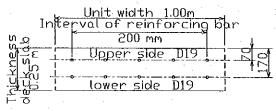
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ぐ/ Rev.
		Poforonooc/


3Deck Slab "S3"

· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary Parallel	Ordinary Vertical
reinforcing bar			D19	D19
number of reinforcing bar			5	5
area of reinforcing bar	As	$ m cm^2$	14.33	14.33
width of member	bw	mm	1,000	1,000
effective depth	d	mm	- 170	150
axial compressive force	N'd	kN	0	0
$A_{\rm w}$		$ m mm^2$	2.534	2.534
αs		. 0	90	90
s		mm	200	200
V_{cd}		kN	97.98	90.12
$ m V_{sd}$		kN	56.19	49.58
V_{yd}		kN	154.17	139.70
Vd	-	kN	46.82	61.51
Examination result (yi	V _d / V _{yd})	0.364	0.528
Judgment			O.K	O.K

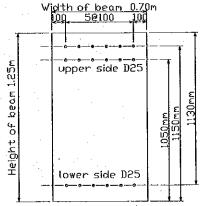
· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

In	<u>Unit width 1.00m</u> Prval of reinforcing bar
2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Upper side D19
는 요 지하는	lower side D19

Prepared by	YiAndo	Checked by 2	. Nishimuea
and the second	261 07 12002	: 1	08 108 12002

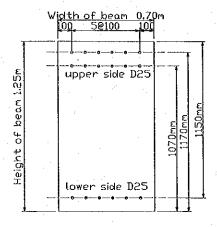

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc, Index No.
Subject	Quaywall	Page No. <i>ふ</i> シ Rev.
		References/

(ii) Beam

(1) The vertical direction beam to the face line

• Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load (Truck)	Earthquake
reinforcing bar			D25	D25	D25
number of reinforcing bar			6	6	6
area of reinforcing bar	As	$\mathrm{cm^2}$	30.40	30.40	30.40
width of member	b_{w}	mm	700	700	700
effective depth	d	mm	1,130	1,130	1,130
axial compressive force	N'a	kN	0	0	0
A _w		$\rm mm^2$	3.972	3.972	3.972
ας		۰	90	90	90
8		mm	100	100	100
V_{cd}		kN	226.81	226.81	226.81
V_{sd}		kN	1,170.88	1,170.88	1,170.88
$V_{\rm yd}$		kN	1,397.69	1,397.69	1,397.69
Vd		kN	426.69	626.66	591.19
Examination result (yi	Va/Vya)		0.366	0.538	0.423
Judgment			O.K	O.K	O.K


Prepared by	Y.Ando	Checked by	R. NISHIMURA
	261 07 12002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>ふ</i> Rev.

The parallel direction beam to the face line

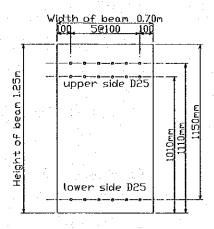
· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load (Truck)	Earthquake
reinforcing bar			D25	D25	D25
number of reinforcing bar			6	6	6
area of reinforcing bar	As	cm ²	30.40	30.40	30.40
width of member	$\mathbf{b_w}$	mm	700	700	700
effective depth	d	mm	1,150	1,150	1,150
axial compressive force	N'a	kN	0	0	0
$A_{\rm w}$		mm ²	5.730	5.730	5.730
αε		0	90	90	90
s		mm	100	100	100
Vcd		kN	224.30	224.30	224.30
$V_{\rm sd}$		kN	1,644.26	1,644.26	1,644.26
V _{yd}		kN	1,868.56	1,868.56	1,868.56
$V_{\rm d}$		kN	406.22	542.03	633.54
Examination result (γ _i · V	d/Vyd)	0.261	0.348	0.339
Judgment		٠.	O.K	ОК	O.K

Prepared by	Y. Ando	Checked by	2. NISHIMURA
	26107 12002		08 / 08 /2002

Project Section	Detailed Design on Port Reactivation Project in La Union Civil	Calc, File No, Calc, Index No.
Subject	Quaywall	Page No.
		References/

30ther beams (Cantilever (Beam 4), Beam of the Direction of Slant (Beam 7))


• Examination of shearing force capacity of ultimate limit state

		unit	Cantilever	Beam of the Direction of Slant
reinforcing bar	: 1		D25	D25
number of reinforcing bar			6	6
area of reinforcing bar	As	cm ²	30.40	30.40
width of member	b₩	mm	700	700
effective depth	d	mm	1,130	1,150
axial compressive force	N'a	kN	0	0
$A_{\mathbf{w}}$	•	mm^2	3.972	3.972
α ₈		0	90	90
s	*	mm	100	100
V_{cd}		kN	226.81	228.61
V _{sd}		kN	1,170.88	1,191.60
V_{yd}		kN	1,397.69	1,420.21
$V_{\rm d}$		kN	384.01	674.57
Examination result (γ _i · V	d/Vyd)		0.330	0.570
Judgment			O.K	O.K

· Dimension of an examination section

Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Beam of the Direction of Slant

Prepared by	Y, Ando	Checked by $ ho$. NISHIMURA
	261 07 12002		08 08 2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc, Index No.	
Subject	Quaywall	Page No. くぐ	Rev.
			ences/
l		Notes	3

(2) Examination of Serviceability Limit State

Design load is computed using the following formulas.

$$S_k = k_p \times S_p + k_r \times S_r$$

where

S_k: characteristic value of load for examination of the serviceability limit state

S_p: characteristic value of permanent load

S_r: characteristic value of variable load

 k_p,k_r : constants to represent the effects on crake widths and the corrosion of steel by the permanent load and variable load, respectively. It may be taken that k_p is 1.0 and k_r is 0.5.

a) Examination of Flexural Cracks

Flexural crack width (w (mm)) is computed by the following formulas.

$$w=k \cdot \{4c+0.7 (Cs - \phi)\} \cdot (\frac{\sigma_{sc}}{Es} + \epsilon'_{csd})$$

k ; constant indicating the effect of the bonding properties of the steel material, which may usually be taken as 1.0 in the case of deformed bars.

c ; covering(mm)

Cs ; distance between centers of steel materials(mm)

 ϕ ; diameter of steel materials(mm)

 ϵ 'csd ; constant introduced to represent the increase of crack width caused by creep and drying shrinkage of concrete (this can be o under seaweter, and elsewhere 150× 10^{-6})

 σ_{sc} ; increased stress on reinforcement $(=M_c/(A_s j d))$

Es ; Young's modulus of reinforcement (=2.00×10⁵ N/mm²)

M_e; bending moment

A_s; area of reinforcing bar (mm²)

j ; Distance between stress (mm)

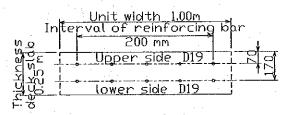
d ; effective depth (mm)

Permisible crake width is computed by the following formulas.

• Permisible crake width upper side reinforcing bar w_a=0.0040 c (mm)

lower side reinforcing bar w_a=0.0035 c (mm)

Prepared by		Y. Ando	Checked by R. NISHIMURA	
		261 07 12002		08 108 12002

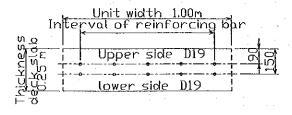

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ゞん Rev.
		References/

(i) Deck Slab

(Deck Slab "S1" : the parallel direction to the face line

· Examination of flexural crack of serviceability limit state

		unit	Ordinary		Wheel Load (Distribution)		Wheel Load (Partial distribution) Vertical to the face line		Wheel Load (Partial distribution) Parallel to the face line	
	.		upper	lower	upper	lower	upper	lower	upper	lower
reinforcing bar		mm	D19	D19	D19	D19	D19	D19	D19	D19
diameter	φ	mm	19	19	19	19	19	19	19	19
covering	c	mm	- 60	70	60	70	60	70	60	70
distance between centers of bar	Cs	mm	200	200	200	200	200	200	200	200
moment (permanent load)	Me	kN · m	7.60	3.45	7.60	3.45	7.60	3.45	7.60	3.45
moment (variable load)	Me	kN · m	25.32	11.49	26.50	12.02	21.06	21.06	26.94	26.94
moment (design load)	Me	kN · m	20.26	9.20	20.85	9.46	18.13	13.98	21.07	16.92
area of reinforcing bar (tension)	As	cm²	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
effective depth	d	mm	180	170	180	170	180	170	180	170
increased stress on reinforcement (design load)	σse	N/mm²	82.26	40.46	84.65	41.63	73.61	61.52	85.55	74.45
increased stress on reinforcement (permanent load)	σse	N/mm²	30.86	15.18	30.86	15.18	30.86	15.18	30.86	15.18
flexural crack width (design load)	w1	mm	0.206	0.143	0.210	0.146	0.190	0.186	0.212	0.212
flexural crack width (permanent load)	w2	mm	0.112	0.092	0.112	0.092	0.112	0.092	0.112	0.092
permisible crake width	Wa.	mm	0.240	0.245	0.240	0.245	0.240	0.245	0.240	0.245
Examination result	desi	gn load)	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa
Examination : (permanent l			w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa


Prepared by Y, Ando	Checked by R - NISHIMURA
2616712002	08/08/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.		
Section	Civil	Calc. Index No.		
Subject	Quaywall	Page No. <i>う</i> つ	Rev.	

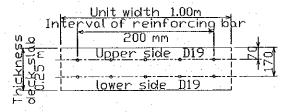
②Deck Slab "S1" : the vertical direction to the face line

• Examination of flexural crack of serviceability limit state

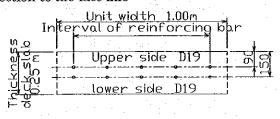
		unit	Ordinary		Wheel Load (Distribution)		Wheel Load (Partial distribution) Vertical to the face line		Wheel Load (Partial distribution) Parallel to the face line	
			upper	lower	upper	lower		upper	lower	upper
reinforcing bar		mm	D19	D19	D19	D19	D19	D19	D19	D19
diameter	φ	mm	19	19	19	19	19	19	19	19
covering	С	mm	- 80	90	80	80	80	90	80	90
distance between centers of bar	C _s	mm	200	200	200	200	200	200	200	200
moment (permanent load)	Me	kN·m	6.12	1.94	6,12	1.94	6.12	1.94	6.12	1.94
moment (variable load)	Ме	kN · m	20.41	6.47	21.36	6.77	20.52	20.52	14.83	14.83
moment (design load)	Me	kN · m	16.33	5.18	16.80	5.33	16.38	12.20	13.54	9.36
area of reinforcing bar (tension)	Ås	cm ²	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
effective depth	d	mm	160	150	160	150	160	150	160	150
increased stress on reinforcement (design load)	σ _{se}	N/mm²	65.39	22.81	67.30	23.47	65.61	53.78	54.22	41.24
increased stress on reinforcement (permanent load)	σ _{se}	N/mm²	24.52	8.55	24.52	8.55	24.52	8.55	24.52	8.55
flexural crack width (design load)	w1	mm	0.213	0.129	0.217	0.130	0.214	0.204	0.188	0.173
flexural crack width (permanent load)	w2	mm	0.122	0.094	0.122	0.094	0.122	0.094	0.122	0.094
permisible crake width	Wa	mm	0.320	0.315	0.320	0.315	0.320	0.315	0.320	0.315
Examination result (Examination result (design load)		w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa
Examination (permanent l			w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa

Prepared by		YiAndo	Checked by	2. NISHIMURA	
	· .	261 67 12002	·	08 / 08 /2002	

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ぐど Rev.
		Deferenced


③Deck Slab "S3"

• Examination of flexural crack of serviceability limit state

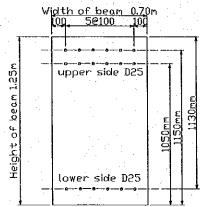

		unit	Ordi Para		Ordinary Vertical		
		0.115	upper	lower	upper	lower	
reinforcing bar		mm	D19	D19	D19	D19	
diameter	φ	mm	19	19	19	19	
covering	c	mm	60	70	80	90	
distance between centers of bar	C _s	mm	200	200	200	200	
moment (permanent load)	Me	kN · m	5.16		2.02	0.28	
moment (variable load)	Me	kN · m	17.19		6.73	0.92	
moment (design load)	Me	kN · m	13.76	_	5.39	0.74	
area of reinforcing bar (tension)	As	cm ²	14.33	14.33	14.33	14.33	
effective depth	d	mm	180	170	160	150	
increased stress on reinforcement (design load)	σse	N/mm²	55.85		21.57	3.26	
increased stress on reinforcement (permanent load)	σ _{se}	N/mm²	20.95		8.09	1.23	
flexural crack width (design load)	w1	mm	0.157		0.115	0.081	
flexural crack width (permanent load)	w2	mm	0.093	weekeed	0.085	0.076	
permisible crake width	Wa	mm	0.240	-	0.320	0.315	
Examination result (design	gn load	1)	w1 <wa O.K</wa 		w1 <wa O.K</wa 	w1 <wa O.K</wa 	
Examination result (perma	nent lo	oad)	w2 <wa O.K</wa 		w2 <wa O.K</wa 	w2 <wa O.K</wa 	

· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

	Prepared by	YAndo	Checked by	P. NISHIMURA
		26 1 67 12002		08 / 08 /2002

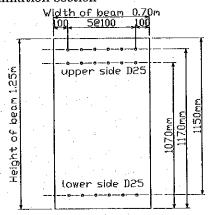

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>ら</i> 9 Rev.

(ii) Beam

The vertical direction beam to the face line

· Examination of flexural crack of serviceability limit state

	·		Ordinary		Wheel load (Truck)	
		unit	upper	lower	upper	lower
reinforcing bar		mm	D25	D25	D25	D25
diameter	ф	mm	25	25	25	25
covering	c	mm	90	110	90	110
distance between centers of bar	Cs	mm	100	100	100	100
moment (permanent load)	Me	kN · m	475.52	102.67	475.52	102.67
moment (variable load)	Me	kN·m	171.62	98.76	335.28	304.08
moment (design load)	Me	kN · m	561.33	152.05	643.16	254.71
area of reinforcing bar (tension)	A _s	cm²	60.804	30.402	60.804	30.402
effective depth	d	mm	1,100	1,130	1,100	1,130
increased stress on reinforcement (design load)	o se	N/mm²	98.39	47.77	112.73	80.03
increased stress on reinforcement (permanent load)	σse	N/mm²	83.35	32.26	83.35	32.26
flexural crack width (design load)	w1	mm	0.265	0.192	0.294	0.271
flexural crack width (permanent load)	w2	mm	0.234	0.153	0.234	0.153
permisible crake width	Wa	mm	0.360	0.350	0.360	0.350
Examination result (des	ign loa	d)	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa
Examination result (perma	anent l	oad)	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa


	Prepared by	YiAndo	Checked by	Z. NISHIMUZA
		261 07 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 60 Rev.
		References/ Notes

The parallel direction beam to the face line

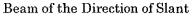
• Examination of flexural crack of serviceability limit state

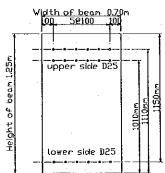
			Ordi	nary	Wheel loa	d (Truck)
		unit	upper	lower	upper	lower
reinforcing bar	*	mm	D25	D25	D25	D25
diameter	φ	mm	25	25	25	25
covering	С	mm	- 70	90	70	90
distance between centers of bar	C _s	mm	100	100	100	100
moment (permanent load)	Me	kN·m	475.52	36.36	475.52	36.36
moment (variable load)	Me	kN·m	106.68	58.35	204.95	338.05
moment (design load)	M_{e}	kN·m	528.86	65.535	578.00	205.39
area of reinforcing bar (tension)	$\Lambda_{\rm s}$	cm ²	60.804	30.402	60.804	30.402
effective depth	d	mm	1,120	1,150	1,120	1,150
increased stress on reinforcement (design load)	σ _{se}	N/mm²	90.60	20.17	99.02	63.21
increased stress on reinforcement (permanent load)	σ _{se}	N/mm²	81.46	11.19	81.46	11.19
flexural crack width (design load)	w1	mm	0.200	0.103	0.214	0.192
flexural crack width (permanent load)	w2	mm	0.185	0.085	0.185	0.085
permisible crake width	Wa	mm	0.280	0.315	0.280	0.315
Examination result (des	ign load)	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa
Examination result (perma	anent lo	ad)	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	261 17 12002		08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 6/	Rev.

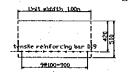
③Other beams (Cantilever (Beam 4), Beam of the Direction of Slant (Beam 7), Fender attachment part (apron))


References/ Notes


· Examination of flexural crack of serviceability limit state

		unit	Cantilever		Beam of the Direction of Slant		Fender attachment part	
			upper	lower	upper	lower	upper	lower
reinforcing bar		mm	D25	D25	D25	D25	D19	D19
diameter	φ	mm	25	25	25	25	19	19
covering	C	mm	90	110	130	90	70	90
distance between centers of bar	C _s	mm	100	100	100	100	100	200
moment (permanent load)	Me	kN·m	288.41		114.24	57.12	0.00	0.00
moment (variable load)	Me	kN·m	621.18		447.68	299.15	188.70	71.85
moment (design load)	Me	kN·m	599.00		338.08	206.70	94.35	35.93
Axial Load (permanent)	N	kN	0.00	· -	0.00	0.00	0.00	-48.00
area of reinforcing bar (tension)	As	cm ²	60.804	30.402	60.804	30.402	28.65	14.325
effective depth	d	mm	1,100	1,130	1,060	1,150	420	400
increased stress on reinforcement (design load)	σse	N/mm²	104.99	_	61.57	63.87	86.50	86.66
increased stress on reinforcement(permanent load)	σ _{se}	N/mm²	50.55		20.80	17.65	0.00	89.72
flexural crack width (design load)	w1	mm	0.278		0.262	0.194	0.196	0.284
flexural crack width (permanent load)	w2	mm	0.166		0.145	0.098	0.000	0.291
permisible crake width	Wa	mm	0.360	<u> </u>	0.400	0.315	0.245	0.315
Examination result (design load)			w1 <wa O.K</wa 		w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <w<sub>a O.K</w<sub>	w1 <wa O.K</wa
Examination result (perma	nent	load)	w2 <wa O.K</wa 		w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa

· Dimension of an examination section


Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Fender attachment part

Horizontal reinforcing bar

Vertical reinforcing bar

Unit that h 100-	
	g
tensile reinforcing bar 319	_]a

Prepared by	Ando Checked by	2. NISHIMURA
2.610	7 /2002	08 1 08 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>62</i> Rev.
		References/ Notes

b) Examination of Shear Cracks

For members subject to shear forces, it may not be required to examine shear cracks when the design shear force, Vd, is smaller than 70% of the design shear capacity of concrete, Vcd. When examination for shear crack is necessary, the stress in shear reinforcement due to permanent load is confirmed smaller than the limiting value for the increment in stress in ordinary reinforcement due to permanent load.

$$\sigma \text{ wpd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd}) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \text{ s} + \cos \alpha \text{ s})} \times \frac{\text{Vpd} + \text{Vcd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

wher $\sqrt{\sigma}$ wpd $\frac{1}{2}$ design stress in shear reinforcement due to permanent load

Vpd : design shear force produced by permanent load

Vrd : design shear force produced by variable load

Vcd : design shear capacity of concrete

(see examination of shearing force of ultimate limit state

It considers as $\gamma b = \gamma c = 1.0$)

Aw : area of one unit of shear reinforcement

s : spacing of shear reinforcement

z : distance from compression resultant to centroid of tension

reinforcement (=d/1.15)

d : effective depth

 α s : angle between shear reinforcement and axis of member

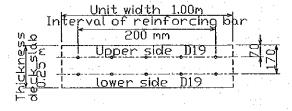
: The factor for taking into consideration the influence of the

frequency of change load (=0.5)

The limiting value for the increment in stress in ordinary reinforcement due to permanent load " σ sp" uses the following values. (see "Standard Specifications of Concrete (in Japan))

When a upper side reinforcing bar steel rod is examined $\sigma \text{ sp} = 100 \text{ N/mm}^2$ When a lower side reinforcing bar steel rod is examined $\sigma \text{ sp} = 80 \text{ N/mm}^2$

	· · · · · · · · · · · · · · · · · · ·				
		Prepared by	Y. Ando	Checked by	R. NISHI MULA
			261 8712002		08 1 08 12003

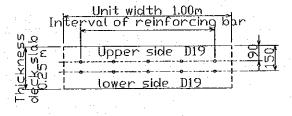

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>ሬ</i> ሪ Rev.
		References/

(i) Deck Slab

(1) Deck Slab "S1": the parallel direction to the face line

· Examination of shearing crack

	-	unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution) Vertical to the face line	Wheel Load (Partial distribution) Parallel to the face line
reinforcing bar			D19	D19	D19	D19
number of reinforcing bar			5	5	5	5
area of tension reinforcing bar	As	cm ²	14.33	14.33	14.33	14.33
width of member	$b_{\rm w}$	mm	1,000	1,000	1,000	1,000
effective depth	d	mm	170	170	170	170
compression force of an axis	N'a	kN	0	0	0	0
design shear capacity of concrete	Vcd	kN	139.02	139.02	139.02	139.02
design shear force	V_{d}	kN	31.21	32.12	28.23	24.05
Examination result (V _d /V _{cd})			0.225	0.231	0.203	0.173
Necessity for examination of s	hear	crack	without necessity	without necessity	without necessity	without necessity
σ wpd				—	: . '	<u> </u>
σsp		**			_	<u> </u>
Judgment			<u>-</u>	<u> </u>		


-		Prepared by	Y. Ando	Checked by	2. NISHIMURA
			2610712002		08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywali	Page No. 6.
		References/ Notes

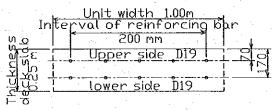
②Deck Slab "S1" : the vertical direction to the face line

· Examination of shearing crack

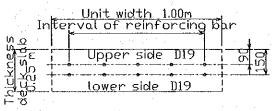
,					
	unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution) Vertical to the face line	Wheel Load (Partial distribution) Parallel to the face line
		D19	D19	D19	D19
		5	5	5	5
As	cm ²	14.33	14.33	14.33	14.33
b₩	mm	1,000	1,000	1,000	1,000
d	mm	150	150	150	150
N'a	kN	0	0	0	0
V_{cd}	kN	127.86	127.86	127.86	127.86
$V_{\rm d}$	kN	34.14	35.13	25.15	29.33
		0.267	0.275	0.197	0.220
hear	crack	without necessity	without necessity	without necessity	without necessity
		<u> </u>		1 · · · · ·	
		—	_		
		_		_	
	As bw d N'a Vcd	As cm² bw mm d mm N'd kN Vcd kN	D19 5 As cm² 14.33 bw mm 1,000 d mm 150 N'd kN 0 Vcd kN 127.86 Vd kN 34.14 0.267 without	unit Ordinary Wheel Load (Distribution) D19 D19 5 5 As cm² 14.33 14.33 bw mm 1,000 1,000 d mm 150 150 N'd kN 0 0 Vcd kN 127.86 127.86 Vd kN 34.14 35.13 0.267 0.275 bear areal without without	unit Ordinary Wheel Load (Partial distribution) Wheel Load (Partial distribution) D19 D19 D19 D19 As cm² 14.33 14.33 14.33 bw mm 1,000 1,000 1,000 d mm 150 150 150 N'd kN 0 0 0 V _{cd} kN 127.86 127.86 127.86 V _d kN 34.14 35.13 25.15 box or suck without without without

Prepared by	Y. Ando	Checked by	. NISHIMURA
	261 07 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. もり Rev.
		References/


③Deck Slab "S3"

· Examination of shearing crack

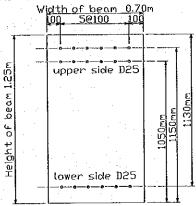

		unit	Ordinary Parallel	Ordinary Vertical
reinforcing bar			D19	D19
number of reinforcing bar			- 5	5
area of tension reinforcing bar	As	$ m cm^2$	14.33	914.33
width of member	$\mathbf{b}_{\mathbf{w}}$	mm	1,000	1,000
effective depth	d	mm	170	150
compression force of an axis	N'a	kN.	0	0
design shear capacity of concrete	V_{cd}	kN	139.02	127.86
design shear force	Vd	kN	24.48	32.16
Examination result (V _d /V _{cd})		- 1- 1	0.176	0.252
Necessity for examination of s	hear c	rack	without necessity	without necessity
σwpd	·		_	_
σsp			_	
Judgment				

· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

Prepared by	Y. Ando	Checked by	e. NISHIMURA
	261 07 12002		<i>08 08 </i> 2002

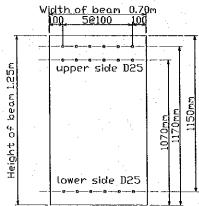

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 66 Rev.
		References/
. /#X Y	.	Notes

(ii) Beam

(1) The vertical direction beam to the face line

 \cdot Examination of shearing crack

_			
	unit	Ordinary	Wheel Load (Truck)
1.		D25	D25
		6	6
As	cm²	30.402	30.402
$\mathbf{b}_{\mathbf{w}}$	mm	700	700
d	mm	1,130	1,100
N'a	kN	0	0
V_{cd}	kN	321.80	321.80
V_d	kN	367.01	424.46
		1.140	1.319
hear c	ack	with necessity	with necessity
		58.46	70.41
		80.00	80.00
·		O.K	O.K
	h _w d N'a Vcd Vd	As cm² bw mm d mm N'a kN Vcd kN	D25 6 As cm² 30.402 bw mm 700 d mm 1,130 N'd kN 0 Vcd kN 321.80 Vd kN 367.01 1.140 hear crack with necessity 58.46 80.00


Prepared by	Y. Ando	Checked by ₽	. NISHIMURA
	20107/2002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 67	Rev.

The parallel direction beam to the face line

• Examination of shearing crack

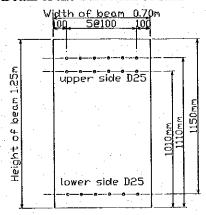
	_			
		unit	Ordinary	Wheel Load (Truck)
reinforcing bar		1 1	D25	D25
number of reinforcing bar			6	6
area of tension reinforcing bar	As	cm ²	30.402	30.402
width of member	$\mathbf{b_w}$	mm	700	700
effective depth	d	mm	1,150	1,150
compression force of an axis	N'a	kN	0	0
design shear capacity of concrete	V_{cd}	kN	318.23	318.23
design shear force	$V_{\rm d}$	kN	466.36	566.29
Examination result (V _d /V _{cd})			1.465	1.779
Necessity for examination of s	hear c	rack	with necessity	with necessity
σwpd			57.53	70.15
σsp			80.00	80.00
Judgment		***************************************	O.K	O.K

1			The second secon		
		Prepared by	Y. Ando	Checked by	2. NISHIMURA
			261 07 12007		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🕹& Rev.

References/

(3) Other beams (Cantilever (Beam 4), Beam of the Direction of Slant (Beam 7) Notes


Examination of shearing crack

		unit	Cantilever	Beam of the Direction of Slant
reinforcing bar			D25	D25
number of reinforcing bar			6	6
area of tension reinforcing bar	As	cm^2	30.402	30.402
width of member	b_w	mm	700	700
effective depth	d	mm	1,130	1,150
compression force of an axis	N'a	kN	0	0
design shear capacity of concrete	V_{cd}	kN	321.80	324.35
design shear force	Vd	kN	234.40	335.23
Examination result (V _d /V _{cd})	i.		0.728	1.034
Necessity for examination of s	hear c	rack	with necessity	with necessity
σwpd			30.71	48.72
σsp	•		80.00	80.00
Judgment			O.K	O.K

· Dimension of an examination section

Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Beam of the Direction of Slant

No. 1 as de la companya de la compa		Prepared by	Y. Ando	Checked by	R. NISHIMURA
			2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 69 Rev.
		References/

(3) Examination to Fatigue Limit State

An examination case is set to Wheel Load (Truck). The fatigue life (number of times of a wheel load action) is as follows.

The number of car loading per car carrier

: 650

The number of times of car carriers entry into port per year : 33 times / year

Lifetime of Berth

Fatigue Life

$$650 \times 33 \times 50 = 1,072,500$$
 times

The unloading of the car is equally carried out at platforms 1 and 2. Therefore, lifetime per platform becomes as follows.

$$N = 1,072,500 / 2 = 536,250 \text{ times} \rightarrow 540,000 \text{ times}$$

a) Examination of Fatigue Limit of Bending

(i) Examination of reinforcing bar

The safety to the fatigue limit state of the reinforcing bar is checked by the following formulas.

$$\gamma i \times \sigma \text{ sed} / (\text{fsrd} / \gamma b) \leq 1.0$$

where

σ srd : stress in reinforcement due to variable load (N/mm²)

: structure factor γb : member factor

: design fatigue strength for a reinforcing bar fsrd

$$fsrd = 190 \times \frac{10^{\alpha}}{N^k} \times (1 - \frac{\sigma sp}{fud}) / \gamma s$$

$$\alpha = k_0 \times (0.81 - 0.003 \times \phi)$$

$$k = 0.12$$

: diameter of reinforcing bar (mm)

: factor concerning α (=1.0) k_0

fud : design tensile strength of steel (N/mm²) (=fuk / γ s)

 $=490 / 1.05 = 466.67 \text{ N/mm}^2$

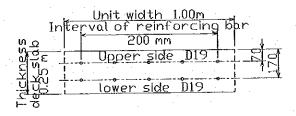
: characteristic value for tensile strength of steel (N/mm²) fuk

: material factor for steel

 σ sp: stress of a reinforcing bar due to permanent load (N/mm²)

: fatigue life

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	261 07/200Z		08 1 08 12002

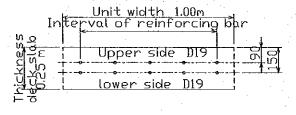

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 20 Rev.
		References/ Notes

①Deck Slab

 $\bigcirc -1$ Deck Slab "S1" : the parallel direction to the face line

OExamination of fatigue limit of reinforcing bar (deck slab)

	unit	Wheel Load (Distribution)		Wheel (Partial distrib Vertical to lir	ution) the face	Wheel Load (Partial distribution) Parallel to the face	
:		upper	lower	upper	lower	upper	lower
α		0.753	0.753	0.753	0.753	0.753	0.753
k		0.12	0.12	0.12	0.12	0.12	0.12
diameter φ	mm	19	19	19	19	19	19
ko		1.0	1.0	1.0	1.0	1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67	466.67	466.67	466.67	466.67
bending moment (permanent load) Mpd	kN · m	7.60	3.45	7.60	3,45	7.60	3.45
bending load (variable load) Mrd	kN•m	26.50	12.02	21.06	21.06	26.94	26.94
σsp	N/mm ²	30.86	15.18	30.86	15.18	30.86	15.18
fatigue life N	times	540,000	540,000	540,000	540,000	540,000	540,000
design fatigue strength for a reinforcing bar fsrd		196.32	203.38	196.32	203.38	196.32	203.38
stress in reinforcing bar variable load σsrd	due to	107.59	52.89	85.51	92.67	109.38	118.54
Examination result γi·σsrd/(fsrd/b)		0.55 O.K	0.26 O.K	0.44 O.K	0.46 O.K	0.56 O.K	0.58 O.K



Prepared by	Y. Ande	Checked by	R. NISHIMURA
	261 07 12002	·	<i>08 0</i> 8 <i> </i> 2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 7/	Rev.
		Refer	ences/

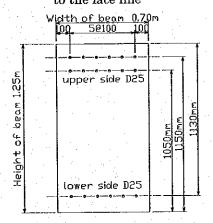
① − 2 Deck Slab "S1": the vertical direction to the face line ○Examination of fatigue limit of reinforcing bar (deck slab)

	unit	Wheel (Distril		Wheel (Partial distrib Vertical to lin	ution) o the face	Wheel (Partial distrib Parallel t lin	ution) o the face
		upper	lower	upper	lower	upper	lower
α		0.753	0.753	0.753	0.753	0.753	0.753
k		0.12	0.12	0.12	0.12	0.12	0.12
diameter φ	mm	19	19	19	19	19	19
\mathbf{k}_0		1.0	1.0	1.0	1.0	1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67	466.67	466.67	466.67	466.67
bending moment (permanent load) Mpd	kN · m	6.12	1.94	6.12	1.94	6.12	1.94
bending load (variable load) Mrd	kN·m	21.36	6.77	20.52	20.52	14.83	14.83
σsp	N/mm ²	24.52	8.55	24.52	8.55	24.52	8.55
fatigue life N	times	540,000	540,000	540,000	540,000	540,000	540,000
design fatigue strength for a reinforcing bar fsrd		199.18	206.37	199.18	206.37	199.18	206.37
stress in reinforcing bar variable load σ srd	due to	85.56	29.84	82.20	90.46	59.41	65.37
Examination result γi·σsrd/(fsrd/b)		0.43 O.K	0.14 O.K	0.41 O.K	0.44 O.K	0.30 O.K	0.32 O.K

 		and the second second second	er de la companya de	
	Prepared by	Y. Ando	Checked by	e. Nishimuea
		261 07 12002		08 1 08 12002

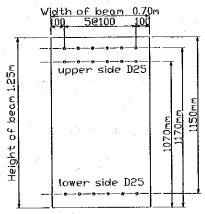
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 72 Rev.	
		References/	

@Beam


OExamination of fatigue limit of reinforcing bar (beam)

		The vertica	l direction		
	unit	beam to the	face line	beam to the	face line
		upper	lower	upper	lower
α		0.735	0.735	0.735	0.735
k		0.12	0.12	0.12	0.12
diameter φ	mm	25	25	25	25
ko		1.0	1.0	1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67	466.67	466.67
bending moment (permanent load) Mpd	kN · m	475.52	102.67	475.52	36.36
bending load (variable load) Mrd	kN · m	335.28	304.08	204.95	338.05
σsp	N/mm ²	83.35	32.26	81.46	11.19
fatigue life N	times	540,000	540,000	540,000	540,000
design fatigue strength for a reinforcing bar ford		165.67	187.74	166.48	196.85
stress in reinforcing bar variable load øsrd	due to	58.77	95.54	35.11	104.03
Examination result γi·σsrd/(fsrd/b)		0.35 O.K	0.51 O.K	0.21 O.K	0.53 O.K

· Dimension of an examination section (Beam)


The vertical direction beam

to the face line

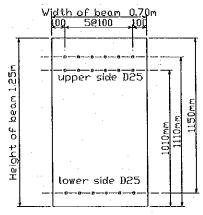
The parallel direction beam

to the face line

1					
-		Prepared by	Y. Ando	Checked by	P. NISHIMURA
			261 07 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 23 Rev.

30ther beams (Cantilever (Beam 4), Beam of the Direction of Slant (Beam 7))


OExamination of fatigue limit of reinforcing bar (beam)

·		Cantilever	Beam of the Direction of Slant		
	unit	upper	upper	lower	
α		0.735	0.735	0.735	
k		0.12	0.12	0.12	
diameter φ	mm	25	25	25	
\mathbf{k}_0		1.0	1.0	1.0	
design tensile strength of steel fud	N/mm²	466.67	466.67	466,67	
bending moment (permanent load) Mpd	kN · m	288.41	114.24	57.12	
bending load (variable load) Mrd	kN · m	621.18	447.68	299.15	
σsp	N/mm^2	50.55	20.80	17.65	
fatigue life N	times	540,000	540,000	540,000	
design fatigue strength for a reinforcing bar fsrd		179.84	192.70	194.06	
stress in reinforcing bar variable load øsrd	due to	108.88	81.53	92. 45	
Examination result γi·σsrd/(fsrd/b)		0.61 O.K	0.42 O.K	0.48 O.K	

· Dimension of an examination section

Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Beam of the Direction of Slant

Prepared by	Y. Ando	Checked by	e. NISHIMURA
	261 07 12002		08 1 08 1200 Z

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🥍 Rev.
		References

(ii) Examination of Concrete

The safety to the fatigue limit state of concrete is checked by the following formulas.

$$\gamma i \times \sigma' \text{ced} / (\text{frd} / \gamma b) \leq 1.0$$

where

 σ 'erd : stress in concrete due to variable load (N/mm²)

γ i : structure factor

γb: member factor

frd : design fatigue strength for concrete (N/mm²)

$$\operatorname{frd} = k_1 \times \operatorname{fd} \times (1 - \frac{\sigma p}{\operatorname{fd}}) \times (1 - \frac{\log N}{K})$$

$$k_1 = 0.85$$
 , $K=17$

fd: design compressive strength of concrete (N/mm²) (=fck / γc)

 $fd = 24 / 1.3 = 18.46 \text{ N/mm}^2$

fck : basic strength for design (= 24 N/mm²)

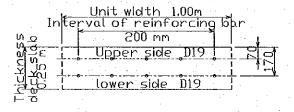
γ c : material factor for concrete (=1.3)

σp: stress of concrete due to permanent load (N/mm²)

N : fatigue life

Prepared by	Y. Ando	Checked by	. NISHIMURA
	261 07 12002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🏄 Rev.


①Deck Slab

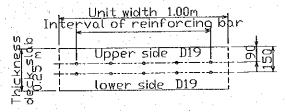
① − 1 Deck Slab "S1" : the parallel direction to the face line

OExamination of fatigue limit of bending of concrete (deck slab)

-			•					
	unit	Wheel (Distril		(Partial distrib	ution) o the face	Wheel (Partial distrib Parallel t lii	ution) o the face	
		upper	lower	upper	lower	upper	lower	
design compressive strength of concrete fd	IN/mm4 I	18.46	18.46	18.46	18.46	18.46	18.46	
k1		0.85	0.85	0.85	0.85	0.85	0.85	
K		17	17	17	17	17	17	
stress of concrete due to permanent load op	N/mm ²	1.36	0.68	1.36	0.68	1.36	0.68	
fatigue life N	times	540,000	540,000	540,000	540,000	540,000	540,000	
design compressive stren concrete frd	gth of	9.63	10.02	9.63	10.02	9.63	10.02	
stress in concrete due to load σ' crd	variable	4.75	2.35	3.77	4.12	4.83	5.27	
Examination result γi×σ'crd/(frd/γ	b)	0.49 O.K	0.23 O.K	0.39 O.K	0.41 O.K	0.50 O.K	0.53 O.K	

*Section force is the same value as what was used by examination of reinforcing bar.

Prepared by	Y. Ando	Checked by	E. NISHIMURA
	2610712002		08 1 08 12002


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 76 Rev.
		References/ Notes

①-2 Deck Slab "S1": the vertical direction to the face line

OExamination of fatigue limit of bending of concrete (deck slab)

	unit	Wheel (Distribution		Wheel (Partial distrib Vertical to lir upper	ution) the face		ution)
design compressive strength of concrete fd	N/mm²	18.46	18.46	18.46	18.46	18.46	18.46
k1		0.85	0.85	0.85	0.85	0.85	0.85
К		17	17	17	17	17	17
stress of concrete due to permanent load op	N/mm²	1.29	0.46	1.29	0.46	1.29	0.46
fatigue life N	times	540,000	540,000	540,000	540,000	540,000	540,000
design compressive stren	gth of	9.67	10.14	9.67	10.14	9.67	10.14
stress in concrete due to load σ'crd	variable	4.51	1.61	4.34	4.87	3.13	3.52
Examination result	b)	0.47 O.K	0.16 O.K	0.45 O.K	0.48 O.K	0.32 O.K	0.35 O.K

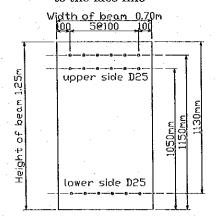
*Section force is the same value as what was used by examination of reinforcing bar.

		Prepared by	Y. Ando	Checked by	E. NISHIMURA
1			261 07 12002		08/08/2008

Project	Detalled Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 22 Rev.
		References/

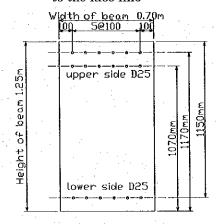
@Beam

OExamination of fatigue limit of bending of concrete (beam)


	unit		l direction e face line	The paralle beam to the	
	-	upper	lower	upper	lower
design compressive strength of concrete fd	N/mm²	18.46	18.46	18.46	18.46
k1		0.85	0.85	0.85	0.85
К		17	17	17	17
stress of concrete due to permanent load op	N/mm²	2.89	0.76	2.78	0.26
fatigue life N	times	540,000	540,000	540,000	540,000
design compressive stren	gth of	8.77	9.97	8.83	10.26
stress in concrete due to load o'erd	variable	2.04	2.26	1.20	2.38
Examination result γ i×σ'crd/(frd/γ	b)	0.23 O.K	0.23 O.K	0.14 O.K	0.23 O.K

*Section force is the same value as what was used by examination of reinforcing bar.

· Dimension of an examination section


The vertical direction beam

to the face line

The parallel direction beam

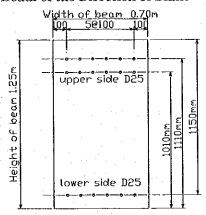
to the face line

Prepared by Y. Ando	Checked by P. NISHIMURA
261 07 12002	08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 18 Rev.
······································		References/

(3)Other beams (Cantilever (Beam 4), Beam of the Direction of Slant (Beam 7))

OExamination of fatigue limit of bending of concrete (beam)


		Cantilever	Beam of the Di	rection of Slant
	unit -	upper	upper	lower
design compressive strength of concrete fd	N/mm²	18.46	18.46	18.46
k1		0.85	0.85	0.85
K		17	17	17
stress of concrete due to permanent load σp	N/mm²	1.75	0.73	0.43
fatigue life N	times	540,000	540,000	540,000
design compressive stren concrete frd	gth of	9.41	9.99	10.16
stress in concrete due to load o'crd	variable	3.78	2.86	2.26
Examination result γ i× σ 'crd / (frd /γ	b)	0.40 O.K	0.29 O.K	0.22 O.K

*Section force is the same value as what was used by examination of reinforcing bar.

· Dimension of an examination section

Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Beam of the Direction of Slant

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 29 Rev.

b) Examination of Fatigue Limit of Shear

References/ Notes

Examination of fatigue limit of shear checks the safety of only a concrete

portion. When design shear force exceeds design shear fatigue capacity of a concrete portion, the stress of shear reinforcement is examined.

Examination of fatigue limit of shear of a concrete portion checks the following formulas.

$$\gamma i \times Vrd / Vrcd \leq 1.0$$

$$Vrcd = Vcd \times (1 - Vpd / Vcd) \times (1 - \log N / 11)$$

where, Vrd : design shear force produced by variable load

Vrcd: design shear fatigue capacity of member without shear reinforcement

Vcd: design shear capacity of concrete

(see examination of shearing force of ultimate limit state)

N : fatigue life

Vpd : design shear force produced by permanent load

When not filling the above-mentioned formula, the following formulas examine shear reinforcement.

$$\gamma i \times \sigma \text{ wrd} / (\text{ fwrd} / \gamma b) \leq 1.0$$

$$\begin{array}{ll} \text{design stress in shear} \\ \text{reinforcement due to} \\ \text{permanent load} \end{array} \quad \sigma \text{ wpd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd} \,) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \, \text{s} + \cos \alpha \, \text{s} \,)} \times \frac{\text{Vpd} + \text{Vcd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

$$\begin{array}{ll} \text{design stress in shear} \\ \text{reinforcem ent due to} \\ \text{variable bad} \end{array} \quad \sigma \text{ wrd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd}) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \, \text{s} + \cos \alpha \, \text{s})} \times \frac{\text{Vrd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

design fatigue strength for reinforcing bar (shear reinforcement)
$$\text{fwrd} = 190 \times \frac{10^{\alpha}}{N^k} \times (1 - \frac{\sigma \text{ wpd}}{\text{fud}}) / \gamma \text{ s}$$

where. Aw: area of shear reinforcement within distance "s"

s : spacing of vertical shear reinforcements

z : distance from compression resultant to centroid of tension reinforcement (=d/1.15)

d : effective depth

 α s : angle between shear reinforcement and axis of member

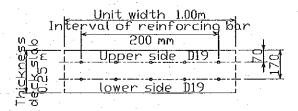
fud: design tensile strength of steel $(=490 / 1.05 = 466.67 \text{ N/mm}^2)$

N : fatigue life

$$\alpha = k_0 \times (0.81 - 0.003 \times \phi)$$
 ($k_0 = 1.0, \phi$: diameter of reinforcing bar)

$$k = 0.12$$
 , $k_2 = 0.5$

Since shear reinforcement has the bent portion, design fatigue strength, fwrd, is taken as 50% of value of a calculation result.

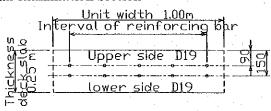

Prepared by	Y. Ando	Checked by	. NISHIMURA
	2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.
		References/

(i) Deck Slab

①Deck Slab "S1" : the parallel direction to the face line

		the paralle	el direction to th	e face line
	unit	Wheel Load (Distribution)	Wheel Load (Partial distribution) Vertical to the face line	Wheel Load (Partial distribution) Parallel to the face line
Vpd	kN	11.70	11.70	11.70
Vrd	kN	40.83	33.06	24.69
Yed	kN	127.38	127.38	127.38
Vrcd	kN	55,40	55.40	55.40
Examination result γi·Vrd	/ Vrcd	0.737	0.597	0.446
Necessity for examination of reinforcement	shear	without necessity	without necessity	without necessity
α		-		
k				_
diameter of reinforcing bar φ	mm			
ko			_	· —
design tensile strength of steel fud	N/mm²			
design stress in shear reinforcement due to permanent load owpd	N/mm²	: <u>-</u>	_	 .
fatigue life N	times	_		
design fatigue strength for rei bar fwrd	nforcing		_	
design stress in shear reinforce to variable load σwrd	ement due			<u>—</u>
Examination result γi·σwrd/(fwrd/b)				



	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		26107 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. S∕ Rev.
		References/

②Deck Slab "S1": the vertical direction to the face line

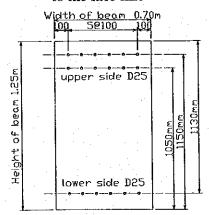
		the vertica	l direction to th	e face line
	unit	Wheel Load (Distribution)	Wheel Load (Partial distribution) Vertical to the face line	Wheel Load (Partial distribution) Parallel to the face line
Vpd	kN	12.80	12.80	12.80
٧rd	kN	44.65	24.69	33.06
: Vcd	kN	117.15	117.15	117.15
Vrcd	kN	49.97	49.97	49.97
Examination result yi · Vrd	/ Vrcd	0.894	0.494	0.662
Necessity for examination of reinforcement	shear	without necessity	without necessity	without necessity
α		1	-	<u> </u>
k	. :	.— .	_	-
diameter of reinforcing bar ϕ	mm	-		-
ko			: -	<u> </u>
design tensile strength of steel fud	N/mm²	:	_	_
design stress in shear reinforcement due to permanent load σwpd	N/mm²			· · · · · ·
fatigue life N	times	: :		<u></u>
design fatigue strength for rei bar fwrd	nforcing		_	_
design stress in shear reinforc to variable load øwrd	ement due			_
Examination result γi·σwrd/(fwrd/b)		_		<u> </u>

	Prepared by	Y. Ando	Checked by	. NISHI MURA
		261 07 1200 z		08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 82 Rev.

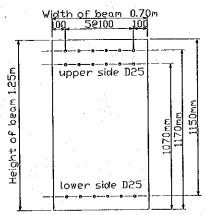
(ii) Beam

References/ Notes


The parallel and vertical direction to the face line

_			
		The vertical	The parallel
	unit	direction beam to	direction beam to
		the face line	the face line
Vpd	kN	271.52	370.87
Vrd	kN	305.88	390.83
Ved	kN	294.86	291.58
Yred	kN	11.18	0.0
Examination result yi Vrd	/ Vrcd	6.686	Vpd > Vcd
Necessity for examination of reinforcement		with necessity	with necessity
α		0.771	0.771
k		0.12	0.12
diameter of reinforcing bar φ	mm	13	13
ko		1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67
design stress in shear reinforcement due to permanent load σwpd	N/mm²	71.53	70.68
fatigue life N	times	540,000	540,000
design fatigue strength for rei bar fwrd	nforcing	92.76	92.97
design stress in shear reinforce to variable load σwrd	ement due	38.63	41.70
Examination result γi·σwrd/(fwrd/b)		0.42 O.K	0.45 O.K

· Dimension of an examination section


The vertical direction beam

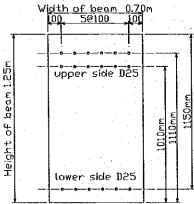
to the face line

The parallel direction beam

to the face line

	Prepared by	Y. Ando	Checked by	R. NISHIMURA
· · · · · · · · · · · · · · · · · · ·		2610712002		08 08 2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. &♂ Rev.
		References/


②Other beams (Cantilever (Beam 4), Beam of the Direction of Slant (Beam 7)

	unit	Cantilever	Beam of the Direction of Slant
Vpd	kN	137.34	99,49
Vrd	kN	194.12	471.47
Vcd	kN	294.86	297.19
Vrcd	kN	75.43	94.67
Examination result yi · Vrd	/ Vrcd	2.573	4.980
Necessity for examination of reinforcement	shear	with necessity	with necessity
α		0.771	0.771
k		0.12	0.12
diameter of reinforcing bar ø	mm	13	13
\mathbf{k}_0		1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67
design stress in shear reinforcement due to permanent load σwpd	N/mm²	32.54	48.59
fatigue life N	times	540,000	540,000
design fatigue strength for rei bar fwrd	nforcing	101.92	98.15
design stress in shear reinforce to variable load σwrd	ement due	14.61	57.75
Examination result γi·σwrd/(fwrd/b)	11.11	0.14 O.K	0.59 O.K

· Dimension of an examination section

Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Beam of the Direction of Slant

	Prepared by	Y. Ando	Checked by	2. NISHIMURA
		2110712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. みタ Rev.	
		References/	

7) Design of Pile Head

Because the thickness of the concrete above the pile heads is small in pier, the embedment length of pile is calculated on the assumption that there is no punching shear of concrete and the loads are transmitted from the beams to piles only through the bonding between the pile circumference and concrete without assistance of shear strength of concrete against punching

(1) Section Force

Maximum axial force Sd = 1,084.0 kN

(Earthquake parallel direction to the face line)

Maximum pile head moment $M_0 = 1,202.2 \text{ kN} \cdot \text{m}$ (Earthquake Sea \rightarrow Land)

(2) Examination to pile head moment

The necessity embedding length to pile head moment computes from the following formulas.

$$L = \sqrt{(6 \times M_0 / (B \times f'ad))} \times \gamma b \times \gamma i$$

where L: necessity embedding length to pile head moment (mm)

 M_0 : pile head moment (= 1,202,200,000 N • mm)

: diameter of the pile (= 800 mm)

f'ad: design bearing strength of superstructure

(The same value as the design compression strength of concrete)

$$(= 24 / 1.3 = 18.46 \text{ N/mm}^2)$$

 γ b: member factor (=1.15)

y i : structure factor (=1.0 (earthquake condition))

 $\sqrt{(6 \times 1,202,200,000/(800 \times 18.46)) \times 1.15 \times 1.0} = 803.7 \text{ mm}$

Ì	Prepared by	Y. Ando	Checked by	P. NISHIMURA
		261 07 12002		08/08/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🥴 Rev.
		Poforoncos/

(3) Examination to axial force

The necessity embedding length to axial force computes from the following formulas.

$$L = P/(\phi \times fbod/\gamma b)$$

where P: calculated value of axial force acting on pile in design

(=Sd=1,084,000 N)

 ϕ : outer perimeter of the cross section of pile (diameter: 800 mm)

fbod: design bond strength between the pile and concrete

 $(=0.11 \times \text{fck}^{2/3} / \gamma \text{ c} = 0.11 \times 24^{2/3} / 1.3 = 0.704 \text{ N/mm}^2)$

fck: characteristic compressive strength of concrete

γ c: material factor for concrete

 γ b: member factor

L=1,084,000 / $(800 \times \pi \times 0.704 / 1.0) = 612.7 \text{ mm}$

(4) Determination of the embedding length of piles

The embedding length to superstructure of a steel pipe pile does as follows from the above-mentioned examination result.

L = 850 mm

		Prepared by	Y. Ando	Checked by	. NISHIMURA
L			261 07 1200 Z		08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Cálc. Index No.
Subject	Quaywall	Page No. 86 Rev.
		References/

8) Examination of welding of reinforcing bar and steel pipe pile

The lower reinforcing bar of a beam is welded to the plate attached in the steel pipe pile. The diameter and number of lower reinforcing bar of the parallel and vertical directions beam to the face line are as follows.

Diameter: D25 , Number: 6 pieces

(1) Examination of thickness of plate

The thickness (t) of a plate is calculated by the following formula.

$$t = T/(L \times \tau_{ta})$$
 (mm)

where T: Action tension (N)

$$T = As \times \sigma_{sa} \times n$$

As: cross-section area of reinforcing bar (mm^2) (D25 As = 506.7mm²)

 σ_{sa} : allowable stress of reinforcing bar (SD345: =176 N/mm²)

n: number of reinforcing bar (=6 pieces)

L : Welding length of a plate

 τ_{ta} : allowable tensile stress for steel at welded zone

$$(SM490 = 140 \text{ N/mm}^2)$$

· Welding length of a plate

The outer perimeter of steel pipe pile is 800mm, and a plate is divided into four.

$$L = \pi \times 800 / 4 = 628 \text{ m}$$

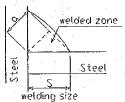
· Action tension

$$T = 506.7 \times 176 \times 6 = 535,075 \text{ N}$$

· Thickness of plate

$$t = 535,075 / (628 \times 140) = 6.1 \text{ mm} \rightarrow 9.0 \text{mm}$$

(2) Examination of the welding of steel pipe pile and a plate


Welding size is made into what satisfies the following formulas.

$$\tau_{ts} = T/(a \times L) \leq \tau_{ta}$$

The sign of an upper formula is shown

in the right figure.

where
$$a = 0.7 \times a$$

Welding size is set to 9mm.

$$\tau_{ts} = 535,075 / (0.7 \times 9 \times 628) = 135.2 \text{ N/mm}^2 \le 140 \text{ N/mm}^2 \text{ O.K}$$

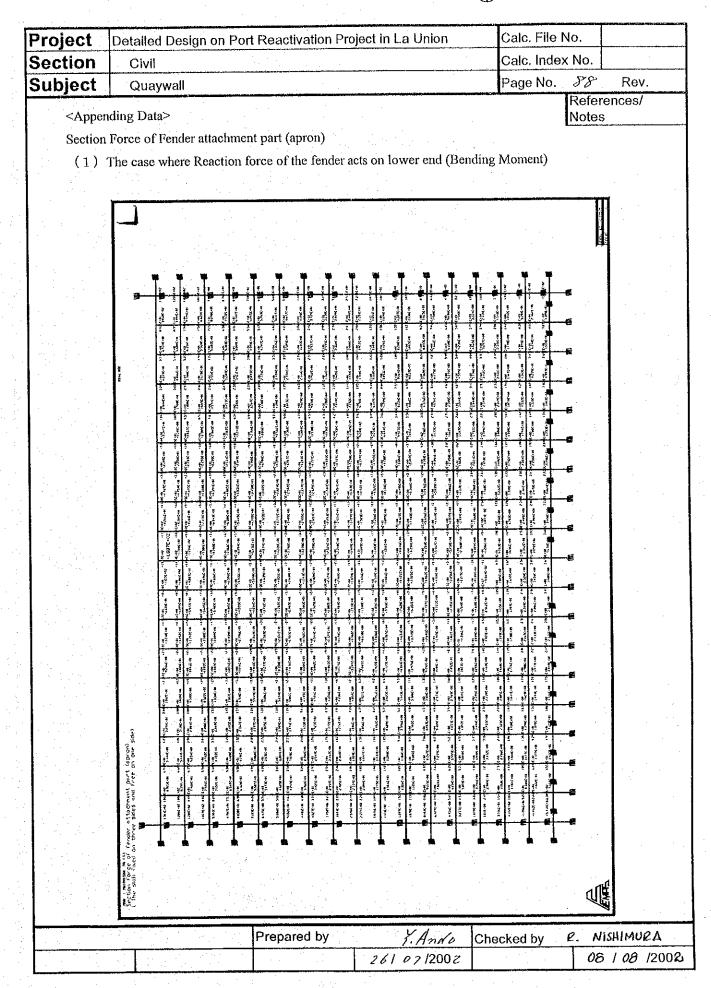
		Prepared by	YAndo	Checked by	e. Nishimura
Ì			2610712002		08 08 2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 87 Rev.
		References/

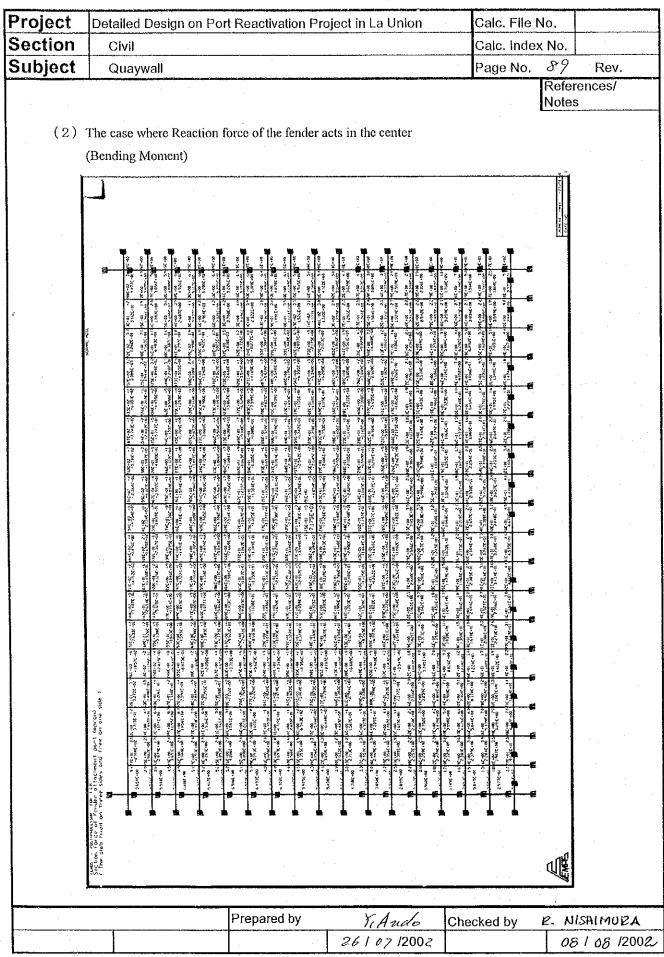
(3) Examination of the welding of a plate pile and reinforcing bar

The welding length of reinforcing bar computes by the following formulas.

$$1 = \sigma_{sa} \times As / (\sqrt{2} \times \lambda \times \tau_{sa})$$


where λ : welding size (=D/3 D: diameter of reinforcing bar)

 τ_{sa} : allowable shearing stress for steel at welded zone (= 80 N/mm²)


$$1 = 176 \times 506.7 / (\sqrt{2} \times (25/3) \times 80) = 94.6 \text{ mm}$$

Therefore, welding length is set to 1 = 100 mm.

l	 	·			
		Prepared by	Y. Ando	Checked by	2. NISHIMURA
			2610712002		08 1 08 12002

(III) NIPPON KOEI CO.,LTD.

