DESIGN CALCULATION COVER SHEET				
Project	Detailed Design on Port Reactivation Project , in La Union Province	Project Code	JC1N004	
Section	Civil	Calc. File No.		
Sub-Section	Quaywall	Calc. Index No.		
Subject:	Passenger Berth			

Calculation Objective:

Rainforcement of platform 2.

References, Calculation Notes and Comments

Refer to drawing

QW-02-012~QW-02-024

Calculation based on

TECHNICAL STANDERDS AND COMMENTARIES

FOR

PORT AND HARBOUR FACILITIES IN JAPAN

	Prep	pared	No. of	Che	cked	Rev	iewed	Superseded
Rev	by	Date	Pages	by	Date	by	Date	by Calc No.
0	offender	26/07/02	89	in Ff	26 Talyor	美	26/08/02	
Α					/			
В								
С]	

File in Calc. File

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. / Rev.
		References/

1) Examination Case

Combination of the load of the examination case of calculation of reinforcing bar arrangement, and each examination case

	Deadweight	Surcharge	Earthquake force	Wheel Load (Truck)
Ordinary	0	0		
Earthquake	0	0	- 0	
Wheel Load (Truck)	0		·	- 0

Moreover, calculation of reinforcing bar arrangement of each examination case is performed as follows.

:	Ulitimate limit	Serviceability limit	Fatigue limit
Ordinary	0 .	0	
Earthquake	0	· <u>·</u>	_
Wheel Load (truck)	0	0	0

2) Partial Safety Factors

The partial safety factor used for this examination is shown below.

(1) Load Factor

	Ulitimate limit	Serviceability limit	Fatigue limit
Deadweight	1. 1	1. 0	1. 0
Surcharge	1.2(1.0)	1. 0	1. 0
Wheel Load	1. 2	1. 0	1. 0
Earthquake Force	1.0	-	<u> </u>

^{*}The inside of a parenthesis is a value in case of an earthquake.

(2) The other numbers of partial safety factor.

		Ulitimate limit		Serviceability limit	Fatigue limit
Material factor	Concrete	1.	30	1.00	1.30
	Reinforcing				
(γm)	Bar	1.	00	1.00	1.05
Structure analy	sis factor(γa)	1.	00	1.00	1.00
Member factor	(γb)	1.	15	1.00	1.00
Structure factor	· (γ i)	Earthquake 1.	00	1.00	1.00
		Otherwise 1.	20		•

***Member Factor**

When calculating bending and axial strength : 1.15
When calculating upper limit of axial compressive strength : 1.30
When calculating shear capacity borne by concrete : 1.30
When calculating shear capacity borne by shear reinforcement : 1.15

Prepared by	Y. Ando	Checked by	Nishimura
	2610712002		08 <i> 08 </i> 2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. Z Rev.
		References/
		Notes

3) Calculation Method of Cross-Sectional Force

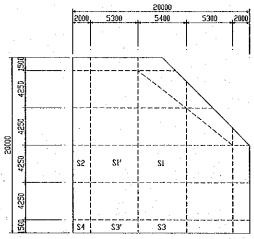
(1) Beam

The cross-sectional force of a beam is computed using a 2-dimensional framework model (continuation beam). Action load is multiplied by the partial safety factor. The calculation result computed by the basic design is used for the pile head moment in case of an earthquake.

(2) Deck Slab

The deck slab of the platform central part surrounded by the beam should be designed as a slab fixed on four sides. The deck slab of a platform end should be designed as a slab fixed on three sides and free on one side.

Prepared by Y. Ando		Checked by R. NISHI MURA	
	261 07/2002		08 108 12002


	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.

4) Calculation of Load

(1) Deck Slab

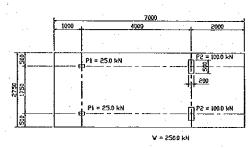
The examination cases of calculation of reinforcing bar arrangement of a deck slab are the following two cases.

- · Ordinary Condition
- · Conditions on which Wheel Load(Truck) acts

Cross-sectional force is calculated only about "S1" and "S3". "S1"", "S2", "S3", and "S4" omit calculation. "S1" and "S2" are taken as the same reinforcing bar arrangement as "S1". And, "S3" and "S4" are taken as the same reinforcing bar arrangement as "S3".

- a) Deadweight Thickness of deck slab
- t = 0.25cm

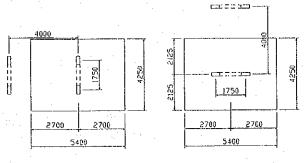
Equivalent uniform distribution $w = 0.25 \times 2.4.0 = 6.00 \text{ kN/m}^2$


$$w = 0.25 \times 2.4.0 = 6.00 \text{ kN/m}^2$$

b) Surcharge

$$w = 20.0 \text{ kN/m}^2$$

c) Wheel Load (Truck)


Wheel load (Truck) is converted into equivalent uniform distribution and partial equivalent uniform distribution. Section force is computed about each distribution load, and the larger one is made into design section force.

Prepared by	Y. Ando	Checked by	. NISHIMURA
	26/07/2002		08 1 08 1200 B

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🗶 Rev.
		References/

Wheel load (Truck) shall act only on "S1" of the member of deck slab. The action situation of wheel load (Truck) is shown below.

(i) Conversion to Equivalent Uniform Distribution Load

Wheel load is converted into equivalent uniform distribution load"w1" using the following formulas.

$$w1 = \frac{P}{C \times (0.50 \times L_1 + 0.25 \times L_2)}$$

where, P: Wheel Load $(2 \times 100 = 200 \text{ kN})$

C: Width of Truck (=2.75 m)

L₁: Length of the longer side

L₂: Length of the shorter side

• The truck run direction is the vertical direction to the face line.

$$w1 = 200 / (2.75 \times (0.50 \times 5.40 + 0.25 \times 4.25)) = 19.33 \text{ kN/m}^2$$

· The truck run direction is the parallel direction to the face line.

$$w1 = 200 / (2.75 \times (0.50 \times 4.25 + 0.25 \times 5.40)) = 20.93 \text{ kN/m}^2$$

Therefore, equivalent uniform distribution load used for examination is set to "w= 20.93kN/m² (The truck run direction is the parallel direction to the face line.)"

Prepared by	Y. Ando	Checked by	P. NISHMURA
	26 1 07 12002		08 <i>1 08 1</i> 200 <i>8</i>

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ぐ Rev.

(ii) Conversion to partial equivalent uniform distribution load

When converting wheel load into partial equivalent distribution load, cross-sectional force is computed using the graph for calculation of Pigeaud.

Wheel load acts as the following figures and computes conversion distribution width as follows.

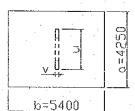
Tire width of the longer one 2.25 m

Tire width of the shorter one 0.20 m

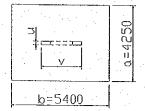
· Calculation of conversion distribution width

$$u' = u+2 \times (s+(t/2))=2.25+2 \times (0.1+(0.25/2)) = 2.70 \text{ m}$$

$$v' = v+2 \times (s+(t/2))=0.20+2 \times (0.1+(0.25/2)) = 0.65 \text{ m}$$


where u', v': conversion distribution width

s: thickness of pavement (= 0.10 m)

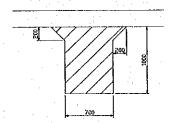

t: thickness of deck slab (=0.25 m)

Resultant Force of Wheel Load $P = 2 \times 100 = 200 \text{ kN}$

When a truck runs in the vertical direction to the face line

When a truck runs in the parallel direction to the face line

	Prepared by Y, And	Checked by P. NISHIMURA
	261 67 /2002	08 / 08 /2002


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ∠ Rev.
		References/

(2) Beam

Calculation of reinforcing bar arrangement of a beam carries out for all examination cases.

a) Deadweight of Beam

The section of a beam is shown below. (Hatching part)

Cross-sectional area of beam

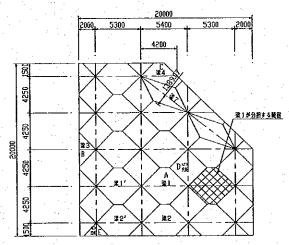
 $A = 0.7 \times 1.0 + 0.2^2 / 2 \times 2 = 0.74 \text{ m}^2$

Deadweight of beam

 $w = 0.74 \times 24.0 = 17.76 \text{ kN/m}$

Land side end

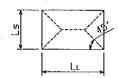
Cross-sectional area of beam


 $A = 4.25 \times 1.0 = 42.5 \text{ m}^2$

Deadweight

 $w = 4.25 \times 24 = 102.0 \text{ kN/m}$

b) Deadweight of Deck Slab


The deadweight of deck slab, which the individual beam shares, is shown in the following figures. Cross sectional force is computed only about "Beam1", "Beam3", "Beam4", "Beam5", "Beam6", and "Beam7." Examination is omitted about "Beam2", "Beam1" and "Beam2" ,and it is made the same reinforced bar arrangement as "Beam1".

Prepared by	Y. Ando	Checked by	2. NISHIMUPA
	261 07 12002		08 1 08 12002

		Poforopoor/
Subject	Quaywall	Page No. 7 Rev.
Section	Civil	Calc. Index No.
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.

The deck slab weight, which the individual beam shares, is converted into equivalent uniform distribution load by the following formulas.

Converted equivalent uniform distribution load of short span

$$W = w \times Ls / 3 \qquad (kN/m)$$

Converted equivalent uniform distribution load of long span

$$W = (w \times L_s / 2) \times (1 \cdot (1/3) \times (L_s^2 / L_L^2)) \quad (kN/m)$$

where w: Deadweight of deck slab (kN/m2)

Ls: Length of short span (m), LL: Length of long span (m)

The deadweight of deck slab member"A~E" in the figure of a front page is converted into equivalent uniform distribution load.

Load which acts on a long span beam (A, C)

		Length of long span L _L (m)	Length of short span Ls (m)	Deadweight (kN/m²)	Equivalent uniform distribution load (deck slab) (kN/m)
1	A	5.40	4.25	6.00	10.12
	. C	4.20	3.00	6.00	7.47

Load which acts on a short span beam (B, D, E)

	Length of long	Length of short	Equivalent uniform	
	span L _L	span Ls	distribution load (deck	
	(m)	(m)	slab) (kN/m)	
В	4.00	6.00	8.00	
D	4.25	6.00	8.50	
E	3.00	6.00	6.00	

Moreover, equivalent uniform distribution load, such as acting on a "beam 7", is computed based on a calculation formula. The value, which multiplied the value, which divided the deck slab weight, which acts on a beam 7 by "Ls", by 4/3, is made into equivalent uniform distribution load.

Equivalent uniform distribution load which acts on "Beam 7"

$$w = ((1.39 \times 6.87 / 2)/6.87) \times 4/3 \times 6.0 = 5.56 \text{ kN/m}$$

Therefore, the deck slab weight, which acts on the beam to examine, becomes as follows.

Beam 1
$$w = 10.12 + 10.12 = 20.24 \text{ kN/m}$$
 (A+A)

Beam 3
$$w = 8.00 + 8.00 = 16.00 \text{ kN/m}$$
 (B+B)

Beam 4
$$w = 7.47 + 7.47 = 14.94 \text{ kN/m}$$
 (C+C)

Beam 5
$$w = 8.50 + 8.50 = 17.00 \text{ kN/m}$$
 (D+D)

Beam 6
$$w = 6.00 + 6.00 = 12.00 \text{ kN/m}$$
 (E+E)

Beam 7
$$w = 5.56 + 5.56 = 11.12 \text{ kN/m}$$

Prepared by	Y. Ando	Checked by 2.	NISHIMURA
	2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. $$
		References/ Notes

c) Surcharge

The surcharge which acts on a beam is computed like the deadweight of deck slab.

Load which acts on a long span beam (A, C)

				Surcharge (Ordinary) (kN/m²)	Surcharge (Earthquake) (kN/m²)	Equivalent uniform distribution load (Ordinary) (kN/m)	Equivalent uniform distribution load (Earthquake) (kN/m)
Ì	A	5.40	4.25	20.00	10.00	33.72	16.86
İ	$\overline{\mathbf{C}}$	4.20	3.00	20.00	10.00	24.90	12.45

Load which acts on a short span beam (B, D, E)

		Surcharge (Ordinary) (kN/m²)	Surcharge (Earthquake) (kN/m²)	Equivalent uniform distribution load (Ordinary) (kN/m)	Equivalent uniform distribution load (Earthquake) (kN/m)
В	4.00	20.00	10.00	26.67	13.33
D	4.25	20.00	10.00	28.33	14.17
Е	3.00	20.00	10.00	20.00	10.00

About "beam 7", it computes like deadweight of deck slab.

Equivalent uniform distribution load which acts on "Beam 7"

(Ordinary) $w = ((1.39 \times 6.87 / 2)/6.87) \times 4/3 \times 20.0 = 18.53 \text{ kN/m}$

(Earthquake) $w = ((1.39 \times 6.87 / 2) / 6.87) \times 4/3 \times 10.0 = 9.27 \text{ kN/m}$

Therefore, the surcharge, which acts on the beam to examine, becomes as follows.

Beam 1	(Ordinary)	w = 33.72 + 33.72 = 67.44 kN/m	(A+A)
Beam 1	(Earthquake)	w = 16.86 + 16.86 = 33.72 kN/m	(A+A)
Beam 3	(Ordinary)	w = 26.67 + 26.67 = 53.34 kN/m	(B+B)
Beam 3	(Earthquake)	w = 13.33 + 13.33 = 26.67 kN/m	(B+B)
Beam 4	(Ordinary)	w = 24.90 + 24.90 = 49.80 kN/m	(C+C)
Beam 4	(Earthquake)	w = 12.45 + 12.45 = 24.90 kN/m	(C+C)
Beam 5	(Ordinary)	w = 28.33 + 28.33 = 56.67 kN/m	(D+D)
Beam 5	(Earthquake)	w = 14.17 + 14.17 = 28.34 kN/m	(D+D)
Beam 6	(Ordinary)	w = 20.00 + 20.00 = 40.00 kN/m	(E+E)
Beam 6	(Earthquake)	w = 10.00 + 10.00 = 20.00 kN/m	(E+E)
Beam 7	(Ordinary)	w = 18.53 + 18.53 = 37.06 kN/m	
Beam 7	(Earthquake)	w = 9.27 + 9.27 = 18.54 kN/m	

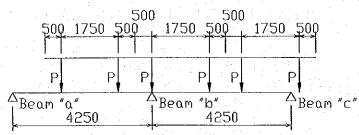
Prepared by	Y. Ando	Checked by	R. NISHIMURA
	261 07 12002	,,	08 1 08 12002

Project -	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc, Index No.	
Subject	Quaywall	Page No. 🤌	Rev.
		Refe	rences/

Notes

d) Wheel Load (Truck)

The maximum reaction force of acting on a beam is computed out of various run situations. Wheel load (Truck) acts on "beam1", "beam4", "beam5", and "beam7". As for "Beam3", wheel load (truck) shall not act.


(i) Beam of Vertical Direction to the Face Line (Beam 1)

The case a truck runs in the vertical direction to the face line

· Calculation of the maximum reaction force which acts on beam of vertical direction to the face line

Arrangement of the truck which maximum reaction force generates on the beam of vertical direction to the face line is shown in the following figures.

(Rear wheel P = 100 kN, Front Wheel P = 25 kN)

The Beam on which maximum reaction force acts is Beam "b".

Maximum reaction force

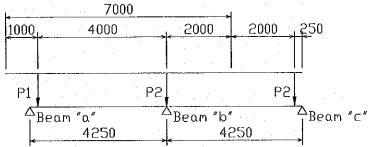
$$R = (1.50 \times 100 / 4.25) + (3.25 \times 100 / 4.25) + (2.50 \times 100 / 4.25) + (1.50 \times 100 / 4.25) + 100 = 305.88 \text{ kN (Front wheel } 76.47 \text{ kN)}$$

Moreover, the maximum reaction force which acts on cantilever (beam 4) is the case where wheel load is acting only between beam "b"and "c" in the above figure.ま。

Maximum Reaction Force

$$R1 = (2.50 \times 100 / 4.25) + (1.50 \times 100 / 4.25) + 100 = 194.12 \text{ kN}$$

ı				
	Prepared by	Y. Ando	Checked by	2. NISHIMURA
		26107 12002		08 / 08 /2002


Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. / ORev.
		References/ Notes

2)The case a truck runs in the parallel direction to the face line

 Calculation of the maximum reaction force which acts on beam of vertical direction to the face line

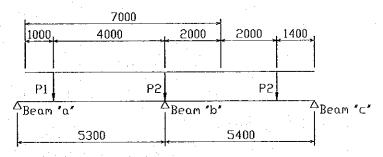
Arrangement of the truck which maximum reaction force generates on the beam of vertical direction to the face line is shown in the following figures.

$$(P1 = 25 \text{ kN}, P2 = 100 \text{ kN})$$

The Beam on which maximum reaction force acts is Beam "b".

Maximum Reaction Force

$$R = (0.25 \times 100 / 4.25) + (0.25 \times 100 / 4.25) + 100 = 111.76 \text{ kN}$$


(ii) Beam of Parallel Direction to the Face Line (Beam5)

(1) The case a truck runs in the vertical direction to the face line

 Calculation of the maximum reaction force which acts on beam of parallel direction to the face line

Arrangement of the truck which maximum reaction force generates on the beam of parallel direction to the face line is shown in the following figures.

$$(P1 = 25 \text{ kN}, P2 = 100 \text{ kN})$$

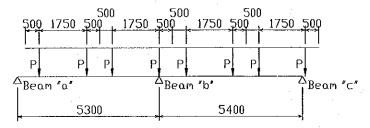
The Beam on which maximum reaction force acts is Beam "b".

Maximum Reaction Force

$$R = (1.30 \times 25 / 5.30) + (1.40 \times 100 / 5.40) + 100 = 132.06 \text{ kN}$$

	Prepared by	Y. Ando	Checked by	P. NISHIMURA
		261 07/2002		08 1 08 12002

Section Civil Calc. Index No.	
Subject Quaywall Page No. // Re	ev.


The case a truck runs in the parallel direction to the face line

References/ Notes

 Calculation of the maximum reaction force which acts on beam of parallel direction to the face line

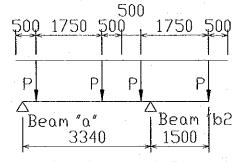
Arrangement of the truck which maximum reaction force generates on the beam of parallel direction to the face line is shown in the following figures.

$$(P1 = 25 \text{ kN}, P2 = 100 \text{ kN})$$

The Beam on which maximum reaction force acts is Beam "b".

Maximum Reaction Force

$$R = (0.80 \times 100 / 5.30) + (2.55 \times 100 / 5.30) + (3.55 \times 100 / 5.30)$$
$$(4.40 \times 100 / 5.40) + (2.65 \times 100 / 5.40) + (1.65 \times 100 / 5.40) + 100$$
$$= 391.30 \text{ kN } (97.82 \text{ kN})$$


(iii) Beam of the Direction of Slant (Beam 7)

The direction which a truck runs is a direction parallel to a beam.

Arrangement of the truck which maximum reaction force generates on the beam of parallel direction to the face line is shown in the following figures.

As for the range of 1.0m from the end of a deck slab, wheel load shall not act.

(Distance from beam to the end of deck slab about 2.50 m)

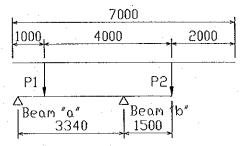
(Rear wheel P=100 kN, Front wheel P=25.0 kN)

The Beam on which maximum reaction force acts is Beam "b".

Maximum Reaction Force

R =
$$((3.34+1.5)\times100/3.34)+(0.34\times100/3.34)+(2.09\times100/3.34)$$

+ $(3.09\times100/3.34)=310.18$ kN (Front wheel R = 77.55 kN)


ĺ	Prepared by	Y, Anilo	Checked by	2. NISHIMURA
		261 67 12002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ∕< Rev.
		References/
		Notes

The direction which a truck runs is a direction vertical to a beam.

Arrangement of the truck which maximum reaction force generates on the beam of parallel direction to the face line is shown in the following figures.

$$(P1 = 25 \text{ kN}, P2 = 100 \text{ kN})$$

The Beam on which maximum reaction force acts is Beam "b".

Maximum reaction Force

$$R = ((3.34 + 1.5) \times 100 / 3.34) + (0.84 \times 25 / 3.34) = 151.20 \text{ kN}$$

(iii) Weight of a small beam (The beam of the front of a platform)

$$P = 1.0 \times 0.5 \times 4.25 \times 24.0 = 51.00 \text{ kN}$$

e) Earthquake Force

The pile head moment computed by the basic design is used.

- (3) Fender attachment part (apron)
- a) Deadweight

Parallel direction to face line $W = 4.25m \times 0.5m \times 4.0m \times 24 \text{ kN/m}^3 = 204.0 \text{ kN}$ Vertical direction to face line $W = 5.40m \times 0.5m \times 4.0m \times 24 \text{ kN/m}^3 = 259.2 \text{ kN}$

b) Reaction Force of the Fender

Fender uses two V-150H x1000L. An attachment interval is set to 4.0m.

Reaction Force of the Fender (catalog value) 110 kN

Design Reaction Force of the Fender R=110×1.1=121.0 kN → 125.0 kN

Reaction force of the fender computes Member force as what concentrates and acts on one place.

Reaction Force of the Fender $R = 125.0 \text{ kN} \times 2 = 250.0 \text{ kN}$

	Prepared by	Y. Ando	Checked by	Z. NISHIMURA
		26107 12002		08 108 1200 ₂

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🕢 Rev.

5) Calculation of the Section Force

References/ Notes

(1) Deck Slab

The Design of a deck slab calculates "S1" and "S3" as follows.

S1: a slab fixed on four side

S3: a slab fixed on three sides and free on one side

Wheel load (Truck) is converted into equivalent uniform distribution and partial equivalent uniform distribution. Section force is computed about each distribution load, and the larger one is made into design section force. The deck slab of a variant part refers to S1, and performs reinforcing bar arrangement.

a) Calculation of the Section Force by Equivalent Uniform Distribution Load

Cross sectional force in case the equivalent uniform distribution load acts on a deck slab is computed using the following formulas.

 $M_X = X \times W \times L^2$

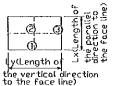
: the bending moment of X-direction of an axis

 $My = Y \times w \times L^2$

: the bending moment of Y-direction of an axis

 $S = Q \times w \times L$

: the shearing force


where X, Y: the moment factors of each direction of an axis

: equivalent uniform distribution load, such as acting on a deck slab

: length of the short span of a deck slab

: the shearing force factors

Cross sectional forces by the load (deadweight, surcharge, and wheel load (track)), which act on the deck slab, are calculated. A calculation position and a calculation result are shown below.

Deadweight

 $w = 6.00 \text{ kN/m}^2$

Surcharge

 $: w = 20.00 \text{ kN/m}^2$

Wheel Load (Truck) $w = 20.93 \text{ kN/m}^2$

OThe bending moment by equivalent uniform distribution load

 $(kN \cdot m/m)$

1 *** * ***	Lx	Ly	λ	posit	*. 1 i		Deadweight		Surcharge		Wheel Load (Truck)	
slab	(m)	(m)		10n	X	Y	Mx	My	Mx	My	Mx	Му
	4.25	5.40	0.75	1	-0.0701	-0.0117	-7.60	-1.27	$\cdot 25.32$	•4.23	26.50	4.42
S1	4.25	5.40	0.75	2	0.0318	0.0179	3.45	1.94	11.49	6.47	12.02	6.77
	4.25	5.40	0.75	3	-0.0094	-0.0565	-1.02	-6.12	-3.40	-20.41	-3.55	-21.36
	1.50	5.40	0.30	1	-0.3819	-0.0636	-5.16	-0.86	·17.19	-2.86		
S3	1.50	5.40	0.30	2	0.0434	0.0204	-0.59	0.28	-1.95	0.92		
	1.50	5.40	0.30	3	0.0249	-0.1495	-0.34	-2.02	-1.12	·6.73		

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	2610712002		08 1 08 1200 g

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. /ゲ Rev.
		References/

OThe shearing force by equivalent uniform distribution load

(kN/m)

deck	1 / .	Ly	λ.	posi	Fac	tor	Deadw	eight	Surcl	narge	Wheel (Tru	
slab	(m)	(m)		tion	X	Y	Mx	Му	Mx	My	Mx	My
SI	4.25	5.40	0.75	1	0.4590		11.70		39.02		40.83	
	4.25	5.40	0.75	3		0.5020		12.80		42.67	<u> </u>	44.65
S3	1.50	5.30	3.20	1	1.0200		-9.18		30.60			,
	1.50	5.30	3.20	3		1.3400		12.06		40.20		

b) Calculation of the Section Force by Partial Equivalent Uniform Distribution load

The section force by partial equivalent uniform distribution load is calculated only
to the wheel load (Truck). The section force is calculated using the graph for
calculating of Pigeaud.

Length of short span (the vertical direction to the face line) a=4.25 mLength of long span (the parallel direction to the face line) b=5.40 mWidth of wheel (the direction to short span) u'=2.70 mWidth of wheel (the direction to long span) v'=0.65 m

The case a truck runs in the vertical direction to the face line

$$u'/a = 0.635$$
, $v'/b = 0.120$

The case a truck runs in the parallel direction to the face line

$$u'/a = 0.153$$
, $v'/b = 0.50$ m

$$\rho = 4.25 / 5.40 = 0.787 \rightarrow 0.70$$

The bending moment of a deck slab is computed using the following formulas.

$$Mx = 0.8 \times (M1 + \eta \times M2) \times P$$

$$My = 0.8 \times (M2 + \eta \times M1) \times P$$

where Mx: the bending moment of the parallel direction to the face line (By this examination, it is the direction of short span.)

My: the bending moment of the vertical direction to the face line (By this examination, it is the direction of long span.)

M1, M2: The distribution factor of a bending moment

 η : poisson's ratio (=0.15 (reinforced concrete))

	Prepared by	Y. Ando	Checked by	P. NISHIMURA
		261 07 1200 2		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. ノゔ	Rev.

The shearing force is computed using the following formulas.

In the case of "u > v"

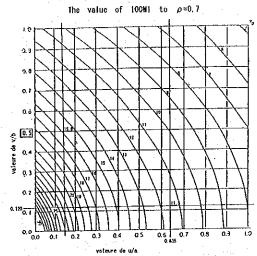
The shearing force of the direction of short span $Su = P/(2 \times u + v)$

The shearing force of the direction of long span $Sv = P/(3 \times u)$

In the case of " $u \le v$ "

The shearing force of the direction of short span $Su = P/(3 \times v)$

The shearing force of the direction of long span $Sv = P/(2 \times v + u)$

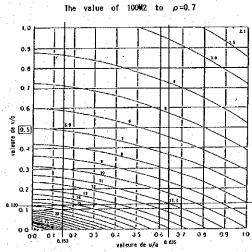

OSection Force(Wheel Load) by Partial Equivalent Uniform Distribution load

deck slab	Wheel load (kN)	M1 (kN·m/m)	M2 (kN•m/m)	Mx (kN·m/m)	My (kN·m/m)	Sx (kN/m)	Sy (kN/m)
(the vertical direction to the face line)	200	0.115	0.111	21.064	20.52	33.06	24.69
S1 (the parallel direction to the face line)	200	0.158	0.069	26.936	14.832	24.69	33.06

Prepared by	Y. Ando	Checked by	R. NISHIMURA	
	261 67 1200 2		08 08 200 ह	

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. ノሬ	Rev.

The bending moment distribution factor: M1



The case a truck runs in the vertical direction to the face line

 $100 \times M1 = 11.5$ Therefore M1 = 0.115

The case a truck runs in the parallel direction to the face line $100 \times M1 = 15.8$ Therefore M1 = 0.158

The bending moment distribution factor: M2

The case a truck runs in the vertical direction to the face line

 $100 \times M2 = 11.1$ Therefore M1 = 0.111

The case a truck runs in the parallel direction to the face line $100 \times M2 = 6.90$ Therefore M1 = 0.069

	Prepared by	Y.Ando	Checked by	2. NISHIMURA
		2616712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 17	Rev.

c) Generalization of Section Force

• Generalization of the section force of deck slab "S1"

	Bendi	ng mome	nt(kN•r	n/m)	Shearing t	ng force (kN/m)	
	Paralle	l to the	Vertica	l to the	Parallel to	Vertical to	
	face lin	e Mx	face lin	е Му		the face line	
A second	Fulcrum	Center	Fulcrum	Center	line Sx	Sy	
Deadweight (D)	·7.60	3.45	-6.12	1.94	11.70	12.80	
Surcharge (S)	-25.32	11.49	-20.41	6.47	39.02	42.67	
Wheel Load (Truck)							
Equivalent Uniform	-26.50	12.02	-21.36	6.77	40.83	44.65	
Distribution Load (M1)	20.00	14.02	21.00	0.11	40.00	44.05	
Partial Equivalent Uniform							
Distribution Load (Vertical to	-21.06	21.06	-20.52	20.52	33.06	24.69	
the face line) (M2)							
Partial Equivalent Uniform							
Distribution Load (Parallel to	26.94	26.94	-14.83	14.83	24.69	33.06	
the face line) (M3)					17.		
Ultimate limit state			183	. 1 ·		e e tuat t	
Ordinary 1.1D+1.2S	-38.74	17.58	-31.22	9.90	59.69	65.28	
Wheel Load (Truck) 1.1D+1.2M1	40.16	18.22	-32.36	10.26	61.87	67.66	
Wheel Load (Truck) 1.1D+1.2M2	-33.63	29.07	-31.36	26.76	52.54	43.71	
Wheel Load (Truck) 1.1D+1.2M3	-40.69	36.12	-24.53	19.93	42.50	53.75	
Serviceability limit state							
Permanent Load 1.0D	7.60	3.45	-6.12	1.94	11.70	12.80	
Variable Load 1.0S	-25.32	11.49	-20.41	6.47	39.02	42.67	
1.0M1	-26.50	12.02	21.36	6.77	40.83	44.65	
1.0M2	-21.06	21.06	-20.52	20.52	33.06	24.69	
1.0M3	-26.94	26.94	-14.83	14.83	24.69	33.06	
Fatigue limit state							
Permanent Load 1.0D	-7.60	3.45	-6.12	1.94	11.70	12.80	
Variable Load 1.0M1	26.50	12.02	-21.36	6.77	40.83	44.65	
1.0M2	-21.06	21.06	-20.52	20.52	33.06	24.69	
1.0M3	26.94	26.94	14.83	14.83	24.69	33.06	

l					
		Prepared by	Y. Ando	Checked by	P. NISHIMUPA
	·		261 0712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 18 Rev.
		References/ Notes

- Generalization of the section force of deck slab "S3" $\,$

	Bendi	ng Mome	nt (kN·n	n/m)	Shearing fo	rce (kN/m)
	Paralle	l to the	Vertical to	the face	Parallel to	Vertical to
	face lin	e Mx	line	My	the face	the face
	Fulcrum	Center	Fulcrum	Center	line Sx	line Sy
Deadweight (D)	5.16		2.02	0.28	9.18	12.06
Surcharge (S)	-17.19		6.73	0.92	30.60	40.20
Ultimate limit state						
Ordinary 1.1D+1.2S	-26.30		-10.30	1.41	46.82	61.51
Serviceability limit state						**.
Permanent Load 1.0D	5.16		-2.02	0.28	9.18	12.06
Variable Load 1.0S	-17.19		-6.73	0.92	30.60	40.20

*Since the bending moment of the center part of the parallel direction to the face line shows a small value compared with a fulcrum part, it omits examination.

		Prepared by	Y. Ando	Checked by	2. NISHIMURA
			261 07/200 Z		08 108 1200 Z

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. / PRev.
		References/ Notes

(2) Beam

The section force of a beam computes the vertical and parallel direction beam to the face line as a continuation beam.

When wheel load acts on cantilever (Beam4), big section force occurs near the pile by the side of land. Therefore, cantilever (Beam4) calculates separately with the continuation beam.

The member to examine is shown below.

The vertical direction beam to the face line: Beam 1 +Beam 3

(Ordinary, Wheel Load (Truck), Earthquake)

The parallel direction beam to the face line: Beam 5+Beam 6

(Ordinary, Wheel Load (Truck), Earthquake)

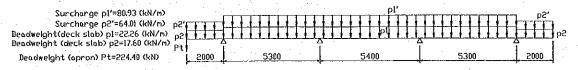
Cantilever : Beam 4 (Wheel Load (Truck))

Beam of the Direction of Slant : Beam 7 (Wheel Load (Truck))

("Beam7" has the small influence of deadweight of deck slab and surcharge compared with other beams. Moreover, "Beam7" has large rigidity. Therefore, examination of ordinary condition and earthquake condition is excluded.)

 Prepared by	Y. Ando	Checked by	e. NISHI MURA
	261 07/2002		08 1 08 1200 &

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No,
Section	Civil	Calc. Index No.
Subject	Quaywail	Page No. 💈 Rev.
		References/


a) Ultimate Limit State

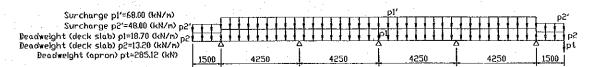
(i) Ordinary

Load which acts (Ordinary) 1.1D (Deadweight) + 1.2S (Surcharge)

(1) The vertical direction beam to the face line

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 651.09 kN·m


lower side Mmax = 199.34 kN·m

Maximum shearing force

Smax = 426.69 kN

The parallel direction beam to the face line

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

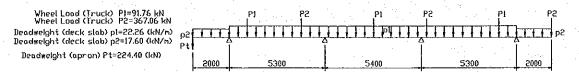
Maximum bending moment upper side Mmax = 518.51 kN·m

lower side Mmax = 118.98 kN·m

Maximum shearing force

Smax = 406.22 kN

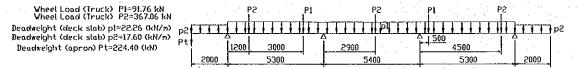
	Prepared by	Y. Ando	Checked by 2	NISHIMURA
		26/07 12002		08 08 2002


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 2/ Rev.
		References/

(ii) Wheel Load (Truck)

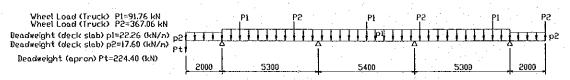
Load which acts (Wheel Load) 1.1D (Deadweight) + 1.2M (Wheel Load (Truck))

- (1) The vertical direction beam to the face line
- $\bigcirc -1$ The case a truck runs in the vertical direction to the face line
- · Reinforcing bar of upper side (Bending Moment)


A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 920.30 kN·m

· Reinforcing bar of lower side (Bending moment)

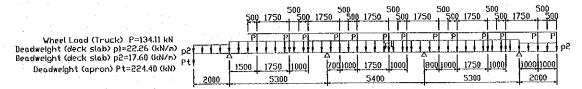

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment lower side Mmax = 365.44 kN · m

· Shearing force

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

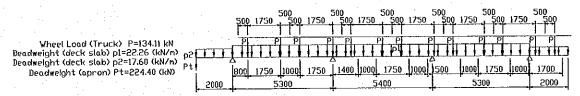
Maximum shearing force


Smax = 626.66 kN

į	<u> </u>		<u> </u>	
		Prepared by	Y.Ando	Checked by P. NISKIMURA
			261 67 12002	08 108 1200 2

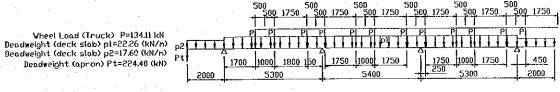
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≥2 Rev.
		References/

- 1)-2 The case a truck runs in the parallel direction to the face line
- · Reinforcing bar of upper side (Bending Moment)


A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 594.88 kN·m

· Reinforcing bar of lower side (Bending Moment)


A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment lower side Mmax = 204.88 kN·m

· Shearing force

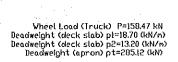
A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum shearing force

Smax = 483.12 kN

- 2)The parallel direction beam to the face line
- $\bigcirc -1$ The case a truck runs in the vertical direction to the face line
- · Reinforcing bar of upper side (Bending Moment)

However wheel load (truck) may act, bending moment by deadweight of fender attachment part (apron) will serve as the maximum bending moment.

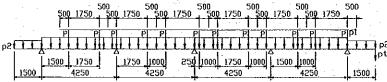

Therefore, Maximum bending moment upper side Mmax = 464.51 kN·m

Prepared by	Y. Ando	Checked by	. NISHIMURA
	2616712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 23 Rev.
		Deference

· Reinforcing bar of lower side (Bending Moment)

A frame model is shown below. (Deadweight of a beam is taken into consideration.)



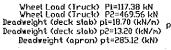
Maximum bending moment lower side Mmax = 206.28 kN·m

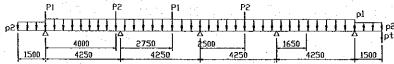
· Shearing force

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum shearing force

Smax = 441.53 kN

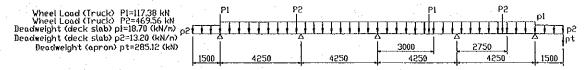

- 2-2 The case a truck runs in the parallel direction to the face line
- · Reinforcing bar of upper side (Bending Moment)


However wheel load (truck) may act, bending moment by deadweight of fender attachment part (apron) will serve as the maximum bending moment.

Maximum bending moment upper side Mmax = 464.51 kN·m

· Reinforcing bar of lower side (Bending Moment)

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

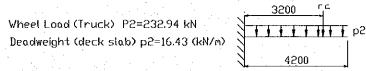

Maximum bending moment lower side Mmax = 392.02 kN·m

Pro	epared by	Y.Ando	Checked by	NISHIMURA
		2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <⊁ Rev.
		References/

· Shearing force

A frame model is shown below. (Deadweight of a beam is taken into consideration.)


Maximum shearing force

Smax = 542.03 kN

③Cantilever of a land side (Beam 4)

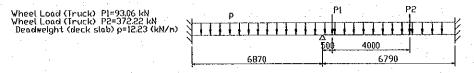
Section force of beam4 is computed. Bar arrangement of cantilever of other variant parts is set to the same bar arrangement as beam4.

A frame model is shown below. (Deadweight of a beam is taken into consideration.) Deadweight of beam $w = 0.74 \times 24 \times 1.1 = 19.54 \text{ kN/m}$

All equivalent Uniform Distribution Load w = 19.54 + 16.43 = 35.97 kN/mMaximum bending moment

$$Mmax = (35.97 \times 4.2^2) / 2 + 232.94 \times 3.2 = 1,062.66 \text{ kN} \cdot \text{m}$$

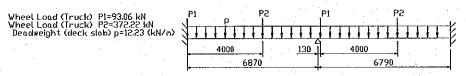
Maximum shearing force


 $Smax = 35.97 \times 4.2 + 232.94 = 384.01 \text{ kN}$

	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		2616712002		08/08/2002

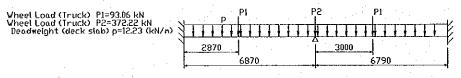
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 25 Rev.
		References/

- (Beam of the Direction of Slant (Beam 7)
- 4-1 The direction which a truck runs is a direction parallel to a beam.
- · Reinforcing bar of upper side (Bending Moment)


A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 556.84 kN·m

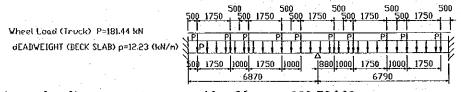
· Reinforcing bar of lower side (Bending Moment)


A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment lower side $Mmax = 381.55 \text{ kN} \cdot \text{m}$

· Shearing force

A frame model is shown below. (Deadweight of a beam is taken into consideration.)



Maximum shearing force

Smax = 532.56 kN

- ④ 2 The direction which a truck runs is a direction vertical to a beam.
- · Reinforcing bar of upper side (Bending Moment)

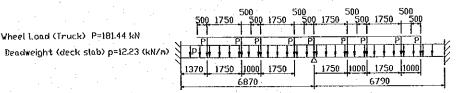
A frame model is shown below. (Deadweight of a beam is taken into consideration.)


Maximum bending moment upper side $Mmax = 660.73 \text{ kN} \cdot \text{m}$

	Prepared by	Y. Ando	Checked by	NISHIMURA
		261 07 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 고실 Rev.
	4	Poforoncoc/

· Reinforcing bar of lower side (Bending Moment)


A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment lower side Mmax = 337.72 kN·m

· Shearing force

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum shearing force

Smax = 674.57 kN

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>			
		Prepared by	Y. Ando	Checked by	NISHIMURA
 			26/07/2002		08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. ≥?	Rev.

(iii) Earthquake Condition

Load which acts (Earthquake)

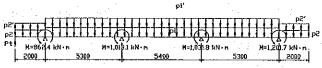
1.1D (Deadweight) +1.0S (Surcharge) +1.0E (Earthquake Force)

The pile head moment computed by the basic design is used.

The vertical direction beam to the face line

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Earthquake


Sea→Land

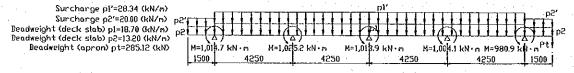
Surcharge pi*=33.72 (kN/n) Surcharge p2*=26.67 (kN/n) Deadweight (deck slab) pi=22.26 (kN/n) Deadweight (deck slab) p2=17.60 (kN/n) Deadwight (apron) pt=285.12 (kN)

Earthquake

Land→Sea

Surcharge pt=33.72 (kN/n)
Surcharge pt=26.67 (kN/n)
Deadweight (deck stab) pt=22.26 (kN/n)
Deadweight (deck stab) p2=17.65 (kN/n)
Deadweight (apron) pt=285.12 (kN)

Maximum bending moment upper side $Mmax = 1,515.14 \text{ kN} \cdot \text{m}$


lower side $Mmax = 888.78 \text{ kN} \cdot \text{m}$

Maximum bending moment

Smax = 591.19 kN

The parallel direction beam to the face line

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side $Mmax = 1,467.91 \text{ kN} \cdot \text{m}$

lower side $Mmax = 955.37 \text{ kN} \cdot \text{m}$

Maximum shearing force

Smax = 633.54 kN

Prepared by	YeAndo	Checked by	R. NISHIMURA
	261071200 2		08 1 08 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≥8 Rev.
		References/ Notes

(iv) Berting Condition (Fender attachment part (apron))

Thickness of fender attachment part (apron) is 500mm. Deadweight is taken into consideration as tensile force.

Load which acts(Berthing) 1.1D (Deadweight) +1.0S_B (Reaction force of the fender) **Berthing condition is taken as extraordinary.

Fender shall be attached in the center between piles. Moreover, section force is computed about two cases, the case where reaction force of the fender acts on a lower end (+1.00), and the case, which acts on the central part (+3.00). Fender attachment part (apron) computed section force by having performed FEM analysis as "slab fixed on three sides and free on one side".

Maximum bending moment

(Horizontal reinforcing bar) Mmax = 188.70 kN·m/m (lower end)

(Vertical reinforcing bar) Mmax = 71.75 kN·m/m (center)

Maximum axial force

(Horizontal reinforcing bar) N = 0.0 kN/m

(Vertical reinforcing bar) $N = 4.0 \times 1.0 \times 0.5 \times 24 = 48.0 \text{ kN/m}$

			Prepared by	Y. Ando	Checked by	P.	NISHIMURA
				2610712002			08 1 08 1200Z

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 29 Rev.
		References/

Notes

b) Serviceability Limit State

The Section force of a serviceability limit state is divided and computed when the case where permanent load (Deadweight) acts, and variable load (Surcharge, Wheel Load (Truck)) act. Design load is computed using the following formulas.

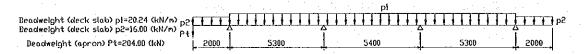
$$S_k = k_p \times S_p + k_r \times S_r$$

where

 S_k :characteristic value of load for examination of the serviceability limit state

 S_p : characteristic value of permanent load

: characteristic value of variable load S_{r}


kp, kr : constans to represent the effects on crake widths and the corrosion of steel by the permanent load and variable load, respectively. It may be taken that k_p is 1.0 and k_r is 0.5.

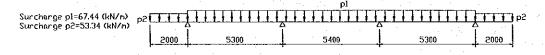
(i) Ordinary

(1) The vertical direction beam to the face line

Permanent Load (Deadweight)

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side $Mmax = 475.52 kN \cdot m$


> $Mmax = 102.67 \text{ kN} \cdot \text{m}$ lower side

Maximum shearing force

Smax = 271.52 kN

· Variable Load (Surcharge)

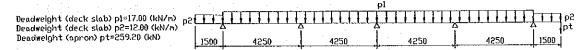
A frame model is shown below.

 $Mmax = 171.62 \text{ kN} \cdot \text{m}$ Maximum bending moment upper side

> $Mmax = 98.76 kN \cdot m$ lower side

Smax = 190.97 kNMaximum shearing force

ì				· · · · · · · · · · · · · · · · · · ·	
		Prepared by	Y. Ando	Checked by	E, NISHIMURA
			26 1 07 12002		08 / 08 /2002.


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File	Vo.	
Section	Civil	Calc. Index	(No.	Strange, St. Strange, (Spitchily Constitution and Administration)
Subject	Quaywall	Page No.	30	Rev.
			Refere	nces/

Notes

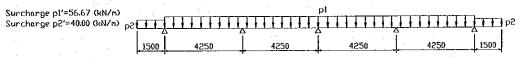
(2) The parallel direction beam to the face line

· Permanent Load (Deadweight)

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 475.52 kN·m

lower side


 $Mmax = 36.36 kN \cdot m$

Maximum shearing force

Smax = 370.87 kN

· Variable Load (Surcharge)

A frame model is shown below.

Maximum bending moment

upper side

 $Mmax = 106.68 \text{ kN} \cdot \text{m}$

lower side

 $Mmax = 58.35 kN \cdot m$

Maximum shearing force

Smax = 190.97 kN

(ii) Wheel Load (Truck)

(1) The vertical direction beam to the face line

① − 1 Permanent Load (Deadweight)

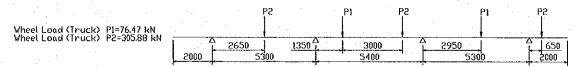
The same value as the value computed by ordinary condition is used for the section force of permanent load.

Maximum bending moment upper side $Mmax = 475.52 \text{ kN} \cdot \text{m}$

> $Mmax = 102.67 \text{ kN} \cdot \text{m}$ lower side

Maximum shearing force

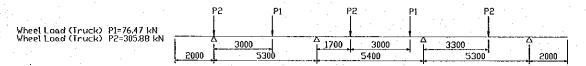
Smax = 271.52 kN


	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		261 07 1200Z		08 1 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 3/ Rev.

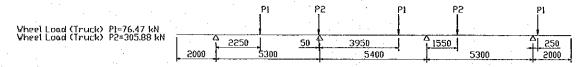
①-2 Variable Load (Wheel Load (Truck))

• The case a truck runs in the vertical direction to the face line (Reinforcing bar of upper side (Bending Moment))


A frame model is shown below.

Maximum bending moment upper side Mmax = 245.89 kN·m

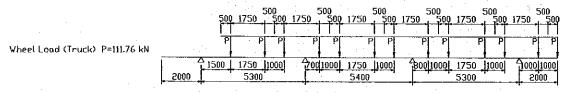
(Reinforcing bar of lower side (Bending Moment))


A frame model is shown below.

Maximum bending moment lower side Mmax = 304.08 kN·m

(Shearing force)

A frame model is shown below.



Maximum shearing force

Smax = 305.88 kN

 The case a truck runs in the parallel direction to the face line (Reinforcing bar of upper side (Bending Moment))

A frame model is shown below.

Maximum bending moment upper side $Mmax = 335.28 \text{ kN} \cdot \text{m}$

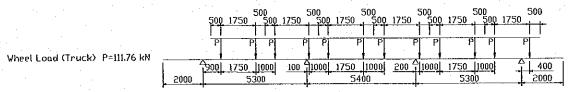
Prepared by	Y. Ando	Checked by	E. NISHIMULA
	261 07 12002		08 1 08 12002

Notes

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.	
Section	Civil	Calc. index No.	
Subject	Quaywall	Page No. ⊰< Rev.	
		References/	

(Reinforcing bar of lower side (Bending Moment))

A frame model is shown below.


Wheel Load (Truck) P=111.76 kN

Vinet Load (Truck) P=111.76 kN

Maximum bending moment lower side Mmax = 190.75 kN·m

(Shearing force)

A frame model is shown below.

Maximum shearing force

Smax = 293.65 kN

2)The parallel direction beam to the face line

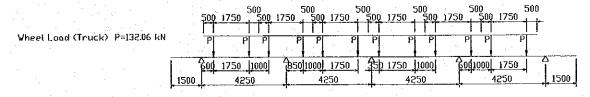
2)-1 Permanent Load (Deadweight)

The same value as the value computed by ordinary condition is used for the section force of permanent load.

Maximum bending moment upper side Mmax = 475.52 kN·m

lower side $Mmax = 36.36 \text{ kN} \cdot \text{m}$

Maximum shearing force


Smax = 370.87 kN

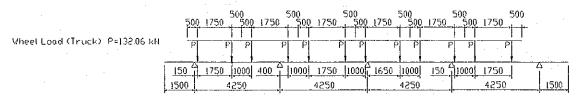
(2)-2 Variable Load (Wheel Load (Truck))

· The case a truck runs in the vertical direction to the face line

(Reinforcing bar of upper side (Bending Moment))

A frame model is shown below.

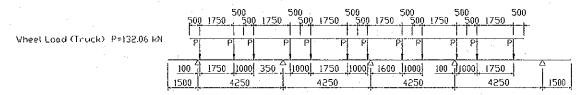
Maximum bending moment upper side Mmax = 200.66 kN·m


Prepared by	Ando Checked by	P. NISHIMURA
2610	7 /2002	08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. ਤਤੇ	Rev.

(Reinforcing bar of lower side (Bending Moment))

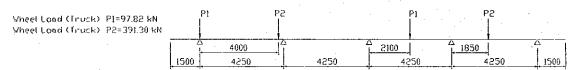
References/ Notes


A frame model is shown below.

Maximum bending moment lower side Mmax = 144.98 kN · m

(Shearing force)

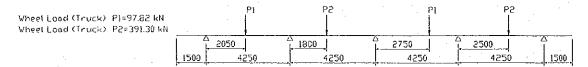
A frame model is shown below.



Maximum shearing force

Smax = 308.73 kN

• The case a truck runs in the parallel direction to the face line (Reinforcing bar of upper side (Bending Moment))


A frame model is shown below.

Maximum bending moment upper side Mmax = 204.94 kN · m

(Reinforcing bar of lower side (Bending Moment))

A frame model is shown below.

Maximum bending moment lower side $Mmax = 338.05 \text{ kN} \cdot \text{m}$

Prepared by	Y. Ando	Checked by	Pishinura
	2610712002		08 / 08 /2002

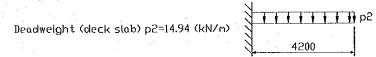
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc, Index No.	
Subject	Quaywall	Page No. ♂火	Rev.

(Shearing force)

A frame model is shown below.

Wheel Load (Truck) P1=97.82 kN Wheel Load (Truck) P2=391.30 kN

Maximum shearing force


Smax = 390.83 kN

(3) Cantilever of a land side (Beam 4)

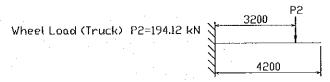
Section force of beam 4 is computed. Bar arrangement of cantilever of other variant parts is set to the same bar arrangement as beam 4.

· Permanent Load (Deadweight)

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Deadweight of beam $w = 0.74 \times 24 = 17.76 \text{ kN/m}$

All Equivalent uniform distribution load w = 17.76 + 14.94 = 32.70 kN/m


Maximum bending moment $Mmax = (32.70 \times 4.20^2)/2 = 288.41 \text{ kN} \cdot \text{m}$

Maximum shearing force $Smax = 32.70 \times 4.20 = 137.34 \text{ kN}$

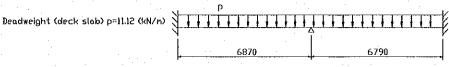
· Variable Load (Wheel Load (Truck))

Wheel Load (Truck) shall act on the part 1.0m away from the beam end.

A frame model is shown below.

Maximum bending moment $Mmax = 194.12 \times 3.20 = 621.18 \text{ kN} \cdot \text{m}$

Maximum shearing force Smax = 194.12 kN


Prepared by	YAndo	Checked by	. NISHIMURA
	261 07 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 🥴 Rev	v

(4) Beam of the Direction of Slant (Beam 7)

④-1 Permanent Load (Deadweight)

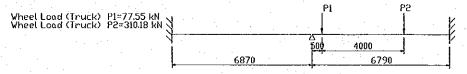
A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side

le $Mmax = 114.24 \text{ kN} \cdot \text{m}$

lower side $Mmax = 57.12 \text{ kN} \cdot \text{m}$

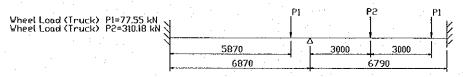
Maximum shearing force


Smax = 99.49 kN

④-2 Variable Load (Wheel Load (Truck))

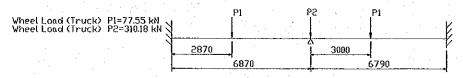
• The direction which a truck runs is a direction parallel to a beam.

(Reinforcing bar of upper side (Bending Moment))


A frame model is shown below.

Maximum bending moment upper side Mmax = 362.92 kN·m

(Reinforcing bar of lower side (Bending Moment))

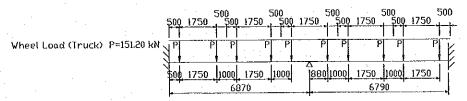

A frame model is shown below.

Maximum bending moment lower side Mmax = 299.15 kN·m

(Shearing force)

A frame model is shown below.

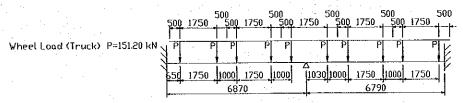
Maximum shearing force


Smax = 353.65 kN

		Prepared by	Y. Ando	Checked by	2. NISHIMURA
			261 07 12002		08 1 08 12002

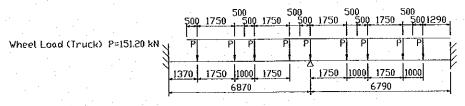
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🥜 Rev.
		References/ Notes

The direction which a truck runs is a direction parallel to a beam.
 (Reinforcing bar of upper side (Bending Moment))


A frame model is shown below.

Maximum bending moment upper side Mmax = 447.68 kN·m

(Reinforcing bar of lower side (Bending Moment))


A frame model is shown below.

Maximum bending moment lower side Mmax = 238.27 kN·m

(Shearing force)

A frame model is shown below.

Maximum shearing force

Smax = 471.47 kN

Prepared by	Y. Ando	Checked by ₽	NISHIMURA
	261 07 1200Z		08 1 08 12002

Project	Detailed Design on Port F	Reactivation Project in La Union	Calc. File No.	
Section	Civil		Calc. Index No.	
Subject	Quaywall		Page No. ⊰?	Rev.
			Refe	ences/

References/ Notes

(iii) Berting Condition (Fender attachment part (apron))

Section force uses the value computed in ultimate limit state.

Permanent Load (Maximum axial force)

(Horizontal reinforcing bar) N = 0.0 kN/m

(Vertical reinforcing bar) $N = 4.0 \times 1.0 \times 0.5 \times 24 = 48.0 \text{ kN/m}$

Variable Load (Maximum bending moment)

(Horizontal reinforcing bar) Mmax = 188.70 kN · m/m (lower end)

(Vertical reinforcing bar) Mmax = 71.75 kN·m/m (center)

c) Fatigue Limit State

The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

Prepared by	Y. Ando	Checked by	E NISHIMURA
	2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. <i>38</i>	Rev.

References/ Notes

- d) Generalization of the load in each limit state
- (i) The vertical direction beam to the face line
 - · Bending Moment

 $(kN \cdot m)$

	Ultimate limit		Serviceability limit				
	upper	lower	Permanent load		Variable load		
	side	side	upper	lower	upper	lower	
Ordinary	651.09	199.34	475.52	102.67	171.62	98.76	
Wheel Load (Truck)	920.30	365.44	475.52	102.67	335.28	304.08	
Earthquake	1,515.14	888.78					

· Shearing Force

(kN)

. !		Ultimate limit	Serviceability limit			
		Ommate mint	Permanent load	Variable load		
	Ordinary	426.69	271.52	190.97		
	Wheel Load (Truck)	626.66	271.52	305.88		
	Earthquake	591.19		 -,,		

*The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

- **The section force of Wheel Load (Truck) extracted the larger one of the section force of each run direction of a truck.
- (ii) The parallel direction beam to the face line
 - Bending Moment

 $(kN \cdot m)$

	Ultimate limit		Serviceability limit				
	upper lo	lower	Permanent load		Variable load		
	side	side	upper	lower	upper	lower	
Ordinary	518.51	118.98	475.52	36.36	106.68	58.35	
Wheel Load (Truck)	464.51	392.02	475.52	36.36	204.95	338.05	
Earthquake	1,467.91	955.37			_	<u> </u>	

· Shearing Force

(kN)

	Ultimate limit	Serviceability limit			
	Unimate mm	Permanent load	Variable load		
Ordinary	406.22	370.87	190.97		
Wheel Load (Truck)	542.03	370.87	390.83		
Earthquake	633.54	<u> </u>	<u> </u>		

Prepared by	Y. Ando	Checked by	E. NISH IMURA
	2610712002	· .	08 1 08 1200 2

Project	Detalled Design on Port Reactivation Project in La Union	Calc. File N	10.
Section	Civil	Calc. Index	(No.
Subject	Quaywall	Page No.	강 Rev.
		*	References/
			Notes

*The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

*The section force of Wheel Load (Truck) extracted the larger one of the section force of each run direction of a truck.

(iii) Cantilever of a land side (Beam 4)

Bending Moment

 $(kN \cdot m)$

	Ultimate limit		Serviceability limit			
	upper side	lower	Permanent load		Variable load	
		side	upper	lower	upper	lower
Wheel Load (Truck)	1,062.66		288.41	-	621.18	

· Shearing Force

(kN)

	Ultimate limit	Serviceabil	ity limit
	Ommate mint	Permanent load	Variable load
Wheel Load (Truck)	384.01	137.34	194.12

*The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

(iv) Beam of the Direction of Slant (Beam 7)

· Bending Moment

 $(kN \cdot m)$

	Ultimate limit lower upper side			Ultimate limit				
			Permanent load		Variable load			
	apper side	side	upper	lower	upper	lower		
Wheel Load (Truck)	660.73	381.55	114.24	57.12	447.68	299.15		

・せん断力 (kN)

	Ultimate limit	Serviceabi	lity limit
	Omnate mint	Permanent load	Variable load
Wheel Load (Truck)	674.57	99.49	471.47

*The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

**The section force of Wheel Load (Truck) extracted the larger one of the section force of each run direction of a truck.

	Prepared by	Y-Ando	Checked by $ {\it L} $	NISHIMURA
		261 0712002		08 1 08 1200 2

(III) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>≮o</i> Rev.
		References/

Notes

(v) Berting Condition (Fender attachment part (apron))

	Ultimate	limit	Serviceability limit			
			Permanent load	Variable load		
	Bending moment	Axial force	Axial force	Bending moment		
Berthing	188.70	0.0	0.0	188.70		
	71.85	48.0	48.0	71.85		

Xupper: Horizontal reinforcing bar

lower: Vertical reinforcing bar

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	261 07/2002		08 / 08 /2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🕢 Rev.

6) Calculation of Reinforcing Bar Arrangement

References/ Notes

Calculation of reinforcing bar arrangement is performed by RC section calculation program. (FORUM8 Co., Ltd)

(1) Examination of Ultimate Limit State

a) Examination of Bending Strength

The area of reinforcing bar to be used calculates it as satisfying the following conditions.

$$\gamma_i \cdot M_d / M_{ud} \leq 1.0$$

M_d; calculated value of bending moment acting on pile in design

M_{ud}; design bending moment capacity. It computes by the following formula.

$$M_{ud} = \frac{C_{c}(d - y_{c}) + C_{s}(d - d')}{\gamma_{b}} = \{A_{s} f_{yd} d - A'_{s} f_{yd} d' - \frac{(A_{s} f_{yd} - A'_{s} f_{yd})^{2}}{1.7 f_{cd} b}\} / \gamma_{b}$$

 C_c ; The compression resultant of concrete (N) (=0.68 · f_{cd} · b · x)

C's; Compressive force of acting on a compression reinforcing bar (N) (=A's ·

f'yd)

T; tensile force of a tensile reinforcing bar (N) (=A_s · f_{vd})

As ; area of reinforcing bar in tensile zone (mm²)

A's ; area of reinforcing bar in compressive zone (mm²)

d; effective depth of a tensile reinforcing bar (mm)

d'; effective depth of a compressive reinforcing bar (mm)

x; distance of a compression end and a neutral axis (mm)

 y_c ; =0.4 · x (mm)

f_{vd}; design tensile yield strength of steel (N/mm²)

 $(=f_{yk}/\gamma_{ms}=345 \text{ N/mm}^2)$

f_{yk}; tensile yield strength of steel (=345 N/mm²)

 $\gamma_{\rm nis}$; material factor of steel (=1.0)

f'cd , design compressive strength of concrete (N/mm²)

 $(=f'_{ck}/\gamma_{mc}=18.5 \text{ N/mm}^2)$

f'ck; characteristic compressive strength of concrete

 $(=24 \text{ N/mm}^2)$

 $\gamma_{\rm mc}$; material factor of concrete (=1.3)

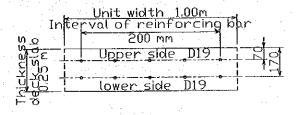
γ_b : member factor of bending members

γ; structure factor

·		er i de la companya		
	Prepared by	Y. Ando	Checked by P.	NISHIMURA
		2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.
		References/

γi ; structure factor


References/ Notes

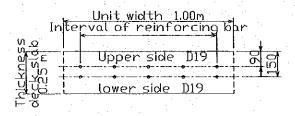
(i) Deck Slab

(Deck Slab "S1" : the parallel direction to the face line

· Examination of bending moment capacity of ultimate limit state

		unit	Ordi	nary	Wheel (distrib		Wheel (Partia distrib Vertical face	nl ution) I to the	Wheel (Partia distrib Paralle face	al ution) I to the
			upper	lower	upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D19	D19	D19	D19	D19	D19	D19	D19
reinforcing bar (compression side)		mm	D19	D19	D19	D19	D19	D19	D19	D19
number (tension)			5	5	5	5	5	5	5	5
number (compression)	: ""		5	5	5	5	5	5	5	5
area of reinforcement (tension side)	As	$ m cm^2$	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
area of reinforcement (compression side)	A's	cm^2	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
width of member	b _w	mm	1,000	1,000	1,000			1,000	1,000	1,000
effective depth (tension)	d	mm	180	170	180	170	180	170	180	170
effective depth (compression)	d	mm	170	180	170	180	170	180	170	180
$\mathbf{f}_{ extsf{yd}}$		N/mm²	490	490	490	490	490	490	490	490
\mathbf{f}_{cd}		N/mm²	24	24	24	24	24	24	24	24
Mud		kN∙m	80.08	72.11	80.08	72.11	80.08	72.11	80.08	72.11
M _d		kN m	38.74	17.58	40.16	18.22	33.63	29.07	40.69	36.12
Examination result (y i • Ma	1/Mud)	0.581	0.293	0.602	0.303	0.504	0.484	0.610	0.601
Judgmen	t		O.K	O.K	O.K	O.K	O.K	O.K	O.K	O.K

Prepared by Y. Ando	Checked by R. NISHIMURA
261 07 12002	08 1 08 12002


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≮√ Rev.
		References/

References/ Notes

②Deck Slab "S1" : the vertical direction to the face line

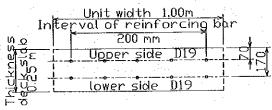
• Examination of bending moment capacity of ultimate limit state

		unit	Ordinary t		Wheel Load (distribution)		Wheel Load (Partial distribution) Vertical to the face line		Wheel Load (Partial distribution) Parallel to the face line	
			upper	lower	upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D19	D19	D19	D19	D19	D19	D19	D19
reinforcing bar (compression side)		mm	D19	D19	D19	D19	D19	D19	D19	D19
number (tension)			5 (5	5	5	5	5	5	5
number (compression)			- 5	5	5	5	5	5	5	5
area of reinforcement (tension side)	As	cm ²	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
area of reinforcement (compression side)	Α's	cm²	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
width of member	$\mathbf{b_w}$	mm	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
effective depth (tension)	d	mm	160	150	160	150	160	150	160	150
effective depth (compression)	ď	mm	150	160	150	160	150	160	150	160
fyd	11	N/mm²	490	490	490	490	490	490	490	490
\mathbf{f}_{cd}		N/mm²	24	24	24	24	24	24	24	24
M _{ud} kN·m M _d kN·m		kN∙m	81.08	71.62	81.08	71.62	81.08	71.62	81.08	71.62
		31.22	9.90	32.36	10.26	31.36	26.76	24.53	19.93	
Examination result (y _i · M _d /M _{ud})			0.462	0.166	0.479	0.172	0.464	0.448	0.363	0.334
Judgmen	t		ок	O.K	O.K	о.к	O.K	о.к	O.K	O.K

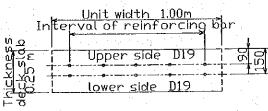
Prepared by	Y. Ando	Checked by	e. Nishimuea
	261 07/200Z		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.
		References/

③Deck Slab "S3"


Notes

· Examination of bending moment capacity of ultimate limit state


		unit	Ordi Para	~	Ordi Vert	
		upper	lower	upper	lower	
reinforcing bar (tension side)		mm	D19	D19	D19	D19
reinforcing bar (compression side)		mm	D19	D19	D19	D19
number (tension)			5	5	5	5
number (compression)			5	5	5	- 5
area of reinforcement (tension side)	As	cm ²	14.33	14.33	14.33	14.33
area of reinforcement (compression side)	A's	cm²	14.33	14.33	14.33	14.33
width of member	$\mathbf{b_w}$	mm	1,000	1,000	1,000	1,000
effective depth (tension)	d	mm	180	170	160	150
effective depth (compression)	d	mm	170	180	150	160
f_{yd}		N/mm²	490	490	490	490
\mathbf{f}_{cd}		N/mm²	24	24	24	24
Mud		kN m	80.08	72.11	81.08	71.62
Md		kN·m	26.30	_	10.30	1.41
Examination result (ı · M	1/ Mud)	0.394		0.152	0.024
Judgmen	t .		O.K		O.K	O.K

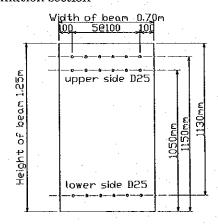
· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

Prepared by	Y. Ando	Checked by R. NISHIMURA			
	261 07 12002		08 108 12002		

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 🛠⁵	Rev.

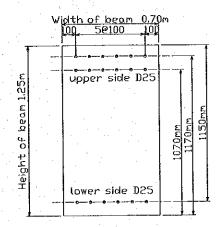

(ii) Beam

References/ Notes

①The vertical direction beam to the face line

· Examination of bending moment capacity of ultimate limit state

		unit	Ordinary		Wheel Loa	id (Truck)	Earth	quake
		unit	upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)			D25	D25	D25	D25	D25	D25
reinforcing bar (compression side)			D25	D25	D25	D25	D25	D25
number (tension)			12	6 -	12	. 6	12	6
number (compression)			6	12	6	12	6	12
area of reinforcement (tension side)	As	cm²	60.80	30.40	60.80	30.40	60.80	30.40
area of reinforcement (compression side)	A's	$ m cm^2$	30.40	60.80	30.40	60.80	30.40	60.80
width of member	$\mathbf{b_w}$	mm	700	700	700	700	700	700
effective depth (tension)	d	mm	1,100	1,130	1,100	1,130	1,100	1,130
effective depth (compression)	d	mm	1,130	1,100	1,130	1,100	1,130	1,100
$f_{ m yd}$		N/mm²	490	490	490	490	490	490
\mathbf{f}_{cd}		N/mm²	24	24	24	24	24	24
Mud		kN∙m	1,852.79	1,058.77	1,852.79	1,058.77	1,852.79	1,058.77
M _d		kN·m	651.09	199.34	920.30	365.44	1,515.14	888.78
Examination result (γi·I	Md / Mud)	0.422	0.226	0.596	0.414	0.818	0.839
Judgmen	t		O.K	O.K	O.K	O.K	O.K	O.K


	Prepared by	Y. Ando	Checked by R	NISHIMURA
ĺ		261 07 12002		08 1 08 1200 B

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ા ⊀ሪ Rev.
		References/ Notes

QThe parallel direction beam to the face line

· Examination of bending moment capacity of ultimate limit state

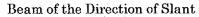
		T	Ordin	nary	Wheel Load (Truck)		Eartho	juake
		unit	upper	lower	upper	upper	lower	upper
reinforcing bar (tension side)		:	D25	D25	D25	D25	D25	D25
reinforcing bar (compression side)			D25	D25	D25	D25	D25	D25
number (tension)			12	. 6	12	6	12	6
number (compression)			6	12	6	12	6 .	12
area of reinforcement (tension side)	A_s	cm²	60.80	30.40	60.80	30.40	60.80	30.40
area of reinforcement (compression side)	A's	$ m cm^2$	30.40	60.80	30.40	60.80	30.40	60.80
width of member	$\mathbf{b_w}$	mm	700	700	700	700	700	700
effective depth (tension)	d	mm	1,120	1,150	1,120	1,150	1,120	1,150
effective depth (compression)	d	mm	1,150	1,120	1,150	1,120	1,150	1,120
f_{yd}		N/mm ²	490	490	490	490	490	490
\mathbf{f}_{cd}		N/mm²	24	24	24	24	24	24
		kN·m	1,903.64	1,078.73	1,903.64	1,078.73	1,903.64	1,078.73
		kN·m	518.51	118.98	464.51	392.02	1,467.91	955.37
Examination result ($\gamma_i \cdot M_d / M_{ud}$		Id/Mud)	0.327	0.132	0.293	0.436	0.771	0.886
Judgment			O.K	O.K	O.K	O.K	O.K	O.K

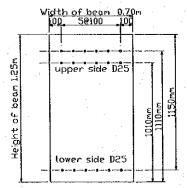
Prepared by	Y. Ando	Checked by	. NISHIMUPA
	261 07 1200 2		08 1 08 1200 B

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ∕⟨?) Rev.

30ther beams (Cantilever (Beam 4), Beam of the Direction of Slant

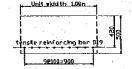
References/ Notes


(Beam 7), Fender attachment part (apron))


· Examination of bending moment capacity of ultimate limit state

unit		unit	Canti	lever		im of the ion of Slant Fender attachme		chment part
			upper	lower	upper	lower	horizontal	vertical
reinforcing bar (tension side)			D25	D25	D25	D25	D19	D19
reinforcing bar (compression side)			D25	D25	D25	D25		
number (tension)			12	6	12	6	10	5
number (compression)		·	6	12	6	12		
area of reinforcement (tension side)	As	$ m cm^2$	60.80	30.40	60.80	30.40	28.65	14.32
area of reinforcement (compression side)	A's	$ m cm^2$	30.40	60.80	30.40	60.80	<u> </u>	_
width of member	bw	mm	700	700	700	700	1,000	1,000
effective depth (tension)	d	mm	1,100	1,130	1,060	1,150	420	400
effective depth (compression)	d	mm	1,130	1,100	1,150	1,060		
\mathbf{f}_{yd}		N/mm ²	490	490	490	490	490	490
$\mathbf{f}_{\mathbf{cd}}$		N/mm²	24	24	24	24	24	24
Mud		kN·m	1,852.8	1,058.8	1,794.2	1,086.8	333.17	143.71
M _d kN·m			1,062.7		660.73	381.55	188.70	71.85
Examination result (y i Ma	l / Mud)	0.688	.—	0.442	0.421	0.566	0.600
Judgmen	t		O.K	-	O.K	O.K	O.K	О.К

· Dimension of an examination section


Dimension of section of cantilever is the same as the vertical direction beam to the face line.

Fender attachment part

Horizontal reinforcing bar

Vertical reinforcing bar

	Prepared by	Y. Ando	Checked by 2	. NISHIMUPA
·		261 0712002		08/08/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🕏 Rev.

b) Examination of the Shearing Force

References/ Notes

The steel reinforcement to be used calculates it as satisfying the following conditions.

$$\gamma_1 \cdot V_d / V_{yd} \leq 1.0$$

$$V_{yd} = V_{cd} + V_{sd}$$

Vyd ; design shear capacity

design shear capacity without shear reinforcement. It computes by the following

$$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b_w \cdot d/\gamma_b$$

 f_{vcd} ; $0.2 \times (f_{cd})^{1/3}$

 β_d ; coefficient to consider influence of effective depth on shear capacity $\beta_{\rm d} = (1000/{\rm d})^{1/4}$

; coefficient to consider influence of longitudinal reinforcement on shear capacity $\beta_{\rm p} = (100 \cdot \rm p_w)^{1/3}$

; coefficient to consider influence of axial force on shear capacity

 $\beta_{n}=1+M_{0}/M_{d} \quad (N'_{d} \ge 0)$ when $\beta_n > 2$, β_n is taken as 2.0

 $\beta_n=1+2M_0/M_d$ (N'_d<0) when $\beta_n<0$, β_n is taken as 0.0

; design axial compressive force (N)

; design bending moment (N·mm) M_d

; decompression moment necessary to cancel the fiber stress due to axial force at the M_0 tension fiber corresponding to design moment M_d

; web width (mm)

d ; effective depth (mm)

; balanced ratio of reinforcement=A_s/ (b_w· d)

; area of reinforcing bar (mm²)

; design compressive strength of concrete (=18.5N/mm²)

; member factor (=1.30)

V_{sd} ; design shear capacity carried by shear reinforcing steel

$$V_{sd} = \frac{A_{w} \cdot f_{wyd}}{S_{s}} \left(\sin \alpha_{s} + \cos \alpha_{s} \right) \cdot z / \gamma_{b}$$

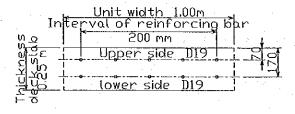
; total amount of area of shear reinforcement over the interval S_s (mm²)

; design yield strength of shear reinforcement (=345 N/mm²)

; angle between shear reinforcement and member axis

; spacing of shear reinforcement (mm)

zγ _b	1.15	to centroid of tension		
	Prepared by	Y. Ando	Checked by	2. NISHIMURA
		26107 12002		08 / 08 /200 2

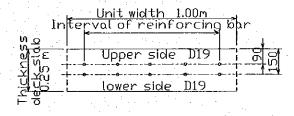

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc, Index No.
Subject	Quaywall	Page No. ≮9 Rev.
		References/

(i) Deck Slab

(Deck Slab "S1" : the parallel direction to the face line

· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution) Vertical to the face line	Wheel Load (Partial distribution) Parallel to the face line
reinforcing bar			D19	D19	D19	D19
number of reinforcing bar			5	5	5	5
area of reinforcing bar	As	cm^2	14.33	14.33	14.33	14.33
width of member	$\mathbf{b_w}$	шш	1,000	1,000	1,000	1,000
effective depth	d	mm	170	170	170	170
axial compressive force	N'a	kN	0	0	0	0
$A_{\rm w}$		mm²	2.534	2.534	2.534	2.534
α s		0	90	90	90	90
s		mm	200	200	200	200
V_{cd}		kN	97.98	97.98	97.98	97.98
Vsu	·	kN	56.19	56.19	56.19	56.19
Vyd		kN	154.17	154.17	154.17	154.17
V _d		kN	59.69	61.87	52.54	42.50
Examination result (yi.	V _d /	V _{yd})	0.465	0.482	0.409	0.331
Judgment			O.K	O.K	O.K	O.K


Prepared by	YAndo	Checked by	e. Nishimura
·	26107 12002		08 08 2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. より Rev.
		References/ Notes

②Deck Slab "S1" : the vertical direction to the face line

· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution) Vertical to the face line	Wheel Load (Partial distribution) Parallel to the face line
reinforcing bar			D19	D19	D19	D19
number of reinforcing bar			5	5	5	5
area of reinforcing bar	As	cm^2	14.33	14.33	14.33	14.33
width of member	b _w	mm	1,000	1,000	1,000	1,000
effective depth	d	mm	150	150	150	150
axial compressive force	N'a	kN	0	0	0	0
$A_{\rm w}$		$ m mm^2$	2.534	2.534	2.534	2.534
αs		0	90	90	90	90
s		mm	200	200	200	200
V_{cd}		kN	90.12	90.12	90.12	90.12
$V_{\rm sd}$		kN	49.58	49.58	49.58	49.58
V_{yd}		kN	139.70	139.70	139.70	139.70
V _d		kN	65.28	67.66	43.71	53.75
Examination result $(\gamma_i \cdot V_d / V_{yd})$			0.561	0.581	0.375	0.439
Judgment			O.K	O.K	O.K	O.K

Prepared by	YiAndo	Checked by	R. NISHIMURA
	261 07/2002		08 08 2002