
			ON KOEI CO.,LTD.
	DESIGN CALCULATION CO	VER SHEET	
Project	Detailed Design on Port Reactivation Project in La Union Province	Project Code	JC1N004
Section	Civil	Calc. File No.	
Sub-Section	Revetmentl	Calc. Index No.	
Subject:	Small Boat Basin		
Calculation Ob	ojective: Stability of Concrete Block \	Vall	
References, Calcula	ition Notes and Comments		
Refer	to drawings RV-04-001,RV-03-	-002	
TE	CHNICAL STANDERDS AND COMMENTAR	RIES	
FC	PR		

Rev	Prep	oared	No. of	Che	cked	Reviewed		Superseded
nev	by	Date	Pages	by	Date	by	Date	by Calc No.
-0	effect.	24/07/2002	44	JA FF	×504,65	O CO	26/08/02	
Α					/			
В	a.							
С								

File in Calc. File

Project	Detailed Design on Port Reactivation	on Project in La Union	Calc. File No.	
Section	Civil		Calc. Index No	<u>, </u>
Subject	Revetment	·	Page No. /	
			Re No	ferences/ tes
				•
	1 Design Conditions			
	1-1. Dimensions	.*		
	Crown height		5.000	(m)
	Bottom Height		-4.000	(m)
, 				
	1-2. Tide Level			
	H.W.L		3.370	(m)
	L.W.L		-0.130	•
			•	
•.	1-3 Residual Water Height			
	R.W.L		1.033	(m)
	1-4. Surcharge	,		
		Normal (Condition
			(kN/m ^t) (kN/m ^t) 19.600 9.800	l The second second
	1-5: Seismic Coefficient	•	0.200	
	For earth pressure For Inertia Force	• •	0.200	
	LOUITGETTS LOLCG	•		
	1-6. Safety Factor			
!	Sliding		Condition Seismic . 200 1.000	
	Overturning		.200 1.100	
	Bearing Capacity(Sandy Soil)	and the second second	.500 2.500	
	Bearing Capacity(Cohesive So	•	.500 1.500	N
		•		
1 .				
		•		
· ·	Prepared t	Py Y.Ando	Checked by R.	Nisimura
		26/07/2002		26/07/2002

Section Civil Calc. Index No.	Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Subject Payetment Page No. 3 Paye	Section	Civil	Calc. Index No.	
Take No Mev.	Subject	Revetment	Page No. 3	Rev.

2. Stability in Normal Condition

2-1 Earth Pressure and Water Pressure

[1] Coefficient of earth Pressure

$$K_{\bullet} = \frac{\cos^{i}(\phi - \psi)}{\cos^{i}(\psi - \cos(\phi + \psi)) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\cos(\phi + \psi) \cdot \cos(\psi - \beta)}}\right]^{i}}$$

Coefficient of active earth pressure

β: Angle of internal friction(degree)

β: Angle of the ground surface to horizontal(degree)

ψ: Angle of the wall surface to vertical (degree)

δ: Angle of wall friction

3.000m

Action (m)	Level	$\begin{pmatrix} \beta \\ (\bullet) \end{pmatrix} \begin{pmatrix} \phi \\ (\iota^{*}) \end{pmatrix}$		(à)	ψ ()	Κ,
5.000~	3.000	0.0	40.0	15.0	0.0	0.2011

1.000m ->

Action Level	β (''ε;)	(o)	δ (;•)	ψ (•.)	K,
5.000~ 1.03	3 0.0	40.0	15.0	0.0	0.2011
1.033~ 1.00	0.0	40.0	15.0	. 0.0	0.2011

< -1.500m '>

: Action Level	β (**)	(o)	·δ (ч)	ψ (3)	Κ.
5.000~ 1.033	0.0	40.0	15.0	0.0	0.2011
1.033~ -1.500	0.0	40.0	15.0	0.0	0.2011

Action 1 Level (m)	β (^α _ε)	(&)	δ (•)	ψ (ą)	Κ.
5.000~ 1.033	0.0	40.0	15.0	0.0	0.2011
1.033~ -4.000	0.0	40.0	15.0	0.0	0.2011

Prepared by	Y.Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	1	Calc. Index No.	
Subject	Revetment	Page No. 🖇	Rev.

[2] Intensity of Earth Pressure

$$P_{\bullet} = \left[\Sigma \gamma \cdot h + \frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)} \right] \cdot K_{\bullet}$$

3.000m ; >

,	Action Level(m)	h (m)	γh (kN/m²)	Σγh (kN/m¹)	ψ (\$)	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos($\delta + \psi$)	(kN/m ¹)	
	5.000 3.000	0.000 2.000	0.000 36.000	0.000 36.000	0.0 0.0	19.600 19.600	0.1942 0.1942	3.806 10.798	

1.000m >

Action () Level (m)	h (m)	γh (kN/m²)	Σγh (kN/m²)	ψ (, ' ' ')	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos($\delta + \psi$)	(kN/w;)
5.000	0.000	0.000	0.000	0.0	19.600	0.1942	3.806
1.033	3.967	71.406	71.406		19.600	0.1942	17.673
1.033	3.967	71.406	71.406	0.0	19.600	0.1942	17.673
	0.033	0.330	71.736	0.0	19.600	0.1942	17.737

< -1.500m

ſ	Action ::]. Level(m)	h (m)	γh (kN/m¹)	$\sum \gamma h$ (kN/m ¹)	ψ (ὁ.)	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos($\delta + \psi$)	P, (kN/m²)
	5.000	0.000	0.000	0.000	0.0	19.600	0.1942	3.806
	1.033	3.967	71.406	71.406	0.0	19.600	0.1942	17.673
	1.033	3.967	71.406	71.406	0.0	19.600	0.1942	17.673
	-1.500	2.533	25.330	96.736	0.0	19.600	0.1942	22.592

< -4.000m; 1>

Action, Level(m)	h (m)	γh (kN/m²)	Σγh (kN/m²)	ψ (%)	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos(δ+ψ)	P. (kN/m²)
5.000 1.033	0.000 3.967	0.000 71.406	0.000 71.406	0.0	19.600 19.600	0.1942 0.1942	3.806 17.673
1.033 -4.000	3.967 5.033	71.406 50.330	71.406 121.736	0.0	19.600 19.600	0.1942 0.1942	17.673 27.447

Prepared by	Y.Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in	La Union Calc. File No.	·
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 🗸 💛 Rev	•

[3] Earth Pressure

$$P_{i} = \frac{1}{2} \cdot P_{i} \cdot h$$

P. : Earth pressure (kN/m)
h. : Thickness of Soil (m)
P. : Intensity of active (kN/m')
earth pressure

A. < 3.000m . ! >

Not	Formul	ų.	P,(kN/m²)) :	h (m)	P: (kN/m)
1 2	1/2 1/2	X	3.806 10.798	X X	2.000 2.000	3.806 10.798

B点、< 1.000m ...>

No.	Formula	P.(kN/m²)) .	h(m)	P _c (kN/m)
1 2	1/2 x 1/2 x	3.806 17.673	X	3.967 3.967	7.549 35.054
3 4	1/2 x 1/2 x	17.673 17.737	X	0.033 0.033	0.292 0.293

C < -1.500m

,Nv	Formula P. (kN/m²)			h(m)	P。 (kN/m)	
1 2	1/2 1/2	X X	3.806 17.673	X	3.967 3.967	7.549 35.054
3 4	.1/2	X	17.673 22.592	X	2.533 2.533	22.383 28.613

D) < -4.000m

No	;Formi	ıla.	P.(kN/m²))	h (m)	P((kN/m)
1 2	1/2 1/2	X	3.806 17.673	X	3.967 3.967	7.549 35.054
3 4	1/2 1/2	X X	17.673 27.447	X X	5.033 5.033	44.474 69.070

Prepared by	Y.Ando	Checked by	R.Nísimura
	26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 6	Rev.

[4] Horizontal Earth Pressure and Moment

A < 3.000m , >

:	:No	Pressure PH (kN/m)	Arm Length (m)	Moment MPH(kN·m/m)
	1 2	3.806 10.798	1.333 0.667	5.073 7.202
	Total	14.604		12.275 -

B; < 1.000m ↔

Nu	Pressure	! Arm Length	Moment
	PH (kN/m)	(m)	MPH(kN·m/m)
1 2	7.549	2.678	20.216
	35.054	1.355	47.498
'3	0.292	0.022	0.006
4	0.293	0.011	0.003
Total	43.188		67.723

C. < -1.500m

:No	Pressure	: Arm Length (m)	Moment MPH(kN·m/m)
1 2	7.549 35.054	5.178 3.855	39.089 135.133
3 4	22.383 28.613	1.689 0.844	37.805 24.149
Tutal	93.599		236.176

D < -4.000m ;>

No.	Pressure	Arm Length	Moment > · MPH(kN·m/m)
1 2	7.549	7.678	57.961
	35.054	6.355	222.768
3 4	44.474	3.355	149.210
	69.070	1.678	115.899
"Total	156.147		545.838

	1 1	 				
*			Prepared by	Y.Ando	Checked by	R.Nisimu <u>ra</u>
				26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.					
Section	Civil	Calc. Index No.					
Subject	Revetment	Page No. 7	Rev.				

[5] Vertical Earth Pressure and Moment

A; < 3.000m ; >

Not	Vertical Factor of Earth Pressure P_s (kN/m) $tan(\psi+\delta)$ P_v (kN/m)			Point F (m)	Moment M., (kN·m/m)
1 2	3.806 10.798	0.268 0.268	1.020 2.894	1.500 1.500	1,530 4,341
lital			3.914		5.871

B' < 1.000m

υ, ι	1.000			· ·	
No	Vertical Fa	actor of Earth tan(ψ + δ)	Pressure 5 Pr (kN/m)	Point (m)	Moment M, (kN·m/m)
1 2	7.549 35.054	0.268 0.268	2.023 9.394	2.000 2.000	4.046 18.788
3 4	0.292 0.293	0.268 0.268	0.078 0.079	2.000 2.000	0.156 0.158
Total	1		11.574		23.148

C; < −1.500m

No	Vertical Fa	actor of Earth tan(ψ+δ)	Pressure Pr (kN/m)	!Point (m)	.Moment M. (kN·m/m)
1 2	7.549	0.268	2.023	5.000	10.115
	35.054	0.268	9.394	5.000	46.970
3 4	22.383	0.268	5.999	5.000	29.995
	28.613	0.268	7.668	5.000	38.340
Total			25.084		125.420

D. < -4.000m

No	Vertical Fa	tan(ψ + δ)	Pressure i Pr (kN/m)	Point:	Moment M, (kN·m/m)
1 2	7.549	0.268	2.023	6.000	12.138
	35.054	0.268	9.394	6.000	56.364
3	44.474	0.268	11.919	6.000	71.514
	69.070	0.268	18.511	6.000	111.066
Tital	:		41.847		251.082

Prepared by	Y.Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 8	Rev.

[6] Water Pressure and Moment

$$P_{\star} = \frac{1}{2} \cdot h_{\star} \cdot p_{\star} + h \cdot p_{\star}$$

$$p_* = h_* \cdot \gamma_*$$

P.: Residual Water Pressure (kN/m) (kN/m)
p.: Intensity of Residual Water Pressure (under L.W.L) (kN/m²)
h.: Distance from R.W.L to L.W.L (m)
h: Depth from wall bottom to L.W.L (m)
7.: Unit Weight of Water (kN/m)

3.000m

1.000m />

No ·	р,	h .	P, (kN/m)	У	M _r (kN·m/m)
1	1/2 x 0.333x	0.033	0.005	0.011	0.000
Total			0.005		0.000

< -1.500m

No	₽¥	h	P. (kN/m)	у	M, (kN·m/m)
1 2	1/2 x 11.746x 11.746x	1.163 1.370	6.830 16.092	1.758 0.685	12.007 11.023
Total			22.922		23.030

-4.000m

No	p.	h	P. (kN/m)	у	M, (kN·m/m)
1 2	1/2 x 11.746x 11.746x	1.163 3.870	6.830 45.457	4.258 1.935	29.082 87.959
Total			52.287		117.041

Prepared by	Y.Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

Project	Detail	ed Desig	n on Port	Reactivation Pro	ject in La U	nion	Calc. File N	ο,	
Section	Civ	il		·			Calc. Index	No.	
Subject	Re	vetment		· .			Page No.	ዓ Rev.	
	2-2.	Weight o	f Wall						
Ri	[1] lling «		nd Cent	er of Gravity of E	ach Block				
) X 1.					Υ	γ		·	
	N	lo I	3 x H	$x \gamma = W \\ W(kN/m)$	Gravity C	enter i y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
:	.	1	0.500x	2.000x20.000 = 20.000	1.750	4.000	35.000	80.000	
				20.000	* 1.750	* 4.000	35.000	80.000	
- k	Filling			»	-				
1	. N	o E	хН	$x \gamma = W \\ W(kN/m)$	Gravity C × (m)	enter { y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
		1	2.500x	2.500x23.000 = 143.750	3.750	-0.250	539.062	-35.938	
				143.750	* 3.750	* - 0.250	539.062	-35.938	
	<u>«</u>	D1»							
	N	0 I	3 x H	$x \gamma = W \\ W(kN/m)$	Gravity C × (m)	enter y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
		1	3.000x	2.500x23.000 = 172.500	1.500	-2.750	258.750	-474.375	
	_			172.500	* 1.500	* -2.750	258.750	-474.375	
	«	D2》							
	N	0 B	жНх	$\gamma = W$ $W(kN/m)$	Gravity Co	enter (m)	W·× (kN·m/m)	W·y (kN·m/m)	
		1	3.000x	2.500x23.000 = 172.500	4.500	-2.750	776.250	-474.375	
:				172.500	* 4.500	* -2.750	776.250	-474.375	
	: 	(C1)»							,
	N	lo B	хН	$x \gamma = W \ W(kN/m)$	Gravity × (m)	Center y (m)	W·x (kN·m/m)	W·y (kN·m/m)	
		1	2.500x	2.500x23.000 = 143.750	1.250	-0.250	179.688	-35.938	
·	[-			143.750	* 1.250	* -0.250	179.688	-35.938	
				Prepared by	Y.Ando	lc	hecked by	R.Nisimura	
					26/07/20			26/07/200	2

Project	Detailed	l Design on Port Reactiva	tion Pr	oject in La I	Jnion	Calc. File N	vo.	
Section	Civil					Calc. Index	(No.	
Subject	Reve	etment				Page No.	/0 Rev.	
	No ((RI)	B x H x γ = \ W(k		Gravity (Center y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
	1 2	2.000x 1.967x23.0	00 .482	1.000	2.016	90.482	182.412	
!			.518	1.000	1.016	1.518	1.542	
	計	92	.000	* 1.000	* 2.000	92.000	183.954	
	《A1》)						
	No	Β x H x γ = W(k	W N/m)	Gr <u>av</u> ity × (m)	Center y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
	1 2	0.500x 2.000x23.0 = 23 1/2x 1.000x 2.000x23.0	.000	0.250	4.000		92.000	
		= 23	.000	0.833	3.667	19.159	84.341	
	計	46	000.	* 0.542	* 3.834	24.909	176.341	
	«AS	»						
	No	B x H x _γ = W(W (N/m)	Gravity	Center y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
	1		0.000	1.167	4.333		86.660	
	計	20	0.000	* 1.167	* 4.333	23.340	86.660	
	≪BS					· · · · · · · · · · · · · · · · · · ·		
	No	1β - × 7 H × w?		Gravity × (m)	Center: y (m)	W·× (kN·m/m)	W·y (kN·m/m)	
	1 2	3.000x 0.033x20.	8.020 000	3.500	3.016		717.868	
		=	1.980	3.500	1.016		2.012	
1	計	24	0.000	* 3.500	* 3.000	840.000	719.880	
1	<u> «cs</u>	S)>	<u>.</u>		·		· .	ı
	No	B. x 74. x	kN/m)	Gravity × (m)	r Center y (m)	* W·× (kN·m/m)	(kN·m/m)	
	1 2	1.000x 3.967x20. = 7 1.000x 2.533x20.	79.340	5.500	3.01		239.289	
		= - {	50.660	5.500			-11.854	
	計	13	30.000	* 5.500	* 1.75	0 715.000	227.435]
		Prepared	i hv		· · · · · · · · · · · · · · · · · · ·	Charles 12	D Minimum	
'			ı ny 💮	Y.Ando		Checked by	R.Nisimura_	

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc, Index No.	
Subject	Revetment	Page No. //	Rev.
	* Coordinate of Gravity Center $\Sigma W \cdot x \qquad \qquad \Sigma W \cdot y$		
	$x = \frac{1}{\sum W}$ $y = \frac{1}{\sum W}$		
the children and the ch			
•			
1 1			
1			
	Prepared by Y.Ando	Checked by R.Nis	simura
	26/07/2002		5/07/2002

roject	Deta	ailed	Design on Port	Read	tivation Pro	ject in La U	nion		Calo. File N	o.	
Section		Civil							Calc. Index	No.	
Subject	F	leve	tment						Page No.	<i>j2</i> Rev.	
	[2]] Ve	rtical Force of V		oment				•		
		١,	< 3.000m	> :						· .	
		No	Name of Bloc	k	Weigh		W (kN	/m)	Arm Lengti ×(m)	ı M., (kN·m/m).	
		1 2	A1 AS				46. 20.	000	0.542 1.167	24.932 23.340	
		:	Total			· .	66.	000		48.272	
	. [3	< 1.000m	>							
		No	Name of Bloo	k	Weight		W (kN	/m)	rm Length ×(m)	M., (kN·m/m)	
		1 2 3 4	A2 B1 A1 AS				20.9 92.9 46.9 20.9	000 000	1.750 1.000 0.542 1.167	35.000 92.000 24.932 23.340	
1		,	Total				178.	000		175.272	
	(- 1	< -1.500m			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		ŀ
	İ	No	Name of Blog	sk	Weight		W (kN	/m) [']	Arm Length ×(m)	M., (kN·m/m)	
		1 2 3 4 5 6 7	A2 C1 B1 A1 AS BS				20. 143. 143. 92. 46. 20. 240.	750 750 000 000	1.750 3.750 1.250 1.000 0.542 1.167 3.500	35.000 539.062 179.688 92.000 24.932 23.340 840.000	
	. [Total				705.	500		1734.022	
),	< -4.000m	>							
		No	Name of Bloo	ck	<u>W</u> eight	í	W (kN	/m)	Arm Length ×(m)	M., (kN·m/m)	
		1 2 3 4 5 6 7 8 9 10	A2 D1 D2 C1 B1 A1 AS BS CS				143. 172. 172. 143. 92. 46.	500 500 750 000 000 000 000	1.750 3.750 1.500 4.500 1.250 1.000 0.542 1.167 3.500 5.500	35.000 539.062 258.750 776.250 179.688 92.000 24.932 23.340 840.000 715.000	
			Total				1180.	500		3484.022	
					·						
				Prepa	red by	Y.Ando	.	Chec	ked by	R.Nisimura	
					·	26/07/20			•	26/07/200	2

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Revetment	Page No. /♂ Rev.
	[3] Weight and Gravity Center of Earth Block (Under R.V «A2» No Buoyancy: \(\) « \(\)	V.L.)
	No $B \times H \times \gamma - \gamma' = W$ Gravity Center E $W(kN/m) \times (m)$ $y \in W$	W·x W·y (kN·m/m) (kN·m/m)
	1 2.500x 2.500x10.000 = 62.500 3.750 -0.2	50 234.375 -15.625
ļ ;	Total 62.500 * 3.750 * -0.2	50 234.375 -15.625
	《 D1 》	
	No $B \times H \times (\gamma - \gamma') = W$ Gravity Center $W(kN/m) \times (m) = V$ (m)	W·× W·y (kN·m/m)
	1 3.000x 2.500x10.000 = 75.000 1.500 -2.7	
	Total 75.000 * 1.500 * -2.7	750 112.500 -206.250
	《D2》	
444	No $B \times H \times \gamma - \gamma' = W$ Gravity Center $W(kN/m) \times (m) y$ (m)) (kN·m/m) (kN·m/m)
	1 3.000x 2.500x10.000 = 75.000 4.500 -2.7	750 337.500 -206.250
	Total 75.000 * 4.500 * -2.7	750 337.500 -206.250
	(C1)	
	No $B \times H \times \gamma - \gamma' = W$ Gravity Center $W(kN/m) \times (m)$ $y \in M$) (kN·m/m) (kN·m/m)
	1 2.500x 2.500x10.000 = 62.500 1.250 -0.2	
	Total 62.500 * 1.250 * -0.2	250 78.125 -15.625
	《B1》	
	No $B \times H \times \gamma \cdot \gamma' = W$ Gravity Center $W(kN/m) \times (m) $ $y $ (r	n)
	1 2.000x 0.033x10.000 = 0.660 1.000 1.0	016 0.660 0.671
	Total 0.660 * 1.000 * 1.0	016 0.660 0.671
	«A1» No Buoyancy	
!	«AS» No Buoyancy	1
	Prepared by Y.Ando	Checked by R.Nisimura
	26/07/2002	26/07/2002

Project	ect Detailed Design on Port Reactivation Project in La Union					No.
Section					Calc. Inde	x No.
Subject	·····	/etment			Page No.	/タ Rev.
<u> </u>	«BS		·			
	No	$\frac{B \times H \times (\gamma - \gamma') = W}{W(kN/m)}$	Gravity Ce	nter! y (m)	W·× (kN·m/m)	W·y (kN·m/m)
	1	3.000x 0.033x10.000 = 0.990	3.500	1.016	3.465	1.006
	Tota	0.990	* 3.500	* 1,016	3.465	1.006
	《CS			· · · · · · · · · · · · · · · · · · ·		₹
	No	B x H x (γ - γ') = W W (kN/m)	Gravity Ce	nter ! y (m)	W·× (kN·m/m)	W·y (kN·m/m)
• 1	1	1.000x 2.533x10.000 = 25.330	5.500	-0.234	139.315	-5.927
	Total	25.330	* 5.500	* -0.234	139.315	-5.927
			Σ₩ у			
!	,	$x = \frac{1}{\sum W}$ $y = -\frac{1}{\sum W}$	ΣΨ			
!						
					,	
						÷
					·	·
		Prepared by	Y.Ando		Checked by	R.Nisimura
			26/07/			26/07/2002

Proje	ect	Detaile	ed Design on Port	Reactivation Pro	ject in La Union	Calc. File	No.
Secti	on	Civ	il			Calo. Inde	ex No.
Subj	ect	Rev	vetment			Page No.	/5 Rev.
		Α,	3.000m3.000m3.000m3.000m4.000m5.000m5.000m	oint			
		No	Name	Weight	: Wv (kN/I	Arm Length n) × (m)	Mwv (kN·m/m)
		1	B1		0.6	60 1.000	0.660
			Total		0.6	60	0.660
		C	< -1.500m >				
		No	Name	Weight	Wv (kN/	Arm Length m) × (m)	Mwv (kN·m/m)
		1 2 3 4	C1 B1 BS		62.5 62.5 0.6 0.9	00 1.250 60 1.000	234.375 78.125 0.660 3.465
			Total		126.6	50	316.625
:		D.	< -4.000m >				
		No	Name	Weight	W v (kn/	Arm Length m) × (m)	Mwv (kN·m/m)
		1 2 3 4 5 6 7	D1 D2 C1 B1 BS CS		62.5 75.0 75.0 62.5 0.6 0.9 25.3	1.500 1.500 1.500 1.250 1.000	234,375 112,500 337,500 78,125 0,660 3,465 139,315
			Total		301.9	080	905.940
		·			······································	1	
		٠		Prepared by	Y.Ando	Checked by	R.Nisimura

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc, Index No.
Subject	Revetment	Page No. 16 Rev.

2-4. Stability of Wall

[1] Sliding
$$F = \frac{\mu \cdot V}{H}$$

[2] Overturning
$$F = \frac{M_1}{M_2}$$

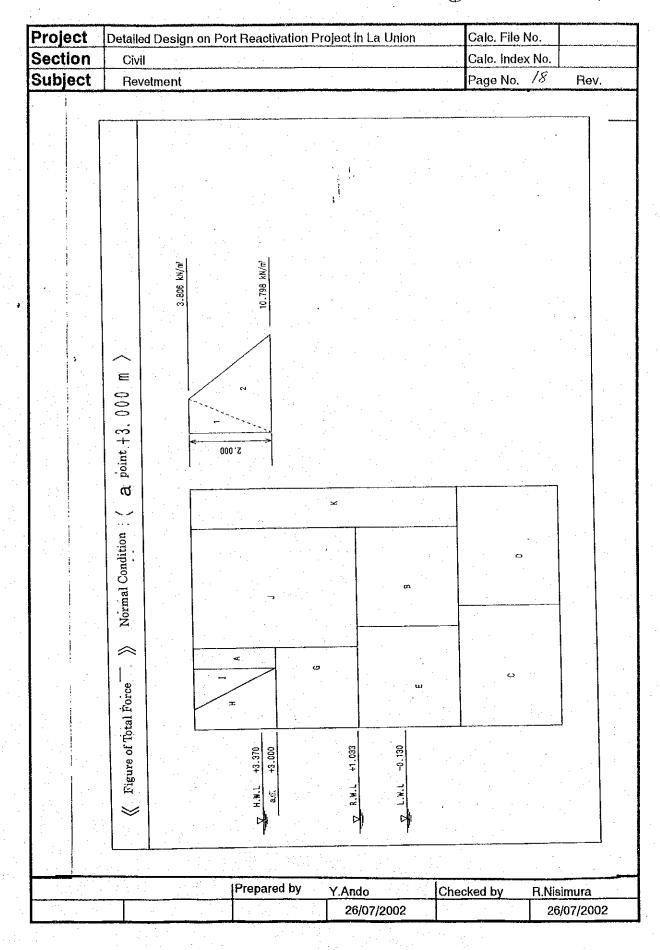
ZZ | Z V: Total Vertical Force (kN/m) H Total Horizontal Force (kN/m) µ: Coefficient of Friction M₁: Moment of Total Vertical force M₀: Moment of Total Horizontal Force (kNm/m)

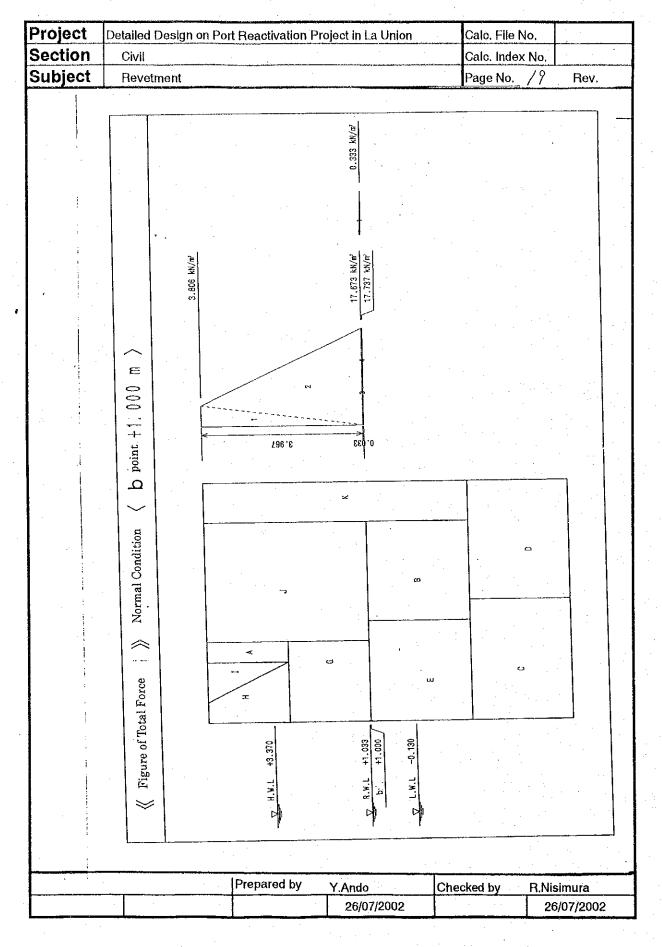
3.000m

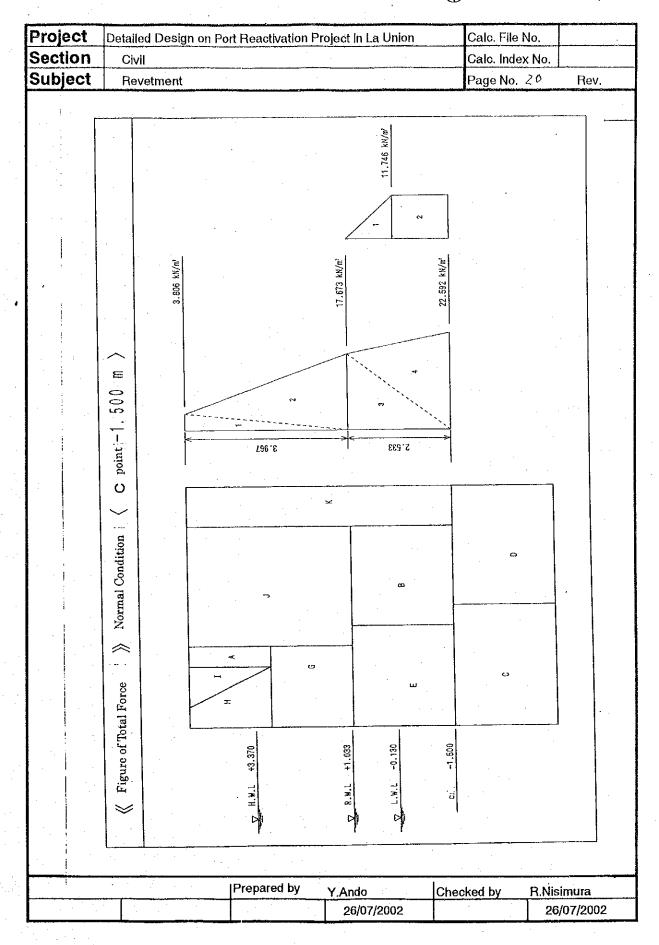
	V (kN/m)	H (kN/m)	M. (kN·m/m)	M, (kN·m/m)
Earth Pressure Residual Water Pressure Weight of Wall Buoyancy	3.914 66.000 0.000	14.604 0.000	5.871 48.272 0.000	12.275 0.000
Total	69.914	14.604	54.143	12.275

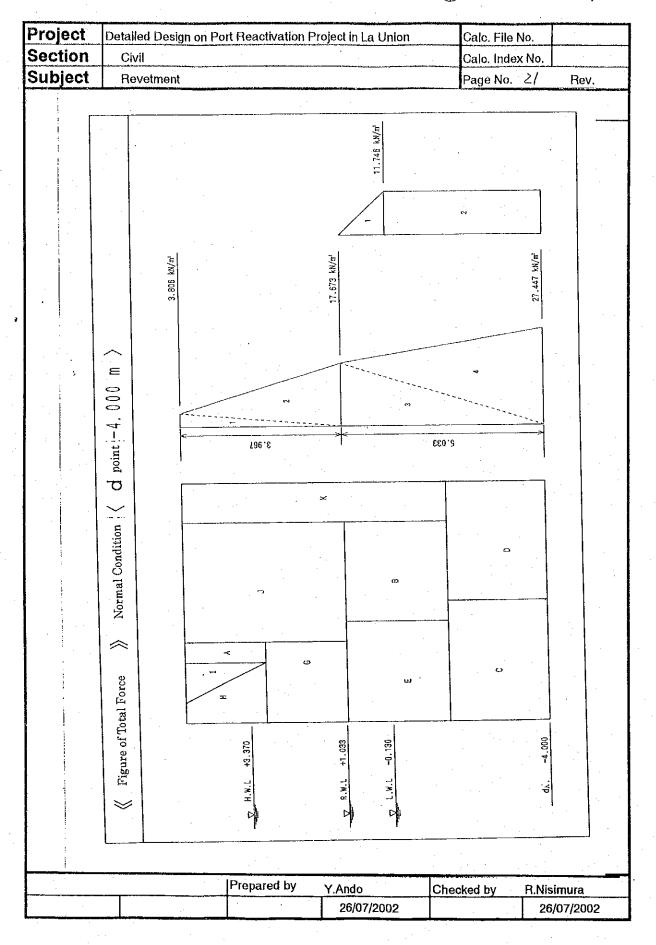
Sliding		Ove	rturning	
Safety Factor F	Allowable Va	lues Safety F	actor F	Allowable Valu
0.500 x 69.914 14.604	2.393 ≥1.20	54.143 12.275	4.410	≧1.20

1.000m


	V (kN/m)	H (kN/m)	M: (kN·m/m)	M₀ (kN·m/m)
Earth Pressure Lesidual Water Pressure Weight of Wall Buoyancy	11.574 178.000 -0.660	43.188 0.005	23.148 175.272 -0.660	67.723 0.000
Total	188.914	43.193	197.760	67.723


Sliding	•			Ove	rturning		
Safety Factor F	Allo	vable Valt	tes	Safety Fac	ctor F	Allowa	l ble Val:
0.500 x 188.914 43.193	2.186	≥1.20		197.760 67.723	2.920	≧1.20	


l _				4 4			
		Pr	epared by	Y.Ando		Checked by	R.Nisimura
				26/07/200	2		26/07/2002


Project	Deta	ailed Design on Port	Reactivation Pr	oject in La Uni	on Calc	. File No.	
Section	C	Divil			Calc	. Index No	o.
Subject	F	Revetment			Page	No. /7	Rev.
						-	•
	С,	· < -1.500m "aj >			. · · ·		
i.			V (kN/m)	H (kN/m)	Mı (kN·m/m)	M₀ (kN	·m/m)
: !		Earth Pressure idual Water Pressur	25.084	93.599 22.922	125.420	23	6.176 3.030
	[1,-,	Weight of Wall Buoyancy	705.500 -126.650		1734.022 -316.625		
	7	otal	603.934	116.521	1542.817	25	9.206
		Slidin	g		Övertur	ning	
	2 - L	Safety Factor	F Allow	able Values	Safety Factor	下 1	llowable Value
		0.500 x 603.934	2,501	>1.00	1542.817	E 0E2	≥1.20
		116.521	2.591	≧1.20	259.206	5.952	1.20
	D	< -4.000m i>					
			V (kN/m)	H (kN/m)	Mı (kN·m/m)	M. (kN	I·m/m)
· · · · · · · · · · · · · · · · · · ·		Earth Pressure	41.84	156.147	251.082	54	5.838
		sidual Water Pressu Weight of Wall Buoyancy	1180.500 -301.980	52.287	3484.022 -905.940	11	7.041
		Total	920.36	7 208.434	2829.164	66	2.879
		Slidin	g		Overtur	ning	
		Safety Factor	F Allowa	ole Values	Safety Factor	FA	llowable Valu
) :-		0.600 x 920.36	7	\ no	2829.164	4 007	
		208.434	2.649	≧1.20	662.879	4.267	≧1.20
	_						
		$(x,y) = (x,y) \cdot (x,y)$					
					<i>₹</i>		
				· · · · · · · · · · · · · · · · · · ·			
				* *			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
i							
		· · · · · · · · · · · · · · · · · · ·					
		<u> </u>	Prepared by	Y.Ando	Checked	bv R	.Nisimura

NIPPON KOEI CO,,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 22	Rev.

2-5. Bearing Capacity

[1]. Reaction of Bottom Surface of Block

a)
$$0 < e \le b / 66$$

$$p_1 = \left(1 + \frac{6 \cdot e}{b}\right) \cdot \frac{V}{b} \qquad p_1 = \frac{2 \cdot V}{3 \cdot x} \qquad p = \frac{V}{b}$$

$$p_1 = \frac{2}{3} \cdot \frac{V}{X}$$

$$p = \frac{V}{h}$$

$$p_1 = \left(1 - \frac{6 \cdot e}{b}\right) \cdot \frac{V}{b} \qquad p_1 = 0$$

$$b' = 3 \cdot x$$

$$p_1 = 0$$

$$b' = 3 \cdot x$$

$$x = \frac{M_1 - M_2}{V} \qquad e = \frac{b}{2} - X$$

$$e = \frac{b}{2} \rightarrow$$

- Maximum Reaction Force Minimum Reaction Force
- (k¼/m;) (k¼/w;)

- b: Width of Wall (m)

 V: Vertical resultant force act on wall (kN/m)

 b': Distribution width of bottom reactions in case e>b/6

 M1: Moment of Vertical force act on wall (kN·m/m)

 M0: Moment of Horizontal force act on wall (kN·m/m)
- e : Eccentricity of resultant force of Vertical and Horizontal (m)

$$\times = \frac{M_1 - M_0}{V} = \frac{2829.164 - 662.879}{920.367} = 2.354 \text{ (m)}$$

$$e = \frac{b}{2} - x = \frac{6.000}{2} - 2.354 = 0.646 \text{ (m)}$$

a) 0 < e ≦ b / 6 の場合

$$p_1 = \left(1 + \frac{6 \cdot e}{b}\right) \cdot \frac{V}{b} = \left(1 + \frac{6x \cdot 0.646}{6.000}\right) x \frac{920.367}{6.000} = 252.488 \text{ (kN/m}^2)$$

$$p_i = \left(1 - \frac{6 \cdot e}{b}\right) \cdot \frac{V}{b} = \left(1 - \frac{6 \times 0.646}{6.000}\right) \times \frac{920.367}{6.000} = 54.302 \text{ (kN/m}^i)$$

Maximum Reaction Force ≤ Allowable Bearing Capacity of Rubble Mound

252.488
$$(kN/m^2) \le 600.000 (kN/m^2) \cdots OK$$

Prepared by	Y Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

Project	Detailed Design on Po	rt Reactivation Pr	oject in La Union	Calc. File No.	
Section	Civil			Calc, Index No.	
Subject	Revetment	•	,	Page No. 23	Rev.
	Examination Point a. 0.000, 3.000) 5. (0.000, 1.000) 5. (0.000, -1.500) 6. (0.000, -4.000)				
	Figure of Examination Condition (Seismic Condition)	A H.W.L +3.370	b		p p 000.4-
,		Prepared by			lisimura
		1	26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 2부	Rev.

3. Stability in Seismic Condition

3-1. Earth Pressure and Water Pressure

[1] Coefficient of earth Pressure

$$K_{*} = \frac{\cos^{i}(\phi - \psi - \theta)}{\cos \theta \cdot \cos^{i} \psi \cdot \cos(\delta + \psi + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\cos(\delta + \psi + \theta) \cdot \cos(\psi - \beta)}}\right]^{i}}$$

Coefficient of active earth pressure

φ: Angle of internal friction(degree)
 β: Angle of the ground surface to horizontal (degree)
 ψ: Angle of the wall surface to vertical (degree)
 δ: Angle of wall friction

heta: t Composite seismic angle which is defined as angle by following formula

: Seismic Coefficient

Apparent seismic coefficient by following formula

$$k' = \frac{\sum \gamma \cdot h + \gamma w \cdot h w + \omega}{\sum \gamma \cdot h + \omega'} \cdot k$$

ここに

γ: Unit weight of Soil _ γw: Unit Weight of Water ____

Unit Weight of Water ______ Thickness of the soil layer (above R.W.L.) (20) Thickness of the soil laver (below R.W,L)

Surcharge ω :

A, < 3.000m + >

Action Level (m)	β (°)	φ (.÷.)	δ ()	$\psi \ (\dot{\mathbf{s}}_{z})$	k or, k'	θ ()	К,
5.000~ 3.000	0.0	40.0	15.0	0.0	0.20	11.31	0.3168

1.000m >

: Action Level	β (°_)	φ ('é')	δ (%)	ψ (. °.)	k or, k'	θ ()	Κ,
5.000~ 1.033	0.0	40.0	15.0	0.0	0.20	11.31	0.3168
1.033~ 1.000	0.0	40.0	15.0	0.0	0.20	11.31	0.3168

Prepared by	Y.Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

	Detailed Design on Po	it i teacuv	auon Pro	ject in La	Union	I Ca	alo, File N	lo,	
Section	Civil					Ca	alc. Index	No.	
Subject	Revetment					Pa	age No.	25 I	₹ev.
	C; < -1.500m >	•							
	Action Level 1 (m)	β (°)	φ (ο)	රි (;º)	ψ (0)	k or, k'	θ (°)	К.	
	5.000~ 1.033	0.0	40.0	15.0	0.0	0.20	11.31	0.3168	
•	1.033~	0.0	40.0	15.0	0.0	0.20 0.25	11.31 14.04	0.3168 0.3542	÷.
	D ₅ < -4.000m i	· · · · · · · · · · · · · · · · · · ·						(
	Action Level	β (°)	(°)	δ (°.)	(0)	k or k'	(°)	Κ,	
	5.000~ 1.033	0.0	40.0	15.0	0.0	0.20	11.31	0.3168	
	1.033~	0.0	40.0	15.0	0.0	0.20 0.28	11.31 15.64	0.3168 0.3785	
	Tall the control of t		100					and the second	
		Prepare	d by	Y.Ando	·	Checke		R.Nisim	

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Revetment	Page No. 26 Rev.

[2] Intensity of Earth Pressure

$$P_{\bullet} = \left[\sum_{\gamma} \gamma \cdot h + \frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)} \right] \cdot K_{\bullet}$$

P.: Intensity of action earth pressure (kN/m2)
γ: Unit weight of soil (kN/m2) (kN/m²)
h: Thickness of soil layer (m)
ω: Surcharge (kN/m²)
ψ: Angle of the wall surface to vertical (degree)
β: Angle of the ground surface to horizontal(degree)
Κ.: Coefficient of active earth pressure

$3.000m i \rightarrow$

A	ction Level	h (m)	γh (kN/m¹)	Σγh (kN/m²)	ψ (\$)	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos(δ+ψ)	P. (kN/m²)
	5.000	0.000	0.000	0.000	0.0	9.800	0.3060	2.999
	3.000	2.000	36.000	36.000	0.0	9.800	0.3060	14.015

1.000m >

I	ction Level	h (m)	γh (kN/m¹)	Σγh (kN/m²)	ψ («)	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos($\delta + \psi$)	P. (kN/m²)
Ī	5.000	0.000	0,000	0.000	0.0	9.800	0.3060	2.999
	1.033	3.967	71,406	71.406	0.0	9.800	0.3060	24.849
	1.033	3.967	71.406	71.406	0.0	9.800	0.3060	24.849
	1.000	0.033	0.330	71.736	0.0	9.800	0.3060	24.950

-1..500m

Å	action Level	h (m)	γh (kN/m¹)	Σγh (kN/m²)	ψ (∀)	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos($\delta + \psi$)	P. (kN/m¹)
	5.000 1.033	0.000 3.967	0.000 71.406	0.000 71.406	0.0 0.0	9.800 9.800	0.3060 0.3060	2.999 24.849
	1.033 -1.500	3.967 2.533	71.406 25.330	71.406 96.736	0.0	9.800 9.800	0.3060 0.3421	24.849 36.446

-4.000m _ >

A	ction Level	h (m)	γh (kN/m¹)	Σγh (kN/m²)	ψ (ο	$\frac{\omega \cdot \cos \psi}{\cos(\psi - \beta)}$	Kacos(δ+ψ)	P. (kN/m¹)
	5.000	0.000	0.000	0.000	0.0	9.800	0.3060	2.999
	1.033	3.967	71.406	71.406	0.0	9.800	0.3060	24.849
	1.033	3.967	71,406	71.406	0.0	9.800	0.3060	24.849
	-4.000	5.033	50.330	121.736	0.0	9.800	0.3656	48.090

	Prepared by	Y.Ando	Checked by	R.Nisimura
		26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 27	Rev.

[3] Earth Pressure

$$P_{i} = \frac{1}{2} \cdot P_{i} \cdot h$$

P. Earth pressure (kN/m) N/m)
h: Thickness of Soil (m)
P.: Intensity of active earth pressure (KN/m²)

3.000m ' >

Nv:	Formula	P.(kN/m²)		h (m)	P。 (kN/m)
1 2	1/2 x 1/2 x	2.999 14.015	X	2.000 2.000	2.999 14.015

1.000m ₄ >

Nu	Formula	l	P.(kN/m¹)		h (m)	P。 (kN/m)
1 2	1/2 1/2	X X	2.999 24.849	X X	3.967 3.967	5.949 49.288
3 4	1/2 1/2	X	24.849 24.950	X	0.033 0.033	0.410 0.412

< -1.500m >

No	Formula	P.(kN/m²)		h (m)	P _s (kN/m)
1 2	1/2 x 1/2 x	2.999 24.849	X	3.967 3.967	5.949 49.288
3	1/2 x 1/2 x	24.849 36.446	X X	2.533 2.533	31.471 46.159

-4.000m

No	Formula P. (kN/m ⁱ)	h (m)	우 (kN/m)
1 2	1/2 x 2.999 x	3.967	5.949
	1/2 x 24.849 x	3.967	49.288
3 4	1/2 x 24.849 x	5.033	62.533
	1/2 x 48.090 x	5.033	121.018

 ······				
	Prepared by	Y.Ando	Checked by	R.Nisimu <u>ra</u>
		26/07/2002	2.31	26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Revetment	Page No. 28 Rev.

[4] Horizontal Earth Pressure and Moment

A < 3.000m >

	N :	Pressure PH (kN/m)	Arm Length (m)	Moment 小 MPH(kN·m/m)
İ	1 2	2.999 14.015	1.333 0.667	3.998 9.348
	Total	17.014		13.346

B, < 1.000m

No	Pressure	Arm Length	.Moment.:	
	PH (kN/m)	(m)	MPH(kN·m/m)	
1 2	5.949	2.678	15.931	
	49.288	1.355	66.785	
3 4	0.410	0.022	0.009	
	0.412	0.011	0.005	
Total	56.059		82.730	

C < -1.500m,

¹N₀	Pressure PH (kN/m)	Arm Length	Moment MPH(kN·m/m)	
1 2	5.949	5.178	30.804	
	49.288	3.855	190.005	
3	31.471	1.689	53.155	
4	46.159	0.844	38.958	
Total	132.867		312.922	

0; < -4.000m i >

No	Pressure PH (kN/m)		
1	5.949	7.678	45.676
2	49.288	6.355	313.225
3 4	62.533	3.355	209.798
	121.018	1.678	203.068
Total	238.788		771.767

ŀ	 مثبت ومسورة ويستوني ومساورة			~		
ı			Prepared by	Y.Ando	Checked by	R.Nisimura
I		1.1		26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc, Index No.
Subject	Revetment	Page No. 29 Rev.

[5] Vertical Earth Pressure and Moment

A: < 3.000m , >

No	Vertical Fa	tor of Earth $tan(\psi + \delta)$	Pressure P, (kN/m)	Point (m)	Moment > M _{2.7} (kN·m/m)
1 2	2.999 14.015	0.268 0.268	0.804 3.756	1.500 1.500	1.206 5.634
Total			4.560		6.840

B) < 1.000m (1>

No	Vertical Fa P。(kN/m)	ctor of Earth tan(ψ + δ)	Pressure Pr (kN/m)	Point (m)	Moment メント Mr (kN in/m)
1 2	5.949	0.268	1.594	2.000	3.188
	49.288	0.268	13.209	2.000	26.418
3	0.410	0.268	0.110	2.000	0.220
4	0.412	0.268	0.110	2.000	0.220
Total			15,023		30.046

C) < -1.500m

No	Vertical Fac P。(kN/m)	tor of Earth tan(ψ + δ)	Pressure Pr (kN/m)	Point (m)	Moment ント M・・(kN・m/m)
1 2	5.949	0.268	1.594	5.000	7.970
	49.288	0.268	13.209	5.000	66.045
3 4	31.471	0.268	8.434	5.000	42.170
	46.159	0.268	12.371	5.000	61.855
Tital			35.608		178.040

D < -4.000m

λίο	Vertical Fac P. (kN/m)	ctor of Earth $ an(\psi\!+\!\delta)$	Pressure P. (kN/m)	Point (m)	Moment >> Mar(kN·m/m)
1 2	5.949	0.268	1.594	6.000	9.564
	49.288	0.268	13.209	6.000	79.254
3 4	62.533	0.268	16.759	6.000	100.554
	121.018	0.268	32.433	6.000	194.598
Total			63.995		383.970

	Prepared by	Y.Ando	Checked by	R.Nisimura
e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 30	Rev.

[6] Water Pressure and Moment

$$P_{i} = \frac{1}{2} \cdot h_{i} \cdot p_{i} + h \cdot p_{i}$$

 $p_* = h_* \cdot \gamma_*$

P.: Residual Water Pressure (kN/m)
p.: | Intensity of Residual Water Pressure (under L.W.L))
h.: Distance from R.W.L to L.W.L (m)
h: Depth from wall bottom to L.W.L (m)

7.: Unit Weight of Water (kN/m) (kN/m)

< 3.000m

· No Residual Water Pressure at this Point

 $B_i < 1.000m i >$

:No		p₄	. h	P. (kN/m)	у	M, (kN·m/m)
1	1/2 x	0.333x	0.033	0.005	0.011	0.000
Total				0.005		0.000

< -1.500m

No	p.	h	P. (kN/m)	у	M, (kN·m/m)
1 2		1.163 1.370	6.830 16.092	1.758 0.685	12.007 11.023
Total			22.922		23.030

No	р.	h	P. (kN/m)	у	M., (kN·m/m)
1 2	1/2 x 11.746x 11.746x	1.163 3.870	6.830 45.457	4.258 1.935	29.082 87.959
Cotal			52.287	:	117.041

	Prepared by	Y.Ando	Checked by	R.Nisimura
		26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.		
Section	Civil	Calc. Index No.		
Subject	Revetment	Page No. 3/	Rev.	
3	-2. Dynamic Water Pressure	·.		
	[1] Dynamic water pressure		• .	
	7			
! 	$p_{i,i} = \frac{1}{8} \cdot k \cdot \gamma_{i,i} \sqrt{H \cdot y_{i,i}}$		•	

D. : Dynamic water pressure		(kN/m²
k : Seismic Coefficient		0.200 10.100 (kN/m ¹
γ.: Unit weight of water H: Depth of water		10.100 (kN/m³ 3.870 (m)
y: Depth from water surface to	examination point	(m)

[2] total force of Dynamic Water Pressure and Acting Point

$$P_{i,i} = \frac{7}{12} \cdot k \cdot \gamma_{i} \cdot \sqrt{H} \cdot y^{i/i}$$

$$h_{i,i} = \frac{2}{5} \cdot y$$

[3]: Total force of Dynamic Water Pressure and Moment

A; < 3.000m; >
No Dynamic Water Pressure at this Point

B; < 1.000m >
No Dynamic Water Pressure at this Point

$$p_{**} = \frac{7}{8} \times 0.200 \times 10.100 \times \sqrt{3.870 \times 1.370} = 4.070 \text{ (kN/m}^2)$$

$$P_{44} = \frac{7}{12} \times 0.200 \times 10.100 \times \sqrt{3.870} \times 1.370^{1/4} = 3.717 \text{ (kN/m)}$$

$$h_{i} = \frac{2}{5} \times 1.370 = 0.548 \text{ (m)}$$

$$M_{\bullet} = 3.717x \ 0.548 = 2.037 \ (kN \cdot m/m)$$

Prepared by Y.Ando	Checked by	R.Nisimura
26/07/2002		26/07/2002

Project	Detailed Design on Port Reactivation Project in La Un	ion	Calc. File N	0,
Section	Civil		Calc. Index	No.
Subject	Revetment		Page No.	
	Dr < -4.000m >			
	7		•	
	$p_{i,i} = \frac{1}{2} \times 0.200 \times 10.100 \times \sqrt{3.870 \times 3.870}$. =	= 6.840	(kN/m¹)
	0			
	$P_{4} = \frac{7}{12} \times 0.200 \times 10.100 \times \sqrt{3.870} \times 3.870^{1/4}$	Ξ	= 17.648	(kN/m)
	12	•		
	$h_{i} = \frac{2}{5} \times 3.870$		= 1.548	(m)
	$n_{i,j} = \frac{1}{5} \times 3.870$		- (,040	(m)
	$M_1 = 17.648x 1.548$	Ξ	= 27.319	(kN·m/m)
		•	• .	
				٠.
		•		•
				-
		* - * ·		
				•
				•
:				
		-		
.*				•
•				
*				
	Prepared by Y.Ando	Cha	cked by	R.Nisimura
	Prepared by Y.Ando 26/07/200		ched by	26/07/2002

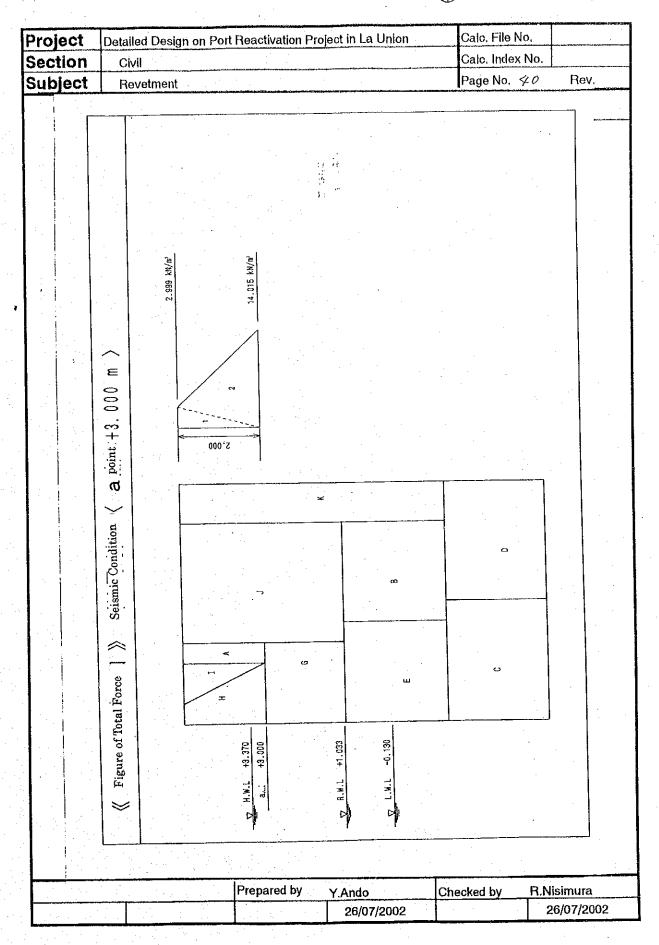
Project	Detalled Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc, Index No	
Subject	Revetment	Page No. 33	Rev.
	a +3.000		
	~		
	æ	6	
		G	
	a point +3.000m)		
	Dynamic Water Pressure		
	. Dynamic		
		Checked by R.I	Visimura
· · · · · · · · · · · · · · · · · · ·	26/07/2002		26/07/2002

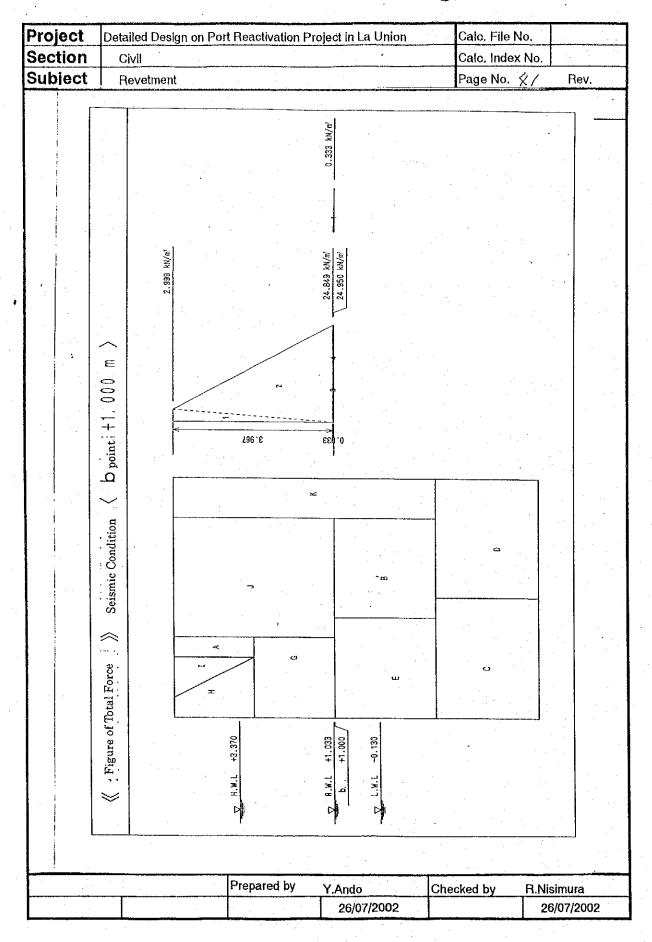
roject	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	
Section	Civil	Calc. Index No.	
Subject	Revetment	Page No. 34	Rev.
	b +1.000		
,	ω	g	
	T 0	0	
	⟨ b _{point} +1.000m⟩		
	Dynamic Water Pressure; (bpoint +1.000m)		
		Charlest by DA	dieimura
	Prepared by Y.Ando 26/07/2002	Checked by R.N.	Nisimura 26/07/2002

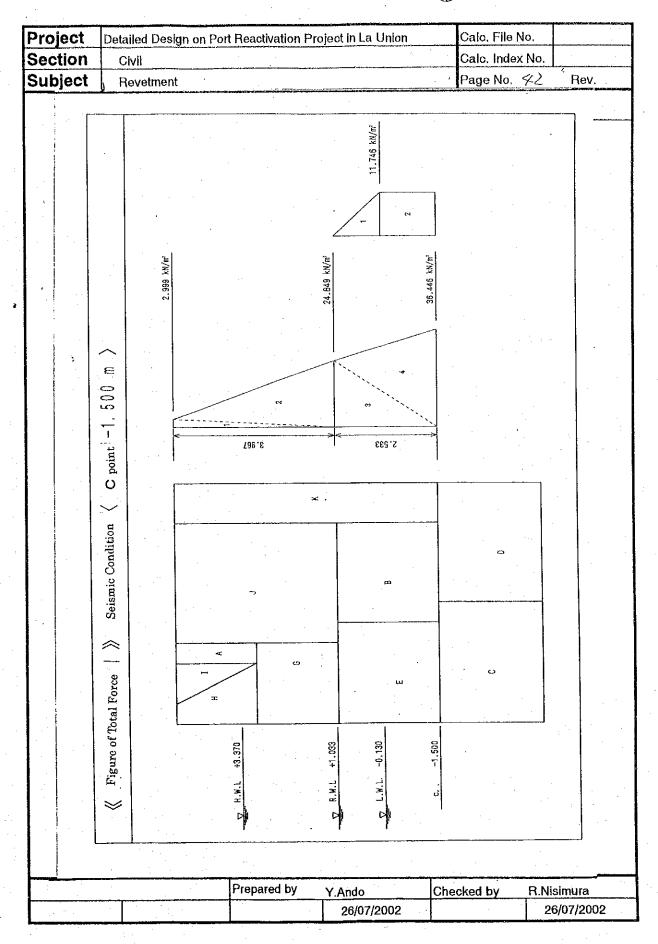
(I) NIPPON KOEI CO.,LTD.

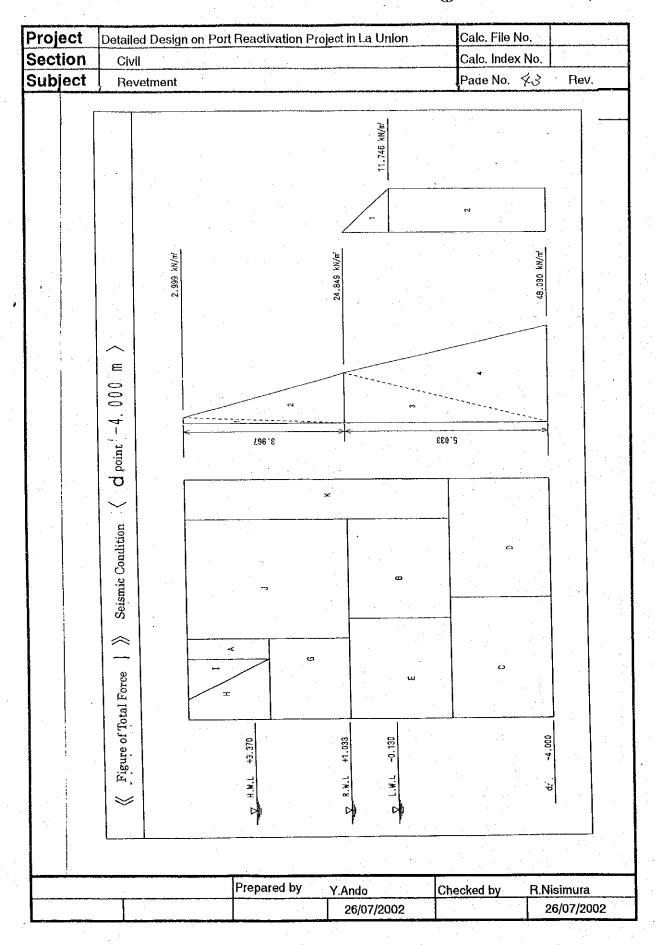
Project Section Subject	Civil Revetn	nent			-0.130		alc. Index age No.	x No. 35	Rev.
Subject		nent			0.1.00		age No.	35	Rev.
	+5,000				-0.130	1.500			
	ssure: (C point-1.500m)	T T		×	370 E	405			
	. Dynamic Water Pressure		Prenared h	W	A_1	To			
<u> </u>	· T	·	Prepared b	<u>Y</u> Y	.Ando 26/07/2002	Check	ed by	R.Nisi	imura /07/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No	
Subject	Revetment	Page No. 36	Rev.
	7. L.W.L0.130		d点—4.006
	4 (2)	c	
	Dynamic Water Pressure (d point -4.000m)	3.810	5.840 kN/m²
	Prepared by Y.Ando Ch	ecked by R.	Nisimura
	26/07/2002		26/07/2002


Project	Detai	led Design on Port R	eactivation Pro	ject in La	a Union	Calc. Fil	e No.
Section	Ci	vil				Calo, Inc	lex No.
Subject	Re	evetment				Page No	o. <i>3</i> 7 Rev.
ì	1] H	ght of Wall orizontal Seismic Force (3.000m >	e and Moment				
	No	Name	W (kN/m)	K.	W. (kN/m)	y (m)	M., (kN·m/m)
	1 2	A1 AS	46.000 20.000	0.200 0.200	9.200 4.000	0.834 1.333	7.673 5.332
		Total			13.200		13.005
V	В	< 1.000m >					
-	No	Name	W (kN/m)	Κ.	W, (kN/m)	y (m)	Mar(kN·m/m)
	1 2 3 4	A2 B1 A1 AS	20.000 92.000 46.000 20.000	0.200 0.200 0.200 0.200	4.000 18.400 9.200 4.000	3.000 1.000 2.834 3.333	12.000 18.400 26.073 13.332
		Total			35.600		69.805
	C,	< -1.500m >					
	No	Name	W (kN/m)	Κ,	W, (kN/m)	y (m)	M. (kN·m/m)
	1 2 3 4 5 6 7	A2 C1 B1 A1 AS BS	20.000 143.750 143.750 92.000 46.000 20.000 240.000	0.200 0.200 0.200 0.200 0.200 0.200 0.200	4.000 28.750 28.750 18.400 9.200 4.000 48.000	5.500 1.250 1.250 3.500 5.334 5.833 4.500	22.000 35.938 35.938 64.400 49.073 23.332 216.000
		Total		-	141.100		446.681
	D	< -4.000m >					
	No	Name	W (kN/m)	K,	W, (kN/m)	y (m)	M. (kN·m/m)
	1 2 3 4 5 6 7 8 9	D1 D2 C1 B1 A1 AS BS	20.000 143.750 172.500 172.500 143.750 92.000 46.000 20.000 240.000 130.000	0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	4.000 48.000	8.000 3.750 1.250 1.250 3.750 6.000 7.834 8.333 7.000 5.750	43.125 107.812 110.400 72.073 33.332 336.000
	ļ <u>-</u>	Total	100		236.100		1035.179


l			1	
ı	 Prepared by	Y.Ando	Checked by	R.Nisimura
		26/07/2002		26/07/2002


Project	Detailed Design on Port I	Reactivation F	Project in La U	nion (Calc. File No.	
Section	Civil				Calc. Index No.	
Subject	Revetment			Į,	Page No. スタ	Rev.
3-5	Stability of Wall					
1						
. [1] Sliding	•	[2] Overtur			
	$F = \frac{\mu \cdot V}{V}$		F =			
	Н		įV			
	V: Total Vertical Force	(kN/m)	(kN/m)			
i	H: Total Horizontal F	orce (kN/m)	(kN/m)			
	M. · Moment of Total Ver	tical force	(kN·m/m) (kN·m/m)		• • • • • • • • • • • • • • • • • • •	
	Ma : Moment of Total Ho	rizontal Force	; (KN·IO/01)			•
	A < 3.000m >		•			
. !		V (kN/m)	H (kN/m)	M. (kN m/m)	M _o (kN·m/m)	,
	Earth Pressure	4.560	17,014	6.840	·	
, F	desidual Water Pressure	66.000	0.000 13.200	48,272	- 0.000	
İ	Weight of Wall Buoyancy Total	0.000		0.000)	
D	ynamic Water Pressure		0.000		- 0.000	
	· Total	70.560	30.214	55.112	26.351	
	Sliding			Overtui	ning]
İ		Allamal	ole Values	Safety Factor		l alues
1	Safety Factor F	Anowai	The values	55.112	, , , , , ,	1
!	0.500 x 70.560	1.167	<u>≥</u> 1.00		$ 2.091 \ge 1.10$	
	30.214			26.351]
Ì	P < 1.000m , >		· · ·	· · · · · · · · · · · · · · · · · · ·		1 .
		V (kN/m)	H (kN/m)	M₁ (kN·m/m) M₀ (kN·m/m)	<u> </u>
	Earth Pressure	15.023	56.059	30.04	6 82.730 0.000	
	Residual Water Pressure Weight of Wall	178.000		175.27	2 69.805	٠.
	Buoyancy Total Dynamic Water Pressure	-0.660	0.000	-0.66	0.000	
1		192.363			152.535	-
İ	Tota/	192.000	31.004			
	Sliding			Overti	urning	
	Safety Factor F	Allow	able Values	Safety Fac	tor F Allowable	Values
	0.500 x 192.363			204.658		1
		1.049	≥1.00	152.535	1.341 ≥1.10)
	91.664			102.000		الــا


Prepared by	Y.Ando	Checked by	R.Nisimura
	26/07/2002		26/07/2002

Project	Detailed Design on Port F	Reactivation P	roject in La Un	ion Cal	lc. File No.	·
Section	Civil		· · · · · · · · · · · · · · · · · · ·	Cal	lc, Index No.	
Subject	Revetment			Pag	ge No. <i>}</i> ?	Rev.
	C/ < −1.500m	:				
		∨ (kN/m)	H (kN/m)	M: (kN·m/m)	M, (kN·m/m)
:	Earth Pressure	35.608	132.867	178.040	312.92	2
F	esidual Water Pressure Weight of Wall	705.500	22.922 141.100	1734.022	23.03 446.68	0 1
	Buoyancy Total	-126.650	3.717	-316.625	2.03	- 3 + 3 - 3
<u>D</u>	ynamic Water Pressure	614 450	300.606	1595.437	784.67	
	Total	614.458	300.000	1000,401	104.01	
	Sliding			Övertur		
	Safety Factor F	Allow	able Values	Safety Factor	Allowable	Values
	0.500 x 614.458	1.022	≥1.00	1595.437	2.033 ≥1.1	0
	300.606			784.670		
	D. < -4.000m >		ing sa sa sa sa sa sa sa sa sa sa sa sa sa			
		V (kN/m)	H (kN/m)	Mı (kN·m/m)	M。(kN·m/m	1)
	Earth Pressure	63.995	238.788	383.970	771.76	. 7
	Residual Water Pressure Weight of Wall	1180.500	52.287 236.100	3484.022	117.04 1035.17	1 9
·r	Buoyancy Total yuamic Water Pressure	-301.980	17.648	-905.940	27.31	9
	-Total	942.515	544.823	2962.052	1951.30)6
	Sliding			Overtu	rning	
	Safety Factor F	Allow	vable Values	Safety Fa	ctor F Allowa	ible Valu
	0.600 x 942.515	T		2962.052		
ļ.	544.823	1.037	≧1.00	1951.306	1.517 ≥1.	10
	0111020	1				
		4.				
				•	<u>.</u>	
. ' .						
i					_	
-	· in	repared by	Y.Ando	Checke	aller man	simura

Project	Detailed Design on Port Reactivation Project in La Union	Calo, File No.
Section	Civil	Calc. Index No.
Subject	Revetment	Page No. ≮≮ Rev.

3-6. Bearing Capacity

[1] Reaction of Bottom Surface of Block

c)
$$e < 0 \mathcal{O}$$

$$p_1 = \left(1 + \frac{6 \cdot e}{b}\right) \cdot \frac{V}{b} \qquad p_1 = \frac{2 \cdot V}{3 \cdot x} \qquad p = \frac{V}{b}$$

$$p_1 = \frac{2}{3} \cdot \frac{V}{X}$$

$$p = \frac{V}{b}$$

$$p_{1} = \left(1 - \frac{6 \cdot e}{b}\right) \cdot \frac{V}{b} \qquad p_{1} = 0$$

$$b' = 3 \cdot x$$

$$p_1 = 0$$

$$\times = \frac{M_1 - M_2}{V}$$

$$e = \frac{b}{2} - x$$

V: Vertical resultant force act on wall
b': Distribution width of bottom reactions in case e>b/6
M1: Moment of Vertical force act on wall
Moment of Horizontal force act on wall
(kN·m/m)
Moment of Horizontal force act on wall
(kN·m/m)

: Eccentricity of resultant force of Vertical and Horizontal (%)

$$\times = \frac{M_1 - M_2}{V} = \frac{2962.052 - 1951.306}{942.515} = 1.072 \text{ (m)}$$

$$e = \frac{b}{2} - x = \frac{6.000}{2} - 1.072 = 1.928 (m)$$

$$p_1 = \frac{2 \cdot V}{3 \cdot x} = \frac{2x \ 942.515}{3x \ 1.072}$$

$$= 586.142 (kN/mt)$$

$$b' = 3 \cdot x = 3x \cdot 1.072$$

$$= 3.216 (m)$$

$$n_1 = 0$$

Maximum Reaction Force < Allowable Bearing Capacity of Rubble Mound

$$586.142 \text{ (kN/m}^{t}) \leq 600.000 \text{ (kN/m}^{t}) \cdots O^{t}$$

	· · · · · · · · · · · · · · · · · · ·			
	Prepared by	Y.Ando	Checked by	R.Nisimura
		26/07/2002		26/07/2002

	DESIGN CALCULATION CO	VER SHEET	
Project	Detailed Design on Port Reactivation Project in La Union Province	Project Code	JC1N004
Section	Civil	Calc. File No.	
Sub-Section	Road and Pavement	Calc. Index No.	
Subject: Design of (Concrete Pavement		

Calculation Objective:

- To analyze and check a thickness of pavement which includes subbase course, base course and concrete pavement.
- To determine the bar-arrangement for concrete pavement

References, Calculation Notes and Comments

Refer to next page

	Prer	ared	No. of	Che	cked	Revi	ewed	Superseded
Rev	by	Date	Pages	by	Date	by	Date	by Calc No.
0	Cereb	Tuly 18:	9	1950	28 July 02		8/18/02	
Α		7			/			
В								
С								

File in Calc. File

Notes

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File l	Vo.	
Section	Civil	Calc. Inde	(No.	
Subject	Road and Pavement	Page No.	/	Rev.
		<u> </u>	Referen	ces/

1. Design General

This examination carries out for the purpose of determining dimension of concrete pavement. The target facility is shown below.

R.T.G Lane

(Target Machine: R.T.G)

Chassis Lane

(Target Machine: Forklift Truck)

- 2. Design Condition
- 1) Compliant Standard

ITECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPANJ

- 2) Design Bearing Capacity Coefficient (K₃₀) of Subgrade and Base Course
- (1) Design Bearing Capacity Coefficient (K₃₀) of Subgrade Design Bearing Capacity Coefficient of Subgrade : $K_{30} = 70 \text{ N/cm}^3$
- (2) Design Bearing Capacity Coefficient (K₃₀) of Base Course Design Bearing Capacity Coefficient of Base Course : $K_{30} = 200 \text{N/cm}^3$
- 3) Material
- (1) Concrete

Elastic modulus : E=3,500,000 (N/cm²)

Poisson's ratio

: v = 0.15

Bearing Strength: $\sigma = 450 \text{ N/cm}^2$ (2.8 days)

- 3) Design Load
- (1) R.T.G

Maximum Wheel Load

P = 250 kN / wheel

Radius of ground contact area

a = 30.1 cm

(2) Forklift truck

Maximum Wheel Load

P = 170 kN / wheel

Radius of ground contact area

a = 27.1 cm

		<u> </u>	
Prepared by	leneb	Checked by	Y. Ando
	July1 18 12002		19 1 67 1200 Z

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Road and Pavement	Page No. Z Rev.
		References/ Notes

3. Design of Base Course

Base course thickness is determined using the following tables.

Design condition	Base course thickness (cm)					
Design bearing capacity	Base course		Subbase course		T-1-11	
coefficient K_{30} of subgrade (N/cm ³)	Cement stabilization	Grading adjusted material	Grading adjusted material	Crusher run etc.	Total base course thickness	
		40		20	60	
Equal to or above 50 and less than 70	20		20		40	
wid tess and 70	25	. •		30	55	
	-	20	15		35	
Equal to or above 70		20		20	40	
and less than 100	15		15		30	
	15	-	_	15	30	
Equal to or above 100		20	_	_	20	
Equal to of above 100	15				15	

Base course shall use the following material.

Base course

: Cement stabilization

Subbase course: Grading adjusted material

Therefore, each base course thickness is carried out as follows from the upper table.

Base course (Cement stabilization)

Subbase course (Grading adjusted material): 15 cm

	Prepared by	Consta	Checked by	Y. Ando
		July 1/8 1200≥		1910712002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Road and Pavement	Page No. ଓ	Rev.
i			-

4. Design of Concrete Slab

References/ Notes

Concrete slab thickness is set up from the following table. The examination of stress of concrete slab is performed using set-up concrete slab thickness.

(1) Setup of concrete slab thickness

Classification of design load	Т	ype of load	Load (kN)	Radius of contact area (cm)
	Forklift truck	(2t)	25	9.8
CPi	Tractor-trailer	(for 20-ft and 40-ft)	50	17.8
	Forklift truck	(3.5t)	45	12,6
CP ₂	CP ₂ Tractor-trailer (for 40-ft y	(for 40-ft yard use only)	70	17.8
	Forklift truck	(6t)	70	16.0
	Truck	(T-25)	100	17.8
CP ₃	Forklift truck	(10t)	110	21.1
,	Straddle carrier		110	19,5
	Forklift truck	(15t)	170	27.1
	Transfer crane	(201)	200	17.6
CP4	Truck crane	(25 Type)	200	20.0
•	Forklift truck	(201)	240	31.7
	Truck crane	(25 Type)	250	21.6

Table - Design Loads by Classification

Design load classification	Slab thickness (cm)
CP ₁	20
CP ₂	25
CP ₃	30
CP₄ ·	35
On the deck slab of open-type wharf	10

Table - Concrete Slab hickness

· Design Load by Classification

R.T.G

P=250kN/wheel a=30.1cm

Forklift truck

P=170kN/wheel a=27.1cm

· Setup of concrete slab thickness

R.T.G Lane

: 35cm

Chassis Lane

: 30 c m

July /18/2002

Checked by

Project	Detailed Design on Port Reactivation (19)	Calc. File		
Section	Civil	Calc. Inde	x No.	
Subject	Road and Pavement	Page No.	X	Rev. ences/

(2) Examination of Stress of Concrete Slab

References Notes

The stress of the concrete slab computed by the following formulas checks that it is less than bending strength of concrete.

$$\sigma = \frac{10 \times C \times P}{h^2} \times (1 - \frac{\sqrt{\frac{a}{l}}}{0.925 + 0.22 \times \frac{a}{l}})$$

C: coefficient; when slip bars are used, C=3.36 may be used

P: load (kN)

h: thickness of concrete slab (cm)

a : radius of ground contact area (cm)

1 : radius of relative stiffness of the pavement (cm)

$$1 = \sqrt[4]{\frac{E \times h^3}{12 \times (1 - v^2) \times K_{75}}}$$

E: elastic modulus of concrete (=3,500,000 N/cm²)

v: Poisson's ratio of concrete (=0.15)

 K_{75} : design bearing capacity coefficient of base course

$$(K_{30}/K_{75}=2.8 K_{75}=K_{30}/2.8=200/2.8=70 (N/cm^3)$$

1) R.T.G Lane

$$1 = \sqrt[4]{\frac{3,500,000 \times 35^{3}}{12 \times (1-0.15^{2}) \times 70}} = 116.27 \text{ cm}$$

$$\sigma = \frac{10 \times 3.36 \times 250}{35^{2}} \times (1 - \frac{\sqrt{\frac{30.10}{116.27}}}{0.925 + 0.22 \times \frac{30.10}{116.27}}) = 3.304 \text{ N/mm}^{2}$$

$$= 330.4 \text{ N/cm}^2 \le 450.0 \text{ N/cm}^2$$
 O.K

2) Chassis Lane

$$1 = \sqrt[4]{\frac{3,500,000 \times 30^3}{12 \times (1 - 0.15^2) \times 70}} = 103.58 \text{ cm}$$

$$\sigma = \frac{10 \times 3.36 \times 170}{30^2} \times (1 - \frac{\sqrt{\frac{27.10}{103.58}}}{0.925 + 0.22 \times \frac{27.10}{103.58}}) = 3.043 \text{ N/mm}^{\frac{1}{2}}$$

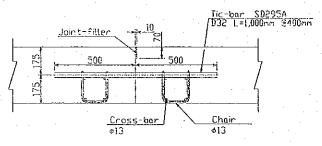
_ `		,	Carde	Checked by	Y. Ando
	$= 304.3 \text{ N/cm}^2 \le 450.0 \text{ N/cm}^2$	O.K 1 <i>July</i>	1/8/2002	·	191 07 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index N	lo.
Subject	Road and Pavement	Page No. 🛝	ケ Rev.
		R	eferences/

Notes

4. Determination of Structure of Joint

Based on a standard, the structure of joint is determined as follows.

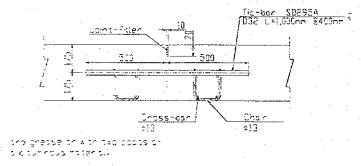

1) R.T.G Lane

(1) Longitudinal Joint

Longitudinal Joint should be butt joint with tie-bars.

The dimension of tie-bar is as follows and an installation interval is set to 40cm.

Type of Steel: SD295A , Diameter: D32 , Length: L = 100cm Structure figure is shown below.

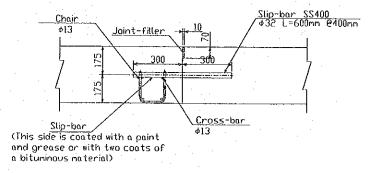


(2) Transverse Joint

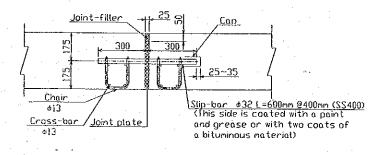
The transverse joint is used as the contraction joint, and let structure be dummy joint with slip-bars.

The dimension of slip-bar is as follows and an installation interval is set to 40cm.

Type of steel : SS400 , Diameter : ϕ 32 , Length : L = 60cm Structure figure is shown below.



	Prepared by	End	Checked by	Y. Ando
		July 1 18 12002		1910712002

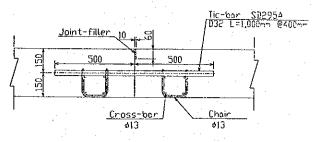

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File l	No.		
Section	Civil	Calc, Inde	x No.		
Subject	Road and Pavement	Page No.	۷	Rev.	
			Refere	nces/	
			Notes		

When preparing the transverse construction joint, structure is butt joint with slipbars.

Dimension of slip bar is taken as the same thing as the transverse contraction joint. Structure figure is shown below.

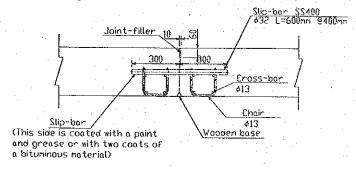
A transverse expansion joint has the structure that comprises a joint-filler at surface, a joint plate at bottom, and slip-bars. Dimension of slip bar is taken as the same thing as the transverse contraction joint. As expansion joints constitute the serious weak point of pavement, the number of such joints should be made as small as possible. Structure figure is shown below.

	Prepared by	ando	Checked by	Y, Ando
		July 1 18 12002		1910712002

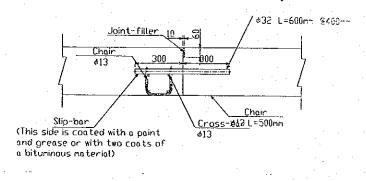

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	<u> </u>
Section	Civil	Calc. Index No.	
Subject	Road and Pavement	Page No. 🔿	Rev.
		Refer Notes	rences/

2) Chassis Lane

The structure form of joint and the dimension of tie-bars and slip-bars of chassis lane are taken as the same thing as the thing of an R.T.G lane.

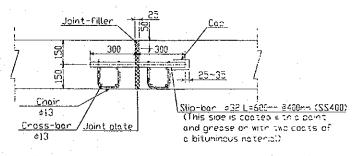

(1) Longitudinal Joint

Structure figure is shown below.



(2) Transverse Joint

Structure figure is shown below.


The structure figure of the transverse construction joint is shown below.

l	 			
ļ	Prepared by	ande	Checked by	Y. Ando
		July 18 12002		/91 07 /200Z

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Road and Pavement	Page No. δ Rev.
		References/ Notes

The structure figure of the transverse expansion joint is shown below.

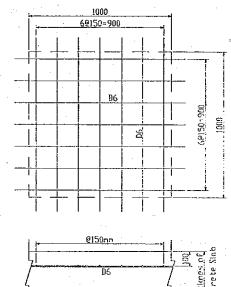
| Prepared by | Cando | Checked by | Y. A. and o | | July 1/8 /2002 | 19107/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Road and Pavement	Page No. PRev.
		References/ Notes

5. Iron Mesh

The area of reinforcement of Iron mesh makes 30N a standard per $1m^2$. Material uses deformed bar "D6".

A reinforcing bar is arranged in the two directions so that it may intersect perpendicularly, and it sets an interval to 150mm.


Reinforcing bars number per 1m² N=14

Weight per unit length of reinforcing bar "D6" 0.249 kg/m

Reinforcing bars weight per $1m^2$ W=0.249×1.0×14=3.49 kg = 34.2 N

An arrangement position is set to 10cm from the surface. Length of lap splices may be 15cm.

A structure outline figure is shown below.

Prepared by	amble	Checked by	Y. Ando
	July 1 18 1200Z		1910712002

	DESIGN CALCULATION CO		
Project	Detailed Design on Port Reactivation Project in La Union Province	Project Code	JC1N004
Section	Civil	Calc. File No.	
Sub-Section	Storm Drainage	Calc. Index No.	

Subject:

Determination of Size and Slope for Trench

Calculation Objective:

To analyze and check a size hydaulic grade line, discharge volume and velocity of trench from each of cathment area in the port area.

References, Calculation Notes and Comments

Design Condition

1) Velocity within pipe: Maximum 3 m/s

2) Roughhness Coefficient: 0.014 (Concrete Pipe)

3) Run-off Coefficient : C

Concrete Pavement: 0.85, Asphalt Pavement: 0.80, Macadam Pavement: 0.70

Cutting Area: 0.05

4) Design Rainfall Intensity: 135 mm /h5) Calculation Model: Manning Formula

 $Q = A \times 1/n \times R^{2/3} \times 1^{1/2}$

Rev	Prep	oared	No. of	Che	cked	Revi	ewed	Superseded
nev	by	Date	Pages	by	Date	by	Date	by Calc No.
0	Cendo	Ty 18	8	19 8J	78 July of		8/18/02	
Α		,-					:	·
В		1. 1.						
С								

File in Calc. File

(I) NIPPON KOEI CO.,LTD.

Project	Detaile	d l	Desigi	nο	n F	o Ol	t F	}ea	act	iva	atio	on	Pr	oje	eci	in:	L	аŧ	Jni	on		*******		С	al	c. l	FII	e i	No	·.						
Section	Civi																							-						Vо						
Subject	Sto	m	Drain	age	9		-	~ ?											****					P	ag	je	No	-		7				Э۷.		
		r	***************************************									 -							·····					-					I R	ef	ere	ene	ce	s/		-
2002/7/217:20			Max. Qc (m3/sec)		0.284	0.284	0.201		,	0.284			0.201	0.517			(0.201	0.201		0.835	0.201			1.557				_	0,284		0.517			0.284		-
2002			v (m/sec)		0.971	0.971	0.687			0.971			0.687	1.135			0.687	0.687		1.273	0.687			1.335					0.971		1.135			0.971		
			Diameter (m)		0.610	0.610	0.610			0.610			0.610	0.762			0.610	0.610		0.914	0.610			1.219					0.610	-	0.762			0.610		
		ĸ	Elevation (Outlet)		+4.182	+4.142	+ 3.996			+3.850			+3.990	+ 3.689			+3.787	+2.194		+3.322	+3.575			+2.949					+3.970		+ 3.698			+3.764		
		Pipe Culvert	of Grade		0.20	l				0.20			- 1	0.20			0.10	0.10		0.20	0.10			0.15					0.20		0.20			0.20	į	
			Bottom elevation of culvert	,	+ 4.222	+ 4.222	+ 4.022			+4.022			+4.016	+3.864			+3.813	+ 2.207		+ 3.509	+3.601			+ 2.992					+ 4.022		+3.870			+3.816		
	0.013		Elevation (Infet)		+5.532	+5.532	+ 5.332			+5.332			+5.126	+5.126			+4.923	+ 4.928		+ 4.923	+4.711			+4.711					+ 5.332		+ 5.332			+ 5.126		
	E		Length (m)		20.00	40.00	26.00	-		85.78			36. 8	87.49			26.00	12.65		93.60	26.00			28.90					26.00		85.78			26.00	-	
≎	Roughness Coefficient		Culvert		AP-1	AP-2	AP-3			AP-4			AP-5-1	AP-5			AP-6-1	AP-6-2		AP-6	1-7-4A			AP-7					BP-1-1		BP-1			BP-2-1		
IE. GE (Pipe Culvert)			Remark						Ì		Ì																				<u></u> -	<u>-</u> 				
GE (Pig	72				0.051	- 1	- 1		- 1	0.222		- 1	- 1	0.412				0.122		0.802	0.075			1.085		Ì			6.134		0.321			0.143	ì	
DRAIE	60		Q (m3/sec)		l	- 1	0.033		-	- 1	- 1	- 1	- 1	- 1								0.055		- 1	- 1	- 1	ı		1 1	ĺ	•		1		0.065	
VATER	48	ater Volum	1		ı	135.0	1		1	1	135.0											135.0		135.0	1	135.0					135.0	135.0	135.0	135.0	135.0	
TORM	36	harging W	υ	_		5 0.5	-1	1	4	4	_ļ	_	_		8 0.7				6 0.8			7:0 8:	4	7 0.85	_	_	_		<u> </u>	6 0.85	<u>L</u> .	L		6 0.7		
CALCULATIONS FOR STORMWATER DRA	24 30 610 762	Required Discharging Water Volume	Area (ha)		0.160 0.160				- 1			0.155 0.155										0.208 0.208		0.277 0.277		0.061 0.061	0.026 0.02	0.103 0.10	0.160 0.16	0.576 0.576	0.164 0.16	0.159 0.15	0.241 0.241	0.146 0.146	0.215 0.215	
ULATIC	18 457		Catchment Area (ha)		20	35	9	- 1		32		36	2	98	58	16	216	91	91	38	16	46	52	53		2	Q	11	36	36	36	98	53	38	86	
CALC	Diamater of Pipe O			-	-	\dashv	52	۶	Trapezoid	╗	티	+	\dashv	\dashv			-				-	91	4		1		ᅱ		Н	160	L.			L		
	Diama			*	A-2	+			<u> </u>	_	Α.δ	_	<	_			A-18		Ψ-11	A-12	Λ-15	A-13	4.4	A-17		Ē	B.2	H .3	9.6	B-4		٢				
						_	Pre	epa	эге	d :	by		_		<u> </u>							Cl	ec	cke	d	by			ı —	_		_		lo		
									_										20	02	2					_				ľ		_			200	17

Project	Detailed Desig	ign on Port	Reactivation Pro	oject in La Union	Calc. File No.	
Section	Civil				Calc, Index No.	
Subject	Storm Drai	inage			Page No. 🧷	Rev.
2002/7/217:20	n Diameter v Max. Qc) (m) (m/sec) (m/sec)		1 0.610 0.971 0.284 1.319 1.335 1.557	1.219 1.542 1.219 1.542 1.219 1.542 0.457 0.802	0.457 0.802 0.131 0.457 0.802 0.131 0.457 0.802 0.131 0.457 0.802 0.131 0.457 0.802 0.131 0.457 0.802 0.131 0.457 0.802 0.131	5 0.457 0.802 0.131 934 0.457 0.802 0.131 835 0.457 0.802 0.131 835 0.457 0.802 0.131 835 0.457 0.802 0.131
	Pipe Culvert Bottom Grade Elevation elevation of (%) (Outlet)	0.20	+3.413 0.20 +3.361 +2.804 0.15 +2.664	0.20 0.20 0.20 0.20 0.20		2275 0.20 + 4.255 2275 0.20 + 4.205 2275 0.20 + 4.215 2275 0.20 + 4.215 2275 0.20 + 4.215
	1 1	+5.126	26.00 +4.923 +3 	+4.711 +4.711 +4.711 +5.632 +5.632	+ 5.632 + 5.632 + 5.632 + 5.632 + 5.632 + 5.632	10.00 + 5.632 + 4. 35.00 + 5.632 + 4. 10.00 + 5.632 + 4. 20.00 + 5.632 + 4. 30.00 + 5.632 + 4.
ert)	Kouganess Coemera	BP-3	BP.3-1	BP-5-1 BP-4 BP-5 CP-1	CP-4-1 CP-4-1 CP-5-1 CP-5-1 CP-6 CP-6	CP-8-4 CP-8-3 CP-8-2-1 CP-8-1-1
CALCULATIONS FOR STORMWATER DRAIN GE (Pipe Culvert)	Diamater of Pipe Culvert :	B-11 49 86 0.211 0.211 0.7 135.0 B-12 89 53 0.236 0.236 0.7 135.0 B-13 70 36 0.126 0.17 0.7 135.0 B-14 52 91 0.235 0.235 0.7 135.0	135.0 135.0 135.0 135.0 135.0	B-22 81 54 0.219 0.219 0.7 1350 0.057 B-24 60 91 0.227 0.227 0.7 1350 0.072 B-25 77 54 0.272 0.272 0.7 1350 0.071 B-26 160 29 0.208 0.208 0.208 0.85 135.0 0.071 C-C 43 29 0.462 0.462 0.85 135.0 0.147 C-A-1 50 30 0.095 0.095 0.99 135.0 0.032 C-A-1 50 30 0.038 0.038 0.99 135.0 0.013	50 30 0.038 0.038 0.038 0.09 135.0 0.013 55 25 0.069 0.069 0.09 135.0 0.023	C-A-5 50 30 0.038 0.038 0.9 135.0 0.013 0.
			гтерагео оу	July 1 18-12002		1910712002

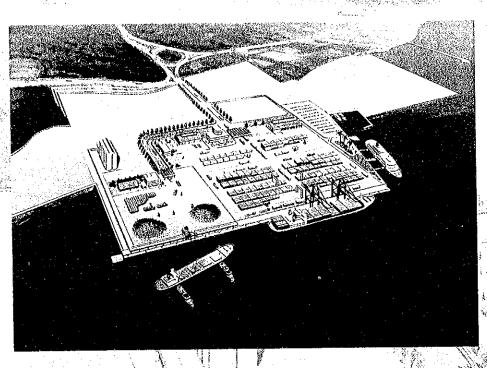
	ject	D	etail	ed	Desig	n o	n F	ort	Re	ac	tiv	atio	on	Pr	oje	ct	ìn	La	Ų	nic	on						. F				-						
	tion		Civ	11										٠								۸	·				<u>. lı</u>					1_					
Sub	oject		Sto	m	Drair	ag	е			_															Pa	g	e N	10	· 1		ਪੌ ofe	ro		e.			_
	2002/7/217:20				Max. Qc (m3/sec)	6.13!		0.284				0.835		0.284			ļ	1.557		1	0.284				1.798		1	0.284			1.798	1	0.208	0.208	0.093		
	8				(m/sec)	0.802		0.971	-		ᆛ	1.273	+	0.971	<u> </u>	-		1.335		+	0.971	1	1	<u>.</u>	1.542		+	0.971			1.542	- 1		1.267		0.567	
					Diameter (m)	0.457		0.610	0.610			0.914		0.610			,	1.219			0.610		1		1.219			0.610			1.219	:			0.457	0.457	
				E L	Elevation (Outlet)	+4.139		+4.052	+3.770			+3.746		+3.764				+ 3.076			+ 3.361				+2.617			+3.049			+2.434		+ 4.647	+ 3.639	+ 3.419	+3.561	
				Pipe Culver	Grade	0.20		0.20				0.20	- 1	0.20				0.15			0.20				0.20			0.20	,		0.20	ļ		ı	0.10	- 1	
					Bottom elevation of culvert	+4.275		+4 122	+3.822			+3.918		+3.816				+ 3.207			+3,413				+ 2.804			+3.101			+2.492		+ 5.293	+3.743	+3,443	+3.583	
	*. •	0.013			Elevation (Inlet)	+5.632		C29 5 T	+ 5.332			+ 5.332		+5.126				+ 5.126			+4.923				+ 4.923			+4.711			+4.711		+6.250	+ 5.500	+5.200	+5.340	
		c			Length (m)	68.00		35.00	26.00			85.78		26.00				87.49			26.00				93.60	_		26.00			28.90		129.19	20.82	24.13	21.75	
		Roughness Coefficient			Culvert	CP-8-1		969	6.40			CP-10		CP-11-1				CP-11			CP-12-1				CP-12			CP-13-1			CP-13		DP-1	DP-2	DP-3	DP-4-1	
	CALCULATIONS FOR STORMWATER DRAIN GE (Pipe Culvert)	ρž			Remark				T					-								1			1	j		<u>_</u>					<u>-</u> 			_	
	dia) ac		72			0.049	-	27.60	0.264			0.507		0.048			ł	0.834			0.075				1.364		- 1	0.072			1.776	ļ ļ	0.057			0.019	
	DRAIN.		1524	11	Q (m3/sec)		li	0.053		0600		1		0.048	1	- 1	0.061	- 1	ļ	I	ı	0.064	- 1	0.039			0 0.046						0 0.057			0.019	
	WATER		4 1219	/ater Volum	-			5 135.0		135.0		5 135.0						7 135.0			1		-	1	0.5 135.0	İ		- 1	7 135.0								
	STORM		30 36	chareing V	U	+	Ш	0.189 0.75	0.8	27.0	<u> </u>	┡	0.240 0.75			_		0.141	0.508 0.7	Ц	0.235 0.85	4	4	_		4	0.247 0.5		0.227 0.		ļ			Щ	0.030 0.85	[
	NS FOR		24 610	Jennined 5	Area (ba)			0.189 0	0.092	0 025 0			0.240 0				0.231 0		0.508 0				0.200						0.227 0		E		0.190 0	0.152 0	0.030	0.060 0	
	JULATIC	e Culvert :	18		Catchment Area (ha)		42	65	8	1	S 25	35	84	49	98	98	53	38	124	78	94	8	\$	38	39	54	28	16	16	55	29		190	152	30	99	
	CAL	seter of Pin	Inchs 18		-	C.M.4	╄-	C-1' 82	+	+-	8 6	╀	\vdash					\vdash	Н		\vdash		-	-	\dashv		18 52		-			_	_	-	9-1	\dashv	
		Ë	ទ];	ک اِد	ខ	ပ်	S.S	9-J	ర	క	ప	C-10	C-11	C-13	ပ	3	ು	C-18	ರ	C-18	ပ်	ర	[ပ	ပ်	٥		_	<u> </u>	D2-5							
							_		Р	rep	are	ed	by			٤-		_					4	Che	ecl	œ	d b	y		-						de	
L									L	سبي						\mathcal{F}	ų / ·	//	18	<i>} </i> ;	200) 2	Ţ							l	l	79	1	0	71	20	S 0

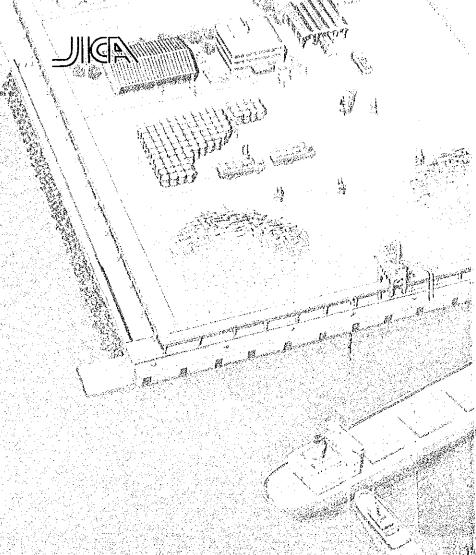
Project	Deta	aile	ed Des	sig	n o	n F	or	t R	ea	cti	va	tio	n l	210	je	ct	in	La	U	nio	n		-	C	Cal	C.	Fil	e l	No			ra-o-o-	******		
Section	C	ivi	l													·**								(Cal	C.	ne	de:	χN	lo.					
Subject	S	to	rm Dr	ain	ag	e									.,,									F	aç	je	No			×	-		-	٤٧,	MC De Challes a comples
9.	<u> </u>	 T	0 0					ĩ									ī		<u>-</u> -	i		Ī	i	ī		l i		 i	R	ef					
2002/7/217:20			Max. Qc (m3/sec)	0.201		10.00	0.590	0.835	0.093	0.590		0.590			0.723	0.093	0.093			1.557	-	1 567			1.798		0.208	0.208		0.201		0.204	0.093	0.204	
2003			v (m/sec)	0.687		1890	0.900	1.273	0.567	0.900		0.900			1.102	0.567	0.567		ļ	1.335		×2			1.542		1.267	1.267		0.687		1.247	0.567	1.247	
			Diameter (m)	0.610		0.610	0.914	0.914	0.457	0.914		0.914			0.914	0.457	0.457			1.219		1 210			1.219		0.457	0.457		0.610		0.457	0.457	0.457	
		-	Elevation (Outlet)	+ 4.070		04.5	+ 3.888	+3.046	+3.415	+3.626		+3.121			+3.615	+ 3.235	+ 3.903			+3.149		1010			+2.134		+ 5.183	+ 4.470		+4.315		+ 5.006	+ 4.204	+4.619	
	İ	Pipe Culven	Grade	0.10		2	2 0	070	0.10	0.10		0.10			0.15	0.10	0.10		į	0.15		7.0			0.20		0.50	0.50		0.10		0.48	0.10	0.48	
			Bottom elevation of culvert	+4.230		207	+ 3.430	+3.218	+3.433	+3.776		+3.211			+ 3.750	+ 3.253	+ 4.053			+ 3,345		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			+ 2.192		+ 5.293	+ 5.183		+ 4.320		+ 5.103	+4.213	+5.013	
0.013			Elevation (Infet)	+5.340		0,50	+ 5.340	+4.632	+5.190	+ 5.190		+ 4.625			+ 5.164	+ 5.010	+ 5.010			+ 5.064		7.4967			+4.711		+6.250	+ 6.140		+ 5.430		+ 6.060	+5.970	+5.970	
F			Length (m)	160.00		100	37.88	85.88	18.25	150.00		90.00			90.00	18.25	150.00			130.50		09.00			28.90		22.00	142.69		5,43		20.00	9.60	81.47	
t) Roughness Coefficient			Culvert	DP-4			DI-5-1	DP-6	DP-7-1	DP-7		DP-8-1			DP-8	DP-9-2	DP-9-1			DP-9		05-10			DP-11		EP-4-4	EP-4-3		EP-4-2		1:45-1	EP-2-1	EP-2	
e Culvert			Remark					Ì	-								Ì	İ		Ī		<u> </u>	İ												
Fip	1829			0.153		1	25.0	0.368	0.002	0.371		0.262			0.656	0.002	0.003			0.796		1 086			1.321		0.048	0.091		0.143		0.115	0.021	0.147	
RAIL	1524		Q (m3/scc)	610.0	0.063	0.027	7007	3	0.002	0.002	0.013	0.250	0.003	0.010	0.010	0.002	0.002	0.012	0.004	0.121	0.088	D D O	0.048	0.084	0.103		0.048	0.043	0.046	0.005	0.094	0.021	0.021	0.011	
ATER D	1219	я Volume	-	135.0	135.0	135.0	135.0		135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	1350	135.0	135.0	135.0		135.0	135.0	135.0	135.0	135.0	135.0	135.0	135.0	
ORMW.	914	rging Wat	U	0.85	9.0	4	3 6	L	0.05	0.05	0.05		0.05	0.05	_ļ	-	-+	-	0.05	0.5	CO o	3	0.5		0.85		_	0.85	Ļļ				0.8		
1 ō -	610 762	Required Discharging Water Volume	krea (ha)	0.060 0.060	0.210 0.210	0.090 0.090	0.208 0.208	0000	0.081 0.081		0.670 0.670	13.320 13.320			0.516 0.516	0.081 0.081	0.081 0.081	0.645 0.645	0.225 0.225		0.4/0 0.4/0			0.448 0.448	0.324 0.324		0.160 0.160	0.136 0.136	2,475 2,475	0.281 0.281	5.015 5.015	0.070 0.070	0.070 0.070	0.038 0.038	
)LATIO	457	4	Catchment Area (ha)	60	35	2 2	2 5	;	8	8	50	370	20	40	40	80	8	20	8	3 5	7,00	30	16	54	39		1		150				4	25	
CALC	CALCULATI Diamater of Pipe Culvert Inchs 18 mm 457 Catchmen D2-5 20 60 D2-5 20 60 D2-5 12 D2-1 140 13											360	39	268	258	6	6	258	8	234	5 6	166	57	166	112		<u></u>	∞	165	3		175	175	4	
Diamate				02.5	D2-4	D2.3	02.2		1.10	D1-2	Ď3	D-1	D.4	50	D-6	DI-3	DI-4	9 -	11.0	5 5	2 2	D-15	D-16	D-17	D-18	Ħ	e Gi	Θ.	E-7	æ (ii	교		E-S	E-10	
		_		_				Pr	ер	are	ed	by	·		E	v	ib	<u>۔</u>					Ch	eck	(ec	l by	<u>/</u>	-	_						lo
															Ji	dy	<u>' /</u>	/	8	20	02	?					_		L	1	9	/	0	7 1.	200≥

Project	Detailed De	esign on Por	t Reactivati	on Project in La Unio	n Calc. File N	0.
Section	Civil				Calc. Index	No.
Subject	Storm D	rainage			Page No.	√ Rev.
2002/7/21720	,	Max. Qc (m3/sec) 9.441	1 1	0.201		References/ Notes
50	: .	(m/sec)	╀┼┼┼	0.687		
·		(m) (m) 0.610		0.610 0.914 1.219		
		Elevation (Outlet) +4.214 +3.411	1 1 1 1	+3.295 +3.461 +3.113		
		Pipe Culver	1 1 1 1	0 0.10		*. *
	M	Bottom elevation of culvert + 4.480	1 1 1	+3.310	·	
	0.013	Elevation (Inlet) + 5.590		+ 5.220 + 5.190 + 4.890		
	ਦ ਵ	Length (π) 55.01	27.30	15.30		
	t) Roughness Coefficient	Culvert EP-3	EP-4	EP-5-1 EP-3 EP-6		
		Remark			•	
i i	72 (F)	11 I I I	1111	0.145		
	ER DRAIN 50 48 60 1219 1524	11 7 1	135.0 0.007 135.0 0.002 135.0 0.002 135.0 0.018			
	MWATE 36 4 914 12	C C C 13		0.85 13 0.05 13 0.8 13 0.8 13 0.8 13 0.5 13		
	CALCULATIONS FOR STORMWATER DRAIL, 35 (*1pe Culvert). of Pipe Culvert: Refinchs 18 24 30 36 48 60 72 mm 457 610 762 914 1219 1524 1829		0.006 0.006 0.006 0.006 0.006 0.006 0.008 0.058	0.080 0.080 0.280 0.280 0.058 0.058 0.025 0.025 0.034 0.041 1.800 1.800		
	LCULATIC	Catchment 460	4 55 4 16 4 16 4 16 4 16			
	CALCULATI Diamater of Pipe Culvert Inchs 18	E-2 95	╌┼┼┼	E-14 20 E-15 70 E-17 146 E-18 75 E-19 10 E-20 5 E-21		
<u> </u>	· · · · · · · · · · · · · · · · · · ·		Prepared	by Ede	Checked by	Y. Ando
				July 1 18 120		1910712002

FN: Calculation_Sheet

Pr	ojec	t																Са	lc.	Fil	e	Νo											
	ctio		Civil														Ca	lc.	In	de													
1			Stor	m l	Drain	ag	e																Pa	ge	N	ο.		6	-	R	e۷.		
1	ibje(1000 "	Stor	Pipe Culvert	Longiti iii) Ground Steps of Trinch	ag	75.00 +5.522 0.200 +0.300 +0.300 +0.300 +0.100 +5.122 +0.200 +4.972 0.300 1.942 0.121 0	40.00 +5.522 0.200 +0.300 +0.300 +0.300 +0.100 +5.122 +0.200 +5.042 0.300 1.942 0.121	85.75 +5.332 0.200 +0.300 +0.300 +0.300 +0.100 +4.932 +0.300 +4.761 0.300 1.942 0.121	0060 61337	CIPE CIPE CIPE	1+07+	110.00 +5.148 0.200 +0.300 +0.300 +0.300 +0.100 +4.748 +0.200 +4.528 0.700 1.942 0.121	l I	Carto Mario	40.00 +5332 0.000 +0.450 +0.470 +0.490 +0.100 +4.782 +0.160 +4.742 0.480 1.707 0.504	36.00 + 5.132 0.000 + 0.450 + 0.468 + 0.486 + 0.100 + 4.582 + 0.100 + 4.546 0.450 1.767 0.254		70000	26.00 +4.711 0.000 +0.300 +0.313 +0.326 +0.100 +4.311 +0.100 +4.285 0.300 1.373 0.086	3010 1801 0000 +0.300 +0.300 +0.300 +0.300 +0.300 +0.300 00.00 (17.4 00.00		Pa	90	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	+ 5.372	66.00 + 5.132 0.000 + 0.450 + 0.483 + 0.516 + 0.100 + 4.582 + 0.100 + 4.516 0.480 1.707 0.254	66.00 + 4.978 0.000 + 0.450 + 0.483 + 0.516 + 0.100 + 4.378 + 0.100 + 4.372 0.450 1707 0.254	Other Control	2000	66.00 +4.711 0.000 +0.450 +0.451 +0.516 +0.100 +4.161 +0.100 +2.005 0.450 1.767 0.254		
	e e	Roughness Coefficient			Trenefi No.		۸۵.1	Arl.2	VD-3	7 124	400	AU-S	AU-4-1		1-6-OV	λυ.6	7-0V		AU-8	VU-9	A11.9-1					BU-1	BU-2	B18.3		BU-T	150-7-1		-
	CALCULATIONS FOR STORWWATER DRAINAGE (Trench)	Dimension of Trench:	100 NISO 00334 00344 011400 P 0.0553 00544 011400 P 0.0553 00544 0.0554 0.0553 0.0554 0.0554 0.0553	0,1469	Required Discharging where voums Q Calebrand Area (tax) C (mWasc) Remark		0.035 0.035 0.5 135.0 0.043 0.043 0.043 0.043	5 40 0.018 0.018 0.8 135.0	A-7 13 86 0.11 0.811 0.85 1330 0.036	A-11 13 87 0.114 0.114 0.85 135.0 0.036	A-11" \$ 87 0.044 0.044 0.8 135.0 0.013	A-15" 5 94 0.047 0.047 0.8 135.0	A-18: 75 120 0.450 0.450 0.5 135.0	40 45 0.090 0.090 0.8 135.0 0.027	13 45 0.059 0.059 0.8 135.0 0.018 Transmid 0.188 0.188 0.5 135.0 0.035	65 40 0.260 0.260 0.85 135.0	Trapezoid 0.276 0.276 0.7 135.0	0.7 135.0 0.068	92 38 0.175 0.175 0.7 135.0	26 29 0.038 0.038 0.85 135.0	A-14 92 54 0.248 0.248 0.7 1350 0.065	B	B-1 101 12 0.061 0.061	B-2 85 6 0026 0026 0.35 1550	B-4' 70 36 0.252 0.252 0.85 135.0 0.080	B-S 91 36 0.164 0.164 0.7 135.0	36 0.126 0.126 0.7	74 58 0.215 0.215 0.7 135.0	17. 35 U.140	B-26 20 29 0.058 0.058 0.85 135.0	B-26 66 29 0.191	B-4" 70 36 0.252 0.252 0.85 135.0	sdo
		Prepared by Gardon Checked by 7,712 July 1 / 8 / 12002 /9 / 07 / 12																															
						_					_	_					<u>' '</u>	<u> </u>							_			ــــــــــــــــــــــــــــــــــــــ	/ /		- /		


(I) NIPPON KOEI CO.,LTD.


Project	Detailed Design on Port Reactivation Project in La Union														Calc. File No.									•									
Section	Civil Calc, Index No.																																
Subject	Storm Drainage Page No. 7 Rev.																																
2002/7/2514-00			1.767	0 1.942 0.131	0 1.767 0.254	0 1.373 0.086	0 1,373 0,086		0 1070 0.192		1.942 0.121		7077	1,767 0,254		77 178Z 0177	90 1.942 0.121		00 1.942 0.121	00 1.942 0.121	170 071	1.373		/9/-	3,070 0.192		H) 1,373 0,086		5,6,7	1	1413	1.942	
			0.450	0.300	0.456	002.0	5 0.300		30.00		9969		3	3 0.450		00-0	57 0.300		90.50	001.0	057.0				0.306		0.190					00.300	
		_	+0.100 +4.746	+0.200 +4.600	+0,100 +4,312	+0.100 +4.291	+0.100 +4.245		+0.100 +5.172	1	+0.200 +4.761	- 1	+0.231 +4.327	+6.106 +4.273	- 1	+0.200 +4.341	+0.200 +4.357	!	+0.200 +4.353	+0,200 +4,345	1301	1			+0.500 +4.890	1	+0.250 +4.788	1 1		1		+0.200 +4,392	
	Pipe Culvert	Level of bottom of C trench	+ 4.782	+ 4.732	+4,378	+4311	+4311		+ 5.237		+ 4.932		+4.732	+4.378		+ 4.528	+ 4,528		+ 4.528	+4.528	127.4	1187+		+ 4.161	+ 5.650		000 7 7 4		1	X C 7	14.740	+ 4.570	
		_ [+0.486 +0.100	+0.432 +0.100	+0.516 +0.100	+0.320 +0.100	+0.366 +0.100		+0.365 +0.100		+0.300 +0.100		+0.300 +0.100	+0.555 +0.100		+ 0.300 + 0.100	+ 0,300 + 0.100		+0.300 +0.100	+0.300 +0.100		+0.326 +0.100		+ 0.518 + 0.100	+0.300 +0.100		+0.300 +0.100			- 1		+ 0.300 + 0.100	
7:000		Ave. Death of Trench (10)	+0.468	+ 0.366	+0.483	+0.310	+0.410		+0.333	0000	+ 0.300		+0'300	+ 0.503		+ 0.300 + 0.300	+0.300		+ 0.300 + 0.300	+0.300 +0.300	1 1	+0.300 +0.313		+0.450 +0.434	+ 0.300 + 0.300		+ 0.300 + 0.300	1		+ 0.450 + 0.5.0	1	+0.300 +0.300	
Ö		Stope of Road (%)	0,000 +0,450	0.000 + 0.300	0,000 +0.450	0,000 + 0,300	0,000 + 0,300		0000	0.500 + 0.500	0.200 + 0.300		2 0,233 +0,300	3 0.000 +0.450		0.200	8 0.200 + 0.300		0.200	0.200	900	0.000		0.000	9,500		5 5 5 5 6 7 8 8	200		0000	0.300	0.200	
cu u		Length (m) Graund	36.00 + 5.332	66.00 +5.132	66.00 +4.928	20.06 +4.711	66,00 +4,711			76.00 + 5.507	85.75 + 5.332	1	87.49 +5.132	105.00 +4.928		93.60 +4.928	85.75 +4.928		87.49 +4.928	93.60 +4.928	1)	26.00 +4.711		68.00 + 4.711	152.00 + 6.050	1	160.00 + 5.300	1		160.00 + 5.140		89.00 +4.970	
Roughness Coefficient		Trench No.	80.4	BU-5	30-6-1	80.8	81.5.1		G.1	CO:2	cu-3		50.4	CU-\$-1		CU-S	CU-6		CU-7	8:00		CU-9-2		Ct):9:1	1-00		041.2			756	DU-5-1	9:0a	
	-	Remark	0.122	0.102	0.099	900'0	1		0.010	29 (0.080		0.100	9.166		0.084	0.078	-	0.102	960'0		0.024		0.119	0.046		0.029	***************************************		152	0.025	012	
191		Q (m2/seo)	0.042	0.063	0.040	900'0	9000		0.010	0.029	0.048	0.036	1900	0.063	0.046	0.039	0.024	0.037	0.064	0.036	0.092	0.024	0.056	0.06.1	0.946	0.019	0.010	0.063	0.027	0.062	0.023	0.012	
	0.2473 0.1728 0.2473 0.3102 ins Water Volume	- 5			0.7 135.0	ļ		1000	1	-	0.75 135.0		1	1			0.75 135.0		1 1		0.5 135.0	-	0.7 135.0]	0.8 [35.0	0.85 135.0			0.8 (35.0	1	1		
	———	Area (ha)			0.223 0.223			1000	0.033 0.033	160'0 160'0	0.172 0.172		0.339 0.339		0.243 0.243	0.122 0.122	0.172 0.172	0.235 0.235	0.244 0.244	0.227 0.227	0,491 0,491	0.301 0.301	0.215 0.215	0.197 0.197	0.152 0.152	0.060 0.060	0.030 0.030	0.210 0.210	0.090 0.090	0.208 0.208	0.082 0.082	0.041 0.041	
	R 0.0563	Calchment Area (ha)			38		П			1	.	1				H					182 54				ł	30			H	1	1	Н	l .
	KIK.		55 126	89 0	8-15	9:36		<u>.</u>	5	3	3 3	512	2	5 5	3	Ç. 19	3 3	C.12	3	S 5	5	# 15 E	3	C-22.	2 %	200	2012	722	250	02.2	2 2	D-0.	
	Prepared by Gust Checked by Y. Ando																																
														J	1/9	//	18	- //	200	Ż	L							/	91		97	/2	S00

FN: Calculation_Sheet

(I) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.								
Section	Civil	Calc. Index No.								
Subject	Storm Drainage	Page No. δ Rev.								
Section	Committed Support Mile Depth Are Depth Mark September Mile Depth Are Depth Mark September Mile Depth Are Depth Mark September Mark Septembe	Calc. Index No.								
150 x150 \(\) 200 x 300 \(\) 400 x 300 \(\) 400 x 450 \(\) 600 x 600 \(\) 600 \(\) 600 \(\) 600 \(\) 701 \(\) 100 \(\) 100 \(\) 100 \(\) 110 \	Carichment Acea (hz) Carichment Acea (hz)	E-15 70 40 0.280 0.281 0.005 0								
Prepared by Unio Checked by July 18 1200										

¿.).