a.5.3 Sunshine Hours

Sunshine hours are not recorded at present as it has been stable over years. Table 11-10 presents monthly average sunshine hours measured at B.AFF between 1908 and 1965.

Table 11-10: Average Monthly Sunshine Hours (1908 to 1965)

unit : hours/month

Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
263	246	255	209	162	135	147	147	148	147	143	208	2,210

a.6. Landfill Amount

When the new landfill starts its operation from the year 2006, the expected final disposal amount by the year 2015 is estimated in the following table.

Table 11-11: Prospect of Required Landfill Volume and Construction Plan

											unit : m°
	2006	2007	2008	2009	20)10	2011	2012	2013	2014	2015
Waste volume	470,385	957,627	1,458,540) 1,974,352 2,50		3,536	3,047,121	3,605,239	4,179,252	4,769,424	5,376,784
Cover soil volume	94,077	191,525	291,708	708 394,870 5		0,707	609,424	721,048	835,851	953,885	1,075,357
Total	564,462	1,149,152	1,750,248	2,369,222	39,222 3,004,2		3,656,545	4,326,287	5,015,103	5,723,309	6,452,141
*Required volume of Etapa 3	286,462	871,152	1,472,248	2,091,222	2,726,243		3,378,545	4,048,287	4,737,103	5,445,309	6,174,141
Service period	Ph	ase 1		Phase 2			Phase 3		Pha	ase 4	
Available volume	1,300,000 m ³		1,2	1,200,000 m ³		1,100,000 m ³		2,800,000 m ³			
Total available volume	1,300,000 m ³		2,5	2,500,000 m ³		3,600,000 m ³		6,400,000 m ³			

notes : *assumed Etapa 2 remaining volume of end year 2006 is about 278,000 m³

b. Conceptual Design

b.1. Landfill Site

b.1.1 Site Development Plan

Basic Concept

The planed landfill capacity is about 6.4 million m³. Possible development area is about 26 ha with taking into account 50 m width of a buffer zone along the river. The landfill will have a maintenance road at its periphery. Consequently, an area to be used for a landfill is about 20 ha.

A layout plan and a land reclamation plan are formulated based on the basic concept shown in Table 11-12 with taking into account of examples in Japan and safety. Due to the land features of the site, there are some points where 50 m of buffer zone from the river cannot be achieved. In such points, it is aimed at securing 30m at least.

Item	Descriptions		
Internal road	width :10.0m		
Access road	width : 10.0 m, maximum vertical slope : 8.000%		
Access road for leachate treatment facilities	width : 6.0 m, maximum vertical slope : 8.000%		
Cut slope grade	1:2		
Bank slope grade	1:3		
Slope grade in the landfill site	1:2, width of scarcement : 2.0m		
Landfill slope grade	1:3, width of scarcement : 2.5m		
Elongation from river	norm :50 m, minimum : 30 m		

Table 11-12: Basic Concept of Site Development Plan

Site Development Plan

The landfill construction is divided in three phases as shown in Figure 11-6. Phase 1 is the southern part, Phase 2 is the northwestern part and Phase 3 is the northeastern part. The depth of the landfill is set at 10 m. Waste will be raised up to 80 m(ALS) at each phase. Then, the three areas will be combined and the height will reach at 110 m as Phase 4. Capacities of respective those phases are shown Table 11-13, which are estimated based on a map of 1 in 2,500.

Table 11-13: Prospective Landfill Amount

Phase	Landfill amount (m ³)
Phase 1	1,300,000
Phase 2	1,200,000
Phase 3	1,100,000
Phase 4	2,800,000
Total	6,400,000

Figure 11-6: Zoning Plan for Site Development

Earth Wok Plan

Table 11-14 shows required earthwork. The huge earthwork in Phase 2 and 3 will be unavoidable in order to obtain enough capacity of landfill. If the excess soil will be used for about 1.4 million of cover material, the remains will be about 2.1 million. The northern area next to the project site has capacity to receive 2.2 million of soil (See Figure 11-7).

	Cut volume (m ³)	Embankment volume (m ³)	Balance (m ³) (cut – embankment)
Phase 1	406,000	15,000	391,000
Phase 2	1,973,000	4,000	1,969,000
Phase 3	1,192,000	26,000	1,166,000
Phase 4	0	1,000	-1,000
Total	3,571,000	46,000	3,525,000

Table 11-14: Earth Work Volume

Figure 11-7: Surplus Soil Pile Up Site

Level	Area 1(m ²)	Area 1(m ²) Ave. area (m ²)		Volume (m ³)
+70.00	48,500	58 300	5	291 500
+75.00	68 100	00,000	,	201,000
10.00	00,100	63.900	10	639.000
+85.00	59.700	,		,
	,	55,150	10	551,500
+95.00	50,600			
		45,350	10	453,500
+105.00	40,100			
		33,800	10	338,000
+115.00	27,500			
	2,273,500			

|--|

Waste Retaining Structure

The waste retaining structure, embankment, serves to contain waste in the landfill and to temporally store unexpected large amount of leachate caused by heavy rain. The construction of embankment will be partially, as the majority of the landfill will be dig up. The height of the embankment is to be 10 m from the bottom of the landfill. The inner slope of the embankment has ascent of 1 to 2 and the outer has 1 to 3 with taking into account stability. The embankment will be made of a good material obtained in the project site.

b.1.2 Groundwater Collection Plan

Present Situation

According to the geological survey, the groundwater level is fairly shallow. It is conjectured that the groundwater would flow from the northwest to the southeast. Rock is found at a shallow level. However, it will not be impermeable layer, as there exists many cracks through which the groundwater can flow.

Set Out of Groundwater Drainage Facility

Drainage facility will be distributed to drain the ground water under the landfill. The drainage facility is to consist of main lines and branch lines. The main lines will be placed at food of the embankment and at the scarcement. The branch lines will be distributed in $3,000 \text{ m}^2$ (about at an interval of 30 m).

Structure of Groundwater Drainage Facility

Structure of the groundwater drainage facility is shown in Figure 11-8. The structure is designed based on case examples in Japan. Perforated polymer pipes are to be surrounded by crushed stones. The main line has a diameter of 300 mm. The branch line is 200 mm, which can avoid to block up with soil.

Figure 11-8: Cross Section of Ground Water Drainage

b.1.3 Leachate Management Plan

b.1.3.1 Seepage Control Plan

The basic layer at the project site is rock. The rock has many cracks and it is conjectured that the groundwater will flow through the cracks as aforementioned. Even though the rock itself has high impermeability, the layer as a whole should be regarded as permeable. Therefore, seepage control is to be planned in order to avoid contamination of groundwater with leachate.

There are two type of seepage control. One is construction of vertical impervious wall, which can be applied when an impermeable layer exists clearly. The other is surface lining, which covers whole surface of bottom of landfill with impermeable material. According to the geological condition, the surface lining is recommendable.

Synthetic liner is commonly used as impermeable liner. The liner is not thick, then, it could be damaged by improper manner. Major causes that possibly damage the liner are summarized in Table 11-16.

Item	Trigger
Ground	salience, round settlement, ground depression, etc.
Ground water	up lifting, etc.
Landfill work	scratching of landfill equipment, etc.
Waste	keen-edged waste, live load of waste
Climate	ultraviolet degradation, thermal stress, stress cracking, etc.
Installation	scratching of construction equipment, joint defects, etc.

Table 11-16: Major Causes of Sy	nthetic Liner Damage
---------------------------------	----------------------

Major causes to damage the liner are physical stress from above. In order to avoid that the liner is damaged, the liner is to be protected enough thickness of soil and geotextile. Consequently, a surface lining system presented in Figure 11-9 is designed.

Figure 11-9: Seepage Control Lining System

b.1.3.2 Leachate Collection

Leachate Runoff Amount

Leachate has to be drained immediately so as not to hamper landfill operation. Meanwhile, leachate will not seep from the damaged part of the lining system, if there is no leachate stored in the landfill. Therefore, the leachate collection system should have enough capacity to drain the leachate immediately. Design leachate runoff amount is computed by the rational formula, where the same amount of leachate as rainfall will be drained immediately.

$Q=1/360 \times c \times r \times A$		
where ;		
Q	:	leachate runoff amount (m^3 /sec)
с	:	runoff rate
r	:	rainfall intensity (mm/hour)
А	:	catchments area (hectare)

Runoff rate

Between 0.6 and 0.7 is commonly used as runoff rate, "c." In order to shorten retention time of leachate in the landfill, 0.7 is applied for "c."

Rainfall intensity

The probability precipitation in two years of 65 mm/hr is to be used, which was obtained from Panama Canal Authority.

Catchment area

Landfill areas of respective phases are regarded as catchment areas.

Arrangement of collection pipe

Collection pipes consist of main lines and branch lines. Main lines are to be placed at centers of landfills and branch lines are distributed in every $3,000 \text{ m}^2$ (about an interval of 30 m).

Size of collection pipe

Perforated polymer pipes will be used as collection pipes. Size of pipes is to be decided based on computation by means of Manning Formula. It is assumed that whole cross section area is to be used in the computation.

Table 11-17: Flow Calculation Table for Leachate Collection System

Network	Catchments area	Runoff rate	rainfall intensity	Leachate amount	Size of pipe	Inclination	Roughness	Velocity	Allowable flow	Remarks
number	(ha)	-	(mm/hr)	(m ³ /sec)	(mm)	(%)	-	(m/sec)	(m ³ /sec)	
Main line										
Phase 1										
1	6.87	0.7	65	0.868	ϕ 700	0.811	0.012	2.348	0.904	
Phase 2										
2	6.47	0.7	65	0.818	ϕ 700	1.304	0.012	2.977	1.146	
Phase 3										
3	6.30	0.7	65	0.796	ϕ 700	1.200	0.012	2.856	1.099	
Phase 4										
4	7.36	0.7	65	0.930	ϕ 800	0.627	0.012	2.257	1.134	to No. 6
5	2.69	0.7	65	0.340	ϕ 500	0.748	0.012	1.802	0.354	to No. 6
6	13.08	0.7	65	1.653	ϕ 900	0.748	0.012	2.666	1.696	
Branch line										
Common	0.30	0.7	65	0.038	φ200	1.200	0.012	1.239	0.039	

b.1.4 Rainwater Drainage Plan

Rainwater Runoff Amount

The rational formula is also applied to obtain design rainwater runoff amount.

$Q=1/360 \times f \times r \times A$

where ;	Q f r	:	rainwater runoff amount (m ³ /sec) runoff rate rainfall intensity (mm/hour) catchments area (hectare)
	A	•	catchinents area (nectare)
	f r A	:	runoff rate rainfall intensity (mm/hour) catchments area (hectare)

Runoff rate

Runoff rate, "f," is depending on surface conditions of catchment area. Characteristics of the rainwater catchment area are hilly and vegetated. Therefore, 0.6 is applied for "f" according to Table 11-18.

Topographic features	fp
Precipitous terrain	0.75~0.90
Rolling hill and/or forest	0.50~0.75
Agricultural land	0.45~0.60

Table 11-18: Runoff Ratio for Peak Flow

source: Japan Society of Civil Engineers, 1999

Rainfall intensity

The probability precipitation in two years of 65 mm/hr is to be used, which was obtained from Panama Canal Authority.

Catchments area

Catchment area will change according to progress of landfilling, e.g., the area will be the largest at completion of Phase 4. Drainage ditches are designed based on the largest catchment area.

Drainage system

Trapezoid drainage ditch with concrete pavement will be employed. Size of drainage ditches is computed by means of Manning Formula with 20% of depth of freeboard.

Naturali	Catchments area	Runoff rate	rainfall intensity	Discharge amount	Chai	nnel sectio	on	Inclination	Roughness	Velocity	Allowable flow	
number	(ha)	-	(mm/hr)	(m ³ /sec)	Top width (mm)	Bottom width (mm)	Depth (mm)	(%)	-	(m/sec)	(m ³ /sec)	Remarks
Phase 1												
1	17.0	0.6	65	1.842	1700	500	1200	0.483	0.015	1.795	0.379	
2	23.5	0.6	65	2.546	1700	500	1200	1.953	0.015	2.419	1.269	
3	2.4	0.6	65	0.260	900	500	400	0.748	0.015	2.500	1.548	
4	9.8	0.6	65	1.062	1300	500	800	0.748	0.015	4.731	3.909	
5	11.5	0.6	65	1.246	1400	500	900	0.721	0.015	3.485	2.217	
6	35.3	0.6	65	3.824	1700	500	1200	2.000	0.015	2.416	1.537	discharge to river, energy absorbed by stairs structure
Cross over structure 1	17.0	0.6	65	1.842	φ900			1.500	0.013	1.795	0.379	Inlet
Cross over structure 2	11.5	0.6	65	1.246	φ900			0.721	0.013	2.419	1.269	Internal road of leachate treatment facility
Phase 2												
7	9.6	0.6	65	1.040	1200	500	700	1.053	0.015	2.710	1.184	
8	2	0.6	65	0.217	800	500	300	1.622	0.015	2.328	0.346	
9	5.6	0.6	65	0.607	1100	500	600	0.627	0.015	1.957	0.695	
Cross over structure 3	2.4	0.6	65	0.260	ϕ 500			0.748	0.013	1.663	0.327	connect to No.3 of Phase 1
Phase 3												
10	3.4	0.6	65	0.368	900	500	400	1.163	0.015	2.239	0.473	discharge to river
11	4.2	0.6	65	0.455	1000	500	500	0.699	0.015	1.911	0.535	
12	4.3	0.6	65	0.466	1000	500	500	2.000	0.015	3.233	0.905	discharge to river, energy absorbed by stairs structure
13	2.2	0.6	65	0.238	900	500	400	0.769	0.015	1.820	0.384	
Cross over structure 4	9.8	0.6	65	1.062	ϕ 800			0.700	0.013	2.201	1.106	connect to No.4 of Phase 1

Table 11-19: Flow Calculation Table for Rainwater Drainage System

b.2. Leachate Treatment System

b.2.1 Treatment Amount

Leachate amount will change depending on precipitation and evaporation. Rain season is distinctly different from dry season in the study area, where the most of rainfalls happen in the rain season. In this case, it is not economical to design leachate treatment facilities based on the maximum rainfall. In order to avoid this uneconomical case, there is a manner to construct a regulation pond to average the leachate amount to be treated. Figure 11-10 shows concept of the manner. This manner lowers the design capacity of the facilities and reduces costs, but also makes operation easy as the leachate amount will be stable.

Leachate amount is depending on precipitation and evaporation. Required capacity of leachate treatment facilities is subject to capacity of a regulation pond. Figure 11-11 shows this concept.

Leachate amount is computed by means of the following formula.

$$Q = \frac{I(C1 \times A1 + C2 \times A2)}{1,000}$$

where ;

I : Rrainfall intensity (mm/day)

		Q	:	Leachate generation amount (m ³ /day)
		C1	:	Infiltration coefficient for landfill operation area
		A1	:	Landfill operation area (m ²)
		C2	:	Infiltration coefficient for closed landfill area
		A2	:	Closed landfill area (m ²)
(C1 = 1 ·	-ET/	IM	
W	here;			
		ET	:	Monthly possible evaporation amount (mm) (ET=0.7Et)
		Et	:	Monthly evaporation amount (mm)
Ε	Et=0.	245 × 1	$K \times Cj \times$	$tj \qquad Cj = \frac{dj}{\sum dj \times 100}$
W	here;			
		dj	:	Monthly sunshine hour (hour)
		tj	:	Monthly average air temperature (Fahrenheit)

Landfill Area

As mentioned before, the project site is divided into three sections, or Phase 1, Phase 2 and Phase 3. Then, valleys, which will appear between the sections after completion of those three phases, will be filled with waste; this is Phase 4.

Operation area and closed area are considered as shown in Table 11-20 for leachate calculation.

	Landfill phase	Operation area (ha)	Closed area (ha)
Case 1	Phase 1	6.87	0
Case 2	Phase 2	6.47	6.87
Case 3	Phase 3	6.30	13.34
Case 4	Phase 4	6.50	13.91
Case 5	Closed	0	20.41

Table 11-20: Calculation Cases

The maximum annual rainfall in the last 10 years will be used of the calculation.

Table 11-21: Maximum Rainfall Year (1992 to 2001)

	Gamboa	PMG	B AFF
Maximum year	1993	1996	1995
Annual rainfall (mm/year)	2,626	2,367	2,875

Required Treatment Capacity and Regulation Amount

Table 11-22 shows relation between required capacities of the treatment facilities and the regulation pond obtained based on the leachate generation amounts. Site conditions define

capacity of the regulation pond, i.e., 24,000 m³. Then, the required capacity of leachate treatment facilities, which matches with the pond, can be obtained from the table as 800 m^3/day .

		Gan	nboa	PN	ΛG	B AFF		
	Landfill phase	Treatment capacity (m ³ /day)	Regulation amount (m ³)	Treatment capacity (m ³ /day)	Regulation amount (m ³)	Treatment capacity (m³/day)	Regulation amount (m ³)	
Case 1	Dhase 1	650	21,178	400	19,597	700	22,914	
Case 1	Flidse I	700	18,153	450	16,325	750	20,764	
00	Dhase 2	700	21,874	500	18,803	700	20,388	
Case 2	Flidse 2	750	18,874	550	16,853	750	18,355	
C 250 3	Phase 3	800	21,189	600	20,089	650	21,754	
Case 5	Flidse 5	850	18,189	650	18,139	700	18,604	
Caso 4	Phase 4	800	23,539	650	19,656	700	21,193	
Case 4	FlidSe 4	850	20,539	700	17,733	750	19,075	
Case 5	Closer	800	763	650	2,965	700	90	

Table 11-22: Treatment Capacity and Regulation Amount

b.2.2 Water Quality

Leachate quality varies depending on types of wastes disposed, climate, etc. In the Study, leachate quality of the existing landfill was surveyed at a time. BOD 762 mg/l and COD 1,009 mg/l were obtained from the results. These values are considerably lower than typical leachate quality shown in Table 11-23.

Table 11-23: Typical Data of Leachate Quality						
	Range (mg/liter)	Typical				

	Range (mg/liter)	Typical (mg/liter)
BOD	2,000 to 30,000	10,000
COD	3,000 to 60,000	18,000
Organic nitrogen	10 to 800	200
Ammonia nitrogen (NH ₃ -N)	10 to 800	200
Total phosphorus	5 to 100	30
Nitrate	5 to 40	25

source : integrated solid waste management, McGraw-Hill

It is judged risky to use the obtained values of leachate quality as design conditions. Then, the typical values are applied as design conditions, influent quality, for the leachate treatment facilities in this plan. Meanwhile, the effluent standards set by ANAM are regarded as design effluent quality of leachate. Table 11-24 summarizes the design conditions of the leachate treatment facilities, i.e., influent and effluent qualities.

	Influent quality (mg/liter)	Effluent quality (mg/liter)
BOD	10,000	35
COD	18,000	100
Organic nitrogen	200	10
Ammonia nitrogen (NH ₃ -N)	200	3
Total phosphorus	30	5
Nitrate	25	6

Table 11-24: Design Conditions for Leachate Treatment Facility

b.2.3 Treatment Process

Process Flow Sheet

The existing leachate treatment method is the aerobic-anaerobic (facultative) pond. This method cannot achieve the effluent standards above. Especially, it is difficult to attain the standard set for nitrate. Activated sludge method removes nitrogenous matters effectively. However, its operation requires sophisticated technology. Consequently, oxidation ditch method, which can remove nitrogenous matters and is relatively easy to operate, with physico-chemical treatment to remove phosphorus and heavy metals is applied in this plan.

Figure 11-12: Leachate Treatment Process Flow Sheet

Summary of Leachate Treatment Facility

Summary of the leachate treatment facility shows below table.

Item	Description					
Regulation pond	24,0000 m ³					
Treatment capacity	800 m ³ /day					
Treatment method	Oxidation ditch with chemical sedimentation, sand filtration and activated carbon absorption					
Oxidation ditch	17,600 m ³ (detention time 22 days)					
Sedimentation tank	200 m^3 / 54 m^2 (detention time 6 hour)					
Chemical sedimentation tank	200 m ³ / 54 m ² (detention time 6 hour)					
Sand filter	Pressed sand filter (diameter : 3.5 m, nos. : 2)					
Activated carbon	Pressed type (diameter : 3.5 m, nos. : 2)					

Table 11-25: Summary of Leachate Treatment Facility

c. **Cost Estimation**

absorber

Overall cost for new landfill shows below table.

Table	11-26:	Overall	Cost
-------	--------	---------	------

												unit	. U\$ 1,000
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Landfill site													
Investment													
Design & supervision	66	66	306	306	341	341	8	8					1,442
Construction		4,400		20,400		22,700		500					48,000
O&M		2,811	2,811	2,811	2,811	2,811	2,811	2,811	3,469	3,469	3,469	3,469	33,553
Total	66	7,277	3,117	23,517	3,152	25,852	2,819	3,319	3,469	3,469	3,469	3,469	82,995
Leachate treatr	nent												
Investment													
Design & supervision	75	75											150
Construction		5,000											5,000
O&M		135	135	135	135	135	135	135	135	135	135	135	1,485
Total	75	5,210	135	135	135	135	135	135	135	135	135	135	6,635
Overall cost													
Investment total	141	9,541	306	20,706	341	23,041	8	508	0	0	0	0	54,592
O & M total	0	2,946	2,946	2,946	2,946	2,946	2,946	2,946	3,604	3,604	3,604	3,604	35,038
Total	141	12,487	3,252	23,652	3,287	25,987	2,954	3,454	3,604	3,604	3,604	3,604	89,630

d. Closure Plan

d.1. Final Cover

Final cover is very important for use of closed landfill and control of leachate and landfill gas. Figure 11-13 proposes a final cover structure.

Figure 11-13: Proposed Final Cover Structure

d.2. Post-closure Utilization Plan

Site of closed landfill is not stable during waste being decomposed, which lasts for a long time. Then, the site is not suit to construction of a large size facility. The Cerro Patacon Landfill is next to a national park at the west side. ARI has a plan to develop an industrial area at the east side. Consequently, it is recommendable to revegetate the closed site to harmonize with the national park and to use a partial area as a park.

d.2.1 Design Area

The leachate treatment facility will operate after the landfill is closed. The area except the facility is about 22 ha. This is the design area of the closure plan.

d.2.2 Zoning

Zoning plan is as presented in Figure 11-14.

Figure 11-14: Zoning Plan

Park Zone

The top is to have an area of about 19,000m². The area will be used as a multi-purpose space, where it is possible to have a football pitch, a baseball field, tennis courts, etc.

Green Zone

Open forest will be developed in the upper slope, where people can have a stroll along nature trail.

Buffer Zone

Vegetated buffer zone will be established in the lower slope, which harmonizes with the surrounding green area.

11.2.2 Pre-feasibility Study on Transfer and Transport System

a. Consideration of Necessity of Transfer and Transport System

a.1. Background

The District has experienced an expansion toward the North and the East. The Corregimientos to the North, Chilibre and Las Cumbres, experienced a population growth of 49% and 64% from 1990 to 2000 respectively. On the other hand, the Eastern Corregimientos, San Martin, Pacora and Tocumen, experienced a growth of 44%, 132%, and 77% from 1990 until 2000 respectively.

The collection system in the Eastern part is done mostly with compactors of 12.2 m^3 (16 yd³); and the eventual use of compactors of 15.3 m³ (20 yd³), especially for areas where highly concentrated and residential sectors are found such as Mall Los Pueblos, San Joaquín, and Jardín Olímpico routes. DIMAUD's data suggests that the current collection amount is about 70 tons/day.

On the other hand, the collection system in the Northern part was initially done with compactors of 12.2 m³; however, with the recent acquisition of additional 15.3 m³ compactors, collection is done with 15.3 m³ compactors for the most distant part to the North, such as Chilibre Centro and Quebrada Ancha routes; and a small dump-truck of 3.1 m^3 (4 yd³) for areas where the 15.3 m³ compactor can not access. According to data from DIMAUD's collection service, from those two routes an average of 7.6 tons are collected on a daily basis.

Although the current waste amount collected in the East is not so large and the one in the North is small, there is a growing need to evaluate transfer stations due to the rapid population growth in the areas. Consequently, a pre-feasibility study has been conducted for a transfer and transport system.

a.2. Compliance with Norms, Regulations and other Plans

a.2.1 City Planning

East

Decree 205 has approved the "Urban Development Plan for the Metropolitan Areas in the Pacific and the Atlantic" defined provisions for infrastructure systems for "...Drinking Water, Drainage, Waste Water, Electricity, Telecommunications, and Solid Wastes..." The Plan, in fact, considers a Tocumen Transfer Station located to only 1.5 km to the West from the Airport, which would serve Pacora, San Martin, and Tocumen. The population to be serviced would be 148,442 persons by 2020. However, provisions should also be taken into

consideration because that same Decree 205 (December 28th, 2000) establishes "Tocumen Airport and its surroundings" as a Functional Special Area which is defined as a "zone which requires more detailed studies to ensure that the character and function of its future development are compatible with the rest of the urban area." A Transfer and Transport system might not be compatible with the functions of an International Airport operation and its expansion.

North

A Transfer and Transport System for the North will have special considerations due to the following:

- a) Many of the most important population centers to the North, such as, Alcalde Díaz, Villa Esperanza, Don Bosco, and Chilibre, are located within the Panama Canal Basin and along the Trans-Isthmian Corridor.
- b) The Trans-Isthmian Corridor is defined by Decree 205¹ (December 28, 2000) as "a special area of critical concern where every consideration related to the Corridor's management should have as a primary goal to rehabilitate and to protect the natural environment, specifically the water resource which serves to operate the Panama Canal and supplies of drinking water to the metropolitan population".
- c) There is an explicit policy to "direct the urban growth along the coast shores and outside the Panama Canal Basin...." (Law No. 21², Categories for Territorial Planning, Urban Areas, July 2, 1997). Currently, the Authority of the Panama Canal (ACP) is promoting a regulation of Law No. 21 and a draft of this regulation is expected to be ready by the end of the year 2002.
- d) MIVI and other related institutions are reviewing a document titled "Normative for the Urban Development of Localities in the Chilibre and Las Cumbres Corregimientos" which will regulate the population settlement for those two Corregimientos inside the Panama Canal Basin. The Normative will regulate urban expansion mostly by defining areas for specific purposes and with defined minimum areas for residential constructions for example. The Normative is expected to be enacted during the year 2002.

Consequently, the urban growth and the projected amount of waste generated by its population should be carefully evaluated.

On the other hand, the concept of Transfer Stations to provide service to the Eastern and Northern part of the city is also included in the Report for the "Plan of Urban Development of the Metropolitan Areas in the Pacific and the Atlantic."³ In fact, Decree 205 establishes considerations for this type of facilities because it defines provisions for infrastructure

¹ Decree which approved the Urban Development Plan in the Metropolitan Areas of the Pacific and the Atlantic which is ascribed to the General Direction of Urban Development of MIVI

² Law by which it is approved the Regional Plan for the Development of the Inter-oceanic Region and the General Plan to Use, to Conserve, and to Develop the canal area

³ Prepared by Dames & Moore

systems for "...Drinking Water, Drainage, Waste Water, Electricity, Telecommunications, and Solid Wastes..."

The report by Dames & Moore proposed a T/S denominated Las Cumbres which would service José Domingo Espinar, Belisario Porras, and Integrated zone No. 4 (Las Cumbres and Chilibre). The total population to be serviced would be 495,595 persons by 2020. It should be noted that Jose Domingo Espinar and Belisario Porras belong now to San Miguelito District, which is currently serviced by a private collection company.

a.2.2 Transport

Panama does not have specific environmental regulations related to Transfer Stations and Transport. However, there are other regulations related to these facilities, for example, Law 10 (enacted on January 27th, 1989) which deals with the Weight and Dimensions of Heavy duty vehicles that transit through public roads. The entity in charge to enforce Law 10 is the Authority for Terrestrial Transit and Transport (ATTT).

Transfer and transport systems often employ tractor-trailer for transportation to carry a large amount of waste at once. A typical tractor-trailer corresponds to a truck-tractor of three axles and a semi-trailer of two axles. This type of combination is denominated T3-S2 according to the ATTT. The Authority restricts the total maximum weight for this type of vehicle to 38.3 Tons. If a vehicle exceeds the defined weight, Law 10 requires the user to obtain a special permit from the Ministry of Public Works. The recommended transport system, i.e., tractor-trailer (payload 20 ton), would exceed the limit depending on specifications. Nonetheless, the client can also request the manufacturer to construct a trailer that suits the needs and restrictions at hand, i.e., meet the required payload (20 tons) and the maximum weight regulation (38.3 tons).

a.3. Future Waste Amount

Corregimientos covered with the transfer stations were defined, based on trials of break-even analysis that is described in the later part, where the transfer and transport system would be more beneficial than the conventional collection system. Those corregimientos are as follows.

- East: Tocumen, Pacora and San Martin
- North: Chilibre

Waste Amount in the future in the areas is forecast as shown in Table 11-27 and Table 11-28. It should be noted that the population forecast is based on the trend of population growth in the recent years, but does not take into account the policies on the Panama Canal Basin as there are many uncertainties to consider such policies in the population forecast.

Ye	ar	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Population	Pacora	79,175	86,108	93,648	101,848	110,766	120,465	131,014	142,486	154,963	168,532	183,290	199,339	216,795
	San Martín	3,990	4,139	4,293	4,453	4,619	4,792	4,970	5,156	5,348	5,547	5,754	5,969	6,191
	Tocumen	98,708	104,501	110,633	117,126	123,999	131,276	138,980	147,136	155,770	164,911	174,589	184,834	195,681
	Total	181,873	194,748	208,574	223,427	239,384	256,533	274,964	294,778	316,081	338,990	363,633	390,142	418,667
Waste Amou	int (ton/day)	205.2	221.8	240.3	261.0	280.6	299.4	319.5	340.5	362.9	386.8	411.6	438.1	466.0

Table 11-27: Forecast of Waste	e Collection Amount in the Eas
--------------------------------	--------------------------------

Table 11-28: Forecast of Waste Collection Amount in the North

Year		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Population	Chilibre	45,634	47,495	49,433	51,449	53,548	55,733	58,007	60,373	62,836	65,400	68,068	70,845	73,735
Waste amount (ton/day)		27.1	28.8	30.5	32.4	33.7	35.1	36.5	38	39.5	41.1	42.7	44.4	46.2

a.4. Break-even Analysis

a.4.1 Key Data

Key data for break-even analysis of the transfer and transport system vs. the conventional transport system which is done by collection vehicles are set as shown in Table 11-29.

Table 11-29: Key Data for Break-even Analysi
--

Item	Unit	Value
Basic parameter		
Daily working hour	hr	16
Operating time	hr	14
Maintenance time	hr	2
Nos. of shift	nos.	2
Working days	day	300

i. Basic Parameters

ii. Conventional Transport System

Item	Unit	Value
Compactor truck (12.2 m ³)		
Payload	ton/truck	5
Trip time of collection	hr/trip	5.0
Nos. of trip	nos./day	2.4
Waste amount collected	ton/truck/day	12
Economic life	years	4
Distance per trip	km	$50^{a} - 60^{b}$
Annual mileage	km	36,000 ^a -43,200 ^b
Fuel consumption	km/liter	2.2
Driver	person	1
Worker	person	3

Item	Unit	Value
Compactor truck (15.3 m ³)		
Payload	ton/truck	7.7
Trip time of collection	hr/trip	4.5
Nos. of trip	nos./day	2.7
Waste amount collected	ton/truck/day	21
Economic life	years	4
Distance per trip	km	50 ^a – 60 ^b
Annual mileage	km	40,500 ^a -48,600 ^b
Fuel consumption	km/liter	2
Driver	person	1
Worker	person	3

^a For the Transport and Transfer system to the East ^b For the Transport and Transfer system to the North

iii. Transfer and Transport System for the East

Item	Unit	Value
Tractor and trailer (65 m ³)		
Payload	ton/trailer	20
Trip time of transport	hr/trip	4
Nos. of trip	nos./day	3
Waste amount transported	ton/trailer/day	60
Economic life	years	7
Distance per trip	km	50
Annual mileage	km	45,000
Fuel consumption	km/liter	1.8
Driver	person	1
Worker	person	0

Item	Unit	Value
Transfer Station		
Capacity	ton/day	570
Service Life	years	15
Total Cost	USD	10,449,000

iv. Transfer and Transport System for the North

Item	Unit	Value
Roll on/off & container of 22.9 m ³		
Payload	ton/truck	6.5
Trip time of Collection	Hr/trip	4
Nos. of trip	nos./day	3
Waste amount collected	ton/truck/day	20
Economic life	years	5
Distance per trip	km	60
Annual mileage	km	54,000
Fuel Consumption	km/liter	2
Driver	person	1
Worker	person	3
Capacity to be handled	ton/day	60
No. of Containers of 22.9 m ³ to be used from 2003 to 2015	Units	67

a.4.2 Analysis on the East

The break-even analysis is conducted based on the waste collection amount forecast in the M/P's target year 2015.

a.4.2.1. Transfer and Transport System

Required capacity of the transfer and transport system in the East is calculated as shown in Table 11-30 by taking into account that there are 300 working days per year. In year 2015, the required capacity of the system would be 570 ton/day, which is enough large to apply combination of a transfer station and a large scale of transport equipment. Therefore, the transfer and transport system for the analysis is set as shown in Table 11-31.

Table 11-30: Required Capacity of Transfer Station in the East

Unit: ton/day

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Required capacity	250	270	300	320	350	370	390	420	450	480	510	540	570

Item	Specification	
Transfer station	570 ton/day of direct dump station	
Transport equipment	Tractor and trailer, 65 m ³ (payload 20 ton)	

a.4.2.2. Results of Analysis

The break-even analysis was carried out based on the following unit costs which were derived from the key data mentioned previously.

Item	Unit	Value	
Conventional Transport			
Compactor Truck (15.3 m ³)	USD/ton-min	0.044	
Compactor Truck (12.2 m ³)	USD/ton-min	0.058	
Transfer Station Proposed			
Capacity	ton/day	570	
Unit Cost Estimate	USD/ton	3.06	
Transport Proposed			
Tractor-trailer (65 m ³)	USD/ton-min	0.0103	

Table 11-32: Cost Estimates for Transfer and Transport System for the East

The cost estimates were graphed and the intersection point between the conventional transport and the proposed systems represents the break-even point (See Figure 11-15).

Figure 11-15: Break-even Analysis in the East

These results can be included in a table in the following manner:

	Break-even Time (min.) 65 m ³ + 570 tons/day T/S	Break-even Distance (km) ^a 65 m ³ + 570 tons/day T/S	Distance from Tocumen to Patacón Round-trip (km) ^b
12.2 m ³	64	32	48
15.3 m ³	90	45	48

^a The break-even distance was calculated based on an average velocity of 30 km/hr

^b The distance was measured by the Study Team from Tocumen Airport until Patacon

The results show that a transfer station of 570 tons/day with a transport done by a 65 m³ tractor-trailer is feasible compared to the transportation done by the 12.2 m³ compactor for the area located further than 32 km from Cerro Patacon landfill (round trip), and compared to the transportation done by the 15.3 m³ compactor for the area further than 45 km from the landfill (round trip). Tocumen Airport (Central part of Tocumen Corregimiento) is located to 24 km from Patacon landfill site (48 km round trip). Pacora and San Martin are found to the east of Tocumen Airport. Consequently, it can be concluded that a transfer and transport system will be feasible financially in Tocumen, Pacora, and San Martin.

a.4.3 Analysis on the North

a.4.3.1. Transfer and Transport System

Required capacity of the transfer and transport system in the North is calculated as shown in Table 11-33 by taking into account that there are 300 working days per year. In year 2015, the required capacity of transfer station would be 60 ton/day. As the scale of the system is too small to apply the same system as one for the East, combination of Roll-on/Roll-off truck and 22.9 m^3 (30 yd³) of container is applied as the transfer and transport system for the North.

Table 11-33; Re	quired Capacity	/ of Transfer Sta	ation in the North
10010 11 00.100	quillou oupuoit,		

											Ur	nit: ton/	day
Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Required capacity	40	40	40	40	50	50	50	50	50	60	60	60	60

Table 11-34. Transfer and Transport System in the Nort	Table 11-34: T	Fransfer and	Transport S	System in	the North
--	----------------	--------------	-------------	-----------	-----------

Item	Specification
Transfer station	22.9 m ³ (30 yd ³) container and site for placement of container
Transport equipment	Roll-on/Roll-off truck

a.4.3.2. Results of Analysis

The break-even analysis was based on the following unit costs which were derived from the key data mentioned previously.

Table 11-35	Cost Estimates for	Transfer and	Transport Sv	stem for the Nor	rth
			Transport Sy	Stern for the Nor	uı

Item	Unit	Value
Conventional Transport		
Compactor Truck (15.3 m ³)	USD/ton-min	0.045
Compactor Truck (12.2 m ³)	USD/ton-min	0.059
Transfer System Proposed		
Capacity	ton/day	60
Number of Containers of 22.9 m ³	Units/year	6
Unit Cost Estimate	USD/ton	3.35
Transport Proposed		
Roll-on/Roll-off (22.9 m ³)	USD/ton-min	0.031

The cost estimates were graphed and the intersection point between the conventional transport and the proposed systems represents the break-even point (See Figure 11-16).

Figure 11-16: Break-even Analysis in the North

These results can be included in a table in the following manner:

	Break-even Time (min.)	Break-even Distance (km)	Distance from Chilibre Centro
1			
12.2 m ³	119	60	58
15.3 m ³	240	120	58

^a The break-even distance was calculated based on an average velocity of 30 km/hr

^b The distance was measured by the Study Team from Chilibre Centro to Patacon

These results show that the Roll-on/Roll-off system of transport is feasible compared to the compactor (conventional transport system) only when the round-trip distances are farther than 60 km for the 12.2 m³ compactor or farther than 120 km for the 15.3 m³ compactor. Chilibre Centro is located to 29 km (58 km round-trip) from the landfill site. The population of Chilibre is concentrated along the Trans-isthmian road which center can be located precisely in Chilibre Centro where the proposed Roll-on/Roll-off system might be feasible only for the 12.2 m³, but not for the case of the 15.3 m³ compactor which is precisely the type of vehicle that is currently providing service to Quebrada Ancha and Chilibre Centro.

a.5. Conclusion

East

• The population growth toward the East is projected to continue high as the two previous censuses, which were conducted in 1990 and 2000, showed. This trend might be even promoted by explicit policies, e.g. Law 21, which discourage additional settlements to the North, but it promotes them toward the East.