7.4. Eğim Stabilitesi Hesaplaması

7.4.1. Eğim Stabilitesi Hesaplama Metodu

(1) Mevcut Topografik Durum ve Eğim Stabilite Durumu

Kutay Özaydın(2001) eğimlerin genel durumunu aşağıdaki gibi özetlemiştir:

Yüzey jeolojisinin Güngören ve Gürpınar Formasyonu olduğu alanlarda birçok yerde toprak kayması meydana gelir. Bu kayma olayı, 1) zemin yüzey eğim yüzdesi %30'dan fazla ise 2) kazma ve doldurma işlemleri gerçekleştirilmiş ise 3) yer altı su seviyesinde değişiklik oluyorsa, açıkça görülebilir.

Erdoğan Yüzer (2001) eğimlerin genel durumunu aşağıdaki gibi özetlemiştir:

Anadolu yakasında, yüzey jeolojisi genellikle kaya ve toprak kayması olmaz. Avrupa yakasında, kıyı kesimi boyunca ve komşu alanlarda toprak kayması gözlenir. Bu fenomen Silivri ilçesinin ilersine kadar gözlenir. Kaymanın ölçeği 50 ile 100'lerce metrelik kayan bloklar şeklinde komplekstir. Özellikle Büyükçekmece Gölü'nün doğu yakası eğimi, Avcılar ilçesinin güney kıyısı ve Küçükçekmece Gölü'nün güneybatı sahili tipik toprak kayması alanlarıdır. Bu alanlarda zemin dayanımı, rezidual durumlar(residual conditions) gibi dikkate alınır.

JICA Çalışma Ekibi, bazı kaya formasyonlarında da eğim yüzey tahribatları gözlemlemiştir. Bu alanlarda, eğim yüzdesi %100'ün üzerinde bir değer göstermekte ve bu yüzeylerin önünde yada üstünde konutlar bulunmaktadır.

Yukarıdaki eğim durumlarını dikkate alarak, büyük eğim tahribatları aşağıdaki gibi sınıflandırılır;

Kaya Formasyonu Alanı

Aşınmış alan yada şev yüzey tahribatları dikkate alınır. Yüzlerce kilometre boyutunda geniş kaya kütle göçmeleri dikkate alınmaz. Bu tip geniş tahribat alanlarının stabilitesi detaylı araştırmalar temel alınarak incelenmelidir.

Tersiyer Formasyon Alanları

Güngören ve Gürpınar Formasyonu gösteren alanlar daima toprak kayması yaşarlar. Zemin dayanımı rezidual durum olarak dikkate alınır. Aşınmış alan yada şev yüzey tahribatları diğer Tersiyer çoğunluklu alanlarda dikkate alınmıştır.

Kuvaternar Formasyon ve Dolgu Malzeme Alanları

Genel dairesel kayma dikkate alınmıştır.

1999 Marmara Depreminden önce, sadece üç ilde arama ve kurtarma birimi bulunmaktaydı. Depremden sonra sivil savunma sekiz ilde daha arama ve kurtarma ekibi kurdu. Ayrıca sivil savunma biriminin olmadığı bütün illerde sivil savunma ekipleri oluşturuldu.

Son zamanlarda gerçekleştirilen kurtarma çalışmaları Tablo 3.4.2. de gösterilmiştir. Farklı illerden görevlendirilmiş kurtarma personelinin sayısı Tablo 3.4.3. de gösterilmiştir.

			Kurtarılan Ki ş i Sayısı		
Afetin Tarihi	Afetin Yeri ve Türü	Kurtarma Çalışanı	Ölü	Canlı	Toplam
13.03.1992	Erzincan - Deprem		34	4	38
24.04.1993	İstanbul / Hekimbaşı - Metan Gazı Patlaması		12	0	12
13.07.1995	Isparta / Senirkent- Sel		37	1	38
01.10.1995	Afyon / Dinar - Deprem		23	9	32
04.11.1995	İzmir - Sel		2	0	2
27.11.1995	Alanya - Sel		1	0	1
22.03.1998	Bingöl and Tunceli - Çığ Düşmesi		4	0	4
21.05.1998	West Black Sea- Sel		1	101	102
27.06.1998	Ceyhan - Deprem		62	2	64
11.08.1998	Trabzon / Köprübaşı - Sel		1	0	1
14.01.1999	K.Maraş/ Ekinözü - Çığ Düşmesi		0	3	3
07.02.1999	Denizli / Honaz - Çığ Düşmesi		1	1	2
01.04.1999	Niğde / Çamardı - Çığ Düşmesi		0	1	1
07.07.1999	Erzurum Aşkale - Sel		2	0	2
08.08.1999	Antalya / Elmalı - Sel		1	0	1
17.08.1999	Marmara Depremi	110	349	194	543
11.11.1999	Bolu-Duce Depremi	108	56	30	86
06.06.2000	Çankırı / Orta - Deprem		1	-	1
08.05.2001	Hatay and Samandağ - Sel		0	3	3
10.06.2001	Sivas / Kangal - Toprak Kayması		4	0	4
03.02.2002	Afyon Depremi	197	14	0	14
	Toplam		605	349	954

 Tablo 3.4.2
 1992-2001 Tarihleri Arasında Sivil Savunma Birimlerinin Faaliyetleri

Kaynak: Sivil Savunma Genel Müdülrüğü internet sayfası (www.ssgm.gov.tr)

(3) Analiz Prosedürünün İrdelenmesi

Çalışma Alanı içerisinde eğim karakteristiği varyasyonlar göstermektedir ve her eğim için deteyli biçimde eğim tahribat parametrelerinin tanımlanması zordur. Bundan dolayı, eğim tahribat sınıflandırması kabulü yapılarak eğim stabilitesinin kualitatif olarak hesaplanması gerekliliği vardır.

Siyahi'nin prosedürü, yüzey tahribatının ve eğimin değişik şekilleri için minimum güvenlik faktörünü elde etmek açısından fikir vermektedir. Prosedür dairesel ark tahribatını ve normal olarak konsolide edilmiş zemini kabullenir. Sadece eğim yüzdesi ve kesme kuvveti hesaplama için gerekli veriyi oluşturmaktadır.

Dahası, parametrik yaklaşımın sonucu olarak, bu prosedür sadece dairesel yüzey tahribatını değil, bir ölçüde diğer tip yüzey tahribatınıda dikkate almaktadır. Çalışma Alanı içerisindeki eğimler ve tahribat tipleri daima Siyahi'nin prosedüründeki kabuller gibi değildir. Bununla birlikte prosedür karakteristiği eğim tahribat sınıflandırması dikkate alındığında avantajlıdır.

Bu çalışmada, Siyahi prosedürü küçük analiz birimleri için eğim stabilitesi hesaplanırken uygulanmıştır. Her hesaplama sonucu mikrobölgeleme birimleri içine işlenmiştir.

(4) Analiz Prosedürü ve Stabilite Hesaplaması

Hesaplama metodunun başlıkları aşağıda tanımlanmış ve Şekil 7.4.2'de gösterilmiştir.

Şekil 7.4.2 Eğim Tahribatı Hesaplamasının Akış Diyagramı

Kaynak: JICA Çalışma Ekibi

a. 50 m. Gridler için Eğim Stabilitesi Hesaplaması

Bütün Çalışma Alanını kapsayan, her 50 m. Grid için eğim yüzdesi ilk olarak hesaplanır. Daha sonra, en yüksek zemin ivmesi ve zemin mukavemeti dikkate alınarak ve Siyahi'nin denklemi (eq. 7.4.1) kullanılarak her nokta için eğim stabilitesi belirlenir. Stabil bir nokta için skor $F_i = 0$ (Fs > 1.0) yada stabil olmayan bir nokta için skor $F_i = 1$ (Fs < 1.0) olarak verilir.

b. 500 m. Grid için Eğim Stabilite Hesaplaması

Her 500 m. gridde toplam 100 tane 50 m. grid vardır ve 500 m. grid için eğim stabilite skoru aşağıdaki gibi belirlenir:

Stabil Olmayan Skor
$$(500 \text{ Grid}) = \sum_{i=1}^{100}$$
 Skor F_i (50 Grid)
 $F_i (50 \text{ Grid}) = 1$ (Stabil Değil)yada 0 (Stabil)

Eğer tüm 50m gridler stabil değil olarak hesaplanırsa, 500m grid için skor 100 olarak hesaplanır. Eğer tüm 50m gridler stabil olarak hesaplanırsa, skor 0 olarak hesaplanır. Bu skor direkt olarak herbir 500m grid içindeki 50m gridlerin yüzde kaçının stabil olmadığı sonucunu vermektedir. Nihayetinde, sonuçlar herbir 500m grid için riski temsil etmektedir ve Tablo 7.4.1 'de gösterilmiştir.

Stabil Olmayan Skor (500m Grid)	500m grid için Risk hesaplaması
0	Çok Düşük
1-30	Düşük
31-60	Yüksek
61-100	Çok Yüksek

 Tablo 7.4.1
 500m grid için Eğim Stabilitesindeki Risk Hesaplaması

(5) Hesap Parametreleri

a. Eğim Yüzdesi

Eğim yüzdesi 50m grid temelinde belirlenmiştir.

b. Zemin Hareketi

Senaryo depremler, Model A ve Model C dikkate alınmıştır çünkü bu iki senaryo deprem risk durumunun en genel fikrini temsil etmektedir.

c. Zemin Kesme Kuvveti

Kesme kuvveti hesaplama için en önemli parametredir. Zeminin kesme kuvveti ile ilgili mevcut veri sınırlıdır ve bütün jeolojik formasyonları kapsamamaktadır. Bundan dolayı, değerler mevcut iki referans dikkate alınarak hesap edilmiştir. İlki, "Yol İnşası, Eğim İyileştirmesi ve Stabilizasyon için Dizayn Rehberi, Japon Yol Birliği (Design Guideline for Road Construction, Slope Treatments and Stabilization, Japan Road Association, 1999)" yayınındaki "Aşınmış Kayaların Kayma Yüzeyi Mukavemeti (Strength of Sliding Surface for Weathered Rocks)". Bir diğeri "Eğim Stabilitesi ve Stabilizasyon Metodları (Slope Stability and Stabilization Methods, L. Abramson , 1996)" yayınındaki "Aşınmış Kayaların Kayma Yüzeyi Mukavemeti Rocks)"dir. Herbir formasyonun belirlenmiş olan mukavemeti ve dikkate alınan tahribat tipi Tablo 7.4.2'de özetlenmiştir.

Zemin Tipi	Jeoloji Formasyo	nu	Kesme Kuvveti Açısı	Açıklamalar	
	Jeoloji Haritası	Fromasyon	(Derece)		
Kaya	IBB 1:5,000	Kuf, Af, Gf, Df, Kf, Tf, Blf, Trf, Bg, V	25	Aşınmış bölge yada	
	MP 1:50,000	Kuf, Af, Gf, Df, Kf, Tf, Blf, Trf, Kz, Saf	-	talusun eğim tahribatı dikkata alınır	
	MTA 1:25,000	tsk, ts, tq, ptq	1		
Tersiyer	IBB 1:5,000	Sf, Cf, Baf	25	Aşınmış bölge yada talusun eğim tahribatı	
çökeltiler	MP 1:50,000	Sf, Cf, Baf			
	IBB 1:5,000	Cmlf	15	Güf,Gnf ile Aynı	
	IBB 1:5,000	Sbf, Çf, Saf	30	Aşınmış bölge yada	
	MP 1:50,000	Çf,		talusun eğim tahribatı dikkate alınır. Çakıllı durum dikkate alınır.	
	MTA 1:25,000	m2m3-19-k			
	IBB 1:5,000	Güf , Gnf	15	Toprak kayması bu formasyonlarda meydana gelmekte, Rezidual kuvvet dikkate alınır.	
	MP 1:50,000	Güf , Gnf	-		
	MTA 1:25,000	e3-ol1-10-s, ebed-20-s, ebed-8-s, m3-pl-18k, ol2-18-k, ol2m1-19-k, ol-8-s,pgg			
	IBB 1:5,000	Ksf, Qal, Ym	25	Genel eğim tahribatı. Aşınmış bölgeler ile aynıdır	
Kuvaternar Çökeltiler	MP 1:50,000	Oa, Q	-		
	MTA 1:25,000	Q-21-k			
Dolgu	IBB 1:5,000	Yd, Sd	25		

 Tablo 7.4.2
 Eğim Stabilite Hesabında Uygulanan Kesme Kuvveti Açısı

Kaynak: JICA Çalışma Ekibi

7.4.2. Eğim Stabilitesi

(1) Eğim Stabilite Riski

Eğim stabilite riskinin sonuçları Şekil 7.4.3 ve Şekil 7.4.4'de gösterilmiştir.

Model A durumunda, "Çok Yüksek Risk" gridleri Adalar ve Silivri'de bulunmaktadır. Buralar dik falez ve konut alanı olmayan alanlara denk gelmektedir. "Düşük Risk" gridleri Avcılar, Küçükçekmece ve Büyükçekmece'de bulunmaktadır. Buralar konut alanlarıdır.

Model C durumunda, "Çok Yüksek Risk" gridleri Avcılar'da , "Yüksek Risk" gridleri Büyükçekmece'de çoğunluktadır. Buralar konut alanlarıdır. "Düşük Risk" gridleri Bahçelievler, Bakirköy ve Güngören'e uzanmaktadır. Buralar konut alanlarıdır.

(2) Her İlçe ve Jeolojik Formasyon Birimi için Eğim Stabilite Durumu

Eğim riskleri daha detaylı seviyede incelenmiştir. Stabil olmayan skorlar her ilçe ve jeolojil formasyon için özetlenmiştir.

Her ilçe için Stabilite skoru aşağıdaki gibi belirlenir;

İlk olarak; her 50 m. grid için eğim stabilitesi hesaplanır. Daha sonra, bir ilçedeki stabil olmayan gridlerin sayısı hesaplanır. Sonraki adımda bu gridler için alan oranı hesaplanır. Bu skor direkt olarak her ilçe içindeki alanın yüzde kaçının stabil olmayan alan olduğunu gösterir.

Herbir jeolojik formasyon için stabilite skoru aşağıdaki gibi belirlenir;

İlk olarak; her 50 m. grid için eğim stabilitesi hesaplanır. Daha sonra herbir jeolojik formasyondaki stabil olmayan grid sayısı hesaplanır. Sonraki adımda bu gridler için alan oranı hesaplanır. Bu skor direkt olarak her jeolojik formasyon içindeki alanın yüzde kaçının stabil olmayan alan olduğunu gösterir

Herbir ilçe ve jeolojik formasyon için stabil olmayan skorlar özetlenmiş ve sonuçlar sırasıyla Tablo 7.4.3 ve Tablo 7.4.4 'de gösterilmiştir.

Büyükçekmece ilçesinde, "düşük risk" ve "yüksek risk" alanlar çoğunluktadır. Stabil olmayan skorlar Model A için yaklaşık %3 ve Model C için yaklaşık %7'dir. Bu alan toprak kayması ile karakterize edilebilir. Stabil olmayan alan Büyükçekmece Gölü'nün doğu kıyısı eğiminde yoğunlaşmıştır. Güf formasyonunun düşük mukavemeti eğim yüzdesinin çok fazla olmamasına karşın yüksek hasar oranının bir sebebidir.

Adalar ilçesinde, "yüksek risk" ve "çok yüksek risk" alanları Büyükada'nın güney kısmındadır. Bu alan kaynak fay hattına en yakın noktadır. Stabil olmayan skorlar Model

A'da yaklaşık %2 ve Model C'de yaklaşık %5'tir. Stabil olmayan alanlar Büyükada'da yoğunlaşmıştır çünkü bu ilçe deprem kaynak fayhattına en yakın noktadadır.

Avcılar ilçesinde, "yüsek risk" ve "çok yüksek risk" alanları ilçenin güney kısımlarındadır. Stabil olamayan skorlar Model A'da yaklaşık %1 ve Model C'de yaklaşık %4'tür. Bu alan da toprak kayması ile karakterize edilir. Stabil olmayan alan, Gnf formasyonunun çoğunlukta olduğu güney kıyı kesiminde yoğunlaşmıştır. Bazı stabil olmayan alanlar Bahçelievler, Bakirköy, Güngören, Çatalca ve Silivri ilçelerinde bulunmaktadır.

14510 7.4.5			Resi Analizi oo	liuşiali		
		Moc	lel A	Model C		
	Hesaplama	Stabil Olmayan	Stabil Olmayan	Stabil Olmayan	Stabil Olmayan	
liçe Adı	Noktaları	Noktalar	Skor (Ort.Stabil	Noktalar	Skor (Ort.Stabil	
	(50m grid)	(50m grid)	Olmayan Alan	(50m grid)	Olmayan Alan	
			Orani %)		Orani %)	
Adalar	3786	75	1.98	185	4.89	
Avcilar	15358	140	0.91	608	3.96	
Bahçelievler	6638	26	0.39	111	1.67	
Bakirköy	11678	49	0.42	95	0.81	
Bağcilar	8768	0	0.00	8	0.09	
Beykoz	15208	0	0.00	0	0.00	
Beyoğlu	3487	0	0.00	0	0.00	
Be şi kta ş	7217	0	0.00	0	0.00	
Büyükçekmece	5520	166	3.01	402	7.28	
Bayrampa ş a	3840	1	0.03	14	0.36	
Eminönü	2001	0	0.00	0	0.00	
Eyüp	20208	0	0.00	1	0.00	
Fatih	4157	3	0.07	23	0.55	
Güngören	2880	6	0.21	24	0.83	
Gaziosmanpa ş a	22680	0	0.00	0	0.00	
Kadiköy	16304	0	0.00	0	0.00	
Kartal	12462	0	0.00	0	0.00	
Kağithane	5778	0	0.00	0	0.00	
Küçükçekmece	47949	59	0.12	256	0.53	
Maltepe	22038	0	0.00	0	0.00	
Pendik	18822	0	0.00	0	0.00	
Sariyer	11040	0	0.00	0	0.00	
Şişli	14161	0	0.00	0	0.00	
Tuzla	19641	0	0.00	0	0.00	
Ümraniye	18252	0	0.00	0	0.00	
Üsküdar	15059	0	0.00	0	0.00	
Zeytinburnu	4583	0	0.00	2	0.04	
Esenler	15552	0	0.00	16	0.10	
Çatalca	21054	50	0.24	144	0.68	
Silivri	15262	116	0.76	141	0.92	
Toplam	391383	691	0.18	2030	0.52	
1/						

 Tablo 7.4.3
 İlçelere Göre Eğim Stabilitesi Analizi Sonuçları

Kaynak: JICA Çalışma Ekibi

Tablo 7.4.4 Jeolojik Formasyon Birimine Göre Eğim Stabilitesi Analizinin Sonuçları

h			Model A		Model C	
llgili Jeolojik Harita	Formasyon Adı	Hesaplama Noktaları (50m grid)	Stabil Olmayan Noktalar (50m grid)	Stabil Olmayan Skor (Ort.Stabil Olmayan Alan	Stabil Olmayan Noktalar (50m grid)	Stabil Olmayan Skor (Ort.Stabil Olmayan Alan
			(00.11 g.10)	Oranı %)	(00 g)	Oranı %)
IBB	Gnf	18562	259	1.59	1063	6.69
1:5,000	Çmlf	3284	1	0.03	18	0.55
MP 1:50,000	Güf	1991	24	1.21	77	3.87
	Tf	2104	3	0.14	3	0.14
	Af	4497	52	1.16	144	3.20
	Kuf	24427	16	0.07	31	0.13
	V	436	4	0.92	7	1.61
MTA	ebed-8-s	908	25	2.75	73	8.04
1:25,000	ol2-18-k	19289	282	1.46	544	2.82
	ol-8-s	488	24	4.92	60	12.30
	pgg	1026	1	0.10	10	0.97
Toplam		391383	691	0.18	2030	0.52

Kaynak: JICA Çalışma Ekibi

Şekil 7.4.5 İlçelere Göre Eğimin Stabil Olmayan Skoru (Alan Oranı)

Kaynak: JICA Çalışma Ekibi

Teşekkür

Bu bölümdeki eğim stabilite analizi, Prof. Dr. Kutay Özaydın, Yıldız Teknik Üniversitesi, İnşaat Mühendisliği Fakültesi, Jeoteknik Bölümü, Prof. Dr. Erdoğan Yüzer, İTÜ, Maden Fakültesi, Jeoloji Mühendisliği Bölümü, ve Assoc. Prof. Dr. Bilge G. Siyahi, Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Deprem Mühendisliği Bölümü, ile gerçekleştirilen müzakereler doğrultusunda gerçekleştirilmiştir. Çalışma Ekibi kendilerine Çalışmaya olan katkılarından ötürü teşekkür eder.

Referanslar : (Kısım7.4)

- Bilge G. Siyahi, 1998, Deprem Etkısindeki Normal Konsolide Zemin Şevlerinde Yari-Statik Stabilite Analizi, İMO Teknik Dergi, Yazı 112, 1525-1552.
- Erdoğan Yüzer, 2001, Privarte Interview.
- ISSMFE, 1993, Manual for Zonation on Seismic Geotechnical Hazards, Technical Committee for Earthquake Geotechnical Engineering, TC4, International Society of Soil Mechanics and Foundation Engineering.
- Japan Road Association, 1996, Japanese Design Specification of Highway Bridge (in Japanese).
- Japan Road Association, 1999, Design Guideline for Road Construction, Slope Treatments and Stabilization, pp. 352. (in Japanese)
- Kutay Özaydın, 2001, Private Interview.
- Lee Abramson, Tom Lee, Suil Sharma, Glenn Boyce, 1996, Slope Stability and Stabilization Methods, John Willy & Sons, pp94.