mathrm{Hi}=06: 30 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 30$ p.m.	$\mathrm{Hf}=01: 30$ p.m.	$\mathrm{Hf}=02: 30$ p.m.	$\mathrm{Hf}=03: 30$ p.m.	$\mathrm{Hf}=07: 30 \mathrm{a} . \mathrm{m}$.
00:21:00	50.8 dB	49.4 dB	38.4 dB	74.8 Bus		52.7 dB
00:21:30	49.4	47.3	49.7	45.6		52.8
00:22:00	63.2 truck	47.2	64.7 Car	48.6		52.6
00:22:30	48.2	47.1	45.4	34.0		52.7
00:23:00	50.9	46.6	43.8	36.6		52.5
00:23:30	45.6	45.9	39.4	39.4		52.9
00:24:00	47.3	44.6	34.9	34.8		52.8
00:24:30	58.1 airplane	47.2	41.6	35.5		52.6
00:25:00	52.3	50.6	43.3	34.6		52.8
00:25:30	51.3	42.8	49.8	38.1		56.4
00:26:00	48.5	47.5	44.0	37.7		53.6
00:26:30	47.2	49.2	38.5	33.4		52.8
00:27:00	50.3	45.0	40.0	39.2		52.5
00:27:30	49.6	46.5	41.6	38.5		55.7
00:28:00	46.8	45.8	43.0	41.1		53.8
00:28:30	48.8	46.1	42.2	42.4		55.9 people
00:29:00	51.2	47.1	38.9	75.2 truck		54.0
00:29:30	48.8	64.8	39.9	35.5		54.2
00:30:00	49.8	77.1 Bus	38.9	32.3		52.7
00:30:30	47.5	46.5	54.4	36.1		53.0
00:31:00	44.4	45.7	63.8 Car	39.2		52.8
00:31:30	43.5	45.3	59.0	37.1		52.6
00:32:00	45.5	49.4	56.1	34.5		52.8
00:32:30	42.3	39.7	41.9	43.9		52.7
00:33:00	47.6	41.5	43.2	39.0		56.4
00:33:30	49.1	42.1	40.8	44.8		53.7
00:34:00	50.8	42.4	42.9	42.6		52.7
00:34:30	43.6	41.7	40.7	39.9		52.7
00:35:00	42.6	44.3	39.6	35.2		52.3
00:35:30	43.3	49.4	40.0	38.3		52.7
00:36:00	44.2	58.7	41.1	45.9		52.5
00:36:30	46.6	78.9 truck	43.9	44.4		52.3
00:37:00	48.2	52.7	43.6	65.3 Car		54.3
00:37:30	49.0	53.5	44.7	36.6		52.6
00:38:00	48.3	43.1	42.2	33.6		53.0
00:38:30	47.5	60.2 truck	38.3	35.8		52.7
00:39:00	47.7	48.9	40.0	34.2		52.4
00:39:30	45.8	46.2	40.8	36.0		52.5
00:40:00	49.3	43.2	44.8	32.0		52.4
00:40:30	47.1	43.6	40.8	29.0		52.7
00:41:00	49.8	40.2	55.4	28.6		53.3
00:41:30	51.2	37.4	73.3	32.5		53.2
00:42:00	80.1 Bus	46.4	48.8	39.1		54.2
00:42:30	53.8	46.6	58.1 Bus	38.9		52.6
00:43:00	43.3	46.9	46.2	39.1		52.7
00:43:30	43.4	47.0	40.3	36.5		52.6
00:44:00	43.7	47.9	72.2	43.1		52.9
00:44:30	45.8	47.6	38.9	55.1 Car		52.7
00:45:00	47.3	46.5	44.8	41.0		52.8
00:45:30	46.8	42.9	40.9	39.8		54.6
00:46:00	47.6	56.5	41.4	39.5		52.9
00:46:30	57.1	38.2	38.6	45.4		55.6 people
00:47:00	47.7	41.0	40.1	77.1 Tractor		53.6
00:47:30	46.9	63.3	39.8	59.0 Car		59.9 people
00:48:00	46.7	40.6	39.6	37.6		56.0

POINT \# 3 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 30$ a.m.	$\mathrm{Hi}=12: 30$ p.m.	$\mathrm{Hi}=01: 30$ p.m.	$\mathrm{Hi}=02: 30$ p.m.	$\mathrm{Hi}=06: 30 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 30$ a.m.	$\mathrm{Hf}=12: 30$ p.m.	$\mathrm{Hf}=01: 30 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 30 \mathrm{p.m}$.	$\mathrm{Hf}=03: 30$ p.m.	$\mathrm{Hf}=07: 30$ a.m.
00:48:30	56.3 dB	39.1 dB	41.6 dB	33.8 dB		52.8 dB
00:49:00	57.0	36.8	42.8	39.1		52.7
00:49:30	50.9	38.3	39.2	39.9		52.3
00:50:00	50.3	40.3	41.0	38.1		52.5
00:50:30	45.9	51.9	38.6	30.1		52.4
00:51:00	46.1	43.6	42.7	28.2		52.3
00:51:30	47.3	40.9	42.2	28.5		52.5
00:52:00	50.9	41.5	42.5	28.8		52.4
00:52:30	71.8	40.5	39.3	29.0		53.0
00:53:00	73.3	40.8	38.9	32.0		52.4
00:53:30	52.7	41.2	39.0	55.7 Bus		52.3
00:54:00	56.3	42.5	46.3	39.9		52.7
00:54:30	72.1	44.8	45.3	37.0		52.3
00:55:00	46.0	44.0	62.4	31.4		52.4
00:55:30	46.6	44.1	80.3	30.3		52.5
00:56:00	47.5	43.3	51.2	28.8		52.5
00:56:30	46.3	42.9	42.9	30.0		59.1
00:57:00	44.6	42.9	43.5	30.6		52.6
00:57:30	42.1	45.8	44.2	28.0		52.8
00:58:00	40.2	75.2	75.6	31.5		52.5
00:58:30	41.3	41.1	45.1	30.3		52.5
00:59:00	45.3	38.7	63.3	30.9		53.0
00:59:30	44.8	39.1	42.9	31.9		52.8
01:00:00	43.9	39.9	41.8	32.3		52.6

Observations: There is Swelling of the Mocambo River

Maximum:	DAYTIME		NIGHT TIME	
	83.0	dB (Mode SPL)	75.2	dB (Mode SPL)
Minimum:	28.0	dB (Mode SPL)	52.3	dB (Mode SPL)
Average:	45.8	dB (Mode SPL)	53.6	dB (Mode SPL)

Maximum of Test 5: 74.6 dB (Mode Linear)

Vibration Test
Point \#: \qquad
3
Date: \qquad

Coordinates \qquad

17 P	0658289	East
UTM	1001013	North

	$\Delta \mathrm{t}=90 \mathrm{~s}$								
Frequency (Hz)		st 1		est 2		est 3		est 4	Average
	$\mathrm{Hi}=$	10:00 a.m.	$\mathrm{Hi}=$	10:15 a.m.	$\mathrm{Hi}=$	10:30 a.m.	$\mathrm{Hi}=$	07:30 a.m.	
	$\mathrm{Hf}=$	10:15 a.m.	$\mathrm{Hf}=$	10:30 a.m.	$\mathrm{Hf}=$	10:45 a.m.	$\mathrm{Hf}=$	07:45 a.m.	
	dBA:	X	dBA:	X	dBA:	X	dBA:	X	(dBA)
	dB LIN:		dB LIN:		dB LIN:		dB LIN:		
31	66.7	66.5	61.5	62.1	61.6	60.5	46.4	51.5	59.6
63	58.6	60.6	52.4	51.3	(90.3)	62.5	41.9	43.6	57.7
125	56.8	49.7	43.8	46.3	42.1	41.8	38.1	37.0	44.5
250	31.5	33.9	27.9	29.0	28.4	31.1	35.6	36.2	31.7
500	29.3	31.4	33.0	32.1	27.9	29.2	43.3	43.5	33.7
1 K	26.4	26.5	33.2	29.7	26.6	26.1	46.9	47.0	32.8
2 K	25.5	25.7	28.0	28.3	28.7	22.8	48.8	49.1	32.1
4 K	32.2	33.2	29.7	31.3	(50.4)	27.8	35.5	35.8	34.5
8 K	(42.2)	35.7	32.4	33.9	42.6	41.2	30.0	30.1	36.0
16 K	23.1	23.4	23.7	23.4	(30.1)	(46.6)	32.9	32.9	29.5

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad August 9, 2002
Site:
DIMAUD Offices, near Existing Well \#2

Coordinates: | 17 P | 0657768 | East | |
| :--- | :--- | :--- | :--- |
| | UTM | 1000894 | North |

Point \#: \qquad

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{am}$.	$\mathrm{Hi}=11: 00 \mathrm{am}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=08: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02000 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=09: 00 \mathrm{a.m}$.
00:00:00	57.6 dB	63.8 dB	63.6 dB	60.5 dB	78.2 dB	53.6 dB
00:00:30	58.3	57.0	53.2	63.2		53.2
00:01:00	59.9	56.8	53.6	58.0		49.7
00:01:30	63.9 Truck	56.6	50.7	55.3		51.3
00:02:00	58.0	55.1	48.6	65.4		50.4
00:02:30	58.3	52.9	49.6	57.8		52.4
00:03:00	57.9	58.1	49.7	59.0		57.2 Car
00:03:30	63.9 Truck	71.8	50.4	63.2		49.3
00:04:00	57.9	61.3	48.7	67.7		49.2
00:04:30	70.6	59.2	48.4	61.8		48.3
00:05:00	61.4	61.6	48.3	60.3		50.5
00:05:30	61.0	57.5	50.7	57.4		50.4
00:06:00	61.9	80.9	52.9	57.6		50.9
00:06:30	62.7	55.7	54.8	53.4		48.7
00:07:00	64.3	54.1	52.2	53.8		49.3
00:07:30	65.4	55.0	52.8	56.2		49.5
00:08:00	65.5	54.8	59.8	57.0		50.2
00:08:30	63.9	60.2	53.7	59.3		54.2
00:09:00	61.9	55.6	50.0	59.8		67.4 Truck
00:09:30	62.0	56.1	48.6	61.9		55.3
00:10:00	61.3	56.4	62.7	64.3		60.2
00:10:30	61.5	70.0	61.6	75.0		53.6
00:11:00	62.2	55.6	55.0	72.8		50.4
00:11:30	61.5	55.4	50.1	73.5		51.1
00:12:00	63.2	68.1	49.8	68.1		51.2
00:12:30	63.6	55.1	53.7	71.7		60.2 Truck
00:13:00	63.5	58.1	54.0	64.3		53.4
00:13:30	63.4	62.2	53.2	61.5		48.7
00:14:00	64.7	58.5	53.5	60.3		49.2
00:14:30	65.2	69.7	50.2	66.6		52.1
00:15:00	61.8	59.3	50.6	67.7		50.3
00:15:30	61.6	65.7	50.8	64.4		51.1
00:16:00	62.1	65.3	51.3	68.9		49.2
00:16:30	62.6	61.5	54.0	72.2		48.3
00:17:00	62.0	66.8	69.3	62.0		50.4
00:17:30	61.3	73.6	64.2	62.8		54.6
00:18:00	62.3	71.0	54.9	71.2		58.6 Truck
00:18:30	62.4	59.8	55.7	74.6		55.3
00:19:00	62.3	60.3	52.8	70.2		54.4
00:19:30	62.5	59.1	50.4	65.4		49.8
00:20:00	62.2	56.7	49.6	63.3		51.9
00:20:30	62.6	59.0	60.6	63.5		49.0

POINT \# 4 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi=} \mathrm{11:00} \mathrm{a.m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=08: 00 \mathrm{am}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=09: 00 \mathrm{a} . \mathrm{m}$.
00:21:00	61.7 dB	59.9 dB	51.5 dB	64.7 dB		51.3 dB
00:21:30	62.2	63.0	52.0	64.7		50.7
00:22:00	61.9	64.5	51.7	70.9		50.8
00:22:30	61.8	69.7	56.4	62.3		50.7
00:23:00	61.4	66.0	50.9	61.8		54.5
00:23:30	61.3	59.2	52.4	62.1		52.0
00:24:00	61.4	64.7	57.3	62.4		51.1
00:24:30	62.4	76.3	51.7	61.7		50.5
00:25:00	62.9	58.0	53.2	61.5		50.9
00:25:30	61.9	58.3	53.9	62.6		49.7
00:26:00	62.0	58.9	66.9	63.3		50.6
00:26:30	63.4	69.9	65.4	70.9		50.4
00:27:00	61.9	66.4	62.6	71.1		51.0
00:27:30	61.5	57.8	58.7	66.2		53.0
00:28:00	61.2	69.6	53.9	62.1		58.9 Car
00:28:30	61.2	60.3	58.3	60.3		73.6 Truck
00:29:00	63.3 Truck	67.2	58.8	57.0		55.3
00:29:30	61.8	64.4	68.4	57.6		50.8
00:30:00	65.0 Truck	64.9	64.7	66.6		51.3
00:30:30	63.7	61.0	65.4	53.3		52.7
00:31:00	66.5	68.1	67.7	55.8		53.5
00:31:30	68.9 Truck	72.8	53.6	61.1		52.8
00:32:00	69.7	76.4	50.2	66.9		51.9
00:32:30	63.3	63.6	45.6	62.8		51.0
00:33:00	63.5	66.3	43.9	63.6		50.3
00:33:30	64.9 Truck	61.3	44.8	61.3		50.7
00:34:00	60.4	64.7	58.2	56.4		49.8
00:34:30	61.2	63.5	50.6	55.7		49.1
00:35:00	63.4	65.6	52.9	58.1		48.3
00:35:30	62.3	63.6	56.7	61.8		48.6
00:36:00	61.8	64.8	53.4	60.7		48.3
00:36:30	61.9	63.8	48.0	56.0		49.7
00:37:00	64.2	68.1	49.0	60.0		49.6
00:37:30	70.2 Truck	59.2	66.6	68.5		49.9
00:38:00	62.2	58.6	60.0	69.4		50.5
00:38:30	76.2 Truck	60.1	60.3	63.6		50.1
00:39:00	66.4	60.9	60.9	57.3		52.9
00:39:30	61.9	59.1	61.3	54.4		62.4 Car
00:40:00	63.2	59.8	51.2	53.9		63.9
00:40:30	62.4	59.0	50.4	54.6		55.9
00:41:00	62.7	64.8	49.8	53.2		55.1
00:41:30	61.6	56.8	49.1	55.0		52.4
00:42:00	59.9	69.6	49.3	53.6		53.2
00:42:30	60.4	61.4	47.6	54.4		49.7
00:43:00	59.7	70.3	54.8	59.4		52.3
00:43:30	59.4	64.2	54.0	55.0		58.8 Truck
00:44:00	58.3	63.2	59.1	53.1		54.9
00:44:30	58.7	62.7	57.6	53.0		55.1
00:45:00	69.6 Truck	63.4	73.3	54.3		50.1
00:45:30	57.5	63.3	60.9	54.1		51.0
00:46:00	56.6	66.9	53.1	53.7		49.8
00:46:30	60.7	57.8	51.0	53.3		56.3
00:47:00	58.9	54.2	50.9	51.8		66.0
00:47:30	62.4	55.9	55.5	49.7		74.4 Truck
00:48:00	63.0	54.9	60.0	59.2		56.7

POINT \# 4 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00$ a.m.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=08: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=09: 00 \mathrm{a} . \mathrm{m}$.
00:48:30	62.6 dB	58.9	57.1 dB	57.9 dB		56.0 dB
00:49:00	63.8	57.7	54.3	65.4		54.8
00:49:30	63.4	59.6	57.5	68.4		55.3
00:50:00	64.6	63.8	55.8	58.0		54.6
00:50:30	65.2	73.7	63.9	54.6		55.1
00:51:00	67.6 Truck	76.0	57.9	54.2		52.1
00:51:30	73.6	69.9	63.3	50.3		53.5
00:52:00	68.2 Truck	61.8	62.4	51.6		55.6
00:52:30	63.9	62.9	58.0	54.4		52.1
00:53:00	68.3	67.3	60.9	54.6		50.9
00:53:30	72.2	61.1	61.7	51.7		50.6
00:54:00	62.9	64.3	60.6	53.7		49.8
00:54:30	58.9	65.6	59.7	52.3		50.2
00:55:00	64.9	64.7	58.2	56.6		50.1
00:55:30	57.4	63.8	64.3	53.8		59.3
00:56:00	66.2	60.6	61.7	54.4		69.6 Truck
00:56:30	69.9	62.0	59.7	57.6		72.3 Truck
00:57:00	55.2	61.0	59.4	60.5		56.7
00:57:30	54.3	61.3	59.2	61.0		58.1
00:58:00	59.9	57.0	63.2	57.4		54.2
00:58:30	58.7	59.3	58.5	57.2		57.2
00:59:00	65.1	56.5	57.8	65.1		58.3
00:59:30	64.2	53.8	60.6	64.1		58.4
01:00:00	63.7	57.4	59.0	60.2		63.5 Truck

Observations: Transit of trucks and tractors frequently all the day. Sweepings trucks to 30 m , personnel of the DIMAUD cutting grama of the offices.

Maximum:	DAYTIME		NIGHT TIME	
	80.9	dB (Mode SPL)	74.4	dB (Mode SPL)
Minimum:	43.9	dB (Mode SPL)	48.3	dB (Mode SPL)
Average:	60.3	dB (Mode SPL)	53.5	dB (Mode SPL)

Maximum of Test 5: 78.2 dB (Mode Linear)

Vibration Test
Point \#: \qquad 4

Date: \qquad
Coordinates

17 P	0657768	East
UTM	1000894	North

Frequency (Hz)	Test 1		Test 2		Test 3		Test 4		Average
	$\mathrm{Hi}=$	03:15 p.m.	$\mathrm{Hi}=$	03:45 p.m.	$\mathrm{Hi}=$	04:15 p.m.	$\mathrm{Hi}=$	09:00 a.m.	
	$\mathrm{Hf}=$	03:30 p.m.	$\mathrm{Hf}=$	04:00 p.m.	$\mathrm{Hf}=$	04:30 p.m.	$\mathrm{Hf}=$	09:15 a.m.	
	dBA:	X	dBA:	X	dBA:	X	dBA:	X	(dBA)
	dB LIN:		dB LIN:		dB LIN:		dB LIN:		
31	65.1	64.1	58.4	65.2	70.6	72.6	55.4	56.7	63.5
63	70.6	77.1	65.0	62.8	77.8	64.1	61.3	55.6	66.8
125	67.1	63.4	61.3	58.2	63.2	63.6	59.0	58.1	61.7
250	57.6	60.9	55.7	63.3	59.4	60.0	44.2	43.9	55.6
500	51.1	51.9	50.4	62.8	48.1	58.7	39.8	40.2	50.4
1 K	48.3	51.6	47.4	51.5	57.9	56.5	46.7	42.3	50.3
2 K	47.4	46.5	59.4	59.9	49.4	45.8	39.0	40.1	48.4
4 K	33.5	32.4	52.5	43.5	30.4	40.3	(29.0)	25.4	35.9
8 K	29.9	30.0	30.4	30.9	30.7	29.9	28.4	28.4	29.8
16 K	33.1	33.1	33.0	33.1	33.0	33.1	33.0	33.0	33.1

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Octave Band Analysis Chart

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad August 13, 2002
Site: \qquad Quarry - CUSA

Coordinates: | 17 P | 0657298 | East | |
| :--- | :--- | :--- | :--- |
| | UTM | 1000841 | North |

Point \#: \qquad

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=11: 00 \mathrm{am}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=03: 00$ p.m.	$\mathrm{Hi}=01: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=12: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf=} \mathrm{01:00} \mathrm{p.m}$.	$\mathrm{Hf}=02000 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=04: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 45 \mathrm{a} . \mathrm{m}$.
00:00:00	62.6 dB	44.0 dB	41.4 dB	66.7 dB	88.4 dB	43.3 dB
00:00:30	72.3	45.1	43.8	69.3		40.8
00:01:00	62.0	44.7	46.4	69.9		39.5
00:01:30	56.2	43.2	50.0	72.6		39.6
00:02:00	46.1	42.8	50.6	70.3		44.0
00:02:30	42.8	44.0	45.8	60.6		44.5
00:03:00	41.9	48.6	55.7	52.7		46.9 Car
00:03:30	47.5	46.1	46.0	53.8		42.3
00:04:00	47.8	47.3	38.9	56.9		40.4
00:04:30	46.5	58.8	42.9	60.9		39.2
00:05:00	46.0	59.4	40.8	65.4		40.9
00:05:30	46.2	53.7	43.9	70.3		40.1
00:06:00	45.4	58.6	51.2	57.6		41.8
00:06:30	46.8	54.2	44.4	61.9		42.6
00:07:00	49.4	58.5	47.0	58.6		40.8
00:07:30	58.7	50.5	59.1	62.1		39.5
00:08:00	51.9	48.1	56.6	60.8		38.8
00:08:30	50.2	49.9	47.4	62.5		41.8
00:09:00	59.8	48.4	49.3	62.6		42.9
00:09:30	65.3	51.2	48.4	63.1		38.6
00:10:00	48.1	48.7	55.3	63.0		38.0
00:10:30	51.9	42.3	50.1	65.8		39.7
00:11:00	50.7	43.8	50.0	70.3		39.7
00:11:30	50.5	42.9	49.5	73.3		39.3
00:12:00	47.8	49.3	49.0	63.6		38.4
00:12:30	46.0	43.7	41.5	63.4		38.6
00:13:00	55.0	48.6	45.7	67.6		40.7
00:13:30	50.2	42.9	44.4	68.0		39.8
00:14:00	45.8	53.8	52.7	67.5		41.9
00:14:30	45.8	42.9	60.6	68.3		58.1 Truck
00:15:00	45.2	41.5	61.2	72.5		49.9
00:15:30	51.6	51.5	58.7	74.4		41.9
00:16:00	57.2	46.3	49.9	74.3		38.1
00:16:30	59.3	47.0	59.2	73.2		37.7
00:17:00	54.1	51.2	54.6	68.7		37.4
00:17:30	54.2	53.6	45.8	55.2		36.9
00:18:00	53.5	42.8	49.0	55.7		38.1
00:18:30	49.4	45.5	47.4	56.2		36.6
00:19:00	52.4	39.8	55.8	58.3		36.5
00:19:30	58.3	44.8	72.6	59.5		38.7
00:20:00	61.3	42.2	62.6	62.4		37.6
00:20:30	77.3	42.9	59.2	63.5		40.3

POINT \# 5 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi=11:00}$ a.m.	$\mathrm{Hi=12:00}$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=03: 00$ p.m.	$\mathrm{Hi}=01: 45 \mathrm{am}$.
	$\mathrm{Hf}=12: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=02: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 00$ p.m.	$\mathrm{Hf}=04: 00$ p.m.	$\mathrm{Hf}=02: 45 \mathrm{a} . \mathrm{m}$.
00:21:00	48.7 dB	54.9 dB	59.9 dB	60.2 dB		41.2 dB
00:21:30	53.3	42.7	60.0	58.7		41.5
00:22:00	49.0	43.5	63.5	57.5		38.5
00:22:30	48.7	41.7	67.3	55.4		36.8
00:23:00	52.1	44.0	62.7	50.3		37.6
00:23:30	45.9	49.8	63.2	47.8		37.5
00:24:00	49.7	50.4	63.4	44.2		40.3
00:24:30	57.2	51.0	63.7	40.5		38.6
00:25:00	76.7	53.5	63.9	41.3		44.3 airplane
00:25:30	66.6	51.2	64.5	44.0		46.6
00:26:00	56.1	52.0	65.7	50.1		39.7
00:26:30	58.7	54.6	71.9	53.8		39.1
00:27:00	55.8	49.7	75.3	77.5 Thunder		40.7
00:27:30	59.1	42.9	70.0	67.7		41.7
00:28:00	60.8	50.8	68.4	65.5		62.9
00:28:30	57.0	49.1	63.9	63.3		37.6
00:29:00	59.8	50.6	64.8	63.7		38.4
00:29:30	72.9	48.9	67.3	63.2		37.9
00:30:00	64.3	48.0	63.6	65.9		38.4
00:30:30	61.6	43.7	63.0	65.8		36.6
00:31:00	61.9	50.2	64.1	63.9		36.8
00:31:30	59.6	52.6	63.6	64.2		35.8
00:32:00	60.0	53.2	64.0	64.0		36.3
00:32:30	60.6	54.0	63.1	69.9 Thunder		36.4
00:33:00	62.1	47.0	61.2	65.3		37.3
00:33:30	55.2	52.2	62.1	63.4		36.8
00:34:00	55.1	43.8	66.2	66.7		36.5
00:34:30	54.3	47.8	67.7	66.9		37.1
00:35:00	56.3	48.3	63.1	67.5 Thunder		36.5
00:35:30	61.3	46.8	63.0	64.3		37.6
00:36:00	53.4	40.5	63.1	60.1		38.3
00:36:30	63.8	40.2	63.8	59.8		37.7
00:37:00	55.2	38.6	62.5	74.1 Thunder		40.5
00:37:30	54.7	38.1	62.6	70.3		44.3
00:38:00	60.6	39.4	62.7	68.5		65.8 Truck
00:38:30	56.0	48.4	62.9	62.4		50.8
00:39:00	56.4	52.0	63.2	64.3		48.4
00:39:30	56.8	47.0	63.3	66.7		49.7
00:40:00	73.3	39.8	64.8	62.4		50.0
00:40:30	71.6	41.2	63.9	63.5		43.3
00:41:00	56.8	39.2	65.4	62.0		38.8
00:41:30	49.6	45.2	64.8	62.7		38.4
00:42:00	48.8	44.2	65.2	59.1		39.3
00:42:30	44.9	43.7	62.4	55.3		38.2
00:43:00	47.9	44.5	63.8	58.4		36.3
00:43:30	52.7	42.5	70.1	59.3		37.1
00:44:00	48.7	48.1	71.5	59.2		40.0
00:44:30	53.5	60.9	83.3	63.3		38.4
00:45:00	66.4	48.7	75.3	60.7		37.2
00:45:30	71.2	47.7	63.3	64.9		38.6
00:46:00	48.0	49.3	57.7	63.3		40.5
00:46:30	44.9	48.8	57.9	66.8		37.9
00:47:00	43.0	49.3	52.8	61.9		40.4
00:47:30	42.1	54.6	54.7	60.8		39.2
00:48:00	44.1	45.6	53.7	64.2		49.3

POINT \# 5 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=03: 00$ p.m.	$\mathrm{Hi}=01: 45 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00$ p.m.	$\mathrm{Hf}=04: 00$ p.m.	$\mathrm{Hf}=02: 45 \mathrm{a} . \mathrm{m}$.
00:48:30	45.8 dB	47.4 dB	52.6 dB	63.5 dB		53.6 dB
00:49:00	66.6	49.5	50.9	62.3		57.3 airplane
00:49:30	69.3	51.6	53.5	61.0		39.8
00:50:00	62.3	50.7	51.8	58.7		41.1
00:50:30	63.0	43.6	78.6	59.3		40.4
00:51:00	62.6	42.3	58.6	59.7		41.7
00:51:30	71.7	45.7	59.7	57.9		42.4
00:52:00	44.7	41.8	55.4	55.6		54.1
00:52:30	44.0	40.5	54.9	54.2		64.9
00:53:00	45.9	41.1	53.2	58.3		54.0
00:53:30	44.9	43.7	58.7	61.3		41.0
00:54:00	47.7	44.9	59.1	62.4		38.3
00:54:30	61.2	52.8	74.0	62.9		39.1
00:55:00	44.6	56.7	66.4	62.6		37.7
00:55:30	44.8	61.2	63.6	61.9		39.8
00:56:00	52.6	58.7	66.5	63.5		40.0
00:56:30	57.0	53.2	65.8	63.0		41.3
00:57:00	46.3	54.4	61.3	64.0		39.9
00:57:30	56.3	47.8	65.8	63.3		38.8
00:58:00	62.5	44.5	61.2	62.7		40.6
00:58:30	59.3	43.2	60.6	62.7		39.7
00:59:00	56.1	44.9	69.4	60.3		42.5
00:59:30	55.5	45.4	62.8	60.1		39.4
01:00:00	55.5	62.0	58.3	58.9		38.7

Observations: The quarry is not toiling normally (only they are dispatching the material)

Maximum:	DAYTIME		NIGHT TIME	
	83.3	dB (Mode SPL)	65.8	dB (Mode SPL)
Minimum:	38.1	dB (Mode SPL)	35.8	dB (Mode SPL)
Average:	55.9	dB (Mode SPL)	41.3	dB (Mode SPL)

Maximum of Test 5: $88.4 \quad \mathrm{~dB}$ (Mode Linear)

Vibration Test
Point \#: \qquad
5
Date: \qquad
Coordinates \qquad

17 P	0657298	East
UTM	1000841	North

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad August 12, 2002 Site: \qquad Camino de Cruces, under Transmission Lines

Point \#: \qquad UTM 1000015 North

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=09: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=10: 15 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12 \mathrm{ta5}$ p.m.	$\mathrm{Hi}=01: 45$ p.m.	$\mathrm{Hi}=08: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=11: 15 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 30$ p.m.	$\mathrm{Hf}=01: 45 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 45 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=09: 00 \mathrm{a} . \mathrm{m}$.
00:00:00	43.3 dB	47.1 dB	41.1 dB	44.7 dB	62.8 dB	45.9 dB
00:00:30	40.0	50.3	36.9	42.9		47.1
00:01:00	38.1	45.1	35.8	43.4		46.6
00:01:30	41.0	45.3	42.9	41.7		45.7
00:02:00	38.5	43.2	35.3	43.6		46.2
00:02:30	41.4	44.0	41.4	41.1		46.6
00:03:00	39.4	47.7	35.0	40.1		47.2
00:03:30	40.6	53.8 bugs	34.7	45.1		45.2
00:04:00	39.6	49.5	34.8	46.0 Car		44.4
00:04:30	40.0	54.6	34.7	51.8		43.2
00:05:00	38.4	53.7	34.9	55.0		44.1
00:05:30	38.8	45.8	34.3	47.3		42.6
00:06:00	39.0	52.7 bugs	40.1	46.2		45.1
00:06:30	39.7	50.8	34.9	44.8		43.3
00:07:00	39.0	47.0	36.9	41.9		42.6
00:07:30	38.5	50.3	39.2	44.4		42.9
00:08:00	37.6	52.7 bugs	34.6	46.1		43.9
00:08:30	37.0	52.0	35.2	42.7		43.2
00:09:00	35.9	51.1	34.5	43.4		43.6
00:09:30	36.4	48.3	34.8	44.0		44.9
00:10:00	38.2	47.0	36.5	51.5 bugs		42.2
00:10:30	39.1	53.4	37.8	52.0		43.9
00:11:00	38.0	52.0	38.8	50.1		49.0
00:11:30	38.2	46.7	35.3	49.5		43.9
00:12:00	41.1	48.1	36.3	52.1		43.1
00:12:30	38.4	44.3	35.8	51.1		44.0
00:13:00	40.5	47.3 Truck	35.9	53.1		45.1
00:13:30	39.4	54.0	36.4	47.0		44.5
00:14:00	39.3	61.6	36.6	50.7		42.0
00:14:30	39.6	57.0	45.9 bugs	53.6 telicopte		44.0
00:15:00	40.2	53.2	59.2 Airplane	59.9		43.0
00:15:30	36.7	50.2	46.8	51.8		43.7
00:16:00	39.5	57.7 Truck	49.6 bugs	50.5		44.0
00:16:30	41.6	46.2	36.7	52.0		44.1
00:17:00	41.2	44.1	36.9	46.8		50.4 bugs
00:17:30	38.4	47.0	37.1	43.0		47.6
00:18:00	39.9	49.6	36.6	43.5		43.8
00:18:30	37.3	43.8	39.1	41.4		43.7
00:19:00	37.1	42.4	40.9	43.4		47.4 Avión
00:19:30	50.3	52.4 bugs	39.6	45.8		47.1
00:20:00	45.9	43.7	38.1	55.4 bugs		45.3
00:20:30	37.4	43.5	36.5	54.4		48.5

POINT \# 6 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=09: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=10: 15 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 30 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=12: 45$ p.m.	$\mathrm{Hi}=01: 45$ p.m.	$\mathrm{Hi}=08: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=11: 15$ a.m.	$\mathrm{Hf}=12: 30$ p.m.	$\mathrm{Hf}=01: 45 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 45$ p.m.	$\mathrm{Hf}=09: 00 \mathrm{a} . \mathrm{m}$.
00:21:00	37.0 dB	46.8 dB	37.1 dB	45.4 dB		47.4 dB
00:21:30	48.9	50.4	40.2	44.2		44.3
00:22:00	37.6	45.9	38.8	43.3		42.5
00:22:30	37.1	44.0	39.0	42.9		41.8
00:23:00	37.2	43.7	41.5	43.0		43.5
00:23:30	36.3	39.8	42.0	50.8		44.3
00:24:00	38.0	42.9	37.4	47.4		47.3
00:24:30	46.3	40.9	40.4	39.3		46.3
00:25:00	42.9	42.5	40.7	41.8		55.3 bugs
00:25:30	43.3	43.7	43.1	43.3		50.4
00:26:00	37.1	45.9	36.4	41.4		52.4
00:26:30	37.5	46.9	36.8	41.2		50.0
00:27:00	40.0	47.5	36.9	48.3		44.7
00:27:30	38.0	43.0	37.5	46.7		55.2
00:28:00	37.1	42.5	38.5	45.5		49.2
00:28:30	49.0	42.0	39.0	49.0 Car		49.5
00:29:00	38.1	44.7	39.1	55.9		56.3 bugs
00:29:30	47.4	42.3	38.6	45.6		59.9
00:30:00	36.9	47.5	39.5	43.9		58.1
00:30:30	47.4	46.2	38.4	46.3		46.6
00:31:00	38.6	41.4	39.6	46.4		45.9
00:31:30	38.3	46.1	39.1	43.8		47.7
00:32:00	41.1	50.8	43.7	50.6 bugs		54.0
00:32:30	46.8	47.9	44.6	52.3		63.7 Truck
00:33:00	43.1	46.6	41.3	44.2		48.1
00:33:30	45.2	49.9	36.9	63.9 Airplane		45.0
00:34:00	47.1	50.9	39.6	53.8		45.4
00:34:30	41.5	48.0	39.3	51.3		44.9
00:35:00	45.0	47.2	39.2	53.7		43.5
00:35:30	42.3	48.7	38.8	46.1		41.4
00:36:00	42.7	47.6	40.1	50.4		42.9
00:36:30	48.2	45.0	39.6	50.5		42.2
00:37:00	41.9	48.3	39.3	42.0		41.3
00:37:30	43.7	49.7	39.2	38.8		42.8
00:38:00	44.1	49.8	40.6	40.2		47.7
00:38:30	43.7	51.2	44.3	43.6		43.0
00:39:00	42.1	46.0	39.8	51.2		42.4
00:39:30	43.3	49.5	37.3	64.7 Truck		41.8
00:40:00	45.2	48.1	37.8	41.4		44.9
00:40:30	45.1	46.1	38.4	41.9		46.0
00:41:00	49.2	51.2	39.0	42.5		48.1
00:41:30	49.9	47.0	36.6	39.2		46.2
00:42:00	51.5	44.5	36.4	41.7		49.3
00:42:30	39.6	46.4	37.7	40.8		47.3
00:43:00	44.4	43.6	38.6	39.0		53.4 bugs
00:43:30	38.5	42.6	43.9	37.7		44.6
00:44:00	45.1	48.0	42.0	39.5		48.0
00:44:30	49.6	43.3	40.7	37.5		49.0
00:45:00	66.3 Truck	45.5	47.8	38.3		47.2
00:45:30	49.0	46.3	49.1	37.5		46.4
00:46:00	42.3	42.9	50.4	38.3		42.4
00:46:30	41.6	48.3	49.2	38.5		41.8
00:47:00	40.2	45.0	42.5	39.8		43.4
00:47:30	41.3	40.6	44.1	41.9		45.8
00:48:00	41.2	44.2	47.0	42.3		46.0

POINT \# 6 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=09: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=10: 15 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 30$ a.m.	$\mathrm{Hi}=12: 45$ p.m.	$\mathrm{Hi}=01: 45 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hi}=08: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=11: 15 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12: 30$ p.m.	$\mathrm{Hf}=01: 45 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 45$ p.m.	$\mathrm{Hf}=09: 00 \mathrm{a} . \mathrm{m}$.
00:48:30	40.0 dB	43.7 dB	47.3 dB	42.6 dB		47.8 dB
00:49:00	39.2	42.2	47.9	42.9		44.6
00:49:30	39.7	55.9 Airplane	47.4	42.5		50.6 bugs
00:50:00	41.8	50.4	51.2	43.5		44.2
00:50:30	39.3	42.1	50.5	44.8		48.5
00:51:00	38.5	41.0	45.4	40.6		45.8
00:51:30	43.8	46.7	44.0	39.7		42.3
00:52:00	42.0	45.0	48.2	45.6		51.1 bugs
00:52:30	38.6	44.8	45.6	37.6		40.6
00:53:00	42.2	46.8	44.7	38.3		40.2
00:53:30	39.6	44.5	46.9	39.5		41.2
00:54:00	41.8	44.3	48.2	45.8 Car		40.7
00:54:30	41.9	49.5	41.2	40.6		41.8
00:55:00	43.0	53.1	43.5	46.3 Car		42.5
00:55:30	42.6	46.1	44.6	48.6		41.6
00:56:00	43.4	40.3	42.0	39.8		40.4
00:56:30	43.1	42.5	44.9	40.2		41.2
00:57:00	43.6	42.7	44.7	41.7		41.7
00:57:30	46.7 bugs	43.1	43.1	41.5		42.1
00:58:00	55.1	44.7	42.6	40.8		44.5
00:58:30	55.7	41.0	41.8	40.5		41.7
00:59:00	53.1	40.9	39.6	40.9		42.0
00:59:30	44.8	45.3 Airplane	46.5	47.0		41.8
01:00:00	45.8	53.0	39.3	37.9		41.7

Observations: Distant thunders were heard

Maximum:	DAYTIME		NIGHT TIME	
	66.3	dB (Mode SPL)	63.7	dB (Mode SPL)
Minimum:	34.3	dB (Mode SPL)	40.2	dB (Mode SPL)
Average:	43.7	dB (Mode SPL)	45.7	dB (Mode SPL)

Maximum of Test 5: 62.8 dB (Mode Linear)

Vibration Test
Point \#: \qquad
6
Date: \qquad
Coordinates \qquad

17 P	0656995	East
UTM	1000015	North

Frequency (Hz)	Test 1		Test 2		Test 3		Test 4		Average
	$\mathrm{Hi}=$	02:45 p.m.	$\mathrm{Hi}=$	03:00 p.m.	$\mathrm{Hi}=$	03:15 p.m.	$\mathrm{Hi}=$	07:30 a.m.	
	$\mathrm{Hf}=$	03:00 p.m.	$\mathrm{Hf}=$	03:15 p.m.	$\mathrm{Hf}=$	03:30 p.m.	$\mathrm{Hf}=$	08:00 a.m.	
	dBA:	X	dBA:	X	dBA:	X	dBA:	X	(dBA)
	dB LIN:		dB LIN:		dB LIN:		dB LIN:		
31	51	49.8	57.5	56.6	54.3	56.7	43.0	46.3	51.9
63	48.9	49.7	51.2	55	55.9	58.1	(71.5)	49.1	54.9
125	42.9	44.2	45.8	54.9	52.1	51.2	43.0	47.1	47.7
250	36.7	36.1	44.7	43.3	36.6	37.9	29.9	28.4	36.7
500	33.5	32.1	23.8	26.3	28.9	25.1	27.3	28.7	28.2
1 K	27.1	29.2	25.7	25.8	28.4	26.2	33.4	36.1	29.0
2 K	30.9	32.2	26.8	27.2	27.1	30.2	35.2	32.8	30.3
4 K	25	25.2	27.5	26.5	25.1	25.3	42.1	30.5	28.4
8 K	29.7	29.6	29.7	29.6	29.7	29.8	33.1	35.3	30.8
16 K	33	32.9	33	33	33	32.9	33.0	33.1	33.0

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Project: \qquad Solid Waste Management Plan for the City of Panama
Date: \qquad August 19, 2002
Site:
Entrance to Cerro Patacon - Weight Station

Coordinates: $17 \mathrm{P} \quad 0657825$ East | UTM | 1000117 | North |
| :--- | :--- | :--- |

Point \#: \qquad

Noise Test

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{am}$.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=03: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf=} \mathrm{12:00} \mathrm{p.m}$.	$\mathrm{Hf}=02: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=04: 00 \mathrm{a} . \mathrm{m}$.
00:00:00	46.1 dB	53.5 dB	dB	dB	86.9 dB	48.5 dB
00:00:30	47.9	49.9				49.2
00:01:00	73.3	70.0				48.5
00:01:30	43.9	68.1				49.1
00:02:00	45.5	78.7				48.8
00:02:30	48.4	52.2				48.7
00:03:00	45.7	49.7				48.9
00:03:30	50.8	49.0				48.6
00:04:00	72.0	52.9				48.1
00:04:30	74.2	66.2				48.6
00:05:00	51.1	51.8				48.1
00:05:30	49.4	49.0				49.0
00:06:00	66.9	51.4				49.4
00:06:30	74.7	50.2				49.2
00:07:00	48.6	49.7				48.8
00:07:30	53.8	52.4				48.5
00:08:00	76.6	71.1				49.3
00:08:30	71.4	61.7				48.7
00:09:00	48.8	74.4				49.0
00:09:30	73.0	53.6				49.6
00:10:00	51.9	74.4				49.0
00:10:30	50.3	78.9				49.1
00:11:00	66.1	87.9				49.3
00:11:30	48.9	83.3				49.7
00:12:00	62.8	89.1				48.8
00:12:30	60.6	73.3				48.4
00:13:00	77.3	70.4				49.3
00:13:30	71.8	57.0				49.5
00:14:00	46.9	55.9				49.6
00:14:30	45.9	56.7				49.1
00:15:00	47.4	68.1				49.0
00:15:30	49.4	54.7				49.7
00:16:00	63.2	64.9				49.0
00:16:30	73.9	68.4				49.1
00:17:00	50.5	56.6				48.7
00:17:30	57.2	55.7				48.2
00:18:00	78.9	56.8				49.9
00:18:30	68.3	73.2				49.0
00:19:00	63.1	64.4				49.2
00:19:30	72.9	75.3				51.2
00:20:00	67.7	61.0				49.0
00:20:30	52.4	65.8				48.9

POINT \# 7 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{am}$.	$\mathrm{Hi}=11: 00 \mathrm{am}$.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=03: 00 \mathrm{am}$.
	$\mathrm{Hf}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hf}=12 \mathrm{l}: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=02: 00$ p.m.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01000 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=04: 00 \mathrm{a} . \mathrm{m}$.
00:21:00	49.9 dB	69.5 dB	dB	dB		49.2 dB
00:21:30	52.9	70.4				49.5
00:22:00	54.5	59.8				48.5
00:22:30	68.4	71.3				48.9
00:23:00	74.6	68.9				49.1
00:23:30	72.1	56.7				49.2
00:24:00	49.5	53.8				49.0
00:24:30	69.8	67.5				48.7
00:25:00	50.9	67.9				48.6
00:25:30	48.3	66.1				48.6
00:26:00	58.1	70.3				49.0
00:26:30	52.0	66.0				48.5
00:27:00	75.0	61.7				48.6
00:27:30	47.7	56.0				48.8
00:28:00	48.1	64.9				48.9
00:28:30	73.4	57.4				49.1
00:29:00	53.4	74.2				49.5
00:29:30	65.7	55.2				48.6
00:30:00	53.8	54.9				48.9
00:30:30	52.8	50.8				49.0
00:31:00	74.8	57.6				48.6
00:31:30	54.7	73.6				50.6
00:32:00	44.1	71.2				49.1
00:32:30	72.8	62.4				48.9
00:33:00	45.4	55.6				48.8
00:33:30	55.3	51.9				48.6
00:34:00	54.6	49.3				49.1
00:34:30	52.4	47.6				50.3
00:35:00	62.8	51.1				49.9
00:35:30	72.9	63.9				49.3
00:36:00	65.8	63.2				49.0
00:36:30	48.6	61.2				48.8
00:37:00	71.2	44.1				49.2
00:37:30	63.2	45.2				49.1
00:38:00	50.2	51.9				49.4
00:38:30	75.0	73.3				56.8
00:39:00	50.8	58.3				48.8
00:39:30	70.7	56.5				48.7
00:40:00	71.9	53.6				49.2
00:40:30	55.5	52.7				48.6
00:41:00	53.0	70.2				48.7
00:41:30	54.4	49.7				48.5
00:42:00	59.4	53.3				49.1
00:42:30	64.9	59.6				48.9
00:43:00	76.5	55.0				48.1
00:43:30	57.0	48.8				47.7
00:44:00	60.4	51.9				48.0
00:44:30	54.6	72.7				48.1
00:45:00	62.3	50.1				58.3
00:45:30	74.4	49.3				47.4
00:46:00	50.1	55.7				48.1
00:46:30	51.1	73.5				48.4
00:47:00	67.7	53.2				57.9
00:47:30	57.6	60.9				55.7
00:48:00	55.8	65.4				48.7

H-79

POINT \# 7 (Continue)

Time	Test 1	Test 2	Test 3	Test 4	Test 5 (Máx.)	Test 6
	$\mathrm{Hi}=10: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=11: 00 \mathrm{a} . \mathrm{m}$.	$\mathrm{Hi}=01: 00$ p.m.	$\mathrm{Hi}=02: 00$ p.m.	$\mathrm{Hi}=12: 00$ p.m.	$\mathrm{Hi}=03: 00 \mathrm{a} . \mathrm{m}$.
	$\mathrm{Hf}=11: 00$ a.m.	$\mathrm{Hf}=12: 00$ p.m.	$\mathrm{Hf}=02: 00 \mathrm{p.m}$.	$\mathrm{Hf}=03: 00 \mathrm{p} . \mathrm{m}$.	$\mathrm{Hf}=01: 00$ p.m.	$\mathrm{Hf}=04: 00 \mathrm{a} . \mathrm{m}$.
00:48:30	54.3 dB	60.2 dB	dB	dB		49.0 dB
00:49:00	65.1	55.7				48.8
00:49:30	51.9	57.2				48.7
00:50:00	58.6	56.8				48.2
00:50:30	67.5	55.1				48.1
00:51:00	78.6	55.0				48.3
00:51:30	70.6	58.3				49.1
00:52:00	55.3	60.9				48.7
00:52:30	51.9	58.5				48.2
00:53:00	52.6	53.6				48.1
00:53:30	55.4	50.9				48.2
00:54:00	74.6	49.7				48.1
00:54:30	56.4	48.6				47.9
00:55:00	70.1	50.5				48.1
00:55:30	81.2	53.4				48.4
00:56:00	58.2	54.5				48.5
00:56:30	52.7	52.8				49.0
00:57:00	51.0	56.2				73.2
00:57:30	64.1	55.8				48.4
00:58:00	50.9	59.8				48.9
00:58:30	70.2	57.6				49.1
00:59:00	72.2	56.2				48.7
00:59:30	65.4	56.3				49.0
01:00:00	51.2	55.1				48.5

Observations:
Hard heavy shower to the 12:50 p.m., tests 3 and 4 could not be made
\qquad

Maximum:	DAYTIME		NIGHT TIME	
	89.1	dB (Mode SPL)	73.2	dB (Mode SPL)
Minimum:	43.9	dB (Mode SPL)	47.4	dB (Mode SPL)
Average:	59.9	dB (Mode SPL)	49.3	dB (Mode SPL)

Maximum of Test 5: 86.9 dB (Mode Linear)

Vibration Test
Point \#: \qquad Date: \qquad
Coordinates \qquad

17 P	0657825	East
UTM	1000117	North

	$\Delta \mathrm{t}=90 \mathrm{~s}$								
Frequency (Hz)		est 1		est 2		est 3		est 4	Average
	$\mathrm{Hi}=$	08:45 a.m.	$\mathrm{Hi}=$	09:15 a.m.	$\mathrm{Hi}=$	09:45 a.m.	$\mathrm{Hi}=$	04:00 a.m.	
	$\mathrm{Hf}=$	09:00 a.m.	$\mathrm{Hf}=$	09:30 a.m.	$\mathrm{Hf}=$	10:00 a.m.	$\mathrm{Hf}=$	04:15 a.m.	
	dBA:	X	dBA:	X	dBA:	X	dBA:	X	(dBA)
	dB LIN:		dB LIN:		dB LIN:		dB LIN:		
31	54.7	54.9	60.8	(71.4)	(77.1)	(72.7)	48.4	47.5	60.9
63	(65.8)	(61.3)	66.3	(73.9)	(72.1)	(79.3)	39.7	39.1	62.2
125	(72.7)	(68.7)	51.8	43.7	(72.0)	(75.3)	40.3	41.0	58.2
250	49.1	(56.6)	48.9	66.9	44.6	40.2	31.5	33.1	46.4
500	43.5	(66.7)	47.8	55.4	(63.4)	35.1	21.9	22.6	44.6
1 K	39.8	42.9	40.3	(75.2)	(70.7)	(68.0)	35.2	30.4	50.3
2 K	(69.2)	41.6	(68.1)	48.2	42.4	(62.6)	37.5	36.8	50.8
4 K	29.7	(56.1)	(43.4)	(49.7)	(50.5)	(55.2)	45.1	45.0	46.8
8 K	(32.0)	26.6	(33.9)	26.5	32.6	26.6	42.2	42.7	32.9
16 K	(29.5)	29.2	29.2	(29.5)	(31.3)	29.2	33.0	35.5	30.8

NOTE: (\#\#.\#) Values registered the passing of a vehicle.

Octave Band Analysis Chart

PHOTOS: Noise and Vibration

Photo 1. Point \#1, Noise \& Vibration

Photo 3. Point \#5, Noise \& Vibration

Photo 5. Point \#7, Noise \& Vibration

Photo 2. Point \#2, Noise \& Vibration

Photo 4. Point \#6, Noise \& Vibration

Photo 6. Point \#4, Noise \& Vibration

FLORA AND FAUNA

Table A 2.6-1

List of Flora Species Registered at the Cerro Patacon Sampling Locations

Site 1: Gate

Family	Scientific Name	Common Name	Protection Status
$C A N O P Y \pm 15 \mathrm{~m}$			
Rubiaceae	Antirhea trichantha	Caobilla	
	Calycophyllum candidissimum	Madroño	
Tiliaceae	Luehea seemannii	Guácimo colorado	
Euphorbiaceae	Croton billbergianus	Sangrillo	
Malphigiaceae	Byrsonima crassifolia	Nance	
Burseraceae	Bursera simaruba	Indio desnudo	
Cecropiaceae	Cecropia peltata	Guarumo	
Annonaceae	Annona purpurea	Toreta	
Fabaceae	Enterolobium cyclocarpum	Corotú	
	Ormosia macrocalyx	Frijolito de la suerte	
Anacardiaceae	Astronium graveolens	Zorro	V (Pmá)
	Spondias mombin	Jobo	
Palmae	Scheelea zonensis	Palma real	V (Pmá)
Sterculiaceae	Guazuma ulmifolia	Guácimo	
MEDIUM CANOPY $\pm 7-10 \mathrm{M}$			
Fabaceae	Pithecellobium rufescens	Coralillo	
	Andira inermis	Harino	
	Swartzia simplex	Naranjillo	
Lauraceae	Phoebe cinnamomifolia	Sigua blanca	
Bombacaceae	Pseudobombax septenatum	Barrigón	
Tiliaceae	Apeiba tibourbou	Cortezo	
Boraginaceae	Cordia alliodora	Laurel blanco	
Myrtaceae	Eugenia galalonensis	Guayabillo	
FOREST FLOOR			
Heliconiaceae	Heliconia latispatha	Platanillo, chichica	
Gramineae	Saccharum spontaneum	Paja canalera	
Marantaceae	Calathea sp.	Bijao de monte	
Rubiaceae	Psycotria horizontalis	-	
	Alibertia edulis	Zumbo	
Fabaceae	Inga hayesii	Guabo	
Melastomataceae	Conostegia speciosa	-	
Solanaceae	Solanum sp.	-	V? (Pmá)
Anacardiaceae	Astronium graveolens	Zorro	V (Pmá)
Tiliaceae	Triumfetta lappula	Cadillo mozote	
Adiantaceae	Adiantum sp.	Helecho	
Palmae	Desmocus isthmius	Matamba	

Site 2: Mocambo River

Family	Scientific Name	Common Name	Protection Status
CANOPY $\pm \mathbf{1 0 - 1 5 ~ m ~}$			
Bombacaceae	Cavanillesia platanifolia	Cuipo	
	Pseudobombax septenatum	Barrigón	
Anacardiaceae	Anacardium excelsum	Espavé	
Burseraceae	Spondias mombin	Jobo	
Cecropiaceae	Bursera simaruba	Indio desnudo	
Sterculiaceae	Cecropia peltata	Guarumo	
Tiliaceae	Guazuma ulmifolia	Guácimo	
FOREST FLOOR	Apeiba tibourbou	Cortezo	
Heliconiaceae	Heliconia latispatha		
Gramineae	Saccharum spontaneum	Platanillo, chichica	
Marantaceae	Panicum sp.	Paja canalera	
Adiantaceae	Calathea sp.	Pata de gallina	

Site 3-A: Camino de Cruces Nacional Park

Family	Scientific Name	Common Name	Protection Status
CANOPY $\pm \mathbf{2 0} \mathbf{m}$	Annona purpurea	Toreta	
Annonaceae	Guazuma ulmifolia	Guácimo	
Sterculiaceae	Spondias mombin	Jobo	
Anacardiaceae	Sciadodendron excelsum	Jobo lagarto	
Araliaceae	Eugenia galalonensis	Guayabillo	
Myrtaceae	Eugenia coloradensis	Guayabo del monte	
	Leucaena multicapitula	Frijolillo	
Fabaceae	Platymiscium pinnatum	Quira	CR (Pmá)
	Andira inermis	Harino	
Tiliaceae	Luehea speciosa	Guácimo pacheco	
Cecropiaceae	Cecropia peltata	Guarumo	

Site 3-A (Continued)

Malpighiaceae	Byrsonima crassifolia	Nance	
Rutaceae	Zanthoxylum procerum	Tachuelo	
Elaeocarpaceae	Sloanea terniflora	Tercipelo	
Boraginaceae	Cordia alliodora	Laurel blanco	
Bombacaceae	Pachira sessilis	Yuco de monte	
MEDIUM CANOPY $\pm \mathbf{1 0} \mathbf{- 1 2} \boldsymbol{m}$			
Bombacaceae	Pachira quinata	Cedro espino	V (UICN)
	Cavanillesia platanifolia	Cuipo	
Rubiaceae	Calycophyllum candidissimum	Madroño	
	Antirhea trichantha	Caobilla	
Anacardiaceae	Mangifera indica	Mango	
Myrsinaceae	Astronium graveolens	Zorro	Uviso de monte
Tiliaceae	Apeiba tibourbou	Cortezo	(Pmá)-EP?
Fabaceae	Ormosia macrocalyx	Frijolito de la suerte	
Sterculiaceae	Guazuma ulmifolia	Guácimo	

FOREST FLOOR

Heliconiaceae	Heliconia latispatha	Platanillo, chichica	
Anacardiaceae	Astronium graveolens	Zorro	V (Pmá)
Fabaceae	Acacia collinsii	Cachito	
	Pitecellobium rufescens	Coralillo	
Tiliaceae	Triumfetta lappula	Mozote	
Piperaceae	Piper sp.	Hinojo	
Rubiaceae	Psychotria grandifolia	Zumbo	
	Alibertia edulis	Azulejo	
	Guettarda foliacea	Cuipo	
Bombacaceae	Cavanillesia platanifolia		

Site 3-A (Continued)

Bromeliaceae	Aechmea magdalenae	Piñuela	
Connaraceae	Connarus panamensis	Liana	
Schiaceae	Lygodium sp.	Helecho rastrero	
Chrysobalanaceae	Hirtella racemosa	Garrapato	
Annonaceae	Annona spraguei	Negrito	V (UICN)
Flacourtiaceae	Zuelania guidonia	Arbol caspa	
Sapindaceae	Cupania sylvatica	Gorgojo	
Euphorbiaceae	Margaritaria nobilis	Clavito	

Site 3-B: Camino de Cruces Nacional Park

Family	Scientific Name	Common Name	Protection Status
CANOPY $\mathbf{1 5} \mathbf{1 5}$ m	Apeiba tibourbou	Cortezo	
Tiliaceae	Xylopia frutescens	Malagueto macho	
Annonaceae	Xylopia aromatica	Malagueto hembra	
	Scheefflera morototoni	Guarumo pava	
Araliaceae	Phoebe cinnamomifolia	Sigua blanca	
Lauraceae	Bursera simaruba	Indio desnudo	
Burseraceae	Cupania cinerea		
Sapindaceae	Antirhea trichantha	Cargojo blanco	
Rubiaceae	Cordia alliodora	Laurel blanco	
Boraginaceae	Luehea speciosa	Guácimo pacheco	
Tiliaceae	Anacardium excelsum	Espavé	
Anacardiaceae	Cecropia peltata	Guarumo	
Cecropiaceae	Cecropia longipes	Guarumo	EP (Pmá) - EP
		(UICN)	

MEDIUM CANOPY ± 7 - 10 M

Sapindaceae	Cupania rufescens	Gorgojo	
Sterculiaceae	Guazuma ulmifolia	Guácimo	
Fabaceae	Dalbergia retusa	Cocobolo	EP (Pmá) - V (UICN)
	Swartzia simplex	Naranjillo	
Araliaceae	Dendropanax arboreus	Vaquero	
Cochlospermaceae	Cochlospermun vitifolium	Poroporo	
Rubiaceae	Genipa americana	Jagua	
Anacardiaceae	Spondias mombin	Jobo	
Annonaceae	Annona spraguei	Negrito	
Nyctaginaceae	Neea delicatula	Mala sombrilla	
Burseraceae	Bursera simaruba	Indio desnudo	

FOREST FLOOR			
Heliconiaceae	Heliconia latispatha	Platanillo, chichica	
Gramineae	Chusquea sp.	Carricillo	
	Saccharum spontaneum	Paja canalera	
Melastomataceae	Miconia argentea	Dos caras	
	Miconia impetiolaris	Oreja de burro	
Rubiaceae	Conostegia speciosa	-	
	Palicourea guianensis	-	
	Psychotria horizontalis	-	
	Alibertia edulis	Zumbo	
Sterculiaceae	Sterculia apetala	Arbol Panamá	
Lauraceae	Phoebe cinnamomifolia	Sigua blanca	
	Cordia alliodora	Laurel blanco	
Annonaceae	Annona acuminata	Anonilla	
Cecropiaceae	Cecropia peltata	Guarumo	
Fabaceae	Pitecellobium rufescens	Coralillo	
Araliaceae	Scheefflera morototoni	Guarumo pava	
Smilacaceae	Smilax sp.	Zarza	
Flacourtiaceae	Lacistema aggregatum	Huesito	
Costaceae	Costus sp.	Caña agria	

Site 4: Chivo Chivo Road

Family	Scientific Name	Common Name	Protection Status
CANOPY $\mathbf{1 5} \mathbf{m}$	Anacardium excelsum	Espavé	
Anacardiaceae	Cordia alliodora	Laurel blanco	
Boraginaceae	Annona purpurea	Toreta	
Annonaceae	Xylopia frutescens	Malagueto macho	
	Guazuma ulmifolia	Guácimo	
Sterculiaceae	Annona purpurea	Toreta	
Annonaceae	Enterolobium cyclocarpum	Corotú	
Fabaceae	Bursera simaruba	Indio desnudo	
Burseraceae			

Site 4 (Continued)

MEDIUM CANOPY $\pm \mathbf{- 1 0} \boldsymbol{m}$			Gorgojo
Sapindaceae	Cupania rufescens	Guácimo	
Sterculiaceae	Guazuma ulmifolia	Guayabillo	
Myrtaceae	Eugenia galalonensis	Cortezo	
Tiliaceae	Apeiba tibourbou	Zorro	V (Pmá)
Anacardiaceae	Astronium graveolens	Vaquero	
Araliaceae	Dendropanax arboreus	Jagua	
Rubiaceae	Genipa americana	FlaREST FLOOR	
Heliconiaceae	Heliconia latispatha	Planillo, chichica	
Gramineae	Saccharum spontaneum	Paja canalera	
	Chusquea sp.	Carricillo	
Melastomataceae	Miconia argentea	Dos caras	
	Miconia impetiolaris	Oreja de burro	
Sterculiaceae	Sterculia apetala	Arbol Panamá	
Lauraceae	Phoebe cinnamomifolia	Sigua blanca	
	Cordia alliodora	Laurel blanco	
Annonaceae	Annona acuminata	Anonilla	
Cecropiaceae	Cecropia peltata	Guarumo	

Protection Status (Nacional and International (UICN)

$\mathrm{V}=$ Vulnerable
$E P=$ Endangered
CR=Critical Danger
?= Species was identified to the genre level, it is uncertain if it is threatened.

Table A 2.6-2
List of Fauna Species Registered at the Cerro Patacon Sampling Sites

MAMMALS

Scientific Name	Common Name	Sampling Sites					Protection Status
		S1	S2	S3A	S3B	S4	
DIDELPHIMORPHIA Didelphidae Didelphis marsupialis	Zarigüeya común				C		
XENARTHRA Megalonychidae Choloepus hoffmanni Dasypodidae Dasypus novemcinctus	Perezoso de dos dedos Armadillo de 9 bandas	O E			O		PE
PRIMATE Callitrichidae Saguinus geoffroyi	Mono tití	E, O					PE-AI
RODENTIA Sciuridae Sciurus variegatoides Echimyidae Proechimys semispinosus Dasyproctidae Dasyprocta punctata	Ardilla gris Rata espinosa Ñeque	$\begin{gathered} \mathrm{E}, \mathrm{O} \\ \mathrm{O} \\ \mathrm{E} \end{gathered}$	O		C C		PE
LAGOMORPHA Leporidae Sylvilagus brasiliensis	Conejo muleto					O	
CARNIVORA Procyonidae Procyon sp. Nasua narica	Mapache Gato solo	E			O	H	$\begin{aligned} & \text { PE } \\ & \text { PE } \end{aligned}$
$\begin{aligned} & \hline \text { ARTIODACTYLA } \\ & \quad \text { Cervidae } \\ & \text { Odocoileus virginianus } \\ & \hline \end{aligned}$	Venado cola blanca			H			PE
CHIROPTERA Phyllostomidae Carollia perspicillata Carollia castanea Artibeus jamaicensis Chiroderma villosum Glossophaga comissarisi Tonatia brasiliensis	Murciélago frugívoro Murciélago frugívoro Murciélago frugívoro Murciélago frugívoro Murciélago nectarívoro Murciélago insectívoro	C C C C		$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	C		

Sampling Sites
S1 Gate

S2 Mocambo River Bridge
S3A Camino de Cruces Nacional Park
S3B Camino de Cruces Nacional Park

Registration
Methods
C Capture
O Observation
E Interviews
H Tracks
LL Calls

Protection Status

PE Endangered (Res. Dir. 002-80)
Al y All Appendices CITES

BIRDS

Scientific Name	Common Name	Sampling Sites					Protection Status
		S1	S2	S3A	S3B	S4	
CICONIIFORMES Cathartidae Coragyps atratus	Gallinazo negro	O	O	O			
ANSERIFORMES Anatidae Dendrocygna autumnalis	Pato silbador				O		PE
FALCONIFORMES Accipitridae Buteo nitidus Falconidae Daptrius americanus	Gavilán gris Caracara o Cao	O				O	AII
CHARADRIIFORMES Jacanidae Jacana jacana	Jacana carunculada			O			
COLUMBIFORMES Columbidae Columba livia Leptotila verreauxi Columbina talpacoti C	Paloma común Paloma rabiblanca Tortolita rojiza	O		O	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \mathrm{O} \\ & \hline \end{aligned}$		
CAPRIMULGIFORMES Caprimulgidae Caprimulgus carolinensis	Tapacaminos					C	
APODIFORMES Trochilidae Phaethornis superciliosus Damophila julie Amazilia tzacatl Amazilia edward	Ermitaño colilargo Colibrí ventrivioleta Amazilia colirufa Amazilia ventrinivosa	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	O	$\begin{gathered} \mathrm{C} \\ \mathrm{C} \\ \mathrm{O}, \mathrm{C} \\ \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$		AII AII AII AII
TROGONIFORMES Trogonidae Trogon massena CORA	Trogón colipizarra			O			
CORACIIFORMES Momotidae Electron platyrhynchum	Momoto piquiancho			O			

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PICIFORMES \\
Ramphastidae \\
Ramphastos sulfuratus Pteroglossus torquatus \\
Picidae \\
Melanerpes rubricapillus Dryocopus lineatus
\end{tabular} \& \begin{tabular}{l}
Tucán pico iris Tucancillo collarejo \\
Carpintero coronirrojo Carpintero lineado
\end{tabular} \& O
O \& O \& \& \& O \& AII \\
\hline \begin{tabular}{l}
PASSERIFORMES \\
Dendrocolaptidae \\
Dendrocincla homochroa Xiphorhynchus guttatus \\
Pipridae \\
Manacus vitellinus \\
Pipra mentalis Chiroxiphia lanceolata
\end{tabular} \& \begin{tabular}{l}
Trepatroncos rojizo \\
Trepatroncos gorgianteados \\
Saltarín cuellidorado \\
Saltarín cabecirojo \\
Saltarín coludo
\end{tabular} \& \begin{tabular}{l}
C \\
C \\
C
\end{tabular} \& O, C \& \[
\begin{aligned}
\& \text { C } \\
\& \mathrm{O}
\end{aligned}
\] \& \& C \& \\
\hline \begin{tabular}{l}
Troglodytidae \\
Thryothorus rufalbus \\
Thryothorus leucotis \\
Sylviidae \\
Ramphocaemus melanurus \\
Thraupidae \\
Euphonia luteicapilla \\
Thraupis episcopus \\
Ramphocelus dimidiatus \\
Habia rubica \\
Chlorothraupis carmioli \\
Emberizidae \\
Volatinia jacarina \\
Qryzoborus angolensis \\
Sporophila nigricollis \\
Sporophila americana \\
Cardinalidae \\
Cyanocompsa cyanoides \\
Icteridae \\
Cassidix mexicanus \\
Cacicus uropygialis \\
Thamnophilidae \\
Cercomacra tyrannina
\end{tabular} \& \begin{tabular}{l}
Soterrey rufiblanco Soterrey pechianteado \\
Soterillo piquilargo \\
Bimbim \\
Azulejo \\
Sangretoro \\
Tangara coroniroja \\
Tagara oliva \\
Semillero negriazulado \\
Semillero menor \\
Espiguero ventriamarillo \\
Espiguero variable \\
Picogrueso negriazulado \\
Talingo \\
Cacique lomiescarlata \\
Hormiguero negrusco
\end{tabular} \& \[
\begin{gathered}
\mathrm{O}, \mathrm{C} \\
\\
\mathrm{O} \\
\mathrm{O} \\
\\
\mathrm{C} \\
\mathrm{O} \\
\mathrm{O} \\
\\
\hline \mathrm{O}
\end{gathered}
\] \& \begin{tabular}{l}
O \\
O \\
O
\[
\mathrm{O}, \mathrm{C}
\] \\
O
\end{tabular} \& C

0
0 \& C
O
O

C

O \& O
O

C

O \&

\hline
\end{tabular}

Sampling Sites	
S1	Gate
S2	Mocambo River Bridge
S3A	Camino de Cruces Nacional
	Park
S3B	Camino de Cruces Nacional
	Park
S4	Chivo Chivo Road

Sampling Sites
Sl Gate
2 Mocambo River Bridge
S3B Camino de Cruces Nacional Park
S4 Chivo Chivo Road

Registration
Methods
C Capture
O Observation
E Interviews
H Tracks
LL Calls

Protection Status

PE Endangered (Res. Dir. 002-80)
Al y All Appendices CITES

Reptiles

Scientific Name	Common Name	Sampling Sites					Protection Status
		S1	S2	S3A	S3B	S4	
LACERTILIA							
Gekkonidae	Gecko		O				PE-AII
Sphaerodactylus homolepis Gonatodes albogularis	Lagartija c. naranja	O					
	Lagartija	O	O		O		
Polychridae	Lagartija	O	O		O		
Anolis sp.	Iguana verde	E					
Iguanidae Iguana iguana	Iguana verde	E					
	Borriguero	O	O			C	
Teiidae	Boriguero						
Ameiva festiva							
Corytophanidae Basiliscus basiliscus	Meracho		O		O	O	
SERPENTES							
Viperidae							
	Equis	O					
Bothrops asper	Coral	E				O	
Elapidae	Coral	E					
Micrurus nigrocinctus			O			O	AII
Boidae	Boa arcoiris		O			O	AII
Epicrates cenchria							
CROCODYLIA							PE-AII
Alligatoridae	Caimán o babilla		E				
Caiman crocodylus							

Anphibians

Scientific Name	Common Name		Sampling Sites				

Sampling Sites
S1 Gate
S2 Mocambo River Bridge
S3A Camino de Cruces Nacional Park
S3B Camino de Cruces Nacional Park

Registration

Methods
C Capture
O Observation
E Interviews
H Tracks
LL Calls

S4 Chivo Chivo Road

Photos: Flora

Photo 1. Area without vegetation on the eastern boundary of the study area.

Photo 3. The eastern portion of the study area parallel to the main roadway is dominated by herbaceous growth and dispersed trees.

Photo 5. View of the River Forest of approximately 10 m wide, along Mocambo River near Kuna-Nega .

Photo 2. Canal Grass near the Chivo Chivo Road and PNCC.

Photo 4. View of disturbed forest dominated by young trees.

Photo 6. Herbaceous growth and brushwood near river forest next to Mocambo River.

Photo 7. View of remaining disturbed forest patches located to the left of entrance.

Photo 8. View of an affluent to Mocamo River along the pedestrian crossing leading to Kuna-Nega.

Photos: Fauna

Photo 1. Amazilia Edward, Humminebird captured east of the landfill entrance.

Photo 2. Release of Bats from the nets.

Photo 4. Carollia Castanea, captured near the Landfill Entrance.

Photo 6. Espiguero variable, Sporophila Americana, was abundant in open areas of herbaceous growth toward the norheast limit of the study area.

Photo 7. Chiroderma Uillosum, fruit bat captured in the PNCC Forest.

Photo 9. Long tail hermit humminebird, Phaetornis Superciliosus, was present in regeneration areas.

Photo 11. Red Tree Climber, Xiphorhynchus Guttatus, was captured in the PNCC forest and the forest area southwest of the study area.

Photo 8. El borriguero lizard, Ameiva Festiva, was common in brushes of the study area.

Photo 10. Zarigüeya, Didelphys Marsuplalis, in common in all habitats, especially disturbed areas.

Photo 12. Tangara Coronirroja Habiarubica is common in the secondary forests.

Photo 13. Neque, Dasyprocta Punctata, was reported in disturbed areas as well as more preserved areas such as PNCC.

Photo 15. The Spiny Rat, Proechimys Semispluosus, was common near the crop areas in the eastern part of the study area.

Photo 14. Soterrey Pechianteado o Thryothorus leucotis, common in dense forest floors and forest fringes. This specimen was captured at the limit of the PNCC and the study area.

Data I

Collection Improvement Manual
ROUTE IMPROVEMENT 1

1. STEP 1 GATHERING OF INFORMATION 2
1.1. STUDY AREA 2
1.2. CURRENT COLLECTION 3
1.2.1 DRAWING OF ACTUAL ROUTE 3
1.2.2 INFORMATION REGARDING ROUTE TIMES 4
1.3. SURVEYING OF ADDITIONAL INFORMATION 5
2. STEP 2 ROUTE DIAGNOSIS 5
2.1. TONS COLLECTED VERSUS HOURS OF COLLECTION 5
2.2. TONS VERSUS HOURS PAID 6
2.3. TONS PER TRIP 7
2.4. TONS/ASSISTANT/DAY 7
3. STEPE3 ROUTE IMPROVEMENT 8
3.1. ROUTE DESIGN 8
3.1.1 DIVISION INTO SECTORS 8
3.2. SKETCHING 14
3.3. CALCULATION OF THE NUMBER OF CONTAINERS 16
3.4. ROUTE VERIFICATION 17
3.5. IMPLEMENTATION OF ROUTES 17
3.6. ROUTE MONITORING AND ASSESSMENT 18
3.6.1 DURING THE TRIAL PERIOD 18
3.6.2 DURING NORMAL OPERATION PERIOD 20
3.7. EXAMPLE 22

COLLECTION ROUTE IMPROVEMENT

Improvement of collection routes of solid wastes will be carried out from the current routes, trying to preserve the coverage area as much as possible, as well as the vehicles allocated and the 8-hour working day.
Route improvement includes the following steps

1. Gathering of information
2. Route diagnosis
3. Route sketching
4. Route monitoring and assessment
5. Definitive implementation of the route

A flowchart with route improvement is presented next

1. STEP 1 GATHERING OF INFORMATION

The objective of this step is to obtain information related to the area where the routes will be improved, the features of the collection service conducted in such area and surveying of additional information if required. Such data will allow the diagnosis of the current collection trips and will generate the required input for the further improvement of routes.

1.1. STUDY AREA

On a scale drawing which clearly shows the whole study area and the road infrastructure, identify the following:
\rightarrow The neighborhoods and their limits, business zones, industrial zones and excessive generators ${ }^{1}$ (such as isolated businesses or institutions).
\rightarrow Number of inhabitants and houses in each neighborhood. To establish such values, use the data from the last National Census and project such values to the year of study, according to the annual growth rate foreseen by the Office of Statistics from the Comptrollership General's Office of the Republic of Panama.
\rightarrow Those streets where the displacement of collection vehicles is not possible.
\rightarrow One-way streets or avenues.
\rightarrow Streets or avenues with a high traffic flow, displaying the peak hours of this high flow.
\rightarrow Streets or avenues that change their way during the day, and displaying the hour when this happens as well.
\rightarrow Streets or avenues with outstanding slopes, and their highest and lowest points will be indicated
\rightarrow The sector that is closest to the depot
\rightarrow The sector that is closest to the sanitary landfill
\rightarrow Classify this drawing as the Study Area
Use the signs of the symbology box to represent the information on the drawing (see Annex).

1.2. CURRENT COLLECTION SERVICE

1.2.1 Drawing of actual route

On a similar scale drawing as the above, record the following information:
\rightarrow The current collection routes, clearly identifying the direction of the truck, the uptimes and dead times.
\rightarrow Location and capacity $\left(\mathrm{yd}^{3}\right.$ or $\left.\mathrm{m}^{3}\right)$ of the containers, if any.
\rightarrow Also indicate in a box the productive distances ${ }^{2}$, non-productive time distances ${ }^{3}$ and total distances for each collection route, as well as the

[^0]percentage of productive distance versus the route's total distance, which can be determined by the following ratio:

```
% Productive distance vs. total distance =
    Productive distance x 100
    (Productive distance + non-productive
    distance)
```

Example

Productive distance	25 Km
Non-productive distance	12 Km
$\%=$	$25 \times 100 \quad=67.56 \%$
	$(12+25)$

\rightarrow Identify the drawing as Features of Current Routes
Use the signs of the symbology box to represent the information on the drawing (see Annex).

1.2.2 Information regarding Route Times

In the "Route Improvement" worksheet ${ }^{4}$, record the information contained in the route's Daily Work Orders corresponding to the last three months, so as to obtain the route background and indicators ${ }^{5}$, monthly values and averages to be used later on for the diagnosis of the route.

In case the data are contained in the former Work Order format, only take into account the data of the previous two months; the third month will correspond to the

[^1]month for surveying additional information. Data to be recorded and the background and indicators to be obtained are shown in the Annex.

1.3. SURVEYING OF ADDITIONAL INFORMATION

As long as the new Work Order is not enforced, the timeframes of the actual routes will not be acknowledged; therefore, the times of the routes to be improved will be directly monitored on the field.
In this case, the times will be recorded in the new Work Order format, and later on will be transferred to the Route Improvement worksheet, particularly to the Month three sheet.

The monitoring period should be at least one month, and will be conducted by highly trained staff, in order to avoid mistakes while surveying the information and simultaneously to train the driver in gathering data.
On the other hand, if the routes under study include the collection of industrial and/or commercial wastes and it has been decided that they will be collected upon the implemented improved routes by means of the exclusive ICI waste service (institutional, commercial and industrial), proceed to the quantification of wastes belonging to such generators. For such purpose, such wastes will be segregated at least during 15 days and the tons collected will be recorded.

2. STEP 2ROUTE DIAGNOSIS

By using the information obtained in step one clause 1.2.2 regarding the route's background and monthly average indicators, proceed to the diagnosis of the route, in order to define whether the route should be improved or not. The diagnosis is carried out based on the optimal indicators ${ }^{6}$ explained below.

2.1. TONS COLLECTED VERSUS HOURS OF COLLECTION

The collection frequency will be monitored to judge if the frequency is the appropriate by comparing the value obtained at the tons collected/collection time ratio (ton/hour) for the routes under study with the optimal value, as shown in the following table:

Acceptable range for the tons/total collection time indicator		
Collection type (urban zone)	Acceptable range	Optimal value
Door-to-door or mixed method, three assistants	2.3 to 2.6 ton/hour	2.45 ton/hour

[^2]| Spot-to-spot method (containers), 3
 assistants | 2.8 to 3.2 ton/hour | 3.0 ton/hour |
| :--- | :--- | :--- |

If the ratio between the indicator value obtained and the optimal value is less than 0.9 , it can be said that the frequency of the service is inappropriate and that it is required to expand the period in between the collection days; i.e., to cut down the frequency, which means the route has to be improved.

Example

Amount of wastes collected per month $=300$ tons
Total collection time per month = 158 hours
Method: door-to-door, three assistants, urban zone, daily collection frequency

Indicator	$=$Total tons collected per month $=300=1.9$ ton $/$ hours Total collection time per month Optimal indicator
$=$	2.45 ton $/$ hour
Indicator	$=\frac{1.9}{2.45}=0.78$

The value of 0.78 is below the set figure of 0.9 for the ratio, which means the collection frequency should be reduced.

2.2. TONS VERSUS HOURS PAID

It is verified that the tons collected matches the number of hours paid for executing the service. The diagnosis is conducted through the comparison between the value obtained for the 'tons received' indicator versus the hours paid; the preset value for this indicator ranges between 0.30 to 0.35 . For the diagnosis, the route will be deemed as improvable should the value ranges below the optimal figure of 0.33 .

Example

Amount of wastes collected per month 300 ton
Hours paid to driver 283
Hours paid to collection workers (3 collectors.) 853
Total hours paid per month 1136
Tons collected per month
$=300=0.26$
Total hours paid per month
1136

The value of 0.26 is quite below the optimal value, which means the amount of wastes collected on the route is too low as per the hours paid, or the service is not being carried out within the working day, thus generating overtime. For the aforementioned, the route should be improved.

2.3. TONS PER TRIP

It is monitored whether the collection routes have been properly set up or if the vehicles are not working overloaded by comparing the values obtained for the tons/trip indicator to the maximum payload to be hauled by the truck for that route.

It will be found out if the tons/trip and the maximum payload ratio of the truck lies within the optimal range of 0.9 to 1.05 ; any value outside this range will indicate that the route should be improved.

The maximum payload of the truck will be set by taking into account the truck's gross weight, weight of the framework and the compaction device, according to the following formula:

> Maximum payload =
> Vehicle's gross weight - framework weightcompaction device

Example 1

Tons per average trip per month 5.9 ton
Maximum truck payload 7.0 ton

Average tons per trip per month
Maximum truck payload
$=\frac{5.9}{7.0}=0.84$
The value of 0.84 is below the fixed range; i.e., the vehicle is underused, therefore the route has to be improved.

Example 2

Average tons per trip per month 7.5 ton
Maximum truck payload 7.0 ton
$\begin{aligned} & \text { Tons per average trip per month } \\ & \text { Maximum truck payload }\end{aligned}=\frac{7.6=1.09}{7.0}$

The value of 1.09 is above the optimal range, which indicates the vehicle is overloaded and therefore the route has to be improved.

2.4. TONS/ASSISTANT/DAY

The daily performance of a collection assistant is evaluated by comparing the amount of wastes collected in the month to the number of actual headcount per month. If the value is substantially lower than the preset optimal value, it can be said that the performance by the assistants (collectors ${ }^{7}$) is inappropriate, supposedly attributable to a lower waste collection and a longer trip; therefore, a different frequency should be studied and the route improved.

[^3]The route will be regarded as poorly designed if the collection assistant performance is below 4.3 ton/assistant/day, which is the preset optimal value.

Example

Tons collected per month	300 ton
Number of effective collectors per month	3 assistants
Effective days per month	26
Performance $=$	Tons collected per month
Number of effective collectors per month x effective days per month	
Performance $=$	300
	$=3$

The performance of 3.8 is lower than the optimal value; therefore, the route has to be improved.

3. STEP 3 ROUTE IMPROVEMENT

The route will be improved when the diagnosis conducted in step 2 shows that some of the indicators have values outside the acceptable or optimal ranges.

3.1. ROUTE DESIGN

3.1.1 Division into sectors

The first activity to conduct is the division into sectors, which consists in splitting the area covered by the current routes, so that each collection crew is assigned an appropriate amount of job for that sector, working at full capacity. Sector can then be divided into sub-sectors, each one of the m corresponding to a collection trip.

a.- Defining the features of the service

Prior to proceeding with the division into sectors, the following characteristics of the collection service must be determined:

Collection frequency:	Could be daily (6 times a week), three times a week or twice a week. The frequency defines the number of days attended in the sub-sector
Collection truck payload:	The truck(s) to be used and their maximum payload will be determined as per step two, clause 2.3.

Number of trips per working day:	The number of trips to be carried out by the truck within the working day will be defined
Number of shifts per day:	It will be established if the study sector will have a day or night working shift; in the latter case, only one shift will be conducted, or even both shifts, which means two working days.
Number of working days per week:	The number of day per week the truck will work in the sector will be defined.

b.- Calculation of the amount of wastes to be collected

Define the amount of wastes to be collected; use the Route Improvement worksheet to obtain the amount of wastes collected per month as the average value from the three months of information.

In case the collection of ICI wastes found on the routes is discarded, the tons of the month corresponding to this type of wastes will be subtracted from the total tons collected per month.

```
Tons per month of project = Total tons of
    month - ICI tons per month
```

With the tons per month of project, determine the P.P.C. for the household sector, as per the following formula:

$$
\begin{aligned}
\text { P.P.C. } & =\frac{\text { Tons month of project }}{\frac{x 1000}{N o . d w e l l e r s ~ \& ~ t o t a l ~ a r e a ~}} \\
& x \text { No. days of the month }
\end{aligned}
$$

Tons month of the project correspond to the average tons from the three months of information.
With the P.P.C. and the number of inhabitants per neighborhood calculate the generation of wastes for the week, for the maximum generation day (peak day ${ }^{9}$) and normal generation day (normal day ${ }^{10}$); the latter two values according to the frequency of collection.

[^4]Generation of wastes in neighborhood (i)/week= PPC x No. dwellers neighborhood (i) x 7days 1000

Generation of wastes in neighborhood (i)/peak day =
PPC x No. dwellers neighborhood (i) x No. days

$$
\frac{\text { with maximum generation }}{1000}
$$

Generation of wastes in neighborhood
(i)/normal day =

PPC x No. dwellers neighborhood (i) x No. days $\frac{\text { normal accumulation }}{1000}$

The number of accumulation days, based on the collection frequency, corresponds to the following:

Frequency	No. days of maximum accumulation	No. days normal accumulation
Daily	2	1
Three times a week	3	2
Twice a week	4	3

Once the waste generation per neighborhood has been calculated, compute the total waste output for the study area by adding the total generations per neighborhood.

c.- \quad Calculation of sub-sectors and number of trucks

Calculate the total number of sub-sectors and sub-sectors attended by a truck as follows:

> Total No. of sub-sectors $=. . . .$.
> ..Maximum accumulation tons/day Payload collection truck per trip \times No. trips per working day

```
No. of sub-sectors attended by a truck =
(No. days worked /week) x ( No. shifts/day)
    (No. days of service in sub-sector/week)
```

Once the total number of sub-sectors and the sub-sectors attended by a truck is acknowledged, calculate the number of required trucks to develop the service, as per the following formula:

$$
\begin{gathered}
\text { No. trucks }=. \text { No. total sub-sectors/No. sub- } \\
\text { sectors attended by a truck }
\end{gathered}
$$

Identify the sectors and sub-sectors as per the following criterion.

Sector i	Where i is the number of the compaction truck conducting the collection at the sector.
Sub-sector $i-j$	Where i is the sector number where the sub-sector is located, and j a correlative number that is defined based on the days of provision of the service.

Example

A residential zone has a collection service frequency of three times per week, conducted by two compaction trucks working six times a week and each of them attending two subsectors. In this case, the sectors and sub-sectors are identified as follows:

Sector 1
Sub-sector 1-1 2 trips
Sub-sector 1-2 2 trips
Sector 2
Sub-sector 2-1 2 trips
Sub-sector 2-2 2 trips

2 trips	Compaction truck ${ }^{11} \mathrm{~N}^{\circ} 1$ 2 trips
(Monday - Wednesday - Friday)	

Compaction truck $\mathrm{N}^{\circ} 2$
(Monday - Wednesday - Friday)
(Tuesday - Thursday - Saturday)

d.- \quad Verification of the number of trips per working day per truck

Once the number of sub-sectors and required trucks to carry out the collect ion service in the study area has been acknowledged, proceed to check the time required to perform the number of trips per day and the total tons hauled.

Obtain the information related to the average dead times of the routes out of the Route Improvement worksheet, specifically of the Summary sheet, including the following:
\rightarrow Depot-sector time

[^5]\rightarrow Sector-landfill time
\rightarrow Landfill time
\rightarrow Landfill-sector time
\rightarrow Landfill-depot time
Calculate the tons to be transported by each truck per day on the day of maximum accumulation as per the following:

```
Tons peak day to be hauled by truck =
    Tons peak day \(x\) No. days of
    service/day/sub-sector
No. days worked/week x No. of trucks
```

If more than a trip is considered for the day, always bear in mind that the first trip conveys the truck's maximum payload.
Calculate the dead time and collection time for the first trip as per the following:

```
Dead time \(1^{\text {st }}\) trip \(=\) Time depot - route + time
    route - landfill
    + Time landfill + time landfill - route
```

 Uptime \(1^{\text {st }}\) trip \(=\) Tons maximum payload
 Tons/hour of collection
 Adopt the value of the Tons/hour indicator just as the optimal value of step two clause 2.1, taking the type of collection into account.
Add the dead time and uptime of the first trip to obtain the cycle time ${ }^{12}$ of the first trip.

$$
\frac{\text { Cycle time } 1^{s t} \text { trip }}{\text { uptime }}=\text { Dead time } 1^{s t} \text { trip }+
$$

If only one trip per day is regarded, compare the cycle time with the working day hours; if such cycle time is less than the working day hours and the ratio between tons per trip versus maximum payload is greater or equal to 0.9 , the sub-sectors are properly designed. Otherwise, consider the route design with lower-capacity trucks and calculate again the number of sub-sectors.

[^6]If more than one trip per day is regarded, calculate the available time for the second cycle as follows:

$$
\frac{\text { Available time } 2^{\text {nd }} \text { cycle }}{\text { day }-H o u r s ~ o f ~ w o r k i n g ~}
$$

Calculate the dead time for the second trip and the available time for collection as follows:

$$
\frac{\text { Dead time } 2^{\text {nd }} \text { trip }}{\text { Landfill time }}+\text { Route time }- \text { landfill }+
$$

$$
\begin{aligned}
& \text { Available collection time } 2^{\text {nd }} \text { trip }= \\
& \text { Available time } 2^{\text {nd }} \text { trip - dead time } 2^{\text {nd }} \text { trip }
\end{aligned}
$$

Calculate the tons to be hauled in the second trip.

$$
\begin{aligned}
& \text { Tons } 2^{\text {nd }} \text { trip }
\end{aligned}=\begin{gathered}
\text { Tons per truck peak day }- \text { Tons } \\
\text { first trip }
\end{gathered}
$$

Calculate the time required to perform the collection of tons of the second trip as follows:

$$
\frac{\text { Actual collection time } 2^{\text {nd }} \text { trip }}{\frac{\text { Tons } 2^{\text {nd }} \text { trip }}{\text { Tons/hour of collection }}}=
$$

Use the value of the Tons/hour of collection indicator as that one used in the first trip.
If the time available for the collection in the second trip is greater than the actual collection time of the second trip, it is verified that the truck is able to collect the total tons assigned for it within the working day; then calculate the total time worked in the day as follows:
Total time worked in the day $=$
Time (dead time + uptime) $1^{\text {st }}$ trip + Time (dead
time + uptime) $2^{\text {nd }}$ trip

If the time available for collection in the second trip is lower than the actual collection time of the second trip, calculate the tons collected as per the available time as follows:

Actual collection tons $2^{\text {nd }}$ trip $=$ Collection time available $2^{\text {nd }}$ trip x (Tons/hour collection)

Use the same value previously employed for Tons/hour of collection.
Calculate the total tons collected in the day as the addition of the first and second trips, and compute the number of trips per day as follows:

$$
\frac{N^{\circ} \text { trips in day }}{\text { Payload collal tons collected in day }}
$$

With the new value of the number of trips per day, repeat the process for the calculation of sub-sectors and number of trucks.

e.- Delimitation of sub-sectors

On a copy of the Study Area drawing, mark down the amount of wastes to be collected on the maximum generation day for each neighborhood.
Se the boundaries of the sub-sectors as per the following deliberations:
\rightarrow Based on the tons to be collected on the maximum accumulation day, group the neighborhoods in a way that the addition of the tons to be collected is almost the same to the tons assigned per sub-sector (tons to be picked up by a truck on the maximum accumulation day).
\rightarrow Use main roads and topographic barriers such as rivers, lakes, and so on, as sub-sector boundaries.

Identify each sub-sector by applying the criterion outlined in clause 3.1.1. letter a) Identify the sectors as per the same criterion outlined above.

Classify the drawing as the sub-sector boundaries.

3.2. SKETCHING

Prepare a working drawing for each sub-sector from a copy of the Sub-sector Boundaries drawing or with tracing paper.
In both cases, simplify the road system according to the information on the Study Area drawing and the following criterion:

Draw the development of the route by taking into account the following criteria and information on the Study Area drawing:
\rightarrow Avoid duplications, repeats or unnecessary shifts
\rightarrow Respect the traffic regulations
\rightarrow Reduce the number of left turns and U-turns, in order to prevent a loss of time while loading, thus minimizing risks for the crew and traffic obstacles
\rightarrow Routes with heavy traffic will not be traveled
\rightarrow Try to begin the routes at the points closer to the depot and, as the day goes by, try to approach the final disposal with the purpose of cutting down the haulage time.
\rightarrow The highest spots of the trip should be traveled at the beginning of the route
\rightarrow Steep roads will be traveled downhill whenever possible, conducting collection on both sides of the road, in order to raise safety of the job, speed up collection, minimize the equipment wear-out and reduce oil and fuel consumption.
\rightarrow When using the "Comb-style layout" ${ }^{33}$, it is preferable to follow the routes of long, straight trips prior to right turns.
\rightarrow When using the "double-comb layout" ${ }^{14}$, it is preferable to follow the routes with lots of clockwise tours around the blocks.

[^7]Repeat the above procedure to improve the trip, quantifying the number of left and right turns and non-productive distances for each drawing.

Select the route sketching with the lowest number of left turns and lower nonproductive runs.

3.3. CALCULATION OF THE NUMBER OF CONTAINERS

In case a frequency variation (increase or decrease) is regarded in the route improvement process and containers are available, the new number of containers will have to be calculated as per the following procedure.

According to the location of the containers (information found on the drawing Features of Current Routes), determine the number of inhabitants that use containers to store their wastes.

With the number of dwellers, the PPC calculated in clause 3.1.1. letter b) and the number of days of maximum accumulation of wastes, compute the tons to be stored in the containers.

```
    Tons to be stored in container =
No. dwellers x PPC x No. days of maximum
    accumulation
```

Calculate the total volume of wastes to be stored in the containers as follows:

```
Volume of wastes to be stored in container =
    Waste dens stored in container
```

Assume the waste density in the container to range between 0.15 to $0.2 \mathrm{Ton} / \mathrm{m}^{3}$.
Define the capacity of the containers to be installed and determine the number of containers as follows:

```
No. containers = Volume of wastes to be stored
    in containers
    Container capacity x 0.9
```

A safety factor for the calculation has been considered, therefore it is assumed that containers will fill up to 90% of their top capacity.
Once the number of containers is acknowledged, proceed to spread them around the area based on the number of inhabitants.

[^8]
3.4. ROUTE VERIFICATION

Verify each route sketching, conduct an on-field visit and check the following:
\rightarrow Distance of the trip in kilometers of each route
\rightarrow Verify the road system (traffic ways)
\rightarrow Check the traffic fitness; the ideal thing to do is to perform this verification at different times of the year.
\rightarrow Inform of the existence of unoccupied blocks and therefore need no cleaning service.
\rightarrow Write down the traffic issues such as narrow streets, obstruction due to parked vehicles, severe steep streets, etc.
\rightarrow Notify the presence of excessive generators within the route.
If you verify the existence of conditions that alter the sketching, perform the required modifications.
Describe the collection route that has been already checked for the zone, according to the following chart.

3.5. IMPLEMENTATION OF ROUTES

Prior to commissioning the new routes, train the staff, including supervisors, drivers and collectors on the following topics:
\rightarrow Responsibilities set per post and function correlations between each other.
\rightarrow Interpretation of the symbology applied for the route sketching, such as route beginning and end, direction of the trip, normal service trip and exclusive haulage, auditing points.
\rightarrow Way of executing the service, door-to-door collection, lifting of containers, wastes that are not part of the service, how to operate the compacting system, loading and unloading procedures, detection of excessive generators.
\rightarrow Use of security devices, subjects related to the inherent labor risks and accidents.
\rightarrow Train the driver and supervisor on how to fill out and work with the Daily Work Order format, and train them on field regarding the new trips.
Perform activities aimed at informing the community on the new collection service, and develop the following tasks:
\rightarrow Meetings with the dwellers of different neighborhoods, clearly informing on the frequency, days and time of the collection service.
\rightarrow Installing of posters in well-attended sites, such as sport fields, supermarkets, schools, etc.
\rightarrow Distribution of flyers that indicate the days and hours of attention, frequency of the service and the telephone number to inquiry on the new service and/or pose claims.

Put the new routes into operation and regard a 30-day trial period, during which you will constantly monitor them and perform the required adjustments.

3.6. ROUTE MONITORING AND ASSESSMENT

3.6.1 During the trial period

a.- Monitoring

During the first week, appoint a technician to verify the compliance of the routes every day and detect any anomaly.

Should you detect any anomaly, assess how the latter impacts on the design and/or sketching and perform the corresponding adjustment.

Assign the route supervisor with specific spots where to record the time the truck passes by. Later on, these spots will be used as route control points.

During the trial period, randomly review each of the routes while the collection takes place and immediately after that, and later on check the quality of the service by controlling the following:
\rightarrow The appropriate lifting of the wastes
\rightarrow The adequate handling of the compaction equipment
\rightarrow The appropriate loading and unloading of the containers
\rightarrow The presence of scattered wastes
\rightarrow Cleaning of the entire area surrounding the containers
\rightarrow Excessive noise; identify its source (compacting equipment, horn, personnel's, etc)
\rightarrow Seepage of liquids off the truck onto the streets
\rightarrow The appropriate use of the uniform and safety devices by the workers
\rightarrow The collection staff's behavior towards the users
\rightarrow The presence of non-household wastes that cannot be loaded in the compaction truck
Take the corrective actions to get rid or minimize any anomaly detected that downgrades the quality of the service.
If necessary, train the personnel again and enhance their teachings as per the way of executing their job.
Retrieve the data contained in the Daily Work Order every day and record it in the Route Improvement worksheet, in the "Routes" sheet.

b.- Assessment

The Route Improvement worksheet automatically calculates the indicators and other route background, which will be displayed in the Summary sheet.

The control variables and indicators by means of which the routes will be assessed during the trial period are the following:

Control variables
\rightarrow Tons
\rightarrow Route times
\rightarrow Fuel consumption
\rightarrow Hours worked per route
Indicators
\rightarrow Tons/hours of collection
\rightarrow Ton/hours paid
\rightarrow Tons/trip
\rightarrow Tons/assistant/day
\rightarrow Fuel efficiency measured as gallons/hour
The control variables will allow to assess the behavior of the routes throughout the time, therefore a log book with the control variables for each route.

Review the values of the indicators every day and compare them versus the optimal values outlined in step two. If you detect that one of the indicators shows values below the optimal level, analyze the possible causes and adjust the route as necessary.

Likewise, compare the daily indicators between each other, to establish if there are any important changes according to the collection day.

Check the collection times and dead times every day; if you detect any important fluctuations every day, find the cause on the field and correct it.

Compare the results of the indicators for the new improved routes to the indicators under which the routes were initially diagnosed. Calculate the variation percentages of each one and study the need to perform an adjustment on the route.

At the end of the 30-day trial period perform the route diagnosis as peer step two. If the diagnosis indicates that the routes are properly designed, implement the routes for good. If the diagnosis is negative, improve the route again.

At the end of the trial period and after fulfilling the improvement objectives, lay out the definitive route drawing describe each one of them as set forth in step 3.3; include as well the location of the containers, the control points and the hours when the truck will pass in the drawing.

3.6.2 During normal operation period

a.- Monitoring

Survey the timeframe information every day through the daily Work Order.
Retrieve the data contained in the Daily Work Order on a daily basis and save it in the database.

The supervisor is to verify the development of the route by monitoring all the route's control points at least once a week; the supervisor will also check the quality of the service by controlling the same subjects of the trial period, clause 3.5.1. letter a). He/she will report the technical personnel every week in case anomalies are recorded.

b.- Assessment

Obtain the values for the indicators from the database on a monthly basis.
With the indicators obtained, perform a route diagnosis as per step 2 and find out if the goals set have been accomplished (optimal indicators).
For the fuel efficiency indicator, compare the value obtained versus the optimal value assigned per type of vehicle. The ratio between the indicator and the optimal value should not be less than 0.9.

If the goals are not fulfilled, schedule a route monitoring according to clause 3.5.1 letter a) and find out the reasons behind the poor performance. Correct the anomalies; if not possible, consider the need to re-improve the route.

According to the following table, retrieve the values from control variables and the trucks' accumulated working hours from the database, and perform the following evaluations:

Control variables	Assessment
Tons	It will allow you to find out if there was an increase or decrease in the generation of wastes in the area, as well as to schedule the acquisition of new equipment if required. Evaluate the variation in tons collected throughout the month in the sector every six months or on a yearly basis; also calculate the growth rate. Make a projection on the generation of wastes for the sector for the upcoming two or three years, and assess the necessity of incorporating new vehicles. Follow the same operation with the remaining sectors and make a truck acquisition program based on the larger generation of wastes.
Route timeframes	It will allow you to control the times utilized in the different truck motions and to verify the compliance with the route. You will also be able to spot the increase in time of those motions that have to be controlled, such as unloading of the wastes at the sanitary landfill or the truck going through crowded roads. This control variable allows you to audit the work by the collectors and the truck driver, since an increment of the related haulage times are linked with variances in the trip or route beginning. Compare every month if the timeframes undergo important variations; if so, find out the cause(s) and take the required corrective measures. If this is not possible, the working hours of the day will be checked and if overtime exists, the route will have to be improved again.
Fuel consumption	It will allow you to estimate the fuel needs per sector and for the entire truck fleet, as well as to determine the fuel requirements per year. Check if there has been a remarkable peak in fuel

Control variables	Assessment
Hours worked in the route	consumption on a yearly basis, if so find out the causes (mechanics, mismanagement of the resource) and correct.
It will allow you to compare the use of the truck on a	
timeframe basis, compliance with the working day and	
projection of the truck's hours of operation per year.	
Calculate the variation between the hours worked on route	
and make a projection of the hours to be devoted in the	
following two years.	

Update the route's control variables on a yearly basis in the log book.

3.7. EXAMPLE

a) Features of the service

Population of the area to be improved, year $2000 \quad 26,808$
Projected population, year 2002 27,673
Annual growth rate
Defined frequency for improvement
Payload, collection truck
Number of trips per day
1.6\%

Number of shifts per day
3 times per week

Number of days worked per week 6
Number of days of attention to sub-sector 3
Average tons, last three months 686 tons/month
ICI tons
98.4 tons/month
b) Amount of wastes to be collected

Tons of the project month $=686-98.4=587.6$ tons/month
PPC $=(587.6 \times 1000) /(27,673 * 30)=0.71 \mathrm{~kg} / \mathrm{inhabitant} /$ month
The following table displays the waste generation per neighborhood and the total for the area to be improved; the number of days with maximum accumulation is three.

Neighborhood	Dwellers year 2000	Dwellers year 2002	Weekly generation	Generation on peak day	Generation normal day		
	N°		N°		Ton/week	Ton/day	Ton/day
:---	$	$	Ton				
:---	:---						

c) Calculation of sub-sectors and sectors

Number of total sub-sectors $=58.1 / 16=3.63$
4 sub-sectors
Number of sub-sectors attended per truck = (6x1)/3 = 2 sub-sectors/truck
Number of trucks = 4 / 2 = 2 trucks

Designation of sub-.sectors

Sector 1	No. of trip	Compaction truck No. 1
Sub-sector 1-1	2 trips	(Monday - Wednesday - Friday)
Sub-sector 1-2	2 trips	(Tuesday - Thursday - Saturday)
Sector 2		Compaction truck No. 2
Sub-sector 2-1	2 trips	(Monday - Wednesday - Friday)
Sub-sector 2-2	2 trips	(Tuesday - Thursday - Saturday)

d) Verification of the number of trips

Tons/peak day per truck $=58.1 \times 3$ / $(6 \times 2)=14.5$ Ton/day/truck
The average dead times from the previous months are the following:

Timeframes	Hours
Depot-route	0.2
Route-landfill	0.34
Landfill	0.25
Landfill-route	0.15
Landfill-depot	0.35

Dead time $1^{\text {st }}$ trip $=$
$0.20+0.34+0.25+0.15=0.9$ hours
Uptime $1^{\text {st }}$ trip
Cycle time $1^{\text {st }}$ trip
Available time $2^{\text {nd }}$ cycle
Dead time $2^{\text {nd }}$ trip
Available collection time $2^{\text {nd }}$ trip
8 / 2.45
$=3.3$ hours
$0.9+3.3$
$=4.2$ hours
8-4.2
$=3.8$ hours
$0.34+0.25+0.35=0.94$ hours

Tons $2^{\text {nd }}$ trip
$3.8-0.94$
$=2.9$ hours
14.5-8
$=6.5$ tons
Real collection time $2^{\text {nd }}$ trip
6.5 / 2.45
$=2.7$ hours
The available collection time in the second trip (2.9 hours) is greater than the actual collection time of the second trip (2.7 hours); therefore, it is verified if the truck can collect the total tons assigned for the working shift on the peak day.
e) Demarcation of sectors

Tons grouping per neighborhoods and their position.

Neighborhood	Generation peak day	S1-1	S1-2	S2-1	S2-2
	Ton/day	Ton/day	Ton/day	Ton/day	Ton/day
A	7.0	7.0			
B	4.3	4.3			
C	5.2		5.2		
D	3.0	3.0			
E	5.0		5.0		
F	2.9			2.9	
G	4.3		4.3		
H	3.5			3.5	
I	2.9				2.9
J	3.3				3.3
K	8.4				8.4
L	3.6			3.6	
M	4.7			4.7	
Total	58.1	14.2	14.6	14.7	14.6

The following figure displays the sector demarcation.

1. MANAGEMENT OF THE ROUTE IMPROVEMENT WORKSHEET 28
2. INDICATORS 35
3. INDICATORS USED FOR ROUTE IMPROVEMENT 37
4. SYMBOLOGY TABLE FOR MAPS 38

ANNEX

1. MANAGEMENT OF THE ROUTE IMPROVEMENT WORKSHEET

With the purpose of easing the route improvement process, a spreadsheet was set up that, with time, tonnage, headcount and route fuel consumption input, the control variables and required indicators to measure the latter are estimated.
This sheet will be exclusively used for the route improvement process; once the definitive route layout has been implemented, its assessment will be carried out through the database.
The information required by the spreadsheet will be surveyed from the Work Form (new format), which will record the diverse route times. However, currently such document has not been put into effect and the actual form in force only allows for the previous route times in respect of the exit and entrance to the headquarters and the sanitary landfill, being such data insufficient to compute downtimes and uptimes of the service. In virtue of the aforementioned, gathering of information of the current route will have to include at least the last month out of three, as per the input to be included in the new Work Order Format.
Additionally, since not all the collection vehicles are furnished with an odometer to measure the route shifting, assessment of the service will be conducted with the time variable as the exclusive parameter.
The means of operation of the Route Improvement Worksheet is shown next.

The Route Improvement Worksheet is conformed by five sheets known as Month one, Month two, Month three, Routes and Summary, as shown in the next figure.

The first three sheets will reflect the antecedents of the service from the Daily Work Orders.

Month one \& two sheets will incorporate data from the respective route during the first two months of information available; e.g., if route improvement is conducted during October, Month one will have information from July and Month two from

August. Such information should arise from the existing Work Orders (previous format) or from the newer format, if it has already been implemented.
Month three will include all the timeframe input in the sheet.
Spreadsheets Month one, Month two and Month three include a total of five Tables, as shown in the following figure.

Table ${ }^{\circ}{ }^{\circ} 4$

This table displays the monthly values of the service, such as tons, timeframes, headcount, etc., as well as monthly values for the indicators. These values will be automatically transferred to the Summary sheet to estimate the average values for the three-month information period

This table displays the results of the route's mean downtime for the month. These values are transferred to the Summary sheet to determine the average value for

Table $N^{\circ} 3$
Daily values for the indicators are presented herein.

Table N ${ }^{\circ} 1$
Record all the background from the Daily Work Order in this table

Table $N^{\circ} 2$
Results from the different daily times achieved on the route are presented herein

In Table one, which contains the colored cells, the information of Work Orders will be recorded. The remaining cells have been designed to calculate the diverse variables that will allow the assessment of the service, and they will not be modified or record data in them.

Input and output items of the worksheet, as per the Work Order, will correspond to the following:

Current Work Order Format

INPUT

- Month
- SECTOR NAME
- TRUCK NUMBER
- DATE
- time of departure from depot
- ENTRY time to LANDFILL $\left(1^{\text {ST }}\right.$ TRIP, $2^{\circ} \& 3^{\text {RD }}$ TRIP IF SUCH IS THE CASE)
- DEPARTURE TIME FROM LANDFILL ($1^{\text {ST }}$ TRIP, 2° \& $3^{\text {RD }}$ TRIP IF SUCH IS THE CASE)
- ENTRY TIME TO DEPOT
- Tons discharged at landFill ($1^{\text {sT }}$ TRIP, 2° \& $3^{\text {RD }}$ TRIP IS SUCH IS THE CASE)
- Number of drivers
- Number of COLLECTION STAFF
- Number of SUPERVISORS

New Work Order Format

Record the above data from the Daily Work Order into the worksheet.

The Route sheet has a similar configuration to the previous ones; however, only two trips per truck per working day and the information from two trucks is taken into consideration. The reason behind the aforementioned is because a modification of the frequency is considered during the improvement process; from seven times a week down to three. The following figures details the sheet.

For an easy handling and better understanding of the output generated during the trial period of route implementation, the Summary sheet was created and includes two tables. The first one corresponds to the routes' downtimes, along with the data from the three previous months plus the mean value for that period and the resulting values from the trial period.
The second table encompasses the route's monthly background, such as the number of days worked, the tons collected, number of trips, collection times and totals, hours canceled to the staff, fuel consumption and evaluation indicators. With this table a quick comparison of the service prior and after the improvement can be
achieved，and data to carry on with the economic assessment of the route can also be obtained．

The following figure displays the referred table．

	乐 且 需	豆 $\square^{\text {a }}$ ，				$\cdots+5 x+1$			40， 75%	
srial		－ 10 －				嵒 量	$\% 000+0000$		－9	
$J 7$		$=$								
	A	B	C	D	E	F	G	H	I	
1	Sector	San Pedro								
2	N＇de Rutas	2.00								
3										
t		Mes 1	Mes 2	Mes 3	Promedio	Camión 1	Camión 2	Promedio		
5	Tiempos Muertos	Horas								
3	Base－Ruta	0.41	0.41	0.41	0.41	0.41	0.41	0.41		
7	Ruta－Relleno	0.48	0.48	0.48	0.48	0.48	0.48	0.48		
3	Relleno	0.54	0.54	0.54	0.54	0.54	0.54	0.54		
3	Relleno－Ruta	0.35	0.35	0.35	0.35	50．35	0.35	0.35		
0	Relleno－Base	0.33	0.33	0.33	0.33	0.33	0.33	0.33		
1										
2										
3										
4	INDICADORES		Mes 1	Mes 2	Mes 3	Promedio	Camión 1	Camión 2	Promedio	
5	Dise Trabojados		22	22	22	22.00	22	22	22.00	
6	Toneladse recolectadse mes		252.76	252.76	252.76	252.76	245.76	245.76	245.76	
7	N＇visjer mes		34	34	34	34.00	33	33	33.00	
8	Horas recolección		99.80	99.8	99.8	99.80	96.8	96.8	96.80	
9	Horas Realez Trabsjodse Ruta mes		155	155	155	155.13	151	151	150.62	
0	Horas Pagsdas Conductor		184	184	184	183.73	179	179	179.38	
1	Horas Pagodas Recolector		551	551	551	551.20	538	538	538.15	
2	Conzumo combuztible mez		246	246	246	246.00	246	246	246.00	
3	Toneladas ve Hors recolección		2.53	2.53	2.53	2.53	2.54	2.54	2.54	
4	Toneladas ve Horas Pagadas		0.34	0.34	0.34	0.34	0.34	0.34	0.34	
5	Tonelodse ve Horas Trabojodas		1.63	1.63	1.63	1.63	1.63	1.63	1.63	
6	Toneladosivisje		7.43	7.43	7.43	7.43	7.45	7.45	7.45	
7	Tonelsdssloyudanteldís		3.66	3.66	3.66	3.66	3.56	3.56	3.56	
8	Rendimiento combustible		0.63	0.63	0.63	0.63	0.61	0.61	0.61	
9										
0										
1										
	－Mes 1	Mes 2 ／M	／Ruta	人Resume				4		

This sheet exposes a summary of the results obtained from previous sheets，and no input should be recorded herein．

Open a new route improvement spreadsheet for every route to be optimized，and when you are done with the process keep it as backup，should you require to revise or make a new design in the future．

2. INDICATORS

The indicators constitute an excellent assessment tool of the collection service; by using them constantly the service management can be improved; the diverse activities that make it up can be monitored and controlled; and comparison between similar activities can also be achieved.

Indicators are the tool that will allow for the diagnosis of current routes and, if required, to decide if the improvement of that route will follow.

For such purpose, optimal values for the indicators will be set up, which in turn will facilitate the designing of new routes and their assessment once they are improved.

The indicators are the result of connecting preset quantities (base information), which are obtained from the constant monitoring of the activity; the would-be variables to be monitored at the collection service are the following:
Number of effective assistants
Amount of wastes collected per month
Number of trips per month
Number of hours worked per month
Amount of collection hours per month
Number of hours paid to assistants per month
Number of hours paid to driver per month
Total hours paid per month
Effective working days per month
Distance traveled per month
Total distance traveled per month
Fuel consumption per month
No. asstns/month
Ton/month
No. trips/month
Hours worked/month
Collect. hours/month
Hours paid asstns/month
Hours paid driver/month
Hours paid/month
Days/month
Km traveled/month
Total Km./month
GIlns/month

With the above variables, it is possible to estimate the following indicators:

Indicator	Formula	Unit of measurement
Tons/total collection time: This information allows to understand the connection between the amount of tons collected and the time devoted to such activity. Decrease of the value obtained here will obviously be reflected by the increment in the cost of the service. This indicator implicitly considers urban infrastructure, population density, collection method (door-to-door, spot-tospot), number of collection workers, type of waste storage, features of the vehicle, collection times and average collection speed	Tons collected month collection time per month	Ton/hr collection
Comparison of tons collected versus hours paid: This data is used to acknowledge and forecast the operating costs of the service (direct costs - labor), as well as to check every month if ratio between the tons collected/hours paid to execute the service are congenial.	Tons collected per month Hours paid per month (asstnt+driver)	Ton/hrs paid
Tons/trip:	Tons collected per month	Ton/trip

Indicator	Formula	Unit of measurement
Information to determine whether the collection sectors and routes have been properly set up, as well as to control overloading of vehicles. It works as a base information for measuring and billing the service.	Number of trips per month	
Tons/assistant/day: This information allows to acknowledge the daily performance of a collection assistant as regards to the amount of kilograms collected by the assistant This indicator implicitly considers the collection method, type of waste storage, the worker's age and physical fitness, type of vehicle and number of trips conducted.	Tons collected per month Number of effective assistants per month	Ton/asstnt/day
Kilograms/Kilometer of sector: This information allows to acknowledge the relationship between the kilograms of wastes collected and the distance traveled in kilometers. The increase or decrease of this value will be obviously reflected upon the cost of the service. Such cost implicitly considers the population density, collection method, type of waste storage, frequency of the service, appropriate collection routes and number of assistants.	Tons collected per month $\times 1000$ Distance traveled in sector per month (Km.)	Ton/km sector
Kilograms/total kilometers traveled: This information allows to acknowledge the connection between the amount of tons collected and total kilometers traveled per month. The increase or decrease of this value will obviously be reflected upon the cost of the service.	Tons collected per month $\times 1000$ Total distance traveled per month (Km.)	Ton/km total
Fuel efficiency: It establishes the relationship between the fuel consumption per month and the hours worked by the vehicle in the month	Gallons of fuel per month hours worked per month (hr.)	Gllns/hr

3. INDICATORS USED FOR ROUTE IMPROVEMENT

The indicators and their corresponding optimal values to be used for the diagnosis and assessment of the route improvement process are shown next.

Indicator: Tons/total collection time
Acceptable range for the Tons/total collection time indicator

Type of collection (urban zone)	Acceptable range	Optimal value
Door-to-door or mixed method, three assistants.	2.3 a 2.6 ton/hour	2.45 ton/hour
Spot-to-spot (containers), three assistants.	2.8 a 3.2 ton/hour	3.0 ton/hour

Indicator: Tons vs. total paid hours
Acceptable range: $\quad 0.30$ a 0.35
Optimal value 0.33

Indicator: Tons/trip
Ratio: Tons per trip
Maximum payload of truck
Optimal ratio range: $\quad 0.9$ to 1.05

Indicator: Tons/assistant/day

Acceptable range
Optimal value
4.3 to 4.8 ton/assistant/day
4.5 ton/assistant/day

Indicator: Fuel efficiency
The indicator values will be set based on the features of the collection vehicle, to be established by the manufacturer.

4. SYMBOLOGY TABLE FOR MAPS

Symbol	Description
\longrightarrow	Productive travel, the direction of the arrow displays the traffic way
---------	Dead time travel (when the truck does not collect wastes and it is only traveling)
	One-way streets
	Streets with no access to enter
(A)	Highest point on the road
(B)	Lowest point on the road
	Container, its capacity can be identified by coloring it or achurado
\square / \square	Tinaquera
\triangle	Excessive waste generator
----------	Neighborhood limit
(1)	Industry
(C)	Business
\bigoplus	Streets with traffic jams

Data J

Street Sweeping Improvement Manual

Recommendations for the Design of Street Sweeping Routes.

After the street sweeping diagnostic has been conducted, it is concluded that street sweeping does not follow a rational design and there is not a monitoring system which can assist to control performances, the use of resources, and can help to evaluate it. Moreover, there is not a definition on the aspects that this service covers, where it is executed, its frequency, and quality levels that are expected to be attained.

Due to the previous situation, DIMAUD is unable to quantify the service regarding the efficiency, coverage area, and its future expansion.
This document has the sole purpose to provide fundamentals about the aspects that street sweeping cover and also give some recommendations to improve it.
There are two types of sweeping: manual and mechanical.

1. Manual Street Sweeping

1.1. Street Sweeping Area:

Two street sweeping areas can be defined:
Between Constructed lines: Street Sweeping is executed mainly on pedestrian avenues, commercial areas, and areas with heavy traffic. Street Sweeping is conducted from the construction line up to the gutter; additionally, tree surroundings are cleaned.
Gutter area: Street Sweeping is also executed in most of the streets which do not have heavy pedestrian traffic or commercial areas. Street sweeping covers approximately 60 cm from the gutter to interior of the road.

1.2. Street Sweeping Types

a. Daily Street Sweeping without Maintenance

This type of street sweeping covers a sector in an eight hours shift; the street is swept once. If street sweeping is conducted between building lines, the regular performance is $1.25 \mathrm{~km} /$ street sweeper/day; on the other hand, if street sweeping also covers the gutter, then the performance can reach $1.5 \mathrm{~km} / \mathrm{street}$ sweeper/day. Street sweeping should not necessarily be conducted on a daily basis.

b. Street Sweeping with Maintenance

This service is characterized because the streets should be swept at least twice a day. Street sweeping is conducted between the buildings lines and should have a performance of $1.0 \mathrm{~km} / \mathrm{street}$ sweeper/day. The street sweeper undertakes the his/her first part of the task to fully sweep and dedicates the remaining time to provide maintenance by picking up paper and minor wastes. This type of sweeping is done in pedestrian avenues, commercial areas, and important administrative areas. This sweeping should be done on a daily basis.

c. Sweeping by the Crew

This sweeping is not conducted on a daily basis or with high frequency, but it responds to a permanent program with low frequency or specific program whenever it is detected a deficient cleansing on the sector.

This type of cleansing is generally conducted by a team between 8 to 16 street sweepers; it is advisable to work with a crew of 8 workers who should be directed by a supervisor that should control the performances and satisfaction of goals established for this service. Additionally, it is conducted a removal of wastes which are accumulated on the street and soil; furthermore, light weeding out is conducted.

Performances in this area reach 2.0 km ./ street sweeper/ day.

1.3. FREQUENCY

Daily Frequency: Sweeping can be conducted every day from Monday to Sunday or from Monday to Saturday. It is done on main roads, pedestrian avenues, commercial areas, maintenance sweeping.
Three times a week frequency: it is executed every other day from Monday to Saturday; generally, this frequency is adopted on secondary roads or parallel roads to the main ones where there is not heavy commercial activity, street sweeping is conducted without providing additional maintenance during the day.
Frequency of twice per week or less: It is generally conducted in residential sector and it corresponds to sweeping by crews.
The frequency is defined by:
\rightarrow Number of pedestrian
\rightarrow Importance of the area
\rightarrow Economic possibilities
\rightarrow Public participation

1.4. Cleansing Levels

The following table provides a proposal to define the cleansing levels.

LEVEL	CHARACTERISTICS
Level A	Dust nor garbage is observed on the streets and sidewalks/gutters.
Level B	A moderate amount of dust is observed
Level C	There are dust and papers in moderate quantities
Level D	There is dust, some papers and a moderate amount of garbage

LEVEL	CHARACTERISTICS
Level E	There is a large amount of dust, papers and other wastes, specially domestic
Level F	There are large amount of wastes on public roads

1.5. Daily Work Order

In order to monitor and control daily sweeping and, subsequently, evaluate its performance, it is necessary to conduct elaborate a daily work order which at least should include the following information:
\rightarrow Date
\rightarrow Shift: Daytime - Night-time - Other
\rightarrow Sector: One sector will be formed by a group of routes; all of them in charge of a supervisor.
\rightarrow Route: The street sweeping service will be designed based on specific routes which could be developed through a street sweeping service without maintenance. Additionally, occasional or special routes are considered; these routes correspond to a specific street sweeping planning in a sector and it is conducted whenever lack of cleansing is detected on a site. For this case, the route designed should be defined and it should be included the meters to be covered.
\rightarrow Identification of street sweeper and supervisor; for the case of a whole crew, all personnel should be identified.
$\rightarrow \quad \mathrm{N}^{\circ}$ of bags to be used, bags capacity
\rightarrow Assigned tools and replacement of them

1.6. Route Evaluation

The following performances should be evaluated by using operational indicators which will serve as comparative tools. Indicators for the Management of Public Cleansing elaborated by CEPIS can be used. The following table shows these indicators and their acceptable ranges.

Indicator: Street Sweeping Coverage (\%)

This indicator reflects the percentage of streets which are being swept in all Panama District or by Corregimiento. It is calculated as follows:

Length of street swept $\times 100$.
total length of roads

Acceptable Range: 85 to 100\%

Indicator Lineal Km. swept/ street sweeper / day

This indicator reflects daily average performance of the worker in lineal kilometers. The performance depends of the type of service (between building lines, gutter cleansing area), physical situation of the sidewalks, gutter, worker's age, and physical condition of the worker, population density, pedestrian flow, shift and service frequency, type of broom which is used, existence of vehicles parked on the sidewalks. This figure is expressed by the following formula:
total length of streets swept in a month (lineal km)
(number of effective street sweepers) x (effective days per month)

Acceptable Range: from 1.3 to 1.5 lineal km / street sweeper / day (sidewalk+gutter, paved roads, street sweeper age of 35 years)
from 1.0 to 1.2 lineal km/ street sweeper / day including maintenance, paved roads
from 1.8 to 2.0 lineal km/street sweeper/day swept by the crew, including paved roads.
Indicator: Bags consumption/street sweeper day
The average number of bags which are used daily by street sweepers can be determined with this indicator. Additionally, it is used to elaborate operative cost estimates of this service (direct material costs). This indicator is calculated by:

Consumption of bags per month (N° of bags)
(Number of effective street sweepers) \times (effective days a month)

Acceptable Range: from 7 to 9 bags/ street sweeper/ day (low density PE bags, capacity of 120 liters and 0.002 " thickness, paved roads, 2 shifts/day, 60% daily frequency and 40% every other day).

Indicator: Bags consumption / km swept

This indicator reflects the average number of bags which are used per kilometer swept; it helps to make a projection of the number of bags when a new service is introduced. The performance depends on the capacity of the bag, urban infrastructure, service frequency, number of paper bins, population density and floating population.

Consumption of bags in a month (N° of bags)
 Total length of street swept per month

Acceptable Range from 5 to 7 bags/ kilometer swept (low density PE bags, capacity of 120 liters and 0.002" thickness, paved roads, 2 shifts/day, 60\% daily frequency and 40\% every other day).

Indicator Consumption of brooms / kilometer swept

This indicator helps to define the average number of brooms which are used per kilometer swept; it also helps to project the operative costs of the new service. It is calculated as follows:

Total consumption in a month (N° of brooms)
Total length of street swept per month (Km.)

Acceptable Range from 0.02 to 0.04 brooms/ kilometer swept (paved roads, broom with wooden handle 45 cm long, 6 cm wide, and 11 cm of visible fiber).

Indicator: Comparison of kilometers swept versus hours paid

This indicator is used to know and calculate the direct costs of labor and to verify on a monthly basis if there is proportionality of kilometers swept and the hours paid to execute the service. This indicator depends on the performance of the worker, payment of an adequate salary, number of medical licenses and overtime hours per month.

Total length of streets swept in a month (km)
 Number of hours paid in a month

Acceptable Range from 0.14 to 0.16 km swept / hours paid

1.7. Procedure to design street sweeping routes

Subsequently, the steps to design street sweeping routes are shown. Ideally, a diagnostic of the current routes should be done before their design; for that purpose, it is necessary to gather information directly from the site, this job should
be done by technical personnel who will design the routes in conjunction with the street sweepers so that the path matches the actual route.

The routes will be drawn on a map to scale (ideally, each map covers a complete sector); it will be measured in lineal meters of street sweeping per route. If there are differences between the actual route and the street layout map, then the map should be modified and the path should be measured again.
Each route will identify the frequency and if street sweeping includes cleansing maintenance or not. Subsequently, the average worker performance will be calculated and it will be compared with acceptable ranges for this indicator in accordance with the characteristics of street sweeping.

If the performance is below the acceptable range, a new route will be design.
It is advisable to separate the street sweeping sector by Corregimiento; this situation will facilitate the calculations for service coverage per Corregimiento. The crew size should be between 10 and 12 street sweepers per supervisor.

For each sector, the lineal kilometers to be swept will be defined. Subsequently, the number of workers per sector will be calculated by using an acceptable range shown by the indicator km/street sweeper/day. The performance indicator will depend on the type of service provided, i.e., if maintenance is provided and which areas should be swept.
For example, if a sector wants to be swept and has a total of 12.4 lineal kilometers, with a service sidewalk+gutter and no maintenance, then the number of street sweepers should correspond to:
Average value of acceptable range: $1.4 \mathrm{Km} . /$ street sweeper/day
N° of workers per sector :.Lineal kilometers to be swept by sector
Range value of average performance
N° Workers per sector: $\underline{10.9}=8$ Workers

$$
1.4
$$

On the other hand, if street sweeping wants to be provided with maintenance then the performance corresponds to approximately: $1.0 \mathrm{~km} /$ street sweeper/day. Consequently, the number of workers will be given by:
N° Workers per sector: $\frac{10.9}{1.0}=11$ Workers

Once the number of workers has been calculated, in a copy of the original map used to survey the routes, then the sector which would provide service will be
drawn. Subsequently, a route diagram will be made taking into account the following:
> The worker should mobilize during his/her work in opposite direction to the traffic.
$>$ To prevent or minimize the street intersections
$>$ Do not cover the same gutter twice, unless it is required as sweeping maintenance
> The route terminal point should be as close as possible to the initiation point.
> Kilometer per street sweeper should be similar to the basic performance values
> To prevent that the route finished in the middle point of the block.
Example: Route's Diagram Process.

The route's drawing can be verified on the site and will be described by using the same criteria as the one for collection.

Data K

Drawings

K-1

K-3

K-5

[^0]: ${ }^{1}$ Excessive generators: those users that generate a larger amount of wastes than that established for the household sector; a value of 200 liters/day can be considered.
 ${ }^{2}$ Productive distance: the distance traveled by the truck while collecting wastes.
 ${ }^{3}$ Non-productive distance: the distance when the truck is only shifting and no collection is carried out.

[^1]: ${ }^{4}$ Refer to Annexes for the use of the Route Improvement Worksheet
 ${ }^{5}$ The Annexes include the definition and calculation procedures for the indicators.

[^2]: ${ }^{6}$ See optimal indicators in the Annexes

[^3]: ${ }^{7}$ Collector: a person who picks up the wastes and places them in the collection truck.

[^4]: ${ }^{8}$ Working day: The number of working hours set forth by Law (eight hours/day).
 ${ }^{9}$ Peak day: day on which the maximum accumulation of wastes takes place.
 ${ }^{10}$ Normal day: Days(s) with lower accumulation of wastes.

[^5]: ${ }^{11}$ Compaction truck : packing truck

[^6]: ${ }^{12}$ Cycle time: the time required by a complete collection trip.

[^7]: 13 "Comb-style layout": collection on both sides of the road at the same time; it is traveled only once a day.

[^8]: 14 "Double-comb layout": collection on one side of the road; it is traveled at least twice a day.

