5.5 General Water Quality

5.5.1 Comparison of Bangladesh Standard and WHO Guideline

The results of the laboratory chemical analysis were compared with the Standard for Drinking Water in Bangladesh and the WHO Guideline Values for Drinking Water. The summarized results exceeding the standard and/or the guideline are shown in Table 5.5.9 to 5.5.14. The following descriptions show the results of all samples that exceed the Standard or the Guideline values. Analytical parameters and the standard numbers of testing method are shown in Table 5.5.1.

Analytical parameters	Standard No	Analytical parameters	Standard No
PH	4500 H ⁺ B	Sodium	3111 B
Temperature	Thermometric method	Potassium	3111 B
Electric conductivity	Electrometric method	Dissolved iron	3111 B
Hardness	Titrimetric method	Dissolved	3111 B
		manganese	
TDS	2540 C	Calcium	3111 B
COD	5220	Magnesium	3111 B
Ammonium	Nessler's method	Cadmium	3113A, 3113B
Nitrite	4500 NO2 ⁻ B	Total chromium	3113A, 3113B
Nitrate	APHA-4500	Copper	3113A, 3113B
Sulfate	4500 SO ₄ ²⁻	Lead	3113A, 3113B
	Turbidity of	Mercury	3112B
Chloride	silver-chloride		
	method		
Bicarbonate	Titrimetric method	Nickel	3113A, 3113B
Fluoride	4500 F D	Zinc	3111C
Cyanide	4500 CN ⁻ E		

 Table 5.5.1 Analytical parameters and the standard numbers

1) Observation Wells/Holes in Pourashava

a. Deep groundwater in Chuadanga Pourashava

As for water quality parameters of observation wells/holes deeper than 200m, those exceeding the standard in Bangladesh and/or WHO guideline values are Mn, Fe, Ca and COD.

 NH_4 concentrations exceeded the standard in Bangladesh (0.5 mg/l) in 3 samples; however, the maximum value of 1.2 mg/l (well Ch-2) was not over the WHO guideline value (1.5 mg/l). As for Mn, 13 of the 24 samples exceeded the standard value in Bangladesh and the WHO value (0.1 mg/l). Of them, two were over the WHO health guideline value (0.5 mg/l) with a maximum level of 0.87 mg/l (well Ch-1). For Fe, 23 of the 24 samples exceeded the WHO guideline value (0.3 mg/l). Of them, 20 were over the standard in Bangladesh (1.0 mg/l) with a maximum value of 16 mg/l (well Ch-1). Ca concentrations exceeded the standard in Bangladesh (75 mg/l) in 17 of the 24 samples, the maximum value being 130 mg/l (well Ch-1).

The COD level in 1 of the 24 samples exceeded the standard in Bangladesh (4mg/l) with a content of 31mg/l (well Ch-1).

b. Deep groundwater in Jhenaidah Pourashava

As for water quality parameters of observation wells/holes deeper than 200m, those exceeding the standard in Bangladesh and/or WHO guideline values are Mn, Fe, Ca, Mg, Pb and COD. Mn levels exceeded the Bangladesh and WHO values (0.1 mg/l) in 8 of the 23 samples, one of which was over the WHO health standard (0.5 mg/l). The maximum value was 0.72 mg/l measured at Jh-2-4 hole. Fe concentrations exceeded the WHO guideline value (0.3 mg/l) in 22 of the 23 samples. Of those, 19 were over the Bangladesh standard (1.0 mg/l), with a maximum value of 18 mg/l (well Jh-1). As for Ca, levels in 15 of the 23 samples exceeded the standard value in Bangladesh (75 mg/l), the maximum being 110 mg/l (well Jh-1). Mg levels exceeded the Bangladesh standard (35 mg/l) in 14 of the 23 samples with a maximum value of 38 mg/l (well Jh-1 and hole Jh-1-4). Pb levels exceeded the WHO guideline value (0.01 mg/l) in 3 samples; however the maximum was 0.013 mg/l (hole Jh-1-4), which is below the Bangladesh standard (0.05 mg/l). The COD in 1 of the 23 samples was in excess of the Bangladesh standard (4mg/l) with a value of 27 mg/l (well Jh-2).

c. Deep groundwater in Jessore Pourashava

As for water quality parameters of observation wells/holes deeper than 200m, those exceeding the standard in Bangladesh and/or WHO guideline values are pH, Mn, Fe, Ca, Mg and COD. The pH of one sample (hole Js-1-4) was in excess of the standard in Bangladesh (ranging from 6.5 to 8.5) with a value of 8.86. Mn levels exceeded the Bangladesh and WHO values (0.1 mg/l) in 18 of the 19 samples, 11 of which were over the WHO health guideline value (0.5 mg/l); the maximum value was 2.3 mg/l measured at well Js-2. Fe levels in 18 of the 19 samples exceeded the WHO guideline value (0.3 mg/l). Of those, 16 samples had concentrations over the Bangladesh standard (1.0 mg/l) with a maximum value of 15 mg/l (well Js-2). The Ca content exceeded the standard value in Bangladesh (75 mg/l) in 10 of the 19 samples with a maximum value of 84 mg/l (well Js-1). One of the samples had Mg concentrations exceeding the Bangladesh standard (35 mg/l). The COD of 5 of the 19 samples exceeded the standard level in Bangladesh (4 mg/l) with a maximum value of 180 mg/l (well Js-2).

2) Observation holes in the Model Rural Areas

a. Bara Dudpatila Village, Chuadanga District

As for the water quality of deep observation wells established from core borings (depth of 300m), the parameters exceeding the standard in Bangladesh and/or WHO guideline values are

NH₄, Mn, Fe, Ca, Mg and COD.

Ammonia concentrations exceeded the Bangladesh standard (0.5 mg/l) in all 7 samples. The maximum level of 1.8 mg/l, found in one sample immediately after drilling, is over the WHO guideline value (1.5 mg/l). Mn levels exceeded the Bangladesh standard value (0.1 mg/l) in 5 of the 7 samples, one of which was over the WHO health guideline (0.5 mg/l) with a value of 0.51 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in all 7 samples. Of those, 6 samples were over the standard level in Bangladesh (1.0 mg/l) with a maximum value measured immediately after drilling of 15 mg/l. Ca concentrations exceeded the Bangladesh standard (75 mg/l) in 5 of the 7 samples. The maximum level of 110 mg/l was measured during the fifth month of monitoring. One sample contained Mg concentrations in excess of the permissible value in Bangladesh (35 mg/l). The maximum value of 43 mg/l was measured during the first month of monitoring. The COD of 2 of the 7 samples exceeded the level permitted in Bangladesh (4 mg/l), the maximum value measured in the second and third month of monitoring being 39 mg/l.

b. Krishna Chandrapur Village, Jhenaidah District

As for the water quality of deep observation wells established from core borings (depth of 300m), the parameters exceeding the standard in Bangladesh and/or WHO guideline values are pH, NH₄, Mn, Fe, Ca, Na and COD.

A pH of 8.78 exceeding the Bangladesh standard (ranging from 6.5 to 8.5) was observed during the first month of monitoring. Ammonia levels exceeded the Bangladesh standard (0.5 mg/l) in 5 of the 7 samples. Two of them had levels in excess of the WHO health guideline value (1.5 mg/l), the maximum value measured in the third month of monitoring being 1.6 mg/l. Mn levels exceeded the Bangladesh and WHO values (0.1 mg/l) in 5 of the 7 samples. However, all were below the WHO health guideline (0.5 mg/l), with a maximum value of 0.28 mg/l measured in the sixth month of monitoring. Fe concentrations exceeded the WHO guideline value (0.3 mg/l) in 6 of the 7 samples. All 6 samples had levels over 1.0 mg/l, with a maximum value of 5.3 mg/l measured in the sixth month of monitoring. Ca concentrations exceeded the Bangladesh standard (75 mg/l) in 5 of the 7 samples; the maximum value of 130 mg/l was measured in the fifth month of monitoring. Na concentrations exceeded the Bangladesh standard and the WHO guideline values (200 mg/l) in 1 of the 7 samples, with a level of 200 mg/l measured in the first month of monitoring. The COD of 2 of the 7 samples exceeded the standard level in Bangladesh (4 mg/l), with a maximum value of 39 mg/l measured in the first month of monitoring.

c. Rajnagar Bankabarsi Village, Jessore District

As for the water quality of deep observation wells established from core borings (depth of

300m), the parameters exceeding the standard in Bangladesh and/or WHO guideline values are NO_2 , NH_4 , Mn, Fe, Ni and COD.

Although 2 samples had nitrite levels in excess of the Bangladesh standard (1.0 mg/l), the content was 2.2 mg/l, which is below the WHO guideline value (3.0 mg/l). Ammonia levels exceeded the standard value in Bangladesh (0.5 mg/l) in 2 of the 7 samples. However, the maximum value of 1.1 mg/l measured in the fifth month of monitoring was not over the WHO guideline value (1.5 mg/l). Mn concentrations exceeded the WHO value (0.1 mg/l) in 1 of the 7 samples; however all were below the WHO health guideline value (0.5 mg/l). The maximum value, measured in the sixth month of monitoring, was 0.2 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in 3 of the 7 samples. Of those, none were over the Bangladesh standard (1.0 mg/l); the maximum value, measured in the sixth month of monitoring, was 0.70 mg/l. Nickel levels were over the WHO guideline value (0.02 mg/l) in 1 of the 7 samples although it did not exceed the standard in Bangladesh (0.1 mg/l). The maximum level, which was measured in the second month of monitoring, was 0.037 mg/l. The COD of 2 of the 7 samples exceeded the level permitted in Bangladesh (4 mg/l), with a maximum value of 39 mg/l measured immediately after drilling.

3) Views on Samples Exceeding the Standard Values

As for the samples from observation holes/wells in the Pourashavas and observation holes in the model villages, the explanation and the conditions of occurrence of the parameters exceeding the Bangladesh standard and WHO guideline are shown in Table 5.5.14. In regards to health impact, concentrations of Mn in some of the samples were above the WHO health guideline (0.5mg/l).

4) Improved Deep Wells in the Model Rural Areas

a. Bara Dudpatila Village, Chuadanga District

As for the water quality of Improved Deep Wells, the parameters exceeding the standard in Bangladesh and WHO guideline values are NO₂, NH₄, Mn, Fe, Ca and Pb.

 NO_2 levels exceeded the standard value in Bangladesh (1 mg/l) in 3 of the 12 samples. Of those, none were over the WHO guideline value (3 mg/l), the maximum value being 2.5 mg/l. NH_4 concentrations exceeded the standard value in Bangladesh (0.5 mg/l) in 8 of the 12 samples. Of those, 6 were over the WHO guideline value (1.5 mg/l), the maximum value being 1.8 mg/l. Mn concentrations exceeded the standard value in Bangladesh and the WHO value (both 0.1 mg/l) in all 12 samples. Of those, none were over the WHO health guideline value (0.5 mg/l), the maximum value being 0.32 mg/l. Fe levels exceeded both the WHO guideline value (0.3 mg/l) and the Bangladesh standard (1.0 mg/l) in all 12 samples, the maximum value being 5.1 mg/l. Ca levels exceeded the standard value in Bangladesh (75 mg/l) in all 12 samples, the maximum value being 92 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 1 (0.010 mg/l) of the 12 samples. However, it was not over the Bangladesh standard (0.05 mg/l).

b. Krishna Chandrapur Village, Jhenaidah District

As for the water quality of Improved Deep Wells, the parameters exceeding the standard in Bangladesh and WHO guideline values are NH₄, Mn, Fe, Ca and COD.

NH₄ concentrations exceeded the standard value in Bangladesh (0.5 mg/l) in all 12 samples. Of those, 8 were over the WHO guideline value (1.5 mg/l), the maximum value being 5.4 mg/l. Mn concentrations exceeded the standard value in Bangladesh and the WHO value (both 0.1 mg/l) in 7 of the 12 samples. Of those, none were over the WHO health guideline value (0.5 mg/l), the maximum value being 0.46 mg/l. Fe levels exceeded both the WHO guideline value (0.3 mg/l) and the Bangladesh standard (1.0 mg/l) in all 12 samples, the maximum value being 9.8 mg/l. Ca levels exceeded the standard value in Bangladesh (75 mg/l) in all 12 samples, with a maximum value of 130 mg/l. COD concentrations exceeded the Bangladesh standard (4 mg/l) in 4 of the 12 samples, with a maximum value of 39 mg/l.

c. Rajnagar Bankabarsi Village, Jessore District

As for the water quality of Improved Deep Wells, the parameters exceeding the standard in Bangladesh and WHO guideline values are NO₂, NH₄, Mn, Fe, Pb and COD.

NO₂ levels exceeded the standard value in Bangladesh (1 mg/l) in 3 of the 12 samples. Of those, none were over the WHO guideline value (3 mg/l), the maximum value being 2.0 mg/l. NH4 concentrations exceeded the standard value in Bangladesh (0.5 mg/l) in 8 of the 12 samples. Of those, 6 were over the WHO guideline value (1.5 mg/l), the maximum value being 8.4 mg/l. Mn concentrations exceeded the standard value in Bangladesh and the WHO guideline value (both 0.1 mg/l) in 4 of the 12 samples. Of those, none were over the WHO health guideline value (0.5 mg/l), the maximum value being 0.20 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in 8 of the 12 samples. Of those, 3 were over the Bangladesh standard (1.0 mg/l), with a maximum value of 1.5 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 1 of the 12 samples with a value of 0.015 mg/l. However, it was not over the Bangladesh standard (0.05 mg/l). COD concentrations exceeded the Bangladesh standard (4 mg/l) in 1 of the 12 samples, with a value of 39 mg/l.

5) Existing Wells in the Study Area

a. Existing Wells in Rainy Season

As for the water quality of shallow existing wells, the parameters exceeding the standard in Bangladesh and/or WHO guideline values are TDS, NO₃, NO₂, NH₄, Mn, Fe, Cl, HCO₃, Ca, Mg, Na, F, Cd, Total-Cr, Pb, Ni and COD.

TDS levels exceeded the Bangladesh standard and WHO guideline values (both 1,000 mg/l) in 2 of the 23 samples. The maximum value is 1650 mg/l. NO₃ levels exceeded the standard value in Bangladesh (10 mg/l) in 3 of the 23 samples. The maximum value of 180 mg/l was over the WHO guideline value (50 mg/l). NO₂ levels exceeded the standard value in Bangladesh (1 mg/l) in 4 of the 23 samples. Of those, 3 were over the WHO guideline value (3 mg/l) with a maximum value of 4.2 mg/l. NH₄ concentrations exceeded both the standard value in Bangladesh (0.5 mg/l) and the WHO value (1.5 mg/l) in 7 of the 23 samples. Mn concentrations exceeded the standard value in Bangladesh and the WHO value (both 0.1 mg/l) in 20 of the 23 samples. Of those, 9 were over the WHO health guideline value (0.5 mg/l), with a maximum value of 0.93 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in 19 of the 23 samples. Of those, 11 were over the Bangladesh standard (1.0 mg/l) with a maximum value of 11 mg/l. Cl levels exceeded the WHO guideline value (250 mg/l) in 1 (330 mg/l) of the 23 samples. However, it was not over the Bangladesh standard (600 mg/l). HCO₃ concentration exceeded the standard value in Bangladesh (600 mg/l) in 1 (720 mg/l) of the 23 samples. Ca levels exceeded the standard value in Bangladesh (75 mg/l) in 17 of the 23 samples with a maximum value of 160 mg/l. Mg levels exceeded the Bangladesh standard (35 mg/l) in 2 of the 23 samples, the maximum value being 45 mg/l. Na concentration exceeded the standard value in Bangladesh and the WHO value (both 200 mg/l) in 1 (290 mg/l) of the 23 samples. F concentrations exceeded the Bangladesh standard (1 mg/l) in 4 of the 23 samples. Of those, none were over the WHO guideline value (1.5 mg/l), the maximum value being 1.2 mg/l. Cd levels exceeded the WHO guideline value (0.003 mg/l) in 8 of the 23 samples. Of those, 5 were over the Bangladesh standard (0.005 mg/l), with a maximum value of 0.0079 mg/l. Total-Cr levels exceeded the standard value in Bangladesh (0.05 mg/l) in 21 of the 23 samples with a maximum value of 0.22 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 4 of the 23 samples. Of those, none were over the Bangladesh standard (0.05 mg/l), the maximum value being 0.030 mg/l. Ni levels exceeded the WHO guideline value (0.02 mg/l) in 14 of the 23 samples. Of those, none were over the Bangladesh standard (0.1 mg/l), the maximum value being 0.069 mg/l. COD concentrations exceeded the Bangladesh standard (4 mg/l) in 4 of the 23 samples, with a maximum value of 160 mg/l.

b. Production Wells in Rainy Season

As for the water quality of the production wells, the parameters exceeding the standard in Bangladesh and/or WHO guideline values are NO₂, NH₄, Mn, Fe and Ca.

 NO_2 levels exceeded the Bangladesh standard (1 mg/l) in 1 (1.1 mg/l) of the 7 samples. However, it was not over the WHO guideline value (3 mg/l). NH_4 concentrations exceeded the standard value in Bangladesh (0.5 mg/l) in 2 of the 7 samples. Of those, none were over the WHO health guideline value (1.5 mg/l), the maximum value being 1.2 mg/l. Mn concentrations exceeded the standard value in Bangladesh and the WHO value (both 0.1 mg/l) in 5 of the 7 samples. Of those, 1 was over the WHO health guideline value (0.5 mg/l) with a value of 0.68 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in 4 of the 7 samples. Of those, 2 were over the Bangladesh standard (1.0 mg/l), with a maximum value of 1.5 mg/l. Ca levels exceeded the standard value in Bangladesh (75 mg/l) in 6 of the 7 samples, with a maximum value of 97 mg/l.

c. Existing Wells in Dry Season

As for the water quality of shallow existing wells, the parameters exceeding the standard in Bangladesh and/or WHO guideline values are TDS, NO₂, NH₄, Mn, Fe, Cl, HCO₃, Ca, Mg, Na, F, Pb, COD.

TDS levels exceeded the standard value in Bangladesh and WHO guideline values (both 1,000 mg/l) in 2 of the 23 samples. The maximum value is 1450 mg/l. NO_2 levels exceeded the standard value in Bangladesh (1 mg/l) in 2 of the 23 samples. Of those, 1 was over the WHO guideline (3 mg/l) with the maximum value of 3.3 mg/l. NH_4 concentrations exceeded both the standard value in Bangladesh (0.5 mg/l) and the WHO value (1.5 mg/l) in all 23 samples with a maximum value of 20 mg/l. Mn concentrations exceeded the Bangladesh standard and the WHO value (both 0.1 mg/l) in all 23 samples. Of those, 10 were over the WHO health guideline value (0.5 mg/l) with a maximum value of 1.5 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in 22 of the 23 samples. Of those, 20 were over the Bangladesh standard (1.0 mg/l) with a maximum value of 8.1 mg/l. Cl levels exceeded the WHO guideline value (250 mg/l) in 1 (570 mg/l) of the 23 samples. However, it was not over the Bangladesh standard (600 mg/l). HCO₃ concentrations exceeded the Bangladesh standard (600 mg/l) in 1 (700 mg/l) of the 23 samples. Ca levels exceeded the Bangladesh standard (75 mg/l) in 18 of the 23 samples, the maximum value being 130 mg/l. Mg levels exceeded the standard value in Bangladesh (35 mg/l) in 1 (37 mg/l) of the 23 samples. Na concentrations exceeded the standard value in Bangladesh and the WHO value (both 200 mg/l) in 2 of the 23 samples with a maximum value of 400 mg/l. F concentrations exceeded the standard value in Bangladesh (1 mg/l) in 3 of the 23 samples. Of those, 1 was over the WHO guideline value (1.5 mg/l) at 1.7 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 4 of the 23 samples. Of those, none were over the Bangladesh standard (0.05 mg/l); the maximum value was 0.037 mg/l. COD concentrations exceeded the Bangladesh standard (4 mg/l) in 5 of the 23 samples, with a maximum value of 85 mg/l.

d. Production Wells in Dry Season

As for the water quality of the production wells, the parameters exceeding the standard in Bangladesh and/or WHO guideline values are NH_4 , Mn, Fe, Ca and Pb.

 NH_4 concentrations exceeded both the standard value in Bangladesh (0.5 mg/l) and the WHO value (1.5 mg/l) in all 7 samples, the maximum value being 8.2 mg/l. Mn concentrations exceeded the standard value in Bangladesh and the WHO value (both 0.1 mg/l) in all 7 samples. Of those, 3 were over the WHO health guideline value (0.5 mg/l) with a maximum value of 0.75 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in all 7 samples. Of those, 6 were over the Bangladesh standard (1.0 mg/l), with a maximum value of 2.6 mg/l. Ca levels exceeded the standard value in Bangladesh (75 mg/l) in 6 of the 7 samples, with a maximum value of 110 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 2 of the 7 samples. Of those, none were over the Bangladesh standard (0.05 mg/l), the maximum value being 0.047 mg/l.

6) Existing Wells and Pond in the Model Rural Areas

a. Existing Wells in the Model Rural Areas

As for the water quality of shallow existing wells in the model rural areas, the parameters exceeding the standard in Bangladesh and/or WHO guideline values are TDS, NO₃, NO₂, NH₄, Mn, Fe, Cl, HCO₃, Ca, Mg, Na, Total-Cr, Pb, Ni and COD.

TDS levels exceeded the standard value in Bangladesh and WHO guideline values (both 1,000 mg/l) in 5 of the 15 samples, with a maximum of 1710 mg/l. NO₃ levels exceeded the standard value in Bangladesh (10 mg/l) in 4 of the 15 samples. Of those, none were over the WHO guideline value (50 mg/l), the maximum value being 23 mg/l. NO₂ levels exceeded the Bangladesh standard (1 mg/l) in 4 of the 15 samples. Of those, 2 were over the WHO guideline value (3 mg/l), the maximum value being 4.0 mg/l. NH₄ concentrations exceeded both the Bangladesh standard (0.5 mg/l) and the WHO value (1.5 mg/l) in 11 of the 15 samples with a maximum value of 27 mg/l. Mn concentrations exceeded the Bangladesh standard and the WHO value (both 0.1 mg/l) in 7 of the 15 samples. Of those, 4 were over the WHO health guideline value (0.5 mg/l) with a maximum value of 1.1 mg/l. Fe levels exceeded the WHO guideline value (0.3 mg/l) in all 15 samples. Of those, 9 were over the Bangladesh standard (1.0 mg/l), with a maximum value of 8.2 mg/l. Cl levels exceeded the WHO guideline value (250 mg/l) in 5 of the 15 samples. However, none were over the Bangladesh standard (600 mg/l), the maximum value being 540 mg/l. HCO₃ concentration exceeded the standard value in Bangladesh (600 mg/l) in 2 of the 15 samples, with a maximum of 757 mg/l. Ca levels exceeded the Bangladesh standard (75 mg/l) in all 15 samples, with a maximum of 110 mg/l. Mg levels exceeded the Bangladesh standard (35 mg/l) in 5 of the 15 samples, the maximum value being 47 mg/l. Na concentration exceeded the standard value in Bangladesh and the WHO value (both 200 mg/l) in 5 of the 15 samples, with a maximum of 410 mg/l. Total-Cr levels exceeded the standard value in Bangladesh (0.05 mg/l) in 2 of the 15 samples, with a maximum value of 0.066 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 2 of the 15 samples. Of those, none were over the Bangladesh standard (0.05 mg/l), the maximum value being 0.014 mg/l. Ni levels exceeded the WHO guideline value (0.02 mg/l) in 3 of the 15 samples. Of those, none were over the Bangladesh standard (0.1 mg/l), the maximum value being 0.029 mg/l. COD concentrations exceeded the Bangladesh standard (4 mg/l) in 4 of the 15 samples, with a maximum value of 44 mg/l.

b. Pond Water in the Model Rural Areas

As for the water quality of pond-water in the model rural areas, the parameters exceeding the standard in Bangladesh and WHO guideline values are NO₃, NO₂, NH₄, Mn, K, F, Pb and COD. NO_3 levels exceeded the standard value in Bangladesh (10 mg/l) in 4 of the 27 samples. Of those, none were over the WHO guideline value (50 mg/l), the maximum value being 42 mg/l. NO_2 levels exceeded the Bangladesh standard (1 mg/l) in 3 of the 27 samples. Of those, 2 were over the WHO guideline value (3 mg/l) with a maximum value of 6.6 mg/l. NH₄ concentrations exceeded the Bangladesh standard (0.5 mg/l) in 9 of the 27 samples. Of those, 2 were over the WHO value (1.5 mg/l), with a maximum of 4.8 mg/l. Mn concentrations exceeded the standard value in Bangladesh and the WHO value (both 0.1 mg/l) in 2 of the 27 samples. Of those, none were over the WHO health guideline value (0.5 mg/l), the maximum value being 0.16 mg/l. K levels exceeded the standard value in Bangladesh (12 mg/l) in 5 of the 27 samples; the maximum value was 62 mg/l. F concentrations exceeded the standard value in Bangladesh (1 mg/l) in 7 of the 27 samples. Of those, 5 were over the WHO guideline value (1.5 mg/l) with a maximum of 3.6 mg/l. Pb concentrations exceeded the WHO guideline value (0.01 mg/l) in 1 (0.011 mg/l) of the 27 samples. However, it was not over the Bangladesh standard (0.05 mg/l). COD concentrations exceeded the Bangladesh standard (4 mg/l) in 10 of the 27 samples, with a maximum value of 78 mg/l.

7) Deep Observation Well in Keshabpur Thana

As for the water quality of deep observation well in Keshabpur Thana, the parameters exceeding the standard in Bangladesh and WHO guideline values are NH_4 and Fe.

 NH_4 concentrations exceeded the Bangladesh standard (0.5 mg/l) in one sample, with a value of 1.4 mg/l. However, it was not over the WHO value (1.5 mg/l). Fe level exceeded the WHO guideline value (0.3 mg/l) in one sample at 0.57 mg/l. However, it was not over the Bangladesh standard (1.0 mg/l).

5.5.2 Relations between Arsenic and General Quality Parameters

Based on the arsenic concentrations and other water quality parameters analyzed for the newly constructed observation wells/holes by the monthly monitoring program, the relations of arsenic concentrations and water quality parameters were examined.

Relation of Fe to As, NH₄, Eh and pH

Figure 5.5.1 shows the relations of dissolved iron to As, NH₄, Eh and pH in the observation well/holes. In the Study Area, the concentrations of Fe are generally high, ranging from 0 to 17mg/l. The groundwater samples having As concentrations more than 0.05mg/l show Fe concentrations ranging from 1 to 6mg/l. From the NH₄. Fe plots shown in graph b), the samples contaminated by As have higher values of both Fe and NH₄. Graph c) shows that the Fe concentration increases with decreasing Eh. Most samples having Fe concentrations from 5 to 15mg/l show Eh values from -20 to +100mV. However, the samples contaminated by As are limited in the upper-left of the graph. The relationship between Fe and pH shows an inversely proportional correlation. As shown in graph d) the samples having more than 5mg/l in Fe show 6.8 to 7.5 in pH.

5.5.3 Re-analysis of water quality for observation holes of which hand pumps are to be installed, and instruction on their use

In order to ensure the safe use of the observation holes to be installed with hand pumps by the Study Team in the Pourashava and Model rural areas, their water quality was re-analyzed for re-confirmation. Seven observation holes, which were not in excess of the WHO guideline value for As throughout all the monitoring, were selected for hand pump installation out of all fifteen observation holes (not including those in Brahmakati, installed for the supplemental survey). The samples of the seven observation holes were collected in mid-September 2002. The results of the water quality re-analysis in Japan and instruction on the use of observation holes based on the results were as follows.

1) Results of water quality re-analysis

The results of the field measurement and laboratory analysis in Japan are shown in Table 5.5.17. The results are mostly in agreement with the results of the entrusted local laboratory in Bangladesh. It can be said that the results of the local analysis in Bangladesh are reliable.

In these results, some points that need to be considered in comparing the Bangladesh standards and WHO guidelines are mentioned below

As levels do not exceed the Bangladesh standard (=0.05mg/l). However, two of the seven samples slightly exceeded the WHO guideline (=0.01mg/l) both with a value of 0.011mg/l. As for Mn levels, five of the seven samples exceeded the Bangladesh standard (=0.1mg/l). Of those, two were over the WHO health guideline (=0.5 mg/l) with values of 0.60 mg/l and 0.50 mg/l respectively. As for Fe levels, six of the seven samples exceeded the Bangladesh standard (=1 mg/l) and the WHO health guideline (=0.3 mg/l). Some samples also exceeded the Bangladesh standard for NO2,Ca, Mg and COD. Heavy metals such as Cd, Total-Cr, Cu, CN, Pb, Hg and Ni were all below PQL.

These results show the following. The As levels of the two observation holes (OH-Jh2-4, OH-Ch1-4) that exceeded the WHO guideline had not exceeded the guideline during the monitoring. However, they showed slightly higher levels of As. The direct cause of the two observation holes exceeding the WHO guideline value may be the seasonal change in concentrations (In general, the results of monitoring show that high As concentrations tend to be seen in the rainy season) or the tendency of As concentrations to gradually increase, but it is unclear.

The Bangladesh standard of 0.1 mg/l for Mn is, according to the WHO guideline, set as a level likely to give rise to consumer complaints such as stained laundry or bad taste. Mn concentrations that exceeded the WHO health guideline value (=0.5 mg/l) were found in only two of the measured samples, and were from the same wells containing As concentration above the WHO guideline value. All of the samples showed high iron concentrations that may be a problem in terms of taste, smell, etc, however will not have a direct impact on health. As for the one site (1.7 mg/l) that exceeded the Bangladesh standard value (= 1 mg/l) for NO2, it is below the WHO health guideline value (= 3 mg/l). Furthermore, it is common in Japan to set the standard for nitrogen concentrations including both NO2 and NO3 as "nitrogen as nitric acid and nitrogen as nitrous acid". Based on the Water Works Law in Japan, for example, the drinking water quality standard for nitrogen is 10 mg/l. Ca, Mg and COD are also not parameters that have a negative impact on health.

2) Measures taken by the Study Team for well use based on the results of water quality measurements

Based on the above results of the water quality re-analysis, the Study Team took the following measures regarding the use of the seven wells.

As for the two wells OH-Jh2-4 (Jhenaidah) and OH-Ch1-4 (Chuadanga) that exceeded the WHO guideline values for As and Mn, hand pumps have already been installed by the Study Team, but they have not been dismantled in consideration of their convenience to residents. However, the Study Team has ensured that the wells are not used for drinking purposes by marking them with yellow paint to indicate the water is not safe to drink. In addition, they have instructed residents that they can continue to use the well for the purposes other than drinking.

Hand pumps have also been installed at all the other wells. As iron concentrations are generally high and the oxidation-reduction potential (Eh value) is low, the reduction of iron and/or Mn concentrations in the water due to oxidation can be expected to some degree. The Study Team has instructed the residents to leave fetched water overnight or longer when using it for drinking purposes.

In order to ensure the residents fully understand the method of proper well use, the Study

Team gave instruction to the residents directly on site as they fetched water. They also gave the results of these measurement to keypersons, such as the village leader or the owners of the land where the wells had been installed, and made sure they had a good understanding of the situation. Moreover, they instructed the residents to contact DPHE if any problems concerning water quality, etc. arose in future.

As for the counterparts from the DPHE head office, the Study Team notified the measurement results to them and explained the above well use measures in order to obtain their agreement in advance. They also gave a similar explanation to the Executive Engineer, Sub-Assistant Engineer and Sub-Divisional Engineer from the DPHE local offices and Thana offices in Chuadanga, Jhenaidah and Jessore. Furthermore, as emphasized in the seminar in September, DPHE was requested once again to conduct monitoring whenever they have the opportunity in future.

5.5.4 Evaluation of General Water Quality

1) Observation Wells/Holes in Pourashava

Comparing the groundwater of observations holes established in shallow aquifers in the sites for test drilling in Pourashava to the existing wells (shallow wells and existing water source wells in Pourashava), the general water quality of observation wells/holes deeper than 200m is judged to be good across the board. Some of the general water quality parameters exceed WHO guideline values and/or the standard values in Bangladesh. However, highly toxic parameters, such as cadmium, chromium, copper, cyanide and mercury, are below the WHO guideline values and the standard in Bangladesh values in all of the samples.

As for Fe, many of the samples have levels exceeding the WHO guideline value and the Bangladesh standard. However, the WHO guideline values for iron are just levels likely to give rise to consumer complaints concerning color, taste, smell, etc. A guideline value based on health criteria has not been proposed. It is common knowledge that iron concentrations are often high in groundwater in a reducing state.

As with iron, there are many samples with Ca and Mg levels exceeding the Bangladesh standard. However, as a standard based on health criteria has not been proposed by WHO, it is not considered to be a serious problem.

As for Manganese, high concentrations are found in some samples. However, concentrations in deep groundwater are lower than in shallow groundwater. Moreover, about 80% of the samples from deep groundwater are below the health guideline value set by WHO.

As for lead, though 3 samples slightly and sporadically exceed the WHO guideline, they are not thought to have any effect on health.

Although levels of NH_4 exceed standard values in some of the samples, most are from shallow groundwater. The degree of contamination in deep groundwater was found to be

comparatively low. The source of ammonia was not examined in the Study but it is speculated that shallow groundwater contamination is due to fertilizers and urine. In deep aquifers, on the other hand, contamination is thought to be due to the effect of biological decomposition by bacteria, etc.

As for COD, though some samples exceed the standard in Bangladesh, it is thought that they are affected by the reducing condition of groundwater rather than by organic contamination. A standard based on health criteria has not been proposed by WHO.

2) Deep Observation Holes in Model Rural Areas

In general, the water quality of deep groundwater from observation holes converted from core borings holes in the model villages was judged to be good. Although some general water quality parameters exceed the WHO guideline values and/or standard values in Bangladesh, highly toxic parameters, such as Cd, Total-Cr, Cu, cyanide, Pb and Hg, were below the WHO guideline values and the Bangladesh standards in all of the samples.

As for Mn, only one sample had levels in excess of the health guideline value set by WHO. Manganese is thought to have geologic origins, and concentrations tend to be high in groundwater in a reducing state.

As for Fe, many of the samples have levels exceeding standard values. However, the WHO guideline values for iron are just levels likely to give rise to consumer complaints concerning color, taste, smell, etc. A guideline value based on health criteria has not been proposed. It is common knowledge that iron concentrations are often high in groundwater in a reducing state.

As with Fe, there are some samples with Ca and Mg levels exceeding the standard in Bangladesh. However, as a standard based on health criteria has not been proposed by WHO, it is not considered to be a serious problem.

 NO_2 concentrations also exceed the standard level in Bangladesh in 2 of the samples but they are below the WHO guideline value.

As for NH_4 , although three of the samples indicate levels exceeding the WHO guideline value, they are not thought to have any effect on health, as mentioned above.

As for Na, although only one of the samples exceeds the WHO guideline value and the Bangladesh standard, the WHO guideline value for sodium is just a level likely to give rise to consumer complaints concerning color, taste, smell, etc. It is not thought to have any effect on health.

As for Ni, only one of the samples exceeds the WHO guideline value but it is below the Bangladesh standard. It is not considered to be a serious problem.

As for COD, though some samples exceed the standard in Bangladesht is thought that they are affected by the reducing state of groundwater rather than by organic contamination. A standard based on health criteria has not been proposed by WHO.

As compared with the general water quality of deep and shallow groundwater in the same village, deep groundwater is better than shallow groundwater. Figures 5.5.2 to 5.5.5 show some examples of the difference in Rajnagar Bankabarsi. In evaluating the general quality of deep groundwater, the results obtained from the Study show that deep groundwater is potable. As mentioned previously, although some parameters exceed the standard values, it is not considered to pose any health risks. Some samples slightly affected by salinity are also presently considered to be suitable for drinking.

3) Views on Samples Exceeding the Standard Values

As for the samples from observation wells/holes in the Pourashavas and observation holes in the model villages, the treatment method and the views on the parameters exceeding the Bangladesh standard and WHO guideline and are shown in Table 5.5.16. In consideration of health impact, it is necessary to treat the water contaminated with Mn. However, judging from the actual situation in Bangladesh, realistic measures will be difficult.

4) Improved Deep Wells in the Model Rural Areas

The actual depths of Improved Deep Wells are between deep tube wells (300m depth, i.e. Observation Wells, Core Borings) and shallow tube wells (around 50m depth, i.e. existing tube wells). The water quality (except As) of Improved Deep Wells is generally as good as deep observation wells/holes. However, high concentrations of NH₄ were found in many samples of Improved Deep Wells. This was also shown in many samples from shallow tube wells. As with shallow tube wells, Improved Deep Wells may also be contaminated by fertilizers, manure and livestock wastes. There is another possible cause of the NH₄contamination . Cow dung was used for the installation of Improved Deep Wells. Therefore, this may have caused the contamination of NH₄. In Chuadanga and Jhenaidah, the aquifers of the improved deep wells are shallower than Jessore's. So the concentrations of parameters such as Fe and Ca are higher.

5) Existing Wells in the Study Area (including the Model Rural Areas)

As mentioned earlier, the groundwater in existing wells indicates a reducing state on the whole. Almost all samples characterize fresh water though some samples show salinity. It is notable that some contamination of existing wells is found. From the viewpoint of potability, groundwater in existing wells often shows some contamination. Care needs to be taken for not only As contamination, but other parameters of water quality as well. N-related water quality parameters such as NO₃, NO₂, and NH₄, NO₃ and NO₂concentrations in the rainy season are higher than that of the dry season overall (as shown in Table 5.5.4 and 5.5.5). On the other hand, NH₄ concentrations in the rainy season are lower than in the dry season. Some oxidation-reduction reactions are likely to happen among the three parameters. Although NH₄

has no health-based guideline by WHO, high NH_4 concentrations may give rise to consumer complaints regarding odor or taste. Furthermore, NH_4 in water is an indicator of possible bacterial, sewage, and animal waste pollution. Seasonal changes are also observed for some parameters such as Cd, total-Cr, Ni and Zn. However, this reason was not examined in this study.

6) Pond Water in the Model Rural Areas

Since it has a low concentration of As, pond water is a possible water source for areas where other alternative water sources are limited. Due to its oxidation state, some water quality parameters show lower concentrations than in shallow groundwater such as heavy metals, Fe, Mn, hardness, Ca, Mg and so on. However, some other parameters show higher concentrations than in shallow groundwater. High COD is a serious problem for potability. It shows that pond water may be contaminated from the surface of the pond. Other contaminations through the surface of the pond also seem to have occurred. As a result, sanitary protection and treatment of raw water are essential for the potable use of pond water. Another problem is likely to be limitations in volume for drinking though it is not a problem of water quality.

Table 5.5.2 Results of Observation Well and Hole (1/7)

Trtration PΩL PΩL PQL Å Å <PQL 000 mg/L 8 Ъ Å Å. PoL Å < PQL PQL ₽QL 20 130 27 27 7 27 Extraction / FAAS 0.0053 0.005 <₽GL ≺PQL PQL PQL <PQL 0.0087 Å d Å 0.015 PQL å mg/L ^PQL PQL PQL <₽aL PQL Zinc ğ ^PQL ភ 0.0070 0.005 0.0071 ₽QL ₽QĽ ₽Q Nickel FAAS / FAAS Å ۶₽ ٩PQL Å d PQL PΩL PQL Å PQL ۳g/ ₹PΩL å Å Å å Ż Mercury 0.001 PQL <PQL PΩL Pol APQL PQL PQL Å րցի Å PQL <PQL Å Å Å Å. ÅP.QL ₽QL ₽QL ₽QL ğ f Extraction | Lead 0.005 PQL ₽QL PQL ٩ PQ4 <₽QL ₽å Å ₽QL ₽gL mg/L ≤PQL Å₽ PQL ₽å ₽aL ₽d ₽g <PQL PΩL đ Potassium Fluoride Cadmium Total Cr Copper Cyanide spa∟ PQL Å <PQL ٩PQL PΩL <PQL PaL PQL ≤PQL <₽QL PΩL PQL ₽QL д mg/L ٩ Å₽ ÅPQL PQL ß 0.01 S PQL 0.0079 0.0072 Extraction/ Extraction Extraction FAAS / FAAS / FAAS 0.0082 <₽GL 0.0015 0.025 0.005 mg/L <PQL ۶PQL PQL APQL ₽ġ ۶PΩL ₽ġ ₹PQL PQL PQL PQL PoL Å Å 3 ₽gL PQL PQL PQL ≺PQL mg/L å Å ₽oL ₽ġ PΩL Å₽ Å РQL ≺PQL APQL PoL Å, ₽QL ₽ D Շ PQL ₫ ų ₽ ٩ PQL PQL PoL ٩ ₽QL mg/L Pol PQL PQ4 <PQL <PQL ₽QL ₽QL ₽d Å. ₽g 8 mg/L 0.28 ß 0.20 0.26 0.41 0.33 Ξ 0.41 0.53 0.38 0.30 u. 0.27 0.26 0.24 0.26 0.26 93 4 0,39 0.34 FAAS mg/L 5 4.9 5.2 5.3 4.8 2.6 3.9 4.5 4.7 ¥ 4.9 5.6 5.0 4.6 3.2 2.7 4.6 3.9 3.5 3.8 5.3 Blearbonate Calcium Magnesium Sodium FAAS шg/Г 0.05 ş 38 13 8 5 23 8 ន 55 5 5 2 ន 5 28 38 5 4 ß 65 FAAS J∕Bm 0.05 BW ដ 5 25 ន 28 ន ន ឧ ₽ 2 2 5 21 3 ដ ដ 9 20 3 Titration FAAS դջ 0.5 ů 8 2 33 7 82 82 8 83 85 8 8 35 ĝ 9.8 8 62 8 9 9 CaCOAL ŝ 8 475 456 429 488 497 456 **§** 475 418 418 570 456 481 285 551 475 麗 475 475 Dissolved Fe Chloride mg/L SР 0.6 0 8.4 ÷ 9.5 7.4 8.3 7.3 5.0 5.8 7.9 5.0 4 3.0 ₽ ₽ 2.8 9.9 얺 9 8 38 FAAS 6.0 ø 194 1 6.9 1 1 1 1 1 1 203 889 Å ₽QL SULC: mg/L 36 26 0.2 0.66 æ 35 Sulfate ÅQL PΩL PQL Por ₽g ₽ġ Å ₽g ₽QL тgг APQL Å Å Å Å. å å å ß so, å APQL ŝ 0.57 E.T 2.8 2.9 0.96 sofred Min FAAS 0.69 1.25 0.63 4.685 2.2 6.0 ШgЛ Å ٩ 069 81 0.08 0.26 0.13 ЧW ۳g/L ÅQL Ъ ₫ ğ 0.15 0.13 сP 0.1 Ŧ 0.14 0.28 0.17 0.25 0.18 0.14 0.17 0.1 0.14 0.22 0.21 0.21 0.21 ₽ġ Å Nitrite 0.02 mg/L Š Å Å PQL PQL <PQL Å å Å Å ÅQL ₽QL ₽QL Å ₽a Å Å₽ Å, ЧS Nitrate тgЛ Å Å PQL PQL ٩ <PQL ₽ G ₽gL ĝ ₽g <PQL <PQL <PQL ₽Q Å PQL ÅPQL ₽ġ Å ő ß 0.2 Standard Standard 0.13 µ0√ å ŝ 349 38 373 387 530 524 515 ğ 337 327 448 373 328 267 383 345 377 353 357 Conductivity Hardness Cecol Hardness 0.5 25.9 99.3 98.6 56.2 <u>5</u> 89.9 ₫ <u>6</u> 115 117 106 5 15 112 107 ₫ 122 113 ē Conductivity meter mS/m 0.02 54.5 54.4 58.3 60.5 82.8 81.8 80.5 57.0 52.6 51.1 70.0 58.3 51.3 41.7 59.8 53.9 43.3 55.2 55.7 ů 0 Deg C Deg C Thermo Temp 30.0 30.0 26.9 29.6 29.6 29.9 29.3 29.7 29.3 29.3 29.4 28.7 28.2 24.7 29.7 29.7 29.4 29.8 29.8 pH meter 7.27 7.20 8.86 7.30 표 7.32 7.13 7.43 7.22 7.17 7.23 7.34 7.26 7.32 7.33 7.20 7.40 7.35 0 풥 7.31 7.91 19-Aug-01 20-111-01 16-Jul-01 19-Jul-01 20-Jut-01 20-JuH01 15-Sep-01 06-Dec-01 20-JuH01 20-Jul-01 20-Jul-01 20-Jul-01 20-JuH01 20-Jul-01 20-Jul-01 20-JuH01 Practical Quantitation Limit Date of sempling 16-Oct-01 07-Nov-01 20-Jul-01 Analyte Method Unit OH-JS1-1-SIP-30min OH-JS1-2-SIP-30min OH-JS1-4-SIP-30min OH-JS1-3-SIP-30mir OH-JS1-2-SIP-140min OH-JS1-4-SIP-140min Sample No OH-JS1-1-SIP-140mh OH-JS1-3-SIP-140min OH-JS1-1-BP OH-JS1-3-BP OW-JS1-48h OW-JS1-5M OH-JS1-2-BP OH-JS1-4-BP OW-JS1-BP MI-1SL-MO OW-JS1-3M OW-JS1-4M Jessoref OW-JS1-2M

Excess of both Bangladesh Standard and WHO guideline

Excess of Bangladesh Standard

The values were determined as exceeding the standards before rounding off)

Excess of WHO guideline

5-118

 Table 5.5.2
 Results of Observation Well and Hole (2/7)

Analyti		Ŧ	Temperature	Conductivity	/ Hardness	۶	Nitrate	Nitritte	Ammonium D	trached Mi	Sulfate D	sectived Fe Ch	loride Bio	erbonets Cal	cium Mag	restum Sod	um Potas.	stum Fluor	de Cadmit	Im Total C	Coppe	r Cvanid	ead	Mercury	Nickel	Zinc	80
Methor	Ā	pH mete	Thermo	Conductivity meter	Standard	Standard	SP	SP	SP	FAAS	РS	FAAS	SP	tration F/	AS F	AS FA	4S FA	SS SS	, Extract	on/Extractic	on Extractio	ß	Extractio / FAAS	n Extraction /FAAS	/ Extraction	Extraction / FAAS	Titration
Practical Quantity	tation Limit	•	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	5	0.2	0.6	2).5 0	.05 0.)5 0.		0.00	15 0.025	5 0.005	5 0.01	0.005	0.001	0.005	0.005	20
Unit			Deg C	mS/m	CaCO _A L	тgЛ	mg/L	mg/L	шĝГ	mg/L	mg/L	u Jogm	ug/L Ct	mg Tooy	u ₽vr	jn 1√8	л. Д	р Б Г	L mg/	- HOW	Ч ^с ш.	Мдл	mg/L	Ъ	Т <mark>о</mark> щ	тgл	mg/L
Sample No	Date of sempling	H	Temp	ß	Hardness	ŝĒ	NOs	NO2	Ϋ́́Η	ЧW	so4	Ę	- 5	+cos	Ca	N By	×	.	8	Շ	3	S	8	BH	ī	ភ	coD
Jessone2																											
OW-JS2-BP	02-Aug-01	7.59	28.2	62.2	90.3	398	0.51	0.31	0.12	0.35	<₽QL	2.9	5	439	57	23 7	*	9.03	ŝ ⊿PQ	r F	-PQL	< PQL	<pql< th=""><th>₽ŎŢ</th><th>PQL</th><th><₽QL</th><th>38</th></pql<>	₽ŎŢ	PQL	<₽QL	38
OW-JS2-48h	05-Aug-01	7.56	28.1	61.2	90.2	391	< PQL	<₽QL	0.38	0.13	<₽QL	0.86	59	429	57	23 8	4	0.3	3 PQ	L <pql< th=""><th>PQL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>₽ġ</th><th><₽QL</th><th>38</th></pql<>	PQL	<₽QL	<₽QL	PQL	₽ġ	<₽QL	38
OW-JS2-1M	11-Sep-01	7.19	. 28.0	63.3	109	405	<pql< th=""><th><pql< th=""><th><₽QL</th><th>2.3</th><th><pql< th=""><th>10</th><th>42</th><th>507</th><th>73</th><th>36 8</th><th>4</th><th>0.2</th><th>5 APQ</th><th>L <pql< th=""><th>- Pol</th><th>sPQL</th><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th>2.3</th><th><pql< th=""><th>10</th><th>42</th><th>507</th><th>73</th><th>36 8</th><th>4</th><th>0.2</th><th>5 APQ</th><th>L <pql< th=""><th>- Pol</th><th>sPQL</th><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	2.3	<pql< th=""><th>10</th><th>42</th><th>507</th><th>73</th><th>36 8</th><th>4</th><th>0.2</th><th>5 APQ</th><th>L <pql< th=""><th>- Pol</th><th>sPQL</th><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<>	10	42	507	73	36 8	4	0.2	5 APQ	L <pql< th=""><th>- Pol</th><th>sPQL</th><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th></pql<></th></pql<>	- Pol	sPQL	<₽QL	₽QL	₽QL	<pql< th=""><th>PQL</th></pql<>	PQL
WZ-ZST-MO	18-Oct-10	7.24	29.9	94.8	110	607	<₽QL	<pql< th=""><th><₽QL</th><th>0.55</th><th><₽QL</th><th>6.3</th><th>47</th><th>507</th><th>82</th><th>28 7</th><th>9.</th><th>2 0.3</th><th>¢ g</th><th>L <pql< th=""><th>₽ġГ</th><th>< PQL</th><th>Pol</th><th>PΩL</th><th>PQL</th><th><₽QL</th><th>₹PαL</th></pql<></th></pql<>	<₽QL	0.55	<₽QL	6.3	47	507	82	28 7	9.	2 0.3	¢ g	L <pql< th=""><th>₽ġГ</th><th>< PQL</th><th>Pol</th><th>PΩL</th><th>PQL</th><th><₽QL</th><th>₹PαL</th></pql<>	₽ġГ	< PQL	Pol	PΩL	PQL	<₽QL	₹PαL
ME-2ST-MO	06-Nov-01	7.99	27.1	89.8	113	575	<pql< th=""><th><₽QL</th><th>0.37</th><th>0.74</th><th><pql< th=""><th>15</th><th>40</th><th>456</th><th><u>1</u></th><th>32 6</th><th>4.</th><th>5 0.2</th><th>e PQ</th><th>L <pql< th=""><th>- PQL</th><th>4Pol</th><th>₽gL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>38</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	0.37	0.74	<pql< th=""><th>15</th><th>40</th><th>456</th><th><u>1</u></th><th>32 6</th><th>4.</th><th>5 0.2</th><th>e PQ</th><th>L <pql< th=""><th>- PQL</th><th>4Pol</th><th>₽gL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>38</th></pql<></th></pql<></th></pql<></th></pql<>	15	40	456	<u>1</u>	32 6	4.	5 0.2	e PQ	L <pql< th=""><th>- PQL</th><th>4Pol</th><th>₽gL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>38</th></pql<></th></pql<></th></pql<>	- PQL	4Pol	₽gL	<pql< th=""><th><pql< th=""><th><₽QL</th><th>38</th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th>38</th></pql<>	<₽QL	38
MI-152-MO	05-Dec-01	7.24	24.3	8 9.4	113	572	<pql< th=""><th><₽QL</th><th>0.22</th><th>0.65</th><th><pql< th=""><th>15</th><th>35</th><th>460</th><th>g</th><th>33</th><th>4</th><th>0.3</th><th>PO 10 10 10</th><th>r <pql< th=""><th>- <pql< th=""><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	0.22	0.65	<pql< th=""><th>15</th><th>35</th><th>460</th><th>g</th><th>33</th><th>4</th><th>0.3</th><th>PO 10 10 10</th><th>r <pql< th=""><th>- <pql< th=""><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	15	35	460	g	33	4	0.3	PO 10 10 10	r <pql< th=""><th>- <pql< th=""><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<>	- <pql< th=""><th>₽QL</th><th>₽QL</th><th><pql< th=""><th>PQL</th><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<>	₽QL	₽QL	<pql< th=""><th>PQL</th><th><₽QL</th><th><pql< th=""></pql<></th></pql<>	PQL	<₽QL	<pql< th=""></pql<>
OH-JS2-1-BP	06-Aug-01	7.19	28.5	58.0	113	371	<pql< th=""><th><₽QL</th><th>≮PQL</th><th>2.9</th><th><pql< th=""><th>3.4</th><th>4.6</th><th>453</th><th>38</th><th>25 4.</th><th>2 1.</th><th>7 0.5</th><th>e Pol</th><th>lo 4¢</th><th>0.010</th><th>0.010</th><th>0.0058</th><th>-PQL</th><th><₽QL</th><th>0.0085</th><th>38</th></pql<></th></pql<>	<₽QL	≮PQL	2.9	<pql< th=""><th>3.4</th><th>4.6</th><th>453</th><th>38</th><th>25 4.</th><th>2 1.</th><th>7 0.5</th><th>e Pol</th><th>lo 4¢</th><th>0.010</th><th>0.010</th><th>0.0058</th><th>-PQL</th><th><₽QL</th><th>0.0085</th><th>38</th></pql<>	3.4	4.6	453	38	25 4.	2 1.	7 0.5	e Pol	lo 4¢	0.010	0.010	0.0058	-PQL	<₽QL	0.0085	38
OH-US2-1-SIP-30min	06-Aug-01	7.37	28.6	54.1	107	346	<pql< th=""><th><₽QL</th><th><₽QL</th><th>1,7</th><th><pql< th=""><th>1.8</th><th>3.0</th><th>429</th><th>33</th><th>24 2</th><th>1.</th><th>3 0.3</th><th>¶ A</th><th>₽GL</th><th>₽ ₽</th><th><₽at</th><th>APQL</th><th>₽QL</th><th>PQL</th><th>0.0074</th><th>PQL</th></pql<></th></pql<>	<₽QL	<₽QL	1,7	<pql< th=""><th>1.8</th><th>3.0</th><th>429</th><th>33</th><th>24 2</th><th>1.</th><th>3 0.3</th><th>¶ A</th><th>₽GL</th><th>₽ ₽</th><th><₽at</th><th>APQL</th><th>₽QL</th><th>PQL</th><th>0.0074</th><th>PQL</th></pql<>	1.8	3.0	429	33	24 2	1.	3 0.3	¶ A	₽GL	₽ ₽	<₽at	APQL	₽QL	PQL	0.0074	PQL
OH-JS2-1-SIP- 140min	06-Aug-01	7.46	28.8	53.2	108	340	PQL	<pql< th=""><th><₽QL</th><th>11</th><th><pql< th=""><th>1.3</th><th>4.6</th><th>429</th><th>*</th><th>24 2</th><th>1</th><th>0.3</th><th>₽d</th><th>lod-</th><th>₽<mark>0</mark></th><th>₽oL</th><th><₽QL</th><th>₽aL</th><th><₽QL</th><th><pql< th=""><th>26</th></pql<></th></pql<></th></pql<>	<₽QL	11	<pql< th=""><th>1.3</th><th>4.6</th><th>429</th><th>*</th><th>24 2</th><th>1</th><th>0.3</th><th>₽d</th><th>lod-</th><th>₽<mark>0</mark></th><th>₽oL</th><th><₽QL</th><th>₽aL</th><th><₽QL</th><th><pql< th=""><th>26</th></pql<></th></pql<>	1.3	4.6	429	*	24 2	1	0.3	₽d	lod-	₽ <mark>0</mark>	₽oL	<₽QL	₽aL	<₽QL	<pql< th=""><th>26</th></pql<>	26
OH-JS2-2-BP	06-Aug-01	7.23	28.7	57.4	114	368	₽QL	γЪΩ	PQL	32	<pql< th=""><th>5.2</th><th>3.5</th><th>468</th><th>68</th><th>25 3</th><th>3.</th><th>0.4</th><th>t ⊲PQ</th><th>-Pol</th><th>0.0066</th><th>i 0.020</th><th>₽ġ</th><th>-PQL</th><th>0.0053</th><th>PQL</th><th>76</th></pql<>	5.2	3.5	468	68	25 3	3.	0.4	t ⊲PQ	-Pol	0.0066	i 0.020	₽ġ	-PQL	0.0053	PQL	76
OH-US2-2-SIP-30min	06-Aug-01	7.27	29.1	56.7	Ē	363	PQL	PQL	₽GL	Ξ	₹₽ØΓ	4.0	1.9	439	37	24 3	3.	0.4	5 AQ	L <pol< th=""><th>₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th><th><₽QL</th><th>38</th></pol<>	₽QL	<₽QL	<₽QL	PQL	PQL	<₽QL	38
OH-JS2-2-SIP- 140min	06-Aug-01	7.35	29.1	55.4	1 8	355	PQL	PQL	spar	0.58	ÅΩL	2.9	3.9	429	*	24 2	2;	5 0.41	₽Ğ	r <pql< th=""><th>PQL</th><th><₽QL</th><th><₽QL</th><th>Por</th><th>- PQL</th><th><₽aL</th><th>38</th></pql<>	PQL	<₽QL	<₽QL	Por	- PQL	<₽aL	38
OH-IS2-3-BP	06-Aug-01	7.50	29.4	56.0	93.1	359	1.4	0.60	16	0.39	PQL	0.92	14	429	20	23 4:	3 4.	3 0.34	s ≮Pai	r ₽ar	-Pot	<₽QL	0.0051	å	0.0083	0.012	88
OH-US2-3-SIP-30min	06-Aug-01	7.28	29.3	58.6	105	375	2.5	<pql< th=""><th><₽QL</th><th>0.95</th><th><pql< th=""><th>2.1</th><th>10</th><th>429</th><th>32</th><th>31</th><th>4.(</th><th>0.31</th><th>PQI €</th><th>Por</th><th><₽QL</th><th><pql< th=""><th>₹₽QL</th><th>₽ġ</th><th><pql< th=""><th>PQL</th><th>38</th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	0.95	<pql< th=""><th>2.1</th><th>10</th><th>429</th><th>32</th><th>31</th><th>4.(</th><th>0.31</th><th>PQI €</th><th>Por</th><th><₽QL</th><th><pql< th=""><th>₹₽QL</th><th>₽ġ</th><th><pql< th=""><th>PQL</th><th>38</th></pql<></th></pql<></th></pql<>	2.1	10	429	32	31	4.(0.31	PQI €	Por	<₽QL	<pql< th=""><th>₹₽QL</th><th>₽ġ</th><th><pql< th=""><th>PQL</th><th>38</th></pql<></th></pql<>	₹₽QL	₽ġ	<pql< th=""><th>PQL</th><th>38</th></pql<>	PQL	38
0H-JS2-3-SIP- 140min	06-Aug-01	6.94	29.3	43.2	107	71	1.5	1.5	PQL	0.72	<₽QL	2.2	6.7	350 1		24 3	1.8	3 0.31	PQI	- spar	< PQL	₹₽QL	₹₽GL	₽ġ	≮PQL	<pql< th=""><th><₽QL</th></pql<>	<₽QL
OH-IS2-4-BP	06-Aug-01	7.62	29.3	80.1	65.0	513	₽QL	₹PΩL	<pql< th=""><th>0.29</th><th>PQL</th><th>3.4</th><th>15</th><th>507</th><th> 51</th><th>22 16</th><th>0 4.</th><th>1 0.4</th><th>PQI</th><th>Pol</th><th>PQL</th><th>0.050</th><th>Å</th><th>PΩL</th><th>0.012</th><th>₽QL</th><th>180</th></pql<>	0.29	PQL	3.4	15	507	 51	22 16	0 4.	1 0.4	PQI	Pol	PQL	0.050	Å	PΩL	0.012	₽QL	180
OH-JS2-4-SIP-30min	06-Aug-01	7.23	29.2	50.9	93.1	325	0.41	PQL	<₽QL	0.20	₽ġ	2.8	84	350 t	 	23 7.	4	0.26	š 4PQI	Por	PoL	₽QL	PQL	Å.	<pql< th=""><th>PQL</th><th>sPQL</th></pql<>	PQL	sPQL
OH-JS2-4-SIP- 140min	0 6- Aug-01	7.49	29.4	65.1	92.9	417	0.30	0.040	PΩL	0.19	PQL	2.0	48	429	0	33 81	4	0.3	- PQI	- Pol	₽QL	₽g	Pal	ÅPQL	PQL	₽QL	<₽QL
].]

Excess of WHO guideline Excess of Bangladesh Standard (The values were determined as exceeding the standards before rounding off)

Excess of both Bangladesh Standard and WHO guideline

 Table 5.5.2
 Results of Observation Well and Hole (3/7)

cop	Titration	20	mg/L	coD		<₽QL	<₽QL	≺₽αĽ	<₽aL	<pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th></th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th>⊲PQL</th><th><₽aL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>₽ġ</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th></th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th>⊲PQL</th><th><₽aL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>₽ġ</th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<pql< th=""><th></th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th>⊲PQL</th><th><₽aL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>₽ġ</th></pql<></th></pql<>		<₽QL	<₽QL	<pql< th=""><th>⊲PQL</th><th><₽aL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>₽ġ</th></pql<>	⊲PQL	<₽aL	<₽QL	<₽QL	<₽QL	<₽QL	<₽QL	<₽QL	₽ġ
Zinc	Extraction/ FAAS	0.005	mg/L	ភ		0.060	0.016	0.0060	<₽aL	<pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pal.< th=""><th>1</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>0.0094</th><th>0.13</th><th>0.014</th><th>≺PQL</th><th>0.015</th><th>0.011</th><th>0.0063</th><th><pql< th=""><th>0.17</th></pql<></th></pql<></th></pal.<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><pql< th=""><th><pal.< th=""><th>1</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>0.0094</th><th>0.13</th><th>0.014</th><th>≺PQL</th><th>0.015</th><th>0.011</th><th>0.0063</th><th><pql< th=""><th>0.17</th></pql<></th></pql<></th></pal.<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><pal.< th=""><th>1</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>0.0094</th><th>0.13</th><th>0.014</th><th>≺PQL</th><th>0.015</th><th>0.011</th><th>0.0063</th><th><pql< th=""><th>0.17</th></pql<></th></pql<></th></pal.<></th></pql<>	<pal.< th=""><th>1</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>0.0094</th><th>0.13</th><th>0.014</th><th>≺PQL</th><th>0.015</th><th>0.011</th><th>0.0063</th><th><pql< th=""><th>0.17</th></pql<></th></pql<></th></pal.<>	1	<₽QL	<pql< th=""><th>≺PQL</th><th>0.0094</th><th>0.13</th><th>0.014</th><th>≺PQL</th><th>0.015</th><th>0.011</th><th>0.0063</th><th><pql< th=""><th>0.17</th></pql<></th></pql<>	≺PQL	0.0094	0.13	0.014	≺PQL	0.015	0.011	0.0063	<pql< th=""><th>0.17</th></pql<>	0.17
Nickel	Extraction/ FAAS	0.005	mg/L	ĩ		⊳αΓ	0.0063	₹PΩL	₽oĽ	<pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th></th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>≺PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<pql< th=""><th><pql< th=""><th></th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>≺PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th></th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>≺PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		< PQL	<pql< th=""><th><pql< th=""><th><₽QL</th><th>≺PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th>≺PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	≺PQL	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<></th></pql<>	<pql< th=""><th>0.0092</th><th>0.0069</th><th>0.0057</th></pql<>	0.0092	0.0069	0.0057
Mercury	Extraction/ FAAS	0.001	mg/L	¥		<pql< th=""><th><₽QL</th><th><pql< th=""><th>₹₽GL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th>₹₽GL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	₹₽GL	<pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL		<₽QL	<pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<₽QL	<₽QL	<pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<>	<₽QL	<pql< th=""></pql<>
Lead	Extraction/ FAAS	0.005	mg/L	Pb		PQL	0.011	0.0065	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th></th><th><pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th>0.0097</th><th>0.011</th><th><₽QL</th><th><pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<>	0.0097	0.011	<₽QL	<pql< th=""><th>≺PQL</th><th>< PQL</th><th><pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<></th></pql<>	≺PQL	< PQL	<pql< th=""><th>< PQL</th><th>0.013</th><th>. <pql< th=""><th>PQL</th></pql<></th></pql<>	< PQL	0.013	. <pql< th=""><th>PQL</th></pql<>	PQL
Cyanide	SP	0.01	mg/L	CN		<pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<₽QL	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PoL</th></pql<></th></pql<>	<₽QL	<₽QL	<pql< th=""><th><₽QL</th><th>PoL</th></pql<>	<₽QL	PoL
Copper	Extraction/ FAAS	0.005	mg/L	Cu		<pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>-PQL</th><th>≺PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>-PQL</th><th>≺PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th>-PQL</th><th>≺PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th>-PQL</th><th>≺PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>-PQL</th><th>≺PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	-PQL	≺PQL	<pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th><₽QL</th><th>0.0061</th><th><₽QL</th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	0.0061	<₽QL	<pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<></th></pql<>	₹₽ØΓ	<pql< th=""><th>-PQL</th><th><₽QL</th><th><pql< th=""><th>₽QL</th><th>¢PQL</th></pql<></th></pql<>	-PQL	<₽QL	<pql< th=""><th>₽QL</th><th>¢PQL</th></pql<>	₽QL	¢PQL
Total Cr	Extraction/ FAAS	0.025	mg/L	cr		≮PQL	<₽QL	<₽QL	<pql< th=""><th><pql< th=""><th>≺PQL</th><th><pql< th=""><th>sPQL</th><th>Å</th><th></th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>PQL</th><th>PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>≺PQL</th><th><pql< th=""><th>sPQL</th><th>Å</th><th></th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>PQL</th><th>PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	≺PQL	<pql< th=""><th>sPQL</th><th>Å</th><th></th><th><pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>PQL</th><th>PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	sPQL	Å		<pql< th=""><th>₹₽ØΓ</th><th><pql< th=""><th>PQL</th><th>PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	₹₽ØΓ	<pql< th=""><th>PQL</th><th>PQL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	PQL	PQL	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<></th></pql<>	<pql< th=""><th>₽QL</th><th>₽QĽ</th></pql<>	₽QL	₽QĽ
Cadmium	Extraction/ FAAS	0.0015	mg/L	8		<₽QL	<pql< th=""><th>₹PQL</th><th><₽QL</th><th><pql< th=""><th>sPQL</th><th><pql< th=""><th><pql< th=""><th>PQL</th><th></th><th>₽QL</th><th>₽QL</th><th><pa∟< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pa∟<></th></pql<></th></pql<></th></pql<></th></pql<>	₹PQL	<₽QL	<pql< th=""><th>sPQL</th><th><pql< th=""><th><pql< th=""><th>PQL</th><th></th><th>₽QL</th><th>₽QL</th><th><pa∟< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pa∟<></th></pql<></th></pql<></th></pql<>	sPQL	<pql< th=""><th><pql< th=""><th>PQL</th><th></th><th>₽QL</th><th>₽QL</th><th><pa∟< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pa∟<></th></pql<></th></pql<>	<pql< th=""><th>PQL</th><th></th><th>₽QL</th><th>₽QL</th><th><pa∟< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pa∟<></th></pql<>	PQL		₽QL	₽QL	<pa∟< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pa∟<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th></pql<>	<₽QL	<₽QL	<₽QL	<₽QL	PQL	PQL
n Fluoride	SP	0.1	mg/L	Ľ		0.32	0.25	0.27	0.21	0.28	0.26	0.38	0.28	0.37		0.50	0.51	0.53	0.29	0.35	0.30	0.35	0.38	0.38	0.34	0.29	0.33
Potassium	FAAS	0.1	mg/L	×		4.3	3.8	4.1	5.1	3.6	3.9	4.9	3.7	3.5		3.0	2.6	2.6	4.0	3.7	3.8	4.6	4.1	4.2	4.4	4.6	3.8
Sodium	FAAS	0.05	шgЛ	Na		14	14	17	35	27	36	19	2	5		15	11	7	18	14	12	15	4	14	13	13	=
Magneshum	FAAS	0.05	mg/L	BW		38	38	35	24	27	æ	8	41	42		25	17	17	24	24	25	27	56	26	38	38	38
Calcium	FAAS	0.5	mg/L	Ga		100	110	78	46	ш	43	08	100	100		89	¥L	74	58	92	96	66	100	100	66	66	100
Bicarbonata	Titration	20	mg CaCO _A L	нсоа		489	499	452	365	371	371	449	494	500		269	269	273	371	371	371	387	390	390	480	488	493
Chloride	SP	0.6	mg/L	G		3.3	1.5	5.7	4.0	2.6	4.4	1.5	2.4	2.6		3.3	5.3	8.5	2.6	3.7	3.7	0.7	7.2	4.5	1.1	1.5	2.4
2	í					1 2 4		A 14 1	credito	01025	and.	A.A. Inter	S. 1994				1 1 1	_							1.28.6	Market .	dist.
tandors (FAA	0.2	Ъ	ų.		15	36	96	18-1 1	10.0	26	52	0	1		2.6	2.9	12.95	13.64	2.5	22	12	2.24	61	36	26)	8
Sulfate prodwol	SP FAA	5 0.2	mg/L mg/L	SO4 Fe		<pol 15<="" th=""><th><pql 36<="" th=""><th>-96 3 1Dd></th><th><pql 32<="" th=""><th><pql 20.9<="" th=""><th><pql 256<="" th=""><th><pol< th=""><th><pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<></th></pol<></th></pql></th></pql></th></pql></th></pql></th></pol>	<pql 36<="" th=""><th>-96 3 1Dd></th><th><pql 32<="" th=""><th><pql 20.9<="" th=""><th><pql 256<="" th=""><th><pol< th=""><th><pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<></th></pol<></th></pql></th></pql></th></pql></th></pql>	-96 3 1Dd>	<pql 32<="" th=""><th><pql 20.9<="" th=""><th><pql 256<="" th=""><th><pol< th=""><th><pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<></th></pol<></th></pql></th></pql></th></pql>	<pql 20.9<="" th=""><th><pql 256<="" th=""><th><pol< th=""><th><pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<></th></pol<></th></pql></th></pql>	<pql 256<="" th=""><th><pol< th=""><th><pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<></th></pol<></th></pql>	<pol< th=""><th><pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<></th></pol<>	<pol< th=""><th>6.6</th><th>~</th><th>13 2.6</th><th><poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil></th></pol<>	6.6	~	13 2.6	<poil \$2.9<="" th=""><th><pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql></th></poil>	<pql 2.9<="" th=""><th><pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql></th></pql>	<pql 364<="" th=""><th><poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil></th></pql>	<poil 255<="" th=""><th><pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql></th></poil>	<pql 22<="" th=""><th>19</th><th>17</th><th>15</th><th><pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol></th></pql>	19	17	15	<pol 266<="" th=""><th><pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol></th></pol>	<pol 26<="" th=""><th><pql 2.5<="" th=""></pql></th></pol>	<pql 2.5<="" th=""></pql>
Issolved Ma Sulfate Disached	FAAS SP FAA	0.08 5 0.2	mg/L mg/L mg/L	Mn So ₄ Fe		0.18 <pql 15<="" th=""><th>0.10 <pql 23.62<="" th=""><th>0.19 <pql 26<="" th=""><th>0.091 <pql 44.32<="" th=""><th>0.15 <pql 2019<="" th=""><th><pql 26<="" <pql="" th=""><th><pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	0.10 <pql 23.62<="" th=""><th>0.19 <pql 26<="" th=""><th>0.091 <pql 44.32<="" th=""><th>0.15 <pql 2019<="" th=""><th><pql 26<="" <pql="" th=""><th><pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql>	0.19 <pql 26<="" th=""><th>0.091 <pql 44.32<="" th=""><th>0.15 <pql 2019<="" th=""><th><pql 26<="" <pql="" th=""><th><pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol></th></pql></th></pql></th></pql></th></pql>	0.091 <pql 44.32<="" th=""><th>0.15 <pql 2019<="" th=""><th><pql 26<="" <pql="" th=""><th><pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol></th></pql></th></pql></th></pql>	0.15 <pql 2019<="" th=""><th><pql 26<="" <pql="" th=""><th><pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol></th></pql></th></pql>	<pql 26<="" <pql="" th=""><th><pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol></th></pql>	<pol 475<="" <pol="" th=""><th>0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pol>	0.35 <pql< th=""><th>0.32 6.6 2017</th><th></th><th>0.35 13 2.6</th><th>0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<>	0.32 6.6 2017		0.35 13 2.6	0.33 <pql 12.9<="" th=""><th>0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql></th></pql>	0.31 <pql 23<="" th=""><th>0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql></th></pql>	0.40 <pql 30.6<="" th=""><th>0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql></th></pql>	0.25 <pql 255<="" th=""><th>0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<></th></pql>	0.25 <pql< th=""><th><pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal></th></pql<>	<pal 19<="" th=""><th>0.15 17 222</th><th>0.14 15 11.9</th><th>0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql></th></pal>	0.15 17 222	0.14 15 11.9	0.089 <pql 3.65<="" th=""><th><pat <p=""><</pat></th><th><pql 2.3<="" <pql="" th=""></pql></th></pql>	<pat <p=""><</pat>	<pql 2.3<="" <pql="" th=""></pql>
mmonitum Dissolved Ma Sulfate Dissolved	SP FAAS SP FAA	0.1 0.08 5 0.2	mg/L mg/L mg/L mg/L	NH4 Mn SO4 Fe		<pql 0.18="" 315<="" <pql="" p=""></pql>	0.11 0.10 <pql 33.62<="" th=""><th><pql 0.19="" 3.6<="" <pql="" p=""></pql></th><th>0.17 0.091 <pql< th=""><th><pql 0.15="" 0.15<="" <pql="" th=""><th><pql 26.<="" <pql="" p=""></pql></th><th></th><th><pql 0.35="" 18.<="" <pql="" p=""></pql></th><th>0.11 0.32 · 6.6</th><th></th><th><pql 0.35="" 13="" 2.6<="" th=""><th><pql 0.33="" 12.9<="" <pql="" th=""><th><pql 0.31="" 2.9<="" <pql="" p=""></pql></th><th>0.61 0.40 <pql 303.64<="" th=""><th>0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pql>	<pql 0.19="" 3.6<="" <pql="" p=""></pql>	0.17 0.091 <pql< th=""><th><pql 0.15="" 0.15<="" <pql="" th=""><th><pql 26.<="" <pql="" p=""></pql></th><th></th><th><pql 0.35="" 18.<="" <pql="" p=""></pql></th><th>0.11 0.32 · 6.6</th><th></th><th><pql 0.35="" 13="" 2.6<="" th=""><th><pql 0.33="" 12.9<="" <pql="" th=""><th><pql 0.31="" 2.9<="" <pql="" p=""></pql></th><th>0.61 0.40 <pql 303.64<="" th=""><th>0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql<>	<pql 0.15="" 0.15<="" <pql="" th=""><th><pql 26.<="" <pql="" p=""></pql></th><th></th><th><pql 0.35="" 18.<="" <pql="" p=""></pql></th><th>0.11 0.32 · 6.6</th><th></th><th><pql 0.35="" 13="" 2.6<="" th=""><th><pql 0.33="" 12.9<="" <pql="" th=""><th><pql 0.31="" 2.9<="" <pql="" p=""></pql></th><th>0.61 0.40 <pql 303.64<="" th=""><th>0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pql>	<pql 26.<="" <pql="" p=""></pql>		<pql 0.35="" 18.<="" <pql="" p=""></pql>	0.11 0.32 · 6.6		<pql 0.35="" 13="" 2.6<="" th=""><th><pql 0.33="" 12.9<="" <pql="" th=""><th><pql 0.31="" 2.9<="" <pql="" p=""></pql></th><th>0.61 0.40 <pql 303.64<="" th=""><th>0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql>	<pql 0.33="" 12.9<="" <pql="" th=""><th><pql 0.31="" 2.9<="" <pql="" p=""></pql></th><th>0.61 0.40 <pql 303.64<="" th=""><th>0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<></th></pql></th></pql>	<pql 0.31="" 2.9<="" <pql="" p=""></pql>	0.61 0.40 <pql 303.64<="" th=""><th>0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<></th></pql>	0.51 0.25 <pql< th=""><th>0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<></th></pql<>	0.42 0.25 <pql< th=""><th>0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql<>	0.22 <pql 1.22<="" 19="" th=""><th>0.78 0.15 17 22</th><th>0.78 0.14 15 21 9</th><th><pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql></th></pql>	0.78 0.15 17 22	0.78 0.14 15 21 9	<pql 0.089="" 3.60<="" <pql="" th=""><th>Pal <pal 200<="" p=""></pal></th><th>0.13 <pql 2.3<="" <pql="" th=""></pql></th></pql>	Pal <pal 200<="" p=""></pal>	0.13 <pql 2.3<="" <pql="" th=""></pql>
Nitrite Ammonium bissorwed was Sulfate Dissorved	SP SP FAAS SP FAA	0.02 0.1 0.08 5 0.2	mg/L mg/L mg/L mg/L	NO ₂ NH ₄ Min SO ₄ Fe		<pql 0.15<="" 0.18="" <pql="" th=""><th><pql 0.10="" 0.11="" 33.62<="" <pql="" th=""><th></th><th><pql 0.091="" 0.17="" 33<="" <pql="" th=""><th></th><th><pql 200<="" <201="" <pql="" p=""></pql></th><th></th><th><pql 0.18="" 0.35="" <="" <pql="" p=""></pql></th><th><pql 0.11="" 0.32="" 40.07<="" 6.6="" p=""></pql></th><th></th><th>0.53 <pql 0.35="" 13="" 2.6<="" th=""><th>0.65 <pql 0.33="" 1022.9<="" <pql="" th=""><th>0.65 <pql 0.31="" 2.9<="" <pql="" th=""><th><pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	<pql 0.10="" 0.11="" 33.62<="" <pql="" th=""><th></th><th><pql 0.091="" 0.17="" 33<="" <pql="" th=""><th></th><th><pql 200<="" <201="" <pql="" p=""></pql></th><th></th><th><pql 0.18="" 0.35="" <="" <pql="" p=""></pql></th><th><pql 0.11="" 0.32="" 40.07<="" 6.6="" p=""></pql></th><th></th><th>0.53 <pql 0.35="" 13="" 2.6<="" th=""><th>0.65 <pql 0.33="" 1022.9<="" <pql="" th=""><th>0.65 <pql 0.31="" 2.9<="" <pql="" th=""><th><pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>		<pql 0.091="" 0.17="" 33<="" <pql="" th=""><th></th><th><pql 200<="" <201="" <pql="" p=""></pql></th><th></th><th><pql 0.18="" 0.35="" <="" <pql="" p=""></pql></th><th><pql 0.11="" 0.32="" 40.07<="" 6.6="" p=""></pql></th><th></th><th>0.53 <pql 0.35="" 13="" 2.6<="" th=""><th>0.65 <pql 0.33="" 1022.9<="" <pql="" th=""><th>0.65 <pql 0.31="" 2.9<="" <pql="" th=""><th><pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql>		<pql 200<="" <201="" <pql="" p=""></pql>		<pql 0.18="" 0.35="" <="" <pql="" p=""></pql>	<pql 0.11="" 0.32="" 40.07<="" 6.6="" p=""></pql>		0.53 <pql 0.35="" 13="" 2.6<="" th=""><th>0.65 <pql 0.33="" 1022.9<="" <pql="" th=""><th>0.65 <pql 0.31="" 2.9<="" <pql="" th=""><th><pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql>	0.65 <pql 0.33="" 1022.9<="" <pql="" th=""><th>0.65 <pql 0.31="" 2.9<="" <pql="" th=""><th><pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql>	0.65 <pql 0.31="" 2.9<="" <pql="" th=""><th><pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql>	<pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql>	0.090 0.51 0.25 <pgl 25<="" th=""><th>1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl>	1.4 0.42 0.25 <pql 22<="" th=""><th>1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql>	1.1 0.22 <pql 1.42<="" 19="" th=""><th><pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql></th></pql>	<pql 0.15="" 0.78="" 17="" 222<="" th=""><th><pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql></th><th><pql 0.089="" 3.65<="" <pql="" p=""></pql></th><th><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></th><th><pql 0.13="" 23<="" <pql="" th=""></pql></th></pql>	<pql 0.14="" 0.78="" 15="" 241.9<="" p=""></pql>	<pql 0.089="" 3.65<="" <pql="" p=""></pql>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pql 0.13="" 23<="" <pql="" th=""></pql>
Vitrate Nitrite Ammonium Deserved and Sulfate Deserved	SP SP FAAS SP FAA	0.2 0.02 0.1 0.08 5 0.2	1/6m m3/r m3/r m3/r m3/r	NO3 NO2 NH4 Min SO4 Fe		0.46 <pql 0.18="" 10.18<="" <pql="" th=""><th>0.41 <pql 0.10="" 0.11="" 256<="" <pql="" th=""><th><pql 0.19="" 0.56<="" <pql="" p=""></pql></th><th>PQL <pql 0.091="" 0.17="" 34433<="" <pql="" p=""></pql></th><th><pql 0.15="" 0.93<="" <pql="" p=""></pql></th><th></th><th></th><th><pql 0.16<="" 0.35="" <pql="" p=""></pql></th><th><pal 0.11="" 0.32="" 3017<="" 6.6="" <pal="" p=""></pal></th><th></th><th>1.0 0.53 <pql 0.35="" 13="" 25<="" th=""><th>0.79 0.65 <pol 0.33="" 22.93<="" <pol="" th=""><th>0.68 0.65 <pql 0.31="" 32.93<="" <pql="" th=""><th>0.69 <pol 0.40="" 0.61="" 30.64<="" <pol="" th=""><th>1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pql></th></pql>	0.41 <pql 0.10="" 0.11="" 256<="" <pql="" th=""><th><pql 0.19="" 0.56<="" <pql="" p=""></pql></th><th>PQL <pql 0.091="" 0.17="" 34433<="" <pql="" p=""></pql></th><th><pql 0.15="" 0.93<="" <pql="" p=""></pql></th><th></th><th></th><th><pql 0.16<="" 0.35="" <pql="" p=""></pql></th><th><pal 0.11="" 0.32="" 3017<="" 6.6="" <pal="" p=""></pal></th><th></th><th>1.0 0.53 <pql 0.35="" 13="" 25<="" th=""><th>0.79 0.65 <pol 0.33="" 22.93<="" <pol="" th=""><th>0.68 0.65 <pql 0.31="" 32.93<="" <pql="" th=""><th>0.69 <pol 0.40="" 0.61="" 30.64<="" <pol="" th=""><th>1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pql>	<pql 0.19="" 0.56<="" <pql="" p=""></pql>	PQL <pql 0.091="" 0.17="" 34433<="" <pql="" p=""></pql>	<pql 0.15="" 0.93<="" <pql="" p=""></pql>			<pql 0.16<="" 0.35="" <pql="" p=""></pql>	<pal 0.11="" 0.32="" 3017<="" 6.6="" <pal="" p=""></pal>		1.0 0.53 <pql 0.35="" 13="" 25<="" th=""><th>0.79 0.65 <pol 0.33="" 22.93<="" <pol="" th=""><th>0.68 0.65 <pql 0.31="" 32.93<="" <pql="" th=""><th>0.69 <pol 0.40="" 0.61="" 30.64<="" <pol="" th=""><th>1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql>	0.79 0.65 <pol 0.33="" 22.93<="" <pol="" th=""><th>0.68 0.65 <pql 0.31="" 32.93<="" <pql="" th=""><th>0.69 <pol 0.40="" 0.61="" 30.64<="" <pol="" th=""><th>1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol>	0.68 0.65 <pql 0.31="" 32.93<="" <pql="" th=""><th>0.69 <pol 0.40="" 0.61="" 30.64<="" <pol="" th=""><th>1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pql>	0.69 <pol 0.40="" 0.61="" 30.64<="" <pol="" th=""><th>1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol>	1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pol>	1.2 1.4 0.42 0.25 <pol 40222<="" th=""><th>1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol>	1.6 1.1 0.22 <pql 19<="" th=""><th>1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql>	1.2 <pql 0.14="" 0.78="" 11.9<="" 15="" th=""><th>0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql></th></pql>	0.24 <pql 0.089="" 3.55%<="" <pql="" th=""><th>0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql></th></pql>	0.26 <pql 200<="" <pql="" th=""><th>0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pql>	0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql>
TDS Nitrate Nitrite Ammonium Deserved tes Sulfate Deserved	landard SP SP FAAS SP FAA	0.13 0.2 0.02 0.1 0.08 5 0.2	աց/L աց/L աց/L աց/L աց/L աց/L	TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		492 0.46 <pql 0.18="" 15<="" <pql="" th=""><th>501 0.41 <part 0.10="" 0.11="" 356<="" <part="" th=""><th>299 <pat 0.19="" 0.96<="" <pat="" th=""><th>283 <pql 0.091="" 0.17="" 353<="" <pql="" th=""><th>330 <pql 0.15="" 0.93<="" <pql="" th=""><th>303 <pql <pql="" <pql<="" th=""><th>487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pat></th></part></th></pql>	501 0.41 <part 0.10="" 0.11="" 356<="" <part="" th=""><th>299 <pat 0.19="" 0.96<="" <pat="" th=""><th>283 <pql 0.091="" 0.17="" 353<="" <pql="" th=""><th>330 <pql 0.15="" 0.93<="" <pql="" th=""><th>303 <pql <pql="" <pql<="" th=""><th>487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pat></th></part>	299 <pat 0.19="" 0.96<="" <pat="" th=""><th>283 <pql 0.091="" 0.17="" 353<="" <pql="" th=""><th>330 <pql 0.15="" 0.93<="" <pql="" th=""><th>303 <pql <pql="" <pql<="" th=""><th>487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pat>	283 <pql 0.091="" 0.17="" 353<="" <pql="" th=""><th>330 <pql 0.15="" 0.93<="" <pql="" th=""><th>303 <pql <pql="" <pql<="" th=""><th>487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	330 <pql 0.15="" 0.93<="" <pql="" th=""><th>303 <pql <pql="" <pql<="" th=""><th>487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	303 <pql <pql="" <pql<="" th=""><th>487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	487 <pql <pql="" <pql<="" th=""><th>528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql>	528 <pql 0.18<="" 0.35="" <pql="" th=""><th>510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql>	510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql></th></pql>		296 1.0 0.53 <pql 0.35="" 13="" 22.6<="" th=""><th>303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql></th></pql>	303 0.79 0.65 <pql 0.33="" 123<="" <pql="" th=""><th>306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol></th></pql>	306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql></th></pol>	385 0.69 <pql 0.40="" 0.61="" 30.61<="" <pql="" th=""><th>388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl></th></pql>	388 1.8 0.090 0.51 0.25 <pcl 255<="" th=""><th>401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pcl>	401 1.2 1.4 0.42 0.25 <pql 0.22<="" th=""><th>420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	420 1.6 1.1 0.22 <pql 19<="" th=""><th>419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	419 1.4 <pql 0.15="" 0.78="" 17<="" th=""><th>417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql>	417 1.2 <pql 0.14="" 0.19<="" 0.78="" 15="" th=""><th>473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql></th></pql>	473 0.24 <pql 0.089="" 2.50<="" <pql="" th=""><th>485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql></th></pql>	485 0.26 <pql <pql="" <pql<="" th=""><th>481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql></th></pql>	481 0.36 <pql 0.13="" 2.23<="" <pql="" th=""></pql>
indness. TDS Nitrate Nitrite Ammonium provimulus Sulfate previouel	andard Standard SP SP FAAS SP FAA	0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	acovr mg/L mg/L mg/L mg/L mg/L mg/L mg/L	urdness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		141 492 0.46 <pql 0.18="" 315<="" <pql="" th=""><th>146 501 0.41 <pql 0.10="" 0.11="" 3362<="" <pql="" th=""><th>114 299 <pql 0.19="" 296<="" <pql="" th=""><th>69.6 283 <pql 0.091="" 0.17="" 34.33<="" <pql="" th=""><th>105 330 <pql 0.15="" 0.93<="" <pql="" th=""><th>79.0 303 <pql 202<="" 261="" <pql="" th=""><th></th><th>143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	146 501 0.41 <pql 0.10="" 0.11="" 3362<="" <pql="" th=""><th>114 299 <pql 0.19="" 296<="" <pql="" th=""><th>69.6 283 <pql 0.091="" 0.17="" 34.33<="" <pql="" th=""><th>105 330 <pql 0.15="" 0.93<="" <pql="" th=""><th>79.0 303 <pql 202<="" 261="" <pql="" th=""><th></th><th>143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	114 299 <pql 0.19="" 296<="" <pql="" th=""><th>69.6 283 <pql 0.091="" 0.17="" 34.33<="" <pql="" th=""><th>105 330 <pql 0.15="" 0.93<="" <pql="" th=""><th>79.0 303 <pql 202<="" 261="" <pql="" th=""><th></th><th>143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	69.6 283 <pql 0.091="" 0.17="" 34.33<="" <pql="" th=""><th>105 330 <pql 0.15="" 0.93<="" <pql="" th=""><th>79.0 303 <pql 202<="" 261="" <pql="" th=""><th></th><th>143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql>	105 330 <pql 0.15="" 0.93<="" <pql="" th=""><th>79.0 303 <pql 202<="" 261="" <pql="" th=""><th></th><th>143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql></th></pql></th></pql>	79.0 303 <pql 202<="" 261="" <pql="" th=""><th></th><th>143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql></th></pql>		143 528 <pql 0.35="" 0.55<="" <pql="" th=""><th>147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql></th></pql>	147 510 <pql 0.11="" 0.32="" 2017<="" 6.6="" <pql="" th=""><th></th><th>92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol></th></pql>		92.6 296 1.0 0.53 <pol 0.35="" 13="" 22.6<="" th=""><th>90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol></th></pol>	90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql></th></pol>	91.0 306 0.68 0.65 <pql 0.31="" 22.9<="" <pql="" th=""><th>109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol></th></pql>	109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl></th></pol>	115 388 1.8 0.090 0.51 0.25 <pgl 225<="" th=""><th>121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pgl>	121 401 1.2 1.4 0.42 0.25 <pql 2.2<="" 401="" th=""><th>125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql>	125 420 1.6 1.1 0.22 <pql 1.23<="" 19="" th=""><th>128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pql>	128 419 1.4 <pql 0.15="" 0.78="" 17="" 222<="" th=""><th>127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol></th></pql>	127 417 1.2 <pol 0.14="" 0.78="" 1.59<="" 15="" th=""><th>137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql></th></pol>	137 473 0.24 <pql 0.089="" 2.55<="" <pql="" th=""><th>138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql></th></pql>	138 485 0.26 <pql 23<="" <pql="" th=""><th>140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql></th></pql>	140 481 0.36 <pql 0.13="" <pql="" c.13<="" th=""></pql>
uctivity Hardness TDS Nitrate Nitrite Ammonium Deserved as Sulfate Deserved	uctivity Standard Standard SP SP FAAS SP FAA	02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	<u>Տ՝ՠ շաց,</u> աց/Լ աց/Լ աց/Լ աց/Լ աց/L աց/Լ աց/	IC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		5.8 141 492 0.46 <pol 0.18="" 305<="" <pol="" th=""><th>3.2 146 501 0.41 <pol 0.10="" 0.11="" 2010<="" <pol="" th=""><th>3.9 114 299 <pql 299="" 3.6<="" <pql="" th=""><th>12 69.6 283 <pql 0.091="" 0.17="" 2433<="" <pql="" th=""><th>1.6 105 330 <part 0.15="" 0.93<="" <part="" th=""><th></th><th>3.0 110 487 <pol 25<="" <pol="" th=""><th>25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></part></th></pql></th></pql></th></pol></th></pol>	3.2 146 501 0.41 <pol 0.10="" 0.11="" 2010<="" <pol="" th=""><th>3.9 114 299 <pql 299="" 3.6<="" <pql="" th=""><th>12 69.6 283 <pql 0.091="" 0.17="" 2433<="" <pql="" th=""><th>1.6 105 330 <part 0.15="" 0.93<="" <part="" th=""><th></th><th>3.0 110 487 <pol 25<="" <pol="" th=""><th>25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></part></th></pql></th></pql></th></pol>	3.9 114 299 <pql 299="" 3.6<="" <pql="" th=""><th>12 69.6 283 <pql 0.091="" 0.17="" 2433<="" <pql="" th=""><th>1.6 105 330 <part 0.15="" 0.93<="" <part="" th=""><th></th><th>3.0 110 487 <pol 25<="" <pol="" th=""><th>25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></part></th></pql></th></pql>	12 69.6 283 <pql 0.091="" 0.17="" 2433<="" <pql="" th=""><th>1.6 105 330 <part 0.15="" 0.93<="" <part="" th=""><th></th><th>3.0 110 487 <pol 25<="" <pol="" th=""><th>25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></part></th></pql>	1.6 105 330 <part 0.15="" 0.93<="" <part="" th=""><th></th><th>3.0 110 487 <pol 25<="" <pol="" th=""><th>25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></part>		3.0 110 487 <pol 25<="" <pol="" th=""><th>25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol>	25 143 528 <pol 0.35="" 218<="" <pol="" th=""><th>3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol>	3.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol>		5.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql>	7.4 90.8 303 0.79 0.65 <pol 0.33="" 25.<="" <pol="" th=""><th>7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol>	7.8 91.0 306 0.68 0.65 <pol 0.31="" 23<="" <pol="" th=""><th>0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol>	0.2 109 385 0.69 <pol 0.40="" 0.61="" 200<="" <pol="" th=""><th>0.7 115 388 1.8 0.090 0.51 0.25 <0.255</th><th>26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pol>	0.7 115 388 1.8 0.090 0.51 0.25 <0.255	26 121 401 1.2 1.4 0.42 0.25 <pgl 40322<="" th=""><th>5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl>	5.6 125 420 1.8 1.1 0.22 <pol 19<="" th=""><th>5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol>	5.5 128 419 1.4 <pol 0.15="" 0.78="" 1222<="" 17="" th=""><th>5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol>	5.2 127 417 1.2 <pol 0.14="" 0.78="" 11.9<="" 15="" th=""><th>3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql></th></pol>	3.9 137 473 0.24 <pql 0.089="" 2.6<="" <pql="" th=""><th>5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol></th></pql>	5.8 138 465 0.26 <pol 23<="" <pol="" th=""><th>5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql></th></pol>	5.2 140 481 0.36 <pql 0.13="" 2.3<="" <pql="" th=""></pql>
ura Conductivity Hardness TDS Nitrate Nitrite Ammonium Desonant is Sulfate Desonant	 Conductivity Standard Standard Standard SP SP FAAS SP FAAS 	C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	c ms/m cacovr mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Dec Hardness TDS NO ₃ NO ₂ NH ₄ Min SO ₄ Fe		76.8 141 492 0.46 <pql 0.18="" 3015<="" <pql="" th=""><th>78.2 146 501 0.41 <pol 0.10="" 0.11="" 200<="" <pol="" th=""><th>59.9 114 299 <pql 0.19="" 29.6<="" <pql="" th=""><th>44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>47.4 79.0 303 <pol 26<="" <pol="" th=""><th>76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql></th></pol></th></pol></th></pql></th></pql></th></pol></th></pql>	78.2 146 501 0.41 <pol 0.10="" 0.11="" 200<="" <pol="" th=""><th>59.9 114 299 <pql 0.19="" 29.6<="" <pql="" th=""><th>44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>47.4 79.0 303 <pol 26<="" <pol="" th=""><th>76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql></th></pol></th></pol></th></pql></th></pql></th></pol>	59.9 114 299 <pql 0.19="" 29.6<="" <pql="" th=""><th>44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>47.4 79.0 303 <pol 26<="" <pol="" th=""><th>76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql></th></pol></th></pol></th></pql></th></pql>	44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>47.4 79.0 303 <pol 26<="" <pol="" th=""><th>76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql></th></pol></th></pol></th></pql>	51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>47.4 79.0 303 <pol 26<="" <pol="" th=""><th>76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql></th></pol></th></pol>	47.4 79.0 303 <pol 26<="" <pol="" th=""><th>76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql></th></pol>	76.0 110 487 <pql <pql="" <pql<="" th=""><th>82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql></th></pql>	82.5 143 528 <pql 0.35="" 0.35<="" <pql="" th=""><th>79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part></th></pql>	79.8 147 510 <part 0.11="" 0.32="" 2017<="" 6.6="" <part="" th=""><th></th><th>46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql></th></part>		46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol></th></pql>	47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.93<="" <pol="" th=""><th>47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pol>	47.8 91.0 308 0.68 0.65 <pgl 0.31="" 29<="" <pgl="" th=""><th>60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pgl>	60.2 109 385 0.69 <pql 0.40="" 0.61="" 20.6<="" <pql="" th=""><th>60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql>	60.7 115 388 1.8 0.090 0.51 0.25 <pol 25<="" th=""><th>62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql></th></pol>	62.6 121 401 1.2 1.4 0.42 0.25 <pql 4222<="" th=""><th>65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol></th></pql>	65.6 125 420 1.6 1.1 0.22 <pol 1.22<="" 19="" th=""><th>65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql></th></pol>	65.5 128 419 1.4 <pql 0.15="" 0.78="" 1222<="" 17="" th=""><th>65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pql>	65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql></th></pol>	73.9 137 473 0.24 <pql 0.089="" 2363<="" <pql="" th=""><th>75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql></th></pql>	75.8 138 485 0.26 <pql 203<="" <pql="" th=""><th>75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql></th></pql>	75.2 140 481 0.36 <pql 0.13="" 2.33<="" <pql="" th=""></pql>
Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium parameters Deserved	- Thermo Conductive Standard Standard SP SP FAAS SP FAA	0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Deg C mS/m caco ₄ mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		24.8 76.8 141 492 0.46 <pql 0.18="" 2018<="" <pql="" th=""><th>25.3 78.2 146 501 0.41 <pol 0.10="" 0.11="" 25.5<="" <pol="" th=""><th>31.0 59.9 114 299 <pql 0.19="" 29.6<="" <pql="" th=""><th>28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>29.3 51.6 105 330 <pol 0.15="" 29.3<="" <pol="" th=""><th>28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pql></th></pol></th></pql>	25.3 78.2 146 501 0.41 <pol 0.10="" 0.11="" 25.5<="" <pol="" th=""><th>31.0 59.9 114 299 <pql 0.19="" 29.6<="" <pql="" th=""><th>28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>29.3 51.6 105 330 <pol 0.15="" 29.3<="" <pol="" th=""><th>28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pql></th></pol>	31.0 59.9 114 299 <pql 0.19="" 29.6<="" <pql="" th=""><th>28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>29.3 51.6 105 330 <pol 0.15="" 29.3<="" <pol="" th=""><th>28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pql>	28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>29.3 51.6 105 330 <pol 0.15="" 29.3<="" <pol="" th=""><th>28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql>	29.3 51.6 105 330 <pol 0.15="" 29.3<="" <pol="" th=""><th>28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol></th></pql></th></pol>	28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol></th></pql>	29.7 76.0 110 487 <pol 29.7<="" <pol="" th=""><th>27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol></th></pol>	27.1 82.5 143 528 <pol 0.35="" 27.1<="" <pol="" th=""><th>24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol></th></pol>	24.7 79.8 147 510 <pol 0.11="" 0.32="" 2017<="" 6.6="" <pol="" th=""><th></th><th>25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql></th></pol>		25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci></th></pql>	25.4 47.4 90.8 303 0.79 0.65 <pci 0.33="" 1.25<="" <pci="" th=""><th>25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol></th></pci>	25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 32.9<="" <pol="" th=""><th>25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol></th></pol>	25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl></th></pol>	25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pcl 25.5<="" th=""><th>25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl></th></pcl>	25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pgl 3222<="" th=""><th>25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pgl>	25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol></th></pol>	25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol></th></pol>	25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.9<="" 15="" th=""><th>25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql></th></pol>	25.5 73.9 137 473 0.24 <pql 0.089="" 265<="" <pql="" th=""><th>25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol></th></pql>	25.2 75.8 138 485 0.26 <pol 201<="" <pol="" th=""><th>25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol></th></pol>	25.0 75.2 140 481 0.36 <pol 0.13="" <22<="" <pol="" th=""></pol>
pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammoniam prevenues Sulfate Devenue	pH meter Thermo Conductive Standard Standard Standard SP SP FAA	0 0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Deg C mS/m cacoy. mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		7.25 24.8 76.8 141 492 0.46 <pql 0.18="" 105<="" <pql="" th=""><th>7.22 25.3 78.2 146 501 0.41 <pol 0.10="" 0.11="" 256<="" <pol="" th=""><th>7.36 31.0 59.9 114 299 <pql 0.18="" 291="" 295<="" <pql="" th=""><th>7.96 28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>7.30 29.3 51.6 105 330 <pql 0.15="" <pql="" <pql<="" th=""><th>7.72 28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql>	7.22 25.3 78.2 146 501 0.41 <pol 0.10="" 0.11="" 256<="" <pol="" th=""><th>7.36 31.0 59.9 114 299 <pql 0.18="" 291="" 295<="" <pql="" th=""><th>7.96 28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>7.30 29.3 51.6 105 330 <pql 0.15="" <pql="" <pql<="" th=""><th>7.72 28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pol>	7.36 31.0 59.9 114 299 <pql 0.18="" 291="" 295<="" <pql="" th=""><th>7.96 28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>7.30 29.3 51.6 105 330 <pql 0.15="" <pql="" <pql<="" th=""><th>7.72 28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql>	7.96 28.5 44.2 69.6 283 <pql 0.091="" 0.17="" 30.33<="" <pql="" th=""><th>7.30 29.3 51.6 105 330 <pql 0.15="" <pql="" <pql<="" th=""><th>7.72 28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pql></th></pql>	7.30 29.3 51.6 105 330 <pql 0.15="" <pql="" <pql<="" th=""><th>7.72 28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql></th></pql>	7.72 28.5 47.4 79.0 303 <pql <pql="" <pql<="" th=""><th>7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol></th></pql>	7,43 29.7 76.0 110 487 <pol 29.1="" 29.1<="" <pol="" th=""><th>7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql></th></pol>	7.25 27.1 82.5 143 528 <pql 0.35="" 108<="" <pql="" th=""><th>7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol></th></pql>	7.26 24.7 79.8 147 510 <pol 0.11="" 0.32="" 201<="" 6.6="" <pol="" th=""><th></th><th>7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql></th></pol>		7.34 25.2 46.3 92.6 296 1.0 0.53 <pql 0.35="" 13="" 25.6<="" th=""><th>7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pql>	7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 25.9<="" <pol="" th=""><th>7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol>	7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 229<="" <pol="" th=""><th>7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></pol>	7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 25.6<="" <pol="" th=""><th>7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol>	7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pgl 255<="" th=""><th>7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pgl>	7.17 25.3 62.6 121 401 1.2 1.4 0.42 0.25 <pol 1222<="" th=""><th>7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol>	7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pol 19<="" th=""><th>7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol></th></pol>	7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22.2<="" th=""><th>7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol></th></pol>	7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql></th></pol>	7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 25.5<="" <pql="" th=""><th>7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol></th></pql>	7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql></th></pol>	7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 2001<="" <pql="" th=""></pql>
pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium personal tes Sulfate Desenver	pH meter Theme Conductive Standard St	numit 0 0 Deg C 0.02 0.5 0.13 0.2 0.10 0.08 5 0.2	Deg C mS/m cacoy mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	of sampling pH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		다. 1-25 24.8 76.8 141 492 0.46 <pol 0.18="" 301<="" <pol="" th=""><th>1.4pr-01 7.22 25.3 78.2 146 501 0.41 <pol 0.10="" 0.11="" 356<="" <pol="" th=""><th>-Jun-01 7.36 31.0 59.9 114 299 <pql 0.19="" 0.56<="" <pql="" th=""><th>4-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 202<="" <pol="" th=""><th>:Aug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.55<="" <pol="" th=""><th>t-Sep-01 7.72 28.5 47.4 79.0 303 <pol <pol="" th="" ₩203<=""><th>Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol>	1.4pr-01 7.22 25.3 78.2 146 501 0.41 <pol 0.10="" 0.11="" 356<="" <pol="" th=""><th>-Jun-01 7.36 31.0 59.9 114 299 <pql 0.19="" 0.56<="" <pql="" th=""><th>4-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 202<="" <pol="" th=""><th>:Aug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.55<="" <pol="" th=""><th>t-Sep-01 7.72 28.5 47.4 79.0 303 <pol <pol="" th="" ₩203<=""><th>Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></th></pol></th></pol></th></pol></th></pql></th></pol>	-Jun-01 7.36 31.0 59.9 114 299 <pql 0.19="" 0.56<="" <pql="" th=""><th>4-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 202<="" <pol="" th=""><th>:Aug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.55<="" <pol="" th=""><th>t-Sep-01 7.72 28.5 47.4 79.0 303 <pol <pol="" th="" ₩203<=""><th>Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></th></pol></th></pol></th></pol></th></pql>	4-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 202<="" <pol="" th=""><th>:Aug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.55<="" <pol="" th=""><th>t-Sep-01 7.72 28.5 47.4 79.0 303 <pol <pol="" th="" ₩203<=""><th>Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></th></pol></th></pol></th></pol>	:Aug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.55<="" <pol="" th=""><th>t-Sep-01 7.72 28.5 47.4 79.0 303 <pol <pol="" th="" ₩203<=""><th>Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></th></pol></th></pol>	t-Sep-01 7.72 28.5 47.4 79.0 303 <pol <pol="" th="" ₩203<=""><th>Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></th></pol>	Doct-01 7,43 29.7 76.0 110 487 <pol< th=""> <t< th=""><th>Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol></th></t<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<></pol<>	Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl></th></pol>	-Dec-01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 2012<="" 6.6="" <pgl="" th=""><th></th><th>2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pgl>		2-Apr-01 7.34 25.2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol>	2-4pr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 122-95<="" <pol="" th=""><th>2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol>	2-Apr-01 7.27 25.4 47.8 91.0 306 0.68 0.65 <pol 0.31="" 329<="" <pol="" th=""><th>2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol>	2.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol>	2-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol></th></pol>	2-Apr-01 7.17 25.3 62.6 121 401 12 1.4 0.42 0.25 <pol 12.22<="" th=""><th>2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql></th></pol>	2-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pql 19<="" th=""><th>2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol></th></pql>	2-40r-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol></th></pol>	2-Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" th=""><th>2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl></th></pol>	2-Apr.01 7.16 25.5 73.9 137 473 0.24 <pgl 0.089="" 255<="" <pgl="" th=""><th>2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol></th></pgl>	2-4gr-01 7.14 25.2 75.8 138 485 0.26 <pol 202<="" <pol="" th=""><th>249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql></th></pol>	249r-01 7.20 25.0 75.2 140 481 0.36 <pql 0.13="" 223<="" <pql="" th=""></pql>
alyte pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium previous suifate Deserved	ithod pH meter Themo Conductive Standard Standard Standard S P SP FAAS SP FAA	antitation Limit 0 0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Jatt Deg C mS/m cacoyt mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	o Data of sampting pH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		18.4pr-01 7.25 24.8 76.8 141 492 0.46 <pol 0.18="" 1415<="" <pol="" td=""><td>21-Apr-01 7.22 25.3 78.2 146 501 0.41 <part 0.10="" 0.11="" 356<="" <part="" td=""><td>11-Jun-01 7.36 31.0 59.9 114 299 <pol 0.19="" 0.65<="" <pol="" td=""><td>04-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 14.2<="" <pol="" td=""><td>12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 105<="" <pol="" td=""><td>15.Sep.01 7.72 28.5 47.4 79.0 303 <pol 228.<="" <pol="" td=""><td>19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></part></td></pol>	21-Apr-01 7.22 25.3 78.2 146 501 0.41 <part 0.10="" 0.11="" 356<="" <part="" td=""><td>11-Jun-01 7.36 31.0 59.9 114 299 <pol 0.19="" 0.65<="" <pol="" td=""><td>04-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 14.2<="" <pol="" td=""><td>12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 105<="" <pol="" td=""><td>15.Sep.01 7.72 28.5 47.4 79.0 303 <pol 228.<="" <pol="" td=""><td>19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></part>	11-Jun-01 7.36 31.0 59.9 114 299 <pol 0.19="" 0.65<="" <pol="" td=""><td>04-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 14.2<="" <pol="" td=""><td>12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 105<="" <pol="" td=""><td>15.Sep.01 7.72 28.5 47.4 79.0 303 <pol 228.<="" <pol="" td=""><td>19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol>	04-Jul-01 7.96 28.5 44.2 69.6 283 <pol 0.091="" 0.17="" 14.2<="" <pol="" td=""><td>12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 105<="" <pol="" td=""><td>15.Sep.01 7.72 28.5 47.4 79.0 303 <pol 228.<="" <pol="" td=""><td>19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol>	12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 105<="" <pol="" td=""><td>15.Sep.01 7.72 28.5 47.4 79.0 303 <pol 228.<="" <pol="" td=""><td>19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol></td></pol></td></pol>	15.Sep.01 7.72 28.5 47.4 79.0 303 <pol 228.<="" <pol="" td=""><td>19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol></td></pol>	19-0ci-01 7,43 29.7 76.0 110 487 <pol 10<="" 201="" <pol="" td=""><td>10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol></td></pol>	10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" td=""><td>07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl></td></pol>	07-Dec.01 7.26 24.7 79.8 147 510 <pgl 0.11="" 0.32="" 447<="" 6.6="" <pgl="" td=""><td></td><td>22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol></td></pgl>		22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" td=""><td>min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol></td></pol>	min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 12.95<="" <pol="" td=""><td>min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol></td></pol>	min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.65 <pol 0.31="" 22.9<="" <pol="" td=""><td>22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol></td></pol>	22.4pr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" td=""><td>min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol></td></pol>	min 22-Apr-01 7.16 25.5 80.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" td=""><td>min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol></td></pol>	min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 222<="" td=""><td>· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat></td></pol>	· 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pat 19="" 25.2<="" td=""><td>min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol></td></pat>	min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 22-2<="" td=""><td>0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol></td></pol>	0mini 22.Apr-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2<="" 15="" td=""><td>· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql></td></pol>	· 22.Apr-01 7.16 25.5 73.9 137 473 0.24 <pql 0.089="" 1050<="" <pql="" td=""><td>min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql></td></pql>	min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 20<="" <pql="" td=""><td>0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol></td></pql>	0min 22-Apr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 202<="" <pol="" td=""></pol>
Analyte pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium previous te Sulfate Deserved	Method pH meter Themo Conductive Standard Standard Standard SP SP FAAS SP FAA	Practical Quantitation Limit 0 0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Unit Deg C mS/m cacoyt mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Sample No Date of sampting pH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe	Jheraidaht	OW-UH1-BP 18-Apr-01 7.25 24.8 76.8 141 492 0.46 <pol 0.18="" 315<="" <pol="" th=""><th>0WJH148h 21-Apr-01 7.22 25.3 78.2 146 501 0.41 <poil 0.10="" 0.11="" 356<="" <poil="" th=""><th>OW-IH1-IM 11-Jun-01 7.36 31.0 59.9 114 299 <pol 0.19="" 201="" 2016<="" <pol="" th=""><th>OW-UH1-2M 04-UH-01 7:96 28:5 44.2 69.6 283 <pol 0.091="" 0.17="" 24.2<="" <pol="" th=""><th>OW-XH1-3M 12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>0W-JH14M 15Sep.01 7.72 28.5 47.4 79.0 303 <pol 221.<="" <pol="" th=""><th>0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></poil></th></pol>	0WJH148h 21-Apr-01 7.22 25.3 78.2 146 501 0.41 <poil 0.10="" 0.11="" 356<="" <poil="" th=""><th>OW-IH1-IM 11-Jun-01 7.36 31.0 59.9 114 299 <pol 0.19="" 201="" 2016<="" <pol="" th=""><th>OW-UH1-2M 04-UH-01 7:96 28:5 44.2 69.6 283 <pol 0.091="" 0.17="" 24.2<="" <pol="" th=""><th>OW-XH1-3M 12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>0W-JH14M 15Sep.01 7.72 28.5 47.4 79.0 303 <pol 221.<="" <pol="" th=""><th>0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></poil>	OW-IH1-IM 11-Jun-01 7.36 31.0 59.9 114 299 <pol 0.19="" 201="" 2016<="" <pol="" th=""><th>OW-UH1-2M 04-UH-01 7:96 28:5 44.2 69.6 283 <pol 0.091="" 0.17="" 24.2<="" <pol="" th=""><th>OW-XH1-3M 12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>0W-JH14M 15Sep.01 7.72 28.5 47.4 79.0 303 <pol 221.<="" <pol="" th=""><th>0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol>	OW-UH1-2M 04-UH-01 7:96 28:5 44.2 69.6 283 <pol 0.091="" 0.17="" 24.2<="" <pol="" th=""><th>OW-XH1-3M 12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>0W-JH14M 15Sep.01 7.72 28.5 47.4 79.0 303 <pol 221.<="" <pol="" th=""><th>0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol></th></pol>	OW-XH1-3M 12-Mug-01 7.30 29.3 51.6 105 330 <pol 0.15="" 0.15<="" <pol="" th=""><th>0W-JH14M 15Sep.01 7.72 28.5 47.4 79.0 303 <pol 221.<="" <pol="" th=""><th>0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol></th></pol>	0W-JH14M 15Sep.01 7.72 28.5 47.4 79.0 303 <pol 221.<="" <pol="" th=""><th>0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol></th></pol>	0W-JH1-5M 19-Oct-01 7.43 29.7 76.0 110 487 <pol 492.<="" <pol="" th=""><th>OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol></th></pol>	OW-HH-EM 10-Nov-01 7.25 27.1 82.5 143 528 <pol 0.35="" 103<="" <pol="" th=""><th>OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql></th></pol>	OW-LHI-TM 07-Dec-01 7.26 24.7 79.8 147 510 <pql 0.11="" 0.32="" 447<="" 6.6="" <pql="" th=""><th></th><th>OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol></th></pql>		OH-UH-1-BP 22-Apr-01 7.34 25-2 46.3 92.6 296 1.0 0.53 <pol 0.35="" 13="" 25.6<="" th=""><th>41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol></th></pol>	41H1-1-SIP-30min 22-Apr-01 7.31 25.4 47.4 90.8 303 0.79 0.65 <pol 0.33="" 1229<="" <pol="" th=""><th>-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol></th></pol>	-HH:1-SiP-140min 22-Apr-01 7.27 25.4 47.8 91.0 308 0.68 0.66 <pol 0.31="" 229<="" <pol="" th=""><th>OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol></th></pol>	OH-UH12-8P 22-Apr-01 7.25 25.4 60.2 109 385 0.69 <pol 0.40="" 0.61="" 30.66<="" <pol="" th=""><th>WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol></th></pol>	WH1-2SIP-30min 22-Apr-01 7.16 25.5 60.7 115 388 1.8 0.090 0.51 0.25 <pol 255<="" th=""><th>-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol></th></pol>	-HH-2-SIP-140min 22-Apr-01 7.17 25.3 62.6 121 401 12 14 0.42 0.25 <pol 1222<="" th=""><th>0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl></th></pol>	0H-Hrt3-8P 22-Apr-01 7.10 25.0 65.6 125 420 1.6 1.1 0.22 <pgl 19<="" th=""><th>LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol></th></pgl>	LHH:3SIP-30min 22-Apr-01 7.26 25.6 65.5 128 419 1.4 <pol 0.15="" 0.78="" 17="" 222<="" th=""><th>1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol></th></pol>	1.0141-3-5112-140mini 22-Apt-01 7.15 25.6 65.2 127 417 1.2 <pol 0.14="" 0.78="" 1.2="" 15="" 3<="" th=""><th>0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl></th></pol>	0HJH14-BP 22:Apr-01 7.16 25.5 73.9 137 473 0.24 <pgl 2008="" 2009<="" <pgl="" th=""><th>44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql></th></pgl>	44H14-SIP-30min 22-Apr-01 7.14 25.2 75.8 138 485 0.26 <pql 202<="" <pql="" th=""><th>Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol></th></pql>	Litt 4-siP-140min 22-4pr-01 7.20 25.0 75.2 140 481 0.36 <pol 0.13="" 201<="" <pol="" th=""></pol>

Excess of both Bangladesh Standard and WHO guideline

Excess of Bangladesh Standard

(The values were determined as exceeding the standards before rounding off)

Excess of WHO guideline

5-120

 Table 5.5.2
 Results of Observation Well and Hole (4/7)

Excess of both Bangladesh Standard and WHO guideline

Excess of Bangladesh Standard

(The values were determined as exceeding the standards before rounding off)

Excess of WHO guideline

.

5-121

.

Results of Observation Well and Hole (5/7) Table 5.5.2

						_		_					_					- 7	-		_	_	_	_	- 1		- 1	
00 CO	Titration	20	mg/L	60		₹PαL	<₽QL	₽QL	₹₽QF	PQL	₹₽GΓ	₹PαL	₽aL	<₽QL	PQL		31	27	59	< PQL	₽QL	₽ΩL	я	₽oL	₽QL	æ	₽GL	Å
Zinc	Extraction , FAAS	0.005	тgЛ	ź		₹PΩL	sPQL	0.0078	PQL ∧	0.0084	< PQL	0.0065	<₽QL	<₽QL	PQL		<pql< th=""><th>₽QL</th><th>₹₽GL</th><th><₽QĽ</th><th>0.0066</th><th>₽oL</th><th>Å</th><th>PQL</th><th>0.0060</th><th>₹₽QĽ</th><th>0.031</th><th>0.070</th></pql<>	₽QL	₹₽GL	<₽QĽ	0.0066	₽oL	Å	PQL	0.0060	₹₽QĽ	0.031	0.070
Nickel	Extraction/ FAAS	0.005	mg/L	N		PQL	0.0057	<₽QL	0.0052	<pql< th=""><th>₽QI</th><th>₽QL</th><th><₽QL</th><th>≮PQL</th><th>₹₽QL</th><th></th><th><₽QL</th><th>0:0080</th><th>0.0082</th><th>0.0073</th><th>0.0051</th><th>0.0068</th><th>₽aL</th><th>₽QL</th><th>0.0052</th><th>0.0095</th><th>0.0050</th><th>0,0060</th></pql<>	₽QI	₽QL	<₽QL	≮PQL	₹₽QL		<₽QL	0:0080	0.0082	0.0073	0.0051	0.0068	₽aL	₽QL	0.0052	0.0095	0.0050	0,0060
Mercury	Extraction/ FAAS	0.001	mg/L	нg		<pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th></th><th>≺PQL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><pql< th=""><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th></th><th>≺PQL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th></th><th>≺PQL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	< PQL	< PQL	<₽QL	<pql< th=""><th><pql< th=""><th><₽QL</th><th></th><th>≺PQL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th></th><th>≺PQL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<></th></pql<></th></pql<>	<₽QL		≺PQL	₽QL	<pql< th=""><th><pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<></th></pql<>	<pql< th=""><th><₽aL</th><th><₽QL</th><th>PQL</th><th>≮PQL</th><th><₽QL</th><th>₽ġ</th><th>₽QL</th><th>₽aL</th></pql<>	<₽aL	<₽QL	PQL	≮PQL	<₽QL	₽ġ	₽QL	₽aL
Lead	Ednaction/ FAAS	0.005	mg/L	đ		<pql< th=""><th><₽QL</th><th>₹₽ØΓ</th><th>₽ar</th><th><₽ai</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	₹₽ØΓ	₽ar	<₽ai	<₽QL	<pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>< PQL</th><th><pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	< PQL	<pql< th=""><th></th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><₽QL</th><th>₽QL</th><th>₽QL</th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	₽QL	₽QL	<pql< th=""><th><pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<></th></pql<>	<pql< th=""><th>≮PQL</th><th>₹₽QĽ</th><th>PQL</th></pql<>	≮PQL	₹₽QĽ	PQL
Cyanide	СS	0.0 <u>1</u>	mg/L	S		<₽QL	0.017	0.023	<₽αL	<₽QL	<₽QL	<₽QL	<pql< th=""><th><pa∟< th=""><th><₽QL</th><th></th><th><pql< th=""><th><pql< th=""><th>0.014</th><th>0.013</th><th>0.012</th><th>0.012</th><th>≺PQL</th><th>0.013</th><th><pql< th=""><th>0.014</th><th>0.019</th><th>₽ØL</th></pql<></th></pql<></th></pql<></th></pa∟<></th></pql<>	<pa∟< th=""><th><₽QL</th><th></th><th><pql< th=""><th><pql< th=""><th>0.014</th><th>0.013</th><th>0.012</th><th>0.012</th><th>≺PQL</th><th>0.013</th><th><pql< th=""><th>0.014</th><th>0.019</th><th>₽ØL</th></pql<></th></pql<></th></pql<></th></pa∟<>	<₽QL		<pql< th=""><th><pql< th=""><th>0.014</th><th>0.013</th><th>0.012</th><th>0.012</th><th>≺PQL</th><th>0.013</th><th><pql< th=""><th>0.014</th><th>0.019</th><th>₽ØL</th></pql<></th></pql<></th></pql<>	<pql< th=""><th>0.014</th><th>0.013</th><th>0.012</th><th>0.012</th><th>≺PQL</th><th>0.013</th><th><pql< th=""><th>0.014</th><th>0.019</th><th>₽ØL</th></pql<></th></pql<>	0.014	0.013	0.012	0.012	≺PQL	0.013	<pql< th=""><th>0.014</th><th>0.019</th><th>₽ØL</th></pql<>	0.014	0.019	₽ØL
Copper	Extraction/ FAAS	0.005	mg/L	сп		<₽QL	<pql< th=""><th>₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th>sPQL</th><th><pql< th=""><th>sPQL</th><th>PQL</th><th>₽QL</th><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	₽QL	<₽QL	<₽QL	<₽QL	<₽QL	<pql< th=""><th><pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th>sPQL</th><th><pql< th=""><th>sPQL</th><th>PQL</th><th>₽QL</th><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th></th><th><₽QL</th><th><pql< th=""><th>sPQL</th><th><pql< th=""><th>sPQL</th><th>PQL</th><th>₽QL</th><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL		<₽QL	<pql< th=""><th>sPQL</th><th><pql< th=""><th>sPQL</th><th>PQL</th><th>₽QL</th><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th></pql<></th></pql<></th></pql<>	sPQL	<pql< th=""><th>sPQL</th><th>PQL</th><th>₽QL</th><th>< PQL</th><th>< PQL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th></pql<></th></pql<>	sPQL	PQL	₽QL	< PQL	< PQL	<₽QL	<pql< th=""><th><₽QL</th></pql<>	<₽QL
Total Cr	Editaction	D.025	mg/L	c		< PQL	<pql< th=""><th><pql< th=""><th><₽QĹ</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QĹ</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QĹ	<pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>PQL</th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	PQL	<pql< th=""><th>₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<>	₽QL	<pql< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><₽QL</th><th><pql< th=""></pql<></th></pql<>	<₽QL	<pql< th=""></pql<>
. unimbec	Edraction/ FAAS	0.002	mg/L	cd		<pql< th=""><th>PQL</th><th><pql< th=""><th>sPaL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>_</th><th>≺PQL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th>₹₽GL</th><th>≺PQL</th><th><pqi.< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th>≮PQL</th></pql<></th></pql<></th></pqi.<></th></pql<></th></pql<></th></pql<></th></pql<>	PQL	<pql< th=""><th>sPaL</th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>_</th><th>≺PQL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th>₹₽GL</th><th>≺PQL</th><th><pqi.< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th>≮PQL</th></pql<></th></pql<></th></pqi.<></th></pql<></th></pql<></th></pql<>	sPaL	<₽QL	<pql< th=""><th><₽QL</th><th><₽QL</th><th><₽QL</th><th><₽QL</th><th>_</th><th>≺PQL</th><th><pql< th=""><th><₽QL</th><th><₽QL</th><th>₹₽GL</th><th>≺PQL</th><th><pqi.< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th>≮PQL</th></pql<></th></pql<></th></pqi.<></th></pql<></th></pql<>	<₽QL	<₽QL	<₽QL	<₽QL	_	≺PQL	<pql< th=""><th><₽QL</th><th><₽QL</th><th>₹₽GL</th><th>≺PQL</th><th><pqi.< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th>≮PQL</th></pql<></th></pql<></th></pqi.<></th></pql<>	<₽QL	<₽QL	₹₽GL	≺PQL	<pqi.< th=""><th><₽QL</th><th><pql< th=""><th><₽QL</th><th><pql< th=""><th>≮PQL</th></pql<></th></pql<></th></pqi.<>	<₽QL	<pql< th=""><th><₽QL</th><th><pql< th=""><th>≮PQL</th></pql<></th></pql<>	<₽QL	<pql< th=""><th>≮PQL</th></pql<>	≮PQL
Fluoride	SP	0.1	mg/L	F		0.29	0:30	0.11	0.16	0.23	0.23	0.23	0.21	0.31	0.25		0.28	0.29	0.27	0.24	0.27	0.32	0.27	0.32	0:30	0.21	0.31	0.26
Potasselum	FAAS	0.1	mg/L	К		4.0	3.5	7.5	6.3	4.7	5.3	3.6	3.5	4.7	3.9		3.6	4.5	-3.4	3.5	3.7	3.7	3.6	3.7	3.7	4.5	4.1	4.8
Sodium	FAAS	0.05	mg/L	ыN		23	18	19	10	19	20	13	10	10	15		8	17	14	16	13	12	31	28	19	58	43	ឌ
Indexe	FAAS	0.05	тgл	ßW		3.0	29	34	28	24	ន	24	27	26	29		Ę	15	15	12	13	13	18	19	8	26	28	27
Calcium	FAAS	0.5	mg/L	S		120	130	67	100	110	130	8	130	130	130		45	5	65	45	58	61	59	61	8	74	120	120
karbonate (itration	20	ng CaCO _M	HCO,		475	482	315	410	478	18 1	351	488	507	494		213	259	259	<u>19</u>	241	241	259	324	333	389	500	490
hloride B	SP T	0.6		.		3.0	2.3	2.0	1.5	₽aL	22	1.4	1.8	0.73	1.4		6.1	2.0	1.5	3.4	1.3	0.87	14	1.4	22	19	4.9	2.7
10	(0)		<u>.</u>			1003000															-	_					1000	unice at
Paloa	-AA:	0.2	Ъ	ŝ	•	0.4	0.77	12 W	(ie)	য়েই	- 21.	260	90	26	14. 1		609	90	QU	0.73	90	120	90 80	20)	ġ,	8	28	201
ulfate Dissolved	SP FAAS	5 0.2	Vgm _Vgm	SO4 Fe	•	<pal< th=""><th><pql 0.77<="" th=""><th><pol 12<="" th=""><th><pol 16<="" th=""><th><pql 231<="" th=""><th><pre>>POL</pre></th><th><pol 24<="" th=""><th><pre>>POL</pre></th><th><pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql></th></pol></th></pql></th></pol></th></pol></th></pql></th></pal<>	<pql 0.77<="" th=""><th><pol 12<="" th=""><th><pol 16<="" th=""><th><pql 231<="" th=""><th><pre>>POL</pre></th><th><pol 24<="" th=""><th><pre>>POL</pre></th><th><pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql></th></pol></th></pql></th></pol></th></pol></th></pql>	<pol 12<="" th=""><th><pol 16<="" th=""><th><pql 231<="" th=""><th><pre>>POL</pre></th><th><pol 24<="" th=""><th><pre>>POL</pre></th><th><pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql></th></pol></th></pql></th></pol></th></pol>	<pol 16<="" th=""><th><pql 231<="" th=""><th><pre>>POL</pre></th><th><pol 24<="" th=""><th><pre>>POL</pre></th><th><pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql></th></pol></th></pql></th></pol>	<pql 231<="" th=""><th><pre>>POL</pre></th><th><pol 24<="" th=""><th><pre>>POL</pre></th><th><pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql></th></pol></th></pql>	<pre>>POL</pre>	<pol 24<="" th=""><th><pre>>POL</pre></th><th><pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql></th></pol>	<pre>>POL</pre>	<pql 226<="" th=""><th><pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol></th></pql>	<pol 372<="" th=""><th></th><th><pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.></th></pol>		<pol. 160<="" th=""><th><pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql></th></pol.>	<pql 100<="" th=""><th><pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql></th></pql>	<pql 2410<="" th=""><th><pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql></th></pql>	<pql 0.73<="" th=""><th>Pal.</th><th><pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat></th></pql>	Pal.	<pat 21="" 21<="" th=""><th>5.5 \$ 30</th><th><pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol></th></pat>	5.5 \$ 30	<pol 24<="" th=""><th><pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<></th></pol>	<pol.< th=""><th><pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql></th></pol.<>	<pql 09<="" th=""><th><pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql></th></pql>	<pql 28<="" th=""><th><pat 231<="" th=""></pat></th></pql>	<pat 231<="" th=""></pat>
settred the Suffatte Dissolved	FAAS SP FAAS	0.08 5 0.2	ng/L mg/L mg/l	Mn SO4 Fe		0.29 <pat 10<="" th=""><th>4PQL <pql 0.77<="" p=""></pql></th><th><pre><part ************************************<="" th=""><th><pre>cPQL <pql <="" pre=""></pql></pre></th><th>0.32 <pql 221<="" th=""><th>0.35 <pql< th=""><th>0.33 <pql 200<="" th=""><th>0.70 <pql 155<="" th=""><th>0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pql></th></part></pre></th></pat>	4PQL <pql 0.77<="" p=""></pql>	<pre><part ************************************<="" th=""><th><pre>cPQL <pql <="" pre=""></pql></pre></th><th>0.32 <pql 221<="" th=""><th>0.35 <pql< th=""><th>0.33 <pql 200<="" th=""><th>0.70 <pql 155<="" th=""><th>0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pql></th></part></pre>	<pre>cPQL <pql <="" pre=""></pql></pre>	0.32 <pql 221<="" th=""><th>0.35 <pql< th=""><th>0.33 <pql 200<="" th=""><th>0.70 <pql 155<="" th=""><th>0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql<></th></pql>	0.35 <pql< th=""><th>0.33 <pql 200<="" th=""><th>0.70 <pql 155<="" th=""><th>0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql<>	0.33 <pql 200<="" th=""><th>0.70 <pql 155<="" th=""><th>0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	0.70 <pql 155<="" th=""><th>0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	0.87 <pql 2.6<="" th=""><th>0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	0.49 <pql 437<="" th=""><th></th><th>0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>		0.52 <pql 4600<="" th=""><th>0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql></th></pql>	0.24 <pql 103<="" th=""><th>0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql></th></pql>	0.16 <pql 119<="" th=""><th>0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql></th></pql>	0.17 <pql 0.73<="" th=""><th>0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql></th></pql>	0.13 <pql 16<="" th=""><th>0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<></th></pql>	0.10 <pql< th=""><th>0.14 5.5 \$ 30</th><th>0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql></th></pql<>	0.14 5.5 \$ 30	0.33 <pql 224<="" th=""><th>0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<></th></pql>	0.21 <pql< th=""><th>0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql></th></pql<>	0.090 <pql 0.097<="" th=""><th>0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql></th></pql>	0.40 <pql 28<="" th=""><th>0.28 <pql 20<="" th=""></pql></th></pql>	0.28 <pql 20<="" th=""></pql>
montium bisseveed atta Suffatte Dissolved	SP FAAS SP FAA	0.1 0.08 5 0.2	ng/L mg/L mg/L mg/L	NH4 Min SO4 Fe		0.65 0.29 <pgl 10<="" th=""><th>1.1 <pql 0.77<="" <pql="" th=""><th>0.48 <pql 12<="" <pql="" th=""><th>0.42 <pql <pql<="" th=""><th>PQL 0.32 <pql 2.1<="" p=""></pql></th><th>0.11 0.35 <pql< th=""><th>PQL 0.33 <pql 2.02<="" p=""></pql></th><th>0.26 0.70 <pgl 0.5<="" th=""><th>0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pgl></th></pql<></th></pql></th></pql></th></pql></th></pgl>	1.1 <pql 0.77<="" <pql="" th=""><th>0.48 <pql 12<="" <pql="" th=""><th>0.42 <pql <pql<="" th=""><th>PQL 0.32 <pql 2.1<="" p=""></pql></th><th>0.11 0.35 <pql< th=""><th>PQL 0.33 <pql 2.02<="" p=""></pql></th><th>0.26 0.70 <pgl 0.5<="" th=""><th>0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pgl></th></pql<></th></pql></th></pql></th></pql>	0.48 <pql 12<="" <pql="" th=""><th>0.42 <pql <pql<="" th=""><th>PQL 0.32 <pql 2.1<="" p=""></pql></th><th>0.11 0.35 <pql< th=""><th>PQL 0.33 <pql 2.02<="" p=""></pql></th><th>0.26 0.70 <pgl 0.5<="" th=""><th>0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pgl></th></pql<></th></pql></th></pql>	0.42 <pql <pql<="" th=""><th>PQL 0.32 <pql 2.1<="" p=""></pql></th><th>0.11 0.35 <pql< th=""><th>PQL 0.33 <pql 2.02<="" p=""></pql></th><th>0.26 0.70 <pgl 0.5<="" th=""><th>0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pgl></th></pql<></th></pql>	PQL 0.32 <pql 2.1<="" p=""></pql>	0.11 0.35 <pql< th=""><th>PQL 0.33 <pql 2.02<="" p=""></pql></th><th>0.26 0.70 <pgl 0.5<="" th=""><th>0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pgl></th></pql<>	PQL 0.33 <pql 2.02<="" p=""></pql>	0.26 0.70 <pgl 0.5<="" th=""><th>0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pgl>	0.34 0.87 <pql 02.6<="" th=""><th>0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql>	0.37 0.49 <pql 37<="" th=""><th></th><th>-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal></th></pql>		-Pal 0.52 <pal 200<="" th=""><th>0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql></th></pal>	0.59 0.24 <pql 118<="" th=""><th>0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql></th></pql>	0.71 0.16 <pql 10.0<="" th=""><th>0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql></th></pql>	0.44 0.17 <pql 0.73<="" th=""><th>0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<></th></pql>	0.47 0.13 <pql< th=""><th>0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<></th></pql<>	0.52 0.10 <pql< th=""><th>0.70 0.14 5.5 4 3.0</th><th>0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql<>	0.70 0.14 5.5 4 3.0	0.83 0.33 <pql 224<="" th=""><th>0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl></th></pql>	0.82 0.21 <pgl 0.9<="" th=""><th>0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql></th></pgl>	0.24 0.090 <pql 69<="" th=""><th>0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql></th></pql>	0.47 0.40 <pql 28<="" th=""><th>0.46 0.28 <pql 23<="" th=""></pql></th></pql>	0.46 0.28 <pql 23<="" th=""></pql>
Suffate Armnonium Disserved the Suffate Dissolved	SP SP FAAS SP FAAS	0.02 0.1 0.08 5 0.2	ng/L mg/L mg/L mg/L	NO ₂ NH4 Min SO4 Fe		0.16 0.65 0.29 <pgl< th=""><th>Pal 1.1 <pal 0.77<="" th=""><th>Pal D.48 <pal <pal<="" th=""><th></th><th>4PQL <pql 0.32="" 221<="" <pql="" th=""><th>cPQL 0.11 0.35 <pql< th=""><th>4PQL 4PQL 0.33 4PQL 22/20</th><th>4PQL 0.26 0.70 <pql 0.56<="" p=""></pql></th><th>cPQL 0.34 0.87 <pql 2.6<="" p=""></pql></th><th>cPQL 0.37 0.49 <pql 377<="" th=""><th></th><th>1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part></th></pql></th></pql<></th></pql></th></pal></th></pal></th></pgl<>	Pal 1.1 <pal 0.77<="" th=""><th>Pal D.48 <pal <pal<="" th=""><th></th><th>4PQL <pql 0.32="" 221<="" <pql="" th=""><th>cPQL 0.11 0.35 <pql< th=""><th>4PQL 4PQL 0.33 4PQL 22/20</th><th>4PQL 0.26 0.70 <pql 0.56<="" p=""></pql></th><th>cPQL 0.34 0.87 <pql 2.6<="" p=""></pql></th><th>cPQL 0.37 0.49 <pql 377<="" th=""><th></th><th>1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part></th></pql></th></pql<></th></pql></th></pal></th></pal>	Pal D.48 <pal <pal<="" th=""><th></th><th>4PQL <pql 0.32="" 221<="" <pql="" th=""><th>cPQL 0.11 0.35 <pql< th=""><th>4PQL 4PQL 0.33 4PQL 22/20</th><th>4PQL 0.26 0.70 <pql 0.56<="" p=""></pql></th><th>cPQL 0.34 0.87 <pql 2.6<="" p=""></pql></th><th>cPQL 0.37 0.49 <pql 377<="" th=""><th></th><th>1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part></th></pql></th></pql<></th></pql></th></pal>		4PQL <pql 0.32="" 221<="" <pql="" th=""><th>cPQL 0.11 0.35 <pql< th=""><th>4PQL 4PQL 0.33 4PQL 22/20</th><th>4PQL 0.26 0.70 <pql 0.56<="" p=""></pql></th><th>cPQL 0.34 0.87 <pql 2.6<="" p=""></pql></th><th>cPQL 0.37 0.49 <pql 377<="" th=""><th></th><th>1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part></th></pql></th></pql<></th></pql>	cPQL 0.11 0.35 <pql< th=""><th>4PQL 4PQL 0.33 4PQL 22/20</th><th>4PQL 0.26 0.70 <pql 0.56<="" p=""></pql></th><th>cPQL 0.34 0.87 <pql 2.6<="" p=""></pql></th><th>cPQL 0.37 0.49 <pql 377<="" th=""><th></th><th>1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part></th></pql></th></pql<>	4PQL 4PQL 0.33 4PQL 22/20	4PQL 0.26 0.70 <pql 0.56<="" p=""></pql>	cPQL 0.34 0.87 <pql 2.6<="" p=""></pql>	cPQL 0.37 0.49 <pql 377<="" th=""><th></th><th>1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part></th></pql>		1.0 <part 0.52="" 1.0<="" <part="" th=""><th>cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql></th></part>	cPQL 0.59 0.24 <pql 0.59<="" th=""><th>PQL 0.71 0.16 <pql 0.19<="" p=""></pql></th><th>PQL 0.44 0.17 <pql 0.73<="" p=""></pql></th><th>PQL 0.47 0.13 <pql 0.47<="" p=""></pql></th><th><pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql></th><th>0.64 0.70 0.14 5.5 2.30</th><th>0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql></th></pql>	PQL 0.71 0.16 <pql 0.19<="" p=""></pql>	PQL 0.44 0.17 <pql 0.73<="" p=""></pql>	PQL 0.47 0.13 <pql 0.47<="" p=""></pql>	<pql 0.10="" 0.52="" 2.12<="" <pql="" p=""></pql>	0.64 0.70 0.14 5.5 2.30	0.20 0.83 0.33 <pql 2.4<="" th=""><th>0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol></th></pql>	0.020 0.82 0.21 <pol 20<="" th=""><th><pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql></th><th>PQL 0.46 0.28 <pql 230<="" p=""></pql></th></pol>	<pql 0.090="" 0.24="" 6693<="" <pql="" p=""></pql>	<pql 0.40="" 0.47="" 2.83<="" <pql="" p=""></pql>	PQL 0.46 0.28 <pql 230<="" p=""></pql>
itrate Nitrite Armnonium preserved the Suffate Dissolved	SP SP FAAS SP FAAS	0.2 0.02 0.1 0.08 5 0.2	ոց/լ աց/լ աց/լ աց/լ աց/լ	NO3 NO2 NH4 Mn SO4 Fe		PQL 0.16 0.65 0.29 <pql 0.10<="" th=""><th>PQL <pql 0.77<="" 1.1="" <pql="" th=""><th>POL <pol 0.48="" 2.2<="" <pol="" th=""><th>0.29 <pql 0.42="" <pql="" <pql<="" th=""><th>0.59 <pql 0.32="" 221<="" <pql="" th=""><th>0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql>	PQL <pql 0.77<="" 1.1="" <pql="" th=""><th>POL <pol 0.48="" 2.2<="" <pol="" th=""><th>0.29 <pql 0.42="" <pql="" <pql<="" th=""><th>0.59 <pql 0.32="" 221<="" <pql="" th=""><th>0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pql></th></pol></th></pql>	POL <pol 0.48="" 2.2<="" <pol="" th=""><th>0.29 <pql 0.42="" <pql="" <pql<="" th=""><th>0.59 <pql 0.32="" 221<="" <pql="" th=""><th>0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pql></th></pol>	0.29 <pql 0.42="" <pql="" <pql<="" th=""><th>0.59 <pql 0.32="" 221<="" <pql="" th=""><th>0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql></th></pql>	0.59 <pql 0.32="" 221<="" <pql="" th=""><th>0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal></th></pql></th></pql>	0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal></th></pql>	0.52 <pal 0.33="" <pal="" <pal<="" th=""><th>4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql></th><th>ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql></th></pal>	4PQL <pql 0.20<="" 0.28="" 0.70="" <pql="" p=""></pql>	ePQL <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql></th><th></th><th>1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql></th></pql>	CPQL <pql 0.37="" 0.49="" 3778<="" <pql="" p=""></pql>		1.4 1.0 <pql 0.52="" 460<="" <pql="" th=""><th>PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql></th><th>PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql></th><th><pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre></th><th>4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql></th></pql>	PQL <pql 0.00<="" 0.24="" 0.59="" <pql="" p=""></pql>	PQL <pql 0.16="" 0.19<="" 0.71="" <pql="" p=""></pql>	<pre><pql 0.17="" 0.44="" 0.73<="" <pql="" pre=""></pql></pre>	4PQL <pql 0.13="" 0.47="" 0.60<="" <pql="" th=""><th><pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql></th><th>1.4 0.64 0.70 0.14 5.5 4300</th><th>PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql></th><th>4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql></th><th><pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql></th><th><pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql></th><th></th></pql>	<pql 0.10="" 0.52="" 0.52<="" <pql="" p=""></pql>	1.4 0.64 0.70 0.14 5.5 4300	PQL 0.20 0.83 0.33 <pql 224<="" p=""></pql>	4PQL 0.020 0.82 0.21 <pql 0.00<="" p=""></pql>	<pql 0.090="" 0.09<="" 0.24="" <pql="" p=""></pql>	<pql 0.40="" 0.47="" 2.33<="" <pql="" p=""></pql>	
TDS Nitrate Närite Ammonium preserved as Sulfate Dissolved	andard SP SP FAAS SP FAAS	0.13 0.2 0.02 0.1 0.08 5 0.2	ացչլ ացչլ ացչլ ացչլ ացչլ ացչլ	TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe	· · · · · · · · · · · · · · · · · · ·	523 <pql 0.10<="" 0.16="" 0.29="" 0.65="" <pql="" th=""><th>538 <pql 0.77<="" 1.1="" <pql="" th=""><th>359 <pql 0.48="" 2.48<="" <pql="" th=""><th>415 0.29 <pql 0.42="" 0.60<="" <pql="" th=""><th>317 0.59 <pql 0.32="" 2.21<="" <pql="" th=""><th>336 0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	538 <pql 0.77<="" 1.1="" <pql="" th=""><th>359 <pql 0.48="" 2.48<="" <pql="" th=""><th>415 0.29 <pql 0.42="" 0.60<="" <pql="" th=""><th>317 0.59 <pql 0.32="" 2.21<="" <pql="" th=""><th>336 0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	359 <pql 0.48="" 2.48<="" <pql="" th=""><th>415 0.29 <pql 0.42="" 0.60<="" <pql="" th=""><th>317 0.59 <pql 0.32="" 2.21<="" <pql="" th=""><th>336 0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	415 0.29 <pql 0.42="" 0.60<="" <pql="" th=""><th>317 0.59 <pql 0.32="" 2.21<="" <pql="" th=""><th>336 0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	317 0.59 <pql 0.32="" 2.21<="" <pql="" th=""><th>336 0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	336 0.73 <pql 0.11="" 0.35="" <pql<="" th=""><th>295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	352 <pql 0.28="" 0.70="" 75<="" <pql="" th=""><th>530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	530 <pql 0.34="" 0.87="" 2.56<="" <pql="" th=""><th>396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	396 <pql 0.37="" 0.49="" 37<="" <pql="" th=""><th></th><th>269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>		269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	289 <pql 0.24="" 0.59="" 0.9<="" <pql="" th=""><th>299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	265 <pql 0.13="" 0.47="" 0.65<="" <pql="" th=""><th>269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>324 1.4 0.64 0.70 0.14 5.5 3005</th><th>376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	324 1.4 0.64 0.70 0.14 5.5 3005	376 <pql 0.20="" 0.33="" 0.83="" 2.24<="" <pql="" th=""><th>373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pql>	373 <pql 0.020="" 0.020<="" 0.21="" 0.82="" <pql="" th=""><th>479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql></th></pql>	479 <pql 0.090="" 0.24="" 0.99<="" <pql="" th=""><th>544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql></th></pql>	544 <pql 0.40="" 0.47="" 253<="" <pql="" th=""><th>550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql></th></pql>	550 <pql 0.28="" 0.46="" 2.01<="" <pql="" th=""></pql>
rdness TDS Nitrate Nätrite Ammonium passevente. Sulfate Dissolved	andard Standard SP SP FAAS SP FAAS	0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	יניס ^{אר} שפער שפער שפער שפער שפער שעע שפער שעע	indress TDS NO ₃ NO ₂ NH ₄ Min SO ₄ Fe		122 523 <pql 0.10<="" 0.16="" 0.29="" 0.65="" <pql="" th=""><th>155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>88.1 359 <pql 0.43<="" 0.48="" <pql="" th=""><th>133 415 0.29 <pql 0.42="" 0.65<="" <pql="" th=""><th>136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>146 336 0.73 <pql 0.11="" 0.35="" 10.11<="" <pql="" th=""><th>141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>88.1 359 <pql 0.43<="" 0.48="" <pql="" th=""><th>133 415 0.29 <pql 0.42="" 0.65<="" <pql="" th=""><th>136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>146 336 0.73 <pql 0.11="" 0.35="" 10.11<="" <pql="" th=""><th>141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	88.1 359 <pql 0.43<="" 0.48="" <pql="" th=""><th>133 415 0.29 <pql 0.42="" 0.65<="" <pql="" th=""><th>136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>146 336 0.73 <pql 0.11="" 0.35="" 10.11<="" <pql="" th=""><th>141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	133 415 0.29 <pql 0.42="" 0.65<="" <pql="" th=""><th>136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>146 336 0.73 <pql 0.11="" 0.35="" 10.11<="" <pql="" th=""><th>141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>146 336 0.73 <pql 0.11="" 0.35="" 10.11<="" <pql="" th=""><th>141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	146 336 0.73 <pql 0.11="" 0.35="" 10.11<="" <pql="" th=""><th>141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql></th></pql>	141 285 0.52 <pql 0.33="" <pql="" <pql<="" th=""><th>153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql></th></pql>	153 352 <pql 0.70="" 028="" 058<="" <pql="" th=""><th>157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql></th></pql>	157 530 <pql 0.34="" 0.87="" 200<="" <pql="" th=""><th>156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql></th></pql>	156 398 <pql 0.37="" 0.49="" 33.<="" <pql="" th=""><th></th><th>57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part></th></pql>		57.9 269 1.4 1.0 <part 0.52="" 1.600<="" <part="" th=""><th>78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></part>	78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql>	80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" th=""><th>57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql>	57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql>	71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql></th></pql>	73.7 269 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl></th></pql>	76.9 324 1.4 0.64 0.70 0.14 5.5 3.00	88.9 376 <pgl 0.20="" 0.33="" 0.83="" 2.2<="" <pgl="" th=""><th>99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pgl>	99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" th=""><th>101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql></th></pql>	101 479 <pql 0.090="" 0.24="" 6.99<="" <pql="" th=""><th>145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql></th></pql>	145 544 <pql 0.40="" 0.47="" 228<="" <pql="" th=""><th>148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql></th></pql>	148 550 <pql 0.28="" 0.46="" 231<="" <pql="" th=""></pql>
ctivity Hardness TDS Nitrate Närtite Ammontum passesse te Suffate Dissoned	Advisory Standard Standard SP SP FAAS SP FAAS	02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	vm caco₄t mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	C Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		.7 122 523 <pql 0.16="" 0.29="" 0.65="" 20<="" <pql="" th=""><th>11 155 538 <pql 0:17<="" 1:1="" <pql="" th=""><th>10 88.1 359 <pql 0.48="" 204="" 359<="" <pql="" th=""><th>13 133 415 0.29 <pql 0.42="" 0.46<="" <pql="" th=""><th>3.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>25 146 336 0.73 <pql 0.11="" 0.13<="" 0.35="" <pql="" th=""><th>5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	11 155 538 <pql 0:17<="" 1:1="" <pql="" th=""><th>10 88.1 359 <pql 0.48="" 204="" 359<="" <pql="" th=""><th>13 133 415 0.29 <pql 0.42="" 0.46<="" <pql="" th=""><th>3.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>25 146 336 0.73 <pql 0.11="" 0.13<="" 0.35="" <pql="" th=""><th>5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	10 88.1 359 <pql 0.48="" 204="" 359<="" <pql="" th=""><th>13 133 415 0.29 <pql 0.42="" 0.46<="" <pql="" th=""><th>3.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>25 146 336 0.73 <pql 0.11="" 0.13<="" 0.35="" <pql="" th=""><th>5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	13 133 415 0.29 <pql 0.42="" 0.46<="" <pql="" th=""><th>3.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>25 146 336 0.73 <pql 0.11="" 0.13<="" 0.35="" <pql="" th=""><th>5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	3.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>25 146 336 0.73 <pql 0.11="" 0.13<="" 0.35="" <pql="" th=""><th>5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	25 146 336 0.73 <pql 0.11="" 0.13<="" 0.35="" <pql="" th=""><th>5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	5.1 141 295 0.52 <pql 0.33="" 200<="" <pql="" th=""><th>19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	19 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	2.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	19 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>		20 57.9 269 1.4 1.0 <pql 0.52="" 2602<="" <pql="" th=""><th>5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	5.1 78.7 289 <pql 0.24="" 0.59="" 0.59<="" <pql="" th=""><th>3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	3.7 80.0 299 <pql 0.09<="" 0.16="" 0.71="" <pql="" th=""><th>7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql>	7.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql>	1.3 71.4 265 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql></th></pql>	20 73.7 269 <pql 0.10="" 0.4<="" 0.52="" <pql="" th=""><th>0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330</th><th>8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql></th></pql>	0.7 76.9 324 1.4 0.64 0.70 0.14 5.5 330	8.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 2.34<="" <pql="" th=""><th>8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl></th></pql>	8.2 99.4 373 <pgl 0.020="" 0.020<="" 0.21="" 0.82="" <pgl="" th=""><th>4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pgl>	4.8 101 479 <pql 0.090="" 6.99<="" <pql="" th=""><th>5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql>	5.0 145 544 <pql 0.40="" 0.47="" 230<="" <pql="" th=""><th>6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql>	6.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql>
are Conductivity Hardness TDS Nitrate Nitrite Ammontum pawawa as Suffate Dissolved	Conductivity Standard Standard SP SP FAAS SP FAAS	C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	cacover mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		81.7 122 523 <pql 0.16="" 0.29="" 0.65="" 20<="" <pql="" th=""><th>84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>56.0 B8.1 359 <pql 0.48="" 20.48<="" <pql="" th=""><th>64.9 133 415 0.29 <pol 0.42="" 64.9<="" <pol="" th=""><th>63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>52.5 146 336 0.73 <pql 0.11="" 0.11<="" 0.35="" <pql="" th=""><th>46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql>	84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>56.0 B8.1 359 <pql 0.48="" 20.48<="" <pql="" th=""><th>64.9 133 415 0.29 <pol 0.42="" 64.9<="" <pol="" th=""><th>63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>52.5 146 336 0.73 <pql 0.11="" 0.11<="" 0.35="" <pql="" th=""><th>46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pol></th></pql></th></pql>	56.0 B8.1 359 <pql 0.48="" 20.48<="" <pql="" th=""><th>64.9 133 415 0.29 <pol 0.42="" 64.9<="" <pol="" th=""><th>63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>52.5 146 336 0.73 <pql 0.11="" 0.11<="" 0.35="" <pql="" th=""><th>46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pol></th></pql>	64.9 133 415 0.29 <pol 0.42="" 64.9<="" <pol="" th=""><th>63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>52.5 146 336 0.73 <pql 0.11="" 0.11<="" 0.35="" <pql="" th=""><th>46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pol>	63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>52.5 146 336 0.73 <pql 0.11="" 0.11<="" 0.35="" <pql="" th=""><th>46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql>	52.5 146 336 0.73 <pql 0.11="" 0.11<="" 0.35="" <pql="" th=""><th>46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql>	46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol>	54.8 153 352 <pql 0.28="" 0.58<="" 0.70="" <pql="" th=""><th>82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" th=""><th>61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	61.9 156 398 <pql 0.37="" 0.49="" 3.7<="" <pql="" th=""><th>•</th><th>42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	•	42.0 57.9 269 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	45.1 78.7 289 <pql 0.03<="" 0.24="" 0.59="" <pql="" th=""><th>46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	46.7 80.0 299 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql></th></pql>	37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql></th></pql>	41.3 71.4 285 <pql 0.13="" 0.47="" 0.5<="" <pql="" th=""><th>42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql></th></pql>	42.0 73.7 269 <pql 0.10="" 0.52="" 0.53<="" <pql="" th=""><th>50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500</th><th>58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql></th></pql>	50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 4500	58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 224<="" <pql="" th=""><th>58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql></th></pql>	58.2 99.4 373 <pql 0.020="" 0.03<="" 0.21="" 0.82="" <pql="" th=""><th>74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part></th></pql>	74.8 101 479 <part 0.090="" 0.24="" 6.9<="" <part="" th=""><th>85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat></th></part>	85.0 145 544 <pat 0.40="" 0.47="" 25<="" <pat="" th=""><th>86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql></th></pat>	86.0 148 550 <pql 0.28="" 0.46="" 201<="" <pql="" th=""></pql>
Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium Developed In Sulflate Dissolved	. Thermo Conductively Standard Standard SP SP FAAS SP FAAS	0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Deg C mS/m cacoor mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Temp EC hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		23.2 81.7 122 523 <pql 0.16="" 0.29="" 0.65="" 20.1<="" <pql="" th=""><th>23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>26.8 56.0 88.1 359 <pol 0.48="" 26.1<="" <pol="" th=""><th>25.1 64.9 133 415 0.29 <poi 0.42="" 26.<="" <poi="" th=""><th>312 63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>28.9 52.5 146 336 0.73 <part 0.11="" 0.35="" 1.1<="" <part="" th=""><th>284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></part></th></pql></th></poi></th></pol></th></pql></th></pql>	23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>26.8 56.0 88.1 359 <pol 0.48="" 26.1<="" <pol="" th=""><th>25.1 64.9 133 415 0.29 <poi 0.42="" 26.<="" <poi="" th=""><th>312 63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>28.9 52.5 146 336 0.73 <part 0.11="" 0.35="" 1.1<="" <part="" th=""><th>284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></part></th></pql></th></poi></th></pol></th></pql>	26.8 56.0 88.1 359 <pol 0.48="" 26.1<="" <pol="" th=""><th>25.1 64.9 133 415 0.29 <poi 0.42="" 26.<="" <poi="" th=""><th>312 63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>28.9 52.5 146 336 0.73 <part 0.11="" 0.35="" 1.1<="" <part="" th=""><th>284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></part></th></pql></th></poi></th></pol>	25.1 64.9 133 415 0.29 <poi 0.42="" 26.<="" <poi="" th=""><th>312 63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>28.9 52.5 146 336 0.73 <part 0.11="" 0.35="" 1.1<="" <part="" th=""><th>284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></part></th></pql></th></poi>	312 63.4 136 317 0.59 <pql 0.32="" 221<="" <pql="" th=""><th>28.9 52.5 146 336 0.73 <part 0.11="" 0.35="" 1.1<="" <part="" th=""><th>284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></part></th></pql>	28.9 52.5 146 336 0.73 <part 0.11="" 0.35="" 1.1<="" <part="" th=""><th>284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></part>	284 46.1 141 285 0.52 <pol 0.33="" 232<="" <pol="" th=""><th>27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol>	27.1 54.9 153 352 <pql 0.28="" 0.70="" 353<="" <pql="" th=""><th>28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql></th></pql>	28.8 82.9 157 530 <pql 0.34="" 0.87="" 20.6<="" <pql="" th=""><th>27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql></th></pql>	27.0 61.9 156 398 <pql 0.37="" 0.49="" 337<="" <pql="" th=""><th></th><th>23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql></th></pql>		23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" th=""><th>25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql></th></pql>	25.0 45.1 78.7 289 <pql 0.00<="" 0.24="" 0.59="" <pql="" th=""><th>24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl></th></pql>	24.0 46.7 80.0 299 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql></th></pgl>	24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol></th></pql>	24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat></th></pol>	24.8 42.0 73.7 269 <pat 0.10="" 0.52="" 24.8<="" <pat="" th=""><th>23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200</th><th>25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol></th></pat>	23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3200	25.3 58.8 98.9 376 <pol 0.20="" 0.33="" 0.83="" 22.4<="" <pol="" th=""><th>24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol></th></pol>	24.8 58.2 99.4 373 <pol 0.020="" 0.02<="" 0.21="" 0.82="" <pol="" th=""><th>24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal></th></pol>	24.1 74.8 101 479 <pal 0.090="" 659<="" <pal="" th=""><th>25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql></th></pal>	25.2 B5.0 145 544 <pql 0.40="" 0.47="" 2.23<="" <pql="" th=""><th>27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql></th></pql>	27.4 86.0 148 550 <pql 0.28="" 0.46="" 27.4<="" <pql="" th=""></pql>
pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium Devendents Sutfate Discond	OH metter Themine conductively Standard Standard Standard SP SP FAAS SP FAAS	0 0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Deg C mS/m carcovt mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	pH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		7.22 23.2 81.7 122 523 <pql 0.16="" 0.29="" 0.65="" 201<="" <pql="" th=""><th>7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>7.41 26.8 56.0 88.1 359 <pql 0.48="" 20.4<="" <pql="" th=""><th>726 25.1 64.9 133 415 0.29 <pot 0.42="" <pot="" <pot<="" th=""><th>724 312 634 136 317 0.59 <pol 0.32="" 221<="" <pol="" th=""><th>7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.35="" 10.35<="" <pol="" th=""><th>7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pot></th></pql></th></pql></th></pql>	7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>7.41 26.8 56.0 88.1 359 <pql 0.48="" 20.4<="" <pql="" th=""><th>726 25.1 64.9 133 415 0.29 <pot 0.42="" <pot="" <pot<="" th=""><th>724 312 634 136 317 0.59 <pol 0.32="" 221<="" <pol="" th=""><th>7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.35="" 10.35<="" <pol="" th=""><th>7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pot></th></pql></th></pql>	7.41 26.8 56.0 88.1 359 <pql 0.48="" 20.4<="" <pql="" th=""><th>726 25.1 64.9 133 415 0.29 <pot 0.42="" <pot="" <pot<="" th=""><th>724 312 634 136 317 0.59 <pol 0.32="" 221<="" <pol="" th=""><th>7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.35="" 10.35<="" <pol="" th=""><th>7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pot></th></pql>	726 25.1 64.9 133 415 0.29 <pot 0.42="" <pot="" <pot<="" th=""><th>724 312 634 136 317 0.59 <pol 0.32="" 221<="" <pol="" th=""><th>7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.35="" 10.35<="" <pol="" th=""><th>7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol></th></pot>	724 312 634 136 317 0.59 <pol 0.32="" 221<="" <pol="" th=""><th>7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.35="" 10.35<="" <pol="" th=""><th>7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol></th></pol></th></pol>	7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.35="" 10.35<="" <pol="" th=""><th>7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol></th></pol>	7.05 29.4 46.1 141 285 0.52 <pol 0.33="" 201<="" <pol="" th=""><th>7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pol>	7,16 27.1 54.9 153 352 <pql 0.28="" 0.70="" 27.1<="" <pql="" th=""><th>7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql>	7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 206<="" <pql="" th=""><th>724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql>	724 27.0 61.9 156 398 <pql 0.37="" 0.49="" 338<="" <pql="" th=""><th></th><th>727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol></th></pql>		727 23.8 42.0 57.9 289 1.4 1.0 <pol 0.00<="" 0.52="" <pol="" th=""><th>7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql></th></pol>	7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 25.0<="" <pql="" th=""><th>7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql></th></pql>	7.23 24.0 46.7 80.0 239 <pql 0.0<="" 0.16="" 0.71="" <pql="" th=""><th>7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql></th></pql>	7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.44="" 0.73<="" <pql="" th=""><th>7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql></th></pql>	7.20 24.6 41.3 71.4 265 <pql 0.13="" 0.47="" 265<="" <pql="" th=""><th>722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql></th></pql>	722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" <pql="" <pql<="" th=""><th>7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</th><th>7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol></th></pql>	7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00	7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql></th></pol>	7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" 30.53<="" <pql="" th=""><th>7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql></th></pql>	7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 699<="" <pql="" th=""><th>7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql></th></pql>	7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 233<="" <pql="" th=""><th>6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql></th></pql>	6.98 27.4 86.0 148 550 <pql 0.28="" 0.48="" 201<="" <pql="" th=""></pql>
pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium Inventee Suffate Disconse	pH meter Thermo Conductive's Standard Standard Standard SP SP FAAS SP FAAS	Limit 0 0.Deg.C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Deg C mS/m carcovit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	d sampting pH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Mn SO ₄ Fe		Jan-01 7.22 23.2 81.7 122 523 <pql 0.01<="" 0.16="" 0.29="" 0.65="" <pql="" th=""><th>Feb-01 7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.48="" 10.2<="" <pql="" th=""><th>Apr-01 7.26 25.1 64.9 133 415 0.29 <p0l 0.42="" 0.60<="" <p0l="" th=""><th>Jumo1 7.24 312 63.4 136 317 0.59 <pql 0.32="" 201<="" <pql="" th=""><th>-Jul-01 7.32 28.9 52.5 146 336 0.73 <pql 0.11="" 0.35="" 10.1<="" <pql="" th=""><th>Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql></th></pql></th></pql></th></p0l></th></pql></th></pql></th></pql>	Feb-01 7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" th=""><th>Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.48="" 10.2<="" <pql="" th=""><th>Apr-01 7.26 25.1 64.9 133 415 0.29 <p0l 0.42="" 0.60<="" <p0l="" th=""><th>Jumo1 7.24 312 63.4 136 317 0.59 <pql 0.32="" 201<="" <pql="" th=""><th>-Jul-01 7.32 28.9 52.5 146 336 0.73 <pql 0.11="" 0.35="" 10.1<="" <pql="" th=""><th>Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql></th></pql></th></pql></th></p0l></th></pql></th></pql>	Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.48="" 10.2<="" <pql="" th=""><th>Apr-01 7.26 25.1 64.9 133 415 0.29 <p0l 0.42="" 0.60<="" <p0l="" th=""><th>Jumo1 7.24 312 63.4 136 317 0.59 <pql 0.32="" 201<="" <pql="" th=""><th>-Jul-01 7.32 28.9 52.5 146 336 0.73 <pql 0.11="" 0.35="" 10.1<="" <pql="" th=""><th>Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql></th></pql></th></pql></th></p0l></th></pql>	Apr-01 7.26 25.1 64.9 133 415 0.29 <p0l 0.42="" 0.60<="" <p0l="" th=""><th>Jumo1 7.24 312 63.4 136 317 0.59 <pql 0.32="" 201<="" <pql="" th=""><th>-Jul-01 7.32 28.9 52.5 146 336 0.73 <pql 0.11="" 0.35="" 10.1<="" <pql="" th=""><th>Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql></th></pql></th></pql></th></p0l>	Jumo1 7.24 312 63.4 136 317 0.59 <pql 0.32="" 201<="" <pql="" th=""><th>-Jul-01 7.32 28.9 52.5 146 336 0.73 <pql 0.11="" 0.35="" 10.1<="" <pql="" th=""><th>Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql></th></pql></th></pql>	-Jul-01 7.32 28.9 52.5 146 336 0.73 <pql 0.11="" 0.35="" 10.1<="" <pql="" th=""><th>Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql></th></pql>	Aug-01 7.05 28.4 46.1 141 285 0.52 <pql 0.33="" 202<="" <pql="" th=""><th>Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<></th></pql>	Sep-01 7,18 27,1 54,9 153 352 <pql< th=""> <pql< th=""> 0.28 0.70 <pql< th=""> <th< th=""><th>Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol></th></th<></pql<></pql<></pql<>	Oct-01 7.32 29.8 82.9 157 530 <pol 0.34="" 0.87="" 42.6<="" <pol="" th=""><th>Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql></th></pol>	Nor-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 2021<="" <pql="" th=""><th></th><th>Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol></th></pql>		Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" th=""><th>Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql></th></pol>	Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" th=""><th>Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl></th></pql>	Feb-01 7.23 24.0 46.7 80.0 289 <pgl 0.0<="" 0.16="" 0.71="" <pgl="" th=""><th>Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql></th></pgl>	Feb-01 7.37 24.5 37.1 57.1 237 <pql 0.17="" 0.73<="" <pql="" th=""><th>Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol></th></pql>	Feboli 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" th=""><th>Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql></th></pol>	Feb-01 7.22 24.8 42.0 73.7 269 <pql 0.10="" 0.52="" 250<="" <pql="" th=""><th>FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300</th><th>Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol></th></pql>	FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 300	Feb-01 7.15 25.3 58.8 98.9 378 <pol 0.20="" 0.33="" 0.83="" 224<="" <pol="" th=""><th>Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol></th></pol>	Feb-01 7.12 24.8 58.2 99.4 373 <pol 0.020="" 0.21="" 0.82="" 20<="" <pol="" th=""><th>Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql></th></pol>	Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" th=""><th>Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql></th></pql>	Feb-01 7.01 25.2 85.0 145 544 <pql 0.40="" 0.47="" 23<="" <pql="" th=""><th>Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql></th></pql>	Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.46="" 203<="" <pql="" th=""></pql>
tyde pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium Inventee Suffate Disconse	thod pH meter Thermo Conductive Standard Standard Standard Standard Standard Standard Standard Standard Standard SP SP FAAS	mttartion Limit 0 0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	nt Deg C mS/m cross, mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data of sempling pH Temp EC Hardness TDS NO ₃ NO ₂ NH ₄ Min SO ₄ Fe		01-48n-01 7.22 23.2 81.7 122 523 <pql 0.16="" 0.29="" 0.65="" 201<="" <pql="" td=""><td>22.Feb-01 7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" td=""><td>28-Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.48="" 10.2<="" <pql="" td=""><td>28-Apr-01 7.28 25.1 64.9 133 415 0.29 4PQL 0.42 4PQL 4PQL 400</td><td>14-Jun-01 7.24 312 63.4 136 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>05-Viu-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.13<="" 0.35="" <pol="" td=""><td>14-4ug-01 7.05 29.4 46.1 141 295 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql></td></pol></td></pol></td></pol></td></pql></td></pql></td></pql>	22.Feb-01 7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" td=""><td>28-Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.48="" 10.2<="" <pql="" td=""><td>28-Apr-01 7.28 25.1 64.9 133 415 0.29 4PQL 0.42 4PQL 4PQL 400</td><td>14-Jun-01 7.24 312 63.4 136 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>05-Viu-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.13<="" 0.35="" <pol="" td=""><td>14-4ug-01 7.05 29.4 46.1 141 295 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql></td></pol></td></pol></td></pol></td></pql></td></pql>	28-Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.48="" 10.2<="" <pql="" td=""><td>28-Apr-01 7.28 25.1 64.9 133 415 0.29 4PQL 0.42 4PQL 4PQL 400</td><td>14-Jun-01 7.24 312 63.4 136 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>05-Viu-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.13<="" 0.35="" <pol="" td=""><td>14-4ug-01 7.05 29.4 46.1 141 295 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql></td></pol></td></pol></td></pol></td></pql>	28-Apr-01 7.28 25.1 64.9 133 415 0.29 4PQL 0.42 4PQL 4PQL 400	14-Jun-01 7.24 312 63.4 136 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>05-Viu-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.13<="" 0.35="" <pol="" td=""><td>14-4ug-01 7.05 29.4 46.1 141 295 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql></td></pol></td></pol></td></pol>	05-Viu-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.13<="" 0.35="" <pol="" td=""><td>14-4ug-01 7.05 29.4 46.1 141 295 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql></td></pol></td></pol>	14-4ug-01 7.05 29.4 46.1 141 295 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql></td></pol>	12-Sep-01 7,18 27.1 54.9 153 352 <pql 0.28="" 0.70="" 10.3<="" <pql="" td=""><td>15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql></td></pql>	15-0d-01 7.32 28.8 82.9 157 530 <pql 0.34="" 0.87="" 226<="" <pql="" td=""><td>08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql></td></pql>	08-Nov-01 7.24 27.0 61.9 156 398 <pql 0.37="" 0.49="" 30.3<="" <pql="" td=""><td></td><td>04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol></td></pql>		04Feb-01 7.27 23.8 42.0 57.9 289 1.4 1.0 <pol 0.52="" 200<="" <pol="" td=""><td>min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql></td></pol>	min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.24="" 0.59="" 1.00<="" <pql="" td=""><td>· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql></td></pql>	· 25Feb-01 7.23 24.0 46.7 80.0 289 <pql 0.0<="" 0.16="" 0.71="" <pql="" td=""><td>04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pql>	04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73	min 25-Feb-01 7.20 24.6 41.3 71.4 265 <pol 0.13="" 0.47="" 265<="" <pol="" td=""><td>- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl></td></pol>	- 25Feb-01 722 24.8 42.0 73.7 269 <pgl 0.10="" 0.52="" 253<="" <pgl="" td=""><td>04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50</td><td>min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql></td></pgl>	04FebO1 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.50	min 25Feb-01 7.15 25.3 58.8 98.9 378 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql></td></pql>	* 25Febo1 7.12 24.8 58.2 99.4 373 <pql 0.020="" 0.21="" 0.82="" <pql<="" td=""><td>04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql></td></pql>	04Feb-01 7.35 24.1 74.8 101 479 <pql 0.090="" 0.24="" 693<="" <pql="" td=""><td>min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol></td></pql>	min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td>· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql></td></pol>	· 25-Feb-01 6.88 27.4 86.0 148 550 <pql 0.28="" 0.48="" 203<="" <pql="" td=""></pql>
Analyte pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammonium Developed to Discond	Method pH meter Theme conductive Standard Standard Standard Standard Standard SP FAAS SP FAAS	Practical Quantitation Limit 0 0 Deg C 0.02 0.5 0.13 0.2 0.02 0.1 0.08 5 0.2	Unit Deg C mS/m carcove mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Sample No base of semipting pH Temp EC Heartness TDS NO ₂ NO ₂ NH ₄ Min SO ₄ Fe	Chuadangat	OW-CH1GP 01-Jan-01 7.22 23.2 81.7 122 523 <pol 0.16="" 0.29="" 0.65="" 201<="" <pol="" td=""><td>OW-CH1-48h 22-Feb-01 7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" td=""><td>OW-CH1-IM 28-Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.43="" 10.2<="" <pql="" td=""><td>OW-CH1-2M 28-Apr-01 7.28 25.1 64.9 133 415 0.29 <pol 0.42="" 10.00<="" 400l="" <pol="" td=""><td>OW-CH1-3M 14-Jun-01 7.24 312 63.4 138 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>OW-CHI-IM 05-LIH-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.12<="" 0.35="" <pol="" td=""><td>OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol></td></pql></td></pql></td></pol>	OW-CH1-48h 22-Feb-01 7.27 23.9 84.1 155 538 <pql 0.77<="" 1.1="" <pql="" td=""><td>OW-CH1-IM 28-Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.43="" 10.2<="" <pql="" td=""><td>OW-CH1-2M 28-Apr-01 7.28 25.1 64.9 133 415 0.29 <pol 0.42="" 10.00<="" 400l="" <pol="" td=""><td>OW-CH1-3M 14-Jun-01 7.24 312 63.4 138 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>OW-CHI-IM 05-LIH-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.12<="" 0.35="" <pol="" td=""><td>OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol></td></pql></td></pql>	OW-CH1-IM 28-Mar-01 7.41 28.8 56.0 88.1 359 <pql 0.43="" 10.2<="" <pql="" td=""><td>OW-CH1-2M 28-Apr-01 7.28 25.1 64.9 133 415 0.29 <pol 0.42="" 10.00<="" 400l="" <pol="" td=""><td>OW-CH1-3M 14-Jun-01 7.24 312 63.4 138 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>OW-CHI-IM 05-LIH-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.12<="" 0.35="" <pol="" td=""><td>OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol></td></pql>	OW-CH1-2M 28-Apr-01 7.28 25.1 64.9 133 415 0.29 <pol 0.42="" 10.00<="" 400l="" <pol="" td=""><td>OW-CH1-3M 14-Jun-01 7.24 312 63.4 138 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>OW-CHI-IM 05-LIH-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.12<="" 0.35="" <pol="" td=""><td>OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol></td></pol></td></pol></td></pol>	OW-CH1-3M 14-Jun-01 7.24 312 63.4 138 317 0.59 <pol 0.32="" 0.32<="" <pol="" td=""><td>OW-CHI-IM 05-LIH-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.12<="" 0.35="" <pol="" td=""><td>OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol></td></pol></td></pol>	OW-CHI-IM 05-LIH-01 7.32 28.9 52.5 146 336 0.73 <pol 0.11="" 0.12<="" 0.35="" <pol="" td=""><td>OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol></td></pol>	OW-CHI-SM 14-Aug-01 7.05 284 46.1 141 285 0.52 <pol 0.33="" 202<="" <pol="" td=""><td>OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol></td></pol>	OW-CH-SM 12-Sep-01 7,16 27,1 54,8 153 352 <pol 0.28="" 0.70="" 10.3<="" <pol="" td=""><td>OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl></td></pol>	OW-CHI-7M 15-Od-01 7.32 28.8 82.9 157 530 <pgl 0.34="" 0.87="" 226<="" <pgl="" td=""><td>OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql></td></pgl>	OW-CHI-BM 08-Nev-01 7.24 27/0 61.9 156 398 <pql 0.37="" 0.49="" 303<="" <pql="" td=""><td></td><td>0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql></td></pql>		0HCH1-18P 04Feb01 7.27 23.6 42.0 57.9 289 1.4 1.0 <pql 0.52="" 2600<="" <pql="" td=""><td>+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql>	+cHt-IsIP-30min 25-Feb-01 7.11 25.0 45.1 78.7 289 <pql 0.0<="" 0.24="" 0.59="" <pql="" td=""><td>0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql></td></pql>	0HCH1-JSIP- 25Feb-01 7.23 24.0 46.7 80.0 299 <pql 0.00<="" 0.16="" 0.71="" <pql="" td=""><td>0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73</td><td>+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265</td><td>0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql></td></pql>	0HCH1:28P 04Feb-01 7.37 24.5 37.1 57.1 237 4PQL 4PQL 0.44 0.17 4PQL 0.73	+CH1-2-SIP-30min 25-Feb-01 7.20 24.6 41.3 71.4 265 4PQL 4PQL 0.47 0.13 4PQL 265	0H-CH1-2-SiP- 25Feb-01 722 24.8 42.0 73.7 289 <pql 0.10="" 0.52="" 140min<="" 24.8="" <pql="" td=""><td>OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00</td><td>HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql></td></pql>	OHCH13-BP 04Feb01 7.57 23.9 50.7 76.9 324 1.4 0.64 0.70 0.14 5.5 3.00	HcH1-35Pr30min 25Feb-01 7.15 25.3 58.8 98.9 376 <pql 0.20="" 0.33="" 0.83="" 22<="" <pql="" td=""><td>0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min</td><td>0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol></td></pql>	0HCH13-SIP- 25Feb-01 7.12 24.8 58.2 99.4 373 4PQL 0.020 0.82 0.21 4PQL 0.020 140min	0HCH14-BP 04Feb-01 7.35 24.1 74.8 101 479 <pol 0.090="" 0.24="" 692<="" <pol="" td=""><td>H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol></td></pol>	H-CH14-SP-30min 25Feb-01 7.01 25.2 85.0 145 544 <pol 0.40="" 0.47="" 23<="" <pol="" td=""><td></td></pol>	

5-122

•

Excess of WHO guideline Excess of Bangladesh Standard (The values were determined as exceeding the standards before rounding off)

Excess of both Bangladesh Standard and WHO guideline

 Table 5.5.2
 Results of Observation Well and Hole (6/7)

Analyt	e e	Æ	Temperature	Conductivity	Hardness	TDS	Nitrate	Nitrite	Amnondum 1	th before	Sulfate D	sached Fe Ch	lioride Blu	erbonete Cal.	cium Mag	natium Sodi	ium Pota	stum Fluor	ide Cadmlı	m Total C	r Coppei	r Cyanide	Lead	Mercury	Nickel	Zinc	g
Metho	¥	pH meter	Thermo meter	Conductivity meter	Standard	Standard	ę,	Ъ	Ъ	FAAS	PS	FAAS	SP ⊒t	tration F4	VAS F/	VAS FA	AS FA	AS SF	FAAS	on/ Extractio	n Extraction	en en	Ednaction / FAAS	FAAS	FAAS	Eduaction / FAAS	itration
Practical Quantit	tation Limit	0	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	5	0.2	0.6	20 C	.5 0	.05 0.0)5 O.	1	0.00	5 0.025	0.005	0.01	0.005	0.001	0.005	0.005	8
Unit			Deg C	mS/m	CBCO_A	mg/L	mg/L	тgл	T/6m	mg/L	Ъд	u Jugur	ng/L _{Ca}	n Covr T	m B/F	g/L mg	ير م	NL mg	L mg/	. mg/L	mg/L	mg/L	mg/L	mg/L	Ъ	J/Bu	J/Bu
Sample No	Date of sempling	Ha	Temp	EC	Handness	TDS	°0N	NO2	μ	nM	so,	E.	н П	tco.	л. Д	18 N		L	8	5	5	8	ł	8H	z	ភ	6
Chuadanga2																-											
OW-CH2-BP	18-Mar-01	7.22	28.3	6.17	114	499	0.42	0.28	0.13	0.34	PQL	4.2	Ŧ	418	R	5 2	9 9	2 0.1	s <pq< th=""><th>₽OL</th><th>₽QL</th><th>PQL</th><th>₽aL</th><th>PQL</th><th>0.0088</th><th>0.040</th><th>Pol</th></pq<>	₽OL	₽QL	PQL	₽aL	PQL	0.0088	0.040	Pol
OW-CH2-1M	28-Apr-01	7.30	24.7	64.8	127	415	0.84	<₽QL	0.22	<₽QL	PQL	9.1	7.6	410	ý ve	*	4	6 0.1	2 <pq< th=""><th>- ∧PQL</th><th>0.0089</th><th>₽gL</th><th>₽QL</th><th><pql< th=""><th>0.0053</th><th>0.012</th><th>PQ.</th></pql<></th></pq<>	- ∧PQL	0.0089	₽gL	₽QL	<pql< th=""><th>0.0053</th><th>0.012</th><th>PQ.</th></pql<>	0.0053	0.012	PQ.
OW-CH2-2M	16-Jun-01	8.49	30.8	32.1	39.3	160	<₽QL	<₽QL	<pql< th=""><th>≺PQL</th><th>≮PQL</th><th><₽QL</th><th>7.9</th><th>190</th><th>4</th><th>35 t</th><th>4</th><th>0 ₽</th><th>L APQ</th><th>. <pql< th=""><th><pql< th=""><th>₽ġ</th><th>₹PαL</th><th><pql< th=""><th>₽aL</th><th>₽QL</th><th>PQ.</th></pql<></th></pql<></th></pql<></th></pql<>	≺PQL	≮PQL	<₽QL	7.9	190	4	35 t	4	0 ₽	L APQ	. <pql< th=""><th><pql< th=""><th>₽ġ</th><th>₹PαL</th><th><pql< th=""><th>₽aL</th><th>₽QL</th><th>PQ.</th></pql<></th></pql<></th></pql<>	<pql< th=""><th>₽ġ</th><th>₹PαL</th><th><pql< th=""><th>₽aL</th><th>₽QL</th><th>PQ.</th></pql<></th></pql<>	₽ġ	₹PαL	<pql< th=""><th>₽aL</th><th>₽QL</th><th>PQ.</th></pql<>	₽aL	₽QL	PQ.
OW-CH2-3M	07-Jul-01	7.57	28.4	41.8	82.6	268	0.22	PQL	0.14	0.084	<₽QL	0.75	8.3	319 E	12	51	2	5 0.1	Q4∧ Q4∧	. <pql< th=""><th>≮PQL</th><th>PQL</th><th>₽QL</th><th><₽QĽ</th><th>PQL</th><th>PoL</th><th>PoL</th></pql<>	≮PQL	PQL	₽QL	<₽QĽ	PQL	PoL	PoL
OW-CH2-4M	16-Aug-01	7.93	29.6	39.5	59.4	253	<₽QĽ	<₽ġL	<₽QL	<₽QL	<₽QL	0.32	6.7	254 8	88	23 1;	3	7 0.1	5 APQI	PQL	₽QL	PQL	PQL	<₽QL	₽QL	PQL	Ъ.
OW-CH2-5M	13-Sep-01	7.62	28.1	43.3	88.1	277	<₽QL	<₽QL	0.15	<pql< th=""><th><₽aL</th><th>3,7</th><th>8.0</th><th>306</th><th>6</th><th>30</th><th>3</th><th>6 0.1</th><th>~ ₽0</th><th>- Pol</th><th>₽OL</th><th>PQL</th><th>₹PQL</th><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>Å</th></pql<></th></pql<>	<₽aL	3,7	8.0	306	6	30	3	6 0.1	~ ₽0	- Pol	₽OL	PQL	₹PQL	<pql< th=""><th>₽ġ</th><th>₽ġ</th><th>Å</th></pql<>	₽ġ	₽ġ	Å
OW-CH2-6M	17-Oct-01	7.61	29.8	57.9	90.8	371	<pql< th=""><th><₽GL</th><th>1.2</th><th><₽QL</th><th><pql< th=""><th>2.2</th><th>4.7</th><th>332</th><th>7</th><th>1 12</th><th>2</th><th>1 0.2</th><th>, ₽Q</th><th>. <pql< th=""><th>₽ġ</th><th>₽QL</th><th>Å</th><th>PQL</th><th>₹PQL</th><th>Pot</th><th>Å</th></pql<></th></pql<></th></pql<>	<₽GL	1.2	<₽QL	<pql< th=""><th>2.2</th><th>4.7</th><th>332</th><th>7</th><th>1 12</th><th>2</th><th>1 0.2</th><th>, ₽Q</th><th>. <pql< th=""><th>₽ġ</th><th>₽QL</th><th>Å</th><th>PQL</th><th>₹PQL</th><th>Pot</th><th>Å</th></pql<></th></pql<>	2.2	4.7	332	7	1 12	2	1 0.2	, ₽Q	. <pql< th=""><th>₽ġ</th><th>₽QL</th><th>Å</th><th>PQL</th><th>₹PQL</th><th>Pot</th><th>Å</th></pql<>	₽ġ	₽QL	Å	PQL	₹PQL	Pot	Å
OW-CH2-TM	05-Nov-01	7.41	27.1	66.6	121	426	<₽QL	PQL	0.18	0.15	<₽QL	9.7	6.2	380	2 2	8	3	7 0.3	PQ4 C	<pre>PQL</pre>	₽QL	PQL	₽QL	<pql< th=""><th>₽ġ</th><th>Å</th><th>Pa.</th></pql<>	₽ġ	Å	Pa.
																										-	
OH-CH2-1-BP	16-Mar-01	7.15	28.8	59.5	90.7	381	2.6	2.7	1.2	0.50	<pql< th=""><th>4.5</th><th>1.4</th><th>315 7</th><th>2</th><th>18 2(</th><th>4</th><th>8 0.4</th><th>≤PQ</th><th>PQ4 -</th><th>PQL</th><th>0.017</th><th>0.0058</th><th>₹₽QĽ</th><th>0.0058</th><th>0.032</th><th>88</th></pql<>	4.5	1.4	315 7	2	18 2(4	8 0.4	≤PQ	PQ4 -	PQL	0.017	0.0058	₹₽QĽ	0.0058	0.032	88
OH-CH2-1-SIP-30min	16-Mar-01	7.07	29.4	60.4	91.2	386	<pql< th=""><th>0.020</th><th>4.4</th><th>0.48</th><th>< PQL</th><th>4.8</th><th>1.7 3</th><th>320 7</th><th>Ę</th><th>16</th><th>4</th><th>4 0.2</th><th>2 4PQI</th><th>- ₽ 0 1</th><th>PQL</th><th>0.025</th><th>0.0072</th><th>₽QL</th><th>₽ġ</th><th>0.013</th><th>8</th></pql<>	0.020	4.4	0.48	< PQL	4.8	1.7 3	320 7	Ę	16	4	4 0.2	2 4PQI	- ₽ 0 1	PQL	0.025	0.0072	₽QL	₽ġ	0.013	8
OHCH2-1-SIP- 140min	16-Mar-01	7.19	29.2	59.1	89.68	378	PQL	PQL	3.4	0.45	≺PQL	4.9	1.9	315 7	1	1	4	4 0.3	 PQI 	₽ġ	₽QĽ	0.012	PQL	₽QL	0.0052	0.031	51
OH-CH2-2-BP	16-Mar-01	7.45	28.9	62.0	85.7	397	1.2	PQL	0.14	0.32	PQL	1.8	19	300	82	17 32	5	5 0.3	5 <pqi< th=""><th><pol .<="" th=""><th>0.0055</th><th>0.014</th><th>PQL</th><th>PQL</th><th>₽QL</th><th>0.012</th><th>27</th></pol></th></pqi<>	<pol .<="" th=""><th>0.0055</th><th>0.014</th><th>PQL</th><th>PQL</th><th>₽QL</th><th>0.012</th><th>27</th></pol>	0.0055	0.014	PQL	PQL	₽QL	0.012	27
OH-CH2-2-SIP-30min	16-Mar-01	7.34	28.7	60.3	91.9	386	0.87	1.0	0.19	0.15	<pql< th=""><th>1.6</th><th>15</th><th>303 7</th><th>.2</th><th>17 24</th><th>3 5.</th><th>7 0.3</th><th>2 201</th><th>Pol</th><th>PQL</th><th>0.022</th><th><₽QL</th><th>PQL</th><th>0.0061</th><th>₽QL</th><th>33</th></pql<>	1.6	15	303 7	.2	17 24	3 5.	7 0.3	2 201	Pol	PQL	0.022	<₽QL	PQL	0.0061	₽QL	33
OH-CH2-2-SIP- 140min	16-Mar-01	7.24	28.9	59.6	90.5	382	1.4	1.2	0.12	0.16	<pql< th=""><th>1.4</th><th>10</th><th>305 7</th><th></th><th>15</th><th>*</th><th>9 0.3</th><th>₽d</th><th>PQL</th><th>PQL</th><th>0.013</th><th>₽OT</th><th>PQL</th><th>0900.0</th><th>₽QL</th><th>39</th></pql<>	1.4	10	305 7		15	*	9 0.3	₽d	PQL	PQL	0.013	₽OT	PQL	0900.0	₽QL	39
OH-CH2-3-BP	17-Mar-01	7.26	28.7	53.5	81.4	343	0.78	0.34	0.12	0.18	<pql< th=""><th>(1.5</th><th>2.4 2</th><th>300 E</th><th>.</th><th>17 2K</th><th>4</th><th>4 0.2</th><th>-PQI</th><th>-PQL</th><th>₽d⊾</th><th>0.013</th><th>0.0066</th><th><pql< th=""><th>₽ġ</th><th>0.017</th><th>Pal</th></pql<></th></pql<>	(1 .5	2.4 2	300 E	.	17 2K	4	4 0.2	-PQI	-PQL	₽d⊾	0.013	0.0066	<pql< th=""><th>₽ġ</th><th>0.017</th><th>Pal</th></pql<>	₽ġ	0.017	Pal
OH-CH2-3-SIP-30min	17-Mar-01	7.26	28.7	55.7	86.9	356	1.0	0.050	0.14	<pql< th=""><th>₽QL</th><th>1.3</th><th>3.9</th><th>282 7</th><th></th><th>17 15</th><th>4</th><th>0 0.3</th><th>t ≺PQI</th><th><pql< th=""><th>₽ġ</th><th>0.020</th><th>₽QL</th><th>PQL</th><th>PQL</th><th>0.031</th><th>Å</th></pql<></th></pql<>	₽QL	1.3	3.9	282 7		17 15	4	0 0.3	t ≺PQI	<pql< th=""><th>₽ġ</th><th>0.020</th><th>₽QL</th><th>PQL</th><th>PQL</th><th>0.031</th><th>Å</th></pql<>	₽ġ	0.020	₽QL	PQL	PQL	0.031	Å
OH-CH2-3-SIP- 140min	17-Mar-01	7.29	28.6	54.9	87.8	352	0.86	0.52	0.43	< PQL	<₽QL	1.3	2.1 2	296 7	0	18	4	1 0.3	t <pqi< th=""><th><pol< th=""><th>₽aL</th><th>0.013</th><th>₽QL</th><th><pql< th=""><th>0.0073</th><th>0.019</th><th>ğ</th></pql<></th></pol<></th></pqi<>	<pol< th=""><th>₽aL</th><th>0.013</th><th>₽QL</th><th><pql< th=""><th>0.0073</th><th>0.019</th><th>ğ</th></pql<></th></pol<>	₽aL	0.013	₽QL	<pql< th=""><th>0.0073</th><th>0.019</th><th>ğ</th></pql<>	0.0073	0.019	ğ
OH-CH2 4-BP	17-Mar-01	7.25	29.2	74.6	1 0	477	0.23	<₽QL	<₽QL	0.19	< PQL	5.1	10 4	407 8	5	2 31 31	ŝ	6 0.2	t ≁PQI	< Pol	₽QL	₽QL	0.0054	PQL	0.0062	₽ġ	Pol
OH-CH2-4-SIP-30min	17-Mar-01	7.19	28.4	75.5	109	483	0.23	0.12	PQL	0.16	<pql< th=""><th>3.4</th><th>8.4</th><th>407 E</th><th>-</th><th>24</th><th>- - -</th><th>5 0.21</th><th>-PQI</th><th>₽QL</th><th>₽QL</th><th>0.012</th><th>₽QL</th><th>PQL</th><th>0.0059</th><th>-Pol</th><th>Å</th></pql<>	3.4	8.4	407 E	-	24	- - -	5 0.21	-PQI	₽QL	₽QL	0.012	₽QL	PQL	0.0059	-Pol	Å
0H-CH2-4-SIP- 140min	17-Mar-01	7.30	28.0	76.1	112	487	PQL	0.25	≮PQL	0.081	PQL	22	5	407 5	0	15	5	5 0.1	-PQI	PQL	PQL	PQL	₽QL	<pql< th=""><th>0.0064</th><th>0.0068</th><th>ğ</th></pql<>	0.0064	0.0068	ğ
																										1]

Excess of both Bangladesh Standard and WHO guideline

Excess of Bangladesh Standard

(The values were determined as exceeding the standards before rounding off)

Excess of WHO guideline

5-123

Results of Observation Well and Hole (7/7) Table 5.5.2

.

8	Titration	20	mg/L	con		PQL	
Zinc	Extraction / FAAS	0.005	mg/L	Zn		<pql< td=""><td></td></pql<>	
Nickel	Extraction / FAAS	0.005	mg/L	ĩ		<₽QL	
Mercury	Ednaction / FAAS	0.001	mg/L	нg		<pql< td=""><td></td></pql<>	
Lead	Extraction / FAAS	0.005	mg/L	æ		<pql< td=""><td></td></pql<>	
Cyanide	SP	0.01	mg/L	CN		<₽QL	
Copper	Extraction / FAAS	0.005	тдл	Сu		<₽QL	
Total Cr	/ FAAS	0.025	mg/L	ŗ		≺PQL	
Cadmium	Extraction/ FAAS	0.0015	mg/L	cd		<pql< td=""><td></td></pql<>	
Fluoride	Ъ	0.1	mg/L	۲.		0.42	
Potasskum	FAAS	0.1	Ъ	×		2.0	
Sodium	FAAS	0.05	mg/L	Na		120	
Magmestum	FAAS	0.05	mg/L	BW		9.5	
Calcium	FAAS	0.5	mg/r	ca		19	
Bicarbonate	Titration	20	CaCO ₄ L	нсо,		361	
Chloride	SP	0.6	mg/L	C		6.2	
Xasolved Fe	FAAS	0.2	mg/L	Fe		0.57	
Sulfate	SP	5	mg/L	so.		<pql< td=""><td></td></pql<>	
Insolved Mh	FAAS	0.08	ηgμ	Wn		<pql< td=""><td></td></pql<>	
Ammonium	SP	0.1	mg/L	NH4		1.4	
Nitrite	PP	0.02	mg/L	NO2		<₽QL	
Nitrate	SP	0.2 .	mg/L	NO3		<pql< td=""><td></td></pql<>	
ŝ	standard	0.13	П,9п	TDS		419	
tardness	Standard	0.5	Cacoy	lardness		28.1	
Conductivity 1	Conductivity	0.02	mS/m	EC		65.4	
emperature	Thermo meter	0 Deg C	Deg C	Temp		25.8	
Ha	pH meter	0		Hq		8.33	
đ	8	itation Limit	+	Date of sampling		12-Mar-02	
Analy	Meth	Practical Quant	'n	Sample No	Jessore3	OW-BM-CP-48h	

Excess of Bangladesh Standard Excess of WHO guideline

Excess of both Bangladesh Standard and WHO guideline

(The values were determined as exceeding the standards before rounding off)

Table 5.5.3 Results of Core Boring

.

8	ation	<u>s</u>	ц.	8		ģ	ğ	5	ğ	ğ	ğ	ğ		5		ğ	ğ	ğ	ğ	ğ		ğ	ğ	ø	ő	ğ	ğ	ğ
0 9	AS Titra	05 2	ц Ц Ц	<u>ہ</u>		3	87 <p< th=""><th>162 2</th><th>ש ה</th><th>ч 5</th><th>5</th><th>ליד א</th><th></th><th>11</th><th>3</th><th> ₽ ₽</th><th>ש ה</th><th>52 40</th><th>ש ה</th><th>ч 5</th><th></th><th>ы Ч</th><th>167 <p< th=""><th><u>п</u></th><th>5</th><th>ש ה</th><th>5</th><th>4</th></p<></th></p<>	162 2	ש ה	ч 5	5	ליד א		11	3	₽ ₽	ש ה	52 40	ש ה	ч 5		ы Ч	167 <p< th=""><th><u>п</u></th><th>5</th><th>ש ה</th><th>5</th><th>4</th></p<>	<u>п</u>	5	ש ה	5	4
ckel Zir	actio Extra AAS n/ F/	0.0	6 J/B	7		or ΩL	012 0.00	0.00	v A	or ⊳r	ъ Б	¥ ⊽		0.1 0.0	or ₽	ar ar	097 <p(< th=""><th>0.00 GL 0.00</th><th>v PC</th><th>¥ gr</th><th></th><th>051 <p(< th=""><th>061 0.00</th><th>012 <p(< th=""><th>0.1 OL</th><th>¥ or</th><th>OL PC</th><th>or or</th></p(<></th></p(<></th></p(<>	0.00 GL 0.00	v PC	¥ gr		051 <p(< th=""><th>061 0.00</th><th>012 <p(< th=""><th>0.1 OL</th><th>¥ or</th><th>OL PC</th><th>or or</th></p(<></th></p(<>	061 0.00	012 <p(< th=""><th>0.1 OL</th><th>¥ or</th><th>OL PC</th><th>or or</th></p(<>	0.1 OL	¥ or	OL PC	or or
cury Nk	actio Extr AAS n/ F	0.0	u Va	- -		₽ V	0.0 0	0'C	₫ 	4 ₽	₽	d d		0.0 DL 0.0	Ğ ₽	d A	0.0 QL	ų d	ų ₽	₽ G		0.0 GL	QL 0.0	0.0 QL	Å ₽	Ğ Ğ	Ğ.	₽ ₽
ad Mer	actio Extr AAS n/ F	0.0	ы в			A	r a	₽ G	₩ 5	₽ G	s Å	r aL		ar ar	aL a	₽ G	dr oT	r a	₽ g	קר∣≁		₽ 5	r a∟	r d	Q ₽	lo ₽	₽ g	Å Å
inida L	а Дага	0.0	е Ъ	z		v v	Å Å	¥ gr	* ⊽	Q ₹	2	Å Å		Å ₽	₽	4	¢ g	v ⊽	r d	קר		م	t g	013 ►	r A	₽	gL GL	
pper Cya	ractio	005 0	u V0	3		, A	3073 <f< th=""><th>082 ⊧</th><th>ų d</th><th>₽</th><th>Å</th><th>, Å</th><th></th><th>t d</th><th>to To</th><th>dr ⊳</th><th>, A</th><th>¢ ¢</th><th>, Å</th><th>e gr</th><th></th><th>, Å</th><th>9088 ₹</th><th>0054 0.</th><th>v d</th><th>s ΩL</th><th>о Ч</th><th>, A</th></f<>	082 ⊧	ų d	₽	Å	, Å		t d	to To	dr ⊳	, A	¢ ¢	, Å	e gr		, Å	9088 ₹	0054 0.	v d	s ΩL	о Ч	, A
tal Cr Co	FAAS N	025 0.	u Jor	- 5		⊽ g	Pol.	POL 0.(⊽ To	Pot	₽0Ľ	⊽ Lor		⊽ ⊽	⊽ bo	PQL	⊽ bor	⊳ DG	⊽ La	PQL ≤		⊳or ⊲	POL 0.	PQL 0.	⊽ bg	⊽ bg	PoL	⊽
Imium To	FAAS N	0015 0.	Ч	8		₽QL	⊳ Pol	PoL⊲	⊳or ⊲	PQL	⊽ Ig	⊳ Pol		⊐ PQL	⊳ PQL	POL	⊳ PoL	PQL	⊳ Pot	⊳or ⊲		PQL ⊲	⊳ Pol	⊽ bg	PoL	⊳ Lor	Pot	⊽
uoride Ca	₽ ₩	0.1	u T/Bri	ы		0.32 <	0.34	0.40 <	0.36 <	0.41 <	0.39	0.36		27	v 09:0	0.30 <	0:30	0.20	0.22	0.17 <		0.16 <	0.23 <	× 11.0	0.11 <	0.16 <	0.22 <	.18
Casedonn FIL	AAS	0.1	ոցչեր	¥		4.2	4.7	5.4 (3.6 (3.6 (4.2	3.7		6.1	2.4	4.0 (4.3	3.9	4.8	4.0 (3.8	3.9 (6.7 (4.7	4.8	4.2	4.5
odium Po	EAAS F	0.05	r mg/L	.ez		2	<u>6</u>	110	140	97	z	8		35	200	110	25	8	19	27		24	18	ន	1	16	27	1 8
lagnesium S	FAAS 1	0.05	-T/Gm	ßW		17	15	14	15	17	16	6		29	1.5	14	23	29	26	29		35	43	23	33	30	53	36
Calcium w	FAAS	0.5	т <mark>в</mark> и	ß		24	23	27	20	23	24	27		110	4.3	88	110	120	130	122		8	86	20	35	94	110	98
Bicarbonate (Titration	8	caco ₃ r	нсо,		336	338	324	312	347	351.	342		505	442	443	507	517	513	513		481	481	353	273	459	475	488
Chloride	Ъ	0.6	уðш	Ū		ಸ	29	45	30	25	26	21	-	8.1	8	38	7.0	2.9	2.2	1.8		1.8	1.3	1.7	1.3	0.73	2.5	0.77
Dissofreed Fe	FAAS	0.2	Т <mark>о</mark> ш	Ę		0.23	0.26	<pql< th=""><th><pql< th=""><th>0.39</th><th>0.32</th><th>0.70</th><th></th><th>1.8</th><th><pql< th=""><th>3.7</th><th>2.4</th><th>2.5</th><th>2.7</th><th>5.3</th><th></th><th>15</th><th>2.1</th><th>6.9</th><th>0.79</th><th>3.5</th><th>3.5</th><th>2.6</th></pql<></th></pql<></th></pql<>	<pql< th=""><th>0.39</th><th>0.32</th><th>0.70</th><th></th><th>1.8</th><th><pql< th=""><th>3.7</th><th>2.4</th><th>2.5</th><th>2.7</th><th>5.3</th><th></th><th>15</th><th>2.1</th><th>6.9</th><th>0.79</th><th>3.5</th><th>3.5</th><th>2.6</th></pql<></th></pql<>	0.39	0.32	0.70		1.8	<pql< th=""><th>3.7</th><th>2.4</th><th>2.5</th><th>2.7</th><th>5.3</th><th></th><th>15</th><th>2.1</th><th>6.9</th><th>0.79</th><th>3.5</th><th>3.5</th><th>2.6</th></pql<>	3.7	2.4	2.5	2.7	5.3		15	2.1	6.9	0.79	3.5	3.5	2.6
Suffate	SP	5	mg/L	so,		<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th>≤PQL</th><th><pql< th=""><th>PQL</th><th></th><th>PQL</th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th>≤PQL</th><th><pql< th=""><th>PQL</th><th></th><th>PQL</th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th>≤PQL</th><th><pql< th=""><th>PQL</th><th></th><th>PQL</th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>≤PQL</th><th><pql< th=""><th>PQL</th><th></th><th>PQL</th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	≤PQL	<pql< th=""><th>PQL</th><th></th><th>PQL</th><th>< PQL</th><th><pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	PQL		PQL	< PQL	<pql< th=""><th><pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>< PQL</th><th><pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	< PQL	<pql< th=""><th><pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th><pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<></th></pql<>	<₽QL	<pql< th=""><th><pql< th=""><th>Por</th><th>Р. Б</th></pql<></th></pql<>	<pql< th=""><th>Por</th><th>Р. Б</th></pql<>	Por	Р. Б
Classofeed Min	FAAS	0.08	mg/L	Mn		<pql< th=""><th><₽QL</th><th><₽QL</th><th><pql< th=""><th><pql< th=""><th>0.10</th><th>0.20</th><th></th><th>PQL</th><th><pql< th=""><th>0.12</th><th>0.10</th><th>0.17</th><th>0.24</th><th>0.28</th><th></th><th>Ó.25</th><th>0.17</th><th>PQL</th><th><pql< th=""><th>0.46</th><th>0.51</th><th>0.39</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	<₽QL	<pql< th=""><th><pql< th=""><th>0.10</th><th>0.20</th><th></th><th>PQL</th><th><pql< th=""><th>0.12</th><th>0.10</th><th>0.17</th><th>0.24</th><th>0.28</th><th></th><th>Ó.25</th><th>0.17</th><th>PQL</th><th><pql< th=""><th>0.46</th><th>0.51</th><th>0.39</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>0.10</th><th>0.20</th><th></th><th>PQL</th><th><pql< th=""><th>0.12</th><th>0.10</th><th>0.17</th><th>0.24</th><th>0.28</th><th></th><th>Ó.25</th><th>0.17</th><th>PQL</th><th><pql< th=""><th>0.46</th><th>0.51</th><th>0.39</th></pql<></th></pql<></th></pql<>	0.10	0.20		PQL	<pql< th=""><th>0.12</th><th>0.10</th><th>0.17</th><th>0.24</th><th>0.28</th><th></th><th>Ó.25</th><th>0.17</th><th>PQL</th><th><pql< th=""><th>0.46</th><th>0.51</th><th>0.39</th></pql<></th></pql<>	0.12	0.10	0.17	0.24	0.28		Ó.25	0.17	PQL	<pql< th=""><th>0.46</th><th>0.51</th><th>0.39</th></pql<>	0.46	0.51	0.39
Armorium	Ъ	0.1	тдуг	Ť		PQL	0.16	0.15	<₽QL	0.84	1.1	SPQL		<₽QL	0.70	0.12	1.6	1.2	1.4	1.5		1.8	1.4	1.1	0.72	0.92	1:2	12
Nitrite	SP	0.02	mg/L	NO3		<₽QL	2.2	PQL	<pql< th=""><th>0.97</th><th>0.25</th><th>1.9</th><th></th><th><pql< th=""><th><pql< th=""><th><pa∟< th=""><th>< PQL</th><th><₽QL</th><th>PQL</th><th><pql< th=""><th></th><th>≮PQL</th><th>< PQL</th><th>≺PQL</th><th>≺PQL</th><th><₽QL</th><th>₽ ₽</th><th>₽d</th></pql<></th></pa∟<></th></pql<></th></pql<></th></pql<>	0.97	0.25	1.9		<pql< th=""><th><pql< th=""><th><pa∟< th=""><th>< PQL</th><th><₽QL</th><th>PQL</th><th><pql< th=""><th></th><th>≮PQL</th><th>< PQL</th><th>≺PQL</th><th>≺PQL</th><th><₽QL</th><th>₽ ₽</th><th>₽d</th></pql<></th></pa∟<></th></pql<></th></pql<>	<pql< th=""><th><pa∟< th=""><th>< PQL</th><th><₽QL</th><th>PQL</th><th><pql< th=""><th></th><th>≮PQL</th><th>< PQL</th><th>≺PQL</th><th>≺PQL</th><th><₽QL</th><th>₽ ₽</th><th>₽d</th></pql<></th></pa∟<></th></pql<>	<pa∟< th=""><th>< PQL</th><th><₽QL</th><th>PQL</th><th><pql< th=""><th></th><th>≮PQL</th><th>< PQL</th><th>≺PQL</th><th>≺PQL</th><th><₽QL</th><th>₽ ₽</th><th>₽d</th></pql<></th></pa∟<>	< PQL	<₽QL	PQL	<pql< th=""><th></th><th>≮PQL</th><th>< PQL</th><th>≺PQL</th><th>≺PQL</th><th><₽QL</th><th>₽ ₽</th><th>₽d</th></pql<>		≮PQL	< PQL	≺PQL	≺PQL	<₽QL	₽ ₽	₽d
Nitrate	SP	0.2	л9г ш9г	NOS		2.0	1.9	1.7	1.8	PQL	1.6	0.49		2.0	<pql< th=""><th>1.7</th><th><₽QL</th><th><₽QL</th><th><pql< th=""><th>APQL</th><th></th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PQL</th><th>₽QL</th><th>₽oĽ</th><th>₽0 PO</th></pql<></th></pql<></th></pql<>	1.7	<₽QL	<₽QL	<pql< th=""><th>APQL</th><th></th><th><₽QL</th><th><pql< th=""><th><₽QL</th><th>PQL</th><th>₽QL</th><th>₽oĽ</th><th>₽0 PO</th></pql<></th></pql<>	APQL		<₽QL	<pql< th=""><th><₽QL</th><th>PQL</th><th>₽QL</th><th>₽oĽ</th><th>₽0 PO</th></pql<>	<₽QL	PQL	₽QL	₽oĽ	₽0 PO
ء	d Standar	0.13	L mg/	- TDS		366	286	307	357	342	425	425		419	432	371	403	374	561	548		526	514	397	279	317	336	375
hardnes	^d Standar	0.5	Caco	Hardnes		40.5	38.0	40.5	36.5	39.4	40.2	43.1		138	5.78	81.8	138	147	159	151		124	141	165	67.6	124	128	12
re Conductive	Conducts ty meter	0.02	mS/m	ы		57.2	59.2	48.0	56.1	53.5	66.4	66.4		65.4	86.4	58.0	63.0	58.5	87.7	85.7		82.2	80.4	62.0	43.7	63.4	52.5	58.7
Temperatu	ir Thermo	0 Deg	Deg C	Тетр		30.1	31.1	28.7	29.9	28.2	29.7	27.0		31.3	31.0	28.1	29.2	28.0	29.6	27.3		24.4	23.2	27.9	24.9	31.0	29.1	29.6
Hd	pH mete	•		H		7.87	7.91	8.01	7.91	7.94	8.06	7.88		7.35	8.78	8.01	7.27	7.17	7.23	7.29		7.01	7.12	7.41	7.98	7.33	7.28	7.29
đ	8	titation Limit		Date of sampling		09-May-01	21-Jun-01	09-Jul-01	20-Aug-01	11-Sep-01	18-Oct-01	07-Nov-01		05-May-01	17-Jun-01	08-Jul-01	15-Aug-01	11-Sep-01	16-Oct-01	09-Nov-01		30-Jan-01	27-Feb-01	28-Mar-01	27-Apr-01	23-Jun-01	10-Jul-01	18-Aug-01
Analy	Meth	Practical Quant	Ĩ'n	Sample No	alossan	CB-JSRb-OM	CB-JSRb-1M	CB-JSRb-2M	CB-JSRb-3M	CB-JSRb-4M	CB-JSRb-5M	CB-JSRb-6M	Jhenaidah	CB-JHKe-OM	CB-JHKo-1M	CB-JHKo-2M	CB-JHKo-3M	CB-JHKo-4M	CB-JHKo-5M	CB-JHKo-6M	Chuadanga	CB-CDBd-0M	CB-CDBd-1M	CB-CDBd-2M	CB-CDBd-3M	CB-CDBd-4M	CB-CDBd-SM	CB-CDBd-6M

Excess of both Bangladesh Standard and WHO guideline

(The values were determined as exceeding the standards before rounding off)

Excess of WHO guideline

Excess of Bangladesh Standard

5-125

 Table 5.5.4
 Results of Improved Deep Tubewell(1/2)

.

.

G	Titration	ଷ	mg/L	coD		₽or	₽QL	₽QL	₽aL	₽o₽	₽or	₽QL	₽ġ	39	₽QĹ	PQL	₽g		27	PQL	PQL	27	PQL	₽d	₽QL	<₽QL	35	PQL	39	<pql< th=""></pql<>
ZINC	Edtractio n/ FAAS	0.005	mg/L	ភ		₽QĻ	₽ġ	₽oĽ	0.095	sPQL	₽QL	₹₽QT	0.017	₽a	₽aL	0.015	0.026		PQL	0.030	spol	<₽QL	PQL	0.10	0.072	<₽aL	<₽QL	0.036	0.053	<₽QL
Nickel	Extractio n/ FAAS	0.005	mg/L	ž		₽ġ	₽ġ	₽QL	₽QL	0.010	0.0075	₽d	₽QL	0.0059	0.0064	PQL	₽		0.0098	₽gL	<₽QL	<pql< th=""><th>₽Q</th><th>0.0073</th><th>0.0062</th><th>Par</th><th>PΩL</th><th>0.0087</th><th>Pol</th><th>PQL</th></pql<>	₽Q	0.0073	0.0062	Par	PΩL	0.0087	Pol	PQL
Mercury	Extractio n/ FAAS	0.001	mg/L	в́н		Å Å	₽ġ	Pol	₽Q	PQL	PQL	₽QL	₽ġ	₽QL	PQL	PQL	APQL		₽QL	PQL	₽QL	<pql< th=""><th>PQL</th><th>₽</th><th>₽ġ</th><th>₽ġ</th><th>₽QL</th><th>₽a</th><th>PQL</th><th>PQL</th></pql<>	PQL	₽	₽ġ	₽ġ	₽QL	₽a	PQL	PQL
Lead	Edractio N FAAS	0.005	mg/L	£		0.0076	PQL	Por	PQL	PQL	Å.	0.0061	0.0066	0.015	Pol	₽QL	PQL		<₽QL	PQL	PQL	<pql< th=""><th><₽QL</th><th>PQL</th><th>₽QL</th><th><₽QL</th><th><₽QL</th><th>PΩL</th><th>0.0052</th><th>₽aL</th></pql<>	<₽QL	PQL	₽QL	<₽QL	<₽QL	PΩL	0.0052	₽aL
yanide	с С	0.01	mg/L	N U		0.017	₽ġ	0.013	₽QL	0.025	₽aL	0.014	₽ġ	0.015	₽d	0.017	₽QL		₽QL	0.017	0.018	<₽QL	0.011	0.012	₽ġ	PQĽ	0.013	0.014	-PQL	₽oĽ
Copper C	Extractio V FAAS	0.005	mg/L	Z		₽Q	Ро Б	₽ġ	₽QL	Por	₽ġ	PQL	₽ġ	₽a	₽d	₽ġ	₽QL		<₽QL	₽QL	₽QL	₽Q	<₽QL	₫	PQL	₽ġ	<pql< th=""><th>0.0050</th><th>0.0062</th><th>0.015</th></pql<>	0.0050	0.0062	0.015
Total Cr	V FAAS	0.025	mg/L	ΰ		₽ot	PQL	<₽QL	^PQL	PQL	<₽QL	POL	Pal	Par	₽aL	PQL	<₽QL		PQL	<₽QL	₽QL	<pql< th=""><th><₽QL</th><th>₽QI</th><th>₽g</th><th>₽ġ</th><th>PQL</th><th>₽QL</th><th>PQL</th><th>₹₽ġΓ</th></pql<>	<₽QL	₽QI	₽g	₽ġ	PQL	₽QL	PQL	₹₽ġΓ
mpupe	Extractio	0.0015	mg/L	8		₽ġ	₽QL	PQL	Ъд	₽QL	POL	PQL	Ъ	PQt <₽Qt	Por	PQt	<pql< th=""><th></th><th><pql< th=""><th><pql< th=""><th>≤PQL</th><th><pql< th=""><th><₽QL</th><th>Pol</th><th>PQL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<></th></pql<>		<pql< th=""><th><pql< th=""><th>≤PQL</th><th><pql< th=""><th><₽QL</th><th>Pol</th><th>PQL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th><th>PQL</th></pql<></th></pql<></th></pql<>	<pql< th=""><th>≤PQL</th><th><pql< th=""><th><₽QL</th><th>Pol</th><th>PQL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th><th>PQL</th></pql<></th></pql<>	≤PQL	<pql< th=""><th><₽QL</th><th>Pol</th><th>PQL</th><th><₽QL</th><th><₽QL</th><th>PQL</th><th>PQL</th><th>PQL</th></pql<>	<₽QL	Pol	PQL	<₽QL	<₽QL	PQL	PQL	PQL
Fluoride	с Ч	0.1	mg/L	Ľ		0.37	0.35	0.39	0.38	0.42	0.38	0.40	0.31	0.46	0.43	0.45	0.49		0.31	0.22	0.27	0.18	0.24	0.21	0.16	0.15	0.33	0.31	0.18	0.27
Potessium	FAAS	0.1	mg/L	×		3.5	3.6	3.1	5.8	3.4	3.5	3.1	5.7	4.7	3.7	2.8	5.9		4.9	8.6	6.2	5.1	4.5	6.7	4.8	4.5	4.9	6.7	5.3	4.9
Sodium	FAAS	0.05	mg/L	Na		53	55	ч	8	53	53	89	8	49	S	99	99		8	23	26	26	27	33	14	19	27	33	4	23
tagneskun	FAAS	0.05	mg/L	БW		17	16	6	17	17	16	19	17	17	16	18	17		29	22	30	25	29	22	30	24	29	3	8	26
Calctum A	FAAS	0.5	mg/L	ទ		3	39	37	ę	ŝ	38	36	98	32	ę	40	41		130	130	120	120	130	120	130	120	130	120	130	120
dem home	tration	8	aCO ₃ L	fcor		333	317	315	315	320	328	315	298	320	315	305	296		546	555	557	524	500	509	532	535	555	505	525	523
thioride s	SP T	0.6	mg/L c	σ		9.4	9.3	1	13	5.5	12	11	12	4.2	8.5	7.3	8.4		0.87	1.1	1.7	2.8	2.0	3.6	2.4	2.6	1.3	3.1	÷	1.5
	=AAS	0.2	mg/L	5 E		0.27	13×.	0.21	0.73	0.21	13	<pql< th=""><th>0.66</th><th>0.62</th><th>10-10 11-10-10</th><th>0.41</th><th>0.71</th><th></th><th>3.2</th><th>57.8 ×</th><th>9.8</th><th>62</th><th>15</th><th>23.1</th><th>23</th><th>101</th><th>96 g</th><th>251</th><th>03.1</th><th></th></pql<>	0.66	0.62	10-10 11-10-10	0.41	0.71		3.2	57.8 ×	9.8	62	15	23.1	23	101	96 g	251	03.1	
Suffate p	e B	2	mg/L	s0,		₽QL	POL	<pql< th=""><th>₽ġ</th><th>₽Qt</th><th>PQL</th><th>PQL</th><th>PQL</th><th>PQL</th><th><pql< th=""><th>Pol</th><th>₽QL</th><th></th><th><pol 3<="" th=""><th><pol 8<="" th=""><th><pol 1<="" th=""><th><pol< th=""><th><pql ≤PQL</pql </th><th><pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<></th></pol<></th></pol></th></pol></th></pol></th></pql<></th></pql<>	₽ġ	₽Qt	PQL	PQL	PQL	PQL	<pql< th=""><th>Pol</th><th>₽QL</th><th></th><th><pol 3<="" th=""><th><pol 8<="" th=""><th><pol 1<="" th=""><th><pol< th=""><th><pql ≤PQL</pql </th><th><pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<></th></pol<></th></pol></th></pol></th></pol></th></pql<>	Pol	₽QL		<pol 3<="" th=""><th><pol 8<="" th=""><th><pol 1<="" th=""><th><pol< th=""><th><pql ≤PQL</pql </th><th><pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<></th></pol<></th></pol></th></pol></th></pol>	<pol 8<="" th=""><th><pol 1<="" th=""><th><pol< th=""><th><pql ≤PQL</pql </th><th><pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<></th></pol<></th></pol></th></pol>	<pol 1<="" th=""><th><pol< th=""><th><pql ≤PQL</pql </th><th><pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<></th></pol<></th></pol>	<pol< th=""><th><pql ≤PQL</pql </th><th><pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<></th></pol<>	<pql ≤PQL</pql 	<pol< th=""><th><pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol></th></pol<>	<pol 2<="" th=""><th><pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<></th></pol>	<pol< th=""><th><pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<></th></pol<>	<pql< th=""><th>-PQL</th><th>PQt ≜PQt</th><th><pql SPQL</pql </th></pql<>	-PQL	PQt ≜PQt	<pql SPQL</pql
1	FAAS	0.08	mg/L	튤		₽QL	0.20	PΩL	₽QL	₽QL	0.17	<pql< th=""><th>PQL</th><th>0.16</th><th>0.20</th><th>₽oL</th><th><pql< th=""><th></th><th>0.20</th><th>0.24</th><th>0.46</th><th>0.35</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>0.10</th><th>0.14</th><th>₽QL</th><th>₽ġ</th><th>0.18</th></pql<></th></pql<></th></pql<></th></pql<>	PQL	0.16	0.20	₽oL	<pql< th=""><th></th><th>0.20</th><th>0.24</th><th>0.46</th><th>0.35</th><th><pql< th=""><th><pql< th=""><th><₽QL</th><th>0.10</th><th>0.14</th><th>₽QL</th><th>₽ġ</th><th>0.18</th></pql<></th></pql<></th></pql<>		0.20	0.24	0.46	0.35	<pql< th=""><th><pql< th=""><th><₽QL</th><th>0.10</th><th>0.14</th><th>₽QL</th><th>₽ġ</th><th>0.18</th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th>0.10</th><th>0.14</th><th>₽QL</th><th>₽ġ</th><th>0.18</th></pql<>	<₽QL	0.10	0.14	₽QL	₽ġ	0.18
mmonkun D	β	0.1	mg/L	NH,		41	5.9	₽QL	÷	2.4	8.4	<₽QL	1.1	2.7	6.7	<₽QL	0.18		0.75	4.0	5.4	4.5	1.7	1.2	1.6	1.5	1.3	1.8	2.1	4.7
Nitritie	ß	0.02	mg/L	NO2		d d	Pol	<₽QL	₽QL	0.13	₽QL	1.5	<pql< th=""><th><₽QL</th><th>0.15</th><th>2.0</th><th>1.5</th><th></th><th><pql< th=""><th>₽QL</th><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>PQL</th><th><pql< th=""><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<₽QL	0.15	2.0	1.5		<pql< th=""><th>₽QL</th><th><pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>PQL</th><th><pql< th=""><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	₽QL	<pql< th=""><th><pql< th=""><th>PQL</th><th><pql< th=""><th>PQL</th><th><pql< th=""><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>PQL</th><th><pql< th=""><th>PQL</th><th><pql< th=""><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<></th></pql<></th></pql<></th></pql<>	PQL	<pql< th=""><th>PQL</th><th><pql< th=""><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<></th></pql<></th></pql<>	PQL	<pql< th=""><th><pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<></th></pql<>	<pql< th=""><th>₽ġ</th><th>₽ġ</th><th>₽QL</th></pql<>	₽ġ	₽ġ	₽QL
Ntrate	с С	0.2	mg/L	NO,		ğ	PoL	1.6	₽d	₽ġ	1.7	1.5	PQL	<₽QL	2.3	2.4	1.6		<pql< th=""><th><pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th>0.81</th><th><₽QL</th><th><pql< th=""><th>₽a</th><th>3.6</th><th>₽ġ</th></pql<></th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th>0.81</th><th><₽QL</th><th><pql< th=""><th>₽a</th><th>3.6</th><th>₽ġ</th></pql<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th><pql< th=""><th><₽QL</th><th><₽QL</th><th>0.81</th><th><₽QL</th><th><pql< th=""><th>₽a</th><th>3.6</th><th>₽ġ</th></pql<></th></pql<></th></pql<>	<pql< th=""><th><₽QL</th><th><₽QL</th><th>0.81</th><th><₽QL</th><th><pql< th=""><th>₽a</th><th>3.6</th><th>₽ġ</th></pql<></th></pql<>	<₽QL	<₽QL	0.81	<₽QL	<pql< th=""><th>₽a</th><th>3.6</th><th>₽ġ</th></pql<>	₽a	3.6	₽ġ
TDS	tandard	0.13	mg/L	TDS		387	399	373	360	404	398	364	363	410	393	364	358		608	382	437	343	578	572	519	330	605	559	524	330
ardness	standard S	0.5	aco ₃ r	ardness		48.1	55.5	56.2	56.0	47.3	54.5	55.1	55.7	50.0	55.7	57.8	58.1		162	152	153	149	162	146	164	144	163	146	164	146
ductivity H	nductMtty S	0.02	nS/m	H EC		60.4	62.4	58.2	56.3	63.2	62.1	56.9	56.7	64.0	61.5	56.9	56.0		94.9	59.6	68.2	68.6	90.4	89.3	81.1	66.0	94.5	87.3	81.9	65.9
ereture Con	ter Co	С С	с С	ŧ		0	07	1	4	9.	0.	6.6	5	61	8.8	1.3	0.1		6.6	.5	6.0	.8	17	.6	.7	6.		9.	9	6.0
Temp	heter Th	Ő	മ്	H Te		5 19	3	й 2	3	8	7 2	72 Z	8	15 21	15 2.	16 2 [,]	31 21		16 2,	19 Z	31	14 34	17 2	11 21	18 2 [,]	13 3(-3 -2	11	У Т	ຕັ ອ
ā.	ъна	0		ā 		<i>L</i> 7	7.6	7.7	7.8	7.8	7.6	7.7	7.8	7.4	7.4	7.4	1 7.6		7.1	6.9	1 7.2	7.2	7.0	7.2	1 7.0	7.2	6.7	2	1 2.0	2.0
ą	po	ttation Limit		Date of samplin		26-Nov-00	03-Jan-01	06-Feb-01	27-Mar-01	26-Nov-00	03-Jan-01	06-Feb-01	27-Mar-01	26-Nov-00	03-Jan-01	06-Feb-01	27-Mar-01		28-Feb-01	24-Mar-01	1st-May-0	17-Jun-01	28-Feb-01	24-Mar-01	1st-May-0	17-Jun-01	28-Feb-01	24-Mar-01	1st-May-0	17-Jun-01
Analy	Meth	Practical Quan	ĨŸ	Sample No	Jessore	IM-JSRb-1-0M	IM-JSRb-1-1M	IM-JSRb-1-2M	IM-JSRb-1-3M	IM-JSRb-2-0M	IM-JSRb-2-1M	IM-JSRb-2-2M	IM-JSRb-2-3M	IM-JSRb-3-0M	IM-JSRb-3-1M	IM-JSRb-3-2M	IM-JSRb-3-3M	Jhenaldah	IM-JHKc-1-OM	IM-JHKc-1-1M	IM-JHKc-1-2M	IM-JHKo-1-3M	IM-JHKo-2-0M	IM-JHKc-2-1M	IM-JHKo-2-2M	IM-JHKc-2-3M	IM-JHKc-3-OM	IM-JHKo-3-1M	IM-JHKe-3-2M	IM-JHKc-3-3M

Excess of Bangladesh Standard Associated Excess of both Bangladesh Standard and WHO gudeline (The values were determined as exceeding the standards before rounding off)

.

Excess of WHO guideline

Results of Improved Deep Tubewell(2/2) **Table 5.5.4** 8

8

Titration mg/L <PQL ► ₽d ₽d Å PQ4 Å 80 ĝ <POL 0.0092 Extractio n/ FAAS PQ. 0.0059 0.005 0.001 0.005 0.005 mg/L Por 0.066 0.15 0.12 Zinc ភ 0.0052 <PQL Editractio Editractio Editractio n/ FAAS n/ FAAS n/ FAAS ₽QL Nickel <PQL 0.0070 Р<mark>о</mark> <PQL шgЛ ź Lead Mercury PQL <PQL тg/L ٩ <₽QL <PQL 쁍 ≺PQL mg/L ₽QL Å POL Å P ₽QL £ Cadmium Total Cr Copper Cyanide ЧS PQL 0.020 ₽QL <PQL 0.010 <PQL 0.1 0.0015 0.025 0.005 0.01 тgЛ APQL S 0.0063 Extractio Extractio Extractio n/FAAS n/FAAS n/FAAS ₽QL ₽QL Å mg/L ₽ 3 mg/L РQL Po L ÅPQL Pol ₹PQL ^POL δ Å ₽QL Å Å mg/L APQL ₽QL 3 0.35 0.34 0.47 mg/L 0.38 0.39 0.32 Bicerbonets Calcium Magnesium Sodium Potassium Fluoride с С u. FAAS FAAS mg/L 0.1 5.1 3.8 3.2 4.2 5.6 3.2 ¥ 0.05 тgЛ 6.8 13 6.9 z 4 4 ₽ FAAS mg/L 0.05 ĝų ₽ 33 ង 8 ₽ ង Titration FAAS mg/L 0.5 ő 83 82 8 8 8 83 caco3 HC03 8 342 357 346 353 348 341 Dissolved Fe Chloride mg/L ₽Q ŝ ö 0.93 0.81 0.6 **4**. 1.8 2 FAAS 15.1 2 mg/L \$2.6 w2.8 0.2 2.5 £ 2.9 33.2 mg/L ₽QL ₽ġ ₫ Å Å d ĝ Desorved Ma Sulfate şõ ŝ ŝ FAAS mg/L 0.08 0.19 0.16 0.29 0.32 0.25 0.20 ų 181 щg/г 5.12 2 1.6 NHA 0.11 ₽Q 1.1 ŝ 6 mg/L ÅPQL Å Å Nitrite 0.02 NO2 Å Å ĝ ₽ с, 2.3 Nitrate mg/L Å NO3 ₫ ₫ 0.2 3.8 2.6 ŝ 2.6 Standard Standard mg/L 0.13 ŝ ŝ 370 355 ĝ 321 256 38 Hardness CaCO3 Hardness 0.5 116 112 <u>6</u> 102 101 ĝ Conductivity Conductivity 0.02 mS/m 62.5 57.8 50.2 51.1 61.9 55.4 S 0 Deg C emperature Thermo Deg C Temp 28.2 31.3 26.0 30.9 28.2 25.7 pH meter 7.23 7.26 7.15 7.07 0 7.01 1.22 Æ Ŧ 14-Mar-01 14-Apr-01 Date of sampling 14-Apr-01 17-May-01 23-Jun-01 14-Mar-01 Practical Quantitation Limit Analyte Method ž Sample No IM-CDBd-1-0M IM-CDBd-2-0M IM-CDBd-2-1M IM-CDBd-1-1M DM-CDBd-1-2M DM-CDBd-1-3M Chuadanga

Excess of both Bangladesh Standard and WHO guideline (The values were determined as exceeding the standards before rounding off) Excess of Bangladesh Standard

5-127

Å.

<PQL

₽QL

<PQL 0.013

<POL <

ĝ

0.40

4.2

4 13 13

3 18 ₽ ដ 2 4

8 81 8 87 8 78

333 348

1.6

\$2.1

PQ.

0.15

₽Q 11 APQL

2.5

2.7

320

<u>10</u> 99.5

50.0

31.3 31.0 28.1 24.9 31.2

7.23

17-May-01

IM-CDB4-2-2M

POL

*2.6⁻

Å PQL PoL PoL Por

0,24

Å

₽QL

257 395

51.3

7.27

23-Jun-01

IM-CDBd-2-3M

APQL ₽QL ÅPQL

Å

PQ PQ POL ц

₹PΩL ÅΩ ^PQL

Å <PQL 0.0104 <PCIL 0.0033

POL

₽QL <₽QL

PQL

₽ġ <PQL

0.37

3.3

Por 0.18 <₽QL

₽QL Å

₽QL ^PQL

<PQL 0.014 <PQL

₽QL

₹PQL

PQL

^PQL

Por

3.1 3.1 4.0

6.8

15

341

342

2.4

0.23

17

₽QL

Excess of WHO guideline

<PQL

0.39 0.36 0.37 0.38

5.3

326

1.3 1.7 1.7 4.1

2.5

0.12

₽QL

2.7

<u>6</u>

7.14

14-Mar-01

IM-CDBd-3-0M

7.72

14-Apr-01

IM-CDBd-3-1M

351

\$2.4

0.22

1.3

APQL

2.9

350 322 256

8 ₿ 95.8

54.6 61.7

50.4 51.2

7.42 7.29

17-May-01

IM-CD84-3-2M

23-Jun-01

IM-CDBd-3-3M

31.0

12.2

0.13

1.0

Å å

₽QL

PQL

9.9

Å PQL

å

Table 5.5.5 Results of 300 Existing Well Survey (Rainy Season)

Analyte	H	Temperature	Conductivity	Hardness	SQL	Nitrate	Nitrite A	monium Di	aolined Min. S	ulfate bu	wheel Fe Ch	oride Bleath	onate Calciu	m Magnesiun	Sodium	Potassiun	Fluoride	Cadmium	Total Cr	copper C	/anide t	ead Merc	ury Nic	kei Zinc		—
Method	pH meter	Thermo meter	Conductivity meter	Standard	Standard	Ъ	ß	- -	AAS	PR R	AAS	SP Titra	tion FAA	s FAAS	FAAS	FAAS	Ъ	Extractio	Extractio E	otractio VFAAS	P S B	Tactio Extra	AS n/F/	ctio Extract	lo Titrati	Ē
Practical Quantitation Limit	•	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	2	0.2	0.6	0.5	0.05	0.05	0.1	0.1	0.0015	0.025	0.005	0.01	0.0 0.0	0.0	05 0.00	50	
Unit		Deg C	mS/m	mg CaCO ₃ L	mg/L	mg/L	Ъ	mg/L	u Tygm	u J/Bu	u J/Gu	B/L CaO	V6m 1/60	- mg/L	mg/L	mg/L	mg/L	J/gm	J/Bu	ug/L r	սեր	ig/L mg	ů L	VF mBV	1/6m	1.
Sample No	Æ	Temp	ы	Hardness	ŝ	\$ON	NO2	Ť	Mn	so,	Fe	н Г	ా ర	ßW	R.	¥	Ľ.	3	ა	S	N	H 4	Z	rz 	5	T
Existing Well																						•				—
EW-HJMd-R-[19]	7.00	26.4	70.2	166	449	0.80	₽OL	4.6	0.20	POL	2	1.8	0 140	ع	21	1.9	0.53	₽ġ	₽ġ	₽ġ	Por Por	013 <pc< th=""><th>ы. 0:0</th><th>22 <pqi< th=""><th>ĭõ. √</th><th><u> </u></th></pqi<></th></pc<>	ы. 0:0	22 <pqi< th=""><th>ĭõ. √</th><th><u> </u></th></pqi<>	ĭõ. √	<u> </u>
EW-JJDa-R-[38]	7.10	26.3	71.9	124	460	1.2	0.20	Par	0.91	Pol Pol	PoL	10 46	100	21	8	1.3	1:1	Å	0.036	≁ Pot	Pot	¥ ₽d	ч Ч	P. P.	10dv	Γ.
EW-CDNFR-[43]	7,00	26.3	101	193	646	16	2.8	0.11	0.45	s 8	0.57	43 50	0 160	\$	26	3.6	0.48	0.0019	0.061	<pre> • • • • • • • • • • • • • • • • • • •</pre>	o La	012 <pc< th=""><th>о: Т</th><th>t8 ≺PQI</th><th>< POI</th><th></th></pc<>	о: Т	t8 ≺PQI	< POI	
EW-CDHM-R-[73]	7.20	26.2	68.3	141	437	0.36	0.26	3.4	0.93	Ъд	0.44	1.5 40	0 120	8	43	3.7	0.59	PaL	0.050	4 PQL	Par	017 <pc< th=""><th>50 51</th><th>oč IQ4</th><th>PQ4≻</th><th>1.</th></pc<>	50 51	oč IQ4	PQ4≻	1.
EW-JARJ-R-[85]	7.20	26.3	158	75.6	10101	0.24	PQL	0.11	0.44	ğ	0.25	20 72	54	5	290	0.81	1.0	<pql< th=""><th>0.066</th><th>< PoL <</th><th>v G</th><th>¥ ₽GL</th><th>₩ 1</th><th>PQI PQI</th><th>1045</th><th>· ·</th></pql<>	0.066	< PoL <	v G	¥ ₽GL	₩ 1	PQI PQI	1045	· ·
EW-JBBs-R-[117]	7.10	26.1	52.3	119	34	≮PQL	₽ <mark>0</mark> Г	1,6 to 1	0.76/	v Ig	POL	2.3 32	66	8	9.0	1.6	0.50	0.0023	0.087	≮PQL	ğ	¥ ₽0	о: л	t0 PQI	<pqi<< th=""><th><u> </u></th></pqi<<>	<u> </u>
EW-HJNHR-[147]	7.20	26.3	54.1	94.2	346	<₽QL	<pql< th=""><th>0.12</th><th>0.56</th><th>Par</th><th>0.36</th><th>20 34</th><th>0</th><th>25</th><th>15</th><th>4.</th><th>0.61</th><th>sPQL</th><th>0.11</th><th>PQL</th><th>.017 <</th><th>PQL ≁PC</th><th>ы. 20</th><th>63 APQI</th><th>-PQ</th><th>1.</th></pql<>	0.12	0.56	Par	0.36	20 34	0	25	15	4.	0.61	sPQL	0.11	PQL	.017 <	PQL ≁PC	ы. 20	63 APQI	-PQ	1.
EW-HHHr-R-[26]	7.28	22.9	73.1	138	468	<₽aL	0.25	<pre>PQL</pre>	0.88	18	0.74	21 40	2 110	27	4	2.6	0.33	PQL	0.10	PQL (.013 <	PQL PC	₩ F	pL ≜PQI	PQ4 PQ	<u> </u>
EW-CJUI-R-[31]	7.10	26.6	51.7	115	331	÷	₽GL	0.13	0.27	POL	0.59	5.8 34	110	6.1	5	4.	0.40	PQL	0.13	<pql (<="" th=""><th>.015 <</th><th>PQL PC</th><th>ы. 0.0</th><th>i7 <pqi< th=""><th>PQ4</th><th>1.</th></pqi<></th></pql>	.015 <	PQL PC	ы. 0.0	i7 <pqi< th=""><th>PQ4</th><th>1.</th></pqi<>	PQ4	1.
EW-CCSk-R-[35]	7.00	26.4	59.9	74.9	383	1.4	PQL	< POL	0.64	POL 1	9-1-	14 20	53	ន	÷	3.1	0.43	0.0051	0.14	<pql (<="" th=""><th>0.014 0</th><th>030 <pc< th=""><th>0.0 DL 0.0</th><th>9 0.051</th><th>104 IQ</th><th><u> </u></th></pc<></th></pql>	0.014 0	030 <pc< th=""><th>0.0 DL 0.0</th><th>9 0.051</th><th>104 IQ</th><th><u> </u></th></pc<>	0.0 DL 0.0	9 0.051	104 IQ	<u> </u>
EW-HTKI-R-[46]	8.30	26.4	26.6	154	170	1.4	POL	0.11	0.20	6.5	38	13	130	33	8.0	3.4	0.52	0.0027	0.14	PoL	> 010.	PQL PQL	50 DL	35 0.024	₽ Io	
EW-CAALR-[72]	7.10	26.2	91.2	167	584	1.7	₽QL	0.10	0.38	8.2	0.92	26 46	0 140	35	6	4.0	0.35	0:0030	0.14	PaL	.014 <	PQL	о: лг	88 0.011	10.4 IQ	Υ <u></u>
EW-HKRg-R-[74]	6.80	26.2	69.5	93.8	445	2.7	PQL	PQL	0.21 <	PQL	60 J	15 24	0 82	42	<u>ب</u>	1.9	0.40	0.0035	0.17	v. ⊐o4≻	POL	POL	0:0 77	22 APQI	PQ4	1.
EW-JSBn-R-[88]	6.80	26.4	65.1	-93.0	417	2.5	<pql< th=""><th>0.11</th><th>0.36 <</th><th>PQL</th><th>3,9</th><th>14 28</th><th>69 0</th><th>54</th><th>=</th><th>22</th><th>0.48</th><th>0.0039</th><th>0.17</th><th>¢ ₽0L</th><th>v Pol</th><th>PQL PC</th><th>DL 0.0</th><th>18 0.047</th><th>₽Q</th><th>1.</th></pql<>	0.11	0.36 <	PQL	3,9	14 28	69 0	54	=	22	0.48	0.0039	0.17	¢ ₽0L	v Pol	PQL PC	DL 0.0	18 0.047	₽Q	1.
EW-HMNt-R-(95)	6.90	26.2	77.2	128	494	0.76	<pol th="" §<=""><th>3,235</th><th>0.36 <</th><th>PQL</th><th>8.5</th><th>1.4 44</th><th>0 100</th><th>25</th><th>₽</th><th>3.6</th><th>0.37</th><th>0.0052</th><th>0.17</th><th>, Å</th><th>PQL</th><th>PQL</th><th>DL 0:0</th><th>se <pqi< th=""><th>ÅΩ[</th><th>1.</th></pqi<></th></pol>	3,235	0.36 <	PQL	8.5	1.4 44	0 100	25	₽	3.6	0.37	0.0052	0.17	, Å	PQL	PQL	DL 0:0	se <pqi< th=""><th>ÅΩ[</th><th>1.</th></pqi<>	ÅΩ[1.
EW-JKPj-R-[102]	6.80	26.1	258	164	1650	100 -	24222	¥12 \$	<pql <<="" th=""><th>PQL</th><th>80</th><th>30 46</th><th>0 120</th><th>45</th><th>170</th><th>8.9</th><th>1.2</th><th>0.0073</th><th>0.18</th><th>^ ₽QĽ</th><th>PQL</th><th>PQL APC</th><th>0.0 JL</th><th>15 0.016</th><th>160</th><th></th></pql>	PQL	80	30 46	0 120	45	170	8.9	1.2	0.0073	0.18	^ ₽QĽ	PQL	PQL APC	0.0 JL	15 0.016	160	
EW-JHNn-R-[105]	6.70	26.0	63.0	107	403	11	63.241 53.241	0.10	0.14 <	POL	7.S.	28	0 84	23	12	3.0	0.53	0.0076	0.20	0.0086	.012 <	PQL <pc< th=""><th>0:0 רכ</th><th>57 APQI</th><th>39</th><th></th></pc<>	0:0 רכ	57 APQI	39	
EW-JMDk-R-[124]	7.10	23.0	93.3	48.1	467	<₽QL	<pql< th=""><th>4.6</th><th>< POL</th><th>PQL</th><th>212</th><th>53 42</th><th>0 13</th><th>35</th><th>95</th><th>4.8</th><th>÷</th><th>0.0079</th><th>0.19</th><th>PQL</th><th>POL</th><th>PQL ~PC</th><th>0.0 JL 0.0</th><th>13 AP QI</th><th>39</th><th><u> </u></th></pql<>	4.6	< POL	PQL	212	53 42	0 13	35	95	4.8	÷	0.0079	0.19	PQL	POL	PQL ~PC	0.0 JL 0.0	13 AP QI	39	<u> </u>
EW-HSFI-R-[133]	6.90	25.8	65.7	117	420	0:30	<pql< th=""><th><pql< th=""><th>0.69</th><th>7.6 (</th><th>0.34</th><th>24 36</th><th>06 0</th><th>27</th><th>16</th><th>1.3</th><th>0.50</th><th><pql< th=""><th>0.20</th><th>< Pol</th><th>v Bol</th><th>₽aL</th><th>₽</th><th>SL <pqi< th=""><th>₽Q</th><th></th></pqi<></th></pql<></th></pql<></th></pql<>	<pql< th=""><th>0.69</th><th>7.6 (</th><th>0.34</th><th>24 36</th><th>06 0</th><th>27</th><th>16</th><th>1.3</th><th>0.50</th><th><pql< th=""><th>0.20</th><th>< Pol</th><th>v Bol</th><th>₽aL</th><th>₽</th><th>SL <pqi< th=""><th>₽Q</th><th></th></pqi<></th></pql<></th></pql<>	0.69	7.6 (0.34	24 36	06 0	27	16	1.3	0.50	<pql< th=""><th>0.20</th><th>< Pol</th><th>v Bol</th><th>₽aL</th><th>₽</th><th>SL <pqi< th=""><th>₽Q</th><th></th></pqi<></th></pql<>	0.20	< Pol	v Bol	₽aL	₽	SL <pqi< th=""><th>₽Q</th><th></th></pqi<>	₽Q	
EW-JUIC-R-[170]	7.10	25.8	40.1	125	257	0.71	≺PQL	-PQL	0.74	POL	0.50	11 50	4 93	31	48	1.2	0.63	<pql< th=""><th>0.21</th><th><pql <<="" th=""><th>PQL <</th><th>PQL</th><th>31 0.0C</th><th>59 0.024</th><th>62</th><th></th></pql></th></pql<>	0.21	<pql <<="" th=""><th>PQL <</th><th>PQL</th><th>31 0.0C</th><th>59 0.024</th><th>62</th><th></th></pql>	PQL <	PQL	31 0.0C	59 0.024	62	
EW-HSAD-R-[177]	6.90	26.1	88.3	48.5	565	0.31	<pql< th=""><th>0.11 🥳</th><th>0.76</th><th>PQL <</th><th>POL</th><th>24 34</th><th>0 33</th><th>15</th><th>52</th><th>2.7</th><th>0.49</th><th>PQL</th><th>0.22</th><th>PQL</th><th>× 50</th><th>PQL <pq< th=""><th>¥ ⊐T</th><th>NL <pol< th=""><th>₽ġ</th><th></th></pol<></th></pq<></th></pql<>	0.11 🥳	0.76	PQL <	POL	24 34	0 33	15	52	2.7	0.49	PQL	0.22	PQL	× 50	PQL <pq< th=""><th>¥ ⊐T</th><th>NL <pol< th=""><th>₽ġ</th><th></th></pol<></th></pq<>	¥ ⊐T	NL <pol< th=""><th>₽ġ</th><th></th></pol<>	₽ġ	
EW-JMCI-R-[201]	6.20	26.2	78.0	ş	\$	3.1	-POL	5.6	> 860.0	Par	20	58 78	83	27	27	3.0	0.64	<₽QL	0.22	-PQL:	PQL <	PQL <pc< th=""><th>PL</th><th>NL 0.015</th><th>₫</th><th></th></pc<>	PL	NL 0.015	₫	
EW-JCPt-R-[207]	6.80	26.0	72.6	112	465	8.5	¢ 3.6 ^t	≤PQL	0.30 <	Pol	<u>34</u>)	10 36	0 87	25	13	4.2	0.47	PQL	0.22	* ₽GL	Par	od⊢ ∧pd	0.00 DL 0.00	63 <pql< th=""><th>Å</th><th>-</th></pql<>	Å	-
Production Well																										
EW-HTKI-R(PTW-2)	7.14	23.6	68.7	119	440	0.89	0.21	0.11 S	0.68	7.2 0	0.25	13 41	0 87	33	17	1.8	0.62	<pql< th=""><th><pql< th=""><th>PQL</th><th>v Fa</th><th>od⊢ od⊢</th><th>ъ.</th><th>NL 0.021</th><th>Å</th><th></th></pql<></th></pql<>	<pql< th=""><th>PQL</th><th>v Fa</th><th>od⊢ od⊢</th><th>ъ.</th><th>NL 0.021</th><th>Å</th><th></th></pql<>	PQL	v Fa	od⊢ od⊢	ъ.	NL 0.021	Å	
EW-CCC4-R(PTW-2B)	7.09	23.5	69.3	123	4	₽gr	<₽QL	1.1	0.19 <	Pal 🎽	0-0 -	35 36	0 97	8	19	3.2	0.55	<pql< th=""><th><pql< th=""><th>< PQL</th><th>- Par</th><th>Å Å</th><th>SL <₽</th><th>sr ⊲PQL</th><th>₽QL</th><th></th></pql<></th></pql<>	<pql< th=""><th>< PQL</th><th>- Par</th><th>Å Å</th><th>SL <₽</th><th>sr ⊲PQL</th><th>₽QL</th><th></th></pql<>	< PQL	- Par	Å Å	SL <₽	sr ⊲PQL	₽QL	
EW-HJJn-R(PTW-3)	7.01	23.4	54.1	73 ·	346	2.9	0.24	0.27	0.43	7.6 <	POL ,	1.1 34	0 61	12	24	2.1	0.56	<₽QL	PQL	PQL	POL	PQL APC	₽ ₽	2L 0.019	Å Pol	
EW-JJJs-R(PTW-15)	60.7	23.2	101	114	644	<pal< th=""><th><₽QL</th><th>0.10</th><th>0.29</th><th>8.9 (</th><th>0.73</th><th>10 48</th><th>0 82</th><th>31</th><th>59</th><th>2.7</th><th>0.41</th><th><₽QL</th><th><pql< th=""><th><pql <<="" th=""><th>Par</th><th>PQL PQL</th><th>₩ 10 10</th><th>NL 0.053</th><th>PQL</th><th></th></pql></th></pql<></th></pal<>	<₽QL	0.10	0.29	8.9 (0.73	10 48	0 82	31	59	2.7	0.41	<₽QL	<pql< th=""><th><pql <<="" th=""><th>Par</th><th>PQL PQL</th><th>₩ 10 10</th><th>NL 0.053</th><th>PQL</th><th></th></pql></th></pql<>	<pql <<="" th=""><th>Par</th><th>PQL PQL</th><th>₩ 10 10</th><th>NL 0.053</th><th>PQL</th><th></th></pql>	Par	PQL PQL	₩ 10 10	NL 0.053	PQL	
EW-HMMh-R(PTW-1)	7.12	23.7	53.0	102	339	4.5	0.17	1.2	rPQL <	Pal	(18. j	1.0 33	0 83	20	8.7	2.8	0.27	<₽QL	PQL	<pql <<="" th=""><th>Par</th><th>PQL APC</th><th>₽ T</th><th>aL 0.069</th><th>ÅΡαΓ</th><th></th></pql>	Par	PQL APC	₽ T	aL 0.069	ÅΡαΓ	
EW-HKR-R(PTW-2)	7.12	23.6	67.8	111	434	7.4	1.1	<pql< th=""><th>0.50 <</th><th>POL (</th><th>0.48</th><th>16 38</th><th>0 86</th><th>.25</th><th>10</th><th>2.2</th><th>0.30</th><th><₽QL</th><th><pql< th=""><th>< PQL</th><th>POL</th><th>PQL <pc< th=""><th>S⊢ S⊢</th><th>1L 0.054</th><th>PQL</th><th><u> </u></th></pc<></th></pql<></th></pql<>	0.50 <	POL (0.48	16 38	0 86	.25	10	2.2	0.30	<₽QL	<pql< th=""><th>< PQL</th><th>POL</th><th>PQL <pc< th=""><th>S⊢ S⊢</th><th>1L 0.054</th><th>PQL</th><th><u> </u></th></pc<></th></pql<>	< PQL	POL	PQL <pc< th=""><th>S⊢ S⊢</th><th>1L 0.054</th><th>PQL</th><th><u> </u></th></pc<>	S⊢ S⊢	1L 0.054	PQL	<u> </u>
EW-HSSI-R(PTW-1)	2.09	23.4	75.4	128	483	<pql< th=""><th><pql< th=""><th>0.18</th><th>PQL <</th><th>PQL <</th><th>POL</th><th>1.6 49</th><th>0 93</th><th>35</th><th>32</th><th>3.2</th><th>0.39</th><th><pql< th=""><th>Por</th><th>PQL 6</th><th>010</th><th>90 POL</th><th>¥ F</th><th>NL 0.028</th><th>PQL</th><th>1</th></pql<></th></pql<></th></pql<>	<pql< th=""><th>0.18</th><th>PQL <</th><th>PQL <</th><th>POL</th><th>1.6 49</th><th>0 93</th><th>35</th><th>32</th><th>3.2</th><th>0.39</th><th><pql< th=""><th>Por</th><th>PQL 6</th><th>010</th><th>90 POL</th><th>¥ F</th><th>NL 0.028</th><th>PQL</th><th>1</th></pql<></th></pql<>	0.18	PQL <	PQL <	POL	1.6 49	0 93	35	32	3.2	0.39	<pql< th=""><th>Por</th><th>PQL 6</th><th>010</th><th>90 POL</th><th>¥ F</th><th>NL 0.028</th><th>PQL</th><th>1</th></pql<>	Por	PQL 6	010	90 POL	¥ F	NL 0.028	PQL	1
	I				1			ú	cess of W	HO cuideli	g		FYCRES	of Ranclad	Stand:	Ę		Evrace of	oth Rand	arlech Stor	Mard and	witto onlide	ļ			1
							С	The valu	les wer	deterr	nined as	exceedi	ng the st	andards	before n	ounding) (ijo						2			

(Dry Season)
Survey
g Well
Existin
of 300
Results
Table 5.5.6

Analyte	H	Temperature	Conductivity	Hardness	۶ ۴	Nitrate	Nitrite Am	monium Diss	S International Sur	iffate Dina	Aved Fe Chi	oride Bicarb	onate Calciu	Magnesiu	m Sodium	Potassitu	n Fluoride	Cadmium	Total Cr	Copper	Syanide	Lead Me	ircury N	ckel Zir	8	ß
Method	pH meter	Thermo meter	Conductivity meter	Standard	Standard	ъ	SP	SP	AAS	SP F/	NS (SP Titra	tion FAA	S FAAS	FAAS	FAAS	ß	Extractio n/ FAAS	Extractio n/ FAAS	Extractio n/ FAAS	ц.	otractio Ext / FAAS n/ I	FAAS n/1	actio Extra AAS n/ FA	AS Titra	tion
Practical Quantitation Limit	•	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	1.08	5)2	3.6 2	0 0.5	0.05	0.05	6	<u>.</u> .	0.0015	0.025	0.005	0.01	0.005 0.	001	0.0	5	0
Unit		Deg C	mS/m	CaCO ₂ L	mg/L	mg/L	ng/L r	u J/Bu	u 1/6,	μβγΓ μ	in Lu	lg∕L cac	V6m 1∿0	г ш6/Г	mg/L	mg/L	mg/L	шðуг	mg/L	mg/L	mg/L	mg/L n	n 19/L	6√r mg	มี มี	۲,
Sample No	Hđ	Temp	EC	Hardness	SQL	ľ0ľ	NO2	NH,	uM	30 r	Fe	R	° C	Mg	Ra N	¥	Ŀ	3	Ծ	₫.	S	£	£	7	8	8
Existing Well																								$\left - \right $		Г
EW-HJMd-D-[19]	6.72	24.6	83.7	118	536	₽QL	<pql <pql< th=""><th>12</th><th>),18</th><th>POL</th><th>1.</th><th>1.1</th><th>8 96</th><th>ន</th><th>₽</th><th>2.6</th><th>0.35</th><th>₹PΩL</th><th>PQL</th><th>₽QL</th><th>PQL</th><th>PQL</th><th>POL</th><th>¥ or</th><th>₩ T</th><th>5</th></pql<></pql 	12),18	POL	1.	1.1	8 96	ន	₽	2.6	0.35	₹PΩL	PQL	₽QL	PQL	PQL	POL	¥ or	₩ T	5
EW-JUDa-D-[38]	7.14	24.4	81.3	102	520	0.31	0.020		1.5 <	POL	84	4.5 45	6 72	31	4	1.7	1.3	₽ġ	₽ġ	^PQL	194	0.010	50 POL	062 0.0	37 AP	5
EW-CDNI-D-[43]	60'.	23.7	100	161	642	2.0	1988 B		100	49 49	G	13 4E	130	8	R	4.0	0.58	Å	Å	PQL	Å	Pot	⊽ bg	¥ ⊽	3	
EW-CDHM-D-[73]	7.13	23.6	68.5	119	438	<₽QL	<₽QL	1000	13. <	POL	33	3.0 42	100 100	\$	8	3.4	0.40	PQL	AQL	PQL	Å	Pol	⊽ bor	5 G	₩ F	5
EW-JARJ-D-[85]	7.11	24.4	184	66.2	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<pql< td=""><td>0.020</td><td>, 新愛</td><td>3.42</td><td>POL 20</td><td></td><td>240 7C</td><td>0 48</td><td>\$</td><td>330</td><td>1.3</td><td>1.0</td><td>PQL</td><td>PaL</td><td>PQL</td><td>₽ġ</td><td><pql td="" ≤<=""><td>POL 0.</td><td>072 <pc< td=""><td>ъ́ Б</td><td>ц.</td></pc<></td></pql></td></pql<>	0.020	, 新愛	3.42	POL 20		240 7C	0 48	\$	330	1.3	1.0	PQL	PaL	PQL	₽ġ	<pql td="" ≤<=""><td>POL 0.</td><td>072 <pc< td=""><td>ъ́ Б</td><td>ц.</td></pc<></td></pql>	POL 0.	072 <pc< td=""><td>ъ́ Б</td><td>ц.</td></pc<>	ъ́ Б	ц.
EW-JBBs-0-[117]	6.93	23.8	58.6	84.6	375	₹₽ØΓ	≤PQL	921	123 <	POL	e Care	.71 31	5 69	8	4.3	2.1	0.43	₽aL	₽ġ	PQL	0.013	₽OL	o Por	07 170	ਉਂ ਵ	5
EW-HUNHD-[147]	7.19	24.5	9.09	78.9	388	<pql< td=""><td><pol td="" 🦉<=""><td>1</td><td>),52 <</td><td>POL N</td><td>238</td><td>2.2 32</td><td>8 59</td><td>20</td><td>12</td><td>1.7</td><td>0.55</td><td>PQL</td><td>ÅQL</td><td>₽gГ</td><td>- ₽0</td><td>⇒ 10000</td><td>POL 0.</td><td>053 PC</td><td>₽ F</td><td>5</td></pol></td></pql<>	<pol td="" 🦉<=""><td>1</td><td>),52 <</td><td>POL N</td><td>238</td><td>2.2 32</td><td>8 59</td><td>20</td><td>12</td><td>1.7</td><td>0.55</td><td>PQL</td><td>ÅQL</td><td>₽gГ</td><td>- ₽0</td><td>⇒ 10000</td><td>POL 0.</td><td>053 PC</td><td>₽ F</td><td>5</td></pol>	1),52 <	POL N	238	2.2 32	8 59	20	12	1.7	0.55	PQL	ÅQL	₽gГ	- ₽0	⇒ 10000	POL 0.	053 PC	₽ F	5
ЕМ-НННг-D-[26]	7.13	24.6	78.7	107	204	PQL	0.47		98	20	15.0	18 38	33 80	17	7.8	2.9	0.41	₽aL	₽QL	₽aL	0.014	0.012	⊽ Bor	γ αΓ	₽	5
EW-CJULD-[31]	7.24	23.8	61.1	0	391	0,98	0.64	6.5).42 ×	POL		7.7 31	06 6	19	15	3.8	0.28	₽Q	₹₽GL	₽qL	0.014	PQL	⊽ bg	а Ч		5
EW-CCSk-D-[35]	7.16	24.1	65.8	112	421	1.5	0.26		> 0]	лоч	10.1	12 32	4 93	19	4.3	3.6	0.28	₽QL	₹PQL	PQL	0.010	⊳or ⇒	₽GL	a P	l 4 ⊐	5
EW-HTKI-D-[46]	7.45	23.9	70.0	<u>5</u>	445	₽ġ.	^POL	564	1.18	7.2		24 35	2 86	19	1.5	3.9	0.46	₽ġ	₽ġ	₽QL	0.015	<pql td="" ≤<=""><td>⊽ BoL</td><td>₽ A</td><td>le P</td><td>ы</td></pql>	⊽ BoL	₽ A	le P	ы
EW-CAALD-[72]	7.42	24.1	80.7	150	581	1.4	0.020	63.5	174	14	100	24 41	0 120	25	ន	3.9	0.31	Å	Å	₽ġ	Por	PQL	5 Jg	057 _ <pc< td=""><td>ъ БГ</td><td>5</td></pc<>	ъ БГ	5
EW-HKRg-D-[74]	7.11	24.5	0.77	110	493	8.1	1.2		1,26	Pal	4.6	14 38	1 89	3	8.6	2:7	0.31	₽QL	Å	₽QĽ	0.010	POL	⊽ bg	0.0 0.0	2 2 2	4
EW-JSBn-D-[88]	6.89	24.3	60.5	86.0	387	₽ġ	-Pol) 26),45 <	Pol 👯	26	11 33	3 76	8	9	1.8	0.35	₽ġ	₽ġ	₽ġ	₽gL	<pol <<="" td=""><td> P</td><td>0.0 QL</td><td>l d Q</td><td>14</td></pol>	 P	0.0 QL	l d Q	14
EW-HMN1-D-[85]	6.85	24.5	81.1	105	520	₽QL	POL	1	1.28	8.1	1	1.9	4	24	6	3.2	0.26	¢oL	Tod⊱	<pql< td=""><td>ĮÅ Į</td><td>PQL ≤</td><td>Por Por</td><td>072 <pc< td=""><td>я 5</td><td></td></pc<></td></pql<>	ĮÅ Į	PQL ≤	Por Por	072 <pc< td=""><td>я 5</td><td></td></pc<>	я 5	
EW-JKPj-D-[102]	7.03	24.4	221	119	\$1450 [°]	₽QL	\$ ₽QL	201	141	POL		i70 54	6 82	37	400	6.7	17	₽ġ	Å	Å	₽	Pot	Pol 0.6	064	8	
EW-JHNn-D-{105]	6.87	24.2	66.0	98.7	423	<pql< td=""><td><₽a</td><td>্য</td><td>44</td><td>POL 2</td><td></td><td>1.1 37</td><td>62 0.</td><td>20</td><td>\$</td><td>2.6</td><td>0.20</td><td>PQL</td><td>₽ġ</td><td>₽d</td><td>0.016</td><td>0.0070</td><td>PQL P</td><td>년 전</td><td>Ğ ₩</td><td>4</td></pql<>	<₽a	্য	44	POL 2		1.1 37	62 0.	20	\$	2.6	0.20	PQL	₽ġ	₽d	0.016	0.0070	PQL P	년 전	Ğ ₩	4
EW-JMDk-D-[124]	6.93	24.7	105	98.8	672	₽QL	<pql< td=""><td></td><td>.46</td><td>POL</td><td>9</td><td>50 46</td><td>99 50</td><td>30</td><td>8</td><td>3.8</td><td>0.57</td><td><pql< td=""><td>PQL</td><td>PaL</td><td>₽a</td><td>0.011 <</td><td>Por 0.0</td><td>966 APC</td><td>5 5</td><td>4</td></pql<></td></pql<>		.46	POL	9	50 46	99 50	30	8	3.8	0.57	<pql< td=""><td>PQL</td><td>PaL</td><td>₽a</td><td>0.011 <</td><td>Por 0.0</td><td>966 APC</td><td>5 5</td><td>4</td></pql<>	PQL	PaL	₽a	0.011 <	Por 0.0	966 APC	5 5	4
EW-HSFHD-[133]	7.21	23.7	70.7	115	453	<₽QL	<pol< td=""><td>82. A.</td><td>×</td><td>0 Pol</td><td>38</td><td>3.0 36</td><td>94</td><td>21</td><td>54</td><td>12</td><td>0.45</td><td>PQL</td><td>₽or</td><td>₽GL</td><td>₽QL</td><td>⊳ PQL <</td><td>⊽ Lor</td><td>ar</td><td>5 F</td><td>đ</td></pol<>	82. A.	×	0 Pol	38	3.0 36	94	21	54	12	0.45	PQL	₽or	₽GL	₽QL	⊳ PQL <	⊽ Lor	ar	5 F	đ
EW-Jule-D-(170]	7.13	24.5	92.8	109	594	≮PQL	<pql< td=""><td>1. B.</td><td>127 <</td><td>POL 🐩</td><td>2</td><td>15 46</td><td>1 79</td><td>30</td><td>28</td><td>1.3</td><td>0.70</td><td><₽QL</td><td>PQL</td><td><₽QL</td><td>₽aL</td><td>PoL ≤</td><td>DGL DGL</td><td>052 0.0</td><td>е Р</td><td>ъ</td></pql<>	1. B.	127 <	POL 🐩	2	15 46	1 79	30	28	1.3	0.70	<₽QL	PQL	<₽QL	₽aL	PoL ≤	DGL DGL	052 0.0	е Р	ъ
EW-HSAb-D-(177]	7.07	23.8	100	138	627	<₽QL	<pql< td=""><td>20 20</td><td>1.93 <</td><td>PQL 0</td><td>42</td><td>22 46</td><td>3 110</td><td>31</td><td>37</td><td>2.5</td><td>0.48</td><td><pql< td=""><td>PQL</td><td>₽QL</td><td>0.011</td><td>Pol</td><td>50 Por</td><td>092 APC</td><td>ų P</td><td>ъ</td></pql<></td></pql<>	20 20	1.93 <	PQL 0	42	22 46	3 110	31	37	2.5	0.48	<pql< td=""><td>PQL</td><td>₽QL</td><td>0.011</td><td>Pol</td><td>50 Por</td><td>092 APC</td><td>ų P</td><td>ъ</td></pql<>	PQL	₽QL	0.011	Pol	50 Por	092 APC	ų P	ъ
EW-JMCHD-[201]	6.81	24.5	75.6	97.9	484	₹PαL	<pql< td=""><td>100</td><td>1.45 <</td><td>POL 🎆</td><td>0 []</td><td>1.98 40</td><td>17 77</td><td>21</td><td>21</td><td>2.6</td><td>0.28</td><td>PQL</td><td>-PQL</td><td>PQL</td><td><pql< td=""><td>0.037 <</td><td>⊽ Pol</td><td>₽ ₽</td><td>5 F</td><td>4</td></pql<></td></pql<>	100	1.45 <	POL 🎆	0 []	1.98 40	17 77	21	21	2.6	0.28	PQL	-PQL	PQL	<pql< td=""><td>0.037 <</td><td>⊽ Pol</td><td>₽ ₽</td><td>5 F</td><td>4</td></pql<>	0.037 <	⊽ Pol	₽ ₽	5 F	4
EW-JCPHD-[207]	7.01	24.9	8.77	117	499	<₽QL	<pql< td=""><td>ों ।</td><td>1.43 <</td><td>POL 👯</td><td>12</td><td>9.2 40</td><td>1 88</td><td>18</td><td>11</td><td>3.9</td><td>0.32</td><td>PQL</td><td><pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td>Pal 0.0</td><td>079 <pc< td=""><td>Р. Ч</td><td>Ч</td></pc<></td></pql<></td></pql<></td></pql<>	ों ।	1.43 <	POL 👯	12	9.2 40	1 88	18	11	3.9	0.32	PQL	<pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td>Pal 0.0</td><td>079 <pc< td=""><td>Р. Ч</td><td>Ч</td></pc<></td></pql<></td></pql<>	<pql< td=""><td><₽QL</td><td>PQL</td><td>Pal 0.0</td><td>079 <pc< td=""><td>Р. Ч</td><td>Ч</td></pc<></td></pql<>	<₽QL	PQL	Pal 0.0	079 <pc< td=""><td>Р. Ч</td><td>Ч</td></pc<>	Р. Ч	Ч
Production Well																										
EW-HTKI-D-(PTW-2)	7.05	24.6	1.17	107	497	<pql< td=""><td><pql< td=""><td>76 5</td><td>75 <</td><td>PQL</td><td>14 14 14 14</td><td>12 41</td><td>6 19</td><td>28</td><td>24</td><td>2.8</td><td>0.57</td><td>₽QL</td><td>₽QL</td><td>PQL</td><td>Pol</td><td>⊳ Por A</td><td>⊽ Bor</td><td>d A</td><td>Pe PL</td><td>ъ</td></pql<></td></pql<>	<pql< td=""><td>76 5</td><td>75 <</td><td>PQL</td><td>14 14 14 14</td><td>12 41</td><td>6 19</td><td>28</td><td>24</td><td>2.8</td><td>0.57</td><td>₽QL</td><td>₽QL</td><td>PQL</td><td>Pol</td><td>⊳ Por A</td><td>⊽ Bor</td><td>d A</td><td>Pe PL</td><td>ъ</td></pql<>	76 5	75 <	PQL	14 14 14 14	12 41	6 19	28	24	2.8	0.57	₽QL	₽QL	PQL	Pol	⊳ Por A	⊽ Bor	d A	Pe PL	ъ
EW-CCCD-D-(PTW-2B)	7.01	24.0	81.9	111	524	0.95	<pql< td=""><td>8,244</td><td>09</td><td>30</td><td>約</td><td>45 35</td><td>2 92</td><td>19</td><td>22</td><td>4.3</td><td>0.55</td><td>PQL</td><td>PQL</td><td><pql< td=""><td>₽ġ</td><td>PoL ≤</td><td>⊽ ק</td><td>4 ₽</td><td>¥ 5</td><td>5</td></pql<></td></pql<>	8,244	09	30	約	45 35	2 92	19	22	4.3	0.55	PQL	PQL	<pql< td=""><td>₽ġ</td><td>PoL ≤</td><td>⊽ ק</td><td>4 ₽</td><td>¥ 5</td><td>5</td></pql<>	₽ġ	PoL ≤	⊽ ק	4 ₽	¥ 5	5
EW-HUID-(PTW-3)	6.99	24.5	63.9	91.0	409	<pql< td=""><td>0.050</td><td>722 (</td><td>).46 <</td><td>Pal</td><td>6</td><td>3.1 33</td><td>3 73</td><td>18</td><td>14</td><td>3.3</td><td>0.28</td><td>APQL</td><td>PQL</td><td><₽QL</td><td>₽aL</td><td>0.021</td><td>ע ק</td><td>Å Å</td><td>ъ Ъ</td><td>ы.</td></pql<>	0.050	72 2 ().46 <	Pal	6	3.1 33	3 73	18	14	3.3	0.28	APQL	PQL	<₽QL	₽aL	0.021	ע ק	Å Å	ъ Ъ	ы.
EW-JUJS-D-(PTW-15)	7.03	24.6	112	111	718	<pql< td=""><td>< PQL</td><td>4.8 C</td><td>).20 <</td><td>POL 🗱</td><td>1</td><td>110 44</td><td>4 82</td><td>29</td><td>92</td><td>3.5</td><td>0.41</td><td>₽QL</td><td>PQL</td><td>PQL</td><td>0.010</td><td>⊳or</td><td>⊽ bor</td><td>0.0 GL</td><td>55 AP</td><td>4</td></pql<>	< PQL	4.8 C).20 <	POL 🗱	1	110 44	4 82	29	92	3.5	0.41	₽QL	PQL	PQL	0.010	⊳or	⊽ bor	0.0 GL	55 AP	4
EW-HMMh-D-(PTW- 1)	7.08	24.0	59.7	91.1	382	1.8	<pql< td=""><td>ر<u>تة</u> د</td><td>1.23 <</td><td>Роц.</td><td>30</td><td>3.8 30</td><td>5 77</td><td>14</td><td>8.3</td><td>3.9</td><td>0.24</td><td><₽QL</td><td>≺PQL</td><td>PQL</td><td>0.012</td><td>≤PaL</td><td>⊽ Lot</td><td>0.0 GL</td><td>8 9</td><td>4</td></pql<>	ر <u>تة</u> د	1.23 <	Роц.	30	3.8 30	5 77	14	8.3	3.9	0.24	<₽QL	≺PQL	PQL	0.012	≤PaL	⊽ Lot	0.0 GL	8 9	4
EWHING-D-(PTW-2)	7.32	24.5	+ 11 +	114	495	0.91	0.35	8 (C).12 <	POL 🎉	2 6 00 C	3.6 42	6 92	21	6.1	2.7	0.26	<pql< td=""><td><pql< td=""><td>₽gL</td><td>0.018</td><td>0.047</td><td>⊳ Por</td><td>QL 0:01</td><td>15 Å</td><td>d d</td></pql<></td></pql<>	<pql< td=""><td>₽gL</td><td>0.018</td><td>0.047</td><td>⊳ Por</td><td>QL 0:01</td><td>15 Å</td><td>d d</td></pql<>	₽gL	0.018	0.047	⊳ Por	QL 0:01	15 Å	d d
EW-HSSHD-(PTW-1)	6.99	23.9	93.0	147	595	0.83	<₽QL	8.2%).62 <	PQL 0	67	5.7 50	9 110	33	29	3.3	0.44	<pql< td=""><td><₽QL</td><td>0.0081</td><td><pql< td=""><td>PQL</td><td>POL 0.(</td><td>061 0.00</td><td>87 <₽</td><td>ಕ</td></pql<></td></pql<>	<₽QL	0.0081	<pql< td=""><td>PQL</td><td>POL 0.(</td><td>061 0.00</td><td>87 <₽</td><td>ಕ</td></pql<>	PQL	POL 0.(061 0.00	87 <₽	ಕ
								Ec	M Jo sea	tO autdelin	g		Excess	of Bandled	tesh Stand	pa		Excess of	both Ranc	ladesh St	andard an	d WHO and	deline]
							E	he valut	es were	determ	ined as	exceedi	ng the st	andards	before	oundin	g off)									

.

Table 5.5.7 Results of Baseline Survey (Existing Well)

Analyte	H	Temperature	Conductivity	Hardness	SQT	Nitrate	Nitrite A.	smontum Dt	C) International	Sulfate Dia	stotved Fe	hloride Bic	erbonate Ca	icium Magnu	taium Sod.	ium Potat	stum Fluor	de Cadmiu	m Total C	r Coppe	r Cyanide	Lead	Mercury	Nickel	Zinc	g
Method	pH meter	Thermo meter	Conductivity meter	Standard	Standard	ъ	SР	Ъ	FAAS	SP	-AAS	SP	tration F/	AS FA	AS FA	4S FA	AS SF	Extract n/ FAA	io Extracti S n/ FAAS	b Extract	S S P	Extractio	Extractio n/ FAAS	Extractio E	tractio	Itration
Practical Quantitation Limit	0	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	5	0.2	0.6	20	0.6 0.6	05 0.(5 0	1 0.1	0.001	5 0.025	0.00	0.01	0.005	0.001	0.005	0.005	20
Unit		Deg C	mS/m	mg CaCO ₂ IL	шg/Г	лgл	mg/L	mg/L		mg/L	ng/L	mg/L Ca	u CO ₃ /L	Jar mg	3/F mg	ц Ц	уг mg/	ר ג	тgл	ng/L	mg/L	mg/L	шðЛ	mg/L	hg/L	лgл
Sample No	Hq	Temp	EC	Hardness	TDS	*ON	NO2	NH4	лM	so,	Fe	- CI	tco.	Ca	N B	•	L	ß	ა	ŝ	CN	Pb	вн	ĨN	ភ	COD
BS-CDBd-EW-006	6.95	23.9	79.3	122	508	23	0 6 E	< Pol	0.83	<pql 5<="" th=""><th>19</th><th>33</th><th>455</th><th>110 21</th><th>•</th><th>5.</th><th>8 0.5</th><th>3 <pql< th=""><th>PQL</th><th>0.032</th><th>0.016</th><th>0.0060</th><th><pql< th=""><th>0.020</th><th>₽QL</th><th>PQL</th></pql<></th></pql<></th></pql>	19	33	455	110 21	•	5.	8 0.5	3 <pql< th=""><th>PQL</th><th>0.032</th><th>0.016</th><th>0.0060</th><th><pql< th=""><th>0.020</th><th>₽QL</th><th>PQL</th></pql<></th></pql<>	PQL	0.032	0.016	0.0060	<pql< th=""><th>0.020</th><th>₽QL</th><th>PQL</th></pql<>	0.020	₽QL	PQL
BS-CDBd-EW-050	7.04	24.5	58.2	119	372	2.3	4.01	POL	1100 1100 1000	<pol< td=""><td>24)</td><td>4.6</td><td>376</td><td>97 2:</td><td>3</td><td>3 4</td><td>3 0.4</td><td>I <pol< td=""><td>0.066</td><td>0.012</td><td><pql< td=""><td>0.0092</td><td>PQL</td><td>, ₽ġ</td><td><₽QĹ</td><td>PQL</td></pql<></td></pol<></td></pol<>	24)	4.6	376	97 2:	3	3 4	3 0.4	I <pol< td=""><td>0.066</td><td>0.012</td><td><pql< td=""><td>0.0092</td><td>PQL</td><td>, ₽ġ</td><td><₽QĹ</td><td>PQL</td></pql<></td></pol<>	0.066	0.012	<pql< td=""><td>0.0092</td><td>PQL</td><td>, ₽ġ</td><td><₽QĹ</td><td>PQL</td></pql<>	0.0092	PQL	, ₽ġ	<₽QĹ	PQL
BS-CDBd-EW-060	7.15	25.3	63.0	116	403	<₽QL	<pql< td=""><td>4,3 %</td><td>્યા</td><td>14</td><td>20 3</td><td>9.5</td><td>394</td><td>94 2:</td><td>3 6</td><td>5 2.</td><td>5 0.4:</td><td>s <pql< td=""><td><₽QL</td><td><pql< td=""><td>< PQL</td><td>₽ ₽</td><td>PQL</td><td>, Pot</td><td>PoL</td><td>Por</td></pql<></td></pql<></td></pql<>	4,3 %	્યા	14	20 3	9.5	394	94 2:	3 6	5 2.	5 0.4:	s <pql< td=""><td><₽QL</td><td><pql< td=""><td>< PQL</td><td>₽ ₽</td><td>PQL</td><td>, Pot</td><td>PoL</td><td>Por</td></pql<></td></pql<>	<₽QL	<pql< td=""><td>< PQL</td><td>₽ ₽</td><td>PQL</td><td>, Pot</td><td>PoL</td><td>Por</td></pql<>	< PQL	₽ ₽	PQL	, Pot	PoL	Por
BS-CDBd-EW-115	7.15	24.3	49.6	126	317	12	1.7	<₽QL	0.29	<₽QL	1.0	25	350	110 21	÷	3	4 0.3	t <pql< td=""><td><pql< td=""><td>-PQL</td><td>PQL</td><td>0.014</td><td>PQL</td><td>0.0068</td><td>Pal</td><td>₽QL</td></pql<></td></pql<>	<pql< td=""><td>-PQL</td><td>PQL</td><td>0.014</td><td>PQL</td><td>0.0068</td><td>Pal</td><td>₽QL</td></pql<>	-PQL	PQL	0.014	PQL	0.0068	Pal	₽QL
BS-CDBd-EW-168	60'.2	24.3	52.2	98.5	334	16	2.7	₽QL	0.85	₽QL	1.0	1.3	350	85 1:	3 6.	7 2.	0 0.5.	7 <pql< td=""><td><pol< td=""><td><pql< td=""><td>0.010</td><td>₽ PQ</td><td>PQL</td><td>To4≻</td><td>POL</td><td>PaL</td></pql<></td></pol<></td></pql<>	<pol< td=""><td><pql< td=""><td>0.010</td><td>₽ PQ</td><td>PQL</td><td>To4≻</td><td>POL</td><td>PaL</td></pql<></td></pol<>	<pql< td=""><td>0.010</td><td>₽ PQ</td><td>PQL</td><td>To4≻</td><td>POL</td><td>PaL</td></pql<>	0.010	₽ PQ	PQL	To4≻	POL	PaL
BS-JDCc-EW-044	7.01	23.1	76.8	155	492	=	0.27	2.5	0.40	<pol< td=""><td>26</td><td>1.7</td><td>512</td><td>3.</td><td>6</td><td>- -</td><td>4 0.2</td><td><pre>> <pre></pre></pre></td><td>-PQL</td><td>^PQL</td><td>0.012</td><td>₽0 ₽</td><td>γor</td><td>, ₽QL</td><td>ê QL</td><td>₽QL</td></pol<>	26	1.7	512	3.	6	- -	4 0.2	<pre>> <pre></pre></pre>	-PQL	^PQL	0.012	₽0 ₽	γor	, ₽QL	ê QL	₽QL
BS-JDCc-EW-060	7.08	23.7	74.4	128	476	₽ġ	See POI	6.7	0.18	<pol< td=""><td>62</td><td>37</td><td>420</td><td>100 2</td><td>8</td><td>* *</td><td>9 0.4</td><td>S <pql< td=""><td>0.054</td><td>0.016</td><td>₽aL</td><td>0.014</td><td>PQL</td><td>0.029</td><td>₽QL</td><td>₽QL</td></pql<></td></pol<>	62	37	420	100 2	8	* *	9 0.4	S <pql< td=""><td>0.054</td><td>0.016</td><td>₽aL</td><td>0.014</td><td>PQL</td><td>0.029</td><td>₽QL</td><td>₽QL</td></pql<>	0.054	0.016	₽aL	0.014	PQL	0.029	₽QL	₽QL
BS-JDCc-EW-091	6.92	23.7	7.4.7	119	478	≮PQL	~~ ₽ØГ	9.4	≮PQL	<₽QL	0,48	4.8	455	89 3(1	3	6 0.3(S <pql< td=""><td>-PQL</td><td>PaL</td><td>PQL</td><td>₽QL</td><td>PQL</td><td>, ₽0Ľ</td><td>PQL</td><td>39</td></pql<>	-PQL	PaL	PQL	₽QL	PQL	, ₽0Ľ	PQL	39
BS-JDCc-EW-092	7.29	24.2	64.5	117	413	0.26	~Pol	2.61	- ►PQL	<pql< td=""><td>0,44</td><td>1.7</td><td>411</td><td>94 2</td><td>3 1:</td><td>2 1,</td><td>2 0.3:</td><td>2 <pql< td=""><td><pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>₽QL</td><td>PQL</td><td>39</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	0,44	1.7	411	94 2	3 1:	2 1,	2 0.3:	2 <pql< td=""><td><pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>₽QL</td><td>PQL</td><td>39</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>₽QL</td><td>PQL</td><td>39</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>₽QL</td><td>PQL</td><td>39</td></pql<></td></pql<>	<₽QL	PQL	<pql< td=""><td>₽QL</td><td>PQL</td><td>39</td></pql<>	₽QL	PQL	39
BS-JDCc-EW-093	70.7	23.5	73.8	138	472	₽ġ	Pot	26	<₽QL	₽QL	0.31	1.3	473	110 Zi	e 1	5 3.	9 <pq< td=""><td>r <pql< td=""><td>-PQL</td><td><pql< td=""><td>0.014</td><td>PQL</td><td><pql< td=""><td>, ₽aL</td><td>POL</td><td>39</td></pql<></td></pql<></td></pql<></td></pq<>	r <pql< td=""><td>-PQL</td><td><pql< td=""><td>0.014</td><td>PQL</td><td><pql< td=""><td>, ₽aL</td><td>POL</td><td>39</td></pql<></td></pql<></td></pql<>	-PQL	<pql< td=""><td>0.014</td><td>PQL</td><td><pql< td=""><td>, ₽aL</td><td>POL</td><td>39</td></pql<></td></pql<>	0.014	PQL	<pql< td=""><td>, ₽aL</td><td>POL</td><td>39</td></pql<>	, ₽aL	POL	39
BS-JSRb-EW-001	7.26	24.9	251	122	1600	<₽QL	 Pot S 	2.9	< Pal	<₽QL	0.73	320	595	80 4:	2	0 3	8 0.3	3 <pql< td=""><td><pql< td=""><td>< PQL</td><td><₽QL</td><td><pql< td=""><td><pql< td=""><td>0.022</td><td><pql< td=""><td>4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>< PQL</td><td><₽QL</td><td><pql< td=""><td><pql< td=""><td>0.022</td><td><pql< td=""><td>4</td></pql<></td></pql<></td></pql<></td></pql<>	< PQL	<₽QL	<pql< td=""><td><pql< td=""><td>0.022</td><td><pql< td=""><td>4</td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.022</td><td><pql< td=""><td>4</td></pql<></td></pql<>	0.022	<pql< td=""><td>4</td></pql<>	4
BS-JSRb-EW-012	60.7	25.3	247	153	1580	<pql< td=""><td>< POL</td><td>έ20 τ</td><td>- ≤PQL</td><td><pql< td=""><td>249</td><td>540</td><td>510</td><td>110 4</td><td>7 230</td><td>0</td><td>2 0.3</td><td>7 <pql< td=""><td><pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>0.0069 0</td><td>.0051</td><td>Por</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	< POL	έ 2 0 τ	- ≤PQL	<pql< td=""><td>249</td><td>540</td><td>510</td><td>110 4</td><td>7 230</td><td>0</td><td>2 0.3</td><td>7 <pql< td=""><td><pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>0.0069 0</td><td>.0051</td><td>Por</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	249	540	510	110 4	7 230	0	2 0.3	7 <pql< td=""><td><pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>0.0069 0</td><td>.0051</td><td>Por</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>0.0069 0</td><td>.0051</td><td>Por</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><₽QL</td><td>PQL</td><td><pql< td=""><td>0.0069 0</td><td>.0051</td><td>Por</td></pql<></td></pql<>	<₽QL	PQL	<pql< td=""><td>0.0069 0</td><td>.0051</td><td>Por</td></pql<>	0.0069 0	.0051	Por
BS-JSRb-EW-026	7.01	23.0	246	117	1570	<₽QL	< POL	24	< PQL	<pql< td=""><td>26</td><td>370</td><td>608</td><td>79 3</td><td>8</td><td>9</td><td>5 0.5</td><td>s <pql< td=""><td><pql< td=""><td>0.0056</td><td>s <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql ≤PQL</pql </td><td>₽QL</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	26	370	608	79 3	8	9	5 0.5	s <pql< td=""><td><pql< td=""><td>0.0056</td><td>s <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql ≤PQL</pql </td><td>₽QL</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.0056</td><td>s <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql ≤PQL</pql </td><td>₽QL</td></pql<></td></pql<></td></pql<></td></pql<>	0.0056	s <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql ≤PQL</pql </td><td>₽QL</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.016</td><td><pql ≤PQL</pql </td><td>₽QL</td></pql<></td></pql<>	<pql< td=""><td>0.016</td><td><pql ≤PQL</pql </td><td>₽QL</td></pql<>	0.016	<pql ≤PQL</pql 	₽QL
BS-JSRb-EW-035	6.87	24.1	199	155	1270	<₽QL	POL	27	- Pal	<pol< td=""><td>37</td><td>300</td><td>757</td><td>110 4:</td><td>2 26</td><td>0</td><td>3 0.4</td><td>I <pql< td=""><td><₽QL</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.010</td><td>≮PQL</td><td>PQL</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pol<>	37	300	757	110 4:	2 26	0	3 0.4	I <pql< td=""><td><₽QL</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.010</td><td>≮PQL</td><td>PQL</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<₽QL	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.010</td><td>≮PQL</td><td>PQL</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.010</td><td>≮PQL</td><td>PQL</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.010</td><td>≮PQL</td><td>PQL</td></pql<></td></pql<>	<pql< td=""><td>0.010</td><td>≮PQL</td><td>PQL</td></pql<>	0.010	≮PQL	PQL
BS-JSRb-EW-048	7.28	25.3	267	135	1710	ÅQĽ	_PQL	3.8	₽QL	6.6	ଟ୍ଟିତ୍	490	569	93 4.	2 24	2 0	7 0.3	3 <pql< td=""><td><pql< td=""><td><pql< td=""><td><pat< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql< td=""><td><₽QL</td></pql<></td></pql<></td></pql<></td></pat<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pat< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql< td=""><td><₽QL</td></pql<></td></pql<></td></pql<></td></pat<></td></pql<></td></pql<>	<pql< td=""><td><pat< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql< td=""><td><₽QL</td></pql<></td></pql<></td></pql<></td></pat<></td></pql<>	<pat< td=""><td><pql< td=""><td><pql< td=""><td>0.016</td><td><pql< td=""><td><₽QL</td></pql<></td></pql<></td></pql<></td></pat<>	<pql< td=""><td><pql< td=""><td>0.016</td><td><pql< td=""><td><₽QL</td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.016</td><td><pql< td=""><td><₽QL</td></pql<></td></pql<>	0.016	<pql< td=""><td><₽QL</td></pql<>	<₽QL
								ú		AD anida	ļ			one of Brook	rinderh Ct	heter			of hoth Do		Chandrand					

Excess of WHO guideline Excess of Bangladesh Standard (The values were determined as exceeding the standards before rounding off)

5-130

Table 5.5.8 Results of Baseline Survey (Pond)

ahda	Ha	lemperature	Conductivity	Hardness	ŝĒ	Nitrate	Nitrite A	mmontum Dt	and the S	sulfate De		hloride Bica	irbonete Calt	cium Mag	sshum Sodi	um Pota	stum Fluor	ide Cadmir	m Total C	r Coppe	r Cyanide	e Lead	Mercury	Nickel	Zinc	8
	H meter	Thermo meter	Conductivity meter	Standard 5	Standard	ъ	С	ß	FAAS	- ds	FAAS	SP ∏	ration FA	AS FA	AS FA	PS FA	AS SF	b Edraci	tio Extracti S n/ FAAS	o Extracti S n/ FAA:	S S	Extractio n/ FAAS	Extractio n/ FAAS	Extractio Ex n/ FAAS n/	tractio T	tration
titation	•	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	5	0.2	0.6	20 0	.5 0.1	05 0.0	50.0	-	0.001	5 0.025	0.005	0.01	0.005	0.001	0.005 0	.005	20
		Deg C	mS/m	CaCO ₂ L	mg/L	mg/L	mg/L	m9/L	mg/L	mg/L	mg/L	mg/L Car	ui covr covr	ight m	3/L mg	л Л	¢ر mg	/F mg/	T/Gw	л _б ш	mg/L	m9/L	mg/L	mg/L	ղցո	Ър
Ŷ	A	Temp	ы	Hardness	ŝ	NO,	NO ²	NH	Mn	so,	Fe	н с	tco,	Ca M	Ň B			S	Ⴆ	5	S	ą	Hв	ź	ភ	800
P.01	7.54	23.7	23.8	39.4	152	₽G	PQL	0.45	₽QL	¢ΩL	PQL	7.5	140	32 7.	5 1	9	5 0.3	5 <pqi< th=""><th>₽ØГ -</th><th>PQL</th><th>0.029</th><th>₽QL</th><th><pql< th=""><th><pql <<="" th=""><th>Pal</th><th>Pol</th></pql></th></pql<></th></pqi<>	₽ØГ -	PQL	0.029	₽QL	<pql< th=""><th><pql <<="" th=""><th>Pal</th><th>Pol</th></pql></th></pql<>	<pql <<="" th=""><th>Pal</th><th>Pol</th></pql>	Pal	Pol
P-02	7.10	23.4	11.1	19.9	71.1	₽ġ	PQL	0.34	PQL	₽ġ	<₽aL	4.1 E	37.8 1	17 2	.9 2.	7 5.	1 0.3	3 <pqi< td=""><td>- ₽GL</td><td><pql< td=""><td>0.033</td><td>₽ġĽ</td><td><pql< td=""><td>≁ ≁PQL</td><td>Pot</td><td>ğ</td></pql<></td></pql<></td></pqi<>	- ₽GL	<pql< td=""><td>0.033</td><td>₽ġĽ</td><td><pql< td=""><td>≁ ≁PQL</td><td>Pot</td><td>ğ</td></pql<></td></pql<>	0.033	₽ġĽ	<pql< td=""><td>≁ ≁PQL</td><td>Pot</td><td>ğ</td></pql<>	≁ ≁PQL	Pot	ğ
P-01	7.36	23.6	35.0	28.5	224	42	5.8	4.8	<₽QL	7.4	<₽QL	7.5	184 2	25 1	4 2	4	3 2.0	io4> 0	- PQL	PQL	0.018	<pql< td=""><td><pql< td=""><td>< PQL <</td><td>Pol</td><td>PQL</td></pql<></td></pql<>	<pql< td=""><td>< PQL <</td><td>Pol</td><td>PQL</td></pql<>	< PQL <	Pol	PQL
P-02	7.39	23.9	15.8	34.2	101	2.8	0.020	:-	0.10	<₽QL	<₽QL	3.5 6	37.5 3	34 0.	20 4.	1 7.	1 1.4	10d> 1	. <pa∟< td=""><td>PQL</td><td>0.046</td><td>₽QL</td><td><pql< td=""><td>< PQL</td><td>Par</td><td>PQL</td></pql<></td></pa∟<>	PQL	0.046	₽QL	<pql< td=""><td>< PQL</td><td>Par</td><td>PQL</td></pql<>	< PQL	Par	PQL
50-4	7.05	23.7	25.0	34.5	8	18	1.2	2.6	0.16	7.3	PQL	5.0	123 3	32 2	0	5	0 3.6	₽Q1	- Pal	0.0070	0.052	Å	<pql< td=""><td>0.0056</td><td>Par</td><td>39</td></pql<>	0.0056	Par	39
54	7.41	23.8	38.9	16.6	249	0.82	0.030	0.82	₽gL	₽ġ	₽g	2.3	219 1	14	3		0.6	3 APQI	₽0Г -	₽ġ	0.029	ğ	<pql< td=""><td>0.0054 <</td><td>Par</td><td>87</td></pql<>	0.0054 <	Par	87
50-4-	7.47	24.2	30.3	23.4	194	1.8	0.10	0.18	0.096	₽G	₽ġ	3.9	175 2	50 20	8	2 7.	1 0.2	6 <pqi< td=""><td>Å</td><td>PQL</td><td>0.019</td><td>POL</td><td><pql< td=""><td>* ⊳D</td><td>βġ</td><td>78</td></pql<></td></pqi<>	Å	PQL	0.019	POL	<pql< td=""><td>* ⊳D</td><td>βġ</td><td>78</td></pql<>	* ⊳D	βġ	78
P-01	7.72	24.1	30.0	24.9	192	12	₽OL	0.20	₽QL	6.9	₽g	÷	131 2	20	8.	9	0.3	4 <pqi< td=""><td>Å.</td><td>104 ►</td><td>d Pod V</td><td>Pol</td><td><pql< td=""><td>o ≺PQL</td><td>1400</td><td>р Б</td></pql<></td></pqi<>	Å.	104 ►	d Pod V	Pol	<pql< td=""><td>o ≺PQL</td><td>1400</td><td>р Б</td></pql<>	o ≺PQL	1400	р Б
-P-02	7.32	22.4	32.8	39.6	210	₽G	PQL	0.41	PQL	PQL	₽QL	8.4	156 3	9 30	.7 21	4	5 0.4	9 PQI	₽ ₽	PQL	0.029	0.011	<pql< td=""><td>0.0090</td><td>5600</td><td>R</td></pql<>	0.0090	5600	R
-P-03	7.88	24.3	37.2	34.8	238	₽G	POL	0.21	₽gL	7.1	₽QL	28	144	27 .7	8	· ·	2 0.3	4 <poi< td=""><td>- Pol</td><td>PQL.</td><td>0.013</td><td>PQL</td><td><pql< td=""><td><pre>Pol</pre></td><td>0.011</td><td>POL</td></pql<></td></poi<>	- Pol	PQL.	0.013	PQL	<pql< td=""><td><pre>Pol</pre></td><td>0.011</td><td>POL</td></pql<>	<pre>Pol</pre>	0.011	POL
P-04	7.95	23.9	35.7	45.0	228	0.80	0.070	0.68	PQL	PoL	₽QL	24 -	144	31 1	4	6	7 0.3	1 <pqi< td=""><td>- ≮PaL</td><td>Nod∽</td><td>Pol</td><td>₽ġ</td><td><₽QL</td><td> PQL </td><td>Pot</td><td>PaL</td></pqi<>	- ≮PaL	Nod∽	Pol	₽ġ	<₽QL	 PQL 	Pot	PaL
-P-05	7.30	23.7	48.4	41.0	310	≮PQL	<₽QL	0:30	<pql< td=""><td>7.4</td><td>₽QĽ</td><td>52</td><td>136 · 3</td><td>30 1</td><td>4</td><td>3 4</td><td>0 0.4</td><td>4 <pqi< td=""><td>- PQL</td><td>< PQL</td><td>0.013</td><td><₽QL</td><td><pql< td=""><td>0.0059 <</td><td>Por</td><td>PaL</td></pql<></td></pqi<></td></pql<>	7.4	₽QĽ	52	136 · 3	30 1	4	3 4	0 0.4	4 <pqi< td=""><td>- PQL</td><td>< PQL</td><td>0.013</td><td><₽QL</td><td><pql< td=""><td>0.0059 <</td><td>Por</td><td>PaL</td></pql<></td></pqi<>	- PQL	< PQL	0.013	<₽QL	<pql< td=""><td>0.0059 <</td><td>Por</td><td>PaL</td></pql<>	0.0059 <	Por	PaL
	7.80	23.5	96.6	75.0	618	0.31	<₽QL	0.51	<pql< td=""><td>7.9</td><td>₽QL</td><td>5.6</td><td>256 5</td><td>55 7.</td><td>3 4</td><td>1 6</td><td>4 1.9</td><td>- PQI</td><td>- <pql< td=""><td><pql< td=""><td>0.014</td><td><pql< td=""><td><₽QL</td><td>< PQL</td><td>POL</td><td>PQL</td></pql<></td></pql<></td></pql<></td></pql<>	7.9	₽QL	5.6	256 5	55 7.	3 4	1 6	4 1.9	- PQI	- <pql< td=""><td><pql< td=""><td>0.014</td><td><pql< td=""><td><₽QL</td><td>< PQL</td><td>POL</td><td>PQL</td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.014</td><td><pql< td=""><td><₽QL</td><td>< PQL</td><td>POL</td><td>PQL</td></pql<></td></pql<>	0.014	<pql< td=""><td><₽QL</td><td>< PQL</td><td>POL</td><td>PQL</td></pql<>	<₽QL	< PQL	POL	PQL
-P-07	7.80	23.1	35.8	43.8	229	1.4	<₽QL	0.78	<pql< td=""><td><pql< td=""><td>4PQL</td><td>24</td><td>152 3</td><td>31 7.</td><td>1</td><td>3</td><td>0 0.2</td><td>7 <pqi< td=""><td>- POL</td><td>≺PQL</td><td>- POL</td><td>PQL</td><td><pql< td=""><td><pql <<="" td=""><td>POL</td><td>PQL</td></pql></td></pql<></td></pqi<></td></pql<></td></pql<>	<pql< td=""><td>4PQL</td><td>24</td><td>152 3</td><td>31 7.</td><td>1</td><td>3</td><td>0 0.2</td><td>7 <pqi< td=""><td>- POL</td><td>≺PQL</td><td>- POL</td><td>PQL</td><td><pql< td=""><td><pql <<="" td=""><td>POL</td><td>PQL</td></pql></td></pql<></td></pqi<></td></pql<>	4PQL	24	152 3	31 7.	1	3	0 0.2	7 <pqi< td=""><td>- POL</td><td>≺PQL</td><td>- POL</td><td>PQL</td><td><pql< td=""><td><pql <<="" td=""><td>POL</td><td>PQL</td></pql></td></pql<></td></pqi<>	- POL	≺PQL	- POL	PQL	<pql< td=""><td><pql <<="" td=""><td>POL</td><td>PQL</td></pql></td></pql<>	<pql <<="" td=""><td>POL</td><td>PQL</td></pql>	POL	PQL
P-08	7.40	23.0	57.2	36.7	366	<pql< td=""><td><₽QL</td><td>1.1</td><td><₽QL</td><td>6.1</td><td><pql< td=""><td>59</td><td>184 2</td><td>26 1</td><td>4</td><td>4</td><td>8 2.1</td><td>-PQI</td><td>- <pql< td=""><td>PQL</td><td>0.013</td><td>₽QL</td><td><₽QL</td><td>0.0079</td><td>POL</td><td>POL</td></pql<></td></pql<></td></pql<>	<₽QL	1.1	<₽QL	6.1	<pql< td=""><td>59</td><td>184 2</td><td>26 1</td><td>4</td><td>4</td><td>8 2.1</td><td>-PQI</td><td>- <pql< td=""><td>PQL</td><td>0.013</td><td>₽QL</td><td><₽QL</td><td>0.0079</td><td>POL</td><td>POL</td></pql<></td></pql<>	59	184 2	26 1	4	4	8 2.1	-PQI	- <pql< td=""><td>PQL</td><td>0.013</td><td>₽QL</td><td><₽QL</td><td>0.0079</td><td>POL</td><td>POL</td></pql<>	PQL	0.013	₽QL	<₽QL	0.0079	POL	POL
60-d-	7.50	22.7	48.8	48.3	312	₽QĽ	<₽QL	0.34	<₽QL	6.8	Pot	28	192 3	37 1	2	3 7.	6 0.3	1 <pqi< td=""><td>- <pql< td=""><td>-PQL</td><td><pql< td=""><td>PQL</td><td><pql< td=""><td>0.0062</td><td>₽0</td><td>Par</td></pql<></td></pql<></td></pql<></td></pqi<>	- <pql< td=""><td>-PQL</td><td><pql< td=""><td>PQL</td><td><pql< td=""><td>0.0062</td><td>₽0</td><td>Par</td></pql<></td></pql<></td></pql<>	-PQL	<pql< td=""><td>PQL</td><td><pql< td=""><td>0.0062</td><td>₽0</td><td>Par</td></pql<></td></pql<>	PQL	<pql< td=""><td>0.0062</td><td>₽0</td><td>Par</td></pql<>	0.0062	₽0	Par
P-10	7.70	23.1	64.8	63.6	415	0.23	<₽QL	0.33	PQL	₽QL	₽QF	: 16	208	47 1	7 4	3 7.	4 0.3	3 <pqi< td=""><td>- PQL</td><td><pql< td=""><td><pol -<="" td=""><td><pql< td=""><td><pql< td=""><td>< PQL <</td><td>Pol</td><td>₽QL</td></pql<></td></pql<></td></pol></td></pql<></td></pqi<>	- PQL	<pql< td=""><td><pol -<="" td=""><td><pql< td=""><td><pql< td=""><td>< PQL <</td><td>Pol</td><td>₽QL</td></pql<></td></pql<></td></pol></td></pql<>	<pol -<="" td=""><td><pql< td=""><td><pql< td=""><td>< PQL <</td><td>Pol</td><td>₽QL</td></pql<></td></pql<></td></pol>	<pql< td=""><td><pql< td=""><td>< PQL <</td><td>Pol</td><td>₽QL</td></pql<></td></pql<>	<pql< td=""><td>< PQL <</td><td>Pol</td><td>₽QL</td></pql<>	< PQL <	Pol	₽QL
P-11	7.56	23.7	29.0	36.1	186	₽ġ	PQL	0.44	0.086	₽QL	₽gL	2.9	140 3	30 5	9	2	9 0.3	0 APQI	- PQL	-PQL	0.018	PQL	<pql< td=""><td><pql <<="" td=""><td>Pal</td><td>POL</td></pql></td></pql<>	<pql <<="" td=""><td>Pal</td><td>POL</td></pql>	Pal	POL
P-12	7.57	23.7	45.7	27.8	292	<pql< td=""><td><pql< td=""><td>0.36</td><td><pql< td=""><td>5.8</td><td>Å</td><td>25</td><td>175 2</td><td>24 4</td><td>3</td><td>9 6</td><td>2 0.4</td><td>7 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.036</td><td><pql< td=""><td><pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<></td></pql<></td></pql<></td></pqi<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.36</td><td><pql< td=""><td>5.8</td><td>Å</td><td>25</td><td>175 2</td><td>24 4</td><td>3</td><td>9 6</td><td>2 0.4</td><td>7 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.036</td><td><pql< td=""><td><pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<></td></pql<></td></pql<></td></pqi<></td></pql<></td></pql<>	0.36	<pql< td=""><td>5.8</td><td>Å</td><td>25</td><td>175 2</td><td>24 4</td><td>3</td><td>9 6</td><td>2 0.4</td><td>7 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.036</td><td><pql< td=""><td><pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<></td></pql<></td></pql<></td></pqi<></td></pql<>	5.8	Å	25	175 2	24 4	3	9 6	2 0.4	7 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.036</td><td><pql< td=""><td><pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<></td></pql<></td></pql<></td></pqi<>	- <pql< td=""><td><₽QL</td><td>0.036</td><td><pql< td=""><td><pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<></td></pql<></td></pql<>	<₽QL	0.036	<pql< td=""><td><pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<></td></pql<>	<pql< td=""><td><pql <<="" td=""><td>Par</td><td>78</td></pql></td></pql<>	<pql <<="" td=""><td>Par</td><td>78</td></pql>	Par	78
-P-13	7.43	23.4	29.7	44.0	190	3.8	0.43	0.25	₹PαL	6.8	Por	4.3	158	34 9	.9 <u>6</u> .	9 6	3 0.3	9 <pqi< td=""><td>- POL</td><td><₽QL</td><td>< POL</td><td><pql< td=""><td><pql< td=""><td>< PQL</td><td>POL</td><td>Par</td></pql<></td></pql<></td></pqi<>	- POL	<₽QL	< POL	<pql< td=""><td><pql< td=""><td>< PQL</td><td>POL</td><td>Par</td></pql<></td></pql<>	<pql< td=""><td>< PQL</td><td>POL</td><td>Par</td></pql<>	< PQL	POL	Par
-P-14	6.97	24.3	40.8	41.5	261	16	6.6	0.19	₽QL	<pql< td=""><td>Å</td><td>9g</td><td>140</td><td>32 9</td><td>.8</td><td>ي. ح</td><td>0.4</td><td>9 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.017</td><td><pql< td=""><td><pql< td=""><td>0.0056 <</td><td>٩</td><td>39</td></pql<></td></pql<></td></pql<></td></pqi<></td></pql<>	Å	9g	140	32 9	.8	ي. ح	0.4	9 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.017</td><td><pql< td=""><td><pql< td=""><td>0.0056 <</td><td>٩</td><td>39</td></pql<></td></pql<></td></pql<></td></pqi<>	- <pql< td=""><td><₽QL</td><td>0.017</td><td><pql< td=""><td><pql< td=""><td>0.0056 <</td><td>٩</td><td>39</td></pql<></td></pql<></td></pql<>	<₽QL	0.017	<pql< td=""><td><pql< td=""><td>0.0056 <</td><td>٩</td><td>39</td></pql<></td></pql<>	<pql< td=""><td>0.0056 <</td><td>٩</td><td>39</td></pql<>	0.0056 <	٩	39
-P-15	7.61	24.2	48.5	25.8	310	2.4	0.10	0.45	₽QL	<pql< td=""><td>PoL</td><td>39</td><td>171</td><td>19 6</td><td>4 4</td><td>1 2.</td><td>4 0.4</td><td>8 <pqi< td=""><td>- Pol</td><td>< Pal</td><td>< POL</td><td><pql< td=""><td><pql< td=""><td>0.0081 +</td><td>¢PQL</td><td>39</td></pql<></td></pql<></td></pqi<></td></pql<>	PoL	39	171	19 6	4 4	1 2.	4 0.4	8 <pqi< td=""><td>- Pol</td><td>< Pal</td><td>< POL</td><td><pql< td=""><td><pql< td=""><td>0.0081 +</td><td>¢PQL</td><td>39</td></pql<></td></pql<></td></pqi<>	- Pol	< Pal	< POL	<pql< td=""><td><pql< td=""><td>0.0081 +</td><td>¢PQL</td><td>39</td></pql<></td></pql<>	<pql< td=""><td>0.0081 +</td><td>¢PQL</td><td>39</td></pql<>	0.0081 +	¢PQL	39
-P-16	7.57	22.5	25.4	37.5	163	13	0.95	0.59	<₽QL	₹PQL	₽QL	4.8	140	30 7	1	3.	5 1.	-PQI	- PQL	<pal< td=""><td>0.015</td><td>^PQL</td><td>≺PQL</td><td>< PQL</td><td>POL</td><td>¢PQL</td></pal<>	0.015	^PQL	≺PQL	< PQL	POL	¢PQL
-P-17	7.02	22.4	44.5	35.8	285	2.0	0.27	0.23	PQL	5.8	<₽QL	26	158 2	26 9	4 3	4 2	4 2.	t <pqi< td=""><td>, <pat< td=""><td><₽QL</td><td>. 0.031</td><td><pql< td=""><td>SPQL</td><td>< POL <</td><td>PQL</td><td>78</td></pql<></td></pat<></td></pqi<>	, <pat< td=""><td><₽QL</td><td>. 0.031</td><td><pql< td=""><td>SPQL</td><td>< POL <</td><td>PQL</td><td>78</td></pql<></td></pat<>	<₽QL	. 0.031	<pql< td=""><td>SPQL</td><td>< POL <</td><td>PQL</td><td>78</td></pql<>	SPQL	< POL <	PQL	78
-P-18	7.40 .	22.6	55.2	57.0	353	4.6	0.64	0.25	<₽QL	8.0	<pql< td=""><td>38</td><td>223 4</td><td>40</td><td>17 3.</td><td>4</td><td>0 0.5</td><td>0 <pqi< td=""><td>- POL</td><td><₽QL</td><td>, <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.0061</td><td>4 POL</td><td>39[;]</td></pql<></td></pql<></td></pql<></td></pqi<></td></pql<>	38	223 4	40	17 3.	4	0 0.5	0 <pqi< td=""><td>- POL</td><td><₽QL</td><td>, <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.0061</td><td>4 POL</td><td>39[;]</td></pql<></td></pql<></td></pql<></td></pqi<>	- POL	<₽QL	, <pql< td=""><td><pql< td=""><td><pql< td=""><td>0.0061</td><td>4 POL</td><td>39[;]</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.0061</td><td>4 POL</td><td>39[;]</td></pql<></td></pql<>	<pql< td=""><td>0.0061</td><td>4 POL</td><td>39[;]</td></pql<>	0.0061	4 POL	39 [;]
-P-19	7.17	21.9	23.2	38.6	148	7.1	0.72	0.38	<₽QL	7.7	<pql< td=""><td>2.8</td><td>122</td><td>36 2</td><td>.5 5.</td><td>7 7.</td><td>0 0.5</td><td>9 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.034</td><td>< POL</td><td><pql< td=""><td>0.0051</td><td><pql< td=""><td>78</td></pql<></td></pql<></td></pql<></td></pqi<></td></pql<>	2.8	122	36 2	.5 5.	7 7.	0 0.5	9 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>0.034</td><td>< POL</td><td><pql< td=""><td>0.0051</td><td><pql< td=""><td>78</td></pql<></td></pql<></td></pql<></td></pqi<>	- <pql< td=""><td><₽QL</td><td>0.034</td><td>< POL</td><td><pql< td=""><td>0.0051</td><td><pql< td=""><td>78</td></pql<></td></pql<></td></pql<>	<₽QL	0.034	< POL	<pql< td=""><td>0.0051</td><td><pql< td=""><td>78</td></pql<></td></pql<>	0.0051	<pql< td=""><td>78</td></pql<>	78
-P-20	7.42	22.7	43.9	20.3	281	1.5	0.11	<pql< td=""><td><pql< td=""><td>₹₽QL</td><td><pql< td=""><td>25</td><td>210 1</td><td>14 1</td><td>3</td><td>4</td><td>3 0.3</td><td>6 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>< Pat</td><td><pql< td=""><td>< PQL</td><td>0:0080</td><td>POL</td><td>4PQL</td></pql<></td></pql<></td></pqi<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>₹₽QL</td><td><pql< td=""><td>25</td><td>210 1</td><td>14 1</td><td>3</td><td>4</td><td>3 0.3</td><td>6 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>< Pat</td><td><pql< td=""><td>< PQL</td><td>0:0080</td><td>POL</td><td>4PQL</td></pql<></td></pql<></td></pqi<></td></pql<></td></pql<>	₹₽QL	<pql< td=""><td>25</td><td>210 1</td><td>14 1</td><td>3</td><td>4</td><td>3 0.3</td><td>6 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>< Pat</td><td><pql< td=""><td>< PQL</td><td>0:0080</td><td>POL</td><td>4PQL</td></pql<></td></pql<></td></pqi<></td></pql<>	25	210 1	14 1	3	4	3 0.3	6 <pqi< td=""><td>- <pql< td=""><td><₽QL</td><td>< Pat</td><td><pql< td=""><td>< PQL</td><td>0:0080</td><td>POL</td><td>4PQL</td></pql<></td></pql<></td></pqi<>	- <pql< td=""><td><₽QL</td><td>< Pat</td><td><pql< td=""><td>< PQL</td><td>0:0080</td><td>POL</td><td>4PQL</td></pql<></td></pql<>	<₽QL	< Pat	<pql< td=""><td>< PQL</td><td>0:0080</td><td>POL</td><td>4PQL</td></pql<>	< PQL	0:0080	POL	4PQL
								ι W	xcess of M	VHO guida	*line		Exce	ess of Ban	gladesh St	andard		Excess	s of both Ba	angladesh	n Standard	1 and WHO) guideline			
					•		0	The val	ues wer	e deten	mined a	s exceel	ding the	standar	ds befoi	e round	ding off	7_		,			,			

 Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and

 WHO guideline (1/12)

Ch-1										
Practical Quan	ntitation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gu	ideline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Paran	neter	NO ₂	NH ₄	Mn	Fe	Ca	Mg	Na	Pb,	Ni
Minimum	(mg/l)	<0.02	<0.1	<0.08	0.77	67	3.0	10	<0.005	<0.005
Maximum	ı (mg/l)	0.16	1.1	0.87	16	130	29	23	<0.005	0.0057
Arithmetic Avarage ass PQL valu	uming <pql data="" has<br="">e (mg/l)</pql>	0.034	0.39	0.36	4.5	114	23	16	<0.005	0.0051
Logarithminc Avarage has PQL va	assuming <pql data<br="">lue (mg/l)</pql>	0.025	0.30	0.26	2.7	111	20	15	<0.005	0.0051
	Pumping Test	0/2	2/2	1/2	1/2	2/2	0/2	0/2	0/2	0/2
No. of samples above BG Standard / No. of Total samples	Monitoring	0/8	0/8	6/8	8/8	7/8	0/8	0/8	0/8	0/8
	Total	0/10	2/10	7/10	× 9/10	9/10	0/10	0/10	0/10	0/10
No jof samples	Pumping Test	0/2	0/2	0/2	2/2	-	-	0/2	0/2	0/2
above WHO Guideline, No of	Monitoring	0/8	0/8	2/8	8/8	-	-	0/8	0/8	0/8
Total samples	A Total .	0/10	0/10	2/10	10/10	-	-	0/10	0/10	0/10

Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (2/12)

Ch-1-4

Practical Quan	titation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gu	ideline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Param	eter	NO2	NH₄ .	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum	(mg/l)	<0.02	0.24	0.090	2.1	74	26	22	<0.005	0.005
Maximum	(mg/l)	<0.02	0.47	0.40	6.9	120	28	58	<0.005	0.0095
Arithmetic Avarage ass PQL value	uming <pql data="" has<br="">e (mg/l)</pql>	<0.02	0.39	0.26	3.8	105	27	41	<0.005	0.0068
Logarithminc Avarage has PQL va	assuming <pql data<br="">lue (mg/l)</pql>	<0.02	0.37	0.22	3.2	102	27	38	<0.005	0.0066
	Pumping Test	0/3	0/3	2/3	3/3	2/3	0/3	0/3	0/3	0/3
BG Standard / No. of Total samples	Monitoring	-	-	-	-	-	-	-	-	-
	Total	0/3	0/3	2/3	3/3	2/3	0/3	0/3	0/3	0/3
No. of samples	Pumping Test	0/3	0/3	0/3	3/3	-	-	0/3	. 0/3	0/3
above WHO Guideline / No, of	Monitoring	-	-	-	-	-	-	-	-	-
Total samples	Total	0/3	0/3	0/3	3/3	-	-	0/3	0/3	0/3

 Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and

 WHO guideline (3/12)

Ch-2							_			
Practical Quan	titation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gu	ideline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Param	eter	NO ₂	NH₄	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum	(mg/l)	<0.02	<0.1	<0.08	<0.2	14	21	11	<0.005	<0.005
Maximum	(mg/l)	0.28	1.2	0.34	9.7	96	33	24	<0.005	0.0088
Arithmetic Avarage ass PQL value	uming <pql data="" has<br="">e (mg/l)</pql>	0.053	0.27	0.12	3.8	64	26	14	<0.005	0.0055
Logarithminc Avarage has PQL va	assuming <pql data<br="">lue (mg/l)</pql>	0.028	0.18	0.10	1.9	56	26	14	<0.005	0.0054
	Pumping Test	0/1	0/1	1/1	1/1	1/1	0/1	0/1	0/1	0/1
No. of samples above BG Standard / No. of Total samples	Monitoring	0/7	1/7	1/7	4/7	2/7	0/7	0/7	0/7	0/7
	Total	0/8	1/8	2/8	5/8	3/8	0/8	0/8	0/8	0/8
No. of samples	Pumping Test	0/1	0/1	0/1	1/1	-	-	0/1	0/1	0/1
above WHO Guideline / No. of	Monitoring	0/7	0/7	0/7	6/7	-	-	0/7	0/7	-0/7
Total samples	Total	0/8	0/8	0/8	7/8	-	-	0/8	0/8	0/8

Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (4/12)

\sim	- ^ A
-UI	-2-4

Practical Quan	titation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gu	ideline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Param	ieter	NO ₂	NH₄	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum	(mg/l)	<0.02	<0.1	0.081	2.2	82	22	19	<0.005	0.0059
Maximum	(mg/l)	0.25	<0.1	0.19	5.1	90	22	37	0.0054	0.0064
Arithmetic Avarage ass PQL value	uming <pql data="" has<br="">e (mg/l)</pql>	0.13	0.10	0.14	3.6	87	22	27	0.0051	0.0062
Logarithminc Avarage has PQL va	assuming <pql<sup>*data lue (mg/l)</pql<sup>	0.084	0.10	0.13	3.4	87	22	26	0.0051	0.0062
	Pumping Test	0/3	0/3	2/3	3/3	3/3	0/3	0/3	0/3	0/3
No. of samples above, BG Standard / No. of Total samples	Monitoring	-	-	-	-	-	-	-		-
i otai sampies	Total	0/3	0/3	2/3	3/3	3/3	. 0/3	0/3	0/3	0/3
No. of samples	₄Pumping Test	0/3	0/3	0/3	3/3	-	-	0/3	0/3	0/3
above WHO Guideline / No. of 5	Monitoring	-	-	-	-	-	-	-	-	-
Total samples	Total -	0/3	0/3	0/3	3/3	-		0/3	0/3	0/3

 Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and

 WHO guideline (5/12)

JII-1	-41	0.00		0.00	0.0	0.5	0.05	0.05	0.005	0.005
Practical Quantit		0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guid	eline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh S	tandard	1	0.5	0.1	1	75	35	200	0.05	0.1
Paramet	ter	NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb -	Ni
Minimum (n	ng/l)	<0.02	<0.1	<0.08	2.6	43	24	14	<0.005	<0.005
Maximum (r	ng/l)	<0.02	0.17	0.35	18	110	42	36	0.011	0.0063
Arithmetic Avarage ass has PQL value	uming <pql data<br="">e (mg/I)</pql>	<0.02	0.11	0.17	9.8	82	35	23	0.0059	0.0051
Logarithminc Avarage as has PQL value	suming <pql data<br="">: (mg/l)</pql>	<0.02	0.11	0.15	8.0	78	34	21	0.0056	0.0051
No. of equality above PC	Pumping Test	0/2	0/2	1/2	2/2	2/2	2/2	0/2	0/2	0/2
Standard / No. of Total	Monitoring	0/7	0/7	4/7	7/7	5/7	4/7	0/7	0/7	0/7
samples	Total	0/9	0/9	5/9	9/9	7/9	6/9	0/9	0/9	0/9
No. of samples above	Pumping Test	0/2	0/2	0/2	2/2	-	-	0/2	1/2	0/2
WHO Guideline / No. of	Monitoring	0/7	0/7	0/7	7/7	-	-	0/7	0/7	0/7
i otal samples	Total	0/9	0/9	0/9	9/9	-	-	0/9	1/9	0/9

Table 5.5.9	Summarized results of C	bservation Wells and	holes in Pourshava	exceeding Banglad	esh standard and
WHO guide	line (6/12)				

Jh-1-4										•
Practical Quantit	tation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guid	eline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh S	standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Paramet	ter	NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
(វៀបយោមក (វ	πe/ /) -	<0.02	<0.1	<0.08	2.3	99	38	11	<0.005	0.0057
Meximum (<0.02	0.13	0.089	3.6	100	38	13	0.013	0.0092
Arithmetic Avarage ass has PQL value	uming <pql data<br="">e (mg/l)</pql>	<0.02	0.11	0.083	2.8	99	38	13	0.0077	0.0072
Logarithminc Avarage as has PQL value	suming <pql data<br="">e (mg/l)</pql>	<0.02	0.11	0.083	2.7	99	38	13	0.0069	0.0071
	Pumping Test	0/3	0/3	0/3	3/3	3/3	3/3	0/3	0/3	0/3
Standard / No. of Total	Monitoring	-	-	-	-	-	· -	-	-	· -
	Total	0/3	0/3	0/3	3/3	3/3	3/3	0/3	0/3	0/3
No sof samples above	Pumping Test	0/3	0/3	0/3	3/3	-	-	0/3	1/3	0/3
WHO Guideline / No. of	Monitoring	-	-	-	-	-	-	-	-	-
	Total	0/3	0/3	0/3	3/3		-	0/3	1/3	0/3

.

 Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (7/12)

 Jh-2

Practical Quantit	ation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guid	eline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh S	tandard	1 ·	0.5	0.1	1	75	35	200	0.05	0.1
Paramet	er	NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (n	ng/l)	<0.02	<0.1	<0.08	<0.2	26	23	14	<0.005	<0.005
Maximum (n	ng/l)	0.100	0.18	0.12	9.2	98	39	21	0.0068	<0.005
Arithmetic Avarage assu has PQL value	uming <pql data<br="">: (mg/l)</pql>	0.030	0.12	0.089	3.0	56	33	16	0.0052	<0.005
Logarithminc Avarage ase has PQL value	suming <pql data<br="">(mg/l)</pql>	0.024	0.12	0.088	1.5	48	33	16	0.0052	<0.005
No. of complete shave BC	Pumping Test	0/2	0/2	0/2	2/2	2/2	2/2	0/2	0/2	0/2
Standard / No. of Total	Monitoring	0/6	0/6	1/6	3/6	1/6	3/6	0/6	, 0/6	0/6
samples	Total	0/8	0/8	1/8	5/8	3/8	5/8	0/8	0/8	0/8
No. of samples above	Pumping Test	0/2	0/2	0/2	2/2	-	-	0/2	0/2	0/2
WHO Guideline / No. of	Monitoring	0/6	0/6	0/6	5/6	-	-	0/6	0/6	0/6
i otal samples	Total	0/8	0/8	0/8	7/8	-	-	0/8	0/8	0/8

Table 5.5.9 Summarized results of Observa	tion Wells and holes in Pourshava exceeding Bangladesh standard and
WHO guideline (8/12)	
Jh-2-4	

···· — ·										
Practical Quantitation Limit		0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guideline		3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh S	tandard	1	0.5	0.1	1	75	35	200	0.05	0.1
Parameter		NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (mg∕l)		<0.02	<0.1	<0.08	0.47	25	29	22	<0.005	<0.005
Maximum (mg/l)		0.26	0.11	0.72	3.0	90	31	48	0.012	<0.005
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		0.18	0.10	0.39	1.9	66	30	35	0.0072	<0.005
Logarithminc Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		0.11	0.10	0.28	1.5	57	30	34	0.0066	<0.005
Na of country should BC	Pumping Test	0/3	0/3	2/3	2/3	2/3	0/3	0/3	0/3	0/3
Standard / No. of Total	Monitoring	-	-	-	-	-	-	-	-	-
	Total	0/3	0/3	2/3	2/3	2/3	0/3	0/3	0/3	0/3
No. of samples above WHO Guideline / No. of Total samples	Pumping Test	0/3	0/3	1/3	3/3	-	-	0/3	1/3	0/3
	Monitoring	-	-	-	-	、 -	-	-	-	-
	Total	0/3	0/3	1/3	3/3	-	-	0/3	1/3	0/3

. .

 Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (9/12)

Js-1										
Practical Quant	itation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gui	deline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Parameter		NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (mg/l)		<0.02	<0.1	0.13	0.66	65	21	51	<0.005	<0.005
Maximum (mg/l)		<0.02	0.28	1.2	13	84	33	66	<0.005	0.0071
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		<0.02	0.16	0.66	7.5	77	28	56	<0.005	0.0053
Logarithminc Avarage assuming <pql data has PQL value (mg/l)</pql 		<0.02	0.15	0.53	5.8	77	27	56	<0.005	0.0053
n en service de la service Service de la service de la Nota de la service	Pumping Test	0/2	0/2	2/2	1/2	2/2	0/2	0/2	0/2	0/2
BG Standard / No. of Total samples	Monitoring	0/5	0/5	5/5	5/5	3/5	0/5	0/5	0/5	0/5
	Total	0/7	0/7	7/7	6/7	5/7 [`]	0/7	0/7	0/7	0/7
No. of samples above WHO Guideline / No. of Total samples	Pumping Test	0/2	0/2	0/2	2/2	-	-	0/2	0/2	0/2
	Monitoring	0/5	0/5	5/5	5/5	-	-	0/5	0/5	0/5
	Total	0/7	0/7	5/7	7/7	-	-	0/7	0/7	0/7

Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (10/12) Js-1-4

Practical Quantitation Limit		0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guideline		3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh Standard		1	0.5	0.1	1	75	35	200	0.05	0.1
Param	Parameter NO2		NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (mg/l)		<0.02	0.11	<0.08	<0.2	9.76	16.14	64.79	<0.005	<0.005
Maximum (mg/l)		<0.02	0.14	1.3	4.7	80	21	83	<0.005	<0.005
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		<0.02	0.13	0.68	2.7	56	19	71	<0.005	<0.005
Logarithminc Avarage assuming <pql data has PQL value (mg/l)</pql 		<0.02	0.13	0.41	1.4	40	19	71	<0.005	<0.005
	Pumping Test	0/3	0/3	2/3	2/3	2/3	0/3	0/3	0/3	0/3
BG Standard % No. of Total samples	Monitoring	-	_	-	-	-	-	-	-	-
	Total	0/3	0/3	2/3	2/3	2/3	0/3	0/3	0/3	0/3
No. of samples above WHO Guideline / No of Total samples	Pumping Test	0/3	0/3	2/3 .	2/3	-	-	0/3	0/3	0/3
	Monitoring	-	-	-	-	÷_	-	-	-	-
	Total	0/3	0/3	2/3	2/3	-	-	0/3	0/3	0/3

 Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (11/12)

 Js-2

Practical Quant	itation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gui	deline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Parameter		NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (mg/l)		<0.02	<0.1	0.13	0.86	67	23	67	<0.005	<0.005
Maximum (mg/l)		0.31	0.38	2.3	15	82	36	80	<0.005	<0.005
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		0.068	0.22	0.79	8.4	75	29	77	<0.005	<0.005
Logarithminc Avarage assuming <pql data has PQL value (mg/l)</pql 		0.032	0.18	0.55	5.8	75	29	77	<0.005	<0.005
an a	Pumping Test	0/2	0/2	2/2	1/2	0/2	0/2	0/2	0/2	0/2
No. of samples above BG Standard / No. of Total samples	Monitoring	0/4	0/4	4/4	4/4	3/4	1/4	0/4	0/4	0/4
	Total	0/6	0/6	6/6	5/6	3/6	1/6	0/6	0/6	0/6
No. of samples above WHO Guideline / No. of Total samples	Pumping Test	0/2	0/2	0/2	2/2	-	-	0/2	0/2	0/2
	Monitoring	0/4	0/4	4/4	4/4	-	-	0/4	0/4	0/4
	Total	0/6	0/6	4/6	6/6	-	-	0/6	0/6	0/6

Table 5.5.9 Summarized results of Observation Wells and holes in Pourshava exceeding Bangladesh standard and WHO guideline (12/12)

J9-Z-4										
Practical Quant	itation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guideline		3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh Standard		1	0.5	0.1	1	75	35	200	0.05	0.1
Parameter		NO2	NH4	Mn	Fe	Ca	Mg	Na	. Pb	Ni
Minimum (mg/l)		<0.02	<0.1	0.19	2.0	43	22	77	<0.005	<0.005
Maximum (mg/l)		0.040	<0.1	0.29	3.4	70	23	160	<0.005	0.012
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		0.027	<0.1	0.22	2.7	59	23	106	<0.005	0.0072
Logarithminc Avarage assuming <pql data has PQL value (mg/l)</pql 		0.025	<0.1	0.22	2.7	58	23	100	<0.005	0.0066
$(a_{1}, a_{2}, a_{3}, a_{3},$	Pumping Test	0/3	0/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3
BG Standard / No. of Total samples	Monitoring	1	-	-	-	-	-	-	-	-
	Total	0/3	0/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3
No. of samples above WHO Guideline / No. of Total samples	Pumping Test	0/3	0/3	0/3	3/3	-	-	0/3	0/3	0/3
	Monitoring	-	-	-	-	-	-	-	-	-
	Total	0/3	0/3	0/3	3/3	-	-	0/3	0/3	0/3

Table 5.5.10 Summarized results of Observation Wells and holes in Model Rural Areas exceeding Bangladeshstandard and WHO guideline (1/3)Ch-CB

Practical Quant	itation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gui	deline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Parameter		NO2	NH₄	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (mg/l)		<0.02	0.72	<0.08	0.79	35	23	14	<0.005	<0.005
Maximum (mg/l)		<0.02	1.8	0.51	15	110	43	27	<0.005	0.012
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		<0.02	1.2	0.28	4.9	85	30	20	<0.005	0.0062
Logarithminc Avarage assuming <pql data has PQL value (mg/l)</pql 		<0.02	1.1	0.22	3.4	80	29	19	<0.005	0.0059
	Pumping Test	-	-	-	-	-	-	-	-	-
No. of samples above BG Standard / No. of	Monitoring	0/7	7/7	5/7	6/7	5/7	1/7	0/7	0/7	0/7
l otal samples	Total	0/7	7/7	5/7	6/7	5/7	1/7	0/7	0/7	0/7
No: of samples above WHO Guideline / No. of Total samples	Pumping Test	-	-	-		-	-	-	-	-
	Monitoring	0/7	1/7	1/7	7/7	-	-	0/7	0/7	0/7
	Total	0/7	1/7	1/7	7/7	-	-	0/7	0/7	0/7

Table 5.5.10 Summarized results of Observation Wells and holes in Model	Rural Areas exceeding Bangladesh
standard and WHO guideline (2/3)	
Jb-CB	

Practical Quant	itation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Guideline		3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh Standard		1	0.5	0.1	1	75	35	200	0.05	0.1
Parameter		NO2	NH₄	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum (mg∕l)		<0.02	<0.1	<0.08	0.20	4.3	1.5	19	<0.005	<0.005
Maximum (mg/l)		<0.02	1.6	0.28	5.3	130	29	200	<0.005	0.010
Arithmetic Avarage assuming <pql data<br="">has PQL value (mg/l)</pql>		<0.02	0.95	0.15	2.6	95	22	62	<0.005	0.0060
Logarithminc Avarage assuming <pql data has PQL value (mg/l)</pql 		<0.02	0.62	0.14	2.0	68	16	4 1	<0.005	0.0058
	Pumping Test	-	-	-	-	-	-	-	-	
BG Standard / No. of Total samples	Monitoring	0/7	5/7	5/7	6/7	5/7	0/7	1/7	0/7	0/7
	, Total	0/7	5/7	5/7	6/7	5/7	0/7	1/7	0/7	0/7
No, of samples above WHO Guideline / No, of Total samples	Pumping Test	-		-	-	-	-	-	-	-
	Monitoring	0/7	2/7	0/7	6/7	-	-	1/7	0/7	0/7 [·]
	Total	0/7	2/7	0/7	6/7	-	-	1/7	0/7	0/7
Table 5.5.10 Summarized results of Observation Wells and holes in Model Rural Areas exceeding Bangladeshstandard and WHO guideline (3/3)Js-CB

Practical Quant	itation Limit	0.02	0.1	0.08	0.2	0.5	0.05	0.05	0.005	0.005
WHO Gui	deline	3	1.5	0.5	0.3	-	-	200	0.01	0.02
Bangladesh	Standard	1	0.5	0.1	1	75	35	200	0.05	0.1
Parame	əter	NO2	NH4	Mn	Fe	Ca	Mg	Na	Pb	Ni
Minimum	(mg/l)	<0.02	<0.1	<0.08	<0.2	20	14	86	<0.005	<0.005
Maximum	(mg/l)	2.2	1.1	0.20	0.70	27	17	140	<0.005	0.037
Arithmetic Avarage as has PQL valu	suming <pql data<br="">ue (mg/l)</pql>	0.78	0.36	0.10	0.33	24	16	103	<0.005	0.011
Logarithminc Avarage data has PQL v	e assuming <pql /alue (mg/l)</pql 	0.19	0.22	0.094	0.30	24	16	102	<0.005	0.0075
	Pumping Test	-	-	-	-	-	-	-	-	-
No. of samples above BG Standard / No. of Total samples	Monitoring	2/7	2/7	1/7	0/7	0/7	0/7	0/7	0/7	0/7
rotar samples	Total	2/7	2/7	1/7	0/7	0/7	0/7	0/7	0/7	0/7
No. of samples	Pumping Test	-	-	-	-	-	-	-	-	-
above WHO Guideline / No. of	Monitoring	0/7	0/7	0/7	3/7	-	-	0/7	0/7	1/7
Total samples	Total	0/7	0/7	0/7	3/7	-	-	0/7	0/7	1/7

able 5.5.11 Results	s of li	mprov	ved v	vells	excet	¢ding	Banç	plade	sh st	andai	rd an	HM p	O gu	idelinu	9							:				
Practical Quantitation Limits 5 1911	•	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	5	0.2	0.6	20 0.	5 0.05	5 0.05	0.1	0.1	0.0015	0.025	0.005	0.01	0.005	0.001	0.005 (0.005	2
WHO Guideline	•		-		1000	50	9	1.5	0.5	250	0.3	250		·	200	•	1.5	0.003		2	0.07	0.01	0.001	0.02	е С	,
Bangladesh Standard	6.5-8.	- 9		200-500	1000	10	-	0.5	0.1	400	+	e00	200	5 35	200	12	-	0.005	0.05	-	0.1	0.05	0,05	0.1	5	4
Parameter	Ħ	Temp	с Ш	Hardness	TDS	NO3	NO ₂	NH4	Mn	so.	Fe	CI H	co, c	a Mg	BN -	¥		ß	ບັ	сı	c	q	ВН	ž	ភ	B
Winning (Idoa) Inning W	6.79	23.6	50.0	47,3	256	43	8.8	₽.	80. ⁰ 8	¥	<0.2	<0.6	286 3	0 16	6.8	2.8	0.15	<0.0015	<0.025	<0.005	<0.01	<0.005	<0.001	\$0.005	0.005	₽
Computing March	3 7.88	31.3	94.9	164	608	3.8	2.5	8.4	0.46	\$	9.8	13	357 1;	8	71	8.6	0.49	<0.0015	<0.025	0.015	0.025	0.015	<0.001	0.010	0.176	8
nthmetic Avarage assuming <pql data="" ha<="" th=""><td>7.34</td><td>27.1</td><td>64.5</td><td>10</td><td>399</td><td>1.0</td><td>0.33</td><td>2.1</td><td>0.17</td><td>₽</td><td>2.5</td><td>+</td><td>396 8</td><td>2 21</td><td>31</td><td>4.6</td><td>0.34</td><td><0.0015</td><td><0.025</td><td>0.0054</td><td>0.012</td><td>0.0057</td><td><0.001</td><td>0.0057</td><td>0.030</td><td>я</td></pql>	7.34	27.1	64.5	1 0	399	1.0	0.33	2.1	0.17	₽	2.5	+	396 8	2 21	31	4.6	0.34	<0.0015	<0.025	0.0054	0.012	0.0057	<0.001	0.0057	0.030	я
ogarithmino Avarage assuming cPOL data / ႏိုင်ငံ has POL value (mg/) အမွန်းရှိနှင့်	7.34	27.0	63.3	95.0	389	0.51	0.047	1:1	0.14	Ş	1.7	2.6	186 7	2 21	24	4.4	0.32	<0.0015	<0.025	0.0052	0.012	0.0055	<0.001	.0055 0	.012	5
Chuadanga	0/12	-		0/12	0/12	0/12	3/12	8/12	12/12	0/12	12/12	0/12 (V12 12	12 0/12	2 0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12
to. of samples above BG	0/12	ı	•	0/12	0/12	0/12	0/12	12/12	7M2	0/12	12/12	0/12 (V12 12	12 0/12	2 0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	M2
samples	0/12	,	•	0/12	0/12	0/12	3/12	8/12	4/12	0/12	3/12	0/12 (V12 0/	12 0/12	2 0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	1/12
	0/36	•	•	0/36	96/0	0/36	6/36	28/36	23/36	0/36	27/36	0/36 (/36 24	36 0/36	3 0/36	0/36	0/36	96/0	0/36	0/36	0/36	0/36	0/36	0/36	0/36	5/36
Chuadanga	-	•	'	•	0/12	0/12	0/12	6/12	0/12	0/12	12/12	0/12	-		0/12	•	0/12	0/12	•	0/12	0/12	1/12	0/12	0/12	0/12	
o. of samples above WHO Thenaidah	•	•	•	•	0/12	0/12	0/12	8/12	0/12	0/12	12/12	0/12		•	0/12	•	0/12	0/12	•	0/12	0/12	0/12	0/12	0/12	0/12	,
samples	•	•	•	•	0/12	0/12	0/12	6/12	0/12	0/12	8/12	0/12	•	•	0/12	'	0/12	0/12	•	0/12	0/12	1/12	0/12	0/12	0/12	
Total		•	•	,	96/0	0/36	0/36	20/36	0/36	0/36	32/36	0/36	•	•	0/36	•	0/36	0/36	•	0/36	0/36	2/36	0/36	0/36	96/36	

Table 5.5.12 Results	ofE	kistin	B We	e) e)	ceec	ling	Bang	lades	sh stá	ndar	dan	HM P	0 gu	idelir	e												
Practical Quantitation Limit -	•	0 Deg C	0.02	0.5	0.13	0.2	0.02	0.1	0.08	£	0.2	0.6	20	0.5	0.05	0.05	0.1	0.1	0.0015	0.025	0.005	0.01	0.005	0.001	0,005	0.005	20
WHO Guideline	•		,		1000	50	3	1.5	0.5.	250	0.3	250	•		•	200	•	1.5	0.003		2	0.07	0.01	0.001	0.02	3	
Bangladesh Standard	6.5-8.5	-	.	200-500	1000	9	-	0.5	0.1	400	-	600	600	75	35	200	12	-	0.005	0.05	F	0.1	0.05	0.05	0.1	5	4
Parameter	Hq	Temp	EC	Hardness	TDS	°0N	NO2	"HN	Mn	so,	Fe	ō	HCO.	ca	ВW	Na	¥	1	P	Ⴆ	'n	CN	4	BH	ī	u Z	g
A minimum (mga)	6.20	22.9	26.6	48.1	170	4.2	40.02	4.1	80.0 8	\$	<0.2	0.71	200	13	6.1	1.5	0.81	0.20	<0.0015	<0.025	<0.005	6.01	<0.005	<0.001	<0.005 <	0.005	8
A State of Assemine (mon) of a state of a st	8.30	26.6	258	193	1650	180	4.2	20	1.5	46	1	570	720	160	5 5	400	8.9	1.7	0.0079	0.22	0.0086	0.018	0.047	₹0.00f	0.069	0.10	8
Arthmetic Avantie assuming "POL data has 1.175% (Avange assuming "POL data has	7.06	24.8	ន	113	525	4.5	0.39	5.0	0.50	7.6	2.0	39	402	8	24	4	2.9	0.53	0.0021	0.069	0.0051	0.011	0.0078	40.001	0.014	0.014	25.5
Logantitimine Avarage assumany POL data has POL value (mg/) #227205	7.05	24.8	76.6	109	488	0.64	0.055	1.6	0.39	6.2	1.3	÷	392	78	8	31	2.6	0.47	0.0018	0.046	0.0051	0.011	0.0063	40.001	.0087 0	0088	22.7
Rairy Season	1/30	-		0/30	2/30	3/30	5/30	9/30	25/30	0/30	13/30	06/0	1/30	23/30	2/30	1/30	0/30	4/30	5/30	21/30	0/30	0/30	0(30	0(30	06/0	0/30	4/30
No. of samples above builting the second standard / No. of Total y Dry Season	0/30	,	•	0/30	2/30	0/30	2/30	30/30	30/30	0/30	26/30	06/0	1/30	24/30	1/30	2/30	05/0	3/30	0/30	06/0	0/30	0(30	0/30	0/30	0(30	0/30	5/30
	0,60	•	•	0/80	4/60	3/60	7/60	39/60	55/60	0/60	39/60	0/60	2/60	47/60	3/60	3/60	09/0	7/60	5/60	21/60	0/60	0/60	0/60	0,60	0,60	areo	9/60
Reiny Season	•	,	•	-	2/30	1/30	3/30	7/30	10/30	0(30	23/30	1/30	•	•	•	1/30		0/30	8/30	•	06/30	0/30	4/30	0/30	14/30	0(30	
Guideline / No. of Total 2 PDY Season	ه ب	•		,	2/30	020	1/30	30/30	13/30	0/30	28/30	1/30	•	•	•	2/30	••••	130	0/30	•	05/0	0/30	6/30	0/30	0/30	0/30	
	•	,	,	-	4/60	1/60	4/60	37/60	23/60	0,60	52/60	2/60		 ·		3/60	•	1/60	8/60	•	0,60	0,60	10/60	0/20	14/60	0/60	ı

ē
Ð
2
3
0
0
Ī
Σ
2
P
ā
Ĕ
a
ĕ
ğ
5
Ē
5
<u>e</u>
ğ
Ĩ
g
a
Ő
~
Ĕ
1
ĕ
Ō
9
6
۵.
ő
ē
Are
I Are
ral Are
ural Are
Rural Are
el Rural Are
del Rural Are
odel Rural Are
Model Rural Are
n Model Rural Are
in Model Rural Are
is in Model Rural Are
ells in Model Rural Are
Vells in Model Rural Are
Wells in Model Rural Are
g Wells in Model Rural Are
ing Wells in Model Rural Are
sting Wells in Model Rural Are
cisting Wells in Model Rural Are
Existing Wells in Model Rural Are
* Existing Wells in Model Rural Are
of Existing Wells in Model Rural Are
s of Existing Wells in Model Rural Are
Its of Existing Wells in Model Rural Are
ults of Existing Wells in Model Rural Are
sults of Existing Wells in Model Rural Are
Results of Existing Wells in Model Rural Are
Results of Existing Wells in Model Rural Are
3 Results of Existing Wells in Model Rural Are
13 Results of Existing Wells in Model Rural Are
5.13 Results of Existing Wells in Model Rural Are
5.5.13 Results of Existing Wells in Model Rural Are
e 5.5.13 Results of Existing Wells in Model Rural Are
ole 5.5.13 Results of Existing Wells in Model Rural Are
able 5.5.13 Results of Existing Wells in Model Rural Are

Practical Quantity	WHO Guidt	Bangladesh S.	Paramet	Minimum (r	Maximum (Arithmetic Avarage assurt	Logarithminc Avarage as. has POL value		No. of samples above Bt Standard / No. of Total	samples			No. of samples above WF	samples	
tion Limit	line	andard	er	(nor	(you	ing <pql data="" ha:<br="">ng/)</pql>	uming <pol data<br="">(mg/l)</pol>	Chuadanga	Jhenaidah	Jessore	Totat	Chuadanga	O Jhenaidah	Jessore	Total
0		6.5-8.5	Hđ	6.87	7.29	7.08	7.08	0/5	0/5	0/5	0/15	•	•	•	
0 Deg C			Temp	23.0	25.3	24.2	24.2			•	•	•	•		
0.02	•		ŝ	49.6	267	125	101		•	•	•	· :	•	•	•
0.5		200-500	Hardness	98.5	155	128	127	0/5	0/5	0/5	0/15		,	•	•
0.13	1000	1000	SOT	317	1710	800	649	0/5	0/5	5/5	5/15	0/5	0/5	5/5	5/15
0.2	50	10	°0N	<0.2	23	4.4	0.75	3/5	1/5	0/5	4/15	ovis	0/5	0/5	0/15
0.02	3	-	NO ₂	<0.02	4.0	0.84	060.0	4/5	0/5	0/5	4/15	2/5	0/5	0/5	2/15
0.1	1.5	0.5	'HN	<0.1	27	4.4	1.5	1/5	5/5	5/5	11/15	1/5	5/5	5/5	11/15
0.08	0.5	0.1	Kn	<0.08	1.1	0.36	0.20	5/5	2/5	0/5	7/15	4/5	0/5	0/5	4/15
5	250	400	so,	8	\$	5.7	5.4	0/5	0/5	0/5	0/15	0/5	0/5	0/5	0/15
0.2	0.3	+	E.	0.31	8.2	22	1.5	3/5	2/5	4/5	9/15	5/5	5/5	5/5	15/15
0.6	250	600	5	1.3	540	140	ន	0/2	0/2	0/5	0/15	0/5	0/5	5/5	5/15
20		600	f HCO	350	757	482	471	0/5	0/5 .	2/5	2/15	•		•	
0.5		75	ទី	79	120	8	8	5/5	5/5	5/5	15/15	•	•	•	
0.05		35	Mg	13	47	8	58	0/5	0/5	5/5	5/15	•		•	
0.05	200	200	Na	6.5	410	120	98	0/5	0/5	5/5	6/15 C	0/5	0/5	5/5	5/15
0.1		12	¥	2 7	8.2 0	4.4	6.0	0/5	0/5	0/5	V15 C	-			 ,
0.1 0.0	1.5 0.	1		0. 1	·59	₩.	35	72	8	2/2	/15 0)/2 (22	25	/15 0
015 0.	80	005	7	0015 <0	0015 0.	0015 0.	0015 0.	1	1	V5 C	115 21	N5	N5	//5	/15
25 0.0		8	0 	025 <0.	90 990	30 0.0	0.0	15 D	15 0	5	15 0/		-	8 	ō -
05 0.0	9.0 10	- -	0 9	<u>8</u>	32 0.0	0.0	365 0.0	s S	2	6	0. 12	5	5	5	15 0/
0.0	70 0.0	1	Z	0. 0.	16 0.0	11 0.00	11 0.00	6 6	2	6 2	12 01	5 1/	5 1/	2	15 2/1
05 0.0	10.0	5 0.0	Ť	05 40.0	14 <0.0	<u>66</u> ≤0.0	60.0	ð s	Ğ	Ğ	5 0/1	č s	ŏ 	ő	5 0/1
01 0.00	01 0.0	0	ž	01 40.0	01 0.02	01 0.01	01 0.00	0	0	20	5 0/1	3	2	¥	5 3/1
0.00	2 3		2	05 40.0	60.00	11 0.00	87 0.00	50	50	50	5 0/1	5/0	. 50 	0	5 0/1
2 22	·	4	8 -	-2(02	51 44	50 25	50 24	9/2	3/2	191	5 4/1	· 		· ·	- 5
	Γ	Г	6		r · · ·	<u> </u>	<u> </u>		1			r	;		

Table 5.5.14 Results of Pond Water in Model Rural Areas exceeding Bangladesh standard and WHO guideline

		0.000	000	1			000			ŀ				ľ	-			1 2 2 2								-
	-	n neg c	zn.u	5	0.13	7	zn:n	5	80'D		7.0		2	ים ה	s g		ò	0.00	5 0.02	0.005	0.01	0.005	0.001	0.005	0.005	50
WHO Guideline	•	•	•	•	1000	S	3	1.5	0.5	250	0.3	250	-	_	. 2	- 00	1.	5 0.00	Э	2	0.07	0.01	0.001	0.02	9	
Bangladesh Standard	6.5-8.5	•	-	200-500	1000	₽	-	0.5	0.1	400	1	600 E	2 00	5 3	5 2(70 12	-	0.00	5 0.05	+	0.1	0.05	0.05	0.1	ъ	4
Parameter	Ħ	Temp	Ë	Hardness	ŝ	°N N	NO2	١H	Mn	so,	Fe	н с	co,	R N	۷ B	a K		ő	ບັ	5 C	S	٩d	8	z	ភ	00 00
Minimum (mg/)	6.97	21.9	1.1	16.6	71.1	<0.2	<0.02	¢.1	<0.08	\$5	<0.2	2.3 6	1 1	4 0	20 2	7 2.1	0.2	6 <0.00	15 <0.02	5 <0.00	<0.01	<0.005	<0.001	<0.005	<0.005	<20
	7.95	24.3	96.6	75.0	618	42	6.6	4.8	0.16	8.0	<0.2	97 2	56 5	1	7 4	6 62	3.1	3 <0.00	15 <0.02	5 0.0070	0.052	0.011	<0.001	0.0090	0.011	78
Arithmetic Avarage assuming <pol data="" has<="" th=""><th>7.46</th><th>23.4</th><th>39.0</th><th>37.5</th><th>250</th><th>4.5</th><th>0.64</th><th>0.68</th><th>0.085</th><th>6.0</th><th><0.2</th><th>22</th><th>161 2</th><th>6</th><th>0</th><th>4 12</th><th>0.8</th><th>3 <0.00</th><th>15 <0.02</th><th>5 0.0051</th><th>0.020</th><th>0.0052</th><th><0.001</th><th>0.0057</th><th>0.0055</th><th>Ŗ</th></pol>	7.46	23.4	39.0	37.5	250	4.5	0.64	0.68	0.085	6.0	<0.2	22	161 2	6	0	4 12	0.8	3 <0.00	15 <0.02	5 0.0051	0.020	0.0052	<0.001	0.0057	0.0055	Ŗ
Logarithminc Avarage assuming <pql data<="" th=""><th>7.46</th><th>23.4</th><th>35.7</th><th>35.4</th><th>229</th><th>1.1</th><th>0.084</th><th>0.44</th><th>0.084</th><th>5.9</th><th><0.2</th><th>13 1</th><th>55 2</th><th>8 7.</th><th>1</th><th>9 7.</th><th>0.5</th><th>90.0></th><th>15 <0.02</th><th>5 0.0051</th><th>0.018</th><th>0.0051</th><th><0.001</th><th>0.0056</th><th>0.0054</th><th>59</th></pql>	7.46	23.4	35.7	35.4	229	1.1	0.084	0.44	0.084	5.9	<0.2	13 1	55 2	8 7.	1	9 7.	0.5	90.0>	15 <0.02	5 0.0051	0.018	0.0051	<0.001	0.0056	0.0054	59
No. of samples above BG Standard / No. of Total samples	0/27	'	•	0/27	0/27	4/27	3/27	9/27	2/27	0/27	0/27	0 220	V27 0/	27 0/	27 0/	27 5/2	7 7/2	7 0/2	12/0	0/27	0/27	0/27	0/27	0/27	0/27	10/27
No, of samples above WHO Guideline / No. of Total samples	ŧ	'		ı	0/27	0/27	2/27	2127	0/27	0/27	0/27	727				- 12	5/2	7 0/2	•	0/27	0/27	1/27	0/27	0/27	0/27	•

Deep wells (300m in depth) - Explanation of samples containing general water quality parameters Table 5.5.15(1/2)

exceeding standard values

Samples taken from deep groundwater observation holes/wells in Pourashava and deep groundwater observation holes in model villages

Conditions of occurrence	Sporadically found in observation holes of model village in Jessore.		Continually found in observation holes of model villages in Jhenaidah and Chuadanga	Sporadically found in other observation wells/holes.	Sporadically found in observation holes of the model villages in Chuadanga. Continually found in other observation	wells/holes.	Continually found in all observation wells/holes	
No. of samples exceeding the standard	3	0	17	3	50	15	67	62
Remarks	•The Bangladesh value is lower than the WHO value. •The WHO quideline value is based on health	impact	The Bangladesh value is lower than the WHO value. A WHO quideline value based on health has	not been set. The standard (1.5mg/l) is based on a level that is likely to give rise to complaints due to taste, odor, etc.	 The Bangladesh value is lower than the WHO value. The WHO guideline value of 0.5mg/l is a 	health- based value; a standard of 0.1mg/l has been set based on a level likely to give rise to complaints due to taste, odor , etc.	•WHO has not set a health-based guideline value. The standard (.0.3mg/l) is based on a level that is likely to give rise to complaints due	to taste, odor, etc.
alue (mg/l)	. –	e	0.5	(1.5)	0.1	0.5	٢	(0.3)
Standard ve	Bangladesh	OHM	Bangladesh	ОНМ	Bangladesh	ОНМ	Bangladesh	ОНМ
ltem	2	202 202		хн Хн Х	ž		(L	D L

The WHO guideline values placed in "()" are levels likely to give rise to complaints due to taste, odor, etc. The others are health-based guideline values. Deep wells (300m in depth) – Explanation of samples containing general water quality parameters Table 5.5.15(2/2)

exceeding standard values

Samples taken from deep groundwater observation holes/wells in Pourashava and deep groundwater observation holes in model villages

Conditions of occurrence	Continually found in all observation wells/holes.		Distributed in concentration areas in observation wells of Jhenaidah		Only found in one sample from an observation hole in a model village in	Jhenaidah.	Sporadic.		Only found in one sample from an observation hole in a model village in	Jessore.	Sporadic.	
No. of samples exceeding the standard	52	I	9	I	-	1	0	ო	0	-	13	I
Remarks	 A WHO guideline value based on health has not been set. 		 A WHO guideline value based on health has not been set. 		 A WHO guideline value based on health has not been set. 		•The Bangladesh standard is higher than the WHO value	 A WHO guideline value based on health has been set. 	•The Bangladesh standard is higher than the WHO value	 A WHO guideline value based on health has been set. 	•A WHO guideline value based on health has not been set.	
alue (mg/l)	75	1	35	1	200	İ	0.05	0.01	0.1	0.02	4	I
Standard v	Bangladesh	OHW	Bangladesh	ОНМ	Bangladesh	ОНМ	Bangladesh	ОНМ	Bangladesh	ОНМ	Bangladesh	онм
ltem	Ca			කි ව	2	2	Ğ		Z	2	COD	

Deep wells (300m in depth) – Explanation of samples containing general water quality parameters exceeding standard values Table 5.5.16

Samples taken from deep groundwater observation holes/wells in Pourashava and deep groundwater observation holes in model villages

Item	Presumed method of treatment	Remarks
NO2	None in particular.	•Exceeds the Bangladesh standard but is less than 3mg/l, impact on human body is small
NH ₃	None in particular.	-No impact on the human body
	Coagulating sedimentation by oxidizing agent (Cl ₂ 、KMnO₄)	 Considering water quality conditions in Bangladesh, it would be difficult to find groundwater sources with Mn levels less than 0.1mg/l.
W	and filtering	 Removal of Mn is difficult. Removal by aeration without chemicals is less effective than for Fe The previously mentioned method could meet the standard of 0.5mg/l, but is economically and operationally difficult.
¢ L	Aeration filtration	•There are many observation holes that continually exceed the Bangladesh standard but they do not impact health.
D 		•With the previously mentioned method, many water sources are thought to be able to achieve iron levels of 1mg/l.
ć	Coagulating sedimentation by	-There are many observation holes that continually exceed the Bangladesh standard but they do not impact
Ca 	alkalı treatment	 The previously mentioned treatment method would be economically and operationally difficult
	Coagulating sedimentation by	· There are observation wells in concentrated areas that exceed the Bangladesh standard but they do not impact
Mg	alkali treatment	health • The previously mentioned treatment method would be economically and onerationally difficult
Na	None in particular.	-It is thought that complaints about the taste will arise but there is no impact on health.
qd	Coagulating filtration	 Although levels slightly exceed the WHO value, they are not over the Bangladesh standard. Because of the low concentration, complete removal by treatment is difficult.
ÏZ	Coagulation filtration	 Although levels slightly exceed the WHO value, they are not over the Bangladesh standard. Because of the low concentration, complete removal by treatment is difficult.
COD	Biological treatment + nitrification and denitrification	•The high COD concentrations are because groundwater in Bangladesh is in a highly reducing state.

Table 5.5.17 Results of Observation Holes (Re-analysis)

Sample No	Date	EC (mS/m)	Hq	ORP(Eh)	Temp("C)
OH-JS1-4	15-Sep-02	B 8.B	7.14	78.5	26.2
OH-JS2-4	15-Sep-02	90.2	7.16	77.4	26.3
CB-JSRb	16-Sep-02	56.1	7.47	94.4	28.3
0H-JH2-4	13-Sep-02	82.5	6.89	111	8
OH-CH1-4	14-Sep-02	. 87.2	7.14	70.5	26.2
OH-CH2-4	14-Sep-02	73.5	7.18	95.5	26.2
CB-CDBd	13-Sep-02	BO.4	7.35	124	28.3

					-	ŀ	[-	-			2	
pH Temperature Conductivity Hardness TDS Nitrate Nitrite Ammontum Dissover its Sulfate Dissover fe	the Conductivity Hardness 1DS Nitrate Nitrite Amnonum theorem in Sulfate iterative fe	ivity Hardness 10% Nitrate Nitrite Ammonium measure in Sulfate Descined Fe	ess 105 Nitrate Nitrite Ammontum dissorve in Sulfate dissorved fo	S Nitrate Nitrite Ammonium preserves the Suffate preserves fe	te Nitrite Ammontum Dissoves in Sulfate Dissoves Fe	Ammonum Dissores the Sulfate Dissored Fe	Dissofved Its Sulfate Dissofved Fe	Sulfate Disohed Fe	Classified Fo	- 1	Chloride	Blearbonute	Catcium	Magnesitum	Sodium	Potassium	Tuoride C	admtum 1	otal Cr	opper Cy	ט abine	ad Merc	Iry Nich	tel Zinc	00 00	As
H metter Thermo Conductive's Standard Standard SP SP IC FAAS IC FAAS T	r conductivity Standard Standard SP SP IC FAAS IC FAAS T	Wy Standard Standard SP SP IC FAAS IC FAAS T	ard Standard SP SP IC FAAS IC FAAS T	ard SP SP IC FAAS IC FAAS T	SP IC FAAS IC FAAS T	IC FAAS IC FAAS T	FAAS IC FAAS T	IC FAAS T	FAAS 1	·	itration	R	FAAS	FAAS	FAAS	FAAS	Ъ	FAAS	FAAS	SAS	Ч Т	AS FAA	S FA	S FAA	S Titratio	FAAS
1 1 10 0.1 0.1 0.1 1 0.2	1 1 10 0.1 0.1 0.1 1 1 0.2	1 10 0.1 0.1 0.1 0.1 1 0.2	10 0.1 0.1 0.1 0.1 1 0.2	0.1 0.1 0.1 0.1 1 0.2	0.1 0.1 0.1 1 0.2	0.1 0.1 1 0.2	0.1 1 0.2	1 0.2	0.2		0.1	0.5	0.5	0.5	0.5	0.5	0.05	0.005	0.02	0.01	0	01 0.00	0.0	6 0.01	7	0.001
Deg C mS/m cacosu, mg/L mg/L mg/L mg/L mg/L mg/L mg/L r	C mS/m cacosu mg/L mg/L mg/L mg/L mg/L mg/L mg/L r	n cacosul mort mort mort mort mort rort r	אל שפער שפער שפער שפער שפער שעער א	ר שפער שפער שפער שפער ג	ר שפער שפער שפער ש	mg/L mg/L mg/L mg/L r	mg/L mg/L mg/L r	mg/L mg/L r	mg/L r		ng/L	mg CaCO3AL	шg/Г	mg/L	тgЛ	тgЛ	тĝг	mg/L	тgЛ	ng/L n	m 1/6	g/L mg	L mg	l/6ш	- mg/L	mg/L
PH Temp EC Hardness TDS NO3 NO2 NH4 Mn SO4 Fe	P EC Hardness TDS NO3 NO2 NH4 Mn SO4 Fe	Hardness TDS NO3 NO2 NH4 Mn SO4 Fe	ES TDS NO3 NO2 NH4 Mn SO4 Fe	3 NO3 NO2 NH4 Mn SO4 Fe	1 NO2 NH4 Mn SO4 Fe	NH4 Min SO4 Fe	Min SO4 Fe	SO4 Fe	Fe		Ū	HC03	ő	₿₩	Na	x	ъ	8	Ċ	Cu	- N	PH ^C	N	۲	COD	As
1.4 2.2.5 81.9 310 470 속PQL 속PQL 속PQL 0.40 <pql (1993)<="" td=""><td>1 81.9 310 470 <pot 0.40="" <pot="" <pot<="" td=""><td>310 470 <pot 0.40="" <pot="" <pot<="" td=""><td></td><td>104-> LOL <pol 0.40<="" td=""><td>ר <body> ר <body> ישסד <body> ישסד <body> ישסד <body> ישסד ישסד </body></body></body></body></body></td><td>*10d> 070 10d></td><td>070 <pol 33<="" td=""><td><pql 43.6="" 8<="" td=""><td>変変</td><td></td><td>7.3</td><td>520</td><td>ន</td><td>32</td><td>8</td><td>5.0</td><td>0.11</td><td><₽QL</td><td>₽QL</td><td>PQL ≤</td><td>¢ סך</td><td>or or</td><td>۲ ۴0</td><td>L 0.01</td><td>•</td><td>0.002</td></pql></td></pol></td></pol></td></pot></td></pot></td></pql>	1 81.9 310 470 <pot 0.40="" <pot="" <pot<="" td=""><td>310 470 <pot 0.40="" <pot="" <pot<="" td=""><td></td><td>104-> LOL <pol 0.40<="" td=""><td>ר <body> ר <body> ישסד <body> ישסד <body> ישסד <body> ישסד ישסד </body></body></body></body></body></td><td>*10d> 070 10d></td><td>070 <pol 33<="" td=""><td><pql 43.6="" 8<="" td=""><td>変変</td><td></td><td>7.3</td><td>520</td><td>ន</td><td>32</td><td>8</td><td>5.0</td><td>0.11</td><td><₽QL</td><td>₽QL</td><td>PQL ≤</td><td>¢ סך</td><td>or or</td><td>۲ ۴0</td><td>L 0.01</td><td>•</td><td>0.002</td></pql></td></pol></td></pol></td></pot></td></pot>	310 470 <pot 0.40="" <pot="" <pot<="" td=""><td></td><td>104-> LOL <pol 0.40<="" td=""><td>ר <body> ר <body> ישסד <body> ישסד <body> ישסד <body> ישסד ישסד </body></body></body></body></body></td><td>*10d> 070 10d></td><td>070 <pol 33<="" td=""><td><pql 43.6="" 8<="" td=""><td>変変</td><td></td><td>7.3</td><td>520</td><td>ន</td><td>32</td><td>8</td><td>5.0</td><td>0.11</td><td><₽QL</td><td>₽QL</td><td>PQL ≤</td><td>¢ סך</td><td>or or</td><td>۲ ۴0</td><td>L 0.01</td><td>•</td><td>0.002</td></pql></td></pol></td></pol></td></pot>		104-> LOL <pol 0.40<="" td=""><td>ר <body> ר <body> ישסד <body> ישסד <body> ישסד <body> ישסד ישסד </body></body></body></body></body></td><td>*10d> 070 10d></td><td>070 <pol 33<="" td=""><td><pql 43.6="" 8<="" td=""><td>変変</td><td></td><td>7.3</td><td>520</td><td>ន</td><td>32</td><td>8</td><td>5.0</td><td>0.11</td><td><₽QL</td><td>₽QL</td><td>PQL ≤</td><td>¢ סך</td><td>or or</td><td>۲ ۴0</td><td>L 0.01</td><td>•</td><td>0.002</td></pql></td></pol></td></pol>	ר <body> ר <body> ישסד <body> ישסד <body> ישסד <body> ישסד ישסד </body></body></body></body></body>	*10d> 070 10d>	070 <pol 33<="" td=""><td><pql 43.6="" 8<="" td=""><td>変変</td><td></td><td>7.3</td><td>520</td><td>ន</td><td>32</td><td>8</td><td>5.0</td><td>0.11</td><td><₽QL</td><td>₽QL</td><td>PQL ≤</td><td>¢ סך</td><td>or or</td><td>۲ ۴0</td><td>L 0.01</td><td>•</td><td>0.002</td></pql></td></pol>	<pql 43.6="" 8<="" td=""><td>変変</td><td></td><td>7.3</td><td>520</td><td>ន</td><td>32</td><td>8</td><td>5.0</td><td>0.11</td><td><₽QL</td><td>₽QL</td><td>PQL ≤</td><td>¢ סך</td><td>or or</td><td>۲ ۴0</td><td>L 0.01</td><td>•</td><td>0.002</td></pql>	変変		7.3	520	ន	32	8	5.0	0.11	<₽QL	₽QL	PQL ≤	¢ סך	or or	۲ ۴0	L 0.01	•	0.002
1.3 22.5 81.9 300 510 주면도 주면도 2020 주면도 2030 주면도 2030 3	1 81.9 300 510 <pql 0.30="" 300="" 3030="" 3<="" 510="" <pql="" td=""><td>300 510 <pql 0.30="" 2.0<="" <pql="" td=""><td>0 210 <pol 0.30="" 2.30="" 2.30<="" <pol="" td=""><td>0 <pql 0.30="" 2011="" 2012="" 3<="" <pql="" td=""><td>ר <¤סר <¤סר 0:30 <שםר איין יויי י</td><td><pol 0.30="" 214="" 3<="" <pol="" p=""></pol></td><td>0.30 <pql 211<="" td=""><td><</td><td>- </td><td>" I</td><td>2</td><td>473</td><td>57</td><td>29</td><td>88</td><td>4.8</td><td>0.18</td><td><pql< td=""><td><₽QL</td><td>kPQL ⊲</td><td>or ∢</td><td>or ⊲PC</td><td>- ₽C</td><td>IL 0.02</td><td></td><td>0.002</td></pql<></td></pql></td></pql></td></pol></td></pql></td></pql>	300 510 <pql 0.30="" 2.0<="" <pql="" td=""><td>0 210 <pol 0.30="" 2.30="" 2.30<="" <pol="" td=""><td>0 <pql 0.30="" 2011="" 2012="" 3<="" <pql="" td=""><td>ר <¤סר <¤סר 0:30 <שםר איין יויי י</td><td><pol 0.30="" 214="" 3<="" <pol="" p=""></pol></td><td>0.30 <pql 211<="" td=""><td><</td><td>- </td><td>" I</td><td>2</td><td>473</td><td>57</td><td>29</td><td>88</td><td>4.8</td><td>0.18</td><td><pql< td=""><td><₽QL</td><td>kPQL ⊲</td><td>or ∢</td><td>or ⊲PC</td><td>- ₽C</td><td>IL 0.02</td><td></td><td>0.002</td></pql<></td></pql></td></pql></td></pol></td></pql>	0 210 <pol 0.30="" 2.30="" 2.30<="" <pol="" td=""><td>0 <pql 0.30="" 2011="" 2012="" 3<="" <pql="" td=""><td>ר <¤סר <¤סר 0:30 <שםר איין יויי י</td><td><pol 0.30="" 214="" 3<="" <pol="" p=""></pol></td><td>0.30 <pql 211<="" td=""><td><</td><td>- </td><td>" I</td><td>2</td><td>473</td><td>57</td><td>29</td><td>88</td><td>4.8</td><td>0.18</td><td><pql< td=""><td><₽QL</td><td>kPQL ⊲</td><td>or ∢</td><td>or ⊲PC</td><td>- ₽C</td><td>IL 0.02</td><td></td><td>0.002</td></pql<></td></pql></td></pql></td></pol>	0 <pql 0.30="" 2011="" 2012="" 3<="" <pql="" td=""><td>ר <¤סר <¤סר 0:30 <שםר איין יויי י</td><td><pol 0.30="" 214="" 3<="" <pol="" p=""></pol></td><td>0.30 <pql 211<="" td=""><td><</td><td>- </td><td>" I</td><td>2</td><td>473</td><td>57</td><td>29</td><td>88</td><td>4.8</td><td>0.18</td><td><pql< td=""><td><₽QL</td><td>kPQL ⊲</td><td>or ∢</td><td>or ⊲PC</td><td>- ₽C</td><td>IL 0.02</td><td></td><td>0.002</td></pql<></td></pql></td></pql>	ר <¤סר <¤סר 0:30 <שםר איין יויי י	<pol 0.30="" 214="" 3<="" <pol="" p=""></pol>	0.30 <pql 211<="" td=""><td><</td><td>- </td><td>" I</td><td>2</td><td>473</td><td>57</td><td>29</td><td>88</td><td>4.8</td><td>0.18</td><td><pql< td=""><td><₽QL</td><td>kPQL ⊲</td><td>or ∢</td><td>or ⊲PC</td><td>- ₽C</td><td>IL 0.02</td><td></td><td>0.002</td></pql<></td></pql>	<	- 	" I	2	473	57	29	88	4.8	0.18	<pql< td=""><td><₽QL</td><td>kPQL ⊲</td><td>or ∢</td><td>or ⊲PC</td><td>- ₽C</td><td>IL 0.02</td><td></td><td>0.002</td></pql<>	<₽QL	kPQL ⊲	or ∢	or ⊲PC	- ₽C	IL 0.02		0.002
7.6 22.5 62.3 140 320 <pql 1,7="" 1<="" <pql="" td=""><td>1 62.3 140 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>140 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 <pql 1,7="" 1<="" <pql="" td=""><td>L 1,7 <pql 1<="" <pql="" td=""><td>+bar <bar <br=""></bar></td><td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td><td><pre><pat <="" <pat="" pre=""></pat></pre></td><td>4PQL</td><td>-</td><td></td><td>360</td><td>窝</td><td>ห</td><td>91</td><td>3.3</td><td>0.15</td><td><₽QL</td><td>₽QL</td><td>⊧ PQL</td><td>¢ gr</td><td>גרן אַנ</td><td>۲</td><td>11 0.02</td><td>2</td><td>₽d</td></pql></td></pql></td></pql></td></pql></td></pql></td></pql>	1 62.3 140 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>140 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 <pql 1,7="" 1<="" <pql="" td=""><td>L 1,7 <pql 1<="" <pql="" td=""><td>+bar <bar <br=""></bar></td><td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td><td><pre><pat <="" <pat="" pre=""></pat></pre></td><td>4PQL</td><td>-</td><td></td><td>360</td><td>窝</td><td>ห</td><td>91</td><td>3.3</td><td>0.15</td><td><₽QL</td><td>₽QL</td><td>⊧ PQL</td><td>¢ gr</td><td>גרן אַנ</td><td>۲</td><td>11 0.02</td><td>2</td><td>₽d</td></pql></td></pql></td></pql></td></pql></td></pql>	140 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 <pql 1,7="" 1<="" <pql="" td=""><td>L 1,7 <pql 1<="" <pql="" td=""><td>+bar <bar <br=""></bar></td><td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td><td><pre><pat <="" <pat="" pre=""></pat></pre></td><td>4PQL</td><td>-</td><td></td><td>360</td><td>窝</td><td>ห</td><td>91</td><td>3.3</td><td>0.15</td><td><₽QL</td><td>₽QL</td><td>⊧ PQL</td><td>¢ gr</td><td>גרן אַנ</td><td>۲</td><td>11 0.02</td><td>2</td><td>₽d</td></pql></td></pql></td></pql></td></pql>	1 320 <pql 1,7="" 4<="" 4pql="" <pql="" td=""><td>1 <pql 1,7="" 1<="" <pql="" td=""><td>L 1,7 <pql 1<="" <pql="" td=""><td>+bar <bar <br=""></bar></td><td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td><td><pre><pat <="" <pat="" pre=""></pat></pre></td><td>4PQL</td><td>-</td><td></td><td>360</td><td>窝</td><td>ห</td><td>91</td><td>3.3</td><td>0.15</td><td><₽QL</td><td>₽QL</td><td>⊧ PQL</td><td>¢ gr</td><td>גרן אַנ</td><td>۲</td><td>11 0.02</td><td>2</td><td>₽d</td></pql></td></pql></td></pql>	1 <pql 1,7="" 1<="" <pql="" td=""><td>L 1,7 <pql 1<="" <pql="" td=""><td>+bar <bar <br=""></bar></td><td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td><td><pre><pat <="" <pat="" pre=""></pat></pre></td><td>4PQL</td><td>-</td><td></td><td>360</td><td>窝</td><td>ห</td><td>91</td><td>3.3</td><td>0.15</td><td><₽QL</td><td>₽QL</td><td>⊧ PQL</td><td>¢ gr</td><td>גרן אַנ</td><td>۲</td><td>11 0.02</td><td>2</td><td>₽d</td></pql></td></pql>	L 1,7 <pql 1<="" <pql="" td=""><td>+bar <bar <br=""></bar></td><td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td><td><pre><pat <="" <pat="" pre=""></pat></pre></td><td>4PQL</td><td>-</td><td></td><td>360</td><td>窝</td><td>ห</td><td>91</td><td>3.3</td><td>0.15</td><td><₽QL</td><td>₽QL</td><td>⊧ PQL</td><td>¢ gr</td><td>גרן אַנ</td><td>۲</td><td>11 0.02</td><td>2</td><td>₽d</td></pql>	+bar <bar <br=""></bar>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pat <="" <pat="" pre=""></pat></pre>	4PQL	-		360	窝	ห	91	3.3	0.15	<₽QL	₽QL	⊧ PQL	¢ gr	גרן אַנ	۲	11 0.02	2	₽d
11 22.5 75.8 420 450 <pol 2="" 2000="" 7.<="" <pol="" td=""><td>1 25.8 420 450 <pot 1<="" 2="" 5080="" <pot="" td=""><td>420 450 <pot 1080="" 17<="" 2="" 450="" <pot="" td=""><td>1 450 <pol 0000="" 1="" 2="" 2000="" <="" <pol="" td=""><td>1 <pol 0000="" 2<="" <pol="" td=""><td>ר <body <br="" =""></body></td><td>-10 <u>₹080</u> 2 350 10</td><td>1,000 2 200 1.</td><td>2 2000 1.</td><td>1 200</td><td>÷</td><td></td><td>463</td><td>81</td><td>33</td><td>ę</td><td>4.3</td><td>0.15</td><td>Å</td><td>₽ġ</td><td>⊼ Por</td><td>* ∀</td><td>o ₽</td><td>₽ V</td><td>11 0.05</td><td>₽QL</td><td>0.011</td></pol></td></pol></td></pot></td></pot></td></pol>	1 25.8 420 450 <pot 1<="" 2="" 5080="" <pot="" td=""><td>420 450 <pot 1080="" 17<="" 2="" 450="" <pot="" td=""><td>1 450 <pol 0000="" 1="" 2="" 2000="" <="" <pol="" td=""><td>1 <pol 0000="" 2<="" <pol="" td=""><td>ר <body <br="" =""></body></td><td>-10 <u>₹080</u> 2 350 10</td><td>1,000 2 200 1.</td><td>2 2000 1.</td><td>1 200</td><td>÷</td><td></td><td>463</td><td>81</td><td>33</td><td>ę</td><td>4.3</td><td>0.15</td><td>Å</td><td>₽ġ</td><td>⊼ Por</td><td>* ∀</td><td>o ₽</td><td>₽ V</td><td>11 0.05</td><td>₽QL</td><td>0.011</td></pol></td></pol></td></pot></td></pot>	420 450 <pot 1080="" 17<="" 2="" 450="" <pot="" td=""><td>1 450 <pol 0000="" 1="" 2="" 2000="" <="" <pol="" td=""><td>1 <pol 0000="" 2<="" <pol="" td=""><td>ר <body <br="" =""></body></td><td>-10 <u>₹080</u> 2 350 10</td><td>1,000 2 200 1.</td><td>2 2000 1.</td><td>1 200</td><td>÷</td><td></td><td>463</td><td>81</td><td>33</td><td>ę</td><td>4.3</td><td>0.15</td><td>Å</td><td>₽ġ</td><td>⊼ Por</td><td>* ∀</td><td>o ₽</td><td>₽ V</td><td>11 0.05</td><td>₽QL</td><td>0.011</td></pol></td></pol></td></pot>	1 450 <pol 0000="" 1="" 2="" 2000="" <="" <pol="" td=""><td>1 <pol 0000="" 2<="" <pol="" td=""><td>ר <body <br="" =""></body></td><td>-10 <u>₹080</u> 2 350 10</td><td>1,000 2 200 1.</td><td>2 2000 1.</td><td>1 200</td><td>÷</td><td></td><td>463</td><td>81</td><td>33</td><td>ę</td><td>4.3</td><td>0.15</td><td>Å</td><td>₽ġ</td><td>⊼ Por</td><td>* ∀</td><td>o ₽</td><td>₽ V</td><td>11 0.05</td><td>₽QL</td><td>0.011</td></pol></td></pol>	1 <pol 0000="" 2<="" <pol="" td=""><td>ר <body <br="" =""></body></td><td>-10 <u>₹080</u> 2 350 10</td><td>1,000 2 200 1.</td><td>2 2000 1.</td><td>1 200</td><td>÷</td><td></td><td>463</td><td>81</td><td>33</td><td>ę</td><td>4.3</td><td>0.15</td><td>Å</td><td>₽ġ</td><td>⊼ Por</td><td>* ∀</td><td>o ₽</td><td>₽ V</td><td>11 0.05</td><td>₽QL</td><td>0.011</td></pol>	ר <body <br="" =""></body>	-10 <u>₹080</u> 2 350 10	1,000 2 200 1.	2 2000 1.	1 200	÷		463	81	33	ę	4.3	0.15	Å	₽ġ	⊼ Por	* ∀	o ₽	₽ V	11 0.05	₽QL	0.011
7.3 22.5 78.0 390 450 <pql 0.2="" 0.507="" 20.<="" <pql="" td=""><td>1 76.0 390 450 <pql 0.2="" 0.507="" 0.<="" 23.0="" <pql="" td=""><td>390 450 <pql 0.2="" 0.2<="" 0.507="" <pql="" td=""><td>1 450 <pql 0.2="" 0.<="" 23300="" <pql="" td="" €0505=""><td>0 <pql 0.1<="" 0.2="" 0.507="" <pql="" td=""><td>L <pol 02="" 10507="" 201<="" <pol="" td=""><td>0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql></td></pol></td></pql></td></pql></td></pql></td></pql></td></pql>	1 76.0 390 450 <pql 0.2="" 0.507="" 0.<="" 23.0="" <pql="" td=""><td>390 450 <pql 0.2="" 0.2<="" 0.507="" <pql="" td=""><td>1 450 <pql 0.2="" 0.<="" 23300="" <pql="" td="" €0505=""><td>0 <pql 0.1<="" 0.2="" 0.507="" <pql="" td=""><td>L <pol 02="" 10507="" 201<="" <pol="" td=""><td>0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql></td></pol></td></pql></td></pql></td></pql></td></pql>	390 450 <pql 0.2="" 0.2<="" 0.507="" <pql="" td=""><td>1 450 <pql 0.2="" 0.<="" 23300="" <pql="" td="" €0505=""><td>0 <pql 0.1<="" 0.2="" 0.507="" <pql="" td=""><td>L <pol 02="" 10507="" 201<="" <pol="" td=""><td>0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql></td></pol></td></pql></td></pql></td></pql>	1 450 <pql 0.2="" 0.<="" 23300="" <pql="" td="" €0505=""><td>0 <pql 0.1<="" 0.2="" 0.507="" <pql="" td=""><td>L <pol 02="" 10507="" 201<="" <pol="" td=""><td>0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql></td></pol></td></pql></td></pql>	0 <pql 0.1<="" 0.2="" 0.507="" <pql="" td=""><td>L <pol 02="" 10507="" 201<="" <pol="" td=""><td>0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql></td></pol></td></pql>	L <pol 02="" 10507="" 201<="" <pol="" td=""><td>0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql></td></pol>	0.2 0.500 <pql 0.<="" 23.40="" td=""><td>0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol></td></pql>	0 200 <pol 0<="" 240="" td=""><td><pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<></td></pol>	<pql< td=""><td>0.0</td><td>Ö</td><td>8</td><td>488</td><td>81</td><td>32</td><td>16</td><td>4.8</td><td>0.10</td><td>sPQL</td><td>₽QL</td><td>s 10⊲</td><td>\$ G</td><td>or or</td><td>Q 4</td><td>11 0.01</td><td>e 1</td><td>0.011</td></pql<>	0.0	Ö	8	488	81	32	1 6	4.8	0.10	sPQL	₽QL	s 10⊲	\$ G	or or	Q 4	11 0.01	e 1	0.011
7.4 Z2.5 72.6 380 430 <pol #2330="" 0.1="" 0.30="" 4.<="" <pol="" td=""><td>1 72.6 380 430 <pql 0.1="" 0.30="" 4.30<="" <pql="" td=""><td>380 430 <pql 0.1="" 0.30="" 4.0<="" <pql="" td=""><td>1 430 <pol 0.1="" 0.30="" 4.<="" <pol="" td=""><td>0 <pql 0.1="" 0.30="" 4.<="" <pql="" td="" ₩2.2%=""><td>L <pql 0.1="" 0.30="" <pql<="" td=""><td>0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql></td></pql></td></pql></td></pol></td></pql></td></pql></td></pol>	1 72.6 380 430 <pql 0.1="" 0.30="" 4.30<="" <pql="" td=""><td>380 430 <pql 0.1="" 0.30="" 4.0<="" <pql="" td=""><td>1 430 <pol 0.1="" 0.30="" 4.<="" <pol="" td=""><td>0 <pql 0.1="" 0.30="" 4.<="" <pql="" td="" ₩2.2%=""><td>L <pql 0.1="" 0.30="" <pql<="" td=""><td>0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql></td></pql></td></pql></td></pol></td></pql></td></pql>	380 430 <pql 0.1="" 0.30="" 4.0<="" <pql="" td=""><td>1 430 <pol 0.1="" 0.30="" 4.<="" <pol="" td=""><td>0 <pql 0.1="" 0.30="" 4.<="" <pql="" td="" ₩2.2%=""><td>L <pql 0.1="" 0.30="" <pql<="" td=""><td>0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql></td></pql></td></pql></td></pol></td></pql>	1 430 <pol 0.1="" 0.30="" 4.<="" <pol="" td=""><td>0 <pql 0.1="" 0.30="" 4.<="" <pql="" td="" ₩2.2%=""><td>L <pql 0.1="" 0.30="" <pql<="" td=""><td>0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql></td></pql></td></pql></td></pol>	0 <pql 0.1="" 0.30="" 4.<="" <pql="" td="" ₩2.2%=""><td>L <pql 0.1="" 0.30="" <pql<="" td=""><td>0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql></td></pql></td></pql>	L <pql 0.1="" 0.30="" <pql<="" td=""><td>0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql></td></pql>	0.1 0.30 <pql 22<="" td=""><td>0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<></td></pql>	0.30 <pol< td=""><td><pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol></td></pol<>	<pol 22="" 4.<="" td=""><td>1 (A)</td><td>4</td><td>2</td><td>454</td><td>71</td><td>30</td><td>15</td><td>4.5</td><td>≮PQL</td><td><₽QL</td><td><₽QL</td><td>¢PQL ≤</td><td>¢ G</td><td>or a∟</td><td>- ₽C</td><td>11 0.02</td><td>ъ</td><td>0.002</td></pol>	1 (A)	4	2	454	71	30	15	4.5	≮PQL	<₽QL	<₽QL	¢PQL ≤	¢ G	or a∟	- ₽C	11 0.02	ъ	0.002
7.2 22.5 81.4 380 490 주면L 주면L 아내 주면L 주면L 20.4 2001 20173 1.	1 81.4 380 490 <pol 0.4="" 1.<="" <pol="" td=""><td>380 490 <pol 0.4="" 1.<="" 201="" <pol="" td=""><td>1 490 <pol 0.4="" 1.2<="" 201="" <pol="" td=""><td>0 <pol 0.4="" 1.1<="" <pol="" td=""><td>L <pal 0.4="" 1.<="" 3.7%="" <pal="" td=""><td>0.4 <pol 12<="" <pol="" td=""><td><pol 21:1<="" <pol="" p=""></pol></td><td><pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol></td></pol></td></pal></td></pol></td></pol></td></pol></td></pol>	380 490 <pol 0.4="" 1.<="" 201="" <pol="" td=""><td>1 490 <pol 0.4="" 1.2<="" 201="" <pol="" td=""><td>0 <pol 0.4="" 1.1<="" <pol="" td=""><td>L <pal 0.4="" 1.<="" 3.7%="" <pal="" td=""><td>0.4 <pol 12<="" <pol="" td=""><td><pol 21:1<="" <pol="" p=""></pol></td><td><pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol></td></pol></td></pal></td></pol></td></pol></td></pol>	1 490 <pol 0.4="" 1.2<="" 201="" <pol="" td=""><td>0 <pol 0.4="" 1.1<="" <pol="" td=""><td>L <pal 0.4="" 1.<="" 3.7%="" <pal="" td=""><td>0.4 <pol 12<="" <pol="" td=""><td><pol 21:1<="" <pol="" p=""></pol></td><td><pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol></td></pol></td></pal></td></pol></td></pol>	0 <pol 0.4="" 1.1<="" <pol="" td=""><td>L <pal 0.4="" 1.<="" 3.7%="" <pal="" td=""><td>0.4 <pol 12<="" <pol="" td=""><td><pol 21:1<="" <pol="" p=""></pol></td><td><pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol></td></pol></td></pal></td></pol>	L <pal 0.4="" 1.<="" 3.7%="" <pal="" td=""><td>0.4 <pol 12<="" <pol="" td=""><td><pol 21:1<="" <pol="" p=""></pol></td><td><pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol></td></pol></td></pal>	0.4 <pol 12<="" <pol="" td=""><td><pol 21:1<="" <pol="" p=""></pol></td><td><pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol></td></pol>	<pol 21:1<="" <pol="" p=""></pol>	<pol 11.<="" 117="" td=""><td>·1- 新加速</td><td>7</td><td>2</td><td>509</td><td>62</td><td>36</td><td>17</td><td>4.3</td><td>≺PQL</td><td><₽QL</td><td>PQL</td><td>⊳ PQL</td><td>₹ g</td><td>10 D4</td><td>₽ ₽</td><td>11 0.18</td><td>104∻</td><td>0.001</td></pol>	·1- 新加速	7	2	509	62	36	17	4.3	≺PQL	<₽QL	PQL	⊳ PQL	₹ g	10 D4	₽ ₽	11 0.18	104∻	0.001

Excess of WHO guideline Excess of Bangladesh Standard (The values were determined as exceeding the standards before rounding off)

Excess of both Bangladesh Standard and WHO guideline

5.6 Core Sample Analysis

5.6.1 Results of Arsenic Analysis in Core Samples

1) CH-2 Site [Girls College, Chuadanga Pourashava]

Figure 5.6.1 shows the results of the arsenic content test and leachate test at CH-2 site.

The total arsenic content is generally lower than 10ppm at depths from 0 to 204 m. In the shallow portion, clay and silt samples at depths from 0.17 to 6.50 m have slightly elevated total arsenic contents ranging from 5.6 to 9.7ppm. However, the samples from 13.3 to 91.2 m have small total arsenic contents ranging from 0.5 to 2.1ppm. The peaty silt sample collected from 102.50 to 102.63 m in depth has 17.73ppm. But some samples in depths from 206.0 to 245.2 m have high total arsenic content from 20 to 117ppm. The highest total arsenic content of 117.26ppm, which is also the highest in the study, was detected in a silty clay sample at depths from 207.50 to 207.72 m. It should be noted that such a higher value of arsenic content in the deep layers more than 200 m in depth has not been found in the previous studies in Bangladesh. The samples below 245.3 m have total arsenic contents ranging from 3.7 to 6.4ppm.

The results of the leachate test show that the samples from 0.1 to 45. 7 m in depth have almost less than 5 ppb of leached arsenic. In the samples from 52.0 to 192.5 m, slightly elevated leached arsenic was found at depths from 52.05 to 57.50 m (8.0 to 8.8ppb) and from 135.00 to 141.36 m (7.1 to 9.6ppb). In depths from 199.60 to 268.60 m, some samples show more than 10ppb of leached arsenic. The highest value of 20.5 ppb was detected from a fine to medium sand sample having 5.08ppm in total arsenic content. The sample having the highest total arsenic content of 117.26ppm shows only 11.0ppb. The samples below a depth of 271.3 m have less than 6ppb.

2) CH-CB Site [Bara Dudpatila Village, Damurhuda Upazila]

Figure 5.6.2 shows the results of the arsenic content test and leachate test at CH-BD site.

The samples from 0.0 to 100.8 m in depths have total arsenic content less than 10ppm. The clayey silt sample at depths from 111.65 to 111.85 m has a total arsenic content of 42.71ppm. The total arsenic content in the samples at depths from 119.3 to 223.5 m tends to increase with depth, from 3 to 14ppm. The clayey sample taken at a depth from 228.50 to 229.00 m has the highest total arsenic content of 93.57ppm at the site. Below this, the arsenic content ranged from 2.2 to 8.3ppm at depths from 233.0 to 268.2 m. In the samples below 270 m in depth, there are two (2) samples having more than 20ppm in total arsenic content. One is a fine to medium sand sample from 272.40 to 273.00 m (29.76ppm) and the other is very fine to fine sand sample from 290.00 to 290.40 m (47.09ppm).

The result of the leachate test shows that the shallow core samples within 100 m in depth have a very small value of leached arsenic, almost less than 5 ppb. However, the leached arsenic gradually increases with depth in the samples from 100 to 300 m. The leached arsenic ranges

from 5 to 12ppb from 100 to 260 m, whereas the value ranges from 10 to 20ppb in depths from 264.5 to 290.4 m.

3) JH-1 Site [Arabpur, Jhenaidah Pourashava]

Figure 5.6.3 shows the results of the arsenic content test and leachate test at JH-1 site.

The vertical distribution of total arsenic content at the site is characterized by relatively higher values within 200 m in depth and very low arsenic content below the depth. Although the values range from 0 to 20ppm, relatively higher values more than 10ppm are found in a fine sand sample (8.40 to 9.00 m, 11.88ppm), silty fine sand sample (63.00 to 63.60 m, 17.95ppm), silty clay sample (100.55 to 100.37 m, 19.48ppm), very fine to fine sand sample (143.28 to 143.85 m, 16.68ppm), and fine to medium sand samples (183.00 to195.85 m, 10.61 to 14.38ppm). It is noted that the baseline of the total arsenic content increases with depth particularly from 100 to 200 m in depth. The samples in depths from 210 to 277 m have small total arsenic contents within 3ppm.

The result of the leachate test shows that the amount of leached arsenic is almost less than 5ppb from 0 to 300 m in depth except the samples from 61.6 to 67.0 m. The highest value of 90.5ppb was recorded in a silty fine sand sample (63.00 to 63.60 m) with a total arsenic content of 17.95ppm. The second and third highest values are found in a fine to medium sand sample (66.40 to 67.00 m, 59.9ppb) and fine to medium sand sample (61.60 to 62.00 m, 47.9ppb), respectively. Compared with the distribution of total arsenic content, only this portion has the appearance of arsenic both in the total content test and leachate test.

4) JH-KC Site [Krishna Chandrapur Village, Moheshpur Upazila]

Figure 5.6.4 shows the results of the arsenic content test and leachate test at JH-KC site.

The values of total arsenic content vary between 0 and 15ppm at the site. The general vertical distribution pattern is characterized by slightly higher values in the shallow portion within 30 m in depth, lower values less than 5ppm from 30 to 140 m, gradual increase from 2 to 5ppm at 150 m to 5 to 10ppm at 210 m, and a continuation of the range of variation up to 300 m in depth. The highest value of 12.96ppm at the site was recorded in the sample of sandy clay at depths from 25.70 to 25.85 m. It is noted that the background value of the arsenic content is higher in the fine sediments occurring below 195 m in depth.

5) JS-2 Site [Kharki, Jessore Pourashava]

Figure 5.6.5 shows the results of the arsenic content test and leachate test at JS-2 site.

The result of the total arsenic content test shows that higher values ranging from 40 to 60ppm are found at depths from 5 to 20 m. In the deeper portion, slightly elevated arsenic contents around 10ppm were found at depths around 160 and 210 to 250 m. The highest value of

63.15ppm in the site was found in a sample of peaty silt (14.45 to 14.78 m). The samples of peat, peaty silt, and clayey sediments at depths from 8.4 to 19.2 m have higher arsenic contents, which can be regarded as the source of arsenic contamination at the site. In the deeper portion, the samples having more than 10ppm are silty clay (159.50 to 159.65 m, 14.62ppm), silt (217.30 to 217.73 m, 10.57ppm), and sandy silt (252.00 to 252.15 m, 13.71 m). There is no increase of the baseline value of the arsenic content below 250 m in depth.

The result of the leachate test also shows that the arsenic is leached from the samples at shallow depths within 20 m as high as 20ppb. The maximum value of 20.3ppb was found in the peat sample at depths from 19.08 to 19.18 m with a total arsenic content of 50.70ppm. In the lower portion, the results show almost less than 5ppb except the samples taken from 252.0 to 273.9 m. The samples consist of sandy silt, fine to medium sand, and medium sand and have 5.2 to 8.6ppb.

6) JS-2 Site [Rajnagar Bankabarsi Village, Keshabpur Upazila]

Figure 5.6.6 shows the results of the arsenic content test and leachate test at JS-RB site. The result of the total arsenic content test shows that the values are more than 50ppm in shallow samples within 10 m in depth and deeper samples obtained at depths from 250 to 260 m. The baseline value tends to increase from 1 to 15ppm with depth. The highest arsenic content of 67.61ppm was found from a silt sample at depths from 254.54 to 254.91 m. The clayey silt sample (256.23 to 256.66 m) beneath the silt sample also has a higher value of 60.22ppm. In the shallow portion, a peat sample (8.00 to 8.21 m) has 57.12ppm. The other samples of peat, peaty clay, and clay at depths from 7.0 to 9.9 m have values from 10.0 to 29.4ppm. It is noted that the baseline value of the arsenic content is higher than 10ppm below the highly contaminated samples at depths from 254.54 to 256.66 m, and that is clearly different from the baseline values in the upper layers.

The result of the leachate test shows that leached arsenic was found in some samples above 160 m in depth. The samples below 160 m in depth show less than 5ppb. The highest value of 16.6ppb was found from clayey silt at depths from 131.08 to 131.45 m. In the shallow portion, the peat samples having an arsenic content of 29.4 to 57.1ppm show only 7.3 to 10.3ppb. Since there is a peaty, very fine sand sample having 10.81ppm of arsenic at 61.8 to 62.0 m, the samples at depths from 61.8 to 75.0 m have 6.5 to 7.3ppb of leached arsenic.

5.6.2 Evaluation of Arsenic Analysis

From the quality control test, secondary contaminations of core samples were not observed. It is evaluated that the sampling method and procedures employed in the study were satisfactorily performed.

The results of the total arsenic content test indicate the existence of arsenic in the soil not only

in the shallow portion but also in the deeper portion up to 300 m in depth at some places. The occurrence of arsenic in the deeper layers indicates that there is a possibility of arsenic contamination originating from the deeper source. In other words, there is a potential of arsenic contamination in some places in the Study Area. However, the total arsenic content test does not show the form of arsenic occurrence. Therefore, it is difficult to judge whether or not the arsenic in deeper layers can easily be released into the groundwater. Moreover, there would be many complicated factors that control the release of arsenic from soil into groundwater. In the next step, it is necessary to research the occurrence and behaviors of arsenic that exists in the deeper layers.

Regarding the leachate test, the results are sometimes not in good agreement with the result of the arsenic content test. One of the probable reasons is that the in-situ groundwater conditions and laboratory conditions are different. For example, the extraction solution is controlled under acidic conditions; however, the general groundwater quality in the Study Area shows the pH is generally above 7. Due to the difference of leaching environment, some arsenic in the samples may not be released into the solution. Therefore, based on the results of this study, further detailed tests are required for research purposes.

It is also necessary to consider more sophisticated sampling methods to satisfy further detailed arsenic analysis, particularly for analyzing the form of the arsenic in soil.

5.7 Evaluation of Deep Aquifers

5.7.1 Quantitative Evaluation

1) Specific Capacity

Figure 5.7.1 shows the distribution of specific capacity (*Sc*) values by drilling site. Ch-1 well in Chuadanga Pourashava has the greatest value of 257.1 m²/day. The second greatest value was found at Js-1 well in Jessore Pourashava, having 85.4 m²/day. On the other hand, the smallest *Sc* value of 2.5 m²/day was found at Jh-1 well, while the second smallest value of 6.5 m²/day was also found in Jhenaidah Pourashava at Jh-2 well. The *Sc* values of Ch-2 well and Js-2 well show 10.5 and 9.1 m²/day, respectively.

The aquifer productivity of deep aquifers below 200 m in depth in the Study Area is smaller than that of the main aquifer used by the existing Pourashava production wells in terms of specific capacity.

2) Transmissivity

Figure 5.7.2 shows the vertical distribution of *T* values by district. In Chuadanga, the *T* values in the shallow aquifers within 162 m in depth range from 300 to 830 m²/day. In the deep aquifer, Ch-1 well has a very high value of *T* about 16,000 m²/day. However, the *T* values in Ch-2 well and Ch-2-4 hole shows 80 to 740 m²/day.

In Jhenaidah District, the 100 m depth zone has higher values of *T* ranging from 2,000 to 3,400 m²/day. The 150 m zone also shows higher values ranging from 400 to 1,850 m²/day. The shallowest holes in the 50 m zone show 115 to 290 m²/day. However, Jh-1and Jh-2 observation wells have very small *T* values below 2 m²/day. The productivity of the deep aquifer in terms of transmissivity is smaller than that of shallow aquifers.

In Jessore District, the *T* values in the 150 m zone show smaller values, ranging from 2 to 300 m²/day. The *T* values of the 50 and 100 m zones show 200 to 3,500 m²/day. In the deep wells/holes, the rest mainly shows *T* values ranging from 30 to 80 m²/day except Js-2 well.

The transmissivity value in the deep aquifer is generally smaller than that of shallow aquifers. However, the T values vary widely by place and by well/hole. The T values at Ch-1 well and Js-1 well indicate that the aquifer productivity is enough to supply water for a piped water system. However, the T values in Jhenaidah Pourashava are too small.

5.7.2 Qualitative Evaluation

1) As Concentration and Groundwater Quality

a. CH-1 Site [Poshu Hat, Chuadanga Pourashava]

Figure 5.7.3 shows the vertical distribution of arsenic concentration and groundwater quality by stiff diagram at CH-1 site. At the site, the arsenic concentrations generally ranged from 0.03 to

0.06 mg/l in holes Ch-1-1 to Ch-1-3 for the period from February to October 2001. However, the As concentrations in the deep groundwater measured in Ch-1 well and Ch-1-4 hole ranged from 0.002 to 0.04 mg/l, showing lower concentrations than the shallow aquifers.

The stiff diagrams show that the sizes of the diagrams from holes Ch-1-1 to Ch-1-4 are comparatively small. On the other hand, the size is larger in the deep groundwater, indicating that the chemical characteristics of the deep groundwater are different from the shallow ones.

Considering the existence of fine sediments such as very fine to fine sand layers at depths from 174 to 212 m, it can be said that the deep aquifer is separated from the shallow aquifers to a certain degree. However, there is no thick clay layer between the shallow aquifers and deep aquifer, it may be possible that groundwater can move vertically when the difference of hydraulic heads between the two aquifers is greater. A trilinear diagram showing the difference of water quality in CH-1 and CH-2 site is presented in Figure 5.7.6 and Figure 5.7.8.

b. JH-1 Site [Arabpur, Jhenaidah Pourashava]

Figure 5.7.4 shows the vertical distribution of arsenic concentration and groundwater quality by stiff diagram at JH-1 site. At the site, As concentrations are higher only in Jh-1-1 hole. The As concentration of holes Jh-1-2 and Jh-1-3 ranges from 0.01 to 0.03 mg/l. In the deep groundwater, the As concentrations also ranged from lower levels from 0.005 to 0.03 mg/l.

The stiff diagram of the Jh-1-1 hole is the smallest. The size of the diagrams of holes Jh-1-2 and Jh-1-3 is slightly larger than that of Jh-1-1 hole. Further, it is clear that the size of the diagrams of Jh-1 well and Jh-1-4 hole is larger than the shallow ones. At the site, it is possible to identify three (3) aquifers from hydrogeological and hydrochemical points of view. The shallow aquifer, which is separated from the underlying middle aquifers by alternating layers of medium sand and silty clay, has groundwater moderately contaminated by arsenic with a smaller-sized stiff diagram. The middle aquifer having less contaminated groundwater with slightly larger-sized stiff diagrams occurs at depths from 80 to 190 m. The deep aquifer, which occurs below the thick alternating layers of sandy silt and fine sand from 190 to 235 m, has groundwater less contaminated by arsenic with larger-sized stiff diagrams.

Although there is no pure and thick clay layer between the shallower aquifers and the deep aquifer, the hydrogeological and hydrochemical conditions suggest that the deep aquifer is separated at the present time from the shallow ones by the finer sediments at depths from 190 to 235 m. A trilinear diagram showing the difference of water quality in JH-1 and JH-2 site is presented in Figure 5.7.8 and Figure 5.7.9.

c. JS-1 Site [Ghop, Jessore Pourashava]

Figure 5.7.5 shows the vertical distribution of arsenic concentrations and groundwater quality by stiff diagram at JS-1 site, Jessore Pourashava. At the site, it is noted that the arsenic

concentration in Js-1-2 hole, from which the 100 m zone aquifer is monitored, is the highest among the observation well/holes even though the arsenic levels range from 0.001 to 0.035 mg/l.

The stiff diagrams show that the groundwater quality of shallow aquifers measured in holes Js-1-1 to Js-1-3 shows to be Ca - HCO_3 type, whereas the deep groundwater measured at Js-1 well and Js-1-4 hole shows to be a different type of chemical composition, characterized by (Na+K) - HCO_3 type.

According to the geological columnar section, there are fine-grained layers including very fine sand and sandy silt at depths from 200 to 260 m. It is, therefore, regarded that the deep aquifer is separated from the shallow aquifers by the fine sediments. A trilinear diagram showing the difference of water quality in JH-1 and JH-2 site is presented in Figure 5.7.10 and Figure 5.7.11.

2) Arsenic in Soil and Groundwater

Arsenic in soil and groundwater was compared at three (3) drilling sites in Pourashava areas where core boring and the depth-wise distribution of arsenic monitoring were carried out

a. CH-2 Site [Girls College, Chuadanga Pourashava]

Figure 5.7.12 shows the vertical distribution of the total arsenic content, arsenic by leachate test, and arsenic concentration in groundwater at CH-2 site. The total arsenic contents in the core samples from depths shallower than 200 m are not high (less than 10 ppm). The result of the leachate test also shows the released arsenic by the test was very small in the portion, particularly at depths from 0 to 50 m where the amount was almost below 5 ppb. However, the arsenic concentration at Ch-2-1 hole, which has screen at depths from 44.5 to 53.5 m, shows groundwater highly contaminated by arsenic ranging from 0.12 to 0.23 mg/l. The reason may be that although the source of arsenic does not exist at the drilling point itself, the source must be located near the drilling point at a shallow depth so that the plume of contaminated water has reached the drilling point by advection and dispersion. The decreasing of arsenic concentration in groundwater with depth, which is observed in the holes from Ch-2-1 to Ch-2-3, also suggests that the source of arsenic is located in the shallow portion within 50 m in depth near the drilling site. The vertical distribution of arsenic concentrations in groundwater also indicates the downward movement of contaminated groundwater.

In the deeper portion below 200 m in depth, although the highest total arsenic content of 117.3 ppm was found in a silty clay sample at depths from 207.50 to 207.72 m and the values from 20 to 50 ppm were also found at depths from 210 to 250 m, the arsenic concentrations in groundwater measured in Ch-2 well and Ch-2-4 hole were very small, showing below 0.002 mg/l. To explain the reason of the phenomenon, the following three (3) hypotheses can be proposed:

- The arsenic in the deep soil is not released into groundwater, and remains in the soil.
- Some amount of the arsenic is leached into groundwater, but has not reached the deep aquifer due to the slow groundwater flow velocity.
- The arsenic is released in the groundwater, but the contaminated groundwater moves upward for the depression of piezometric head in the upper aquifers.

At the site, there is no crucial data to identify the reason. Further research and monitoring of groundwater conditions are required.

b. JH-1 Site [Arabpur, Jhenaidah Pourashava]

Figure 5.7.13 shows the vertical distribution of total arsenic content, arsenic by leachate test, and arsenic concentration in groundwater at JH-1 site. Since the total arsenic contents in the samples from 0 to 300 m in depth are below 20 ppm, a clear source of arsenic cannot be identified from the profile. However, the groundwater in Jh-1-1 hole, which has screen at depths from 48 to 57 m, has slightly elevated arsenic concentrations ranging from 0.043 to 0.055 mg/l. The slightly high arsenic groundwater was also found in the deep aquifer. It ranges from 0.01 to 0.03 mg/l at Jh-1-3 and Jh-1-4.

This might be related to the traveling time and flow path of deep groundwater as well as the mechanism of arsenic contamination in deep layers.

c. JS-2 Site [Kharki, Jessore Pourashava]

Figure 5.7.14 shows the vertical distribution of total arsenic content. At the site, the source of arsenic contamination is the shallow clayey sediments particularly peat, which has an arsenic content of 40 to 65 ppm. Below 20 m in depth, there is no arsenic source up to 300 m. However, the highest As concentrations ranging from 0.05 to 0.1 mg/l were found from Js-2-2 hole, which has screen pipes at a depth from 99 to 111 m. On the other hand, the groundwater in Js-1-1 hole, in which screen is located about 30 m below the peaty layers, does not show arsenic contamination in groundwater.

It is thought that the arsenic found in the groundwater of Js-1-2 hole is not derived straight from the shallow peaty layers by the vertical movement of groundwater, because the As concentration in Js-1-1 hole is clearly lower than that in Js-1-2. A possibility is that the plume of contaminated water reached the screen portion of Js-1-2 hole from the shallow portion of another area.

In the deep aquifers below 240 m in depth, there is no source of arsenic contamination. It is, therefore, evaluated that the deep aquifer at the site has no potential of future arsenic contamination by the arsenic originating from the deep layers.

3) Potential of Arsenic Contamination in Deep Aquifer

From the investigation results mentioned above, it can be said that there are two (2) possibilities to contaminate the groundwater of deep aquifers. One is that the seepage or leakage from shallow contaminated water reaches the deep aquifers. The possibility of such contamination originating from the shallow portion is high if there is no significant aquitard or aquiclude between the two aquifers. If the shallow aquifer and the deep aquifer are directly connected, the shallow groundwater can move downward easily when the piezometric head in the deep aquifer is lower than that of shallow aquifer.

Another possibility is that the deep aquifer is contaminated by the arsenic occurring in the deep layers. From the results of core sample analysis, CH-2 and CH-BD sites in Chuadanga District and JS-RB site in Jessore District have potential of such contamination. However, so far no significant arsenic contamination in groundwater has been detected. Although the potential of deep contamination exists at the sites, the possibility of deep contamination from the arsenic in the deep layers cannot be evaluated at present moment.

To evaluate the deep contamination, it is necessary to carry out further monitoring and detailed research on the deep groundwater conditions as well as the nature and environment of deep aquifers including the detailed form and occurrence of arsenic in the deep layers.

*;**

5.8 Regional Hydrogeologic Structures

5.8.1 Geological Profiles

A total of 7 geological profiles in N-S and W-E directions were prepared. For identifying the geologic units at each existing drilling record, the geologic descriptions and drilling records were carefully examined one by one comparing them with the neighboring existing well records and the resistivity profiles nearby. Transient electromagnetic measurement (TEM) and electric prospecting using the Schlumberger electrode configuration were used for the geophysical survey. The TEM measurements were carried out at 200 points in the study area. The TEM results clearly show the occurrence of subsurface resistivity layers up to a depth of 400m. The high resistivity layer, which corresponds to Second Aquifer (= Middle Aquifer) can be traced widely in most parts of the study area at depths from 100 to 200m. However, the high resistivity layer cannot be found in the southern part of the study area because C formation mainly consists of clayey layers.

The geological profiles along A - A' line to B - B' line are presented in Figures 5.8.1 to 5.8.2. The layer of these formations has a general tendency to become coarser toward the north. A, B and E formations lie flatly in the Study Area. C and D formations are slightly dipping toward the southeast in the Study Area. E formation lies flatly in the Study Area. The upper part of E formation is unconformably overlain by D formation with angular unconformity.

D formation declines from the northwestern area (Chuadanga thana) toward the southeastern area (Abhaynagar thana). The depths to the bottom of the formation widely vary from about GL-190 to 300 m+.

C formation is learning from the northwestern area (Chuadanga thana) toward the southeastern area (Abhaynagar thana) like D formation. The depths to the bottom are widely distributed from about GL-160 to 270 m+.

The base of B formation shows to be comparatively flat in the Study Area. The depths to the bottom are deep in the northeastern area (Sailkupa thana) while the depths are shallow in the southern area (Kesahbpur thana).

The thickness of A formation varies from 25 to 50 m. The bottom of A formation is not flat. The depths to the bottom tend to decrease (GL-25 m) in the northwestern area (Sailkupa thana), and to increase (about GL-50 m) in the southern area (Kesahbpur thana).

1) Geological Profile along A – A' Line (Figure 5.8.2)

The profile line is located in the western part of the Study Area from north to south. Along the profile line, there are three (3) core boring sites. The boundaries of geologic formations decline toward the south. The grain size of the sediments generally becomes smaller in the southern part. In C formation, several thick gravelly layers occur in Chuadanga and Jhenaidah Districts, but the layers disappear in the area between Moheshpur in Jhenaidah District and Chougacha in

Jessore District. From Jhikargacha in Jessore, thick clayey layers occur in C formation, but that cannot be seen well in Sharsha.

2) Geological Profile along B – B' Line (Figure 5.8.3)

The profile line is located in the eastern part of the Study Area from north to south. Along the profile line, there are three (3) core boring sites. The boundaries between E and D formations and D and C formation decline toward the south; however, the depths of the other formation boundaries vary from place to place. It can be seen from the profile that a thick gravel layer occurs in C formation from Chuadanga District to the south of Jessore town through Jhenaidah District. However, the gravel layer is not distributed in Moniranpur in Jessore District. Instead, a clayey layer occurs in C formation from South of Jessore town to Keshabpur. The thickness of the clayey layer suddenly increases from Moniranpur to Keshabpur. The clayey layer becomes about 100 m thick in the southern part of Keshabpur Upazila.

5.8.2 Isopach Map of Clayey Layers

From the geological profiles in the Study Area, it is understood that the distribution and thickness of clayey layers in C formation are very important to control groundwater flow in the Study Area. It clearly divides the shallow aquifer and the deep aquifer. And the concentration of arsenic and other groundwater quality are also different above the clayey layers and below the clayey layers. The arsenic concentration and groundwater quality in the deep aquifer overlain by the clayey layers clearly shows much better conditions than those in the shallow aquifer.

Figure 5.8.4 shows the isopach map of the clayey layers in C formation, indicating the thickness and area of distribution of the clay. The isopach map was prepared based on the results of core boring and drilling of observation wells/holes, results of the geophysical prospecting by TEM method, and data of existing well records. The clayey layers are distributed in the southern to western part of Jessore District. The clay is not distributed in Jhenaidah and Chuadanga Districts. In Jessore District, clayey layers more than 80 m thick are found in Keshabpur and Jhilkargacha. In Abhaynagar, the thickness increased to more than 80 m in the southeastern part toward Khulna. The areas having more than 50 m in thickness are distributed in all of Keshabpur, the central to southeastern part of Abhaynagar, central to southern Monirampur, central to northern Jhikargacha, and the northeastern part of Sharsha. On the other hand, the clayey layers are not distributed in the western part of Sharsha upazila, northern Jessore Sadar Upazila, and northwestern Bagarpara Upazila.

The isopach map will provide very important information on the hydrogeological characteristics of the Study Area as well as the strategy of deep groundwater development for a safe drinking water supply.

5-183

5-184

