Japan International Cooperation Agency (JICA)

Ministry of Energy and Mineral Resources (MEMR), The Republic of Indonesia

Study on The Optimal Electric Power Development and Operation in Indonesia

FINAL REPORT (Summary)

August, 2002

Chubu Electric Power Co,. INC. The Institute of Energy Economics, Japan

MPN
JR
02-130

Japan International Cooperation Agency (JICA)

Ministry of Energy and Mineral Resources (MEMR), The Republic of Indonesia

Study on The Optimal Electric Power Development and Operation in Indonesia

FINAL REPORT (Summary)

August, 2002

Chubu Electric Power Co,. INC. The Institute of Energy Economics, Japan

Preface

In response to the request from the Government of Republic of Indonesia, the Government of Japan decided to conduct the Study on The Optimal Electric Power Development and Operation in Indonesia, and the study was implemented by the Japan International Cooperation Agency (JICA).

JICA sent to Indonesia a study team headed by Mr. Akihisa MIZUNO of Chubu Electric Power Co., INC. and organized by Chubu Electric Power Co., INC. and The Institute of Energy Economics, Japan four times from July 2001 to August 2002.

The team held discussions with the officials concerned of the Government of Republic of Indonesia and conducted related field surveys. After returning to Japan, the study team conducted further studies and compiled the final results in this report.

I hope this report will contribute to the promotion of the plan and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of Republic of Indonesia for their close cooperation throughout the study.

August 2002

M上隆朗

Takao KAWAKAMI President Japan International Cooperation Agency

August 2002

Mr. Takao KAWAKAMI President Japan International Cooperation Agency Tokyo, Japan

Dear Mr. KAWAKAMI,

Letter of Transmittal

We are pleased to submit to you the report of Study on The Optimal Electric Power Development and Operation in Indonesia. This study has been implemented by Chubu Electric Power Co., INC. and The Institute of Energy Economics, Japan from July 2001 to August 2002 based on the contract with your Agency.

This report presents the comprehensive proposal, such as the countermeasures against the power deficit anticipated for the near future, the Optimal Power Development Plan for the medium and long term considering political issues, Transmission Plan considering appropriate placement of power plants and measures from technical, organizational and institutional aspects in order to realize the above plans.

We trust that realization of our proposal will much contribute to sustainable development of electric power sector, and will contribute strengthening of economic fundamentals of Indonesia and improvement of the public welfare as well.

In view of the urgency to increase efficiency of power sector, we recommend that the Government of Indonesia implement our proposal by applying result of technology transfer in the study as a top priority.

We wish to take this opportunity to express our sincere gratitude to your Agency, the Ministry of Foreign Affairs and the Ministry of International Trade and Industry. We also wish to express our deep gratitude to the Ministry of Energy and Mineral Resources, PT-PLN (Persero) and other authorities concerned of the Government of Indonesia for the close cooperation and assistance extended to us during our investigations and study.

Very truly yours,

Stilis- Majun

Akihisa MIZUNO Team Leader Study on The Optimal Electric Power Development and Operation in Indonesia

Contents

Chapter 1	Preface	
1.1	Background	.1-1
1.2	The Target Regions and Purpose of the Study	1-2
1.3	Study Content	1-2
1.4	Procedure of the Study	1-5
Chapter 2	Electricity Demand Forecast in the Java-Bali Region	
2.1	Historical Trend of Economic Activity and Electricity Demand	.2-1
2.1.1	Historical Trend of Economic Activities (RGDP, Regional GDP)	.2-1
2.1.2	Electricity Price	.2-2
2.1.3	Electricity Demand	.2-4
2.2	Electricity Demand Forecasting Model	.2-7
2.2.1	Concept of Model	.2-7
2.2.2	Model Structure	.2-7
2.3	Forecasted Electricity Demand by Sector	.2-10
2.3.1	Scenario	.2-10
2.3.2	Short-Medium Term Electricity Demand Forecasted Results (2001-2010)	.2-11
2.3.3	Long Term Electricity Demand Forecasted Results (2001-2015)	.2-12
2.4	Electricity Demand by Sub-Region	.2-14
2.4.1	RGDP by Sub-Region (Area)	.2-14
2.4.2	Electricity Demand by Sub-Region (Area)	.2-15
2.5	Examples of Model Application	.2-20
2.5.1	Household Electrification	.2-20
2.5.2	Energy Conservation Case	.2-21
2.5.3	Captive Power	.2-22
Chapter 3	Probability of Power Deficit - Short and medium Term Development Plan	-
3.1	Review of the Supply Capacity	.3-1
3.1.1	Supply Capacity of Existing Power Units	.3-2
3.1.2	Review of the Derated Capacity covered by GRM	.3-4
3.1.3	Review of the Constrained Capacity not covered by GRM	.3-7
3.1.4	Ongoing / Planned Projects	.3-10
3.1.5	Fuel Supply Issues	.3-14
3.2	Probability of Power Deficit	.3-16
3.2.1	Demand Scenario	.3-16
3.2.2	Supply Scenario	.3-16
3.2.3	Probability of Power Deficit	.3-18
3.3	Short -Term Countermeasures against Power Deficit	.3-20
3.3.1	Items of Short - Term Countermeasures	.3-20
3.3.2	Effect of the Short - Term Countermeasures	.3-21

Chapter 4	Optimal Power Development Plan -Long Term Development Plan-	
4.1	Screening Curve Analysis	4-2
4.1.1	Load Factor	4-2
4.1.2	2 Screening Curve Analysis	4-2
4.2	Optimal Power Development Plan	4-4
4.2.1	Base Case Study	4-4
4.2.2	2 Sensitive Studies	4-10
4.2.3	Issues to be addressed for the Power Development Plan	4-21
4.3	Study on Optimal Power Component Ratio	4-24
4.3.1	Component Ratio to realize the Least Cost Development	4-24
4.3.2	2 Trial Calculation of Target Power Mixture in Long Term	4-25
Chapter 5	Transmission Planning and System Analysis	
5.1	Current State of the Java Bali System	5-1
5.2	Transmission Planning (Short-term)	5-2
5.2.1	Programs and Conditions for System Analysis	5-2
5.2.2	Results	5-2
5.2.3	Conclusions and Recommendations	5-8
5.3	Transmission Planning (Mid- and Long-term)	5-10
5.3.1	Demand Forecasts	5-10
5.3.2	Power Development Plan	5-11
5.3.3	Study Cases	5-11
5.3.4	Conditions	5-12
5.3.5	5 Study Results	5-13
5.3.6	5 Conclusions and Recommendations	5-16
Chapter 6	Rehabilitation Plan of Thermal Power Plant	
6.1	Summary	6-1
6.2	Conclusion	6-2
Chapter 7	Environmental Measures	
7.1	Environmental Regulations and Standards	7-1
7.2	Current Environmental Conditions and Countermeasures	
	in Thermal Power Plants	7-1
7.3	Environmental Protection Measures to Promote Utilization of Coal	
	in Thermal Power Plants	7-2

Chapter 8	Institutional and Organizational Recommendation	
	for the Optimal Electric Power Development Plan and Stable Power Supply	7
8.1	Lessons from the California Power Crisis to the Power Sector Liberalization	
	in Indonesia	.8-2
8.1.1	California Power Crisis	.8-2
8.1.2	2 Lessons for Indonesia	.8-2
8.2	System for Power Supply Bidding with a view to Power Supply Composition	.8-4
8.2.1	Problems in Past Invitations to IPPs in Indonesia	.8-4
8.2.2	Power Source Bidding System taking Power Source Composition into account	.8-4
8.3	An Approach to Power Development Supporting System	
	in line with Energy Policy	.8-6
8.3.1	Introduction of New and Renewable Energy Sources	.8-6
8.3.2	2 Introduction of Clean Development Mechanism (CDM)	.8-7
8.4	Utilization of Captive Power	.8-8
8.4.1	Present Status of Captive Power	.8-8
8.4.2	2 Cost Estimation of Captive Power	.8-8
8.5	Utilization of Demand Side Management (DSM)	.8-9
8.5.1	Characterization of Power Demand in Indonesia	.8-9
8.5.2	2 Current Status in Indonesia	.8-9
8.5.3	Analysis of the Issues and Recommendations	.8-10
8.6	Financial Enhancement of PLN	.8-11
8.6.1	Financial Analysis	.8-11
8.6.2	2 Revenue/Cost Analysis	.8-11
8.6.3	Response of the Government of Indonesia and PLN	.8-11
8.6.4	Structural Problem	.8-12
8.6.5	5 Proposals	.8-12
8.7	The Measures to Promote the Private Investment	.8-14
8.7.1	Issues for the Promotion of Private Investment in Indonesia	.8-14
8.7.2	2 Use of a Special-Purpose Company (SPC) and the Security	
	Investment Collateralized by the Power Purchase Agreement	.8-14
8.7.3	3 Investment into Power Generation Market (lifting the ban of the electric	
	power generation in the industrial estate of foreign affiliates)	.8-17

Chapter 1 Preface

1.1 Background

Since the economic crisis in 1997, Indonesia has been regarded as needing reform in many fields. Structural reform has been under way in the electrical power sector to enable efficient electrical supply. This restructuring process was laid out in the "Power Sector Restructuring

y the Indonesian government in 1998. It aimed to use deregulation of the power sector and the introduction of market mechanism through the creation of a competitive market in order to achieve electrical power supply of high quality and efficiency. The New Electricity Law is to be enacted as soon as possible as the legal basis of this policy. Within three years of the new law coming into effect, it is to establish Single Buyer (hereinafter referred to as SB) market within the Java – Bali system. Within seven years it is to completely liberalize the operation of the Java – Bali system in the Multiple Buyers/ Multiple Sellers market (hereinafter referred to as MB/MS).

In the SB market and the MB/MS market, private generation companies are expected to take part in power development than before. The Optimal Power Development Plan, reflecting the issues faced by the sector, is essential as a development indicator in order to reconcile future participation of the private sector in power development with efficient and stable power supply. On the other hand, government participation is needed for the attainment of public-interest goals such as environmental preservation, supply stability and the best mix of energy to make effective use of national coal and natural gas reserves. Therefore the government must also be capable of power development planning and policies.

As the economy recovers from the 1997 economic crisis, the power demand is growing steadily. Demand in the Java – Bali system grew by 8.8% on the preceding year in 1999, by 9.9% in 2000 and by 6.35% in 2001. Steady demand growth is expected in future, prompting concerns that the system could reach a power deficit by as early as 2003~04, without the construction of new power stations, or measures to rehabilitate existing power stations and ease restrictions on their operation. In this situation, the examination of the probability of power deficit and preparing short-term countermeasures are current urgent issues to be solved.

1.2 The Target Regions and Purpose of the Study

This situation prompted JICA to begin a "Study on the Optimal Electric Power Development and Operation in Indonesia" (referred to below as "the Study") in July 2001. The scope of the study was limited to Java and Bali. The purpose of the study is as follows;

- To examine the probability of the power deficit anticipated for the near future (around 2005) and prepare countermeasures.
- To examine the Optimal Power Development Plan for the medium and long term (to 2015), taking generation costs, the effective use of primary energy sources, environmental conservation and other issues, and a Transmission Plan considering appropriate placement of power sources.
- To examine measures from technical, organizational and institutional aspects in order to realize the above plans.
- To transfer to the Indonesian counterpart the technologies and know-how for implementing the optimal power development plan and transmission plan during the progress of the study.

1.3 Study Content

This study comprises the following two phases:

- [1] Verification of the power deficit which is anticipated for the near future, and preparation of the necessary short-term measures
- [2] Examination of the Optimal Power Development Plan and Transmission Plan for the medium and long term, and advice on the technical, organizational and systematic aspects in order to realize the plans

These phases are summarized below.

(1) Verification of the power deficit which is anticipated for the near future, and preparation of the necessary short-term measures

First, past trends in power demand will be analyzed to make a detailed demand forecast using an econometric model. The model will comprise demand functions using income (GDP), electricity tariff and household electrification rates as the explanatory variables. The characteristic feature of this examination is that pricing effects will be considered in the demand forecast, reflecting the trend in the period before 1997, in which power demand increased as the real price declined. The two forecast cases are as follows:

- The JICA/LPE Case 1 scenario, in which the power price is raised to the 6~7c/kWh level by 2005, approximately doubling the current nominal price.
- The JICA/LPE Case 2 scenario, in which the power price is tied to the inflation rate, thus maintaining the real price at the current level.

This examination is the first stage of a study intended to verify the power crisis. Therefore the forecast period extends to 2010.

Next, to verify the capacity of power supply, the study will confirm the development timing in the existing power development plan, the available capacity of existing power plants, and the restrictions on them, to review the supply capacity which can be anticipated in each year. The impact of transmission constraints of the southern 500kV transmission line is examined by system analysis. These studies will envisage a number of scenarios considering the operation schedule and practicability of power plants that are now in development or at the planning stage. The probability of power deficit will be verified for each scenario.

Short-term measures, which at present appear to include coordination of the repair schedules of thermal power generators, rehabilitation of those generators, and the utilization of captive power, will be examined and their anticipated effects gauged to estimate the impact of such measures on the power deficit.

(2) Examination of the Optimal Power Development Plan and Transmission Plan for the medium and long term, and advice on the technical, organizational and institutional aspects in order to realize the plans

The model constructed for the short-term demand forecast will be used as the basis for a medium and long-term demand forecast, extending the forecast period to 2015. For the medium and long-term Optimum Power Development Plan, WASP-IV will be used to study a minimum-cost plan taking into account policies for the stable and effective use of energy, environmental preservation and other issues. The minimum-cost power development as the base case will be analyzed for sensitivity to influences such as rising fuel prices, development lead time and environmental policies and evaluated from the point of view of primary energy supply. The issues identified in the above process will be examined, and then recommendations for the realization of the Optimal Power Development Plan will be presented.

For the Transmission Plan, to match the Optimal Power Development Plan by 2015, distribution scenarios of new power sources (balanced distribution, western bias, eastern bias) will be assumed. Then, power flow, stability and short-circuit capacity of each scenario will be examined by system analysis, and the Optimal Transmission Plan will be proposed.

In parallel with the above analyses, the technical, organizational and institutional issues and recommendations in order to realize the Optimal Power Development Plan and to contribute stable power supply will be examined.

On the technical side, based on the field study of thermal power plants, measures for improving the thermal efficiency of existing power plants will be analyzed in technical and economic terms, and effective measures will be proposed.

The current status of environmental measures will be studied. And environmental countermeasures to improve environmental conditions will be examined and further environmental measures in order to increase the utilization of coal in future will be proposed.

On the organizational and systematic side, measures from Indonesia and abroad which illustrate the realization of power development plans and stable power supply will be gathered and analyzed. Measures apparently applicable to Indonesia's current situation will be identified from these cases and analyzed.

Issues and recommendations will be examined for the utilization of DSM to contribute to stable power supply in the short, medium and long terms, and for the utilization of captive power, which are expected to have a large impact on Indonesia's Power Development Plan because of their large capacity.

Measures to assist the introduction of renewable energy, the introduction of CDM, and a power source bidding system with a view to the power supply composition will also be raised, with examples from overseas, as measures to support the optimal power development.

In addition, measures will be examined and proposals made on enhancement of the PLN's financial condition, which is most important to the realization of optimal power development plan, and on promoting private investment, which is the key to future power development.

1.4 Procedure of the Study

Procedures of this study are summarized as follows.

Procedure	Activities				
Phase 1: Examination of probability of power countermeasures	er deficit and planning of short-term				
Review of power demand forecast	 Analysis of data and information Review of existing short-term power demand forecast by using model 				
Review of power supply capacity	- Review of existing power development plan				
Examination of the probability of power deficit and short-term countermeasures	 Verification of short-term demand and supply balance Planning short-term countermeasures 				
Phase 2: Preparation of comprehensive a power development plan	and realistic medium-to-long term				
Long-term power demand forecast	- Analysis of long-term power demand forecast by using model				
Drawing up the optimal power development plan	 Drawing up the optimal power development plan by using WASP-IV Evaluation of energy available for power sector 				
Drawing up the power transmission plan	Power flow analysis and stability analysisDrawing up the transmission plan				
Proposal to implement the plans on	- Drawing up the rehabilitation plan for the existing thermal power plants				
technical aspects	Review of the environmental policyExamination of environmental measures				
Proposal to implement the plans on institutional and organizational aspects	- Study for institutional and organizational recommendations for the optimal power development plan and stable power supply				

Chapter 2 Electricity Demand Forecast in the Java-Bali Region

2.1 Historical Trend of Economic Activity and Electricity Demand

2.1.1 Historical Trend of Economic Activities (RGDP, Regional GDP)

The historical trend of RGDP in the Java-Bali Region shows a tendency similar to that of the GDP of the entire Indonesia. The Java-Bali Region has such characteristics that relatively compared to the entire country the share of the mining & quarrying sector is small, while the role of trade, restaurants and hotel is large. During the economic crisis in 1998 the real RGDP of the Java-Bali Region recorded a minus (-) 17.7 % growth. Afterwards, although the economy began to recover, to date the real RGDP has still not reached the level of 1995-1997. As for the structure of the RGDP component in the Java-Bali Region, the agricultural sector had decreased its share of the RGDP until 1997 when the share was 12 %. However, in 1998 the share recorded was 15 %. This implies that the agricultural sector did not suffer much from the impact of 1998's economic crisis. On the other hand, the share of the manufacturing industry was down from 29 % in 1997 to 27 % in 1998.

Figures 2.1.1 shows the historical trend of the RGDP classified by sector. In the figure, the classification of the RGDP corresponds to the electricity sector's category (except others). The "industry" in the electricity sector corresponds to the manufacturing industries, the "commercial" sector corresponds to the restaurants & hotel, banking & other finance intermediaries and the "public" sector corresponds to the public admin & defense and services. The share of the classified electricity sector (except others) accounts for about 67 % of the total RGDP in 2000.

Figure 2.1.1 Historical Trend of RGDP by Sector in the Java-Bali Region

(Source) DGEEU and BPS

2.1.2 Electricity Price

Figures 2.1.2 (a) and (b) show the trends of electricity prices (nominal and real) in each sector since 1975 in the Java-Bali Region. The polygonal lines show prices for the commercial sector, the government/public sector, the industrial sector, and the residential sector. The nominal price rose during the period of 1980-1984 and after 1988. Average price of 88.7 Rupiah/kWh in 1988 increased by about 2.5 times by 1999 (222 Rupiah/kWh). Afterwards, the average price level reached 277 Rupiah/kWh in 2000 and 361 Rupiah/kWh in 2001.

On the other hand, although the real prices increased during the period of 1979-1985, they have maintained a decreasing tendency since 1990 (See Figure 2.1.2 (b)). The reason is due to the result that nominal prices increased in the period of 1988-1999, however, the consumer price index (CPI, 1995=100) during 1988-1999 increased 3.8 times from 56.9 to 218.9. Although nominal prices rose in both years of 2000 and 2001, as of today real prices have not reached the price level of 1997 under the circumstances of the high inflation ratio.

Figure 2.1.2 (a) Historical Trend of Nominal Electricity Price

(Source) DGEEU and BPS

(Source) DGEEU and BPS

2.1.3 Electricity Demand

Figure 2.1.3 shows the historical trends of electricity demand by sector in the Java-Bali Region. Electricity demand in the Region has rapidly increased from 2,258.7 GWh in 1975, to 5,112.0 GWh in 1980, to 18,759.6 GWh in 1985, and to 63,871.8 GWh in 2000. The actual recorded value in 2001 was 67,927.2 GWh. Looking at the contribution by sector, the industrial sector, followed by the residential sector have pushed up the regional electricity demand. Annual average growth rates of electricity demand were 14.3 % in 1975-1980, 15.7 % in the 1980s and 11.25% in the 1990s. Each growth rate by consuming sector is shown in Table 2.1.1.

As for the demand structure, the industrial sector expanded its share from a level of a little over 30 % to a level of 50 % [level] in the 1980's. After the latter half of 1990s, however, the share of the industrial sector shrunk and the residential and the commercial sectors recovered that share. As for the share of the consuming sector, in 2001, the industrial sector accounted for 46 %, the residential sector for 36 %, the commercial sector for 3 %, and the government/public sector for 5 %.

Figure 2.1.3 Historical Trend of Electricity Demand by Sector (Java-Bali)

(Source) PLN

	0		0	
		1975-1980	1980-1990	1990-2000
Electricity Demand	Java-Bali Total	14.3	15.7	11.5
	Industry	15.4	21.6	10.5
	Residential	14.9	12.1	13.1
	Commercial	19.3	13.8	14.1
	Public	8.0	8.1	5.8
Peak Load	Java-Bali System		13.8	11.0

Table 2.1.1 Average Growth Rate of Electricity by Sector During Each Period

Historical trend of peak load is shown in Figure 2.1.4. Peak load (gross) has increased from 1,181 MW in 1980 to 7,777.3 MW in 1995, and to 12,231 MW in 2000. Annual average growth rate was 13.8 % in the 1980s and 11.0 % in the 1990s. In 2001, the peak load in the Region reached 13,041 MW.

Figure 2.1.4 Historical Trend of Peak Load in the Java-Bali System

(Source) PLN

Table 2.1.2 shows the historical trends of load factor and total losses in the Java-Bali system since 1990. Total losses are represented in terms of ratio (%), and include the plant own-use and transmission/distribution losses. As a recent trend, the plant own-use is about 4 %, and the transmission /distribution loss is about 12 %. Load factor is about 70 %.

Tuble 2.1.2 Loud Tuble Total Losses in the sava Ban System											(011	iii. 70)
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Load Factor	70.2	72.8	78.0	79.7	70.2	70.5	68.4	70.7	71.9	70.3	69.9	71.1
Total Loss	19.9	18.1	16.5	16.2	15.8	16.1	15.7	15.5	16.6	16.2	15.1	16.4

Table 2.1.2 Load Factor and Total Losses in the Java-Bali System

(Unit: %)

(Source) PLN

Figure 2.1.5 shows the historical trend (1975-2001) of electricity demand and economic activities in the Java-Bali Region. In the figure, polygonal lines show annual growth rates of electricity demand ("Electricity" in Figure 2.1.5) and the RGDP respectively, and the bar graph shows the real price (at 1995 constant value) in each year. According to Figure 2.1.5, we can see the general characteristic that before 1997 the growth rate of electricity demand increases when the real price decreases. In 1998, the demand growth rate dropped drastically due to the economic crisis and it recorded minus growth. Although signs of recovery begin to appear after 1999, the economic driving force is still weak.

Figure 2.1.5 Historical Trend of Electricity Demand and Real Price (Java-Bali)

2.2 Electricity Demand Forecasting Model

2.2.1 Concept of Model

In this report, models were built focusing on economic growth (Regional GDP by sector) and electricity price. Demand function is expressed by Income (GDP) and Price based on econometrics principle. As shown in the following schematic diagram (Figure 2.2.1), models include functions for analyzing the impact of energy policy issues such as, electricity price and rural electrification.

Main scenarios related to policy issues can be applied to 1) economic growth (RGDP), 2) electricity price, 3) household electrification, 4) energy conservation, 5) power source shift (fuel shift), and 6) environmental constraints. In this report, 1) economic growth, 2) electricity price, and 3) household electrification are given as scenarios (external variables). Sensitivity analysis by simulation is focused on electricity price and, other analysis such as household electrification are added as applied.

2.2.2 Model Structure

(1) Electricity demand by sector

Figure 2.2.2 shows the framework of the end-use electricity sub-sector (electricity demand sub-sector). In this case, macro indicators consist of four items: (1) regional GDP by sector, (2) consumer price index, (3) electricity prices by sector and (4) household electrification

ratio. In the electricity demand forecasting, the former items described above are treated as external variables in order to simulate the impact of price and GDP growth.

The end-use electricity demand sub-block comprising of each sector creates the system equations by sector and calculates both the sectoral demand and the total. The demand functions are estimated by regression analysis for each sectoral demand for the manufacturing, residential, commercial, and government/public sectors. The total demand is obtained by adding each of the sectoral demand.

Basically, system equations by sector were created as the following functional relations:

1) Industrial (manufacturing) sector

2) Residential sector

Number of customers = f (Electrification ratio)

Electricity demand = f (Electricity consumption/Customer, Price for households, Number of customers, Previous year's demand)

3) Commercial sector

Electricity demand = f (GDP of commercial sector, Price for commercial sector)

4) Government/Public sector

Electricity demand = f (GDP of public sector, Price for public sector, Previous year's demand)

Figure 2.2.2 Framework of Electricity Demand Sub-Block

(2) Power generation and peak load

In this sub-block, total electricity demand forecasted is received from the end-use electricity demand sub-block. Considering total losses (gross) by adding both the transmission /distribution (T/D) losses and own use (in plant use), the total electric power generation required is calculated. Peak load is calculated by use of a load factor.

In this simulation, total losses are handled as external variables (scenario). The load factor is calculated by the model itself, that is, by a structural equation by regression analysis. The load factor obtained by regression will increase with industrial demand and decrease with residential demand and, is as follows:

Load Factor = f (Industrial Demand, Residential Demand)

(3) Observation year

The base year and the observation year of the data for the model simulation are shown in Table 2.2.1. The base year is 2000, while the actual values for 2001 are input values of electricity demand, generated output and peak load..

Observation Year	1980 - 2000
Base Year	2000, Excluding electricity demand
RGDP applied	1980 - 2000
Electricity consumption,	1980 - 2001, Input 2001 actual values
Generation and Peak Load	

 Table 2.2.1 Base Year and Observation Year

2.3 Forecasted Electricity Demand by Sector

In the first phase, electricity demand in the Java-Bali Region is forecasted until 2010, and the forecasted year is extended until 2015 in the second phase. Both forecasted results are the same until 2010. Electricity demand forecasting in the first phase was carried out for the purpose of preparing materials to examine whether power shortage is likely to happen in 2003 or 2004.

2.3.1 Scenario

Main points of the scenario (JICA/LPE) prepared are briefly shown in Table 2.3.1. GDP scenario is the same as PLN Low Case until 2010 with an annual average growth rate of 4.1 %. As for the price scenario, Case 1 raises the prices to the level of 6-7 cent/kWh (considering an exchange rate of Rp. 8000/ US\$) until 2005, that is, nominal prices are doubled to current price levels. In Case 2, nominal prices are increased with inflation (consumer price index). Price scenario of Case 1 is shown in Table 2.3.2.

	Scenario									
GDP	Growth	2000-2005	2010-2015	2000-2015						
	(%)	3.8	4.5	4.2						
Price	Case 1	Nominal prices	Nominal prices increase based on the new pricing schedule.							
	Case 2	Real price constant (Nominal prices increase with inflation)								

Table 2.3.1 Characteristics of Scenario (JICA/LPE)

					,		
Price (Rupiah/kWh)	1999	2000	2001	2002	2003	2004	2005
Industry	210.3	299.6	365.2	429.3	480.8	533.7	587.1
G.R (%)		42.5	21.9	17.6	12.0	11.0	10.0
Residential	197.7	210.9	311.0	395.1	442.5	486.8	535.4
G.R (%)		6.7	47.5	27.0	12.0	10.0	10.0
Commercial	317.2	378.6	447.7	506.2	566.9	623.6	686.0
G.R (%)		19.4	18.3	13.1	12.0	10.0	10.0
Public	265.8	265.8	460.6	507.1	568.0	624.7	687.2
G.R (%)		0.0	73.3	10.1	12.0	10.0	10.0
Average	221.9	276.9	360.9	430.6	482.6	533.4	587.1
G.R (%)		24.8	30.4	19.3	12.1	10.5	10.1

Table 2.3.2 Price Scenario (JICA/LPE Case 1)

The detailed scenario is shown in Table 2.3.3. As just mentioned above, the GDP scenario is the same as PLN Low Case until 2010. Also, the growth rates of population and household electrification ratio were set as the same PLN scenario. Inflation is set between from 10 % to 8 %. In the Table 2.3.3, PLN scenario is also attached as a reference.

After 2011, the GDP growth rate is maintained at the 2010 level of 4.5 % and the price scenario adopts the real price constant case. Household electrification is set from 81 % in 2010 to 93 % in 2015, which is a time trend of annual average growth of 3 %. Inflation is set at 7 % per annum.

PLN			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010)			
GDP	Low	G.R (%)		3.4	3.7	3.7	3.9	4.1	4.2	4.2	4.3	4.5	4.5				
	Medium	G.R (%)		3.8	3.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8				
	High	G.R (%)		3.9	4.9	5.3	5.6	6.0	6.2	6.3	6.4	6.4	6.4				
Popula	ation	G.R (%)	1.08	1.07	1.05	1.03	0.99	0.96	0.93	0.91	0.88	0.84	0.81	Ī			
Electri	fication rat	io%	58.3	59.2	60.2	62.2	64.4	66.7	69.1	71.8	74.6	77.5	80.6				
Total I	Loss	%	14.7	15.2	13.8	13.8	13.5	13.3	13.2	13.1	13.1	13.0	13.0				
				-					-					·			
JICA/	LPE		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
GDP	Case 1	G.R (%)	4.7	3.4	3.7	3.7	3.9	4.1	4.2	4.2	4.3	4.5	4.5	4.5	4.5	4.5	4.5
	Case 2	G.R (%)		the same as 0	Case 1				the same a	s Case 1				Same to Case 1			
Price	Case 1	G.R (%)		18.3-73.3	11-27	12.0	10.0	10.0	Real value	constant	(the same	as inflatio	n)	Real valu	e constant	(the same	as inflation)
	Case 2	G.R (%)		Real value c	onstant (the	same as ir	nflation)		Real value	constant	(the same	as inflatic	n)	Real valu	e constant	(the same	as inflation)
Popula	ation	G.R (%)	1.08	1.07	1.05	1.03	0.99	0.96	0.93	0.91	0.88	0.84	0.81		(Trend: Av	verage 1.1	% Growth)
Electri	fication rat	io%	58.3	59.2	60.2	62.2	64.4	66.7	69.1	71.8	74.6	77.5	80.6	83.1	(Trend: A	verage 3%	Growth
Inflati	on	%	3.7	10.0	10.0	10.0	10.0	10.0	9.0	9.0	8.5	8.0	8.0	7.0	7.0	7.0	7.0
Total I	Loss	%	14.7	13.2	13.8	13.8	13.5	13.3	13.2	13.1	13.1	13.0	13.0	13.0	13.0	13.0	13.0

2015

4.5

93.1

7.0 13.0

Table 2.3.3 Detailed Scenario (JICA/LPE and PLN)) 2004 2007 2007

2002

2.3.2 Short-Medium Term Electricity Demand Forecasted Results (2001-2010)

Figure 2.3.1 shows the forecasted peak load until 2010. In the figure, examples of RUKUN, Low Case of PLN, and Low/High Cases of World Bank are also shown as references.

2.3.3 Long Term Electricity Demand Forecasted Results (2001-2015)

According to the simulation results targeting the year 2015, the electricity demand is expected to rise at the average growth rates of 6.8 % in Case 1 and respectively, 7.2 % in Case 2 in the period of 2000-2015. Peak load would also increase at a 6.7 % growth rate in Case 1 and 7.2 % in Case 2 during the same period mentioned above. Table 2.3.4 shows the outline summarizing the simulation results over a five span.

Table 2.3.5 shows the actual values and the forecasted results of the peak load in the period of 2000-2015. The difference between the results of Case 1 and Case 2 is 985 MW in 2005, 1,758 MW in 2010, and 2,251 MW in 2015. In this simulation, the GDP scenario is only one example. In case that modelers change the GDP scenario, the difference is expected to become larger than the results shown.

JICA/LPE		2000	2005	2010	2015	2000/2015
Java-Bali	Demand (GWh)	63,872	84,193	118,704	171,825	
Case 1	G.R (%)		(5.68)	(7.11)	(7.68)	(6.82)
	Generation (GWh)	74,901	97,087	136,410	197,455	
	G.R (%)		(5.33)	(7.04)	(7.68)	6.68)
	Peak Load (MW)	12,231	16,185	22,539	32,549	
	G.R (%)		(5.76)	(6.85)	(7.63)	(6.74)
Java-Bali	Demand (GWh)	63872	89,461	127,669	183,674	
Case 2	G.R (%)		(6.97)	(7.37)	(7.55)	(7.30)
	Generation (GWh)	74901	103,161	146,712	211,070	
	G.R (%)		(6.61)	(7.30)	(7.55)	(7.15)
	Peak Load (MW)	12231	17,170	24,297	34,800	
	G.R (%)		(7.02)	(7.19)	(7.45)	(7.22)

Table 2.3.4 Outline of Simulation Results

Table 2.3.5 Forecasted Peak Load (JICA	4/LPE)	
--	--------	--

	2000	2001	2002	2003	2004	2005	2006	2007
Case 1 (MW)	12,231	13,041	13,821	14,497	15,266	16,185	17,220	18,348
Case 2 (MW)	12,231	13,041	14,089	15,073	16,071	17,170	18,374	19,659
	2008	2009	2010	2011	2012	2013	2014	2015
Case 1 (MW)	19,612	21,000	22,539	24,225	26,058	28,048	30,208	32,549
Case 2 (MW)	21,075	22,612	24,297	26,099	28,040	30,131	32,380	34,800

Figure 2.3.2 shows the forecasted electricity demand of Case 1 (Bar Graph) and Case 2 (Polygonal Graph).

Figure 2.3.2 Electricity Demand by Sector (JICA/LPE Case 1 & Case 2)

(1) Simulation results of Case 1

Regarding the electricity demand by sector, demand for the industrial (manufacturing) sector is likely to increase from 30.0 TWh in 2000 to 55.1 TWh in 2010 and to 79.8 TWh in 2015 (up 6.7% per year during 2000-2015). Demand for the commercial sector is projected to climb from 8.3 TWh in 2000 to 17.9 TWh in 2010 and to 27.8 TWh by 2015 (up 8.4% per year). Demand for the residential sector will increase from 22.6 TWh (2000) to 40.9 TWh (2010) and to 58.9 TWh in 2015 (up 6.6 % per year). Public sector demand will increase from 2.9 TWh (2000) to 4.7 TWh and to 5.3 TWh in 2015 at the average growth rate of 4.0 %.

As for the demand structure, presently the biggest consumer of electricity is the industrial sector, followed by the residential sector. In 2001, the industrial sector accounted for 46.3 % of the total demand, the residential sector for 36.0 %, the commercial sector for 12.9 %, and the government/public sector for 4.8 %. The share of the commercial sector shows an increasing tendency, *i.e.*, 16.2 % in 2015 (Case 1), whereas the industrial sector maintains almost the same share, while the share of the residential and the public sectors will decrease slightly.

(2) Simulation results of Case 2

Demand for the industrial (manufacturing) sector is expected to increase from 30.0 TWh in 2000 to 59.2 TWh in 2010 and to 85.7 TWh in 2015 (up 7.2 % per year during 2000-2015).

Demand for the commercial sector is projected to climb from 8.3 TWh in 2000 to 18.5 TWh in 2010 and to 28.7 TWh by 2015 (up 8.7 % per year). Demand for the residential sector will increase from 22.6 TWh (2000) to 44.9 TWh (2010) and to 63.6 TWh (2015) at the growth rate of 7.1 %. The public sector will show a 4.5 % growth from 2.9 TWh (2000) to 5.0 TWh and to 5.7 TWh (2015). The share by sector in Case 2 showed similar results to Case 1, however, the share of the commercial sector in 2015 at 15.3 % is slightly lower than the results of Case 1.

2.4 Electricity Demand by Sub-Region

In this section, electricity demand in the Java-Bali Region is distributed into five (5) areas (sub-regions) taking into consideration the economic structure and electricity demand structure in each area. Each sub-region corresponds to the classification of PLN service area, which consists of Jakarta (Jaya & Tangeran), West Java, Central Java, East Java and Bali as shown in Figure 2.4.1. Figure 2.4.1 also shows the concept of regional economic activities and electricity demand shifts.

2.4.1 RGDP by Sub-Region (Area)

In this model, the RGDP by area is obtained by the following procedure:

1) the RGDP total in the Java-Bali Region is set by the economic scenario (See Table 2.3.3);

2) the sectoral RGDP, comprising of the manufacturing industry, the commercial, the public and others, which basically corresponds to the classification of the electricity demand sector, is distributed by taking into consideration the historical trends of economic activities in each targeted area; and

3) <u>finally</u>, the sectoral GDP is distributed to each area' GDP by sector using historical trend (logarithmic trend).

The annual growth rates of RGDP during 2001 - 2015 are projected at 4.2 % in the Jakarta area, 4.4 % in the West Java area, 4.2 % in the Central Java, 4.0 % in the East Java area and 4.5 % in the Bali area.

2.4.2 Electricity Demand by Sub-Region (Area)

Electricity demand by sector and by area in the Java-Bali Region is forecasted by the following procedure:

1) first, the model runs under the premise that the regional demand by sector simulated in section 4.3 is maintained, that is, the demand by sector in the Java-Bali Region is not changeable;

2) next, electricity demand by sub-region (area) is obtained from the relationship between RGDP by area and by sector and, electricity consumption by area and by sector. Intensities are applied for electricity demand projection. The intensities are not fixed for reflecting on the industrial structure change in each area; and

3) finally, peak load by area is distributed from the entire Java-Bali system to each area by use of historical trends of electricity demand and peak load by area in the past six (6) years, that is, the load intensity with respect to electricity demand that was adopted in each area. As described later, the area classification in the Java-Bali power system is based on P3B's service area.

Table 2.4.1 shows the electricity demand forecasted by sub-region (area) by sector and Table 2.4.2 shows the forecasted results in the Java-Bali Region by sector. Figure 2.4.2 also shows the historical trend and the forecasted result of Case 1 until 2015. It is shown that the West Java area expands its share and demand and the East Java area decreases its share. Regarding the share by area in 2015, Jakarta is expected to account for 29 %, West Java for 36 %, Central Java for 13 %, East Java for 19 %, and Bali for 2.8 %. As for growth rates of electricity demand by sub-region (area), the order is Bali, West Java, Jakarta, Central Java and East Java from the top of the list in both cases for Case 1 and Case2 (See Table 2.4.1).

Regarding the maximum demand (peak load), its area is classified into four (4) sub-region of areas 1, 2, 3, and 4 by the P3B service area, which is a little bit different from the PLN service area. Area 1 includes PLN service area of Jakarta and a part of West Java. Area 4 consists of East Java and Bali.

The forecasted results are shown in Table 2.4.3. Peak load by area for the year 2001 was 5,495 MW in Area 1, 2,316 MW in Area 2, 2,057 MW in Area 3, 2,827 MW in Area 4 (excluding Bali), and 346 MW in Bali. In Case 1, it is expected that Area 1 will be 9,393 MW, Area 2 will be 4,199 MW, Area 3 will be 3,401 MW, Area 4 (excluding Bali) will be 4,828 MW, and Bali will be 718 MW in 2010. In 2015, Area 1 will be 13,542MW, Area 2 will be 6,144 MW, Area 3 will be 4,919 MW, Area 4 (excluding Bali) will be 6,849 MW, and Bali will be 1,095 MW.

Figure 2.4.3 shows the historical trend and the forecasted results of peak load until 2015. In Figure 2.4.3, the bar graph shows the peak load by area for Case 1 and the polygonal graph shows the system peak load for Case 2. Peak load by area in the Java-Bali Region shows the characteristic that Area 1 accounts for a large share of about 40 %. In the case of adding Area 2 to Area 1, the share will reach 60 %.

Figure 2.4.2 Electricity Demand by Area (JICA/LPE Case 1)

Figure 2.4.3 Peak Load by Area (JICA/LPE Case 1 and Case 2)

Table 2.4.1 Forecasted Electricity Demand by Sub-Region and by Sector

Line Jama Obj Jong	Densan	it by Sub-B	egion & Sub-3	Sector																					
Char 1 Mate Total Mate Mate Mate Mate <t< th=""><th></th><th></th><th></th><th></th><th>1999</th><th>2000</th><th>200)</th><th>3002</th><th>2003</th><th>2004</th><th>2005</th><th>1006</th><th>2907</th><th>2008</th><th>2009</th><th>2010</th><th>3011</th><th>2013</th><th>2013</th><th>2014</th><th>3015</th><th>2008/05</th><th>2005/10</th><th>2010/15</th><th>2000015</th></t<>					1999	2000	200)	3002	2003	2004	2005	1006	2907	2008	2009	2010	3011	2013	2013	2014	3015	2008/05	2005/10	2010/15	2000015
Brackenda SP:07 022 076 0700 075 0700 075 0700 <	Cart 1	Jekarta	Tetal	GWh	16720	18518	19855	20823	21967	23156	24643	26292	28069	30021	32205	34577	37162	39964	43000	46288	49847	5.89	7.00	7.55	6.92
Below 2944 6281 6786 6786 7916 <t< td=""><td></td><td>0.00123.8</td><td>Residential</td><td>10.000</td><td>\$767</td><td>6252</td><td>.6768</td><td>7270</td><td>7535</td><td>7933</td><td>8345</td><td>3813</td><td>9339</td><td>9926</td><td>10587</td><td>11312</td><td>12128</td><td>13026</td><td>- 14011</td><td>15087</td><td>16262</td><td>5,94</td><td>6.27</td><td>7.57</td><td>6.98</td></t<>		0.00123.8	Residential	10.000	\$767	6252	.6768	7270	7535	7933	8345	3813	9339	9926	10587	11312	12128	13026	- 14011	15087	16262	5,94	6.27	7.57	6.98
Semanner 41.5 4.90 5.21 5.90 5.90 6.90 5.90 7.90 7.80 7.80 7.80 7.90 7.80 7.90 7.80 7.90 7.80 7.90			Industry		:5541	6281	6706	5766	7082	7464	7986	8533	9116	9751	10460	11318	12011	12901	13833	14831	15892	4.92	7.03	7.22	6.39
Image: Part of the start of the st			Commercial		4158	4689	5021	5304	3639	6091	<6602	7166	2222	8433	9219	10052	10958	11943	13015	14180	15446	7.00	8.77	0.97	\$27
West-Am Tend OPA Dirac 2010 <			Fubbe		1255	1295	1260	1483	1570	1647	1717	1780	1938	1892	1944	1995	2044	2094	2142	2191	2239	\$79	3.05	2.34	3.72
Finedemia 35001 6113 7200 9158 91420 9218 9120		West Jan	a Total	GWE	19721	22670	23613	24572.	25893	27560	29418	- 31529	33814	36325	39127	42162	45450	40064	52948	57148	61629	5.92	7.47	7.91	7.07
Inclusy 1979 1929 1468 1460 1501 1910 2010 2010 2010 1017 3305 3507 <			Residential	1	5601	6615	7159	7700	0056	8421	8279	9393	.9970	10614	11335	12137	13036	14025	15112	16362	17683	6.06	645	7.72	6.74
Communication 913 1112 1198 1272 1199 1197 1190 1190 201			Industry .		12759	13956	14690	14982	15945	16912	18518	19643	21171	22940	24701	26705	28893	31175	33675	36359	19347	5.63	7.95	8.00	7.19
Total - 448 447 256 617 637 714 710 714 710 714 710 710 710 711 <td></td> <td></td> <td>Comercial</td> <td></td> <td>913</td> <td>1112</td> <td>1198</td> <td>1275</td> <td>1359</td> <td>1476</td> <td>1697</td> <td>1752</td> <td>1910</td> <td>2084</td> <td>2282</td> <td>2498</td> <td>2734</td> <td>2991</td> <td>3271</td> <td>3576</td> <td>3902</td> <td>7.65</td> <td>9.23</td> <td>9.37</td> <td>\$75</td>			Comercial		913	1112	1198	1275	1359	1476	1697	1752	1910	2084	2282	2498	2734	2991	3271	3576	3902	7.65	9.23	9.37	\$75
Curral Jur Frad. OTPS 2787 8799 8797 8799 8797 1996 1977 1298 1979 1298 1997 1298			Fuhhi		448	487	566	617	655	683	714	740	764	707	SOI	829	850	070	591	911	931	7.96	3.04	2 33	4.42
Picademal 1979 4119 4129 5156 528 529 529 528 525 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 578 618 600 723 578 618 600 728 578 <		Central Ja	Total	CTWIE	7887	8709	8888	9371	9540	10400	11055	11779	12568	13438	14400	15468	16629	17893	19256	20757	12373	4.09	6.95	7.66	6.49
intenery 2888 30/2		10-120	Readennal	1	3879	4319.	4520	4253	5956	5294	5569	5883	6235	6628	7069	7558	8107	\$711	9374	10100	10833	5.22	.6.30	7.58	6.36
Communit 066 092 794 796 998 292 1211 1212 1225 1448 1380 1270 1398 2004 1243 1243 1283 1270 1398 2004 1243 1			Industry	-	2938	3202	3156	3218	3402	1630	3910	4214	4541	4899	5296	5724	6134	6680	9213	7786	9403	4.07	7.92	7.92	6.64
Draft -144 496 599 594 393 693 791 791 797 793 797 793 897 997 995 997 995 997 995 997 995 997 995 997 995 997<			Commercial		6]6	692	303	746	796	862	\$38	1021	1111	1211	1325	1448	1583	1730	7890	2064	2254	6.26	9.09	9.34	819
Earline Trait GWh 1148 11313 1581 9450 1591 9133 1799 1915 2018 2009 2218 2007 2712 2814 5061 2106 511 661 734 66 Deterring 4526 6624 6644			Puthin		454	496	509	354	586	613	638	661	182	701	719	737	755	772	789	807	.824	5.19	1.93	2.24	3:44
Beachemin 4182 4282 5267 5800 6144 6490 7907 7929 8120 8666 9270 9211 10600 11360 11380 </td <td></td> <td>East Java</td> <td>Total</td> <td>GWh</td> <td>11549</td> <td>13135</td> <td>13941</td> <td>14503</td> <td>15164</td> <td>15973</td> <td>16933</td> <td>17991</td> <td>19135</td> <td>20393</td> <td>21795</td> <td>23218</td> <td>24977</td> <td>26772</td> <td>28714</td> <td>30813</td> <td>33880</td> <td>5 21</td> <td>6.61</td> <td>7.34</td> <td>6.35</td>		East Java	Total	GWh	11549	13135	13941	14503	15164	15973	16933	17991	19135	20393	21795	23218	24977	26772	28714	30813	33880	5 21	6.61	7.34	6.35
Industry 6929 6929 9934 9939 9939 9906 10307 12121 13037 12121 13037 12121 13037 12121 13037 13087 4416 453 1919 1012 1121 1123 11241 11241 11241		and the second second	Renderind	1.000	4182	4829	5280	5657	5690	6141	6449	6798	7191	7629	8120	B866	-9278	2051	10689	11496	12376	5.96	6:09	7.39	6.47
Concernal E54 1007 1142 1020 1221 1410 1509 1709 1646 2008 2222 2441 2409 2108 3433 559 9.6 071 210 210 2103 1125 1123			Industry		1(292)	6629	6844	6299	7215	7619	8123	8672	9557	9895	10686	11567	12181	13053	13907	14986	16655	- 4.15	6.91	7.15	6.67
Packa S21 270 341 890 1092 1012 1012 1141 1152 1141 1152 1141 1152 1141 1152 1141 1152 1141 1152 1141 1152 1141 1152 1141 1151 11			Commercial		154	1097	1077	1142	1820	1223	1440	1569	1709	1964	2040	2222	2411	2669	2918	3198	3483	5.54	9.16	9.31	8.01
Bat Tuel OTM 1259 1441 1959 110 710 705 100 840 389 986 1060 1111 1131 1300 1410 1300 1410 1300 1410 1300 1410 1301 1300 1410 1301 1301 1301 1300 1410 1301 <td></td> <td></td> <td>Fubia</td> <td></td> <td>\$21</td> <td>579</td> <td>341</td> <td>805</td> <td>649</td> <td>887</td> <td>921</td> <td>951</td> <td>979</td> <td>1995</td> <td>1029</td> <td>1053</td> <td>1076</td> <td>1090</td> <td>1121</td> <td>1143</td> <td>1165</td> <td>9.71</td> <td>271</td> <td>2.05</td> <td>4.77</td>			Fubia		\$21	579	341	805	649	887	921	951	979	1995	1029	1053	1076	1090	1121	1143	1165	9.71	271	2.05	4.77
Reviewal 193 19		Eal	Tetal	(TWh)	1259	1441	1630	1748	1855	1981	2138	2306	3482	2692	2921	3172	3448	3750	4080	4441	4835	\$ 22	8.20	8.00	841
Indexy 21 76 82 93 99 90 114 122 11 141 153 153 153 153 155 150 156 150 156 150 156 150 156 150 156 150 156 150 156 150			Residential		519	613	310	765	100	840	186	939	798	1063	1137	1218	1339	1410	1520	1640	1773	7.66	6.56	7.79	734
Camernal 600 688 707 202 1855 1107 1200 1496 1506 1706 1205 2005 2201 9.99 9.99 9.95 9 Churk: Jupp-Sal Total 3714 5712 57122 71011 74419 2911 921 10741 11974 119744 148009 119447 1711131 Churk: Jupp-Sal Total 7970 2001 2002 2000 2004 2007 2008 20017 2011 2011 2012 2011 2012 2014 2015 200003 2002100 20101 2011 2011 2012 2011 2012 2011 2011 2012 2011 2011 2012 2011 <td></td> <td></td> <td>Indostry</td> <td></td> <td>- 21</td> <td>76</td> <td>82</td> <td>13</td> <td>87</td> <td>52</td> <td>99</td> <td>106</td> <td>114</td> <td>122</td> <td>131</td> <td>141</td> <td>152</td> <td>.163</td> <td>175</td> <td>192</td> <td>207</td> <td>5 72</td> <td>7.35</td> <td>7.51</td> <td>6.76</td>			Indostry		- 21	76	82	13	87	52	99	106	114	122	131	141	152	.163	175	192	207	5 72	7.35	7.51	6.76
Enda			Commercial		600	688	767	822	185	969	1865	1167	1290	1496	1550	1306	1873	2065	2271	2495	2740	9.09	9.93	9.94	965
Cherck Jarga-End Total GYUb 77457 63072 67727 71017 74619 79017 24195 88896 90076 102661 119477 118104 127696 119447 171012 Caell Journa Cont 2000 2004 2003 2004 2007 2008 2007 2011 2012 2014 2013 20000 200401 20101 2011<			Publi		19	64	71	78	82	87		-94	97	100	103	105	109	112	115	118	120	7.12	126	2 52	4.28
Carel 1999 2000 2001 2002 2003 2004 2007 2008 2009 2010 2011 2012 2013 2014 2015 200003 200003 200003 200003 20010 2011	Check	Jawa-Kat	Total	GWh.	37437	63872	67927	71017	74619	79817	84193	10896	96076	102868	110457	118704	127696	137446	148009	159447	171825	1000			
Case2 Jose 1 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2011		1	Term.	123.242	Vitte											11111									
Charda Total Open Open Store																									
Cased Owner Cond Gradi 1 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.911 0.911 0.912 0.912 0.912 0.913 0.913 0.91	-	-		2220	1990	2000	2001	2002	2003	3004	2805	2006	2007	2008	2009	2010	2011	2012	2013	2814	2013	2000/05	2005/30	2010/15	2000035
Jackstrink Stol Oct22 Color	(Jaseil	Jakaeta	Total	GWI	16 620	18518	19855	212/9	41/48	24317	24045	2/900	298.08	12025	34404	M/M/S	39/14	12672	45657	49285	52975	7.060	0.26	7.46	2.20
Industry 3341 6431 6431 718 724 9184 9184 9183 1233 1335 <			Sestema.		2163	6252	6368	5269	1//8	. 0.587	8170	24.95	10125	10825	11588	12413	13290	14244	13206	16363	17544	2.22	0.96	7.16	7.12
Commercial 4128 -4909 5121 5400 5820 9402 6726 9121 1037 11312 12391 13456 13945 14946 13945 13945 13945 14946 13945 14946 13945 14946 13947 1394 14946 13947 1394 1494 13947 1397 1300 11112 1395 1490 13163 15956 1000 11075 11370 11493 1252 1256 1277 1397 13044 13917 1307		-	industry	-	3241	8201	0/86	7118	/224	0038	- 3577	9304	9,50	10473	11232	12048	12983	13800	14606	1597.05	11000	5.42	1.00	1.22	10.03
Picka 1255 1160 1434 1355 1092 1362 1355 2002 24.05 21.05 21.45 22.44 22.46 24.45 </td <td></td> <td>-</td> <td>Commercial</td> <td>-</td> <td>4126</td> <td>4089</td> <td>3621</td> <td>2407</td> <td>2622</td> <td>#288</td> <td>1150</td> <td>1500</td> <td>80.05</td> <td>8720</td> <td>- 9017</td> <td>10211</td> <td>11312</td> <td>12530</td> <td>13436</td> <td>140,5%</td> <td>12946</td> <td>1.441</td> <td>- 211</td> <td>8.27</td> <td>8.24</td>		-	Commercial	-	4126	4089	3621	2407	2622	#288	1150	1500	80.05	8720	- 9017	10211	11312	12530	13436	140,5%	12946	1.441	- 211	8.27	8.24
Wert Jaw Todil Own 19721 22070 25016 51079 5022 29993 42166 45460 49079 10702		March 1997	Publi	COLUMN 1	1200	1295	-1360	1484	1595	1693	1082	1862	19.65	2992	2065	2326	2183	2242	2290	2354	2405	0.597	3.50	2.52	4.22
Interestinal 3601 6612 7159 1000 6213 11412 13322 1422 1533 14400 1533 15400 1533 14400 1533 14400 1533 1433 999 932 933 1001 833 922 933 1001 833 933 1001 833 933 1001 833 1033 1033 1033 1033 1033 1033 1033		West Jaw	A LOCAL	GWI	19(21	22070	25613	25576	27218	29216	31405	55579	363222	39689	42156	40400	49817	02843	36903	61402	8.100.	7.31	7.68	7.80	1.00
Intering 12/20 138/04 15/82 16/00 18/163 19/26 21/07 22/27 24/23 26/20 26/20 20/97 25/26 30/97 30/97 40/97 41/10 17/15 15/2 15/2 16/20 Commersal 913 11/2 11/2 11/2 15/2		-	Elestential	1	3601	6615	7159	1700	8251	6825	9439	10099	10809	11575	12412	13522	14290	15537	16466	17682	18991	7.37	- 11	7.33	3.28
Commercial 913 1112 1398 1529 1509 1809 1971 2122 2256 1257 2022 3088 2022 4005 403 922 938 2022 1008 2575 9982 4005 403 922 935 938 9982 4005 403 922 938 938 9235 2398 4017 7338 2.248 400 12560 16725 17970 1931 2073 2398 4017 7.33 2.248 400 Residential 3879 4119 4520 4538 5192 5544 5920 6525 6759 7228 740 8626 9897 9526 10214 10955 11751 651 6588 7909 921 2151 2337 697 920 790 933 920 925 557 790 931 1071 11751 651 658 7909 920 292 780 1086 1091		-	Industry	-	12.150	13826	14090	15/62	16900	18103	13/32/0	51000	22(5)	14238		06361	36990	35486	- 30100	39049	42150	112	1.90	8.00	1.10
Jurdan 448 4487 566 518 103 744 511 774 000 0.22 853 959 952 955 1001 8.77 3.53 2.20 4 Crunal Jaroba 0705 1387 8.70 1395 4.119 4.10 17.32 17.90 19313 9526 10731 4.005 17.32 77.00 19313 9526 10731 6.51 6.98 7.21 6 Industry 2.938 32.02 3556 3.628 3.629 3.099 4.19 4.526 4.877 5.260 5.687 6.147 6.642 7174 7747 8.363 90.25 5.57 7.92 7.86 7.86 7.86 7.86 7.86 7.86 7.87 7.90 7.91 7.91 7.91 7.92 7.96 7.92 7.96 7.92 7.96 7.92 7.96 7.92 7.96 7.92 7.96 7.92 7.96 7.92 7.96 7.92 <td></td> <td>_</td> <td>Commercial</td> <td></td> <td>913</td> <td>1112</td> <td>1798</td> <td>1297</td> <td>1403</td> <td>1523</td> <td>1059</td> <td>1509</td> <td>1971</td> <td>2152</td> <td>2358</td> <td>25.0</td> <td>2825</td> <td>3088</td> <td>3511</td> <td>9692</td> <td>4035</td> <td>8.33</td> <td>925</td> <td>3.87</td> <td>8.98</td>		_	Commercial		913	1112	1798	1297	1403	1523	1059	1509	1971	2152	2358	25.0	2825	3088	3511	9692	4035	8.33	925	3.87	8.98
Creminal Jay Total OWB 1987 6.009 2838 102.97 102.94 11.200 12.500 104.400 12.500 102.55 107.55 12.515 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.516 6.525 6.759 7.228 7.500 2.528 3.079 2.2315 2.3915 2.3915 6.668 7.716 7.72 2.588 3.005 11.71 7.721 6.642 7.714 7.744 2.585 9.905 9.92 7.58 6.147 6.642 7.714 7.744 2.585 6.99 9.92 7.92			Tubh	Contraction of the	448	487	566	618	863	764	741	7,74	005	032	859	204	909	931	- 205	978	1001	3.77	3.59	2.52	4.92
interdential j652 4,112 4526 4525 5526 5526 5526 5526 5526 5526 5526 5526 5526 5527 7526 7526 7516 5527 7526 7527 5526 5527 7526 7527 5526 5527 7526 7527 7526 5537 7526 7526 7526		Central 1	w Total	OWN	7687	8709	8888	9203	10257	10964	11120	122901	13001	14480	12260	10722	129/0	19313	KUR	22313	23989	91/	1.51	2.48	6,99
Industry 2298 3202 5355 3629 399 4199 4536 4877 5260 5687 6147 6642 7143 7147 5285 9025 557 992 798 7 Commercial 616 692 700 721 799 611 1044 1147 1236 1349 1645 2482 25147 26924 28833 30883 30884 35445 653 689 711 6 East Java 6321 6529 6544 1258 1694 18922 1928 2053 2193 11139 11082 11641 10408 13352 7.26 677 7.02 7 Industry			Residential	-	16.02	4119	4520	4855	5192	5584	2620	6.620	h (29	7228	7.640	80%	8887	1570	105214	10900	11751	0.21	6.98	7.21	6.90
Commercial 616 692 03 760 121 970 961 1024 1147 1230 1361 1475 1634 1766 1971 2131 2322 6.94 9.09 9.24 8 Dubin 454 496 505 553 661 662 692 718 742 764 786 1847 847 847 847 857 1036 5445 543 13445 1535 1344 14884 15355 1694 1922 1923 2053 21944 22940 2240 22934 20833 30633 3064 35445 653 633 711 6 Residental 4132 4829 5280 5656 6038 6434 6356 7310 7796 8320 8892 9513 10171 10892 10647 12469 13352 7.6 637 7.02 7 Industry 6292 6629 633 0434		-	Industry		29.58	3202	3320	-5385	3629	: 3899	4.199	45.25	-4877.	5260	- 89C	0148	0.64.2	/1/4	3041	8365	9025	3:37	1.94	7.98	7.15
jothin 414 499 309 224 275 51 65 602 782 784 784 784 784 784 784 877 877 887 <td></td> <td></td> <td>Connettial</td> <td>-</td> <td>616</td> <td>692</td> <td>703</td> <td>760</td> <td>121</td> <td>890</td> <td>968</td> <td>1024</td> <td>1147</td> <td>1200</td> <td>1368</td> <td>1495</td> <td>1634</td> <td>1786</td> <td>1921</td> <td>2131</td> <td>2323</td> <td>8 94</td> <td>9.09</td> <td>9.24</td> <td>842</td>			Connettial	-	616	692	703	760	121	890	968	1024	1147	1200	1368	1495	1634	1786	1921	2131	2323	8 94	9.09	9.24	842
Hast Java Total FWh 11849 14139 14834 14834 14834 13455 15455 16454 15022 19238 20133 21442 229147 29934 24003 50034 50034 54434 5543 6537 711 6 Readential 4152 4152 5456 6035 6044 6356 7310 7706 8320 5913 10171 10803 104015 15025 16457 712 7 Industry 6320 6629 6644 7258 7666 1183 9724 9314 9942 10627 11390 12083 14018 15002 16095 17243 565 6.95 7.12 7 Commercial 854 1097 1077 1165 1259 1366 1486 1600 1744 1924 2105 2844 2300 2756 3012 3291 3596 6.27 9.16 9.31 8 Publia		and some little	Futur	(Carteria)	414	496	289	224	292	631	065	. 69%	718	742	704	186	811	.8.17	897	851	1105	5,98	3.47	2.42	3.95
intendential 4182 44829 5280 5656 6458 6454 6356 7300 7766 8330 5852 9513 10111 10882 11647 12469 13352 7.26 6.17 7.02 7 Interrupt 6302 6429 6444 7258 7246 9314 9942 10627 11390 12308 14019 15002 16095 17345 56.76 9.15 9.15 10111 10882 14019 15002 16095 17345 56.76 9.15 9.15 1150 12390 12345 56.76 9.15 9.15 1150 12390 12345 56.77 9.16 9.15 1150 1250 1256 3012 1208 12391 1150 12392 12345 56.77 9.16 9.15 1051 1063 1093 11122 1150 1176 10122 1228 1238 10.53 10.53 11.64 50.85 12.28 12.24 12.4 <		East Jatu	Total	13.601	11849	13135	13941	14884	15855	16894	18022	192.58	20553	21934	25482	20143	20924	28833	938613	33084	35445	0.52	0.339	211	0.84
Industry 6.202 6644 7.238 7.066 118.3 87.24 95.14 99.42 106.7 11.99 120.85 140.19 150.02 160.05 17.24 5.15 6.05 7.15 6 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 <td></td> <td>-</td> <td>Residential</td> <td>-</td> <td>4182</td> <td>4829</td> <td>5280</td> <td>2020</td> <td>6038</td> <td>6434</td> <td>6856</td> <td>3340</td> <td>1.06</td> <td>8320</td> <td>3892</td> <td>9512</td> <td>101/1</td> <td>10882</td> <td>11647</td> <td>12469</td> <td>13352</td> <td>7,20</td> <td>6.11</td> <td>7.02</td> <td>7.01</td>		-	Residential	-	4182	4829	5280	2020	6038	6434	6856	3340	1.06	8320	3892	9512	101/1	10882	11647	12469	13352	7,20	6.11	7.02	7.01
Locometrial S24 UVV UVV <th< td=""><td></td><td></td><td>Industry</td><td></td><td>1202</td><td>6529</td><td>6944</td><td>1108</td><td>7696</td><td>1183</td><td>\$124</td><td>9514</td><td>9942</td><td>10627</td><td>11.990</td><td>1008</td><td>13063</td><td>14019</td><td>15082</td><td>1609/5</td><td>17243</td><td>2.65</td><td>0.97</td><td>7.15</td><td>6.36</td></th<>			Industry		1202	6529	6944	1108	7696	1183	\$124	9514	9942	10627	11.990	1008	13063	14019	15082	1609/5	17243	2.65	0.97	7.15	6.36
Future 221 277 341 805 192 912 306 995 1031 1003 1122 1130 1176 1202 1228 1238 165 177 161 165 177 161 163 165 177 163 257 163 <	-		Commercual		604	1097	.1077	1165	1259	1366	1486	10:30	1.094	1924	2106	125.8	22:00	2736	3012	- 50/1	3396	8.61	9.16	9.31	8.24
Internal Own ICSP 1441 1630 1655 1212 2000 2239 24.26 2522 1249 3005 3563 3653 3969 4311 4684 508 522 847 8.63 2 Readerinal 519 613 710 765 E21 880 942 1009 1682 1160 1245 1337 1435 1541 1656 1779 1912 4.99 7.25 7.42 7 Industry 81 76 82 87 93 09 106 134 122 131 141 151 163 175 188 202 217 6.94 7.35 7.51 7.42 7 Connervial 600 688 367 838 514 1000 1065 122 1451 1401 152 2344 2576 2029 979 9.99 9.99 9.99 9.99 9.99 9.99 9.99		10.1	Publi		521	2.79		805	162	912	300	- 995	1051	1063	1093	1122	1150	1176	1202	1228	1253	10.53	3.26	2.24	5.28
JCROMETING 210" 11.5 71.0 76.5 Hall 880 942 10.00" 10.82 11.90 1.245 1.357 1445 1541 1656 1779 1912 3.99 7.25 7.42 7 Industry 81 76 82 87 93 09 106 134 152 131 141 151 163 175 189 202 217 6.94 7.35 7.51 7 7 7 7 7.9 9.91 2.05 1.05 1.06 1.076 1.99 2.13 2.94 2.79 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99		Eat	4 ceal	CT-MP	1259	1441	1630	1768	1015	2008	2239	2426	2528	2849	5085	336.5	3603	3969	4311	4684	3886	3.22	247	1.63	6.78
underlay 51 r9 82 57 95 99 100 114 122 131 141 151 165 175 188 202 217 6.94 7.85 751 0 Connerrial 600 688 767 838 514 1000 1097 1205 1322 1452 1452 1600 1762 1939 2132 2576 2029 379 9.99 9.94 9.9			Icestdential	-	219	113	110	165	101	880	942	1009	1082	1160	1245	1337	143	1541	1636	1119	1912	3.99	1.23	7.42	188
Commercial 000 068 /071 558 514 1000 1097 1207 1262 1452 1600 1096 1299 2152 2244 2576 2028 579 593 959 959 959 1950 100 100 100 100 100 100 100 100 100 1	-		inductry	-	.81	/00	362	3f	93	10000	106	114	122	123	141	191	1035	1/5	188	202	- 217	6.94	1.35	12.5	727
1060 107 106 107 106 107 106 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 108 108 108 108 108 108 108 108 108			Contertial	-	100	688	367	838	914	ruộu	1035	1205	1522	1452	1000	1962	1999	2132	2544	2576	2929	3,79	9.93	9,94	9.89
			Tupti	-	- 29	64	11	16	84	18	94	- 58	102	106	110	. 113	117	120	123	126	129	5.92	. 5.8]	3.70	4.79

JICAL.	PE			Act	uni.		Forecast																	
				1999	2000	2001	1082	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2035	2000/05	2005/18	2010/15	2000/15
Case 1	Demand		GWb	57437	63872	67927	71017	74619	79017	84193	89896	96076	102868	1104:57	.11/704	127698	137446	143009	159447	171025				
			G.B. (%)			6.35	4.55	5.07	5.89	6.55	6.77	6.87	2.67	7.38	747	7.58	7.64	7.65	7.73	7,76	5.60	7.11	7.61	6.82
		Beadential	GWh	19949	22629	24436	26245	27347	28639	30129	31826	33731	35860	38243	40291	43859	47124	50705	54624	58906	云朝	630	7.57	6.59
		Industry	GWh	27611	30045	31479	3 1948	33632	35738	38336	41169	44190	47506	51193	55,154	59408	63977	68883	34151	39807	4 99	3,55	7.67	6,73
		Commetrial	OWh	7141	11277	8765	9287	9899	10721	11649	12675	13787	15019	16416	17937	19294	21399	23364	25583	27833	- 7,87	9:02	931	8.42
		Public	GWb	2736	2201	3247	3537	3740	3919	4080	4226	-4360	4484	4604	4721	4834	4947	5058	5169	5288	6.91	2.96	2.26	4.00
	Genaturios	n.	@Wh-	67940	74901	78273	\$2386	86544	91328	97087	105543	110534	118348	126933	136410	146743	157947	170087	1\$3230	397455				
			GB (%)			4.50	525	5.05	5.53	6:31	6.65	6.25	7.07	725	7.47	7.9	1.64	7.69	7.73	7.76	5.33	7,04	7.68	6.68
	Petit Loai	¢	MW.	11032	12231	13041	13821	14497	15266	16185	17220	38340	19612	21000	22539	24225	26058	28048	30298	32549				
			G.B. (%)			6.62	5.98	4.89	5.21	6.02	6.40	6.55	689	7.08	7.33	7.48	7.57	7.64	7.70	7.75	5.76	6.85	3.63	6.74
Case 2	Demand		GWh	57437	63872	67.927	72550	77969	.83461	89461	95348	102161	110278	118697	127689	137278	147629	158774	170769	183674				
			GR(%)			6.35	7.26	7.01	7.05	7.10	7.24	7,21	7.31	7.54	7.56	7.53	7.54	7.55	7.55	7.56	6.97	7.37	7.55	7.30
		Residential	OWh:	19949	22629	24436	26244	28079	22289	32020	34219	36570	39108	41878	44885	48079	51536	25249	22251	63551	7,19	6.90	7,20	7.13
		Industry	GWh	22611	36645	31479	33610	35872	38382	41172	44215	47468	51020	54981	59235	63804	68710	73979	79637	85712	6.50	7.55	7.67	7.24
		Connectial.	GWh	7141	8237	8766	\$467	10220	11068	12025	13085	14233	15985	16947	18517	20228	22091	24120	26328	23733	7.76	∋ 02	9.10	8.65
		Public	GWh	2736	2921	3247	3539	3799	4029	4235	4421	4590	4745	4892	5032	5167	5298	5426	5553	5678	7.21	331	245	4.53
	Generation	n –	GWh	67940	74901	78273	B4525	90430	96471	103161	110505	118340	126988	116402	146712	157754	169650	182457	196241	211070			1012-01	
			G.B. (%)			4.50	7.99	6.99	5.68	6.93	7.12	7.09	7.31	7.41	7.56	7.53	7.54	7.55	7.55	7.56	6.61	7.30	7.55	7.15
	Peak Loan	đ	MW	11032	12231	13041	14089	15073	16071	17170	18374	19659	21075	226.12	24297	26099	28040	30131	32380	34100			-	
	(1-2+1) III (20)		G.R.(%)		100000	6.62	8.03	6.98	6.62	6.84	7.01	6,99	7.30	7.29	7,45	7.41	7.44	7,46	7.47	7.47	7.02	7,19	7,45	7.22

Table 2.4.2 Forecasted Electricity Demand by Sector

Table 2.4.3 Forecasted Peak Load by Sub-Region

Peak L	ad by Sab Region		1		1												1			11			
	184 1854		1999	2000	2001	2002	2903	2004	2005	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2080/05	2005/10	2010/12	2000/15
Case 1	Jawa-bali System	MW	11032	12231	13041	13821	14497	15266	16185	17220	18348	19612	21000	22539	24225	26058	28048	30208	32549	5.76	6.85	7.63	6.74
	Area 1		4602	5253	3492	\$765	5047	6371	6734	7185	7633	5178	8754	9393	10092	10852	11677	12572	13542	2.15	6.82	7.59	6.52
	Area 2		1951	2164	2316	2494	2625	2774	2955	3158	3380	3627	3899	4199	4528	4884	5271	5690	6144	6.43	7.28.	7.91	7.20
	Area3		1643	1905	2057	2099	2202	2316	3451	2605	2773	2962	3170	3401	3655	3932	4234	4562	49.19	5.17	6.76	7.66	6.53
	Area 4 (esti	H Bab)	2557	2593	2827	3060	3196	3349	3536	3747	3976	4231	4515	4828	5169	5540	5943	6378	6849	6.40	6.42	7.25	6.69
	Bak	lane -	279	316	346	403	427	456	488	525	566	611	662	718	790	849	923	1005	1095	9,10	8.82	8.80	8.64
Case 2	Jawa-bali System	MW	11032	12231	13041	14089	15073	16071	17170	18374	19639	21075	22612	24297	26899	28040	30131	32300	34800	7.02	7.19	7.45	7.22
	Area t		4602	5253	5495	5863	6270	6682	7136	7633	8163	8747	9381	10077	10820	11622	12485	13414	14414	6.32	7.15	7.42	6.96
	Area 2		1951	2164	2316	2553	2750	2942	31.54	3388	3638	3914	4214	4543	4896	5276	5685	6126	.6501	7.83	7.57	7.76	7.72
	Area3		1643	1905	2057	2130	2283	2437	2695	2789	2985	3201	3434	3689	3962	4257	4574	4915	5282	6:46	7.21	7.44	7.64
	Area 4 (sec	id Bai)	2557	2591	2827	3126	3330	3536	3765	4011	4275	4366	4880	5224	5591	. 5985	6408	6862	7350	7.73	678	7.07	7.19
	Bah	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	279	316	346	405	439	473	511	553	:598	648	703	764	830	901	978	1062	1154	10.10	8.36	8.59	9.02

Figure 2.4.4 Forecasted Electricity Demand by Sub-Region

2.5 Examples of Model Application

2.5.1 Household Electrification

In JICA/LPE scenario, the electrification ratio is based on the governmental scenario of DGEEU and PLN until 2010, and afterwards, the electrification ratio in the Java-Bali Region is adopted at about three (3) % of the time trend (See Table 2.5.1) as an external variable (scenario). Needless to say, electrification is one of the integrated energy policies. In this section, we tried to simulate the electrification by itself by the use of macro indicators as a Reference scenario, that is, the electrification ratio is internalized as a function of government expenditure.

Table 2.5.1 shows results of both the JICA/LPE scenario and the Reference scenario. Household electrification in the Java-Bali Region has been progressing from 8.6% in 1980, to 16.8 % in 1985, to 29.4 % in 1990, to 45.7 % in 1995 and to 58.3 % in 2000. Furthermore, DGEEU has a target that until 2010 Indonesia achieve the electrification ratio of 80.6 % in the Java-Bali Region. In the Reference scenario, the household electrification ratio is a little bit higher than in the JICA/LPE scenario until 2006, however, it is lower than the JICA/LPE scenario after 2007, as shown in Table 2.5.1.

	2001	2002	2003	2004	2005
JICA/LPE Scenario	59.2	60.2	62.2	64.4	66.7
Reference Scenario	59.2	62.6	64.9	66.8	68.4
	2006	2007	2008	2009	2010
JICA/LPE Scenario	69.1	71.8	74.6	77.5	80.6
Reference Scenario	70.0	71.4	72.9	74.3	75.7
	2011	2012	2013	2014	2015
JICA/LPE Scenario	83.1	85.6	88.1	90.6	93.1
Reference Scenario	77.0	78.4	79.6	80.8	81.9

Table 2.5.1 Scenarios of Household Electrification

The electrification ratio influences only the residential electricity demand. From the simulation results, the peak load by price scenario is summarized in Table 2.5.2. According to the Table, Case 2 will not create as much difference between the JICA/LPE scenario and the Reference scenario. In Case 1 the difference between both scenarios is 522 MW in 2010 and 1144 MW in 2015. In Case 2, the difference between both scenarios will be 51 MW in 2010 and 135 MW in 2015.

Price Scenario	Electrification	Year									
(JICA/LPE)	Scenario	2001	2005	2010	2015						
Case 1	JICA/LPE Scenario	12,231	16,185	22,539	32,549						
	Reference Scenario	12,231	15,904	22,017	31.405						
Case 2	JICA/LPE	12,231	17,170	24,297	34,800						
	Reference	12,231	17,183	24,246	34,665						

Table 2.5.2 Forecasted Peak Load by Scenario (Unit: MW)

2.5.2 Energy Conservation Case

In this section, the developed model is applied to examine whether for policy making energy conservation policies and targets can be handled. The scenario is set as follows.

- 1) Residential sector: Energy saved from 2007 achieves energy savings of 10 % in 2015.
- 2) Industrial sector: Energy saved from 2008 achieves energy savings of 15 % in 2015.
- 3) Commercial sector: Energy saved from 2010 achieves energy savings of 10 % in 2015.

The results show that in 2010 it is expected that the electricity demand will decrease from 118,704 GWh to 115,447 GWh and the peak load from 22,539 MW to 26,912 MW. Further, in 2015, the electricity demand will decrease from 171,825 GWh to 151,906 GWh and the peak load from 32,549 MW to 28,867 MW.

Figure 2.5.1 Electricity Demand in the Java-Bali Region (Case 1 and the Energy Conservation Case)
2.5.3 Captive Power

Traditionally, captive power, accounting for <u>a</u> relatively large share, has played an important role in Indonesia, especially Sumatra. As of December 2000, the installed capacity of captive power is15,220 MW, of which Java accounts for 7,325 MW and Bali for 65 MW (DGEEU annual Report, 2001). Actual capacity, however, is not grasped in statistics, which should include rated capacity, its reserve, and generated output, etc,. In this section, we tried to estimate the captive power generation for a model simulation, because consumer shift between PLN and Captive is supposed to depend on electricity prices and fuel prices in the near future.

(1) Estimation of power generation data

At this time, data is estimated from a published paper (Half-Day Joint Seminar on Captive Power in Indonesia, Development, Current Status and Future Role, PT PLN and The World Bank, Tuesday, July 6, 1999) and the DGEEU annul report. According to the estimation at this time, the utilization ratio (operation ratio) of captive power capacity is undergoing a change of about 36 % in recent years. The share of captive power generation in the Java-Bali Region is 30 % of the entire Indonesia.

(2) Scenario

In addition to the electricity price scenario, we prepare<u>d</u> a fuel price scenario represented by diesel oil. The scenario applied to this simulation is summarized in Table 2.5.3. Electricity price scenario is the same as Case1 of the JICA/LPE scenario. Scenario setting for [of] population, GDP growth rate, inflation and household electrification ratio is based on the previous section (See Table 2.3.3). The aim of this scenario is to simulate the impact of fuel price.

	Electricity Price	Fuel Price
Scenario 1	Real price up	Real price up
	(Same as Case 1 of JICA/LPE scenario, in	(Nominal price increase the growth rate of
	which nominal price increase until 2005 as	15 % until 2004)
	shown in Table 2.3.2)	
Scenario 2	Real price up	Real price constant
	(Same as Case 1 of JICA/LPE scenario, in	(Nominal price increase with inflation)
	which nominal price increase until 2005 as	
	shown in Table 2.3.2)	

Table 2.5.3 Scenario on Electricity Price and Fuel Price

(3) Model

In this model, a modification is done only to a system equation for the industrial sector. Electricity demand for industry is set as the sum of PLN (industrial demand) and captive power generation. The functional relationship is as follows:

Industrial demand total = f (Industrial GDP)

Captive power generation = f (Industrial GDP, Relative value of fuel price and electricity) PLN's industrial demand = Industrial demand total Captive power generation PLN's electricity demand total = Residential demand + Industrial demand + Commercial demand + Public demand

(4) Simulation results

Captive power generation varies depending on price scenario. The result of Scenario 1, in which real fuel price increased until 2004, shows a drop in the generated output from Captive power. The difference between Scenario 1 and Scenario 2 is shown in Table 2.5.4. According to the results of this simulation, about 10 % of the captive power generation is shiftable and this in turn will affect PLN sales.

	-	•	,	,
	2000	2005	2010	2015
Scenario 1	18,719	23,906	29,256	35,918
Scenario 2	18,719	26,276	32,159	39,479
Difference	0	2,370	2,901	3,561

Table 2.5.4 Captive Power Generation by Scenario(Unit: GWh)

Chapter 3 Probability of Power Deficit - Short and medium Term Development Plan -

3.1 Review of the Supply Capacity

Power plants can not always provide power at their installed capacity. Available capacities of hydro power plants decrease by the seasonal derating related to the seasonal water flow. Available capacities of thermal power plants decrease by the temporary defects of equipment or the operating condition of plants. Therefore, the available capacity of the system is influenced by these conditions.

Table 3.1.1 shows the items affecting the system available capacity. In this table, derated capacity is defined as the reduction of capacity related to the power sources, and constrained capacity is defined as the reduction of capacity related to other reasons.

Items	Causes	Peak Load						
		Ratio(%)						
Derated capacity covered	- Hydropower Seasonal Derating	5%						
by GRM	- Thermal Power Derating	2.7%						
	- Maintenance							
	- Forced Outage							
	- Essential Spinning Reserve	4.3%						
Constrained capacity not	- Constraint due to transmission power flow	NA						
covered by GRM	limitation.							
	- Long term outage							
	- Special Contract Service							
Generation F	Reserve Margin (used in P3B)	30%						

 Table 3.1.1
 Causes of Constraint

In order to evaluate the capacity deficit, we would like to study the operational reserve margin directly along the following procedure:

By studying the existing power planed, installed capacity by type is examined.

By studying derated capacities, the validity of the system derated capacity is examined.

By studying constrained capacities, the validity of the system derated capacity is examined.

By studying on-going and planned project, the commission schedule is studied.

3.1.1 Supply capacity of existing power units

Table 3.1.2 shows the installed capacity by the types of power source and their location in Java-Bali. This table shows the total installed capacity of PLN and IPPs. Captives and cooperatives are not included in the table.

We can see from Table 3.1.2 that the installed capacity of hydropower is 2,536MW (13.6% of the total installed capacity), thermal is 15,307MW (82.2%), and geothermal is 765 MW (4.1%). This means the main power source is thermal power. Conventional steam power units account for 8,450MW(45.4%) and combined cycle power units account for 5,985MW (32.2%).

Regarding location, Java- Bali Area is divided into four Areas: Area 1 (Jakarta and surrounding Areas), Area2 (West Java except Area 1), Area3 (Central Java), and Area4 (East Java and Bali). Most of the thermal power plants are located in Area1 and Area4. On the other hand, most hydropower plants are located in Area2. Most geothermal power plants are located in Area 1 and Area2.

Items		Are	eas		Installed	Capacity		
	Area1	Area2	Area3	Area4	Capacity	Percent		
					Java-Bali	%		
Hydro	37	1,918	306	275	2,536	13.6		
Thermal	7,108	80	1,389	6,730	15,307	82.2		
Steam	(4,200)	(0)	(300)	(3,950)	(8,450)	(45.4)		
C/C	(2,609)	(0)	(1,034)	(2,343)	(5,985)	(32.2)		
GT	(300)	(80)	(55)	(361)	(796)	(4.3)		
Diesel	(0)	(0)	(0)	(76)	(76)	(0.4)		
Geothermal	330	375	60	0	765	4.1		
Sub Total	7,475	2,373	1,755	7,005	18,608	100		

Table 3.1.2 Installed capacity by type and Location (unit: MW)

Note: The capacity of IPPs is included

Table 3.1.3 shows the installed capacity by fuel. Coal fired power plants account for 6,650MW (35.7% of installed capacity). Natural gas fired power plants (4,749MW / 25.5%) and High Speed Diesel Oil (HSD) fired power plants (3,108MW / 16.7%) have the next largest capacity.

It is important to point out that many combined cycle power plants, which are designed to use natural gas, must operate as HSD fired power plants, because there is no natural gas supply. Muara-Tower thermal power plant (Block I, II), Grati thermal power plant (Block I), and Semarang thermal power plant (Block I, II) are examples.

Item		Are	Installed	Capacity				
	Area1	Area2	Area3	Area4	Capacity	Percent		
					Java-Bali	%		
Hydro	37	1,918	306	275	2,536	13.6		
Thermal	7,108	80	1,389	6,730	15,307	82.2		
(Coal)	(3,400)	(0)	(0)	(3,250)	(6,650)	(35.7)		
(Gas)	(2,388)	(80)	(0)	(2,281)	(4,749)	(25.5)		
(HSD)	(920)	(0)	(1,089)	(1,099)	(3,108)	(16.7)		
(MFO)	(400)	(0)	(300)	(100)	(800)	(4.3)		
Geo thermal	330	375	60	0	765	4.1		
Sub Total	7,475	2,373	1,755	7,005	18,608	100		

Table 3.1.3 Installed capacity by fuel type (Unit: MW)

Note: The capacity of IPPs is included

Table 3.1.4 shows the installed capacity by owner. Most of the generation capacity is owned by PLN (Indonesia Power, PJB). PLN owns 15,453MW of installed capacity (87% of the total) and IPP own only 3,155MW (17%).

		1	5 5		/	
Item		Ar	Installed	Capacity		
	Area1	Area2	Area3	Area4	capacity	Percent
					Java-Bali	%
Indonesia Power	5,031	1,035	1,695	100	7,862	42.3
PJB	2,128	1,008	0	4,454	7,591	40.8
IPP	315	330	60	2,450	3,155	17.0
Sub total	7,475	2,373	1,755	7,005	18,608	100

Table 3.1.4 Installed Capacity by owner (unit: MW)

3.1.2 Review of the derated capacity covered by GRM

(1) Hydropower Seasonal Derating

Based on the investigation on the seasonal derating capacity of hydropower plants in 2000and in 2001, the maximum seasonal derating capacity is 5.4% of peak load in 2000 and 5.1% of peak load in 2001. Thus it is reasonable to assume that the hydropower seasonal derating is 5% of peak load.

(2) Thermal and Geothermal Power Plant Derating

Table 3.1.5 shows the derating capacity of the available capacity of thermal and geothermal power plants in February 2001. The derating capacity is reviewed every month. In February 2001, no geothermal power plant was derated.

Table 3.1.5 shows the derated capacity is 326MW, accounting for 2.5% of peak load. Thus it is reasonable to assume that the rate of derated capacity can be estimated at about 2.7% of peak load.

(3) Maintenance (Periodical / Planned Repair)

Based on the investigation of maintenance capacity in 2000 and 2001, Average maintenance capacities are 9.6% of peak load in 2000 and 11.3% in 2001. Thus it is reasonable to estimate that the rate of maintenance capacity is about 12% of peak load.

(4) Forced Outage (Unplanned Repair)

Forced Outage Capacity is the derated capacity by unpredictable accidents. P3B collects data of the forced outage rate of each type of thermal power plant and calculates the forced outage capacity. According the statistical data, it is reasonable to assume that the rate of forced outage is about 6% of peak load.

(5) Essential Spinning Reserve

Essential spinning reserve is the necessary capacity for the stable operation of the power system. Thus essential spinning reserve should be equal to or more than the capacity of the largest operating unit.

Currently, the maximum capacity in the Java- Bali system is 615MW of Paiton IPP-I which is about 4.7% of peak load in 2001. Therefore it would be reasonable to estimate the rate of essential spinning reserve at about 4.3% of peak load.

					Statef	IC	AC	Breakdown of (IC - AC) (MW)										
Owner	Power Plant	Unit	Unit	Fuel	Statof	(MW	(MW	<u> </u>	Der	ated by		lonotem	transmission					
		Туре	No.		Operation))	fuel	temn	design	aging	attage	constraint	others				
Indo-nesia	Suralaya	PLTU	1	Coal	1984	400	400				-00	Ũ						
Power			2	Coal	1984	400	400											
			3	Coal	1988	400	400											
			4	Coal	1989	400	400											
			5	Coal	1996	600	600											
			6	Coal	1997	600	600											
			7	Coal	1997	600	600											
	Tanjung	НЛU	3	MEO	1972	50	0					50						
	Priok	1210	4	MEO	1972	50	0					50						
		PLTGU	Bink1	NG	1993, 94	590	575			15								
		12100	Block2	NG	1994	590	575			15								
		PLTG	1345	HNDNG	1976-77	150	130			10	20							
	Tambak	PITU	1	MEO	1978	50	45			5	20							
	Lorok	iLie	2	MEO	1978	50	45			5								
	(Semarang)		3	MFO	1983	200	200			5								
	(PETGL	Block1	HSD	1993 97	517	494	23										
		iLioc	Block1	HSD	1996 97	517	501	16										
	Perak	ртт	3	MEO	1978	50	45	10		5								
	Гстак	ILIU	4	MEO	1978	50	45			5								
	Grati	PETGU		HSD	1996 97	462	462			5								
	Giati	ILICU IIIC	Blod/2	HSD	1990, 97	302	402					302						
	Sunveragi	ILIO II TC	14	NG	1076	80	68				12	302						
	Cilcor	ILIO ILIO	14		1970	55	41				14							
	Decenacion	ILIO ILIO	1-2	LISD	1970	125	41				14							
	Pesanggaran	RLIG II TD	1-4	HSD	1985-95	123	107				10							
	Cilimenul	RLID II.TC	1-11	LICD	1982	124	45											
DID	Gilimanuk	PLIG	1	HSD	1997	134	134				5							
РЈВ	Muara	PLIU	1	MFO	1979	100	95				5							
	Karang		2	MFO	19/9	100	95				5							
			3	MFO	1980	100	95				5							
			4	NG	1981	200	190				10							
			5	NG	1982	200	190		20		10							
	~	PLIGU		NG	1993, 95	509	470		39									
	Gresik	PLIU	1	NG	1981	100	95				5							
			2	NG	1981	100	95				5							
			3	NG	1988	200	200											
			4	NG	1988	200	200											
		PLTGU	Block1	NG	1992, 93	526	526											
			Block2	NG	1992, 93	526	526											
			Block3	NG	1993	526	526											
		PLTG	1-3	NG	1977, 84	61	54				7							
	Gilitimur	PLTG	1-2	HSD	1994, 95	40	36				4							
	Piton	PLTU	1	Coal	1994	400	400											
			2	Coal	1994	400	400	L										
	Muara	PLIGU	Block1	HSD	1997	640	605		35									
	Tawar	PLTG	Block2	HSD	1997	280	270		10									
IPP	Piton 1	PLTU	5	Coal	1998	615	total						total					
			6	Coal	1998	615	615						615					
	Piton 2	PLTU	7	Coal	2000	610	total						total					
			8	Coal	2000	610	610						610					
	Cikarang List	FLTG	14	NG		150	0							150				
		Total				15307	13203	39	84	50	153	402	1 225	150				
		TOUR		Total							326 402							

Table 3.1.5 Derated Capacity of Thermal Power Plants

IC : Installed Capacity AC : Available Capacity

(6) Generation Reserve Margin

According to the result of the investigation on the generation reserve margin, each item of GRM adopted by P3B is almost adequate. However, essential spinning reserve at 4.3% against the forced outage of one Paiton unit is overlapping with forced outage at 6%. Therefore, by putting essential spinning reserve and forced outage into one, the new essential reserve margin can be set at 6%. Table 3.1.6 shows the proposed GRM in this report. It is reasonable to assume that GRM used for long term power development plan is about 25% in the condition that constraints are relieved.

On the other hand, some constraints, such as the power flow limitation of transmission line, is remaining in short term planning. Thus, supply capacity is evaluated by examining the operational spinning reserve directly in this report.

Items	P3B	Proposed GRM	Bases
Hydropower seasonal derating	5%	3 - 5%	Same as P3B
Thermal power derating	2.7%	2.7%	Same as P3B
Maintenance	12%	12%	Same as P3B
Forced outage	6%	N/A	Included in essential
			spinning reserve
Essential spinning reserve	4.3%	6%	Same as forced outage
			rate of P3B
Total	30%	25%	-

Table 3.1.6 Evaluation of GRM

(7) Summarize of Derated Capacity

Derated capacities used in this report is set at the figure in table 3.1.7.

Items	Capacity (MW)	Bases
(1) Hydropower	671MW	Planning data in 2001
seasonal derating		(3-5% of peak load)
(2) Thermal power	326MW	Actual data in February 2001.
derating		(2.7% of peak load)
(3) Maintenance	Calculate yearly	10% of Operational capacity
		(12% of peak load)
(4) Essential spinning	Calculate yearly	6% of peak load
reserve		

Table 3.1.7 Derated capacity covered by GRM

3.1.3 Review of the constrained capacity not covered by GRM

(1) Long Term Outage Capacity

- Tanjung-Priok 3&4 (50MW x 2)

These units were rehabilitated in 1988. The turbine grand seal and super heating tubes were replaced in the rehabilitation work. However, the steam leakage from the boiler water wall occurred frequently a few years later. For this reason, these units are not now in use.

- Grati Block II (302MW)

PLN treats Grati block II as stand-by unit, actually on a long term outage. The first reason is no contract to provide natural gas, the second reason is the power system problem that Grati block II can not supply its full rated capacity.

(2) Special Contract Service

- Cikarang Listrindo (IPP/150MW)

Cikarang Listrindo is the IPP power plant located in the Cikarang industrial estate. Since the power is provided only to the industrial estate, the capacity can not be counted as a part of the supply capacity.

(3) Constrained Capacity

Figure 3.1.1.shows the Java-Bali system in 2001. The power demand in Java-Bali system is intensive in Jakarta, while some of large power sources such as Paiton are located in the east. Consequently, a lot of power flows occur east to west through a 500kV trunk line.

The amount of power flow on a trunk line is regulated by either the system stability or the thermal capacity of the transmission line. This limitation will be moderated as demand increases in the eastern area. However, the completion of a southern 500kV trunk line is required to remove this capacity constraint completely.

(4) Summarize of Constrained Capacity

Table 3.1.8 shows the constrained capacity used in this report.

		-
Items	Constrained	Remarks
	Capacity	
(1) Long Term Outagea. Tanjung- Priok unit 3,4b. Grati BlockII	100MW 302MW	*Refer to section 3.1 **To be removed in 2003-2004 by relieving the transmission constraint
(2) Special Contract Service Cikarang Listrindo	150MW	*Refer to section 3.1
(3) Constrained Capacity caused by transmission line.a. Constrained capacity at present condition	1,000-1,250MW	*Result of the system analysis
 b. Commissioning of 500kV southern trunk line (Paiton-Klaten) Tentative commissioning (2002) Complete commissioning (2003) 	500-600MW 0 – 300MW	*Result of the system analysis
c. Commissioning of 500kV southern trunk line (Klaten-Depok III) -Complete commissioning (2004)	0MW	*Result of the system analysis

Table 3.1.8	Constrained (^{anacity} not to	be covered	hv GRM
1 auto 5.1.0	Constrained	Lapacity not to		Uy UKIVI

Figure 3.1.1 The Java-Bali System in 2001

3.1.4 Ongoing / Planned Projects

(1) Repowering project for Muara-Karang unit 1-3 (2006-2007)

This project consists of a few phases. In the first phase, gas turbines (250 MW x 2) will be installed without stopping the existing 1-3 units. In the next phase, the existing boilers will be demolished and new heat recovery boilers are installed, the existing steam turbines are combined with the new gas turbine in the last phase.

The schedule is shown in Figure 3.1.2. The feasibility study report indicates the new gas turbines will begin operating in 2006, thus the project can be completed in 2007.

(2) Extension project of Muara-Tower Block III, IV thermal power plant (2006-2009)

There is space for extension power units (Block III and Block IV) at the site of Muara-Tower thermal power plant. In the present plan, a 750MW combined cycle facility consisting of gas turbines (250MWx2) and steam turbine (250MW) will be installed in each block. In total 1,500MW will be installed.

Figure 3.1.3 shows the project schedule based on the feasibility study report. In this case the commissioning of the first gas turbine will be in 2006. Meanwhile the present installed capacity of Muara-Tower power plant is about 1,000MW. After completing Block , the total capacity of Muara-Tower power plant will be about 2,500MW. Since the total capacity of Muara-Tower power plant would be bigger than the heat capacity of single transmission line, it is necessary to investigate how to transmit power flow stably.

Figure 3.1.3 Overall Project Schedule of Muara-Tawar Extension

(3) Muara-Tower Block Added on Project (2006-2007)

Since the feasibility study was completed by the end of Mach, 2002, the Muara-Tower Block Project is one of the candidate for the Japanese ODA loan. By installing a new gas turbine (145MW) and a new steam turbine (225MW), the existing open cycle gas turbines will become a combined cycle power plant. The total increased capacity is 370MW. Figure. 3.1.4 shows the project schedule estimated by reviewing the feasibility study report. The commissioning year of the gas turbine is expected to be in the beginning of 2006.

115	and star of the first second											uu.	dule of Middla Tawar Dioek									110	luucu oli							
Year		1	(20	003	3)			2	(2	004	1)			3	(20	005	5)			4	(2	006	5)			5	(20	007)	
Schedule				Pr	epar	atio	1 Sta	ige					Construction Stage																	
				Lo Co	an mm	itme	nt				Star Con Wor	≺ ← struc k	tion	1	5 mc	onth		Open Com	Cy miss	\sim^{2i}	3 mo	onth	Che	Cor Cor ack d	mple mbir & Te led (tion ned (ast of Cycl	of Cycle e	e		
Available 700																										1	H			
Capacity 600																						(Con 63	plet 0M	on d W	of C/	C:			
(MW) 500																														
400							E	kisti	ng N	los.	-2:								,											
300								2x1	45N	1W:	=29(MV	V							Ne	w G	T:								
200																				(Te	1451 otal	4351 4351	ИW)						
100																														

Figure. 3.1.4 Overall Project Schedule of Muara-Tawar Block Added on

(4) Tanjung-Priok thermal power plant repowering project

The feasibility study was completed by the end of Mach, 2002. The new combined cycle power plant consisting of two gas turbines (250MW x 2) and one steam turbine (250MW) will be installed after demolishing the existing No.3 and No.4 units (50MW x 2). Thus the increased capacity will be 650MW despite the total capacity (750MW). The further study on the transmission line and the sea water system should be required to realize this project. The total project cost will be estimated about US\$455 million.

(5) Pemaron thermal power plant (2003&2004)

A new combined cycle power plant will be constructed by combining a new steam turbine with the gas turbines, which will be moved from Tanjung-Priok. The gas turbines (50MW x 2) will start operating in 2003 and completion (total 150MW) is expected in 2004. It is estimated that the installation work from design to commissioning requires at least two years. Since the procurement of the steam turbine and the heat recovery boiler are under negotiation, the commissioning of gas turbines will be in 2003 and the completion will be in 2004, according to the PLN. The project cost is expected to be about US\$98million.

(6) Tanjung-Jati B (IPP: the second half of 2005)

According to the PLN, the PPA agreement between PLN and the owners is almost agreed. After completing the loan agreement between banks including the JBIC and the Indonesian government, the interrupted installation work will resume. The necessary construction period will 36 months for the No.1 unit and 39 months for the No.2 unit. According to the EPC contractors, the manufacturing of the equipment is about 70% completed. Some equipment is kept onsite, but most of it is kept in the manufacturer's storehouse. A new 500kV transmission line for Tanjun-Jati B is planned to connect to near the Purwodadi sub station of the existing northern 500kV trunk line. However, it is necessary to connect it with the Ungaran sub station directly because of the constraint of power flow.

(7) Upper Cisokan pumped storage power plant

The Upper Cisokan project is in the design stage by PLN, using a Japanese ODA scheme. The total capacity is 1,000MW. The operation of each plant is expected to start in 2009 (500MW) and 2010 (500MW).

(8) New 500kV trunk line (Southern route)

To reduce the power flow on the existing 500kV trunk line (Northern Route), a new 500kV trunk line (Southern Route) is expected to be commissioned in 2004.

*Paiton - Kediri - Klaten

The construction work for the Kediri sub station and Paiton GIL is behind the schedule due to funding problems. By commissioning this section, the constrained capacity of power plants in East Java would be relieved. Tentative commissioning is planed for the single transmission line in 2002, with completion slated for 2003.

*Klaten-Tasikmaralya- Depok

There are plans to commit a new trunk line between Klaten-Tasikmalaya-Depok in 2004. Since the acquisition of land around the Depok sub station is behind the schedule, the commission will be delayed for a few years. The commissioning of this section will completely remove the capacity constraints of the power plants in East Java.

3.1.5 Fuel supply Issues

(1) Coal Supply

The trouble caused by coal shortage occurs simultaneously multiple units in the same power plant, thereby causing a more serious effect, thus it is very important to prepare the infrastructure of the coal delivery. Table 3.1.9 shows the number of troubles in 2000 caused by the shortage of coal.

	Total	Caused by Coal Supply	%
Number of Derating	652	183	28%

 Table 3.1.9
 Number of troubles by shortage of cal

Source: P3B data

(2) Gas Supply

Table 3.1.10 shows the number of troubles caused by fuel shortage in 2000. A supply of fuel gas is very important in order to stabilize the power supply.

Tuble 5.1.10 Tubles of Troubles Caused by Gus Shortage III 2000							
	Total	Caused by Gas Supply	%				
Number of	529	5	1%				
Forced Outage							
Number of	652	112	17%				
Derated							

Table 3.1.10 Number of Troubles Caused by Gas Shortage in 2000

Source: P3B data

Figure. 3.1.4 shows the natural gas supply plan in Pertamina. The gas supply plan for the power sector calls for the provision of about 840-1050MMSCFD of fuel gas until 2015. It accounts for 330-380BSCF per year.

The contract for gas supply for Muara-Karang and Tanjung-Priok will be terminated in 2004, however, no procurement is done after 2004. Meanwhile, Muara-Karang No.1-3 units have the repowering plan. After repowering, the fuel consumption of the new unit requires an additional 700kton/year of natural gas. On the other hand, natural gas for the Muara-Tower thermal power plant is planned to be supplied through a future Java-Sumatra gas pipeline according to the Pertamina.

Figure. 3.1.4 Natural Gas Supply Plan in Pertamina

3.2 Probability of Power Deficit

3.2.1 Demand scenario

- JICA/LPE_CASE 2 --- Real price constant scenario which is not required to take the price effect into account in determining the demand
- JICA/LPE_CASE 1 --- Scenario which price effect is taken into account in determining the power demand. Planned price is taken is 2001 and 2002. Finally the price increases to about 7 cents / kWh.

3.2.2 Supply Scenario

The power deficit is studies based on the scenario shown in table 3.2.1.

Item \ Scena	ario		Normal Scenario					
Project Name	Capacity	Base	Base +	Base + MT	MT	Limited	Slipped	
5	Increased	Case	MT Case	Case	Added on	Development	Base Case	
	(MW)				Case	Case		
Muara-Karang	420		2006&200	7	ľ	NA	2007&	
Repowering	(720)						2008	
Muara-Tower Block	750		NA	2006	1	NA	NA	
III Extension				&2007				
Muara-Tower II	370	NA	2006	NA	2006	NA	NA	
Added On	(660)		&2007		&2007			
Pemaron C/C	50		•	2003&2004			2003	
	(150)						&2004	
Tanjung-Jati B	1,320			2005			2005	
Southern 500kV Trunk	According			2002			2002	
line (Paiton- Klaten:	to the							
Tentative Commissioning)	system							
Southern 500kV Trunk	analysis			2003			2003	
line (Paiton-Klaten:								
Partial Complete)								
Southern 500kV Trunk				2004			2004	
line (Completion)								

Table 3.2.1 Development Scenarios (Sensitive Study)

Schedule of Normal Scenario

*Muara-Karang repowering project		Review of the feasibility study report
*Muara-Tower Block extension project		Review of the feasibility study report
*Muara-Tower Block Added on project	t	Review of the feasibility study report
*Pesanggaran / Pemaron project		Not to count as the available capacity
*Tanjung-Jati B		Result of the 4th-work Indonesia
*500kV trunk line (Southern Route)		Result of the 4th-work Indonesia
*New Gas Turbine etc.		(Please Refer to Chapter 7)

(2) Method of Evaluation of Available Capacity.

Table 3.2.2 shows the demand-supply balance for base case. The operational spinning reserve will become smaller than the essential spinning reserve in 2003 and become negative from 2004. Therefor the short term countermeasures should be required for operating the system stably. The capacity deficit will reach 2,193MW in 2007.

rucie siziz Demana supp	i j Dalalie		e cuse v			(01110)	
Year	2001	2002	2003	2004	2005	2006	2007
a. Installed Capacity	18,608	18,608	18,608	18,658	19,978	20,178	20,398
Existing capacity	18,608	18,608	18,608	18,608	18,608	18,308	18,308
New capacity	0	0	0	50	1,370	1,870	2,090
b. Available capacity	14,292	15,082	15,572	15,900	17,088	17,268	17,466
•Hydropower seasonal derating	671	671	671	671	671	671	671
Thermal power derating	326	326	326	326	326	326	326
Maintenance	1,476	1,476	1,476	1,511	1,643	1,663	1,685
Long term outage	462	402	402	100	100	100	100
Special contract service	150	150	150	150	150	150	150
Transmission constraint	1,231	501	11	0	0	0	0
c. Peak Load	13,041	14,089	15,073	16,071	17,170	18,374	19,659
Essential Spinning reserve	782	845	904	964	1,030	1,102	1,180
Operational Spinning reserve	1,251	993	*499	171	82	1,106	2,193
• LOLP (day / year)	0.1	1.4	5.5	NA	NA	NA	NA

Table 3.2.2 Demand- Supply Balance for Base Case - JICA/LPE Case 2- (Unit: MW)

* Years operational spinning reserves are smaller than essential spinning reserves.

The operational spinning reserve and the essential spinning reserve are calculated by the equations below:

*Operational spinning reserve = Availabl	e Ca	pacity - Peak Load (MW)	3 -	-]	1
*Essential spinning reserve = Peak load	Х	6%	3 -	- 2	2

The operational spinning reserve should be evaluated by the following equation.

*O.S.R.		E.S.R.	The power system can be operated stably.
*O.S.R.	<	E.S.R.	The power system can be operated.
			If a power plant stopped accidentally, some problems, such as
			black out of a limited area, would occur.
*O.S.R.		0	Since the power system can't be operated, counter measures,
			such as rotational black out, would be required.

Meanwhile, there is another method to evaluate the system reliability, such as Loss of Largest Generating Unit Method. Table 3.2.3 shows the evaluation result of system reliability by the deference of evaluating method.

Items	LOLP	Spinning Reserve	Loss of Largest Generating
		(MW)	Unit Method (615MW)
E.S.R 6%	2 days / year	964 - 1,030MW	Largest Unit (615MW) +
			Old Unit (200MW)
E.S.R 8%	1 day / year	1,286- 1,374MW	Largest Unit x 2

Table 3.2.3 Evaluation of Essential Spinning Reserve

3.2.3 Probability of Power Deficit

Table 3.2.4 summarizes the operational spinning reserve examined in the sensitive study.

(1) Effect of fluctuation of demand growth

• JICA/LPE CASE 2

The operational spinning reserve will be below the essential spinning reserve in 2003 and will be negative from 2004 in all cases. Therefore short-term countermeasures should be taken in order to operate the power system stably. The deficit of the Operational Spinning Reserve in 2004 and in 2005 will reach about 171MW and 82MW, thus the deficit capacity is contribute to estimate the necessary capacity for the short term countermeasures.

• JICA/LPE CASE 1

The operational spinning reserve will be below the essential spinning reserve in some years but the power system can be operated until 2005 in all cases. The power system can be operated until 2006 in the Base Case, the Base + Muara-Tower Block and the Base + Muara-Tower Block Case, and also can be operated until 2005 in the Muara-Tower Added On Case, the Limited Case and the Slipped Base Case without short term countermeasures.

1 1	0			1			
Year	2001	2002	2003	2004	2005	2006	2007
1. JICA/LPE CASE 2							
1) Peak Load	13,041	14,089	15,073	16,071	17,170	18,374	19,659
2) Essential Spinning Reserve	782	845	904	964	1,030	1,102	1,180
3) Operational Spinning Reserve							
• Base Case	1,251	993	*499	171	82	1,106	2,193
Base+Muara-Tower Block Case	1,251	993	*499	171	82	975	1,860
Base+Muara-Tower Block Case	1,251	993	*499	171	82	656	1,518
Muara-Tower Block Added on Case	1,251	993	*499	171	82	1,155	2,238
Limited Development Case	1,251	993	*499	171	82	1,286	2,571
Slipped Base Case	1,251	993	*499	171	82	1,286	2,391
2. JICA/LPE CASE 1							
1) Peak Load	13,041	13,821	14,497	15,266	16,185	17,220	18,348
2) Essential Spinning Reserve	782	829	870	916	971	1,033	1,101
3) Operational Spinning Reserve							
• Base Case	1,251	1,161	872	*634	*903	*48	882
Base+Muara-Tower Block Case	1,251	1,161	872	*634	*903	*179	549
Base+Muara-Tower Block Case	1,251	1,161	872	*634	*903	*498	207
Muara-Tower Block Added on Case	1,251	1,161	872	*634	*903	1	927
Limited Development Case	1,251	1,161	872	*634	*903	132	1,260
Slipped Base Case	1,251	1,161	872	*634	*903	132	1,080

Table 3.2.4 Operational Spinning Reserve for All Development Scenarios (Unit: MW)

* Years operational spinning reserves are smaller than essential spinning reserves.

** Other Capacity to be Redacted = Hydro power seasonal derating + Thermal Derating + Long Term Outage + Special Contract Service + Transmission constraint

(2) Effect of project development

The years in which the operational spinning reserve will become smaller than the essential spinning reserve are 2006 for the Base Case and 2005 for the Limited Development Case. The effect of project development is about one year for the Muara-Karang re-powering in JICA/LPE CASE 1. Since the operational spinning reserve will be negative from 2004, the project development will not influent on the years of power deficit in JICA/LPE CASE 2

(3) Effect of Project Slippage

The years in which the operational spinning reserve will be negative will be in 2007 in the Base Case and in 2006 in the Slipped Base Case, the effect of project slippage is only one years in JICA/LPE CASE 1. On the other hand, the project slippage will not influent on the year of power deficit in JICA/LPE CASE 2, since the operational spinning reserve will be negative from 2004.

3.3 Short - Term Countermeasures against Power Deficit

3.3.1 Items of Short - Term Countermeasures

Table 3.3.1 summarizes the items and effects of short-term countermeasures described in the previous section. All counter measures have to be reviewed carried out considering the cost performance.

Countermeasures	Estimated	Policies
	Effects	
(1) Fuel Supply	-	Avoid generating troubles by
		securing fuel
(2) Reduction of the Forced Outage	-	Apply protection systems widely
		against common troubles
(3) Effective scheduling of periodic repair	3% of	*Reduction of Average maintenance
a. Shift of Periodical Repair	operational	rate(10% 7%)
L L	capacity	(refer to 5-1 and 5-2)
b Shortening and strict observation the		Increasing the availability
Derived and Barrain on Schedule	-	increasing the availability
Periodical Repair on Schedule		
c. Extended Operation	76MW	*Reduction of maintenance rate(7%)
		5%), of Muara-Karang 4,5 and
		Suralaya 1-7.
(4) Rehabilitation		
a. Muara-Karang unit 4.5	20MW	Exchange a HP Heater
h Suralaya unit 1-4	80MW	Exchange turbine blades
(5) Improvement of Operation		Improve only the thermal efficiency
(5) Improvement of Operation	1N/A	improve only the thermal efficiency
(6) Brown Out	188MW	Based on the analysis of P3B
(7) Rotational Black Out	N/A	-
(8) Buy out of Captives	Maximum	Based on the plan of PLN
	250MW	-
(9) Request customers to Reduce Power	_	_
Consumption		
(10) Contract for Control of Demand	_	_
Supply Balance	-	_
(11) Control of Connection of Nerry		
(11) Control of Connection of New	-	-
Customer to the System		

 Table 3.3.1
 Effects of short-term countermeasures

3.3.2 Effect of the Short - Term Countermeasures

To confirm the effect of the short-term countermeasures described before, trial calculation for the improved capacities in Base Case and Slipped Base Case are carried out.

(1) Improved Capacity of the Countermeasures

Table 3.3.2 shows the maximum improved capacity by short-term countermeasures.

Table 5.5.2 Maximum improved expansively by Short Term Countermeasures									
Year	2001	2002	2003	2004	2005	2006	2007		
(1) Rehabilitation									
• Muara-Karang 4 & 5	0	20	20	20	20	20	20		
• Suralaya 1 – 4	0	0	80	80	80	80	80		
(2) The Maintenance Shift									
*Base Case	246	246	442	453	492	498	505		
*Slipped Base Case	246	246	442	453	492	492	498		
(3) Extended Operation	0	0	76	76	76	76	76		
(4) Brown Out	188	188	188	188	188	188	188		
(5) Buy out of Captives	0	50	100	150	200	250	250		
(6) Total Improvement									
A. Base Case									
Counter Measures(100%)	434	504	906	967	1,056	1,112	1,119		
Counter Measures (50%)	217	252	453	483	528	556	559		
B. Slipped BaseCase									
Counter Measures(100%)	434	504	906	967	1,056	1,106	1,112		
Counter Measures (50%)	217	252	453	483	528	553	556		

Table 3.3.2 Maximum Improved Capacity by Short - Term Countermeasures

(2) Effect of Short Term Counter Measures

1) JICA/LPE_CASE 2

Table 3.3.3 shows the effect of the short - term counter measures

• Base Case

In the case that all (=100%) of the countermeasures are achieved, the time in which a power deficit is expected to occur will be delayed for three years. In the case that half (=50%) of the countermeasures are achieved, the time in which a power deficit is expected to occur will be delayed for two years. Thus, the short-term countermeasures should be carried out to avoid power deficits.

• Slipped Base Case

Countermeasures (=100% & 50%) is expected to contribute to delay the time in which a power deficit is expected to occur for two years. Thus, the short-term countermeasures should be carried out to avoid power deficits.

Year	2001	2002	2003	2004	2005	2006	2007
1. JICA/LPE CASE 2							
1) Peak Load (MW)	13,041	14,089	15,073	16,071	17,170	18,374	19,659
2) E.S.R (MW)	782	845	904	964	1,030	1,102	1,180
A. Base Case							
3) a Operational Situation before Counter	rmeasures.						
• O.S.R (MW)	1,251	993	*499	171	82	1,106	2,193
• LOLP (Day / year)	0.1	1.4	5.5	NA	NA	NA	NA
4) a Effect of Short term countermeasure	s (100%)						
• Improved Capacity (MW)	434	504	906	967	1,056	1,112	1,119
• O.S.R after countermeasures (MW)	1,685	1,497	1,405	*796	*974	*6	1,074
• LOLP (Day / year)	0.0	0.3	0.6	2.7	2.1	12.2	NA
5) a Effect of Short term countermeasure	s (50%)						
• Improved Capacity (MW)	217	252	453	483	528	556	559
• O.S.R after countermeasures (MW)	1,468	1,245	952	*312	*446	550	1,634
• LOLP (Day / year)	0.0	0.7	2.0	7.2	6.2	NA	NA
B. Slipped Base Case							
3) b Operational Situation before Counter	rmeasures						
• O.S.R. (MW)	1,251	993	*499	171	82	1,286	2,391
• LOLP (Day / year)	0.1	1.4	5.5	NA	NA	NA	NA
4) b Effect of Short term countermeasure	s (100%)						
• Improved Capacity (MW)	434	504	906	967	1,056	1,106	1,112
• O.S.R. after countermeasures (MW)	1,685	1,497	1,405	*796	*974	180	1,279
• LOLP (Day / year)	0.0	0.3	0.6	2.7	2.1	NA	NA
5) b Effect of Short term countermeasure	es (50%)						
• Improved Capacity (MW)	217	252	453	483	528	553	556
• O.S.R after countermeasures (MW)	1,468	1,245	952	*312	*446	733	1,835
• LOLP (Day / year)	0.0	0.7	2.0	7.2	6.2	NA	NA

Table 3.3.3 Operational spinning reserve after taking countermeasures

* : The year operational spinning reserve is smaller than essential spinning reserve.

2) JICA/LPE_CASE 1

Table 3.3.4 shows the effect of the short - term counter measures

• Base Case

In the case that all (=100%) of the countermeasures are achieved, the time in which a power deficit is expected to occur will be delayed for a year. In the case that half (=50%) of the countermeasures are achieved, the operational reserves and LOLP from 2003 to 2006 will be improved.

Slipped Base Case

In the case that all (=100%) of the countermeasures are achieved, the time in which a power deficit is expected to occur will be delayed for a year. In the case that half (=50%) of the countermeasures are achieved, the operational reserves and LOLP from 2003 to 2006 will be improved.

Year		2001	2002	2003	2004	2005	2006	2007	
1. JICA/LPE CASE 1 demand									
1) Peak Load	(MW)	13,041	13,821	14,497	15,266	16,185	17,220	18,348	
2) E.S.R	(MW)	782	829	870	916	971	1,033	1,101	
A. Base Case									
3) a Operational Situation before	e Counterr	neasures.							
• O.S.R	(MW)	1,251	1,161	872	*634	*903	*48	882	
• LOLP (Day / year)		0.1	0.9	1.9	4.2	2.7	11.2	NA	
4) a Effect of Short term counter	measures	(100%)							
Improved Capacity	(MW)	434	504	906	967	1,056	1,112	1,119	
• O.S.R after countermeasures	(MW)	1,685	1,665	1,778	1,601	1,959	1,160	*237	
• LOLP (Day / year)		0.0	0.2	0.1	0.3	0.2	1.4	9.0	
5) a Effect of Short term counter	measures	(50%)							
Improved Capacity	(MW)	217	252	453	483	528	556	559	
• O.S.R after countermeasures	(MW)	1,468	1,413	1,325	1,117	1,431	*604	323	
• LOLP (Day / year)		0.0	0.4	0.5	1.3	0.7	4.7	NA	
B. Slipped Base Case									
3) b Operational Situation before	e Counterr	neasures.							
• O.S.R	(MW)	1,251	1,161	872	*634	*903	132	1,080	
• LOLP (Day / year)		0.1	0.9	1.9	4.2	2.7	NA	NA	
4) b Effect of Short term counter	measures	(100%)							
 Improved Capacity 	(MW)	434	504	906	967	1,056	1,106	1,112	
• O.S.R after countermeasures	(MW)	1,685	1,665	1,778	1,601	1,959	*974	*32	
• LOLP (Day / year)		0.0	0.2	0.1	0.3	0.2	2.2	12.2	
5) b Effect of Short term counter	measures	(50%)							
Improved Capacity	(MW)	217	252	453	483	528	553	556	
• O.S.R after countermeasures	(MW)	1,468	1,413	1,325	1,117	1,431	*421	524	
• LOLP (Day / year)		0.0	0.4	0.5	1.3	0.7	6.6	NA	

 Table 3.3.4
 Operational Spinning Reserve after taking countermeasures

* shows the year operational spinning reserve is smaller than essential spinning reserve.

Chapter 4 Optimal Power Development Plan -Long Term Development Plan-

The optimal power development plan can be defined as a kind of the least cost development plan which contributes to continuous national development by providing stable power at affordable prices, taking environmental preservation and effective use of primary energy sources into account.

In the past, the PLN regarded the least cost development plan as the basis for investment decisions when they invest in new equipment. In the future, the power supply system will be changed in accordance with the liberalization of the power market moves forward. However, the fundamental policy of minimizing the necessary investment in the power market will not be changed. Thus, the least cost development plan described in this chapter will be applicable as the optimal power development plan even in the liberalized energy market.

The role of the government is to study the ideal state of the electricity market and show this to the private sectors in order to encourage the grater investment in the power sector. The present of the optimal power development plan to the public should serve as a guide when private sectors decide to invest in the power market.

1st Step: Screening Curve Analysis

Screening curve analysis estimates the optimal component ratio of power sources by using the levelized annual cost and the load duration curve. In order to understand the concept of the optimal component ratio and the results of the simulation analysis, it is greatly useful to analyze screening curve before using the WASP-IV.

2nd Step: Preparing the Optimal Power Development Plan simulated by WASP-IV

The least cost development plan is simulated using Wasp-IV. The least cost plan is prepared as a base case and is reviewed from the viewpoints of the lead time for construction and fuel supply constraints. The issues to be solved for the stable power supply is studied and the policies to realize the power development plan is proposed.

3rd Step: Review of Optimal Power Mixture

In order to put the index for the long-term power development plan, the component ratio of power sources to realize the least cost development is examined, assuming the limitation is relieved. Moreover, the trial calculation is done on the component ratio of power sources taking the environmental issues and energy effective use into account.

4.1 Screening Curve Analysis

4.1.1 Load Factor

Table 4.1.1 shows the load factors in the South-East Asian countries. The load factors of Java-Bali is moving around 70%, thus the component ratio of base load is likely to become larger than other power sources.

1	Table 4.1.1 Load Tactors in the South Last Asian Countries (Clint. 70)										
Country	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
\ year											
Indonesia	62.1	67.5	65.1	72.8	74.9	68.0	66.8	68.6	70.1	68.9	67.6
(Java-Bali)											
Thailand	68.8	70.4	71.7	73.6	74.4	74.5	75.1	73.1	71.3	71.9	74.4
Philippine	70.3	71.2	71.2	56.6	65.0	72.6	71.3	70.3	69.6	70.8	68.6

Table 4.1.1 Load Factors in the South - East Asian Countries (Unit: %)

Source: Overseas Electric Power Industry Statistics/ Japan Electric Power Information Center, Inc. & PLN STATISTICS

4.1.2 Screening Curve Analysis

Figure 4.1.1 shows the screening curve of the power sources and the estimated duration curve in 2010. The upper curve shows the annual cost of each power source and lower curve shows the duration curve in 2010.

Figure. 4.1.1 Screening Curve Analysis

Source: PLN, P3B

Based on the result of screening curve analysis, the economical criteria of power sources are shown below:

Capacity Factor	Economical Order
11% >	Gas Turbine (Oil) is the most economical power source.
>45%,>11%	Combined Cycle System (Gas) is the most economical power source.
>45%	Steam Turbine System (Coal) is the most economical power source.

On the other hand, the present base load capacity is 9,950MW (Hydro: 2,536MW, Geothermal: 765MW, Coal: 6,650MW), the additional capacity of coal power unit would be about 7,000 MW (= 17,080MW - 9,950MW), assuming the necessary capacity is developed only by coal.

4.2 Optimal Power Development Plan

By using Wasp-IV, the optimal power development plan is examined. The study procedure is shown below:

a. Preparing the least Cost Power Development Plan (Base Case)

b. Examining the base case by Sensitive Study

c. Examining the problem to be solved for stable power supply.

The least-cost power development plan is simulated by WASP-IV as base case.

Effects of limitations such as fuel price, environment issues etc., is examined from the viewpoint of effective use of primary energy.

Taking the result of sensitive study, problem to be solved for stable power supply is made clear. The way to realize the power development plan is examined.

4.2.1 Base Case Study

(1) Condition

Base Case is defined as the least-cost power development plan with no limitation in and after 2006.

a. Power projects to be considered as the fixed project

Projects are determined based on "Base Case" mentioned in chapter 5. Model power sources are added to this scenario.

[JICA Limited Development Scenario 2]

* Pemaron C/C : Operation will start in 2003 (1000MW) / GT only

In 2004 (150MW) / complete

- * Tanjung-Jati B: Operation will start in 2004 (660MW), 2005 (660MW)
- * Muara-Karang repowering: Operation will start in 2005 (500MW) / GT only

In 2006 (720MW) / complete

b. Electricity Demand

Demand "JICA/LPE_CASE1 and JICA/LPE_CASE2", mentioned in chapter 2

c. Period studied

15 years

d. System Reliability

Criteria of the system reliability is set at on 1 day / year in LOLP after 2006

e. Discount rate

12%

f. Limitation of fuel supply

* Combined Cycle (Gas): Take-or-Pay contract is considered only to the existing unit. Fuel conversion from HSD to Gas at Grati, Tamba-Lorok, Muara-Tower power stations are not considered.

g. Model Power Sources

Four kinds of model power source are considered in the simulation. Table 4.2.1 shows the characteristics of each model power source.

				1
Unit Type	Steam	Combined	Gas Turbine	Pump-
	Turbine Unit	Cycle Unit	Unit	Storage Unit
Abbreviation	ST	C/C	GT	PS
Fuel	Coal	Gas	HSD	-
Capacity (MW)	600	600	120	250
		(150GT x 3 +		
		150ST x 1)		
Construction Cost (\$ / kW)	900	650	500	600
Life Time (Years)	25	20	15	50
Construction Period (Years)	4	3	2	5
Fuel cost (US\$ / Gcal)	4.2	*8.7-10.1	14.5	-
Cycle efficiency for Pump	-	-	-	70%
Storage unit				
Heat Rate (kcal / kWh)	2380	2100	3100	-

Table 4.2.1 Characteristics of the Model Power Sources

* Depending on units / power plants

h. Commissioning Year

*Steam Turbine P/S (Coal) : On and after 2006, except for Tanjung-Jati B. *Combined Cycle P/S (Gas): On and after 2006, except for Muara-Karang. *Gas Turbine P/S (HSD) : On and after 2006

(2) Power Development Plan

Table 4.2.2 shows outputs of WASP-IV in case of JICA/LPE_CASE2 demand and JICA/LPE Case_1 demand.

	De	mand-JI	CA/LPE	CASE	2	De	Demand-JICA/LPE CASE 1			
Year	Demand	ST	C/C	GT	P-S	Demand	ST	C/C	GT	P-S
	(MW)		Number	of Units	5	(MW)		Number	of Units	5
2001	13,041					13,041				
2002	14,089					13,821				
2003	15,073					14,497				
2004	16,071			³⁾ 1		15,266			³⁾ 1	
2005	17,170	1)2				16,185	1)2			
2006	18,374	4	²⁾ 2			17,220	3	²⁾ 1		
2007	19,659		2			18,348		2		
2008	21,075		2	3		19,612	1	1		
2009	22,621	3		1		21,000	1	1	3	
2010	24,297	3		2		22,539	2	1		
2011	26,099	3		2	1	24,225	4			
2012	28,040	3	1			26,058	3			1
2013	30,131	3			2	28,048	2	1	2	1
2014	32,380	3			3	30,208	2		1	4
2015	34,800	5				32,549	5			
Total N	Number	29	7	9	6	-	25	7	7	6
Total Capa	acity (MW)	17,520	4,320	1,110	1,500		15,120	4,320	870	1,500

Table 4.2.2 Simulation Output of WASP-IV (Base Case)

1) The Figure shows Tanjung-Jati B, 2) The figure includes the Muara-Karang Repowering

3) The figure shows the Pemaron C/C

a. Steam Turbine Power Unit (Coal-Fired)

The power development would rely on many coal-fired steam turbine units. This is coincident with the result of the screening curve analysis. The necessary capacity in 2015 is nearly 17,520MW in JICA/LPE_CASE2.

b. Combined Cycle Power Unit (Gas Fired)

The necessary capacity of combined cycle power unit is not so affected as coal-fired units by base load, because it is believed that certain capacity to meet middle / peak demand are necessary to operate power system stably.

c. Gas Turbine Power Unit (HSD Fired)

The necessary capacity is about 870MW-1,110MW, not so large, in both of JICA/LPE_CASE1 and JICA/LPE_CASE2.

d. Pumped Storage Power Unit

The number of required pumped storage power units depends on the component ratio of coal fired units which provide the surplus power to be pumped up, and it also depends on the gas turbines available to meet peak load demand. In both JICA/LPE_CASE 1 & 2, the 1,500MW of development should be introduced by 2015.

(3) Installed Capacity

Table 4.2.3 shows the installed capacity and its component ratio. The component ratio of coal fired power units is increased to about 55% in 2015. The total base load capacity including hydro and geothermal power units exceeds to about 60%. Figure .4.2.1 shows the installed capacity from 2001 to 2015 in JICA_CASE2.

Table 4.2.3 Installed Capacity (Base Case)

Demand:JI	Demand:JICA/LPE CASE 2 (UNIT:MW,%)								
	200)1	200	2005		2010		2015	
Hydro	2,536	13.6%	2,536	12.7%	2,536	8.4%	2,536	6.0%	
P.S.	0	0.0%	0	0.0%	0	0.0%	1,500	3.5%	
Coal	6,650	35.7%	7,970	39.9%	13,970	46.4%	24,170	57.1%	
Gas	4,749	25.5%	4,649	23.3%	8,369	27.8%	8,969	21.2%	
HSD	3,108	16.7%	3,258	16.3%	3,978	13.2%	4,218	10.0%	
MFO	800	4.3%	800	4.0%	500	1.7%	200	0.5%	
GEO	765	4.1%	765	3.8%	765	2.5%	765	1.8%	
Total	18,608	100.0%	19,978	100.0%	30,118	100.0%	42,358	100.0%	

Demand:JI	emand:JICA/LPE CASE 1 (UNIT:MW,%)									
	200)1	2005		20 ⁻	10	2015			
Hydro	2,536	13.6%	2,536	12.7%	2,536	8.4%	2,536	6.4%		
P.S.	0	0.0%	0	0.0%	0	0.0%	1,500	3.8%		
Coal	6,650	35.7%	7,970	39.9%	12,170	40.4%	21,770	54.8%		
Gas	4,749	25.5%	4,649	23.3%	8,369	27.8%	8,969	22.6%		
HSD	3,108	16.7%	3,258	16.3%	3,618	12.0%	3,978	10.0%		
MFO	800	4.3%	800	4.0%	500	1.7%	200	0.5%		
GEO	765	4.1%	765	3.8%	765	2.5%	765	1.9%		
Total	18,608	100.0%	19,978	100.0%	27,958	92.8%	39,718	100.0%		

Figure 4.2.1 Trend of Installed Capacity (Demand: JICA_CASE2)

(4) Power Production

Table 4.2.4 shows the generation and its component ratio. Coal fired power units generate over 70% of the electricity in both cases in 2015. Figure 4.2.2 shows the trend of power production and Figure 4.2.2 shows the duration of power generation in 2015.

Demand:JI	CA/LPE C	ASE 2					(UNI	T:GWh,%)
	200)1	2005 20		201	0	201	5
Hydro	7,719	9.5%	7,719	7.2%	7,719	5.1%	7,719	3.5%
P.S.	0	0.0%	0	0.0%	0	0.0%	1,500	0.7%
Coal	37,577	46.2%	53,776	50.5%	92,893	61.6%	159,187	72.9%
Gas	21,965	27.0%	24,805	23.3%	38,332	25.4%	39,694	18.2%
HSD	6,880	8.5%	11881	11.2%	5,230	3.5%	4,054	1.9%
MFO	1,717	2.1%	2510	2.4%	833	0.6%	377	0.2%
GEO	5,402	6.6%	5,864	5.5%	5,864	3.9%	5,864	2.7%
Total	81,260	100.0%	106,555	100.0%	150,871	100.0%	218,395	100.0%
Demand JICA / I PE CASE 1 (UNIT GWh %)								
Demand:JI	CA/LPE C	ASE 1					(UNI	T:GWh,%)
Demand:JI	CA/LPE C 200	ASE 1)1	200	5	201	0	(UNI ⁻ 201	T:GWh,%) 5
Demand:JI Hydro	CA/LPE C 200 7,719	ASE 1)1 9.5%	200 7,719	5 7.7%	201 7,719	05.5%	(UNI 201 7,719	T:GWh,%) 5 3.8%
Demand:JI Hydro P.S.	CA/LPE C 200 7,719 0	ASE 1 01 9.5% 0.0%	200 7,719 0	5 7.7% 0.0%	201 7,719 0	0 5.5% 0.0%	(UNI 201 7,719 1,209	T:GWh,%) 5 3.8% 0.6%
Demand:JI Hydro P.S. Coal	CA/LPE C 200 7,719 0 37,577	ASE 1 01 9.5% 0.0% 46.2%	200 7,719 0 52,169	5 7.7% 0.0% 51.8%	201 7,719 0 81,560	0 5.5% 0.0% 58.3%	(UNI 201 7,719 1,209 143,922	T:GWh,%) 5 3.8% 0.6% 70.5%
Demand:JI Hydro P.S. Coal Gas	CA/LPE C 200 7,719 0 37,577 21,965	ASE 1 01 9.5% 0.0% 46.2% 27.0%	200 7,719 0 52,169 23,141	5 7.7% 0.0% 51.8% 23.0%	201 7,719 0 81,560 38,488	0 5.5% 0.0% 58.3% 27.5%	(UNI 201 7,719 1,209 143,922 40,294	T:GWh,%) 5 3.8% 0.6% 70.5% 19.8%
Demand:JI Hydro P.S. Coal Gas HSD	CA/LPE C 200 7,719 0 37,577 21,965 6,880	ASE 1 91 9.5% 0.0% 46.2% 27.0% 8.5%	200 7,719 0 52,169 23,141 9,629	5 7.7% 0.0% 51.8% 23.0% 9.6%	201 7,719 0 81,560 38,488 5,504	0 5.5% 0.0% 58.3% 27.5% 3.9%	(UNI 201 7,719 1,209 143,922 40,294 4,608	T:GWh,%) 5 3.8% 0.6% 70.5% 19.8% 2.3%
Demand:JI Hydro P.S. Coal Gas HSD MFO	CA/LPE C 200 7,719 0 37,577 21,965 6,880 1,717	ASE 1 1 9.5% 0.0% 46.2% 27.0% 8.5% 2.1%	200 7,719 0 52,169 23,141 9,629 2,243	5 7.7% 0.0% 51.8% 23.0% 9.6% 2.2%	201 7,719 0 81,560 38,488 5,504 879	0 5.5% 0.0% 58.3% 27.5% 3.9% 0.6%	(UNI 201 7,719 1,209 143,922 40,294 4,608 385	T:GWh,%) 5 3.8% 0.6% 70.5% 19.8% 2.3% 0.2%
Demand:JI Hydro P.S. Coal Gas HSD MFO GEO	CA/LPE C 200 7,719 0 37,577 21,965 6,880 1,717 5,402	ASE 1 11 9.5% 0.0% 46.2% 27.0% 8.5% 2.1% 6.6%	200 7,719 0 52,169 23,141 9,629 2,243 5,864	5 7.7% 0.0% 51.8% 23.0% 9.6% 2.2% 5.8%	201 7,719 0 81,560 38,488 5,504 879 5,864	0 5.5% 0.0% 58.3% 27.5% 3.9% 0.6% 4.2%	(UNI 201 7,719 1,209 143,922 40,294 4,608 385 5,864	T:GWh,%) 5 3.8% 0.6% 70.5% 19.8% 2.3% 0.2% 2.9%

Table 4.2.4 Power Generation (Base Case)

Figure 4.2.2 Trend of Power Production (Demand: JICA/LPE_CASE2)

(5) Fuel Consumption

Table 4.2.5 shows the fuel consumption. As power generation increases, coal consumption increases until 2015 and reaches about 72,000kT in JICA_CASE2. It is nearly four times as much as the current consumption. Gas consumption increases to about 340 BSCF in both cases, and it is nearly two times as much as current consumption.

Demand: JIC	A-CASE2	(UNIT:KT,BSCF,kI)					
	2001	2005	2010	2015			
Coal	17,016	24,352	42,065	72,085			
Gas	192	216	327	337			
HSD	1,682	3,013	1,316	1,035			
MFO	478	699	233	100			
Demand:JICA-CASE1 (UNIT:KT,BSCF							

Table 4.2.5 Fuel Consumption (Base Case)

Demand:JIC	A-CASE1	(UNIT:KT,BSCF,kl)			
	2001	2005	2010	2015	
Coal	17,016	23,624	36,933	65,172	
Gas	192	202	328	343	
HSD	1,682	2,412	1,374	1,160	
MFO	478	625	246	102	

(6) Investment

Table 4.2.6 shows the necessary investment cost. The necessary investment cost to implement the development plan until 2010 is about US\$9.4 billion in JICA/LPE CASE1 and about US\$7.6 billion in JICA/LPE-CASE2.

Demand:JICA/LPE CASE 2 (UNIT:Million US\$)								
	2001-2005	2006-2010	2001-2010	2011-2015	Total			
Coal	1,188	5,400	6,588	9,180	15,768			
Gas C/C	0	2,355	2,355	390	2,745			
HSD	98	360	458	120	578			
P-S	0	0	0	900	900			
Total	1,286	8,115	9,401	10,590	19,991			

 Table 4.2.6 Necessary Investment (Base Case)

Demand: JICA/LPE CASE 1 (UNIT: Million US								
	2001-2005	2006-2010	2001-2010	2011-2015	Total			
Coal	1,188	3,780	4,968	8,640	13,608			
Gas C/C	0	2,355	2,355	390	2,745			
HSD	98	180	278	180	458			
P-S	0	0	0	900	900			
Total	1,286	6,315	7,601	10,110	17,711			

4.2.2 Sensitive Studies

(1) Sensitive Study on Fuel Price - Fuel Price Increase Scenario -

The impact of the fuel price increase on the power development plan is examined. The scenarios studied are shown in Table 4.2.7.

Case	Base	Gas Price	e Increase	Coal Price Increase				
Item	Case	Case1	Case2	Case1	Case2			
Coal (\$/ton)	20	2	0	25	30			
Gas (\$/MMBTU)	2.5	3.0	3.5	2.5				
HSD oil (\$/Gcal)			14.5					

Table 4.2.7 Fuel Price Increase Scenario

Power Development Plan

Table 4.2.8 shows the output of WASP-IV in each case. In the Gas Price Increase Case, the capacity of the combined cycle power plants to be developed will decrease if the gas price increases, while the capacity of coal power plants will increase. In the Coal Price Increase Case, the capacity of the coal power plants will decrease if the coal price increases, while the capacity of the combined cycle power plants will increase.

Case		Base Case		Gas Price Increase Case 1			Gas Price Increase Case 2				Coal Price Increase Case 1				Coal Price Increase Case 2						
Gas Price 2.5\$/MMBTU			3.0\$/MMBTU			3.5\$/MMBTU				2.5\$/MMBTU											
Fuel Price 20\$/ton			20\$/				/ton					25\$	/ton		30\$/ton						
Year	Demand	ST	C/C	GT	PS	ST	C/C	GT	PS	ST	C/C	GT	PS	ST	C/C	GT	PS	ST	C/C	GT	PS
	(MW)	Number of Units			Number of Units			Number of Units				Number of Units				Number of Units					
2001	13,041																				
2002	14,089																				
2003	15,073																				
2004	16,071			³⁾ 1				³⁾ 1				³⁾ 1				³⁾ 1				³⁾ 1	
2005	17,170	1)2				1)2				1)2				1)2				1)2			
2006	18,374	4	²⁾ 2			5	²⁾ 1			5	²⁾ 1			2	²⁾ 4			1	²⁾ 4	3	
2007	19,659		2			1	1	1		2		1		1	1			1	1	1	
2008	21,075		2	3			2	3		2		4		1	1	3		1	2		
2009	22,621	3		1		2	1			1	2			3		1		3			
2010	24,297	3		2		3			1	2	1		1	2	1	2		2	1	1	
2011	26,099	3		2	1	2	1	4		2	1	3		3		2	1	3		2	1
2012	28,040	3	1			4				3	1			4				4			
2013	30,131	3			2	2	1		2	2			4	3			2	2	2	3	
2014	32,380	3			3	4			1	4			1	3	1		1	2			4
2015	34,800	5				4		2	1	5				3	1	1	1	3	1	3	
Total Number		29	7	9	6	29	7	11	5	30	6	9	6	27	9	10	5	24	11	14	5
Total Capa	acity (MW)	17,520	4,320	1,110	1,500	17,520	4,320	1,350	1,250	18,120	3,720	1,110	1,500	16320	5,520	1,230	1,250	15,120	6,720	1,710	1,250

 Table 4.2.8
 Power Development Plan by Wasp-IV(Fuel Price Increase Scenario)

1) The figure shows Tanjung-Jati B, 2) The figure includes the Muara-Karang Repowering

3) The figure shows the Pemaron C/C $\,$
Gas Consumption

Figure 4.2.3 shows the trend of gas consumption in each case. IF gas prices increase, the amount of gas consumption will decrease. This trend will emerge clearly in 2008. The amount of necessary gas in 2008 is about 330BSCF/year in the Base Case, while 290BSCF/year at a price of 3.0US\$/MMBTU, and 220BSCF at 3.5US\$/MMBTU. On the other hand, if coal prices increase, the amount of gas consumption will increase. The amount in 2015 will reach 390BSCF/year at a price of 25US\$/ton, and 450BSCF/year at 30US\$/ton, while 340BSCF/year in the Base Case. Thus, the gas consumption will go above the present supply plan.

Figure 4.2.3 Trend of Gas Consumption

Coal Consumption

Figure 4.2.4 shows the trend of coal consumption in each case. If coal prices increase, the amount of coal consumption will decrease. The amount in 2007 will fall down to 30,000kton/year at a price of 25US\$/ton, and 28,000kton/year at 30US\$/ton, while 31,000kton/year in the Base Case. On the other hand, if gas prices increase, the amount of coal consumption will increase. The amount in 2008 will reach about 34,000kton/year at a price of 3.0US\$/MMBTU, and 38,000kton at 3.5US\$/MMBTU, while 32,000kton/year in the Base Case.

Figure 4.2.4 Trend of Coal Consumption

(2) Sensitive Study on Power Development Limitation - Limited Development Scenario-

The impact of limitation to the lead-time of construction and to the capacity itself is studied. The concept of case studied is as follows:

• No Coal Power Plant Case

Since Base Case is the least-cost power development plan in the calculated period, the output consists of coal power plant mainly because of its low fuel price. Since the necessary investment for coal power plant is expensive, investors in captive powers and IPPs are likely to construct combined cycle or gas turbine power plant that is cheaper in investment and can be constructed in shorter period in place of coal power plant, as is shown in other countries introducing market mechanism. No Coal Power Plant Case is the case which no coal power plant will be developed until 2010 except for Tanjung-Jati B.

Coal Power Plant Limited Case

Taking the lead-time into account, Coal Power Plant Limited Case is the case that the commissioning year of coal power plant should be in and after 2008. Moreover, the number of coal power plant to be developed until 2010 are limited only two units per year.

Combined Cycle Limited Case

Regarding the effective use of natural gas, power plant should be developed in cooperating with gas infrastructure. Combined Cycle Limited Case is the case that the number of combined cycle power plant to be developed are limited only three until 2010, except for Muara-Karang repowering.

• Pumped Storage Limited Case

The candidate of pump storage power unit is only Upper Cisokan pumped storage power plant (Total 1,000MW) now. Thus, Pumped Storage Limited Case is the case that the capacity of pumped storage power plant is limited at 1,000MW.

In these cases, limitations would be relieved from 2011 assuming the environment for the large investment by private sectors is prepared. Table 4.2.9 shows the condition of each case.

		1								
Case	Base Case	No Coal	Coal Power	C/C Power	P.S. Power					
		Power Plant	Plant	Plant	Plant					
		Case	Limited Case	Limited Case	Limited Case					
1) Demand		JICA/LPE CASE 2								
2) Fixed Project	• Pemaron	C/C:	2003 (100M	W) - GT Con	missioning					
			2004 (50MW) - Complete						
	• Tanjung-	Jati B: 2005 (66	60MW x 2)							
	• Muara-K	arang Repoweri	ing: 2006 (500N	MW) - GT Co	mmissioning					
		0 1	2007 (720)	MW) - Comple	ete					
3) Model Power			In and after							
Sources	In and	In and after	2008	In and a	fter 2006					
Coal Power	after 2006	2011	2 units / year							
Plant			(2008-2010)							
Combined			·	In and after						
Cycle Plant		In and after 20	06	2006	In and after					
				(Maximum	2006					
				3 units until						
				2010)						
Gas Turbine			In and after 20	06						
• Pumped		In and a	after 2008		In and after					
Storage Plant					2008					
	(Maximum 4									
		units)								
4) LOLP	• Not to tal	• Not to take into account until 2005								
	• 1day / Ye	• 1day / Year in and after 2006								

Table 4.2.9 Power Development Limited Scenario

Power Development Plan

Table 4.2.10 shows the power development plan for Power Development Limited Scenario. In the No Coal Power Plant Case and the Coal Power Plant Limited Case, combined cycle power plants are developed in place of coal power plants. However, since coal power development will increase after relieving the limitations, the total number of coal power plants until 2015 in the Coal Power Plant Limited Case will decrease only by 3 units as compared to the Base Case. In the No Coal Power Plant Case, the number of coal power plants will decrease by 7 units because of the limited development until 2010.

Similarly, in the Combined Cycle Power Plant Limited Case, coal power plants are developed as alternative power sources. However, more combined cycle power plants are developed after 2010, so that the total capacity to be developed until 2015 is the same as that of the Base Case.

Taking this into account, the component ratio needed to realize the least-cost power development will be at the same level, even though the development year is different.

C	ase		Base	Case		No	Coal P Ca	ower Pl ise	lant	C	oal Pov Limite	ver Pla d Case	nt	Com Pla	bined C ant Lin	Cycle Pointed Ca	ower ise	Pum Plan	ped Sto t Limit	orage Po ed Scer	ower nario
Year	Demand	ST	C/C	GT	P-S	ST	C/C	GT	P-S	ST	C/C	GT	P-S	ST	C/C	GT	P-S	ST	C/C	GT	P-S
	(MW)	Ν	Jumber	of Uni	ts	N	lumber	of Unit	ts	N	Jumber	of Uni	ts	N	lumber	of Unit	ts	Number of Units			
2001	13,041																				
2002	14,089																				
2003	15,073																				
2004	16,071			³⁾ 1				³⁾ 1				³⁾ 1				³⁾ 1				³⁾ 1	
2005	17,170	1)2				1)2				1)2				1)2				1)2			
2006	18,374	4	²⁾ 2				²⁾ 5	3			²⁾ 5	3		4	²⁾ 2			4	²⁾ 2		
2007	19,659		2				2				2				2				2		
2008	21,075		2	3			2	4		2	1			2		4			2	3	
2009	22,621	3		1			3			2	1			3		1		3		1	
2010	24,297	3		2			3			2	1	1		3		2	1	3		2	
2011	26,099	3		2	1	4				3		3	1	1	2	1		3		2	1
2012	28,040	3	1			4				4				3	1			3	1		
2013	30,131	3			2	4			1	3			2	3			2	3			2
2014	32,380	3			3	4		1		3		2	2	3			3	4			1
2015	34,800	5				4		2	1	5				5				5			
Total I	Number	29	7	9	6	22	15	11	2	26	10	10	5	29	7	9	6	30	7	9	4
Total Cap	acity (MW)	17,520	4,320	1,110	1,500	13,320	9,120	1,350	500	15,720	6,120	1,230	1,250	17,520	4,320	1,110	1,500	18,120	4,320	1,110	1,000

Table 4.2.10 Power Development Plan by WASP-IV (Power Development Limited Scenario)

1) The figure shows Tanjung-Jati B, 2) The figure includes the Muara-Karang Repowering

3) The figure shows the Pemaron C/C

Gas Consumption

Figure 4.2.5 shows the trend of gas consumption in each case. In the Base Case, Combined Cycle Power Plant Limited Case and Pumped Storage Power Plant Limited Case, gas consumption will move in accordance with the gas supply plan. However, in the No Coal Power Plant Case and the Coal Power Plant Limited Case, the gas consumption will be bigger than that which is stipulated in the gas supply plan. Especially, in the No Coal Power Plant Case, gas consumption will reach 600BSCF / year.

Figure 4.2.5 Trend of Gas Consumption

Coal Consumption

Figure 4.2.6 shows the trend of coal consumption in each case. Coal consumption is about 20,000kton / year in 2001, and will become 60,000 - 70,000kton / year in 2015 in all cases.

Figure 4.2.6 Trend of Coal Consumption

(3) Sensitive Study on Environmental Issues -Environmental Scenario-

As mentioned before, the power development plan of Base Case consists of coal power plant mainly. On the other hand, since grovel warming issue is discussed all over the world, the issue has to be taken into account in this report. In this section the case using the renewable energy effectively and the case keeping the CO_2 emission / kWh at present level are examined. Table 4.2.11 shows conditions of each case.

Item	Renewable Energy	CO ₂ Emission Limited Case			
	Effective Use Scenario				
Renewable Energy Power Plant	Refer to Table 4.2.12				
Combined Cycle Power Plant		Adjusted to keep CO ₂			
Coal Power Plant	Calculated by WASP-IV	emission at the present level			
Gas Turbine	(Least cost planning)	Calculated by WASP-IV			
Pumped Storage Power Plant		(Least cost planning)			

Table 4.2.11 Environmental Scenario

Although the renewable energy is developed by national policy, the investment should be in a certain economic level. Thus, the candidate is chosen by construction cost / kW, specifically 2,000US / kW. Table 4.2.12 shows the amount of renewable energy treated in this scenario. These power plants are assumed to start operating from 2011.

			0.
Unit Type	Number of	Number of Unit	Total Capacity
	Plant		
Hydro Power	8	-	1,697MW
Plant			
Geothermal	8	17	990MW
Power Plant			

Table 4.2.12 Amount of Renewable Energy

Power Development Plan

Table 4.2.13 shows the power development plan for Environmental Scenario. In Renewable Energy Case, the number of coal power plant will decrease, since the base power plants, such as run off river type hydro and geo thermal power plant, are developed. The number of reduced units is about 4.

To keep CO_2 emission / kWh at present level, the number of coal power plant should decrease, in contrast the number of combined cycle power plant should increase. The number of unit to be developed until 2015 is 12 for coal power plant and 24 for combined cycle power plant. Thus, it is necessary to develop combined cycle power plant twice as many as coal power plant.

			Base	Case		Renewable Energy Case					CO2Emission Limited Case						
Year	Demand	ST	C/C	GT	P-S	ST	C/C	GT	P-S	Hyd	Geo	ST	C/C	GT	P-S	Hyd	Geo
	(MW)		Number	of Units	8]	Number	of Units	S	1			Number	of Units		
2001	13,041																
2002	14,089																
2003	15,073																
2004	16,071			³⁾ 1				³⁾ 1						³⁾ 1			
2005	17,170	1) 2				1) 2						1) 2					
2006	18,374	4	²⁾ 2			4	²⁾ 2						²⁾ 5	3			
2007	19,659		2				2						2				
2008	21,075		2	3			2	3				1	2				
2009	22,621	3		1		3		1				1	2				
2010	24,297	3		2		3		2					3				
2011	26,099	3		2	1	1		1	1	2	2			3	2	2	2
2012	28,040	3	1			2		1		2	2	1	1			2	2
2013	30,131	3			2	3			1	2	2	2	1		1	2	2
2014	32,380	3			3	2		1	3	2	2	2	2			2	2
2015	34,800	5				5		1				3	2				
Total 1	Number	29	7	9	6	25	6	11	5	8	8	12	20	7	3	8	
Total Cap	acity (MW)	17,520	4,320	1,110	1,500	15,120	3,120	1,350	1,250	1,697	990	7,320	12,120	870	750	1,697	990

Table 4.2.13 Power Development Plan By WASP-IV (Environmental Scenario)

Hyd: Hydro Power Plant, Geo: Geothermal Power Plant

1) The figure shows Tanjung-Jati B, 2) The figure includes the Muara-Karang Repowering

3) The figure shows the Pemaron C/C

Gas Consumption

Figure 4.2.7 shows the trend of gas consumption in each case. In Renewable Case, gas consumption is not so different from Base Case because the amount of renewable energy is not so much. However, in CO_2 Emission Limited Case, the gas consumption will move over 700BSCF/year.

Figure 4.2.7 Trend of Gas Consumption

Coal Consumption

Figure 4.2.8 shows the trend of coal consumption in each case. In Renewable Case, coal consumption is not so different from Base Case because the amount of renewable energy is not so much. However, in CO_2 Emission Limited Case, coal consumption will move not more than 40,000kton / year.

Figure 4.2.8 Trend of Coal Consumption

Table 4.2.14 shows fuel consumption and CO_2 emissions for each case in 2015. By using the renewable energy effectively, CO_2 emission will decrease from 0.820kton- CO_2/kWh to 0.764kton- CO_2/kWh in 2015, however, the CO_2 emission cannot be maintained at the present level (0.661kton- CO_2/kWh). In the CO_2 Emission Limited Case, CO_2 emission can keep within the 0.660kT- CO_2 , while the gas consumption will jump up.

Fuel Consumpti	on		(UNI	T:KT,BSCF,kI)				
Year	2001	2015						
	Base	Base	Renewable	CO2 Limited				
Coal	17,016	72,085	64,795	43,433				
Gas	192	337	339	722				
HSD	1,682	1,035	2,288	2,473				
MFO	478	100	129	130				

 Table 4.2.14
 Fuel Consumption and CO2 Emission

CO2 Emission				(UNIT:kT)			
Year	2001	2015					
	Base	Base	Renewable	CO2 Limited			
Coal	36,925	156,423	140,604	94,251			
Gas	11,271	19,828	19,930	42,474			
HSD	4,113	2,532	5,595	6,047			
MFO	1,432	298	387	390			
Total	53,742	179,082	166,517	143,161			
GWh	81,260	218,395	218,039	217,020			
kg-CO2/kWh	0.661	0.820	0.764	0.660			

4.2.3 Issues to be addressed for the Power Development Plan

Sensitive studies on fuel price, limitation of power development and environmental policy has been made and the impact of these conditions on power development plan was examined. This section will propose some of the issues that need to be addressed for the power development plan.

(1) Issues to be solved for realizing the power development plan

1) Investment

- For providing power stably, necessary capacity to be developed will reach 24,500MW and required investment will reach US\$ 20 billion until 2015.
- Since it is difficult to procure this investment by government, investment by private sector can not but be expected.
- Taking the suspense of development and re-negotiation of purchase price with IPPs, it is not in the situation for foreign investors to invest the IPP project in Indonesia.
- Therefore, to make clear the organization which has the responsibility to provide power to the system under the new electricity law, and to introduce the private capitol to power sector, are very important.

2) Type of power sources

- The output of WASP-IV is the least cost plan to minimize the operation cost and levelized investment cost. Since Indonesia has the high load factor at about 70%, the simulation result becomes the development plan consisting of coal power plants mainly.
- Private investors are likely not to invest on the coal power plant because of its high investment caused by high construction cost per kW and great capacity per unit. Consequently, the gas turbine or combined cycle power plant using fuel gas is likely to be the objective of investment because of lower investment and shorter construction period.
- Therefore, to introduce the private capitol, it should be the urgent matters to construct the gas infrastructure and to provide fuel gas stably at low cost. Thus, gas infrastructure for the private sector should be constructed under the responsibility of the government for the time being.
- For the long-term development, energy policy regulating the amount of available gas for power sector and taking the effective use of coal should be required from the viewpoint of primary energy resources. Therefore, the government should study the optimal ratio of power sources, taking the effective use of primary energy and environmental issues into account.

3) Gas supply

- The amount of gas consumption is greatly influenced by fuel price and the development of coal power plant. Thus, In order to provide the necessary gas at necessary time, fuel supply plan should be prepared periodically with taking the situation of demand and power development into account.
- Amount of minable resource of gas in west Java is limited and no gas project is expected to be developed except for the gas pipeline between Java and South Sumatra. Therefore, gas consumption for power sector it is likely to be limited.
- · Gas consumption in middle term is considered to move at about 380BSCF
- In long term, new gas projects, such as Tanguh project in Irian Jaya, are expected to be developed. The project scale of Tanguh would be about 300BSCF / year. Considering the gas for other sectors, gas supply for power sector can not but be a part of this project.
- In order to reduce the impact on environment, power sources should be developed by fuel gas. In this case, since the gas consumption jumps up, the capacity to be developed should be set deliberately, with considering the environmental policy and energy policy.

4) Coal supply

• In the least cost plan at JICA/LPE case 2, the coal consumption will reach 70million ton / year in 2015. On the other hand, mineable reserve of coal in Indonesia is about 4,928million ton. The amount ratio of the bituminous coal and sub bituminous coal for electric power is estimated to be 40%. Moreover, amount of confirmed resources is about 11,569million ton, thus leaving the export, consumption in other sector and use in outer island, the fuel coal for power sector in Java-Bali is enough to supply. Therefore, coal should be used from the point of primary energy in Indonesia.

Mineable	e Amount of Resources						
Reserve	Confirmed	Expected	Total				
4,928	11,569	27,306	38,875				

Table 4.2.15 Mineable Resources on Coal (UNIT: million T)

Source: Directorate of Coal, "Indonesian Coal Yearly Statistics, Special Edition 2000"

Figure 4.2.9 Composition of coal reserve by type.

- In case of coal power plant can not be developed sufficiently, gas power plant would be developed instead of coal power. Thus the gas consumption will jump up beyond the capacity of infrastructure. In order to control the gas consumption, a certain capacity of coal power plant should be developed.
- Despite the enough resources, fuel coal circulating in the market is rather short. This means the shortage of infrastructure from mining to the market. Thus the infrastructure of coal should be developed in accordance with the development of power sources with forecasting the coal consumption periodically.
- 5) Lead time for construction.
- In the case of a coal fired power unit, it requires four years for the actual construction period, and six to seven years including the environmental impact assessment. Considering the above, it seems very difficult to commitment in 2008. Therefore, the coal power plant should be developed by government policy or encourage of investor should be done by the favorable treatment.

(2) Suggestion to realize the power development plan

- In order to develop power sources by using private capital, the environment for investment should be prepared for developing gas turbines or combined cycle power plant requiring the small investment. Actually it is necessary to provide the fuel gas stably at low cost by constructing the infrastructure. In case that the necessary infrastructure is not prepared, the fuel gas for power sources can not be supplied, thus the infrastructure of fuel gas should be developed under the responsibility of the government.
- Taking the mineable reserve of coal and the amount of available gas for power sector, coal power plant should be developed in a certain extent from the viewpoint of primary energy. Since coal power plants require the big investment, the private capital is not likely to introduce to coal power plant. Therefore, the coal power plant should be developed by government policy or encourage of investor should be done by the favorable treatment.
- In order to meet power development plan, fuel infrastructure and environmental policy, national energy-environmental policy is required. In order to make full use of private capital, it is important to provide the information to the private investors for making clear the direction of the national development and the information for judging to the investment.

4.3 Study on Optimal Power Component Ratio

The concept of a power mix used in Japan includes energy security and environmental impact, since Japan does not have enough primary energy resources. Considering the power mix in Indonesia, the concept of effective use of the country's own primary energy and environmental factors should be considered. In this section, trial calculation of long term power mix is made taking the method of using the private sector, effective use of natural gas for environment, the upper limit of the amount of natural gas and effective use of coal and other considerations into account

4.3.1 Component Ratio to Realize the Least Cost Development

Figure 4.3.1 shows the component ratio of installed capacity and power production realizing the least cost development.

Figure 4.3.1 Component Ratio to Realize the Least Cost Development

- a. In the event the limitations are relived, component ratios of installed capacity and power generation realizing the least cost development will converge to the ratios shown above.
- b. The load factor in Japan is about 60% (average of 10 power companies) and the component ratio of base load power plant, such as hydro, geothermal, nuclear and coal fired power plant, is 40% in installed capacity and 60% in power generation.

c. The component ratio of base load power sources, such as hydro, geothermal and coal-fired power plant, exceeds 60% in installed capacity and 75% in power generation. The high load factor (=70%) in Indonesia is likely to contribute this.

4.3.2 Trial Calculation of Target Power Mixture in Long Term

A trial calculation of the target power mixture for long-term was prepared, taking the method of using private sector, effective use of the natural gas for environment, the upper limit of the amount of natural gas, the effective use of coal and other considerations into account.

(1) Conditions

When adopting the CO_2 Emission Limited Case as the original case, the amount of gas consumption is adjusted to about 500–550 BSCF / year in the future, based on the following concept.

The amount of natural gas to be supplied

- = The amount of present plan + 1/2 of gas supply by * new project
- = 380 BSCF/year + 150 BSCF/year (300BSCF x 1/2)
- = 500 550 BSCF / year

* Expected amount from Tanguh project in Irian Jaya.

Type of Power Source	Effective Use of Primary	CO ₂ Emission Limited			
	Energy	Case (Listed Again)			
Renewable Energy Power Plant	Refer to Table 4.2.12				
Combined Cycle Power Plant	Adjust the Upper limit of	Adjust the CO ₂ emission			
Coal Power Plant	Gas Consumption at	at about the present level			
	about 550BSCF/ year				
Gas Turbine	Calculated b	by WASP-IV			
	(Least Cost Planning)				

(2) Component Ratio of Power Sources over the Long-Term.

Figure 4.3.2 shows the results of a trial calculation of a target power mixture over the longterm. It is important to show the figure to the private investors, so that private capitol can actually be put to use.

Figure. 4.3.2 Component Ratio of Power Sources in Long-Term (Trial Calculation)