Chapter 5
Pumping Test Data

.

Table G5. 1 Step-Drawdown Tests of JICA Test Wells

	12	C		r	Drilling	Reaming	Screen	Static			Step-drawe	down test			Aquifer loss	Well loss	Average well
Well	Commune / town	Latitude	rdinates Longitude	Flevation	Depth	Depth	Length	Water	1st	2nd	3rd	4th	5th	6th	coefficient	coefficient	efficiency
No.		North	East	Lication	Бори,	Бор		Level			Discharg	e(m3/h)			[B]	[C]	
		UTM	UTM	(m)	(m)	(m)	(m)	(m)			Drawdo	wn (m)			(hr/m²)	(hr ² /m ⁵)	(%)
D1	Krong Nang	1432676	212271	714	140		40	11.80	1.8	7.2	12.6	18	14.4	10.8	5.13E-01	2.88E-02	64
D1	Kitchy Nang	1402070	212211						1.01	5.36	10.6	18.86	13.9	9.14			
D2	Ea Drang	1461593	196617	644	180	120	48	24.00	0.5	0.9	1.3	1.6	1.1	0.7	8.57E+00	2.69E+00	78
UZ	Ea Dialiy	1401330	100017	•••	,,,,				5.67	9.29	14.92	21.42	11.05	7.41			
D3	Krong Buk	1412609	217070	484	140	70	30	9.00	4.3	8.6	13	17.3	10.8	7.2	5.58E-01	3.10E-02	58
UG	Kiong box	1412000	2,,,,,		,				3.06	6.92	13.03	19.05	13.5	8.45			
D4	Ea Drong	1427255	209295	615	180	116	58	15.89	3.2	6.1	9	11.9	7.9	5.4	3.11E+00	3.82E-02	110
D4	Ea Diding	1427255	203200	•		}			10.05	16.89	23.97	32.87	22.03	15.76			
D5	Ea Wer	1418900	813607	255	150	35	22	2.00	3.6	7,2	10.8	13.3	10.1	6.5	3.22E-01	9.64E-02	30
US	Ea wei	1410900	010007						2.25	7.83	14.67	21.09	12.33	7.5			
De	Kien Duc	1325577	772292	691	170	120	40	32.20	-	-		-	-	-	-	-	-
D6	Kien Dac	1323377	112252		''`	1			-	-	-		-		-		
D7	Krong Kmar	1384752	210996	436	39	39	28	3.80	7.2	12.6	18	23	18	12.6	1.05E-01	5.70E-03	52
Ui	Krong Knai	1004702	210330	100	"		i		1.07	2.13	3.94	5.37	4.33	2.95			
G1	Kong Tang	1554896	202592	736	150	112	40	34.00	3.6	6.6	9.6	13.2	9.6	6.6	1.57E+00	1.70E-03	101
GI	Rong rang	1,554050	202002						5.65	10.27	14.9	20.49	16.2	11.64			ļ
G2	Nhon Hoa	1499742	185766	421	170	110	34	21.00	1.9	3.6	5.2	6.8	5.4	3.9	1.97E+00	5.37E-01	47
GZ	Milon Floa	1433142	100,00	,-,		•			5.84	12.96	24.77	39	26.75	15.89	{		<u> </u>
G3	Chu Ty	1528374	791729	417	150	85	22	22.40	4.2	7.2	10.8	13.2	10.8	7.2	8.27E-01	1.23E-01	52
GG	Ond Ty	102.007				1		l	5.79	11.78	24.11	32.06	26.2	14.96	+		
G4	Thang Hung	1630373	813129	633	180	150	50	34.10	2.7	5.4	8.1	10.8	8.4	5.7	5.51E-01	9.60E-03	110
G4	I nany nany	1000075	1 0,0,20						1.45	2.62	3.78	4.93	4.4	3.25			ļ
G5	Nghia Hoa	1562211	814529	682	160	135	52	32.50	1.5	3	4.2	6	5.1	3.6	1	4.44E-02	93
GS	Ingilia rioa	1002211				ĺ			5.13	11.02	15	22	19.16	14.57			
G6	la Sion	1474169	238141	140	180	158	38	24.15	3.6	8.4	13.2	17	13.2	8.4		3.50E-00	91
u o	la Cion					1	<u> </u>		3.07	6.97	11.73	15.08	13.25	8.96	 		1
G7	Kong Yang	1531378	234391	472	160	110	34	10.80	4.5	9	13.8	18	14.4	10.2		4.00E-04	1 104
٠.	Trong rang						l		4.8	9.7		19.19	14.63	9.29		<u> </u>	
K1	Во У	1623379	782270	683	170	50	24	0.88	0.8	1.8	2.7	3.6	2.8	2.0		9.35E-0	2 101
'``]					l	l		6.63	14.17	21.86	29.18	19.18	14.51		ļ	1
K2A	Dak Su	1610205	783252	670	80	50	32	0.80	1.6			6.1	4.8		1	9.60E-0	100
l IVE	Journ 00				Ì				5.21	10.53		20.72	 	10.59		ļ	ļ
КЗ	Dak Ui	1613032	177275	685	160	38	28	1.35	3	6.6		1	I	i i		3.35E-0	2 84
'``	150,0							<u> </u>	3.18	8.2	12.9	17.36	9.59	6.28			<u> </u>
K6	Chu Hreng	1584716	177337	7 590	98	3 40	14	12.50	0.12	0.24	-	-	-	-	3.5E+01	1.7E+0	1 92
```	Charnong	1							4.42	9.34		<u> </u>				<u> </u>	

Table G5. 2 Result of the Constant Continuous Test and Recovery Test Analyzed by
Theis Analysis Method

Well	Commune / town	Coo	rdinates		Drilling	Reaming	Screen	Static	Pumping	Drawdown	Specific							
No.		Latitude		Elevation	depth	depth	length	water	discharge		capacity			point		Transmissivity	Storage	Hydraulic
	į	North	East					level				u	W(u)	г2/t	s		coefficient	conductivity
		UTM	UTM	(m)	(m)	(m)	(m)	(m)	(l/s)	(m)	(I/s/m)			(m2/s)	(m)	(m2/day)		(m/day)
D1	Krong Nang	1432676	212271	714	140	100	40	11.80	4.00	15.89	0.25	1.0E-10	22.0	1,0E-04	13.0	4.7E+01	1.3E-07	1.2E+00
D2	Ea Drang	1461593	196617	644	180	120	48	24.00	0.45	20.56	0.02	1.0E-06	13.0	1.0E-04	17.5	2.3E+00	6.4E-05	4.8E-02
D3	Krong Buk	1412609	217070	484	140	70	30	9.00	4.80	21.26	0.23	1.0E-07	15.0	1.0E-05	16.0	2.6E+01	7.2E-04	8.6E-01
	Ea Drong	1427255	209295	615			58	15.89	3.10	30.20	0.10	1.0E-10	21.0	1.0E-04	23.5	1.9E+01	5.3E-08	3.3E-01
			813607	255				2.00	3.70	21.42	0.17	1.0E-10	21.0	1.0E-04	17.0	3.1E+01	8.7E-08	1.4E+00
D5	Ea Wer	1418900			170			32.20	0.25	22.23	0.01	_	-	_	_	<u>-</u>	-	-
	Kien Duc	1325577	772292	691						6.50		1.0E-06	11.5	1.0E-04	4.0	1.3E+02	3.5E-03	4.5E+00
D7	Krong Kmar	1384752	210996	436	39	39	28	3.80	6.40	6.50	0.96	1.02-00						
G1	Kong Tang	1554896	202592	736	150	112	40	34.00	3.73	21.73	0.17	1.0E-10	22.0	1.0E-04	19.0	3.0E+01	8.2E-08	7.4E-01
G2	Nhon Hoa	1499742	185766	421	170	110	34	21.00	2.00	40.34	0.05	1.0E-10	20.0	1.0E-04	37.0	7.4E+00	2.1E-08	2.2E-01
G3	Сћи Ту	1528374	791729	417	150	85	22	22.40	3.67	32.22	0.11	4.0E-05	12.0	4.0E-03	13.5	2.2E+01	6.2E-04	1.0E+00
G4	Thang Hung	1630373			180	150	50	34.10	3.00	9.66	0.31	1.0E-05	11.0	1.0E-03	3.5	6.5E+01	1.8E-03	1.3E+00
		1562211	814529					32.50	2.00	26.13	0.08	1.0E-06	13.0	1.0E-04	20.0	8.9E+00	2.5E-04	1.7E-01
	Nghia Hoa			140						15.83	0.30	1.0E-10	22.0	1.0E-04	12.6	5.6E+01	1.6E-07	1.5E+00
G6_	la Sion	1474169								22.96	0.22	1		1.0E-05		2.6E+01	7.2E-04	7.6E-01
G7	Kong Yang	1531378	234391	472	160	110	34	10.80	5.00	22.90	0.22							
K1	Во У	1623379	782270	683	170	50	24	0.88	1.00	31.73	0.03	1.0E-02	4.2	1.0E-04	19.0	1,5E+00	4.2E-01	6.3E-02
K2A	Dak Su	1610205	783252	670	80	50	32	0.80	1.73	21.34	0.08	1.0E-05	12.0	4.0E-05	18.0	7.9E+00	5.5E-03	2.5E-01
кз	Dak Ui	1613032	177275	685	160	38	28	1.35	3.00	16.90	0.18	1.0E-06	13.0	1.0E-04	13.0	2.1E+01	5.7E-04	7.4E-01
	Chu Hreng	1584716	177337	590	98	40	14	12.50	0.07	22.50	0.003	-			<u> </u>			-

Table G5. 3 Result of the Constant Continuous Test and Recovery Test Analyzed by Cooper-Jacob and Recovery Analysis Methods

Well	Commune / town	Coo	rdinates		Drilling	Reaming	Screen	Static	Pumping	Drawdown	Specific	Cooper-Jacob an	alysis method		Recovery a	
No.		Latitude		Elevation	depth	depth	length	water	discharge		capacity	Transmissivity	Storage	Hydraulic	Transmissivity	Hydraulic
		North	East					level					coefficient	conductivity		conductivity
		UTM	UTM	(m)	(m)	(m)	(m)	(m)	(l/s)	(m)	(l/s/m)	(m2/day)		(m/day)	(m2/day)	(m/day)
D1	Krong Nang	1432676	212271	714	140	100	40	11.80	4.00	15.89	0.25	4.2E+01	2.0E-06	1.1E+00	3.2E+01	7.9E-01
D2	Ea Drang	1461593	196617	644	180	120	48	24.00	0.45	20.56	0.02	2.4E+00	3.3E-04	4.9E-02	4.0E+00	8.2E-02
D3	Krong Buk	1412609	217070	484	140	70	30	9.00	4.80	21.26	0.23	1.4E+01	6.4E-01	4.6E-01	1.3E+01	4.2E-01
D4	Ea Drong	1427255	209295	615	180	116	58	15.89	3.10	30.20	0.10	1.6E+01	7.6E-06	2.8E-01	1.6E+01	2.8E-01
	Ea Wer	1418900		255	150	35	22	2.00	3.70	21.42	0.17	2.3E+01	1.1E-05	1.1E+00	2,3E+01	1,1E+00
D6	Kien Duc	1325577	772292	691	170		40	32.20	0.25	22.23	0.01	2.9E-01	4.1E-01	7.3E-03	2.8E-01	7.0E-03
D7	Krong Kmar	1384752	210996	436	39	39	28	3.80	6.40	6.50	0.98	6.7E+01	3.1E-01	2.4E+00	8.4E+01	3.0E+00
	Kong Tang	1554896		736			40	34.00	3.73	21.73	0.17	3.0E+01	1.4E-07	7.4E-01	2.1E+01	5.3E-01
	Nhon Hoa	1499742	185766	421	170	110	34	21.00	2.00	40.34	0.05	3.5E+00	3.3E-03	1.0E-01	6.3E+00	1.9E-01
	Chu Tv	1528374	791729	417	150	85	22	22.40	3.67	32.22	0.11	1.7E+01	7.7E-03	7.5E-01	7.0E+00	3.2E-01
	Thang Hung	1630373	813129	633	180	150	50	34.10	3.00	9.66	0.31	4.8E+01	2.2E-02	9.6E-01	6.8E+01	1.4E+00
	Nghia Hoa	1562211	814529	682	160	135	52	32.50	2.00	26.13	0.08	9.0E+00	4,2E-04	1,7E-01	1.1E+01	2.0E-01
	la Sion	1474169		140	180	158	38	24.15	4.70	15.83	0.30	3.7E+01	1.7E-04	9.8E-01	6.2E+01	1.6E+00
G7	Kong Yang	1531378		472	160	110	34	10.80	5.00	22.96	0.22	2.8E+01	1.3E-03	8.3E-01	5.3E+01	1.6E+00
	Во У	1623379		683	170	50	24	0.88	1.00	31.73	0.03	1.9E+00	2.7E-01	8.0E-02	1.7E+00	7.2E-02
	Dak Su	1610205		670	80	50	32	0.80	1.73	21.34	80.0	3.9E+00	3.6E-02	1.2E-01	9,1E+00	2.9E-01
КЗ	Dak Ui	1613032		685	160	38	28	1.35	3.00	16.90	0.18	1.7E+01	2.4E-03	6.1E-01	1.6E+01	5.6E-01
	Chu Hreng	1584716			98	40	14	12.50	0.07	22.50	0.00	6.0E-02	2.9E-01	4.3E-03	1.3E-01	9.3E-03

K6 : pumping for 5 hours

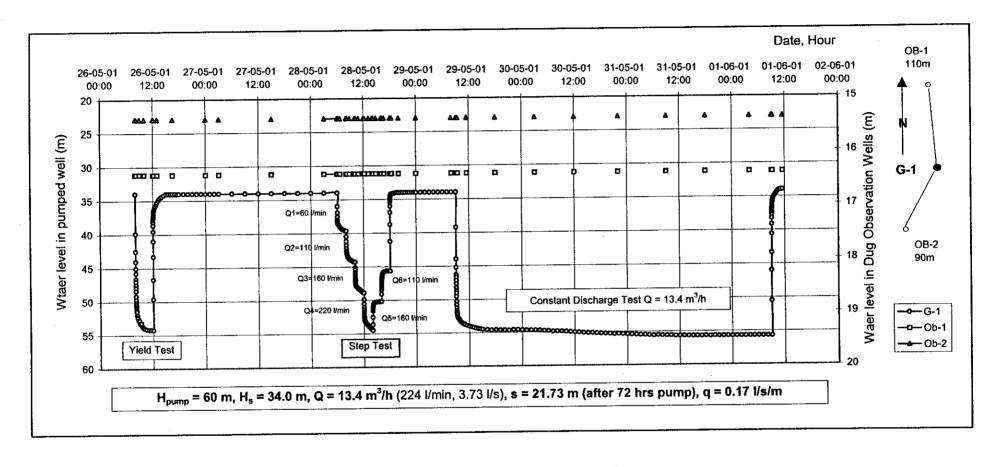



Figure G5. 1 Pumping Test of Borehole G-1 - Kong Tang Town - Mang Yang District

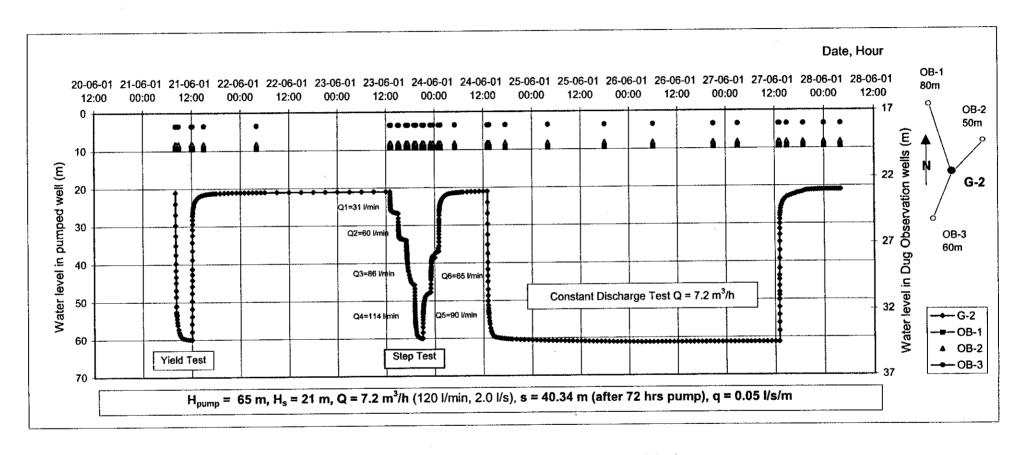



Figure G5. 2 Pumping Test of Borehole G-2 - Nhon Hoa Commune - Chu Se District

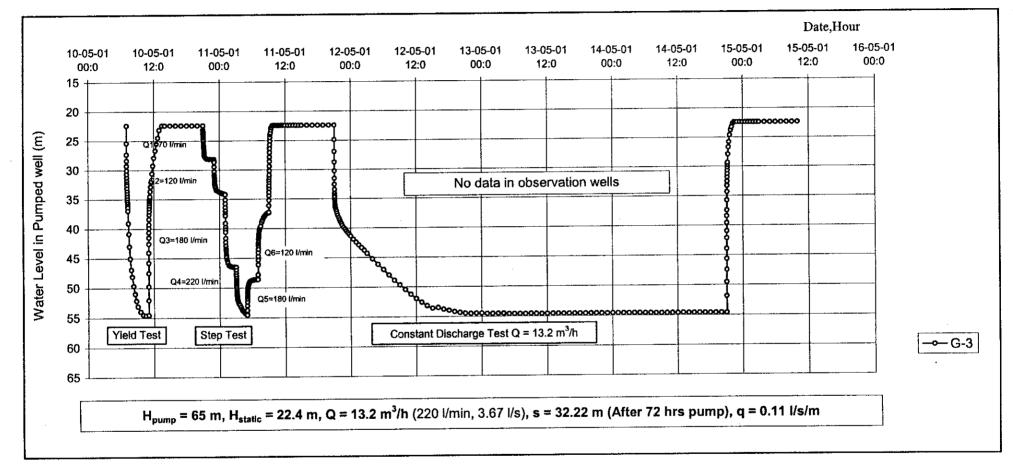



Figure G5. 3 Pumping Test of Borehole G-3 - Chu Ty Town - Duc Co District

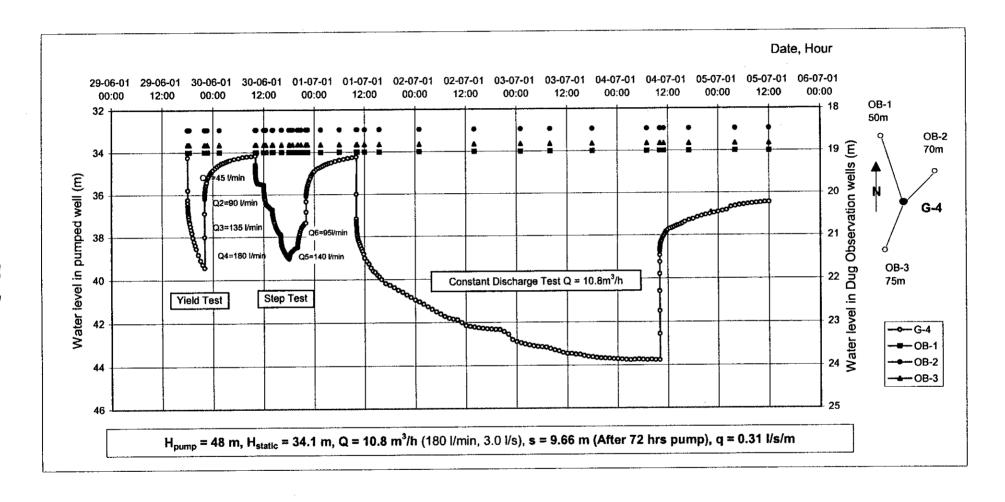



Figure G5. 4 Pumping Test of Borehole G-4 - Thang Hung Commune - Chu Prong District

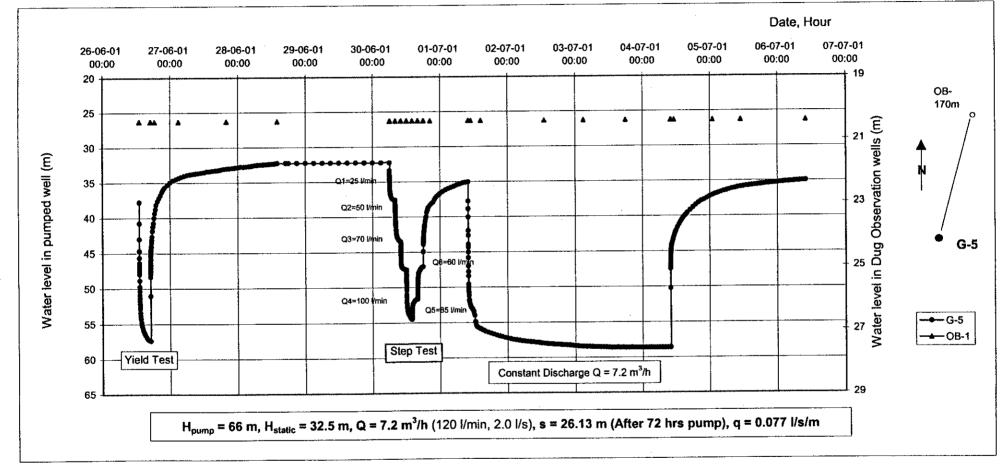



Figure G5. 5 Pumping Test of Borchole G-5 - Nghia Hoa Commune- Chu Pah District

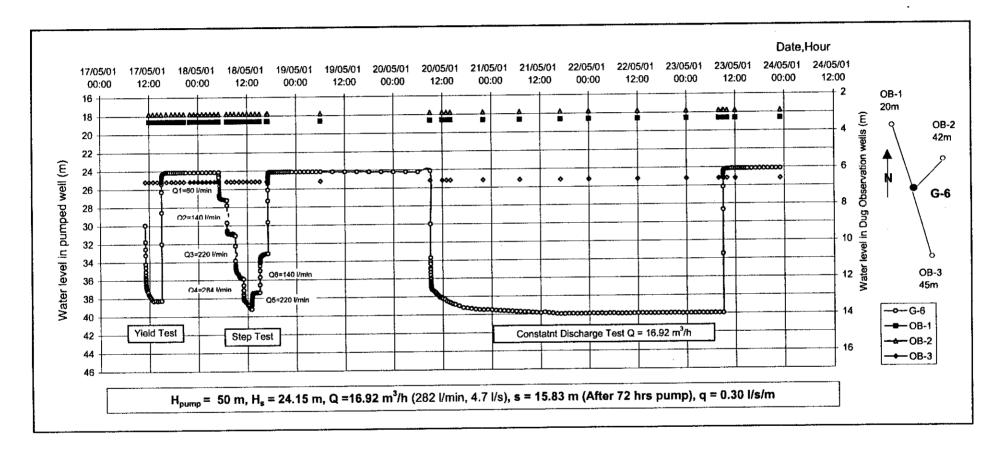
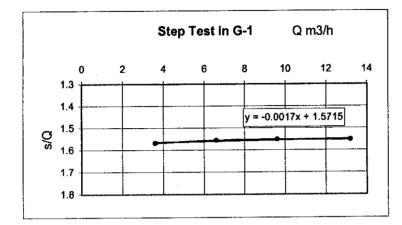
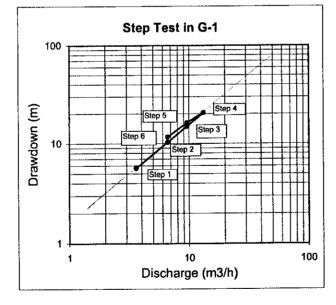
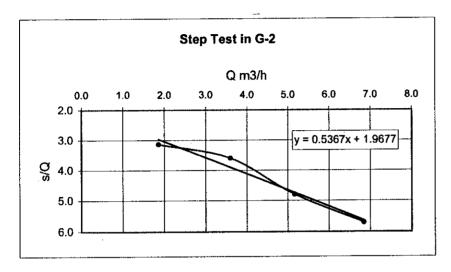
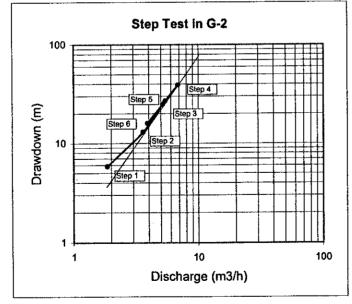




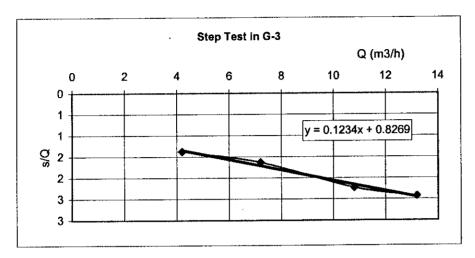

Figure G5. 6 Pumping Test of Borehole G-6 - Ia Rsiom Commune- Prong Pa District

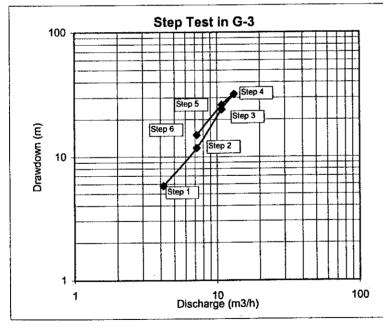

Figure G5. 7 Pumping Test of Borehole G-7 - Kong Yang Commune- Krong Chro District





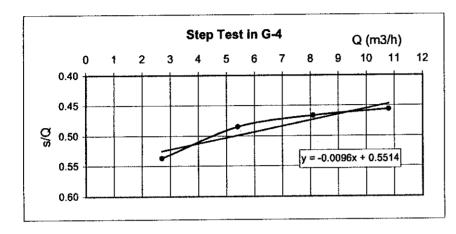

Yield	(Q)	Drawdown	s/Q	BQ/s	
l/min	m3/h	s (m)	(h/m2)	(%)	
60	3.6	5.65	1.57	100.13	
110	6.6	10.27	1.56	100.99	
160	9.6	14.90	1.55	101.25	
220	13.2	20.49	1.55	101.24	
160	9.6	16.2	1.69	93.13	
110	6.6	11.64	1.76	89.11	
			Average:	97.64	
	Calculated	drawdown b	y		
	Hantush-E	Bierschenk m	ethod:	1	
	s= B*Q	+ C*Q*Q			
	B =	1.5715			
	C =	0.0017			
Q (l/min)	Q (m3/h)	s (m)			
166.7	10	15.89	Calculated drawdown		
200.0	12	19.10	after 2 hours		
216.7	13	20.72			


Figure G5. 8 Step Drawdown Test at Borehole G-1






Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
31	1.9	5.84	3.14	62.67
60	3.6	12.96	3.60	54.66
86	5.2	24.77	4.80	40.99
114	6.8	39	5.70	34.51
90	5.4	26.75	4.95	39.72
65	3.9	15.89	4.07	48.29
			Average:	46.81
	Calculated	d drawdown by	1	
ļ	Hantush-E	Bierschenk me	thod:	
	s= B*Q	+ C*Q*Q		
	B =	1.9677		
	C =	0.5367		
Q (l/min)	Q (m3/h)	s (m)		
50.0	3	10.73	Calculated d	rawdown
66.7	4	16.46	after 2 hours	
83.3	5	23.26		


Figure G5. 9 Step Drawdown Test at Borehole G-2





Yield	(Q)	Drawdown	s/Q	BQ/s					
I/min	m3/h	s (m)	(h/m2)	(%)					
70	4.2	5.79	1.38	72.54					
120	7.2	11.78	1.64	61.12					
180	10.8	24.11	2.23	44.79					
220	13.2	32.06	2.43	41.17					
180	10.8	26.2	2.43	41.22					
120	7.2	14.96	2.08	48.13					
			Average:	51.50					
	Calculated	drawdown	by						
	Hantush-E	Bierschenk m	nethod:						
Ì	s= B'	*Q + C*Q*Q							
	B =	0.8269	h/m²						
	C =	0.1234	h/m						
Q (l/min)	Q (m3/h)	S (m)							
133	8	14.51	Drawdown af	ter 2 hrs					
150	150 9 17.44								
167	10	20.61							

Figure G5. 10 Step Drawdown Test at Borehole G-3



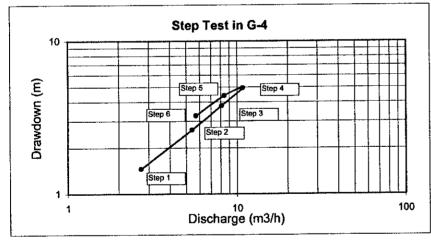
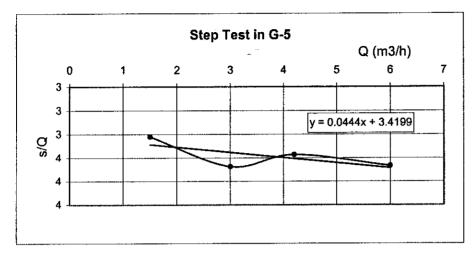




Figure G5. 11 Step Drawdown Test at Borehole G-4

Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
45	2.7	1.45	0.54	102.67
90	5.4	2.62	0.49	113.65
135	8.1	3.78	0.47	118.16
180	10.8	4,93	0.46	120.79
140	8.4	4.4	0.52	105.27
95	5.7	3.25	0.57	96.71
			Average:	109.54
	Calculated	d drawdown	by	
	Hantush-I	Bierschenk n	nethod:	
	s= B	*Q + C*Q*Q		
	B =	0.5514	h/m²	
	C =	0.0096	h/m²	
Q (I/min)	Q (m3/h)	S (m)		
167	10	6.47	Calculated di	rawdown
250	15	10.43	after 2 hours	
333	20	14.87		



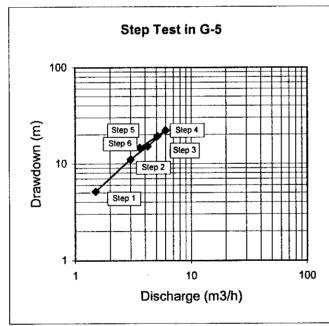
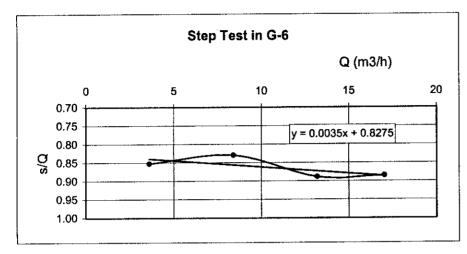
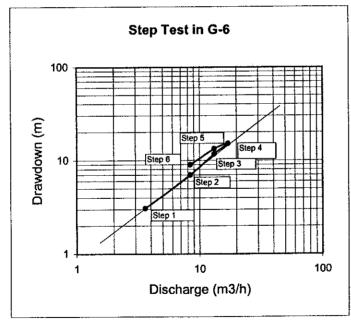
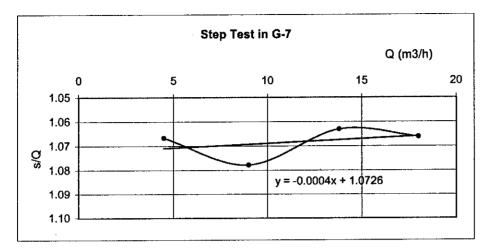





Figure G5. 12 Step Drawdown Test at Borehole G-5


Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
25	1.5	5.13	3.42	100.00
50	3.0	11.02	3.67	93.10
70	4.2	15.00	3.57	95.76
100	6.0	22.00	3.67	93.27
85	5.1	19.16	3.76	91.03
60	3.6	14.57	4.05	84.50
			Average:	92.94
	Calculat	ed drawdown b	ру	
	Hantush	-Bierschenk m	ethod:	:
	s=	B*Q + C*Q*Q		
	B =	3.4199		
	C =	0.0444		
Q (l/min)	Q (m3/h)	s (m)		
66.7	4	14.39	Calculated	drawdown
83.3	5	18.21	after 2 hour	s
100.0	6	22.12		





Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
60	3.6	3.07	0.85	97.04
140	140 8.4		0.83	99.73
220	13.2	11.73	0.89	93.12
284	17.0	15.08	0.88	93.51
220	13.2	13.25	1.00	82.44
140	8.4	8.96	1.07	77.58
			Average:	90.57
	Calculate	drawdown	by	
:	Hantush-E	Bierschenk n	nethod:	
	s= B	*Q + C*Q*Q		
]	B ==	0.8275	h/m²	
	C =	0.0035	h/m²	
Q (l/min)	Q (m3/h)	s (m)		
333	20	17.95	Calculated dr	rawdown
350	21	18.92	after 2 hours	
367	22	19.90		

Figure G5. 13 Step Drawdown Test at Borehole G-6



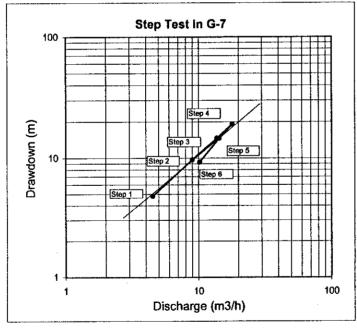
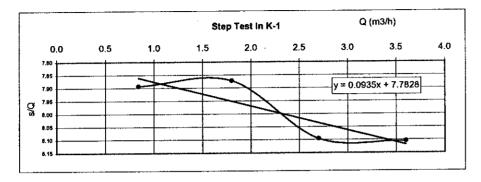




Figure G5. 14 Step Drawdown Test at Borehole G-7

Yield (	(0)	Drawdown	s/Q	BQ/s	
1/min	m3/h	s (m)	(h/m2)	(%)	
75	4.5	4.8	1.07	100.56	
150	9.0	9.7	1.08	99.52	
230	13.8	14.67	1.06	100.90	
300	18.0	19.19	1.07	100.61	
240	14.4	14.63	1.02	105.57	
170	10.2	9.29	0.91	117.77	
		<del></del>	Average:	104.15	
	Calculate	ed drawdowr	i by		
	Hantush-	Bierschenk	method:		
1	s= E	3*Q + C*Q*(	)		
	B =	1.0726			
	C =	0.0004			
Q (I/min)	Q (m3/h)	S (m)			
250.0	15	16.18	Calculated drawdown		
300.0	18	19.44	after 2 hou	rs	
316.7	19	20.52			



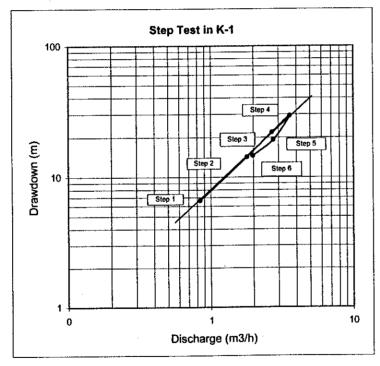
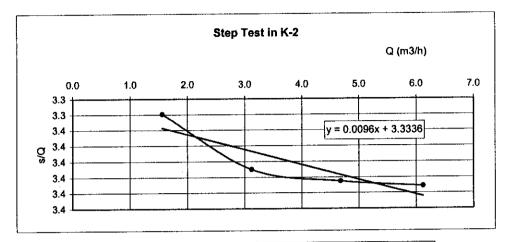




Figure G5. 15 Step Drawdown Test at Borehole K-1

Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
14	0.8	6.63	7.89	98.61
30	1.8	14.17	7.87	98.86
45	2.7	21.86	8.10	96.13
60	3.6	29.18	8.11	96.02
46	2.8	19.18	6.95	111.99
33	2.0	14.51	7.33	106.20
			Average:	101.30
	Calculated	drawdown b	y	
	Hantush-Bi	ierschenk me	ethod:	
	s= B*	Q + C*Q*Q		
-	B =	7.7828	h/m2	
	C =	0.0935	h2/m5	
Q (I/min)	Q (m3/h)	s (m)		
50.0	3	24.19	Calculated dr	awdown
58.3	3.5	28.39	after 2 hours	
63.3	3.8	30.92		



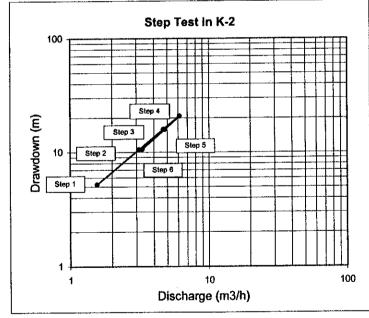
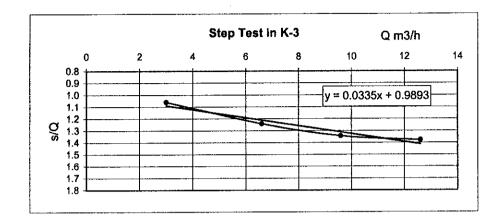
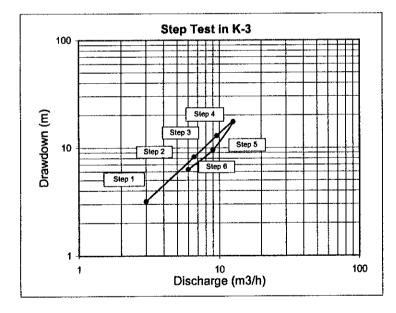
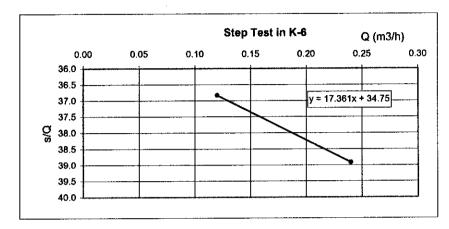





Figure G5. 16 Step Drawdown Test at Borehole K-2


		·		
Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
26	1.6	5.21	3.34	99.82
52	3.1	10.53	3.38	98.77
78	4.7	15.83	3.38	98.55
102	6.1	20.72	3.39	98.46
80	4.8	15.8	3.29	101.27
55	3.3	10.59	3.21	103.88
			Average:	100.13
	Calculated dra	wdown by		
	Hantush-Biers	chenk method	:	
	s= B*Q +	C*Q*Q		
	B =	3.3336		
	. C=	0.0096		
Q (I/min)	Q (m3/h)	s (m)		
66.7	4	13.49	Calculated di	rawdown
100.0	6	20.35	after 2 hours	
141.7	8.5	29.03		





Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
50	3.0	3.18	1.06	0.93
110	6.6	8.2	1.24	0.80
160	9.6	12.9	1.34	0.74
210	12.6	17.36	1.38	0.72
150	9.0	9.59	1.07	0.93
100	6.0	6.28	1.05	0.95
			Average:	0.84
Calculated drawdown by				
Hantush-Bierschenk method:				
	s= B*Q	+ C*Q*Q		
	B =	0.9893		
	C =	0.0335		
Q (l/min)	Q (m3/h)	s (m)		
200.0	12	16.70	Calculated drawdown	
216.7	13	18.52	after 2 hours	
233.3	14	20.42		

Figure G5. 17 Step Drawdown Test at Borehole K-3



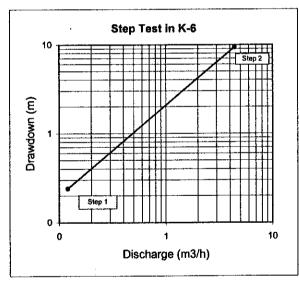



Figure G5. 18 Step Drawdown Test at Borehole K-6

Yield	(Q)	Drawdown	s/Q	BQ/s
l/min	m3/h	s (m)	(h/m2)	(%)
2	0.12	4.42	36.83	0.94
4	0.24	9.34	38.92	0.89
	·		Average:	0.92
Calculated drawdown by				
Hantush-Bierschenk method:				
	S= E	3*Q + C*Q*Q		
	B =	34.75		
	C =	17.361		
Q (l/min)	Q (m3/h)	s (m)		
3.3	0.2	7.64	Calculated drawdown	
5.0	0.3	11.99	after 2 hours	· i
7.5	0.45	19.15		
			l	

Figure G5. 19 Constant Continuous Pumping Test Analyzed by Theis Analysis Method at D1 (Krong Nang Town)

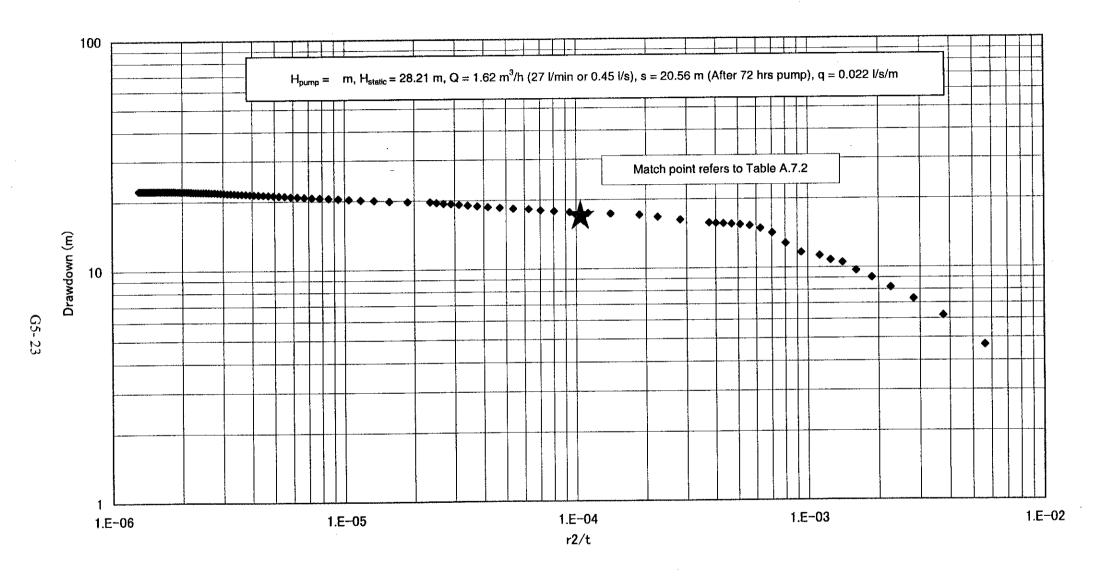



Figure G5. 20 Constant Continuous Pumping Test Analyzed by Theis Analysis Method at D2 (Ea Drang Town)

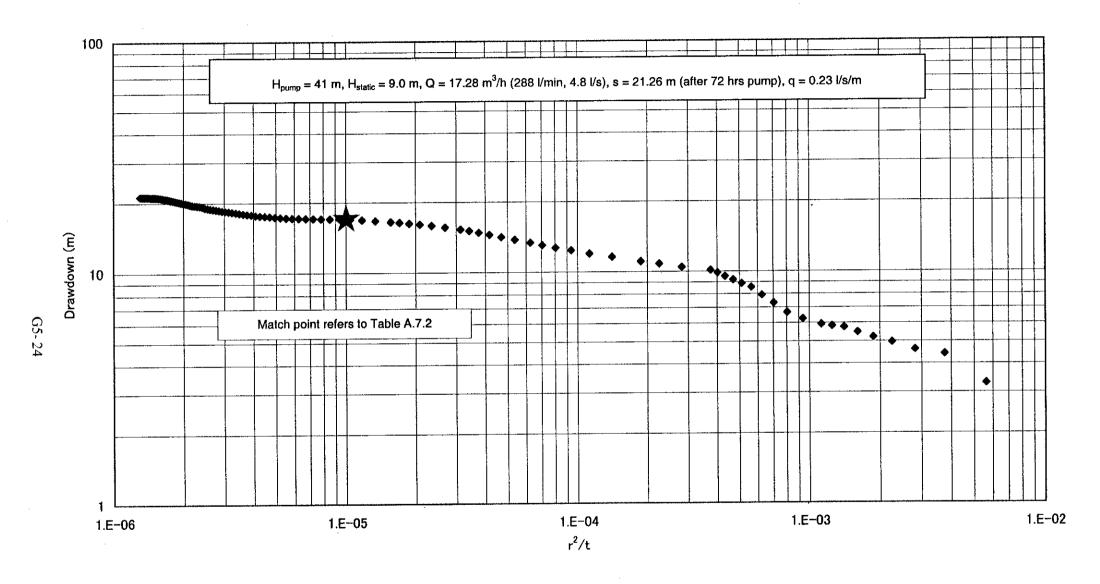
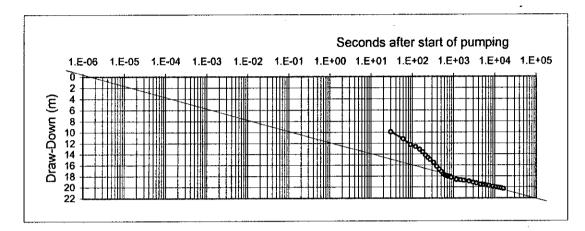
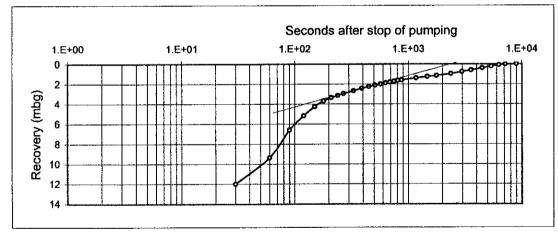





Figure G5. 21 Constant Continuous Pumping Test Analyzed by Theis Analysis Method at D3 (Krong Buk Commune)



Transmissivity:			
Q =	13.4	m3/h	
ds =	2.0	m/decade	
T =	0.183*Q*24/d	ls	
T =	29.51	m2/day	
T =	3.42E-04	m2/sec	

Storage Coefficient:		
r =	0.075	
$t_0 =$	1.00E-06	sec
S =	2.25*T*t ₀ /r*r	
<b>S</b> =	1.4E-07	



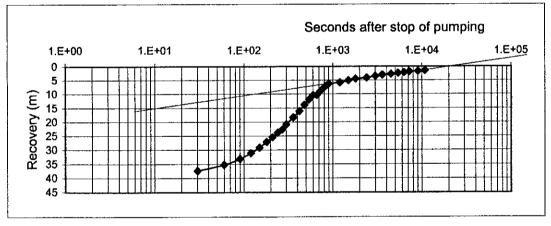
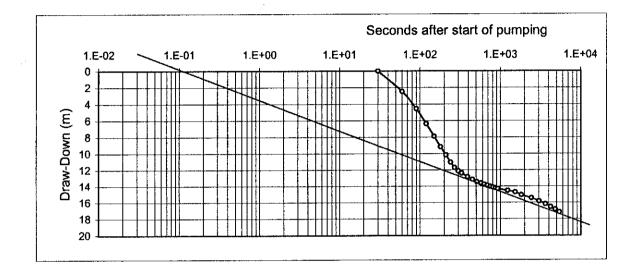

Transm	issivity, recove	ery
Q =	13.44	m3/h
ds =	3	m/decade
T =	0.183*Q*24/d	ls
T =	<b>19.68</b>	<b>m2/day</b>
T =	2.28E-04	m2/sec

Figure G5. 22 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-1




Transm	nissivity:	
Q =	7.2	m3/h
ds =	7.5	m/decade
T =	0.183*Q*24/ds	
T =	4.22	m2/day
T =	4.88E-05	m2/sec

0.075	
1.00E-01	sec
2.25*T*t ₀ /r*r	
2.0E-03	
	1.00E-01 2.25*T*t ₀ /r*r



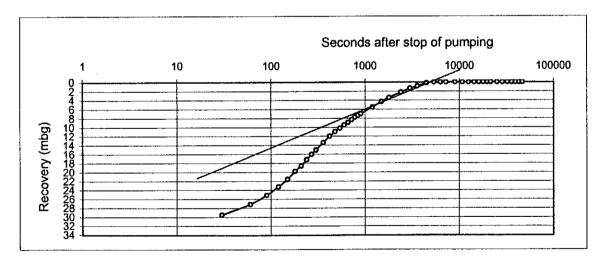

Q =	7.2	m3/h
ds =	5	m/decade
T =	0.183*Q*24/ds	
¹T =	6.32	m2/day
T =	7.32E-05	m2/sec

Figure G5. 23 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-2



Transm	issivity:	
Q =	13.2	m3/h
ds =	3.5	m/decade
T =	0.183*Q*24/d	ds
T =	16.56	m2/day
T =	1.92E-04	m2/sec

Storage Coefficient:		
r =	0.075	
$t_0 =$	1.00E-01	sec
S =	2.25*T*t ₀ /r*r	
S =	7.7E-03	



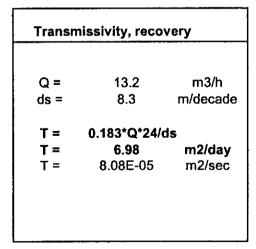
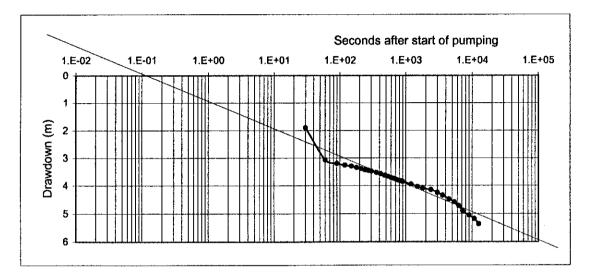
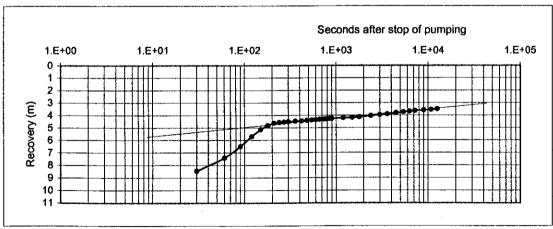
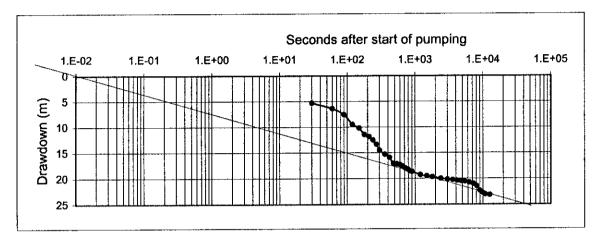





Figure G5. 24 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-3




Transmissivity:			
Q =	10.8	m3/h	
ds =	1.0	m/decade	
T ≖	0.183*Q*24/	ds	
T =	47.43	m2/day	
T =	5.49E-04	m2/sec	

Storage	Coefficient:	
r =	0.075	
t ₀ =	1.00E-01	sec
S =	2.25*T*t _o /r*r	
S =	2.2E-02	



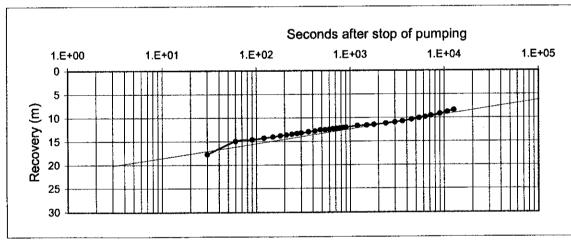
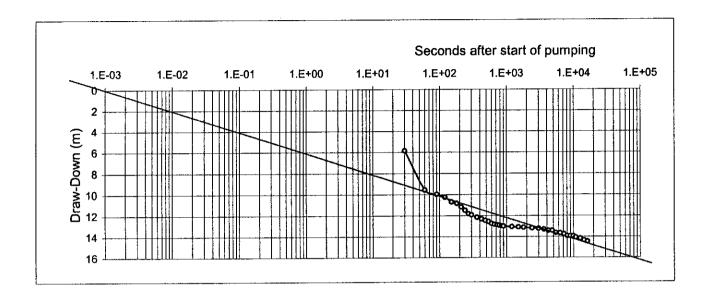
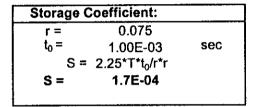

Transmissivity, recovery		
10.8	m3/h	
0.7	m/decade	
0.183*Q*24/	ds	
67.76	m2/day	
7.84E-04	m2/sec	
	10.8 0.7 <b>0.183*Q*24</b> /6	

Figure G5. 25 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-4




Transmissivity:			
Q =	7.2	m3/h	
ds =	3.5	m/decade	
<b>T</b> =	0.183*Q*24/ds		
T =	9.03	m2/day	
T =	1.05E-04	m2/sec	

Storag	Storage Coefficient:		
r =	0.075		
t _o =	1.00E-02	sec	
S =	2.25*T*t ₀ /r*r		
S =	4.2E-04		



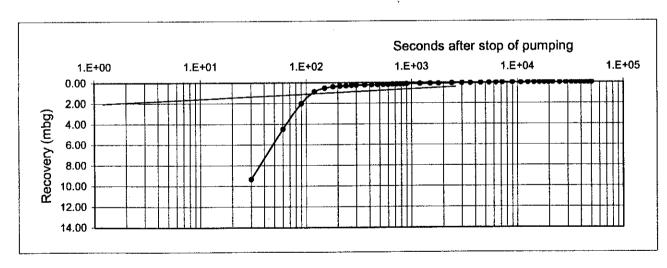


Transmissivity, recovery		
Q=	7.2	m3/h
ds =	3	m/decade
T =	).183*Q*24/ds	
T =	10.54	m2/day
T =	1.22E-04	m2/sec
1		

Figure G5. 26 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-5



Transmissivity:				
Q =	16.9	m3/h		
ds =	2.0	m/decade		
Τ=	T = 0.183*Q*24/ds			
T =	37.16	m2/day		
<b>T</b> =	4.30E-04	m2/sec		





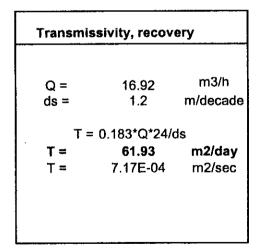
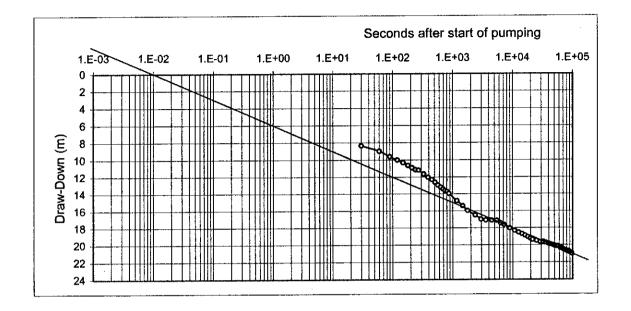
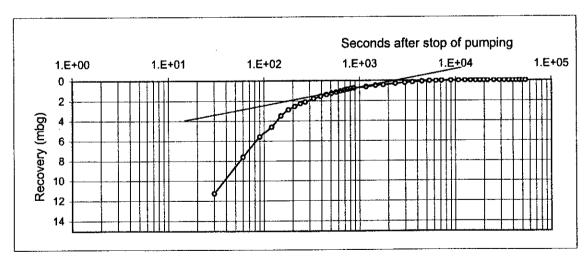





Figure G5. 27 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-6



Transmissivity:			
Q =	18.0	m3/h	
ds =	2.8	m/decade	
T =	T = 0.183*Q*24/ds		
<b>T</b> ==	28.23	m2/day	
Τ=	3.27E-04	m2/sec	

Storage	Storage Coefficient:		
r =	0.075		
$t_0 =$	1.00E-02	sec	
S =	$S = 2.25 T^{t_0}/r^{r}$		
S =	1.3E-03		



Transmissivity, recovery			
Q =	18	m3/h	
ds =	1.5	m/decade	
T = 0.183*Q*24/ds			
T =	<b>52.70</b> 6.10Ë-04	m2/day m2/sec	
'-	6.106-04	1112/566	

Figure G5. 28 Calculation of Transmissivity and Storage Coefficient by Cooper-Jacob and Recovery methods at Borehole G-7