	DESIGN CALCULATION CO	OVER SHEET	·
Project	Detailed Design on Port Reactivation Project in La Union Province	Project Code	JC1N004
Section	Civil	Calc. File No.	
Sub-Section	Quaywall	Calc. Index No.	
Subject:	Passenger Berth		

References, Calculation Notes and Comments

Refer todrawings

QW-02-006,QW-02-007

Calculation based on

TECHNICAL STANDERDS AND COMMENTARIES

FOR

PORT AND HARBOUR FACILITIES IN JAPAN

L		A CONTRACTOR OF THE CONTRACTOR						
Rev	Prep	ared	No. of	Che	cked	Rev	iewed	Superseded
TTEV	by	Dáte	Pages	by	Date	_ √ by	Date	by Calc No.
0_	Thurt	26/07/02	18	\$ ST	4 July of	T	26/08/02	
Α					7			
В								
С								

File in Calc. File

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. / Rev.

9. Detail Design of Breasting Dolphin (Passenger Berth)

Refe	renc	es/
Note	S	

1) Examination Case

An examination case is performed about berthing and mooring condition like a basic design. Moreover, only LWL condition with bigger pile head moent examines. The examination case of calculation of reinforcing bar arrangement is shown below.

	Deadweight	Reaction Force of the Fender	Tractive Force	
Berthing Condition	0	0		
Mooring Condition	0		0	

Moreover, calculation of reinforcing bar arrangement of each examination case examines only ultimate limit state and serviceability limit state.

2) Partial Safety Load

The partial safety factor used for this examination is shown below.

(1) Load Factor

	Ultimate limit	Serviceability limit
Deadweight	1. 1	1. 0
Reaction Force of the Fender	1. 2	1. 0
Tractive Force	1. 2	1. 0

(2) The other nimbers of partial safety factor

	·	Ultimate limit	Serviceability limit
Material factor	Concrete	1.30	1.00
(γm)	Reinforcing bar	1.00	1.00
Structure analysis	factor(y a)	1.00	1.00
Member factor (γ	b)	1.15~1.30	1.00
Structure factor (y i)		1.20	1.00

*****Member Factor

When calculating bending and axial strength : 1.15

When calculating upper limit of axial compressive strength : 1.30

When calculating shear capacity borne by concrete : 1.30

When calculating shear capacity borne by shear reinforcement : 1.15

In calculation of reinforcing bar arrangement, reaction force of the fender and Tractive Force is treated not as accidental load but as variable load. Therefore, partial safety factor of both loads sets to 1.2, and structure factor of each examination case is set to 1.2.

Prepared by	Y. Ando	Checked by	. NISHIMURA
	2610712002		08/08/2002

		THE PERSON NAMED OF THE PERSON NAMED IN COLUMN 2 STATES OF THE PERSON NAMED OF THE PERSON NAMED IN COLUMN 2 STATES OF THE PERSON NAMED
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🥏 Rev.
		References/
		Notes

3) Calculation Method of Cross-Sectional Force

The cross-sectional force of superstructure is computed using 2-dimensional framework model (simple beam). Action load is multiplied by the partial safety factor. The pile head moment uses what is computed by the basic design. (Calculation of pile head moment has the large influence of free length of pile, spring constant (grand), and all horizontal force. Therefore, pile head moment at the time of the variable load action by serviceability limit state hardly changes with the thing of ultimate limit state. Therefore, the same value as pile head moment computed by the basic design is used for pile head moment by variable load of serviceability limit state.) Moreover, the action direction of the external force, which acts on superstructure, is as follows.

Berthin Condition : the vertical direction to the face line

Mooring Condition : the vertical and parallel direction to the face line

	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 궁 Rev.
		Poforonood/

- 4) Calculation of Load
- (1) Deadweight

$$W = 8.0 \times 8.0 \times 3.0 \times 24 = 4,608.0 \text{ kN}$$

Equivalent uniform distribution load at the time of calculating cross-sectional force as a simple beam.

$$w = 4,608.0 / 8.0 = 576.0 \text{ kN/m}$$

(Ultimate limit)
$$W = 4,608.0 \times 1.1 = 5,068.8 \text{ kN}$$
 , $w = 576.0 \times 1.1 = 633.6 \text{ kN/m}$ (Serviceability limit) $W = 4,608.0 \times 1.0 = 4,608.0 \text{ kN}$, $w = 576.0 \times 1.0 = 576.0 \text{ kN/m}$

(2) The pile head moment by reaction force of the fender (Berthing condition)

Pile 1
$$M = 1.078.00 \text{ kN} \cdot \text{m}$$

Pile 2
$$M = 1,170.00 \text{ kN} \cdot \text{m}$$

(Ultimate limit)
$$M = 1,078.00 \times 1.2 = 1,293.60 \text{ kN} \cdot \text{m}$$

(Serviceability limit)
$$M = 1,170.00 \times 1.2 = 1,404.00 \text{ kN} \cdot \text{m}$$

(3) The pile head moment by tractive force (Mooring condition)

(Action direction: the vertical direction to the face line)

Pile 1
$$M = 1,906.00 \text{ kN} \cdot \text{m}$$

Pile 2
$$M = 2.070.00 \text{ kN} \cdot \text{m}$$

(Ultimate limit) Pile 1
$$M = 1,906.00 \times 1.2 = 2,287.20 \text{ kN} \cdot \text{m}$$

Pile 2
$$M = 2,070.00 \times 1.2 = 2,484.00 \text{ kN} \cdot \text{m}$$

(Serviceability limit) Pile 1
$$M = 1,906.00 \times 1.0 = 1,906.00 \text{ kN} \cdot \text{m}$$

Pile 2
$$M = 2,070.00 \times 1.0 = 2,070.00 \text{ kN} \cdot \text{m}$$

(4) The pile head moment by tractive force (Mooring condition)

(Action direction: the parallel direction to the face line)

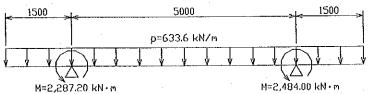
Pile
$$2 - 1$$
 $M = 2,005.50 \text{ kN} \cdot \text{m}$

Pile
$$2 - 2$$
 $M = 2,006.00 \text{ kN} \cdot \text{m}$

(Ultimate limit) Pile
$$2-1$$
 $M = 2,005.50 \times 1.2 = 2,406.60 \text{ kN} \cdot \text{m}$

Pile 2 – 2
$$M = 2,006.00 \times 1.2 = 2,407.20 \text{ kN} \cdot \text{m}$$

(Serviceability limit) Pile
$$2-1$$
 $M = 2,005.50 \times 1.0 = 2,005.50 \text{ kN} \cdot \text{m}$

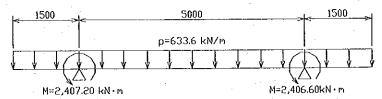

Pile 2 – 2
$$M = 2,006.00 \times 1.0 = 2,006.00 \text{ kN} \cdot \text{m}$$

From the calculation result of load, since the load of mooring condition is larger than Berthing condition, examination of Berthing condition is excluded and only examination of mooring condition is performed.

Prepared by	Y, Ando	Checked by 2	- NISHIHURA
	2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.
		References

- 5) Calculation of the Section Force
- (1) Ultimate Limit State
- a) The vertical direction to the face line


Maximum bending moment upper side $M = 3,000.00 \text{ kN} \cdot \text{m}$

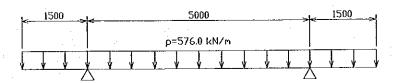
lower side $M = 2,084.16 \text{ kN} \cdot \text{m}$

Maximum shearing force

S = 2,538.24 kN

b) The parallel direction to the face line

Maximum bending moment upper side M = 3,120.00 kN·m


lower side $M = 1,998.24 \text{ kN} \cdot \text{m}$

Maximum shearing force

S = 2,546.76 kN

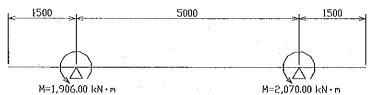
- (2) Serviceability Limit State
- a) The case where permanent load is acting

The cross-sectional power by permanent load serves as the value with same the vertical direction to the face line and the parallel direction to the face line.

Maximum bending moment upper side M = 648.00 kN·m

lower side $M = 1,152.00 \text{ kN} \cdot \text{m}$

Maximum shearing force


S = 1,440.00 kN

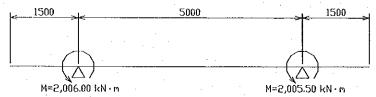
Prepared by	Y. Ando	Checked by	R. NISHIMURA
	26107/2002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	·
Subject	Quaywall	Page No. 🤳	Rev.

b) The case where variable load is acting

(action direction: the vertical direction to the face line)

Maximum bending moment upper side $M = 1,906.00 \text{ kN} \cdot \text{m}$


lower side $M = 2,070.00 \text{ kN} \cdot \text{m}$

Maximum shearing force

S = 795.00 kN

c) The case where variable load is acting

(action direction: the parallel direction to the face line)

Maximum bending moment upper side M = 2,006.00 kN · m

lower side $M = 2,005.50 \text{ kN} \cdot \text{m}$

Maximum shearing force

S = 802.30 kN

(3) Generalization of the load in each limit state

a) Bending Moment

 $(kN \cdot m)$

	Ultimate limit		Serviceability limit			
	upper side lower si		Permanent load		Variabl	e load
			upper	lower	upper	lower
Vertical direction to the face line	3,000.00	2,084.16	648.00	1,152.00	1,906.00	2,070.00
Parallel direction to the face line	3,120.00	1,998.24	648.00	1,152.00	2,006.00	2,005.50

b) Shearing Force

(kN)

	Ultimate limit	Serviceabil	ity limit
	Oldmate Hill	Permanent load	Variable load
Vertical direction to the face line	2,538.24	1,440.00	795.00
Parallel direction to the face line	2,546.76	1,440.00	802.30

ľ	Prepared by	Y. Ando	Checked by	Z. NISHI HURA
l		2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ∠ Rev.
		References/

6) Calculation of Reinforcing Bar Arrangement

Calculation of reinforcing bar arrangement is performed by RC section calculation program. (FORUM8 Co., Ltd)

- (1) Examination of Ultimate Limit State
- a) Examination of Bending Strength

The area of reinforcing bar to be used calculates it as satisfying the following conditions.

$$\gamma_i \cdot M_d / M_{ud} \leq 1.0$$

M_d; calculated value of bending moment acting on pile in design

M_{ud}; design bending moment capacity, It computes by the following formula.

$$M_{ud} = \frac{C_c (d - y_c) + C_s (d - d')}{\gamma_b} = \{A_s f_{yd} d - A'_s f_{yd} d' - \frac{(A_s f_{yd} - A'_s f_{yd})^2}{1.7 f_{cd} b} \} / \gamma_b$$

 C'_c ; The compression resultant of concrete (N) (=0.68 · f'_{cd} · b · x)

C's; Compressive force of acting on a compression reinforcing bar (N) (=A's

f'yd)

T; tensile force of a tensile reinforcing bar (N) $(=A_s \cdot f_{yd})$

As ; area of reinforcing bar in tensile zone (mm²)

A's ; area of reinforcing bar in compressive zone (mm²)

d ; effective depth of a tensile reinforcing bar (mm)

d'; effective depth of a compressive reinforcing bar (mm)

x ; distance of a compression end and a neutral axis (mm)

 y_c ; =0.4 · x (mm)

f_{vd}; design tensile yield strength of steel (N/mm²)

 $(=f_{yk}/\gamma_{ms}=345 \text{ N/mm}^2)$

 f_{yk} ; tensile yield strength of steel (=345 N/mm²)

 $\gamma_{\rm ms}$; material factor of steel (=1.0)

f'cd; design compressive strength of concrete (N/mm²)

 $(=f'_{ck}/\gamma_{mc}=18.5 \text{ N/mm}^2)$

f'ck; characteristic compressive strength of concrete

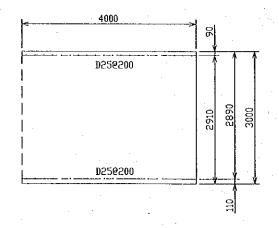
 $(=24 \text{ N/mm}^2)$

 $\gamma_{\rm mc}$; material factor of concrete (=1.3)

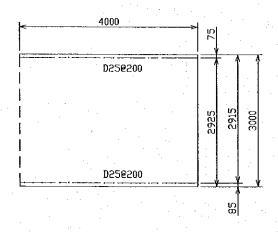
γ_b; member factor of bending members

γ; structure factor

Prepared by	Y. Ando	Checked by	P. NISHIHURA
	2610712002		08 108 1200 2


Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 7 Rev.
		References/

· Examination of bending moment capacity of ultimate limit state


				al direction ace line		el direction ace line
		unit	upper	lower	upper	lower
reinforcing bar (tension side)			D25	D25	D25	D25
reinforcing bar (compression side)			D25	D25	D25	D25
number of reinforcing bar (tension side)			20	20	20	20
number of reinforcing bar (compression side)			20	20	20	20
area of reinfocement (tension side)	As	cm ²	101.34	101.34	101.34	101.34
area of reinfocement (compression side)	A's	cm ²	101.34	101.34	101.34	101.34
width of member	$\mathbf{b_w}$	mm	4,000	4,000	4,000	4,000
effective depth (tension side)	đ	mm	2,910	2,890	2,935	2,915
effective depth (compression side)	d	mm	2,890	2,910	2,915	2,935
f_{yd}		N/mm ²	490	490	490	490
f _{cd}		N/mm²	24	24	24	24
Mud		kN∙m	8,808.14	8,713.17	8,846.30	8,775.23
M _d kN·		kN∙m	3,000.00	2,084.16	3,120.00	1,998.24
Examination result (7	Examination result (yi · Md/Mud)		0.409	0.287	0.423	0.273
Judgmen	t		O.K	о.к	O.K	O.K

· Dimension of an examination section

The vertiveal direction to the face line

The parallel direction to the face line

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	26 1 0712002		08 / 08 /2002

Notes

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. & Rev.
		References/

b) Examination of the Shearing Force

The steel reinforcement to be used calculates it as satisfying the following conditions.

$$\gamma_1 \cdot V_d / V_{yd} \leq 1.0$$

$$V_{yd} = V_{cd} + V_{sd}$$

V_{vd} ; design shear capacity

V_{cd} ; design shear capacity without shear reinforcement. It computes by the following

$$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b_w \cdot d/\gamma_b$$

 f_{vcd} ; $0.2 \times (f_{cd})^{1/3}$

 β_d ; coefficient to consider influence of effective depth on shear capacity $\beta_d = (1000/d)^{1/4}$

 $\beta_{\rm p}$; coefficient to consider influence of longitudinal reinforcement on shear capacity $\beta_{\rm p} = (100 \cdot {\rm p_w})^{1/3}$

 β_n ; coefficient to consider influence of axial force on shear capacity $\beta_n=1+M_0/M_d$ (N'_d ≥ 0) when $\beta_n>2$, β_n is taken as 2.0

 $\beta_n=1+2M_0/M_d$ (N'd < 0) when $\beta_n<0$, β_n is taken as 0.0

 N'_d ; design axial compressive force (N)

M_d ; design bending moment (N·mm)

 M_0 ; decompression moment necessary to cancel the fiber stress due to axial force at the tension fiber corresponding to design moment $M_{\rm d}$

bw ; web width (mm)

d ; effective depth (mm)

 p_w ; balanced ratio of reinforcement= $A_s/(b_w \cdot d)$

A_s; area of reinforcing bar (mm²)

 f_{cd} ; design compressive strength of concrete (=18.5N/mm²)

 γ_b ; member factor (=1.30)

V_{sd}; design shear capacity carried by shear reinforcing steel

$$V_{sd} = \frac{A_w \cdot f_{wyd}}{S_s} \left(\sin \alpha_s + \cos \alpha_s \right) \cdot z / \gamma_b$$

 A_w ; total amount of area of shear reinforcement over the interval S_s (mm²)

 f_{wyd} ; design yield strength of shear reinforcement (=345 N/mm²)

 α_s ; angle between shear reinforcement and member axis

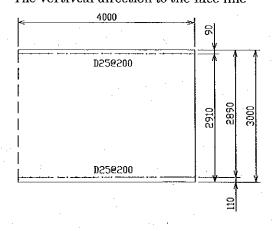
S_s; spacing of shear reinforcement (mm)

 ${\bf z}$; distance from compression resultant to centroid of tension steel

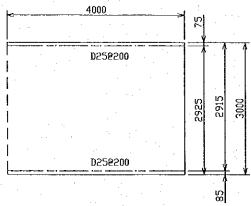
Generally , d/1.15

	Prepared by	Y. Ando	Checked by	e. NISHIMURA
		2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 9 Rev.


γ_b; member factor

· Examination of shearing force capacity of ultimate limit state


		unit	The vertical direction to the face line	The parallel direction to the face line
reinforcing bar		. :	D25	D25
number of reinforcing bar			20	20
area of reinforcing bar	As	cm ²	101.34	101.34
width of member	bw	mm	4,000	4,000
effective depth	d	mm	2,890	2,915
axial compression force	N'a	kN	0	0
Aw	Aw	mm^2	11.460	11.460
α 8		•	90	90
S		mm	200	200
V_{cd}		kN	1,600.74	1,606.75
$V_{\rm sd}$		kN	4,319.93	4,357.30
$V_{\rm vd}$		kN	5,920.67	5,964.05
V_d		kN	2,538.24	2,546.76
Examination result (yi · V	/ _d / V _{yd})		0.514	0.512
Judgment			O.K	O.K

· Dimension of an examination section

The vertiveal direction to the face line

The parallel direction to the face line

	Prepared by	Y. Ando	Checked by	E. NISHIMURA
		261071200Z	: :	08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. /O Rev.
		References/
(0)	Donald star of Camping hillier Y half Chata	Notes

(2) Examination of Serviceability Limit State

Design load is computed using the following formulas.

$$S_k = k_p \times S_p + k_r \times S_r$$

where

S_k: characteristic value of load for examination of the serviceability limit state

S_p: characteristic value of permanent load

S_r: characteristic value of variable load

 k_p, k_r : constants to represent the effects on crake widths and the corrosion of steel by the permanent load and variable load, respectively. It may be taken that k_p is 1.0 and k_r is 0.5.

a) Examination of Flexural Cracks

Flexural crack width (w (mm)) is computed by the following formulas.

$$W = k \cdot \{4c + 0.7 (Cs - \phi)\} \cdot (\frac{\sigma_{sc}}{Es} + \epsilon'_{csd})$$

k ; constant indicating the effect of the bonding properties of the steel material, which may usually be taken as 1.0 in the case of deformed bars.

c ; covering(mm)

Cs ; distance between centers of steel materials(mm)

 ϕ ; diameter of steel materials(mm)

 ϵ 'csd ; constant introduced to represent the increase of crack width caused by creep and drying shrinkage of concrete (this can be o under seaweter, and elsewhere 150× 10^{-6})

σ se ; increased stress on reinforcement (=M_e/(A_s j d))

Es ; Young's modulus of reinforcement $(=2.00 \times 10^5 \text{ N/mm}^2)$

Me ; bending moment

A_s ; area of reinforcing bar (mm²)

j ; Distance between stress (mm)

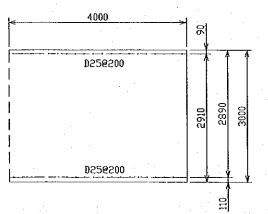
d : effective depth (mm)

Permisible crake width is computed by the following formulas.

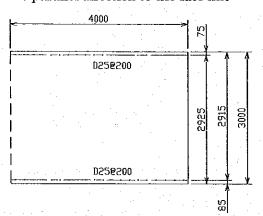
• Permisible crake width upper side reinforcing bar w_a=0.0040 c (mm) lower side reinforcing bar w_a=0.0035 c (mm

Ī		Prepared by	Y. Ando	Checked by	R. NISHIMURA
			261 0712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. // Rev.


· Examination of flexural crack of serviceability limit state

References/ Notes


		unit		direction to ce line	The parallel direction to the face line	
			upper	lower	upper	lower
reinforcing bar		mm	D25	D25	D25	D25
diameter	φ	mm	25	25	25	25
covering	С	mm	77	97	52	72
distance between centers of bar	Cs	mm	200	200	200	200
moment (permanent load)	Me	kN · m	648.00	1,152.00	648.00	1,152.00
moment (variable load)	Me	kN · m	1,906.00	2,070.00	2,006.00	2,005.50
moment (design load)	\dot{M}_{e}	$\mathbf{k}\mathbf{N} \cdot \mathbf{m}$	1,601.00	2,187.00	1,651.00	2,154.75
area of reinforcing bar (tension side)	As	$ m cm^2$	101.34	101.34	101.34	101.34
effective depth	d	mm	2,910	2,890	2,935	2,915
increased stress on reinforcement (design load)	σ se	N/mm²	56.31	77.40	57.51	75.52
increased stress on reinforcement (permanent load)	σse	N/mm²	22.79	40.77	22.57	40.37
flexural crack width (design load)	w 1	mm	0.186	0.274	0.145	0.217
flexural crack width (permanent load)	w2	mm	0.114	0.181	0.087	0.144
permisible crake width	wa	mm	0.308	0.340	0.208	0.252
Examination result (desi	gn load)	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa 	w1 <wa O.K</wa
Examination 1 (permanent l			w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa 	w2 <wa O.K</wa

 \cdot Dimension of an examination section

The vertivcal direction to the face line

The parallel direction to the face line

Prepared by	Y. Ando	Checked by	E. NISHHURA
	2610712002		08 1 08 1200 L
 - · · · · · · · · · · · · · · · · · · ·			

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. /2 Rev.
		References/ Notes

b) Examination of Shear Cracks

For members subject to shear forces, it may not be required to examine shear cracks when the design shear force, Vd, is smaller than 70% of the design shear capacity of concrete, Vcd. When examination for shear crack is necessary, the stress in shear reinforcement due to permanent load is confirmed smaller than the limiting value for the increment in stress in ordinary reinforcement due to permanent load.

$$\sigma \text{ wpd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd}) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \text{ s} + \cos \alpha \text{ s})} \times \frac{\text{Vpd} + \text{Vcd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

wher ownd design stress in shear reinforcement due to permanent load

Vpd : design shear force produced by permanent load

Vrd : design shear force produced by variable load

Vcd : design shear capacity of concrete

(see examination of shearing force of ultimate limit state

It considers as γ b= γ c=1.0)

Aw : area of one unit of shear reinforcement

s : spacing of shear reinforcement

z : distance from compression resultant to centroid of tension

reinforcement (=d/1.15)

d : effective depth

 α s : angle between shear reinforcement and axis of member

k₂: The factor for taking into consideration the influence of the

frequency of change load (=0.5)

The limiting value for the increment in stress in ordinary reinforcement due to permanent load " σ sp" uses the following values. (see "Standard Specifications of Concrete (in Japan))

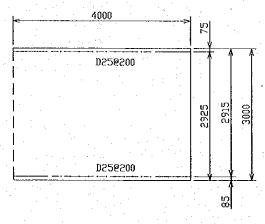
When a upper side reinforcing bar steel rod is examined $\sigma \text{ sp} = 100 \text{ N/mm}^2$

When a lower side reinforcing bar steel rod is examined $\sigma \text{ sp} = 80 \text{ N/mm}^2$

 ·	· · · · · · · · · · · · · · · · · · ·			
	Prepared by	Y, Ando	Checked by	e. Nishihura
		26 1 07 12002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. /강	Rev.
		15. 6	

Examination shearing crack


	unit	The vertical direction to the face line	The parallel direction to the face line
		D25	D25
		20	20
As	cm²	101.34	101.34
bw	mm	4,000	4,000
d	nım	2,890	2,915
N'a	kN	0	0
V_{cd}	kN	3,762.56	3,773.25
Vd	kN	1,836.68	1,841.15
		0.809	0.808
hear cı	rack	with necessity	with necessity
		62.88	62.44
		80.00	80.00
		O.K	O.K
	As bw d N'a Vcd	As cm ² bw mm d mm N'd kN Vcd kN	unit The vertical direction to the face line D25 20 As cm² 101.34 bw mm 4,000 d mm 2,890 N'd kN 0 Vcd kN 3,762.56 Vd kN 1,836.68 0.809 with necessity 62.88 80.00

· Dimension of an examination section

The vertivcal direction to the face line

The parallel direction to the face line

1	 					
		Prepared by		YiAndo	Checked by	P. NISHIMURA
			2	61 07 1200 Z		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywail	Page No. /∦ Rev.

7) Design of Pile Head

References/ Notes

Examination of a pile head portion is calculated by ultimate limit state.

(1) Section Force

Maximum axial force

Sd = 2,560.00 kN

(Mooring Condition, Traction direction: 45° direction to the face line, LWL)

Maximum tensile force Sd = -476.50kN

(Mooring Condition, Traction direction: 45° direction to the face line, LWL)

Maximum pile head moment $M_0 = 2,073.60 \text{ kN} \cdot \text{m}$

(Mooring Condition, Traction direction: 45° direction to the face line, LWL)

(2) Examination of Pushing Force

To punching force which acts on superstructure, it resists by punching shear capacity. Examination to pushing force is performed by the following formula.

$$\gamma_i \times \frac{S_d}{V_{oxd}} \le 1.0$$

 γ_i ; structure factor (Mooring Condition: 1.20)

S_d; punching force (N)

 V_{pcd} ; design punching shear capacity (N)

 $V_{pcd} = \beta_d \times \beta_p \times \beta_r \times f_{pcd} \times u_p \times d' / \gamma_{bc}$

 $f_{pcd} = 0.20 \times (f'_{cd})^{1/2}$

β. coefficiect to consider influence of effective depth on shea capacity

 $\beta_{\rm d} = (1000/\rm d')^{1/4}$

8. : coefficient to consider influence of longitudinal reinforcement on shear

capacity $\beta_o = (100 \times P_w)^{1/3}$

 $\beta_{\rm r}$; coefficient to consider influence of loaded area on punching shear capacity

 $\beta_r = 1 + 1/(1 + 0.25 \times u/d')$

 f'_{cd} ; design compressive strength of concrete (N/mm²) $f'_{cd} = f'_{ck} / \gamma_{mc}$

f'ck; characteristic compressive strength of concrete (N/mm²)

 $\gamma_{\rm mc}$; rnaterial factor of concrete (=1.3)

u_p; peripheral length of the design cross section which is located d/2 from the

loaded area

d' Distance from the pile head upper surface to reinforcing bar in tensile zone

(mm)

pw; reinforcement ratio which are defined as the average values for the

reinforcement in two directions $p_w = As/(b_w \times d)$

As ; area of reinforcing bar in tensile zone (mm²)

bw ; web width of member (mm)

d; effective depth (mm)
u; perimeter of pile (m)

 γ_{bc} ; material factor for concrete without reinforcement (=1.30)

Prepared by	Y. Ando	Checked by &	. NISHIMURA
	2610712002		08 1 08 12002

(I) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 15 Rev.
		References/

Examination Result of Punching Shear

Liminian	on Result of Funching Shea	al		
Ε	esign Punching Shear Capa	city	unit	Mooring Condition(LWL) 45° direction to the face line
Material factor fo	or concrete	γm		1.30
Member factor fo	r superstructure	γЬ		1.30
Structure factor		γi		1.20
Reinforcing bar i	n tensile (vertical direction t	o the face line)		D25
	d'		mm	2910
Interval of reinfo	rcing bar	@	mm	200
Reinforcing bar i	n tensile (parallel direction t	o the face line)		D25
	d'		mm	2935
Interval of reinfo	rcing bar	@	mm	200
ratio of tension	(vertical direction to the fa	ace line) pw1		0.00087
reinforcement	(parallel direction to the fa	ace line) pw2		0.00086
	(average)	pw		0.00087
diamete of pile		φ	$\mathbf{m}\mathbf{m}$	1,100.00
	d		mm	1,500.00
	u		mm	3,455.75
	fck		N/mm2	24.00
	fed		N/mm2	18.46
	βd			0.90
	βр			0.44
	βг			1.63
fpcd = 0.20×(fcd)	1/2	fpcd	N/mm2	0.86
	up		mm	8,168.14
	Vpcd		kN	5,294.17
	Sd		kN	2,560.00
Examination res	ult	γ i×Sd / Vpc d		0.58

Prepared by	Y. Ando	Checked by	E- NISHIMURA
	261 07 12002		08/08/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. /6 Rev.
		References/ Notes

(3) Examination to pile head moment

The necessity embedding length to pile head moment computes from the following formulas.

$$L = \sqrt{(6 \times M_0 / (B \times fad))} \times \gamma b \times \gamma i$$

where

L : necessity embedding length to pile head moment (mm)

 M_0 : pile head moment (= 2,073,600,000 N·mm)

B: diameter of the pile (=1,100 mm)

fad: design bearing strength of superstructure

(The same value as the design compression strength of concrete)

$$(= 24 / 1.3 = 18.46 \text{ N/mm}^2)$$

 γ b: member factor (=1.15)

γi: structure factor (=1.20)

 $L = \sqrt{(6 \times 2,073,600,000/(1,100 \times 18.46)) \times 1.15 \times 1.20} = 1,080 \text{ mm}$

(4) Examination to pulling force

The necessity embedding length to pulling force computes from the following formulas.

$$L = P / (\phi \times fbod / \gamma b)$$

where

P : calculated value of axial force acting on pile in design

(=Sd=476,500 N)

 ϕ : outer perimeter of the cross section of pile (diameter: 1,100 mm)

fbod: design bond strength between the pile and concrete

$$(=0.11 \times \text{fck}^{2/3} / \gamma \text{ c} = 0.11 \times 24^{2/3} / 1.3 = 0.704 \text{ N/mm}^2)$$

fck: characteristic compressive strength of concrete

γ c: material factor for concrete

 γ b: member factor

 $L = 476,500 / (1,100 \times \pi \times 0.704 / 1.0) = 196 \text{ mm}$

(4) Determination of the embedding length of piles

The embedding length to superstructure of a steel pipe pile does as follows from the above mentioned examination result.

L = 1,500 mm (The pile is embedded to the center of superstructure.)

Prepared by Y. Ando	Checked by & NISHIMULA
261 07/2002	08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 📝	Rev,

8) Examination of welding of reinforcing bar and steel pipe pile

The lower reinforcing bar of a beam is welded to the plate attached in the steel pipe pile. The diameter and number of lower reinforcing bar of the parallel and vertical directions beam to the face line are as follows.

Diameter

D25

Number

5 pieces

(1) Examination of thickness of plate

The thickness (t) of a plate is calculated by the following formula.

$$t = T / (L \times \tau_{ta})$$

(mm)

where T: Action tension (N)

$$T = As \times \sigma_{sa} \times n$$

As: cross section area of reinforcing bar (mm²) (D25 As = 506.7mm²)

 σ_{sa} : allowable stress of reinforcing bar (SD345:=176 N/mm²)

n : number of reinforcing bar (=5 pieces)

L: Welding length of a plate

 τ ta : allowable tensile stress for steel at welded zone

$$(SM400 = 140 \text{ N/mm}^2)$$

· Welding length of a plate

The outer perimeter of steel pipe pile is 800mm, and a plate is divided into four.

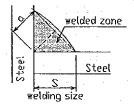
$$L = \pi \times 1,100 / 4 = 863.9 \text{ m}$$

· Action tension

$$T = 506.7 \times 176 \times 5 = 535,075 \text{ N}$$

· Thickness of plate

$$t = 535,075 / (863.9 \times 140) = 4.4 \text{ mm} \rightarrow 9.0 \text{mm}$$


(2) Examination of the welding of steel pipe pile and a plate

Welding size is made into what satisfies the following formulas.

$$\tau_{ts} = T/(a \times L) \leq \tau_{ta}$$

The sign of an upper formula is shown in the right figure.

where
$$a = 0.7 \times a$$

Welding size is set to 9mm.

$$\tau_{ts} = 535,075 / (0.7 \times 9 \times 863.9) = 98.3 \text{ N/mm}^2 \le 140 \text{ N/mm}^2 \text{ O.K}$$

Prepared by	Y-Ando	Checked by	ė. NISHIMUEA
2	261071200Z		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. /ゟ Rev.

(3) Examination of the welding of a plate pile and reinforcing bar

The welding length of reinforcing bar computes by the following formulas.

$$1 = \sigma_{sa} \times As / (\sqrt{2} \times \lambda \times \tau_{sa})$$

where λ : welding size (=D/3 D: diameter of reinforcing bar)

 τ sa : allowable shearing stress for steel at welded zone (= 80 N/mm²)

 $1 = 176 \times 506.7 / (\sqrt{2} \times (25 / 3) \times 80) = 94.6 \text{ mm}$

Therefore, welding length is set to l = 100 mm.

İ		<u> </u>		
	Prepared by	YiAndo	Checked by	R. NISHIMURA
		26 1 07/2002		08 1 08 12002

DESIGN CALCULATION COVER SHEET			
Project	Detailed Design on Port Reactivation Project in La Union Province	Project Code	JC1N004
Section	Civil	Calc. File No.	
Sub-Section	Quaywall	Calc, Index No.	
Subject:	Passenger Berth		

Calculation Objective:

Rainforcement of platform 1.

References, Calculation Notes and Comments

Refer to drawings

QW-02-008~QW-02-011

Calculation based on

TECHNICAL STANDERDS AND COMMENTARIES

FOR

PORT AND HARBOUR FACILITIES IN JAPAN

David	Prep	ared	No. of	Che	cked	Rev	iewed	Superseded
Rev	by	Date	Pages	by	Date	27/pA	Date	by Calc No.
0	affratos	26/07/02	63	in Ft	26 July 82	- TO THE STATE OF	26/08/02	
Α					(
В								
С								

File in Calc. File

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. / Rev.
		References/

7. Detail Designn of Platform1 (Passenger Berth)

1) Examination Case

Combination of the load of the examination case of calculation of reinforcing bar arrangement, and each examination case

			Earthquake	Wheel load
	Deadweight	Surcharge	force	(Truck)
Ordinary	0	0		
Earthquake	0	. 0	0	
Wheel Load (truck)	0	-		0

Moreover, calculation of reinforcing bar arrangement of each examination case is performed as follows.

	Ulitimate limit	Serviceability limit	Fatigue limit
Ordinary	0	0	
Earthquake	0	<u> </u>	
Wheel Load (truck)	0	0	0

2) Partial Safety Factors

The partial safety factor used for this examination is shown below.

(1) Load Factor

	Ulitimate limit	Serviceability limit	Fatigue limit
Deadweight	1. 1	1.0	1. 0
Surcharge	1. 2 (1. 0)	1.0	1. 0
Wheel Load (truck)	1. 2	1.0	1. 0
Earthquake Force	1. 0		

XThe inside of a parenthesis is a value in case of an earthquake.

(2) The other numbers of Partial Safety Factor

		Ulitimate limit	Serviceability limit	Fatigue limit
Material factor	Concrete	1.30	1.00	1.30
(γm)	Reinforcing Bar	1.00	1.00	1.05
Structural analy	sis factor(γa)	1.00	1.00	1.00
Member factor (γb)	1.15~1.30	1.00	1.00
Structure factor	·(γ i)	Earthquake 1.00	1.00	1.00
		Otherwise 1.20		

	Prepared by	Y. Ando	Checked by	Z. NISHIMURA
		2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File l	Vo.		
Section	Civil	Calc, Inde	x No.		
Subject	Quaywall	Page No.	2_	Rev.	
		· · · · · · · · · · · · · · · · · · ·	Refer	ences/	

Notes

*Member factor

When calculating bending and axial strength

: 1.15

When calculating upper limit of axial compressive strength

: 1.30

When calculating shear capacity borne by concrete

: 1.30

When calculating shear capacity borne by shear reinforcement

3) Calculation Method of Cross-Sectional Force

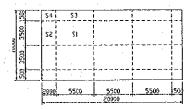
(1) Beam

The cross-sectional force of a beam is computed using a 2-dimensional framework model (continuation beam). Action load is multiplied by the partial safety factor. The calculation result computed by the basic design is used for the pile head moment in case of an earthquake.

(2) Deck Slab

The deck slab of the platform central part surrounded by the beam should be designed as a slab fixed The deck slab of a platform end should be designed as a slab fixed on three sides and free on one side.

1	·				···
		Prepared by	Y, Ando	Checked by	Z. NISHIMURA
			2610712002		08 108 1200 Z


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ♂ Rev.

4) Calculation of Load

References/ Notes

(1) Deck Slab

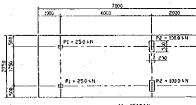
The examination cases of calculation of reinforcing bar arrangement of a deck slab are the following two cases.

- · Ordinary Condition
- · Conditions on which Wheel Load(Truck) acts

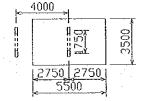
Cross-sectional force is computed only about "S1" and "S3". Examination is omitted about "S2" and "S4", and it is made the same reinforced bar arrangement as "S1" and "S3", respectively. (see upper figure)

a) Deadweight Thickness of deck slab

Equivalent uniform distribution


$$w = 0.25 \times 24.0 = 6.00 \text{ kN/m}^2$$

b) Surcharge


$$w = 20.0 \text{ kN/m}^2$$

c) Wheel Load (Truck)

Wheel load (Truck) is converted into equivalent uniform distribution and partial equivalent uniform distribution. Section force is computed about each distribution load, and the larger one is made into design section force.

Wheel load (Truck) shall act only on "S1" of the member of deck slab. The action situation of wheel load (Truck) is shown below.

	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🖇 Rev.

(i) Conversion to equivalent uniform distribution load

References/ Notes

Wheel load is converted into equivalent uniform distribution load "w1" using the following formulas.

$$w1 = \frac{P}{C \times (0.50 \times L_1 + 0.25 \times L_2)}$$

where P: Wheel Load $(2 \times 100 = 200 \text{ kN})$

C: Width of Truck (=2.75 m)

 L_1 : Length of the longer side (=5.50m)

 L_2 : Length of the shorter side (= 3.50m)

 $w1 = 200 / (2.75 \times (0.50 \times 5.50 + 0.25 \times 3.50)) = 20.06 \text{ kN/m}^2$

(ii) Conversion to partial equivalent uniform distribution load

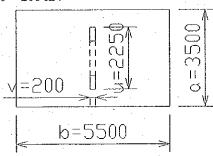
Wheel load acts as the following figures and computes conversion distribution width as follows.

$$u' = u + 2 \times (s + (t/2))$$

$$v' = v + 2 \times (s + (t/2))$$

where

u', v' : Converted distribution width


s: Thickness of pavement (This sets up with "=0.10 m")

t: Thickness of deck slab (=0.25 m)

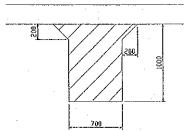
$$u' = 2.25 + 2 \times (0.1 + (0.25 / 2)) = 2.70 \text{ m}$$

$$v' = 0.20 + 2 \times (0.1 + (0.25/2)) = 0.65 \text{ m}$$

Wheel Load $P = 2 \times 100 = 200 \text{ kN}$

Prepared by	YAndo	Checked by	P. NISHIMURA
	2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ぐ Rev.
		References/


Notes

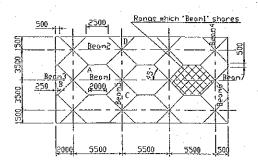
(2) Beam

Calculation of reinforcing bar arrangement of a beam carries out for all examination cases.

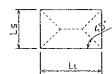
a) Deadweight of Beam

The section of a beam is shown below. (Hatching part)

Cross-section area of beam


$$A = 0.7 \times 1.0 + 0.2^2 / 2 \times 2 = 0.74 \text{ m}^2$$

Deadweight of beam


$$w = 0.74 \times 24.0 = 17.76 \text{ kN/m}$$

b) Deadweight of Deck Slab

The deadweight of deck slab, which the individual beam shares, is shown in the following figures. Cross-sectional force is computed only about "Beam1", "Beam3", "Beam4", and "Beam5." Examination is omitted about "Beam2", "Beam6" and "Beam7", and it is made the same reinforced bar arrangement as "Beam1", "Beam5" and "Beam3", respectively.

The deck slab weight, which the individual beam shares, is converted into equivalent uniform distribution load by the following formulas.

Converted equivalent uniform distribution load of short span

$$W = w \times Ls / 3 \qquad (kN/m)$$

Converted equivalent uniform distribution load of long span

$$W = (w \times Ls / 2) \times (1 - (1/3) \times (Ls^2 / L_L^2))$$
 (kN/m

: Deadweight of deck slab (kN/m²)

 Prepared by	Y. Ando	Checked by	2. NISHIMURA
	261 07 12002	Oncored by 7	08 1 08 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 6 Rev.
· · · · · · · · · · · · · · · · · · ·		References/

Ls : Length of short span $\mbox{ (m)}$, $\mbox{ } \mbox{L}_{L}$: Length of long span $\mbox{ (m)}$

References/ Notes

The deadweight of deck slab member"A~D" in the figure of a front page is converted into equivalent uniform distribution load.

Load which acts on a long span beam (A, B)

:	Length of long span L _L (m)	Length of short span Ls (m)	Deadweight of deck slab (kN/m²)	Equivalent uniform distribution load(deck slab) (kN/m)
A	5.50	3.50	6.00	9.08
В	4.00	3.50	6.00	7.82

*About "B", it computed by having set up with the same range as "A."

The long span length of "B" $L_L = 2 \times 2.0 = 4.0 m_o$

Load which acts on a short span beam (C, D)

	Length of short span Ls (m)	Deadweight of deck slab (kN/m²)	Equivalent uniform distribution load(deck slab) (kN/m)
С	3.50	6.00	7.00
D	3.00	6.00	6.00

Therefore, the deadweight of deck slab, which acts on the beam to examine, becomes as follows.

Beam1 w = 9.08 + 9.08 = 18.16 kN/m (A+A)

Beam3 w = 7.82 + 7.82 = 15.64 kN/m (B+B)

Beam4 w = 6.00 + 6.00 = 12.00 kN/m (D+D)

Beam5 w = 7.00 + 7.00 = 14.00 kN/m (C+C)

 Prepared by	Y. Ando	Checked by	R. NISHIMURA
	2610712002		08 1 68 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 7 Rev.
		References/

c) Surcharge

References/ Notes

The surcharge which acts on a beam is computed like the deadweight of deck slab. Load which acts on a long span beam (A, B)

							i contract of the contract of
						Equivalent	Equivalent
		Length of	Length of	Surcharge	Surcharge	uniform	uniform
		long span	short span	(Ordinary)	(Earthquake)	distribution load	distribution load
		$L_{L}(m)$	L _S (m)	(kN/m ²)	(kN/m²)	(Ordinary)	(Earthquake)
٠.						(kN/m)	(kN/m)
	Α	5.50	3.50	20.00	10.00	30.28	15.14
	В	4.00	3.50	20.00	10.00	26.07	13.03

Load which acts on a short span beam (C, D)

	Length of short span L _S (m)	Surcharge (Ordinary) (kN/m²)	Surcharge (Earthquake) (kN/m²)	Equivalent uniform distribution load (Ordinary) (kN/m)	Equivalent uniform distribution load (Earthquake) (kN/m)	
C	3.50	20.00	10.00	23.33	11.67	
D	3.00	20.00	10.00	20.00	10.00	

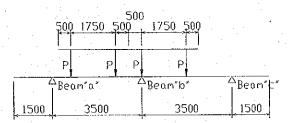
Therefore, the surcharge, which acts on the beam to examine, becomes as follows.

Beam1	(Ordinary)	w = 30.28 + 30.28 = 60.56 kN/m	(V+V)
Beam1	(Earthquake)	w = 15.14 + 15.14 = 30.28 kN/m	(A+A)
Beam3	(Ordinary)	w = 26.07 + 26.07 = 52.14 kN/m	(B+B)
Beam3	(Earthquake)	w = 13.03 + 13.03 = 26.06 kN/m	(B+B)
Beam4	(Ordinary)	w = 20.00 + 20.00 = 40.00 kN/m	(D+D)
Beam4	(Earthquake)	w = 10.00 + 10.00 = 20.00 kN/m	(D+D)
Beam5	(Ordinary)	w = 23.33 + 23.33 = 46.66 kN/m	(C+C)
Beam5	(Earthquake)	w = 11.67 + 11.67 = 23.34 kN/m	(C+C)

Prepared by		Checked by	Z. NISHIHURA
	2610712002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. $$
		References/ Notes

d) Wheel Load (Truck)


The truck, which runs platform1, shall run only the vertical direction to the face line. Moreover, the truck, which runs in parallel, makes two sets the maximum.

The maximum reaction force of acting on a beam is computed out of various run situations. Wheel load (Truck) acts on "beam1" and "beam5". As for "Beam3" and "Beam4", wheel load (truck) shall not act.

(i) Beam of Vertical Direction to the Face Line (Beam1)

Calculation of the maximum reaction force which acts on beam of vertical direction to the face line
 Arrangement of the truck which maximum reaction force generates on the beam of vertical direction to the face line is shown in the following figures.

(Rear wheel P = 100 kN, Front wheel P = 25 kN)

The beam on which maximum reaction force acts is Beam "b".

Maximum reaction force

$$R = (0.75 \times 100 / 3.50) + (2.50 \times 100 / 3.50) + (1.75 \times 100 / 3.50) + 100$$

$$= 242.86 \text{ kN (Rear wheel) (Front wheel R=60.71 kN)}$$

ı					
ĺ]	Prepared by	Y. Ando	Checked by	R. NISHIMURA
			2610712002		08 1 08 1200 Z

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 9 Rev.
		References/

(ii) Beam of Parallel Direction to the Face Line (Beam5)

Calculation of the maximum reaction force which acts on beam of vertical direction to the face line
 Arrangement of the truck which maximum reaction force generates on the beam of vertical direction to the face line is shown in the following figures.

The beam on which maximum reaction force acts is Beam "b".

Maximum reaction force

R =
$$(1.50 \times 25 / 5.50) + (1.50 \times 100 / 5.50) + 100$$

= 134.09 kN

(iii) Weight of a small beam (The beam of the front of a platform)

$$P = 1.0 \times 0.5 \times 3.50 \times 24.0 = 42.00 \text{ kN}$$

e) Earthquake Force

The pile head moment computed by the basic design is used.

1	Prepared by	Y. Ando	Checked by	R. NISHI MURA
		26107/2002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. / PRev.
		References/

5) Calculation of the Section Force

References/ Notes

(1) Deck Slab

The design of a deck slab calculates "S1" and "S3" as follows.

S1: a slab fixed on four side

S3: a slab fixed on three sides and free on one side

Wheel load (Truck) is converted into equivalent uniform distribution and partial equivalent uniform distribution. Section force is computed about each distribution load, and the larger one is made into design section force.

a) Calculation of the Section Force by Equivalent Uniform Distribution Load

Cross-sectional force in case the equivalent uniform distribution load acts on a deck slab is computed using the following formulas.

 $M_X = X \times_W \times L^2$: the bending moment of X-direction of an axis

 $My = Y \times W \times L^2$: the bending moment of Y-direction of an axis

 $S = Q \times w \times L$: the shearing force

where X, Y: the moment factors of each direction of an axis

w : equivalent uniform distribution load, such as acting on a deck slab

L : length of the short span of a deck slab

Q: the shearing force factors

Cross-sectional forces by the load (deadweight, surcharge, and wheel load (track)), which act on the deck slab, are calculated. A calculation position and a calculation result are shown below.

Deadweight

 $w = 6.00 \text{ kN/m}^2$

Surcharge

 $: w = 20.00 \text{ kN/m}^2$

Wheel load(Truck): $w = 20.06 \text{ kN/m}^2$

OT to the face line) y equivalent uniform distribution load (kN·m/m)

deck	Lx	Ly	λ	pos itio	Fac	tor	Deady	veight	Surcl	narge	Whee (Tru	l Load ick)
slab	(m)	(m)		n	X	Y	Mx	Му	Mx	Му	Mx	Му
	3.50	5.50	0.50	1	-0.0828	-0.0138	-6.09	-1.01	-20.29	-3.38	-20.35	-3.39
SI	3.50	5.50	0.50	2	0.0407	0.0105	2.99	0.77	9.97	2.57	10.00	2.58
	3.50	5.50	0.50	3	-0.0095	-0.0570	-0.70	-4.19	-2.33	-13.97	-2.33	-14.01
	1.50	5.50	0.30	1	-0.3819	-0.0636	-5.16	-0.86	-17.19	-2.86		
S3	1.50	5.50	0.30	2	-0.0434	0.0204	-0.59	0.28	-1.95	0.92		
	1.50	5.50	0.30	3	-0.0249	-0.1495	-0.34	-2.02	-1.12	-6.73		L

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	261 07 12002		08 108 1200 &

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. // Rev.
		Poforoncos/

OThe shearing force by equivalent uniform distribution load

(kN/m)

deck	Lx	Ly	lλ	positi	Factor		Deadweight		Surcl	narge	Whee (Tru	3
slab	(m)	(m)	11	on	X	Y	Mx	Му	Mx	Му	Mx	Му
S1	3.50	5.50	0.50	1	0.4620		9.70		32.34		32.44	
L	3.50	5.50	0.50	3		0.5170		10.86		36.19	<u>:</u>	36.30
S3	1.50	5.50	0.30	1	1.0200		9.18		30.60			
	1.50	5.50	0.30	3		1.3400		12.06	-	40.20		·

b) Calculation of the Section Force by Partial Equivalent Uniform Distribution load

The section force by partial equivalent uniform distribution load is calculated only to the wheel load (Truck). The section force is calculated using the graph for calculating of Pigeaud.

Length of short span (the vertical direction to the face line) a =

a = 3.50 m

Length of long span (the parallel direction to the face line)

b = 5.50 m

Width of wheel (the direction to short span)

u' = 2.70 m

Width of wheel (the direction to long span)

 $v^{i} = 0.65 \text{ m}$

$$u'/a = 0.771$$
, $v'/b = 0.118$, $\rho = 3.5/5.5 = 0.636 \rightarrow 0.60$

The bending moment of a deck slab is computed using the following formulas.

$$Mx = 0.8 \times (M1 + \eta \times M2) \times P$$

$$My = 0.8 \times (M2 + \eta \times M1) \times P$$

where Mx: the bending moment of the parallel direction to the face line

(By this examination, it is the direction of short span.)

My: the bending moment of the vertical direction to the face line

(By this examination, it is the direction of long span.)

M1, M2: The distribution factor of a bending moment

 η : poisson's ratio (=0.15 (reinforced concrete))

The shearing force is computed using the following formulas.

In the case of "u > v"

The shearing force of the direction of short span $Su = P/(2 \times u + v)$

The shearing force of the direction of long span $Sv = P/(3 \times u)$

In the case of " $u \le v$ "

The shearing force of the direction of short span $Su = P/(3 \times v)$

Prepared by	YAndo	Checked by	R. NISHI MURA	
	2610712002		08 108 12002	

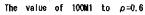
 Project
 Detailed Design on Port Reactivation Project in La Union
 Calc. File No.

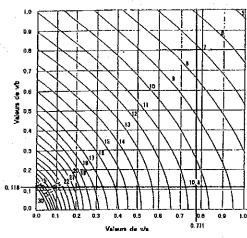
 Section
 Civil
 Calc. Index No.

 Subject
 Quaywall
 Page No.
 /2
 Rev.

The shearing force of the direction of long span

 $Sv = P/(2 \times v + u)$

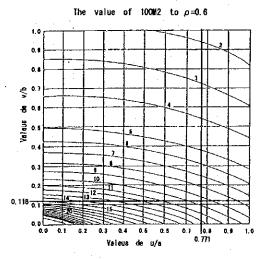

References/ Notes


OSection Force(Wheel Load) by Partial Equivalent Uniform Distribution load

deck	Wheel load	M1	M2	Mx	Му	Sx	Sy
slab	(kN)	(kN·m/m)	(kN·m/m)	(kN·m/m)	(kN·m/m)	(kN/m)	(kN/m)
Sl	200	0.105	0.095	19.08	17.72	33.06	24.69

The bending moment distribution factor of the direction of short span (the vertical direction to the face

line) : M1



$$100 \times M1 = 10.5$$

Therefore, M1 = 0.105

The bending moment distribution factor of the direction of short span (the vertical direction to the face

line) : M2

$$100 \times M2 = 9.5$$

Therefore, M2 = 0.095

Prepared by	Y. Ando	Checked by	P. NISHIMUPA
	261 07 1200Z		08 08 12002

(1) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 🕢	Rev.

c) Generalization of Section Force

References/ Notes

Generalization of the section force of deck slab "S1"

		Bending moment (kN·m/m)			Shearing fo	rce (kN/m)
		the face	Vertical		Parallel	Vertical
	line	Mx	to the face		to the face	to the face
	Fulcrum	Center	Fulcrum	Center	line Sx	line Sy
Deadweight (D)	-6.09	2.99	-4.19	0.77	9.70	10.86
Surcharge (S)	-20.29	9,97	-13.97	2.57	32.34	36.19
Equivalent Uniform Distribution load (M1)	-20.35	10.00	-14.01	2.58	32.44	36.30
Partial Equivalent Uniform Distribution load (M2)	-19.08	19.08	-17.72	17.72	33.06	24.69
Ultimate limit state						
Ordinary 1.1D+1.2S	-31.05	15.25	-21.37	3.93	49.48	55.37
Wheel Load(truck) 1.1D+1.2M1	-31.12	15.29	-21.42	3.94	49.60	55.51
Wheel Load(truck) 1.1D+1.2M2	-29.60	26.19	-25.87	22.11	50.34	41.57
Serviceability limit state				3.1		
Permanent Load 1.0D	-6.09	2.99	-4.19	0.77	9.70	10.86
Variable Load 1.0S	-20.29	9.97	-13.97	2.57	32.34	36.19
1.0M1	-20.35	10	-14.01	2.58	32.44	36.3
1.0M2	-19.08	19.08	-17.72	17.72	33.06	24.69
Fatigue limit state						
Permanent Load 1.0D	-6.09	2.99	-4.19	0.77	9.7	10.86
Variable Load 1.0M1	-20.35	10	-14.01	2.58	32.44	36.3
1.0M2	-19.08	19.08	-17.72	17.72	33.06	24.69

Generalization of the section force of deck slab "S3"

	Be	nding mome	Shearing force (kN/m)				
	Para to the face		Vert to the face		Parallel to the face	Vertical to the face	
	Fulcrum	Center	Fulcrum	Center	line Sx	line Sy	
Deadweight (D)	-5.16	senanon	-2.02	0.28	9.18	12.06	
Surcharge (S)	-17.19		-6.73	0.92	30.60	40.20	
Ultimate limit state							
Ordinary 1.1D+1.2S	-26.30		'-10.30	1.41	46.82	61,51	
Serviceability limit state							
Permanent Load 1.0D	-5.16		-2.02	0.28	9.18	12.06	
Variable Load 1.0S	-17.19	<u> </u>	-6.73	0.92	30.60	40.20	
·		•			2.3		

Prepared by	Y. Ando	Checked by	P. NISHIMURA
	261 07 12002		08 1 08 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. /火	Rev.
		Refer Notes	rences/

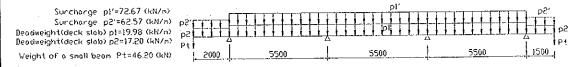
*Since the bending moment of the central part of the parallel direction to the face line shows a small value compared with a fulcrum part, it omits examination.

(2) Beam

The section force of a beam computes the vertical and parallel direction beam to the face line as a continuation beam.

the vertical direction beam to the face line : Beam 1+Beam 3 the parallel direction beam to the face line : Beam 5+Beam 4

When wheel load acts on cantilever of the end by the side of land, big section force occurs near the pile by the side of land. Therefore, cantilever by the side of land calculates separately with the above-mentioned beam.


a) Ultimate Limit State

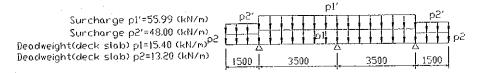
(i) Ordinary

Load which acts(Ordinary) 1.1D (Deadweight) + 1.2S (Surcharge)

(1) The vertical direction beam to the face line

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 310.49 kN · m


lower side Mmax = 180.92 kN · m

Maximum shearing force

Smax = 332.05 kN

2)The parallel direction beam to the face line

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Maximum bending moment upper side Mmax = 93.82 kN · m

Maximum shearing force	\$	Smax = 159.97 kN		
	Prepared by	Y. Ando	Checked by	E. NISHIMURA
	-	261 07 12002		08 108 1200 2

Project	Detalled Design on Por	t Reactivation Pro	oject in La Union	Calc. File No.	
Section	Civil			Calc. Index No.	
Subject	Quaywall			Page No. 15	Rev.
				Refer Notes	ences/
(ii) Whee	l Load (Truck)				
Load wh	nich acts(Wheel Load)	1.1D (Deadwe	eight) + 1.2M (W	heel Load(Truck))	
①The vert	ical direction beam to t	he face line			
A frame	model is shown below.	(Deadweight o	f a beam is taken ir	nto consideration.)	
• Upper re	einforcing bar				
Deadweight(de Deadweight(de	KTruck) P1=72.95 kN KTruck) P2=291.43 kN p2 eck slab) p1=19.98 (kN/m) Pt 1 eck slab) p2=17.20 (kN/m) Pt 1 mall bean Pt=46.20 (kN)	2000 2750 S500	4000 1250 3000		250 ⁴ P
Maximu	m bending moment u	pper side Mma	$ax = 332.87 \text{ kN} \cdot \text{m}$	ı	
Wheel Load Wheel Load Beadweight(de Beadweight(de Weight of a se Maximum * Shearing Wheel Load Wheel Load Beadweight(de Beadweight(de Weight of a se Meel Load Weight of a	g force d(Truck) PI=72.85 kN d(Truck) P2=291.43 kN eck stab) pI=19.98 (kN/n) P2 eck stab) p2=17.20 (kN/n) Pt mall beam Pt=46.20 (kN)	P1 4000 2000 5550	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P2 P1 4000 3000 2	1500
Maximu	ım shearing force	Sm	$ax = 435.07 \text{ kN} \cdot \text{n}$	n	
		Prepared by	V 1 /		ISHIMU RA
	· ·	istebaren ov	Y, Ando	Checked by P. N	くくないめん ロント

Project	Detailed Design on Por	l Reactivation Pro	ject in La Union	Calc.	File No.		
Section	Civil			Calc.	Calc. Index No.		
Subject	Quaywall			Page		Rev.	
			•		Refe Note	rences/ s	
2)The paralle	el direction beam to the	face line					
_	odel is shown below. (and the second s	beam is taken into	considera	tion.)		
				500 1750 5		500	
Upper reainfo	orcing bar Whee	elLoad(Truck) P=16	0.91 kN	PI PI	pl pl	PI .	
rr	Deadwe	eight(deck slab) pl=1 eight(deck slab) p2=	5.40 (kN/n) p2		1 1 1 1 1	1 02 02	
	рециме	agirkueck stuby be-	1500	875 1750 (3500	375 875 1750 3500	875 1500	
					,		
Lower reinfo	rcing bar			500 1750 500	500 1750 5	500	
	Whe	rel Load(Truck) P=1	62 FTT	PIP	р ¹ -		
	Deadwe Deadwe	eight(deck slab) pl=1 eight(deck slab) p2=	3.40 (1017) 172	1750 13	313 37 1750	1313	
1.			1500	3500	3500		
				•	•		
Maximi	nm bending moment u	inner side Mm:	ax = 193.48 kN • r	n		,	
1410211110			Mmax = 117.85 k				
Maximi	ım shearing force		max = 303.30 kN				
I VILLATION							
(3) Captiles	ver of a land side		,	٠			
	model is shown below	. (Deadweight o	of a beam is taken i	nto consid	eration.)	•	
/ / name	, moder to one was one	. (2	PS			•	
		od(Truck) Pi=29		2			
		(deck slab) p1=17 small beam Pt=46	N Ir	't			
Dood			$w' = 0.74 \times 24 \times 4$	(1.1 = 10.4	54 kN/m		
	weight of beam quivalent uniform distri	ibution land	$w = 0.74 \times 24 \times 4$ $w = 19.54 + 17.20$	_			
j	el Load + Weight of a s		P = 291.43 + 46.20				
	mum bending moment		4.0			n :	
		the state of the s	4×1.5 + 337.63 =	•		'	
iviaxi	mum shearing force	Smax - 30.74	·	372.74 KIN			
		·				-	
			* .				
		Prepared by	Y. Ando	Checked		NISHIMURA	
			261 09 12002	4.1	08	108 12002	

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File I	No.
Section	Civil	Calc. Inde	x No.
Subject	Quaywall	Page No.	/7 Rev.
			References/ Notes
(iii) Eartho	juake Condition		110103
	ich acts(Earthquake)		
	O (Deadweight) +1.0S (Surcharge) +1.0E (Earthquake I	Force)	
The pile he	ad moment computed by the basic design is used.	**	
①The vert	ical direction beam to the face line		
A frame	model is shown below. (Deadweight of a beam is taken into	consideratio	n.)
Earthquake		pľ	
Sea→Land	Surcharge p2'=2606 (kIV/n) p2' Deodreight(deck stab) p1=19.98 (kNV/n) p2	╀┩╀┼	
	Weight of a small bean Pt=1628 (kN) M=5326 kN·n M=623B kN·n	#=655 6 kN+n	N=799.0 kN · m ^{1.81}
Earthquake	Surcharge p1*=3028 (kN/n) Surcharge p2*=2605 (kN/n) Deodweight(deck slob) p1=19.98 (kN/n) Deodweight(deck slob) p1=19.98 (kN/n) p2	P1	pz'
Land→Sea	neodweightraeck sign) bs=1//sn (kn/u) bt M=2548 kn/u	H=6528 kN-6	H=796.4 kN -n PI
Dana Du	2000 5500	5500	5500 1500
Mavimu	m bending moment upper side Mmax = 938.95 kN · m		
WIAMIIIU	lower side $Mmax = 661.57 \text{ km}$	· m	
Mayimu	m shearing force Smax = 431.58 kN	111	
Maxillin	m shearing force Shiak = 451.36 kiv		
(1) The name	allel direction beam to the face line		
•		. aamaidamatia	
A Irame	model is shown below. (Deadweight of a beam is taken into	•	m. <i>)</i>
	Surcharge pl'=23.34 (kN/m)	pl	p2′
Deadweich	Surcharge p2'=20.00 (kN/m) p2 p1 p1 t(deck slab) p1=15.40 (kN/m)	本田	
	t(deck stab) p2=13.20 (kN/m)	\	ΛΔ/ M=687.6 kN+
	1500 3500	350	
	k		**************************************
Maxim	m bending moment upper side Mmax = 746.93 kN · m		
	lower side $Mmax = 633.97 \text{ kN}$	m	· · · · · · · · · · · · · · · · · · ·
Maxim	m shearing force $Smax = 399.69 \text{ kN}$		

Prepared by

Y, Ando

26 1 07 12002

Checked by

P. NICHI MURA

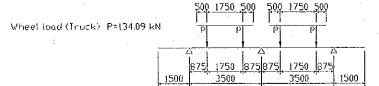
08 108 12002

P	roject	Detailed Design on Por	t Reactivation Pro	ject in La Union	Calc. File N	o.	
S	ection	Civil			Calc. Index	No.	
S	ubject	Quaywall			Page No.	18	Rev.
Γ						Refer Notes	ences/
Ь) Serviceal	bility Limit State			L		<u></u>
		n force of a servicea	bility limit state	is divided and c	omputed when	the e	case where
be		nd (Deadweight) acts a					
•	and the second	ng the following formu		·			•
	•	$S_p \times S_p + k_r \times S_r$					
	where						
		: characteristic value o	f load for examir	nation of the service	ability limit state	3	
	•	: characteristic value of					•
	S _r	: characteristic value o	-				
		: constans to represen		crake widths and	the corrosion	of s	teel by the
١		permanent load and var					
	(i) Ordin				•		
	①The vertical direction beam to the face line						
		ent Load (Deadweight					
		model is shown below.		f a beam is taken in	to consideration.)	
		eck stab) pl=18.16 (kN/m) p2 eck stab) p2=15.64 (kN/m) pt mail beam Pt=42.00 (kN)	2000 5500	5500	3:	500	p2 1500
	Maxii	num bending moment	upper side N	1max = 150.80 kN	• m		
			lower side	Mmax = 52.43 l	kN·m		
	Maxi	mum shearing force		Smax = 112.54 k	N		
	Cantilever	of a land side					
	Maxi	mum bending moment		Mmax = 100.58 km	N • m		
	Maxi	mum shearing force		Smax = 100.36 k	N		
	 Variable 	Load (Surcharge)					
	A frame	model is shown below	. (Deadweight o	f a beam is taken in	to consideration	.)	
	Si Si	urchonge pf=60.56 (kN/m) p2{ urchonge p2=52.14 (kN/m) = {	111111				2qp2
		, change per della mana	2000 550	5500	<u> </u>	500	1500
	Maxi	mum bending moment	upper side M	Mmax = 174.50 kN	• m		•
Ì			lower side	Mmax = 116.08	kN·m		
	Maximum shearing force Smax = 187.60 kN						
							· · · · · · · · · · · · · · · · · · ·
			Prepared by	Y. Ando	Checked by 1	Z N	ISHIMURA
				26 17 2002		08	108 12002

Project	Detailed Design on Port	Reactivation	Project	t in La Union	C	Calc. File N	о		
Section	Civil				(Calc. Index	No.	<u> </u>	
Subject	Quaywall				F	^o age No.	19	Rev.	
				:			Referen Notes	ices/	
②The para	allel direction beam to the	he face line			*	Ľ	NOIGS		
•					р1 .				
		. (LNZ ^{m)} p2	<u> </u>	-[]	`		[] }-		2q
	(deck slab) p1=14.00 (deck slab) p2=12.00	CICHA HA		<u>}</u>		. 2500		· · · · · · · · · · · · · · · · · · ·	
			1500	3500		3500		1500	
• Permane	ent Load (Deadweight))							
A frame	model is shown below.	(Deadweigh	nt of a	beam is taken	into cor	nsideration	i.)		
Maxir	mum bending moment	upper side	Mm	ax = 33.48 kN	l • m				÷
		lower s	side	Mmax = 15.9	5 kN •	m			
Maxir	mum shearing force		S	Smax = 56.03	kN		* -		:
 Variable 	(Surcharge)								
A frame	model is shown below.	(Deadweigl	nt of a	beam is taken	into co	nsideration	1.)		
				1	pl _	<u> </u>			
	Surcharge pl=46.66					• • • •			ρ2
	Surcharge p2=40.00	J (kN/m)	1500	$\frac{\Delta}{2}$ 3500	دع ا	3500		1500	
Maxit	mum bending moment	upper side	F	ax = 48.95 kN	,		~т,	~1	
; [¥1@V)1	num bending moment					*			
Mavi		lower s		Mmax = 24.4 $max = 82.78 for$		m	-	4	
IVIALII	mum shearing force		O1	$\max = 82.78 \text{ k}$	IN				•
								. *	
/ " \ YIThaa	** ***								
	el Load (Truck)	C Una						·	
1	tical direction beam to t				-		**		
	ent Load (Deadweight	*							
1	ne value as the ordinary	10 to	· ·	The state of the state of					
Maxi	mum bending moment	• • •				•.		·	
		lower s		Mmax = 52.43		n			
Maxi	mum shearing force		Sı	max = 112.54	kN				
					·.				
			- •					•	
	· .								
		Prepared by		YiAndo	Check	ked by	2 NIS	HIMUI	2.1
				610712002		neu by		08 /20	

Project Detailed Design on Port Reactivation Project in La Union Calc, File No. Section Calc. Index No. Civil Subject Page No. 20 Rev. Quaywall References/ Notes · Variable Load (Wheel Load (Truck)) A frame model is shown below. (Deadweight of a beam is taken into consideration.) (Reinforcing bar of upper side) Р2 Wheel load (Truck) P1=60.72 kN Wheel load (Truck) P2=242.86 kN 2750 250 1250 3000 4000 3000 4000 2750 5500 5500 1500 5500 $Mmax = 201.25 \text{ kN} \cdot \text{m}$ Maximum bending moment upper side (Reinforcing bar of lower side) Wheel load (Truck) P1=60.72 kN Wheel load(Truck) P2=242.86 kN Р2 P2 ΡI 300þ 1500, 4000 4000 2200 3000 1500 5500 5500 $Mmax = 252.45 \text{ kN} \cdot \text{m}$ Maximum bending moment lower side (Shearing) Wheel load (Truck) P1=60.72 kN Wheel load (Truck) P2=242.86 kN ∆ 1500 3000 4000 2500 3000 4000 5500 1500 5500 2000 5500 Smax = 273.45 kNMaximum shearing force 2)The parallel direction beam to the face line · Permanent Load (Deadweight) The same value as the ordinary condition computed value is used. Maximum bending moment upper side Mmax = 33.48 kN · m $Mmax = 15.95 \text{ kN} \cdot \text{m}$ lower side Smax = 56.03 kNMaximum shearing force R. NISHI MURA Prepared by YiAndo Checked by 08 1 08 1200 B 2610712002

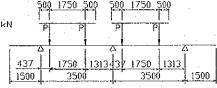
Project Calc. File No. Detailed Design on Port Reactivation Project in La Union **Section** Calc. Index No. Civil Subject Page No. 2/ Quaywall Rev.


References/ Notes

· Variable Load (Wheel Load (Truck))

A frame model is shown below. (Deadweight of a beam is taken into consideration.)

Reinforcing bar


of upper side

Reinforcing bar

of lower side

Wheel load (Truck) P=134.09 kN

Maximum bending moment upper side $Mmax = 131.97 kN \cdot m$

lower side $Mmax = 86.55 \text{ kN} \cdot \text{m}$

Maximum shearing force

Smax = 202.21 kN

③Cantilever of a land side

· Permanent Load (Deadweight)

A frame model is shown below.

Deadweight of beam $w = 0.74 \times 24 = 17.76 \text{ kN/m}$

All equivalent uniform distribution load

w = 17.76 + 15.64 = 33.40 kN/m

Weight of a small beam

Pt = 42.00 kN

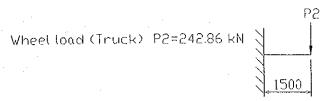
Maximum bending moment Mmax = $(33.40 \times 1.5^2)/2+42.00 \times 1.5 = 100.58 \text{ kN} \cdot \text{m}$

Maximum shearing force

 $Smax = 33.40 \times 1.5 + 42.00 = 92.10 \text{ kN}$

ı		·			
		Prepared by	Y. Ando	Checked by	e. NISHIMURA
1			- 261 07 1200Z		08/08/2002

 Project
 Detailed Design on Port Reactivation Project in La Union
 Calc. File No.


 Section
 Civil
 Calc. Index No.

 Subject
 Quaywall
 Page No.
 ZZ
 Rev.

 References/Notes

· Variable Load (Wheel Load (Truck))

A frame model is shown below.

Maximum bending moment $Mmax = 242.86 \times 1.5 = 364.29 \text{ kN} \cdot \text{m}$

Maximum shearing force Smax = 242.86 kN

c) Fatigue Limit State

The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

Į		 - 1			,	
			Prepared by	Y. Ando	Checked by	E. NISHI MULA
				2610712002		08 108 12002
	The second second second	 				

(I) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>2</i> 3 Rev.
		References/

References/ Notes

- d) Generalization of the load in each limit state
- (i) The vertical direction beam to the face line
 - · Bending Morment

 $(kN \cdot m)$

	Ultimat	Ultimate limit		Serviceability limit				
	upper	upper lower		permanent load		variable load		
	side	side	upper	lower.	upper	lower		
Ordinary	310.49	180.92	150.80	52.43	174.50	116.08		
Wheel Load (Truck)	332.87	341.77	150.80	52.43	201.25	252.45		
Earthquake	938.95	661.57						

· Shearing Force

(kN)

	Ultimate limit	Serviceability limit		
	Onmate min	permanent load	variable load	
Ordinary	332.05	112,54	187.60	
Wheel Load (Truck)	435.07	112.54	273.45	
Earthquake	431.58			

*The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

(ii) The parallel direction beam to the face line

· Bending Morment

 $(kN \cdot m)$

	Ultimate limit		Serviceability limit				
	upper lower		wer permanent load		variable load		
	side	side	upper	lower	side	side	
Ordinary	93.82	46.91	33.48	15.95	48.95	24.49	
Wheel Load (Truck)	193.48	117.85	33.48	15.95	131.97	86.55	
Earthquake	746.93	633.97					

· Shearing Force

(kN)

· ·	*		, , ,	
	Ultimate limit	Serviceability limit		
	Officiale migi	permanent load	variable load	
Ordinary	159.97	56.03	82.78	
Wheel Load (Truck)	303.30	56.03	202.21	
Earthquake	399.69	_	`	

*The examination case of a fatigue limit state is only Wheel Load (Truck).

The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

Prepared by	Y. Ando	Checked by R. NISHIMOE	
	2610712002		08 / 08/2002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc, Index No.
Subject	Quaywall	Page No. ≥% Rev.
		References/

References/ Notes

(iii) Cantilever of a land side

Only examination of the steel reinforcement which tensile stress generates is performed.

· Bending Morment

 $(kN \cdot m)$

	Ultimate limit		Serviceability limit					
	upper	lower	permanent load		r permanent load		variable load	
	side	side	upper	lower	upper	lower		
Ordinary						********		
Wheel Load (Truck)	547.78		100.58		364.29			
Earthquake								

· Shearing Force

(kN)

	Ultimate limit	Serviceab	ility limit
	Offinate mint	permanent load	variable load
Ordinary			
Wheel Load (Truck)	392.74	92.10	242.86
Earthquake			<u> </u>

XThe examination case of a fatigue limit state is only Wheel Load (Truck).

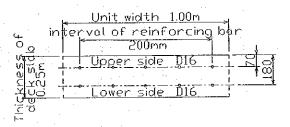
The section force of using by examination of a fatigue limit state is the same as the section force of using by examination of a serviceability limit state.

Prepared by	Y. Ando	Checked by	R. NISHIMURA	
	26 1 07 12002		08 1 08 12002	

Project	Detailed	d Design on Por	t Reactivation P	roject in La Union) (Calc. File	No.	
Section	Civil					Calc. Inde	x No.	
Subject	Quay	ywali				Page No.	25	Rev.
3) Calculati	on of R	einforcing Bar	Arrangement				Refere Notes	ences/
Calculat	ion of	reinforcing bar	r arrangement	is performed by	y RC sec	ction cal	<u></u>	program
(FORUM	8 Co., Lt	td)						
		of Ultimate Lim	it State					-
		of Bending Stre			•			
		· ·	· •	as satisfying the	following	conditio	ns.	
		_{id} ≤ 1.0			Ü			
		-	ue of bending n	noment acting on	pile in de	sien		
	1.0	and the second of the second	-	city. It compute	-		formula	
						4.		
$M_{\rm ud} = \frac{C_0}{C_0}$	c (d - 3	$(c)+C_s(d-$	$\frac{\mathbf{d'}}{\mathbf{d'}} = \{\mathbf{A_s} \ \mathbf{f_y}\}$	d d -A's fyd d' -	(As fyd	- A's Tyd) }/	γь
		10		and the second second				
		- ,	1 3 4 4 4	f concrete (N)				
	C's ;	-		on a compression) (=	$=A'_{s} \cdot f'_{yd}$
Т			A company of the comp	orcing bar (N)		• f _{yd})		
	As ;	the second second		sile zone (mm²				
	Ys ;			pressive zone				
d	i ;	effective depti	n of a tensile re	inforcing bar (m	m)	•		
d	l' ;	effective deptl	n of a compress	ive reinforcing b	ar (mm)	. •		
, , x	;	distance of a c	ompression end	d and a neutral ax	is (mm) '		
У	/c ;	$=0.4 \cdot x \pmod{mn}$	n)	-			7	
f	yd	design tensile	yield strength o	of steel (N/mm²)	+			
				$(=f_{yk}/\gamma_n$	_{ns} =345 N/	mm²)		
		f _{yk} ; ten	sile yield stren	gth of steel (=34	5 N/mm ²)			
		γ _{ms} ; ma	terial factor of	steel (=1.0)	٠	•		
f	Ced ;	design compre	essive strength	of concrete (N/n	nm²)			
·				$(=f'_{ck}/\gamma$	_{mc} =18.5 N	V/mm²)		
		f'ck ; cl	naracteristic cor	npressive strengt	h of conc	rete		
				(=24 N/m	ım²)			-
		γ _{mc} ; m	naterial factor o	f concrete (=1.3)			
	γь ;	member factor	r of bending me	embers				
	γ; ;	structure facto	r					
						• .		

26/07/2002

08 108 12002


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ∠6 Rev.
		References/ Notes

(i) Deck Slab

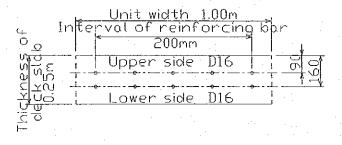
①Deck Slab "S1" : the parallel direction to the face line

· Examination of bending moment capacity of ultimate limit state

		unit	Ordi	nary	Wheel (Distrib		Wheel (Pa distribu	rtial
			upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D16	D16	D16	D16	D16	D16
reinforcing bar (compression side)		mm	D16	D16	D16	D16	D16	D16
number (tension)			5	5	5	5	5	5
number (compression)			- 5	5	5	5	5	5
area of reinforcement (tension)	A_s	cm²	9.93	9.93	9.93	9.93	9.93	9.93
area of reinforcement (compression)	A's	cm ²	9.93	9.93	9.93	9.93	9.93	9.93
width of member	b _w	mm	1,000	1,000	1,000	1,000	1,000	1,000
effective depth (tension)	d	mm	180	180	180	180	180	180
effective depth (compression)	đ	mm	180	180	180	180	180	180
$f_{ m yd}$	f_{yd}	N/mm ²	345	345	345	345	345	345
f'cd	\mathbf{f}_{cd}	N/mm ²	18.5	18.5	18.5	18.5	18.5	18.5
$M_{ m ud}$		kN·m	59.80	59.80	59.80	59.80	59.80	59.80
M _d	M _d kN·m		31.05	15.25	31.12	15.29	29.60	26.19
Examination result (y	Examination result ($\gamma_i \cdot M_d/M_{ud}$)			0.306	0.624	0.307	0.594	0.526
Judgment		:	O.K	O.K	O.K	O.K	O.K	O.K

Prepared by	Y. Ando	Checked by	R. NISHIMURA	
	26 1 07 12002		08 1 08 1200%	

(III) NIPPON KOEI CO.,LTD.


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 27 Rev.
		References/

References/ Notes

②Deck Slab "S1" : the vertical direction to the face line

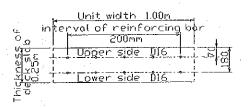
· Examination of bending moment capacity of ultimate limit state

		unit	Ordi	nary	Wheel (Distrib		Wheel (Pa distribu	utial
			upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D16	D16	D16	D16	D16	D16
reinforcing bar (compression side)		mm	D16	D16	D16	D16	D16	D16
number (tension)			5	5	5	5	5	5
number (compression)	4.0		5	5	5	5	5	5
area of reinforcement (tension)	A _s	cm ²	9.93	9.93	9.93	9.93	9.93	9.93
area of reinforcement (compression)	A's	cm²	9.93	9.93	9.93	9.93	9.93	9.93
width of member	$b_{\rm w}$	nım	1,000	1,000	1,000	1,000	1,000	1,000
effective depth (tension)	d	mm	160	160	160	160	160	160
effective depth (compression)	d	mm	160	160	160	160	160	160
f_{yd}	f_{yd}	N/mm²	345	345	345	345	345	345
f' _{cd}	f _{cd}	N/mm²	24	24	24	24	24	24
M_{ud}		kN∙m	61.11	61.11	61.11	61.11	61.11	61.11
M _d kN·m		21.37	3.93	21.42	3.94	25.87	22.11	
Examination result ($\gamma_i \cdot M_d/M_{ud}$)			0.420	0.077	0.421	0.077	0.508	0.434
Judgment			O.K	O.K	O.K	O.K	O.K	O.K

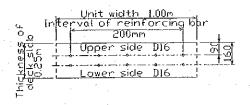
Prepared by	Y. Ando	Checked by	R. NISHIMURA	
	2616712002		08 1 08 12002	

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 28 Rev.
		References/

③Deck Slab "S3"


References/ Notes

· Examination of bending moment capacity of ultimate limit state


		unit	Ordi Para		Ordinary Vertical	
		CHILL	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D16	D16	D16	D16
reinforcing bar (compression side)		mm	D16	D16	D16	D16
number (tension)		本	5	5	5	5
number (compression)		本	5	5	5	5
area of reinforcement (tension)	٨,	cm²	9.93	9.93	9.93	9.93
area of reinforcement (compression)	Λ,	cm²	9.93	9.93	9.93	9.93
width of member	b _w	mm	1,000	1,000	1,000	1,000
effective depth (tension)	d	mm	180	180	160	160
effective depth (compression)	d	mm	180	180	160	160
f_{yd}	f _{yđ}	N/mm²	345	345	345	345
f'cd	f_{cd}	N/mm ²	24	24	24	24
M _{ud}		kN∙m	59.80	59.80	61.11	61.11
M_d	kN∙m	26.30		10.30	1.41	
Examination result (γ	Examination result $(\gamma_i \cdot M_d/M_{ud})$				0.202	0.028
Judgment	Judgment				O.K	O.K

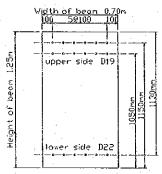
· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

Prepared by	Y. Ando	Checked by	P. NISHIMURA
	261 071200Z	: .	08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ∠? Rev.


(ii) Beam

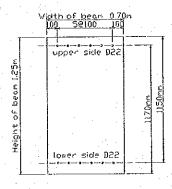
References/ Notes

The vertical direction beam to the face line

· Examination of bending moment capacity of ultimate limit state

		unit	Ordi	nary	Wheel	Load		Load lever)	Earth	quake
			upper	lower	upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D19	D22	D19	D22	D19	D22	D19	D22
reinforcing bar (compression side)	·	mm	D22	D19	D22	D19	D22	D19	D22	D19
number (tension)			12	6.	12	6	12	6	12	6
number (compression)			6	12	6	12	6	12	6	12
arca of reinforcement (tension)	As	cm²	34.38	23.23	34.38	23.23	34.38	23.23	34.38	23.23
area of reinforcement (compression)	A's	cm²	23.23	34.38	23.23	34.38	23.23	34.38	23.23	34.38
width of member	$b_{\rm w}$	mm	700	700	700	700	700	700	700	700
effective depth (tension)	d	mm	1,100	1,130	1,100	1,130	1,100	1,130	1,100	1,130
effective depth (compression)	d	mm	1,130	1,100	1,130	1,100	1,130	1,100	1,130	1,100
f_{yd}	f_{yd}	N/mm ²	345	345	345	345	345	345	345	345
f' _{cd}	\mathbf{f}_{cd}	N/mm ²	24	24	24	24	24	24	24	24
M _{ud}	÷.	kN∙m	1,081.7	815.52	1,076.5	815.52	1,076.5	815.52	1,076.5	815.52
M_d		kN∙m	310.49	180.92	332.87	341.77	547.78	_	938.95	661.57
Examination result (γ _i ·Μ	_d / M _{ud})	0.344	0.266	0.371	0.503	0.611		0.872	0.811
Judgme	nt		O.K	O.K.	O.K	O.K.	O.K		O.K	O.K

	Prepared by	YAndo	Checked by	2. NISHIMURA
		2610712002		08 108 1200 2


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 😗 Rev.
		References/

②The parallel direction beam to the face line

References/ Notes

· Examination of bending moment capacity of ultimate limit state

			Ordin	nary	Wheel	Load	Earthquake	
		unit	upper	lower	upper	lower	upper	lower
reinforcing bar (tension side)		mm	D22	D22	D22	D22	D22	D22
reinforcing bar (compression side)		mm	D22	D22	D22	D22	D22	D22
number (tension)			6	6	6	. 6	6	6
number (compression)			6	6	6	6	6	. 6
area of reinforcement (tension)	As	cm ²	23.23	23.23	23.23	23.23	23.23	23.23
area of reinforcement (compression)	A's	cın²	23.23	23.23	23.23	23.23	23.23	23.23
width of member	b _w	mm	700	700	700	700	700	700
effective depth (tension)	d	mm	1,170	1,150	1,170	1,150	1,170	1,150
effective depth (compression)	d	mm	1,150	1,170	1,150	1,170	1,150	1,170
f_{yd}	f _{yd}	N/mm ²	345	345	345	345	345	345
f'cd	f_{cd}	N/mm ²	24	24	24	24	24	24
M _{ud}		kN∙m	790.26	774.70	790.26	774.70	790.26	774.70
M _d		kN·m	93.82	46.91	193.48	117.85	746.93	633.97
Examination result (γ	i M _d /	M _{ud})	0.142	0.073	0.294	0.183	0.945	0.818
Judgment			O.K	O.K	O.K	O.K	O.K	O.K.

	Prepared by	Y, Ando	Checked by ₽	. NISHIMURA
		26/07/2002		08 108 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 3/ Rev.
		References/

b) Examination of the Shearing Force

References/ Notes

The steel reinforcement to be used calculates it as satisfying the following conditions.

$$\gamma_1 \cdot V_d / V_{yd} \leq 1.0$$

$$V_{yd} = V_{cd} + V_{sd}$$

V_{yd} ; design shear capacity

V_{cd} ; design shear capacity without shear reinforcement. It computes by the following formulas.

$$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b_w \cdot d/\gamma_b$$

 f_{vcd} ; $0.2 \times (f_{cd}^{\circ})^{1/3}$

 $\beta_{\rm d}$; coefficient to consider influence of effective depth on shear capacity $\beta_{\rm d} \! = \! (1000/{\rm d})^{1/4}$

 $\beta_{\rm p}$; coefficient to consider influence of longitudinal reinforcement on shear capacity $\beta_{\rm p} = (100 \cdot {\rm p_w})^{1/3}$

 $\beta_{\rm n}$; coefficient to consider influence of axial force on shear capacity

 $\beta_n=1+M_0/M_d$ (N'_d ≥ 0) when $\beta_n>2$, β_n is taken as 2.0

 $\beta_n=1+2M_0/M_d$ (N'_d<0) when $\beta_n<0$, β_n is taken as 0.0

N'_d; design axial compressive force (N)

M_d; design bending moment (N·mm)

 M_0 ; decompression moment necessary to cancel the fiber stress due to axial force at the tension fiber corresponding to design moment M_d

bw ; web width (mm)

d ; effective depth (mm)

p_w; balanced ratio of reinforcement=A_s/ (b_w·d)

A_s ; area of reinforcing bar (mm²)

 f_{cd} ; design compressive strength of concrete (=18.5N/mm²)

 γ_b ; member factor (=1.30)

 $V_{\rm sd}$; design shear capacity carried by shear reinforcing steel

$$V_{sd} = \frac{A_w \cdot f_{wyd}}{S_s} \left(\sin \alpha_s + \cos \alpha_s \right) \cdot z / \gamma_b$$

 $A_{\rm w}$; total amount of area of shear reinforcement over the interval $S_{\rm s}$ (mm²)

 f_{wyd} ; design yield strength of shear reinforcement (=345 N/mm²)

 α_s ; angle between shear reinforcement and member axis

i		
	Prepared by Y. Ando	Checked by R- NISHIMURA
	26/07/200	08 1 08 1200 2

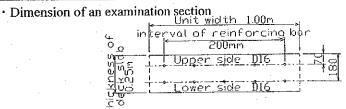
(I) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>공</i> 之 Rev.
<u></u>		References/

S_s ; spacing of shear reinforcement (mm)

z ; distance from compression resultant to centroid of tension steel

Generally , d/1.15


 γ_b ; member factor

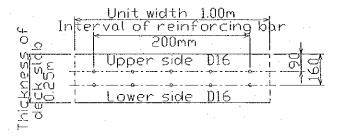
(i) Deck Slab

(Deck Slab "S1" : the parallel direction to the face line

· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution)
reinforcing bar		mm	D16	D16	D16
number			5	5	5
area of reinforcing bar	As	cm ²	9.93	9.93	9.93
web width	b _w	mm	1,000	1,000	1,000
effective depth	d	mm	180	180	180
axial compressive force	N'd	kN	0	0	0
. A _w	A _w	mm²	2.534	2.534	2.534
α,	α,	۰	90	90	90
S _s	Ss	mm	200	200	200
V _{cd}		kN	90.02	90.02	90.02
V _{sd}		kN	59.49	59.49	59.49
V _{yd}	kN	149.51	149.51	149.51	
V_d	kN	49.48	49.60	50.34	
Examination result ($\gamma_i \cdot V_i$	d / Vyd)		0.397	0.398	0.404
Judgment	-		O.K	O.K	O.K

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	261 07 12007		08 108 1200 2


Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🕔 Rev.
		References/

References/ Notes

②Deck Slab "S1" : the vertical direction to the face line

· Examination of shearing force capacity of ultimate limit state

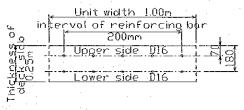
		unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution)
reinforcing bar		mm	D16	D16	D16
number			5	5	5
area of reinforcing bar	As	cm²	9.93	9.93	9.93
web width	b _w	mm	1,000	1,000	1,000
effective depth	d	nım	160	160	160
axial compressive force	N' _d	kN	0	0	0
$A_{\rm w}$	A _w	mm²	2,534	2.534	2.534
α,	ας	٥ .	90	90	90
S _s	S _s	mm	200	200	200
$V_{\rm cd}$		kN	83.24	83.24	83.24
V _{sd}		kN	52.88	52.88	52.88
V_{yd}		kN	136.12	136.12	136.12
V _d		kN	55.37	55.51	41.57
Examination result (y _i · V ₀	i/V _{yd})		0.488	0.489	0.366
Judgment			O.K	O.K	O.K

Prepared by	Y. Ando	Checked by	E NISHIMURA
·	261 071200 Z		08 108 12002

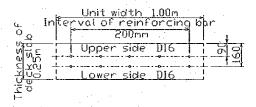
(I) NIPPON KOEI CO.,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ♂% Rev.
		References/

③Deck Slab "S3"


References/ Notes

• Examination of shearing force capacity of ultimate limit state


		unit	Ordinary Parallel	Ordinary Vertical
reinforcing bar		mnı	D16	D16
number			5	5
area of reinforcing bar	As	¢m²	9.93	9.93
web width	b _w	mm	1,000	1,000
effective depth	d	mm	180	160
axial compressive force	N' _d	kN	0	0
$A_{\rm w}$	A _w	mm²	2.534	2.534
α,	αs	٥	90	90
S _s	S ₅	num	200	200
V_{cd}		kN	90.02	83.24
$V_{\rm sd}$		kN	59,49	52.88
V_{yd}		kN	149.51	136.12
$V_{\rm d}$		kN	46.82	61.51
Examination result (γ _i · V _d	/ V _{yd})		0.376	0.542
Judgment			O.K	O.K

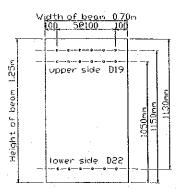
· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

	Prepared by	Y. Ando	Checked by	. NISHIMURA
		26/07/2002		03 1 03 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ・・ Rev.
		References/

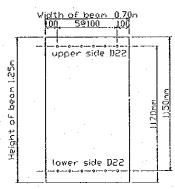

References Notes

(ii) Beam

DThe vertical direction beam to the face line

· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load	Wheel Load (Cantilever)	Earthquake
reinforcing bar		mm	D22	D22	D22	D22
number			6	6	6	6
area of reinforcing bar	As	cm²	23.23	23.23	23.23	23,23
web width	b _w	mm	700	700	700	700
effective depth	d	mm	1,130	1,130	1,130	1,130
axial compressive force	N' _d	kN	0	0	0	0
A _w	$\Lambda_{\rm w}$	mm²	2.534	2.534	2.534	2.534
α,	ας	0	90	90	90 .	90
S,	Ss	mm	100	100	100	100
V_{cd}		kN	207.47	207.47	207.47	207.47
. V _{sd}		kN	746.98	746.98	746.98	746.98
V_{yd}		kN	954.45	954.45	954.45	954.45
V_d		kN -	332.05	435.07	392.74	431.58
Examination result $(\gamma_i \cdot V_d)$	/ V _{yd})		0.417	0.547	0.494	0.452
Judgment			O.K	O.K	O.K	O.K


١				
	Prepared by	Y. Ando	Checked by	e. NISHIMURA
		2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. しん	Rev.
		Refer Notes	

2)The parallel direction beam to the face line

· Examination of shearing force capacity of ultimate limit state

		unit	Ordinary	Wheel Load	Earthquake
reinforcing bar		mm	D22	D22	D22
number			- 6	6 .	6
area of reinforcing bar	As	cm ²	23,23	23.23	23.23
web width	b _w	mm	700	700	700
effective depth	d	mm	1,150	1,150	1,150
axial compressive force	N' _d	kN	0	0	0
A_{w}	A _w	mm²	2.534	2.534	2.534
ας	ας	۰	90	90	90
S_s	Ss	mm	100	100	100
V_{cd}		kN	209.01	209.01	209.01
$V_{\rm sd}$		kN	760.20	760.20	760.20
V_{yd}		kN	969.21	969.21	969.21
V_d		kN	159.97	303.30	399.69
Examination result (y _i · V _d	1 / V _{yd})		0.198	0.376	0.412
Judgment		··	O.K	0.К	O.K

ľ		Prepared by	Y. Ando	Checked by	P. NISHIMURA
ľ			261071200Z		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. <i>3</i> ク F	≀ev.

(2) Examination of Serviceability Limit State

References/ Notes

Design load is computed using the following formulas.

$$S_k = k_p \times S_p + k_r \times S_r$$

where

S_k: characteristic value of load for examination of the serviceability limit state

S₀: characteristic value of permanent load

S_r: characteristic value of variable load

 k_p,k_r : constant to represent the effects on crake widths and the corrosion of steel by the permanent load and variable load, respectively. It may be taken that k_p is 1.0 and k_r is 0.5.

a) Examination of Flexural Cracks

Flexural crack width (w (mm)) is computed by the following formulas.

$$w = k \cdot \{4c + 0.7 (Cs - \phi)\} \cdot (\frac{\sigma_{se}}{Es} + \epsilon'_{csd})$$

k ; constant indicating the effect of the bonding properties of the steel material, which may usually be taken as 1.0 in the case of deformed bars.

c ; covering(mm)

Cs ; distance between centers of steel materials(mm)

 ϕ ; diameter of steel materials(mm)

 ϵ 'csd ; constant introduced to represent the increase of crack width caused by creep and drying shrinkage of concrete (this can be o under seaweter, and elsewhere 150×10^{-6})

 σ_{se} ; increased stress on reinforcement $(=M_e/(A_s j d))$

Es ; Young's modulus of reinforcement $(=2.00 \times 10^5 \text{ N/mm}^2)$

Me ; bending moment

A_s; area of reinforcing bar (mm²)

i ; Distance between stress (mm)

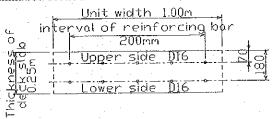
d ; effective depth (mm)

Permisible crake width is computed by the following formulas.

• Permisible crake width upper side reinforcing bar w_a=0.0040 c (mm

lower side reinforcing bar w_a=0.0035 c (mm)

L				
ſ		Prepared by	Y. Ando	e. Dishimula
I	·.		261 07 1200 ≥	08 108 12002


Project	Detailed Design on Port Reactivation Project in La Union	Calc, File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. <i>う</i> 8 Rev.
		References/

(i) Deck Slab

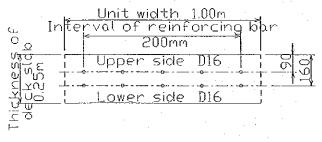
①Deck Slab "S1" : the parallel direction to the face line

· Examination of flexural crack of serviceability state

		Ordinary unit		Wheel Load (Distribution)		Wheel Load (Partial distribution)		
			upper	lower	upper	lower	upper	lower
reinforcing bar		mm	D16	D16	D16	D16	D16	D16
diameter	φ	mm	16	16	16	16	16	16
covering	С	mm	60	70	60	70	60	70
distance between centers of bar	C _s	mm	200	200	200	200	200	200
moment (permanent load)	Me	kN∙m	6.09	2.99	6.09	2.99	6.09	2.99
moment (variable load)	Me	kN·m	20.29	9.97	20.35	10.00	19.08	19.08
moment (design load)	Me	kN·m	16.24	7.98	16.27	7.99	15.63	12.53
reinforcement (tension)	A,	cm ²	9.93	9.93	9.93	9.93	9.93	9.93
effective depth	d	mm	180	180	180	180	180	180
increased stress on reinforcement (design load)	σse	N/mm²	94.95	46.64	95.13	46.73	91.41	73.28
increased stress on reinforcement (permanent load)	σ se	N/mm²	35.62	17.49	35.62	17.49	35.62	17.49
flexural crack width (design load)	wl	mm	0.230	0.141	0.231	0.141	0.224	0.190
flexural crack width (permanent load)	w2	mm	0.121	0.088	0.121	0.088	0.121	0.088
permisible crake width	Wa	mm	0.240	0.210	0.240	0.210	0.240	0.210
Examination result (design	load)	<u> </u>	w1 <wa O.K</wa 	wl <w<sub>a O.K</w<sub>	wl <w<sub>a O.K</w<sub>	wi <wa O.K</wa 	wl <wa O.K</wa 	w1 <wa O.K</wa
Examination result (permane	Examination result (permanent load)			w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>z O.K</w<sub>

	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		2610712002		08 108 12002

(I) NIPPON KOEI CO.,LTD.


Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc, Index No.	
Subject	Quaywall	Page No. <i>己</i> ?	Rev.

References/ Notes

②Deck Slab "S1" : the vertical direction to the face line

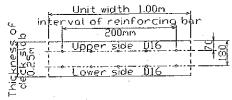
· Examination of flexural crack of serviceability state

		unit	Ordinary		Wheel Load (Distribution)		Wheel Load (Partial distribution)	
			upper	lower	upper	lower	upper	lower
reinforcing bar		mm	D16	D16	Ď16	D16	D16	D16
diameter	φ	mm	16	16	16	16	16	16
covering	С	mm	80	90	80	90	80	90
distance between centers of bar	C _s	mm	200	200	200	200	200	200
moment (permanent load)	Me	kN∙m	4.19	0.77	4.19	0.77	4.19	0.77
moment (variable load)	Me	kN•m	13,97	2.57	14.01	2.58	17.72	17.72
moment (design load)	M _e	kN∙m	11.18	2.06	11.20	2.06	13.05	9.63
reinforcement (tension)	As	cm ²	9.93	9.93	9.93	9.93	9.93	9.93
effective depth	d	mm	160	160	160	160	160	160
increased stress on reinforcement (design load)	σ se	N/mm²	65.90	12.12	66.02	12.15	76.95	56.79
increased stress on reinforcement (permanent load)	σ se	N/mm²	24.71	4.54	24.71	4.54	24.71	4.54
flexural crack width (design load)	wl	mm	0.215	0.095	0.215	0.095	0.240	0.195
flexural crack width (permanent load)	w2	mm	0.123	0.078	0.123	0.078	0.123	0.078
permisible crake width	Wa	mm	0.320	0.280	0.320	0.280	0.320	0.280
Examination result (design	load)		w1 <w<sub>a O.K</w<sub>	wl <wa O.K</wa 	w1 <w<sub>a O.K</w<sub>	wl <w<sub>a O.K</w<sub>	wl <w<sub>a O.K</w<sub>	wl <w<sub>a O.K</w<sub>
Examination result (permane	nt loa	d)	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>

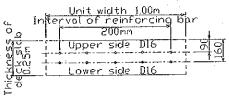
-	Prepared by	YAndo	Checked by	P. NISHIMURA
		261 07 1200 2		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.
		Deferenced/

③Deck Slab "S3"


References/ Notes

Examination of flexural crack of serviceability state


			Ordinary Parallel		Ordinary Vertical	
		unit	upper	lower	upper	lower
reinforcing bar		mm	D16	D16	D16	D16
diameter	φ	mm	. 16	16	16	16
covering	С	mm	60	70	80	90
distance between centers of bar	Cs	mm	200	200	200	200
moment (permanent load)	Me	kN∙m	5.16	-	2.02	0.28
moment (variable load)	Me	kN∙m	17.19	—	6.73	0.92
moment (design load)	Me	kN∙m	13.76		5.39	0.74
reinforcement (tension)	As	cm ²	9.93	9.93	9.93	9.93
effective depth	d	mm	180	180	160	160
increased stress on reinforcement (design load)	σse	N/mm²	80.45	_	31.75	4.36
increased stress on reinforcement (permanent load)	σ se	N/mm²	30.18		11.91	1.65
flexural crack width (design load)	w1	mm	0.204	_	0.139	0.077
flexural crack width (permanent load)	w2	mm	0.111		0.094	0.071
permisible crake width	wa	mm	0.240	<u> </u>	0.320	0.280
Examination result (design	load)		wi <wa O.K</wa 	_	w1 <w<sub>a O.K</w<sub>	wl <w<sub>a O.K</w<sub>
Examination result (permane	w2 <w<sub>a O.K</w<sub>	_	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>		

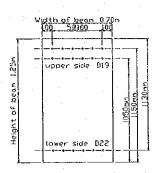
· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	26 1 67/2002		08 1 08 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≮/ Rev.

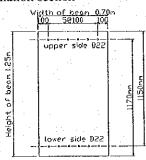

(ii) Beam

References/ Notes

①The vertical direction beam to the face line

· Examination of flexural crack of serviceability state

		unit	Ordi	nary	Wheel	Load	Wheel (Canti	
			upper	lower	upper	lower	upper	lower
reinforcing bar		mm	D19	D22	D19	D22	D19	D22
diameter	φ	mm	19	22	19	22	19	22
covering	c	mm	80	90	80	90	80	90
distance between centers of bar	Ċs	mm	100	100	100	100	100	100
moment (permanent load)	M _e	kN∙m	150.80	52.43	150.80	52.43	100.58	+
moment (variable load)	Me	kN•m	174.50	116.08	201.25	252.45	364.29	_
moment (design load)	Me	kN∙m	238.05	110.47	251.43	178.66	282.73	_
reinforcement (tension)	A,	cm²	34.38	23.23	34.38	23.23	34.38	23.23
effective depth	d	mm	1,100	1,130	1,100	1,130	1,100	1,130
increased stress on reinforcement (design load)	σ _{se}	N/mm²	71.33	45.03	76.11	72.83	85.58	
increased stress on reinforcement (permanent load)	σ se	N/mm ²	45.19	21.37	45.65	21.37	30.45	
flexural crack width (design load)	wl	mm	0.211	0.186	0.221	0.254	0.240	.—
flexural crack width (permanent load)	w2	mm	0.157	0.127	0.158	0.127	0.125	_
permisible crake width	Wa	mm	0.360	0.350	0.360	0.350	0.360	0.350
Examination result (design	Examination result (design load)		w1 <w<sub>a O.K</w<sub>	wl <wa O.K</wa 	wl <wa O.K</wa 	w1 <w<sub>a O.K</w<sub>	wi <wa O.K</wa 	w1 <w<sub>a O.K</w<sub>
Examination result (permane	nt loa	d)	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K.</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>


		Prepared by	Y. Ando	Checked by	e. NISHIMURA	
			261 07 1200 2	÷.	08 108 12002	

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≮2 Rev.
		References/ Notes

②The parallel direction beam to the face line

• Examination of flexural crack of serviceability state

		Ordi	nary	Wheel Load		
		unit	upper	lower	upper	lower
reinforcing bar		mm	D22	D22	D22	D22
diameter	φ	mm	22	22	22	22
covering	c	mm	60	70	- 60	70
distance between centers of bar	Cs	mm	100	100	100	100
moment (permanent load)	Me	kN∙m	33.48	15.95	33.48	15.95
moment (variable load)	M _e	kN m	48.95	24.49	131.97	86.55
moment (design load)	Me	kN•m	57.96	28.20	99.47	59.23
reinforcement (tension)	$\Lambda_{\rm s}$	cm²	23.23	23.23	23.23	23.23
effective depth	d	mm	1,150	1,170	1,150	1,170
increased stress on reinforcement (design load)	σ se	N/mm ²	22.77	11.25	39.08	23.63
increased stress on reinforcement (permanent load)	σse	N/mm²	13.15	6.36	13.15	6.36
flexural crack width (design load)	wl	mm	0.088	0.086	0.116	0.111
flexural crack width (permanent load)	w2	mm	0.072	0.075	0.072	0.075
permisible crake width	Wa	mm	0.280	0.315	0.280	0.315
Examination result (design	load)		wl <w<sub>a O.K</w<sub>	w1 <w<sub>a O.K</w<sub>	w1 <w<sub>a O.K</w<sub>	w1 <w<sub>a O.K</w<sub>
Examination result (permaner	ıt loa	d)	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>	w2 <w<sub>a O.K</w<sub>

Prep	ared by	Y. Ando	Checked by	2. NISHIMURA
	2	61 67 12002		08 1 08 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No.
		References/ Notes

b) Examination of Shear Cracks

For members subject to shear forces, it may not be required to examine shear cracks when the design shear force, Vd, is smaller than 70% of the design shear capacity of concrete, Vcd. When examination for shear crack is necessary, the stress in shear reinforcement due to permanent load is confirmed smaller than the limiting value for the increment in stress in ordinary reinforcement due to permanent load.

$$\sigma \text{ wpd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd}) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \text{ s} + \cos \alpha \text{ s})} \times \frac{\text{Vpd} + \text{Vcd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

wher , σ wpd : design stress in shear reinforcement due to permanent load

Vpd : design shear force produced by permanent load

Vrd : design shear force produced by variable load

Vcd : design shear capacity of concrete

(see examination of shearing force of ultimate limit state

It considers as γ b= γ c=1.0)

Aw : area of one unit of shear reinforcement

s : spacing of shear reinforcement

z : distance from compression resultant to centroid of tension

reinforcement (=d/1.15)

d : effective depth

 α s : angle between shear reinforcement and axis of member

k₂: The factor for taking into consideration the influence of the

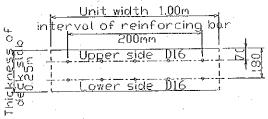
frequency of change load (=0.5)

The limiting value for the increment in stress in ordinary reinforcement due to permanent load " σ sp" uses the following values. (see "Standard Specifications of Concrete (in Japan))

When a upper side reinforcing bar steel rod is examined $\sigma \text{ sp} = 100 \text{ N/mm}^2$

When a lower side reinforcing bar steel rod is examined $\sigma \text{ sp} = 80 \text{ N/mm}^2$

į					
	Prepared by		Y. Ando	Checked by P. NISHIHURA	
			261 07 12002	·	08 108 12002

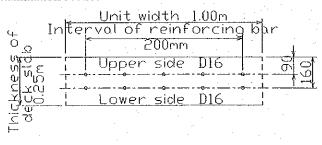

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≮⊈ Rev.
		References/

(i) Deck Slab

①Deck Slab "S1" : the parallel direction to the face line

· Examination of shear crack

		unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution)
reinforcing bar	T	mm	. D16	D16	D16
number	1-1		5	5	5
area of tension reinforcing bar	As	cm ²	9.93	9.93	9,93
web width	b _w	mm	1,000	1,000	1,000
effective depth	d	mm	180	180	180
compression force of an axis	N' _d	kN	0	. 0	0
design shear capacity of concrete	Vcd	kN	127.73	127.73	127.73
design shear force	V_d	kN	25.87	25.92	26.23
Examination result (V _d /V _{cd})	<u></u>		0.203	0.203	0.205
Necessity for examination of shear	rack		without necessity	without necessity	without necessity
σ wpd	-		_		
σsp			-		
Judgment			_		


Prepared by	Y. Ando	Checked by	R. NISHIMURA
:	26 1 07 1200 2		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. メダ	Rev.
		Refer Notes	ences/ s

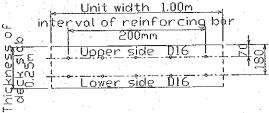
②Deck Slab "S1" : the vertical direction to the face line

Examination of shear crack

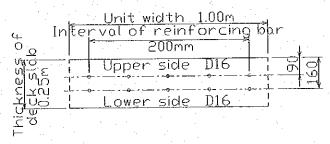
		unit	Ordinary	Wheel Load (Distribution)	Wheel Load (Partial distribution)
reinforcing bar		mm	D16	D16	D16
number		本	5	5	5
area of tension reinforcing bar	A,	cm ²	9.93	9.93	9.93
web width	b _w	mm	1,000	1,000	1,000
effective depth	d	mm	160	160	160
compression force of an axis	N'd	kN	0	0	0
design shear capacity of concrete	V_{cd}	kN	118.10	118.10	118.10
design shear force	V _d	kN	28.96	29.01	23.21
Examination result (V _d /V _{ed})			0.245	0.246	0.196
Necessity for examination of shear cr	rack		without necessity	without necessity	without necessity
σ wpd					·
σsp			_		
Judgment				_	_

	Prepared by	Y. Ando	Checked by 2	NISHI MURA
		26 1 07 1200 2	***	08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ≰6 Rev.
		References/


③Deck Slab "S3"

Examination of shear crack

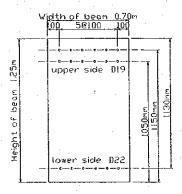

		単位	Ordinary Parallel	Ordinary Vertical
reinforcing bar		mm	D16	D16
number		本	5	5
area of tension reinforcing bar	A _s	cm ²	9.93	9.93
web width	b _w	mm	1,000	1,000
effective depth	d	nun	180	160
compression force of an axis	N'_d	kN	1 14 0 14 14	0
design shear capacity of concrete	V_{cd}	kN	127.73	118.10
design shear force	V_d	kN	24.48	32.16
Examination result (V _d /V _{cd})			0.192	0.272
Necessity for examination of shear co	rack		without necessity	without necessity
σ wpd				
σsp		. 1	_	
Judgment			—	

· Dimension of an examination section

The parallel direction to the face line

The vertical direction to the face line

	Prepared by	Y. Ando	Checked by	R. NISHIMURA
		2610712002		08 1 08 12002

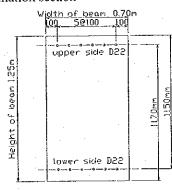

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 47 Rev.
		References/ Notes

(ii) Beam

①The vertical direction beam to the face line

· Examination of shear crack

		単位	Ordinary	Wheel Load	Wheel Load (Cantilever)
reinforcing bar		mm	D22	D22	D22
number		本	6	6	6
area of tension reinforcing bar	As	cm²	23.23	23.23	23.23
web width	b _w	mm	700	700	700
effective depth	d	mm	1,130	્યું,130	1,130
compression force of an axis	N'a	kN	0	0	, 0
design shear capacity of concrete	V _{cd}	kN	294.35	294.35	294,35
design shear force	$V_{\rm d}$	kN	206.34	249.27	213.53
Examination result (V _d /V _{cd})			0.701	0.847	0.725
Necessity for examination of shear	crack		with necessity	with necessity	with necessity
σwpd			42.05	57.36	46.31
σsp		· · · · ·	80.00	80.00	80.00
Judgment			O.K	O.K	O.K


ł		•	* *	
	Prepared by	YAndo	Checked by	R. NISHIMURA
		261 07/2002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ⊀8° Rev.
		References/ Notes

②The parallel direction beam to the face line

• Examination of shear crack

		unit	Ordinary	Wheel Load
reinforcing bar		mm	D22	D22
number		本	6	6
area of tension reinforcing bar	As	cm ²	23.23	23.23
web width	b _w	mm	700	700
effective depth	d	mm	1,150	1,150
compression force of an axis	N' _d	kN	0	0
design shear capacity of concrete	V _{cd}	kN	296.53	296.53
design shear force	V _d	kN	97.42	157.14
Examination result (V _d /V _{cd})			0.329	0.530
Necessity for examination of shear	crack		without necessity	without necessity
σwpd				_
σsp				
Judgment			—	

Prepared by	Y. Ando	Checked by	R. NISHIMURA
	26/07/2002		08 108 1200 2

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 🙎 Rev.

(3) Examination to Fatigue Limit State

References/ Notes

An examination case is set to Wheel Load (Truck). The fatigue life (number of times of a wheel load action) is as follows.

The number of car loading per car carrier

: 650

The number of times of car carriers entry into port per year : 33 times / year

. ...

Lifetime of Berth

: 50 years

Fatigue Life

 $650 \times 33 \times 50 = 1,072,500$ times

The unloading of the car is equally carried out at platforms 1 and 2. Therefore, lifetime per platform becomes as follows.

$$N = 1,072,500 / 2 = 536,250 \text{ times} \rightarrow 540,000 \text{ times}$$

- a) Examination of Fatigue Limit of Bending
- (i) Examination of reinforcing bar

The safety to the fatigue limit state of the reinforcing bar is checked by the following formulas.

$$\gamma i \times \sigma \text{ sed } / (\text{fsrd} / \gamma b) \leq 1.0$$

where

σ srd : stress in reinforcement due to variable load (N/mm²)

γ i : structure factor γ b : member factor

fsrd : design fatigue strength for a reinforcing bar

fixed =
$$190 \times \frac{10^{\alpha}}{N^k} \times (1 - \frac{\sigma sp}{fud}) / \gamma s$$

$$\alpha = k_0 \times (0.81 - 0.003 \times \phi)$$

k = 0.12

φ : diameter of reinforcing bar (mm)

 k_0 : factor concerning α (=1.0)

fud : design tensile strength of steel (N/mm^2) (=fuk / γ s)

 $=490 / 1.05 = 466.67 \text{ N/mm}^2$

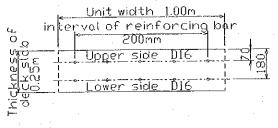
fuk : characteristic value for tensile strength of steel (N/mm²)

γs : material factor for steel

σ sp : stress of a reinforcing bar due to permanent load (N/mm²)

N : fatigue life

Prepared by	Y. Ando	Checked by	e. Nishihura
	261 07 12002		08 108 12002

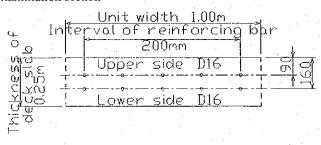

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 50 Rev.
7		References/

DDeck Slab

 $\mathbb{D}-1$ Deck Slab "S1" : the parallel direction to the face line

Examination of fatigue limit of bending of reinforcing bar (deck slab)

	unit	Wheel (Distrib		Wheel Load (Partial distribution)	
·	· · · [upper	lower	upper	lower
α		0.762	0.762	0.762	0.762
k		0.12	0.12	0.12	0.12
diameter " φ "	mm	16	16	16	16
k ₀		1.0	1.0	1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67	466.67	466.67
bending moment (permanent load) Mpd	kN m	6.09	2.99	6.09	2.99
bending moment (variable load) Mrd	kN•m	20.35	10.00	19.08	19.08
σsp	N/mm²	35.62	17.49	35.62	17.49
fatigue life N	times	540,000	540,000	540,000	- 540,000
design fatigue strength for a reinforcing bar fsrd		198.24	206.58	198.24	206.58
stress in reinforcement due to variable load o srd		119.02	58.49	111.59	111.59
Examination result γ i · σ srd / (fsrd / b)		0.60 O.K	0.28 O.K	0.56 O.K	0.54 O.K


Prepared by	YeAndo	Checked by	2. NISHIMURA
·	26/07/2002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ゟ゙/ Rev.
		References/ Notes

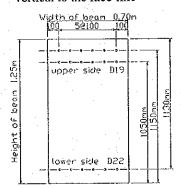
D-2 Deck Slab "S1": the vertical direction to the face line

Examination of fatigue limit of bending of reinforcing bar (deck slab)

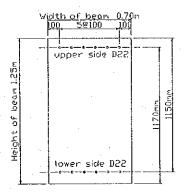
	unit		Load oution)	Wheel	
		upper	lower	upper	lower
α		0.762	0.762	0.762	0.762
k		0.12	0.12	0.12	0.12
diameter " φ "	mm	- 16	16	16	16
k _o		1.0	1.0	1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67	466.67	466.67
bending moment (permanent load) Mpd	kN · m	4.19	0.77	4.19	0.77
bending moment (variable load) Mrd	kN • m	14.01	2.58	17.72	17.72
σsp	N/mm²	24.71	4.54	24.71	4.54
fatigue life N	times	540,000	540,000	540,000	540,000
design fatigue strength for a reinforcing bar fsrd		203.26	212.54	203.26	212.54
stress in reinforcement due to variable load o srd		82.62	15.21	104.49	104.49
Examination result γ i · σ srd / (fsrd / b)		0.41 O.K	0.07 O.K	0.51 O.K	0.49 O.K

I	Prepared by	Y. Ando	Checked by	NISHIMUZA
		26 1 07 1200 2		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ♂2 Rev.
		References/ Notes


2)Beam

Examination of fatigue limit of bending of reinforcing bar (beam)


	unit	The vertical direction beam to the face line			The parallel direction beam to the face line	
		upper	lower	cantilever	upper	lower
α		0.753	0.744	0.753	0.744	0.744
k		0.12	0.12	0.12	0.12	0.12
diameter " φ "	mm	19	22	19	22	22
k ₀		1.0	1.0	1.0	1.0	1.0
design tensile strength of steel	N/mm²	466.67	466.67	466.67	466.67	466.67
bending moment (permanent load) Mpd	kN · m	150.80	52.43	100.58	33.48	15.95
bending moment (variable load) Mrd	kN · m	201.25	252.45	364.29	131.97	86.55
σsp	N/mm²	45.65	21.37	30.45	13.15	6.36
fatigue life N	times	540,000	540,000	540,000	540,000	540,000
design fatigue strength for a reinforcing bar fsrd		189.66	196,48	192.48	200.11	203.10
stress in reinforcement due to variable load σ srd		60.92	102.91	110.27	51.85	34.53
Examination result γ i · σ srd / (fsrd / b)		0.32 O.K	0.52 O.K	0.57 O.K	0.26 O.K	0.17 O.K

Dimension of an examination section (Beam)

Vertical to the face line

Parallel to the face line

and the second	Prepared by	Y. Ando	Checked by	Z NISHIMURA
		26 1 07 12002		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union			Calc, File No		
Section	Civil				Calc. Index N	lo.
Subject	Quaywall		44 - 1		Page No. ර	Rev.
					.	eferences/ otes

(ii) Examination of Concrete

The safety to the fatigue limit state of concrete is checked by the following formulas.

$$\gamma i \times \sigma' \text{ced} / (\text{frd} / \gamma b) \leq 1.0$$

where

σ'crd: stress in concrete due to variable load (N/mm²)

 γ i : structure factor γ b : member factor

frd : design fatigue strength for concrete (N/mm²)

$$\operatorname{frd} = k_1 \times \operatorname{fd} \times (1 - \frac{\sigma p}{\operatorname{fd}}) \times (1 - \frac{\log N}{K})$$

$$k_1 = 0.85$$
 , $K=17$

fd : design compressive strength of concrete (N/mm²) (=fck / γ c)

 $fd = 24 / 1.3 = 18.46 \text{ N/mm}^2$

fck : basic strength for design (= 24 N/mm²)

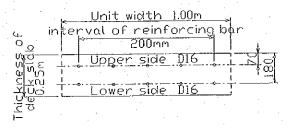
γ c : material factor for concrete (=1.3)

σp: stress of concrete due to permanent load (N/mm²)

N : fatigue life

	Prepared by	Y. Ando	Checked by R	NISHINURA
		26/07/2002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ♂౪ Rev.
		References/ Notes


①Deck Slab

 $\bigcirc -1$ Deck Slab "S1" : the parallel direction to the face line

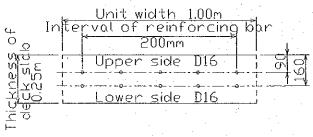
OExamination of fatigue limit of bending of concrete (deck slab)

_						
	unit	Wheel Load (Distribution)		Wheel Load (Partial distribution)		
	. [upper	lower	upper	lower	
design compressive strength of concrete fd	N/mm²	18.46	18.46	18.46	18.46	
k1		0.85	0.85	0.85	0.85	
K		17	17	17	17	
stress of concrete due to permanent load σp	N/mm²	1,25	0.62	1.25	0.62	
fatigue life N	times	540,000	540,000	540,000	540,000	
design compressive streat	9.69	10.05	9.69	10.05		
stress in concrete due to variable load σ 'crd		4.19	2.06	3.92	3.93	
Examination result γ i× σ 'crd / (frd / γ b)		0.43 O.K.	0.20 O.K	0.40 O.K	0.39 O.K	

Section force is the same value as what was used by examination of reinforcing bar.

Prepared by	Y. Amdo	Checked by	e. NISHIMURA
	2610712002		08 108 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. <i>さ</i> な	Rev.
		Refere	ences/


References/ Notes

①-2 Deck Slab "S1": the vertical direction to the face line

OExamination of fatigue limit of bending of concrete (deck slab)

	unit	Wheel Load (Distribution)		Wheel Load (Partial distribution)		
		upper	lower	upper	lower	
design compressive strength of concrete fd	N/mm²	18.46	18.46	18.46	18.46	
ki		0.85	0.85	0.85	0.85	
К		17	17	17	17	
stress of concrete due to N/mm ²		1.03	0.19	1.03	0.19	
fatigue N	times	540,000	540,000	540,000	540,000	
design compressive strength of concrete frd		9.82	10.29	9.82	10.29	
stress in concrete due to variable load σ 'crd		3.43	0.63	4.34	4.34	
Examination result $\gamma i \times \sigma$ 'crd / (frd / γ b)	Examination result			0.44 O.K	0.42 O.K	

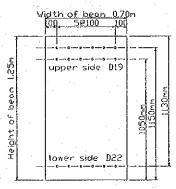
**Section force is the same value as what was used by examination of reinforcing bar.

1	Prepared by	Y. Ando	Checked by	2. NISHIHURA
ļ		26 1 07 12002		08 1 08 12002

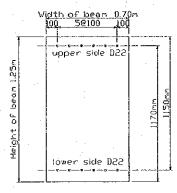
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 56 Rev.
		References/

References/ Notes

@Beam


OExamination of fatigue limit of bending of concrete (beam)

	unit	Wheel Load vertical beam				Wheel Load parallel beam	
		upper	lower	cantilever	upper	lower	
design compressive strength of concrete fd	N/mm²	18.46	18.46	18.46	18.46	18.46	
kl		0.85	0.85	0.85	0.85	0.85	
K		17	17	17	17	17	
stress of concrete due to permanent load σ p	N/mm²	1.16	0.46	0.78	0.27	0.13	
fatigue life N	times	540,000	540,000	540,000	540,000	540,000	
design compressive stren	ngth of	9.74	10.14	9.96	10.25	10.33	
stress in concrete due to variable load σ 'crd		1.55	2.20	2.81	1.08	0.71	
Examination result γ i× σ 'crd / (frd / γ b)		0.16 O.K	0.22 O.K	0.28 O.K	0.10 O.K	0.07 O.K	


**Section force is the same value as what was used by examination of reinforcing bar.

· Dimension of an examination section (Beam)

Vertical to the face line

Parallel to the face line

	Prepared by	Y. Ando	Checked by	R. NISHIAURA
		26 1 07 1200 Z		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. よう Rev.
		References/

b) Examination of Fatigue Limit of Shear

References/ Notes

Examination of fatigue limit of shear checks the safety of only a concrete portion. When design shear force exceeds design shear fatigue capacity of a concrete portion, the stress of shear reinforcement is examined.

Examination of fatigue limit of shear of a concrete portion checks the following formulas.

$$\gamma i \times Vrd / Vrcd \leq 1.0$$

$$Vrcd = Vcd \times (1 - Vpd / Vcd) \times (1 - log N / 11)$$

where, Vrd : design shear force produced by variable load

Vrcd: design shear fatigue capacity of member without shear reinforcement

Vcd : design shear capacity of concrete

(see examination of shearing force of ultimate limit state)

N : fatigue life

Vpd : design shear force produced by permanent load

When not filling the above-mentioned formula, the following formulas examine shear reinforcement.

$$\gamma i \times \sigma \text{ wrd} / (\text{fwrd} / \gamma b) \leq 1.0$$

design stress in shear reinforcement due to permanent load
$$\sigma \text{ wpd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd}) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \text{ s} + \cos \alpha \text{ s})} \times \frac{\text{Vpd} + \text{Vcd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

design stress in shear reinforcement due to variable bad
$$\sigma \text{ wrd} = \frac{(\text{Vpd} + \text{Vrd} - \text{k}_2 \times \text{Vcd}) \times \text{s}}{\text{Aw} \times \text{z} \times (\sin \alpha \, \text{s} + \cos \alpha \, \text{s})} \times \frac{\text{Vrd}}{\text{Vpd} + \text{Vrd} + \text{Vcd}}$$

design fatigue strength for reinforcement) fwrd =
$$190 \times \frac{10^{\alpha}}{N^k} \times (1 - \frac{\sigma \text{ wpd}}{\text{fud}})/\gamma \text{ s}$$

where. Aw : area of shear reinforcement within distance "s"

s : spacing of vertical shear reinforcements

z : distance from compression resultant to centroid of tension reinforcement (=d/1.15)

d : effective depth

 α s : angle between shear reinforcement and axis of member

fud: design tensile strength of steel $(=490 / 1.05 = 466.67 \text{ N/mm}^2)$

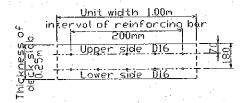
N : fatigue life

	Prepared by	Y. Ando	Checked by	R. NISHLYURA
		26107 12002		08/08/2002

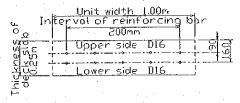
Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc, Index No.
Subject	Quaywall	Page No. ぐみ Rev.
		References/ Notes

$$\alpha=k_0\times (\ 0.81 - 0.003\times \phi\)$$

 (k_0 = 1.0, $\ \phi$: diameter of reinforcing bar)
k = 0.12 , k_2 = 0.5


Since shear reinforcement has the bent portion, design fatigue strength, fwrd, is taken as 50% of value of a calculation result.

(i) Deck Slab


1) Deck olab	* .	5.0			
		Parallel to	face line	Vertical to	o face line
	unit	Wheel Load (Distribution)	Wheel Load (Partial distribution)	Wheel Load (Distribution)	Wheel Load (Partial distribution)
Vpd	kN	9.70	9.70	10.86	10.86
Vrd	kN	32.44	33.06	36.30	24.69
Vcd	kN	117.03	117.03	108.22	108.22
Vred	kN	51.40	51.40	46.62	46.62
Examination result y i · Vrd /	Vrcd	0.631	0.643	0.779	0.530
Necessity for examination of sh		without necessity	without necessity	without necessity	without necessity
α					
k		· — · ·		_	
diameter of reinforcing bar φ	min				
k _o			. —	. —	
design tensile strength of steel fud	N/mm²			<u>-</u> -	<u>:</u>
design stress in shear reinforcement due to permanent load σwpd	N/mm²	· · ·	_	_	
fatigue life N	times				_
design fatigue strength for reinforcing bar fwrd				-	
design stress in shear reinforcement due to variable load					
Examination result γ i · σ wrd / (fwrd / b)					<u>.</u>

Dimension of an examination section

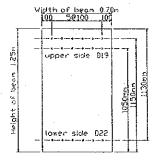
Parallel direction to the face line

Vertical direction to the face line

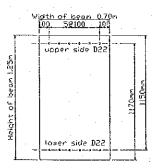
Prepared by	Y. Ando	Checked by	R. PISHIHURA
	<i>26 07 </i> 200 ≥		UB 1 08 12002

(I) NIPPON KOEI CO,,LTD.

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. ょう Rev.
		References/


References/ Notes

(ii) Beam


	1	37		[B 9.1.2] (1 1
	·	vertical directi	on beam to the	Parallel direction beam to the face line
	単位	lace	Wheel Load	to the race line
		Wheel load	(Cantilever)	Wheel load
Vpd	kN	112.54	92.10	56.03
Vrd	kN	273.45	242,86	202.21
Vcd	kN	269.71	269.71	271.71
Vred	kN	75.26	85.05	103.28
Examination result γ i·Vrd /	Vrcd	3.633	2.855	1.958
Necessity for examination of sl reinforcement	near	with necessity	with necessity	with necessity
α		0.771	0.771	0.771
k : : :		0.12	0.12	0.12
diameter of reinforcing bar ϕ	mm	13	13	13
k_0		1.0	1.0	1.0
design tensile strength of steel fud	N/mm²	466.67	466.67	466.67
design stress in shear reinforcement due to permanent load σ wpd	N/mm²	58.80	48.09	29.87
fatigue life N	回	540,000	540,000	540,000
design fatigue strength for reinfo	reing bar	95.75	98.27	102.55
design stress in shear reinforceme variable load σ wrd	nt due to	42.06	32,28	18.43
Examination result		0.44	0.33	0.18
γi·σwrd/(fwrd/b)		O.K	O.K	O.K

· Dimension of an examination section (Beam)

Vertical to the face line

Parallel to the face line

Prepared by Y, And o Checked by	
2610712002	08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 60 Rev.
		References/ Notes

7) Design of Pile Head

Because the thickness of the concrete above the pile heads is small in pier, the embedment length of pile is calculated on the assumption that there is no punching shear of concrete and the loads are transmitted from the beams to piles only through the bonding between the pile circumference and concrete without assistance of shear strength of concrete against punching

(1) Section Force

Maximum axial force

Sd = 765.6 kN

(Earthquake parallel direction to the face line)

Maximum pile head moment $M_0 = 799.0 \text{ kN} \cdot \text{m}$ (Earthquake Sea-)Land)

(2) Examination to pile head moment

The necessity embedding length to pile head moment computes from the following formulas.

$$L = \sqrt{(6 \times M_0 / (B \times fad))} \times \gamma b \times \gamma i$$

where L : necessity embedding length to pile head moment (mm)

 M_0 : pile head moment (= 799,000,000 N · mm)

B: diameter of the pile (700 mm)

fad: design bearing strength of superstructure

(The same value as the design compression strength of concrete)

$$(= 24 / 1.3 = 18.5 \text{ N/mm}^2)$$

 γ b: member factor (=1.15)

y i : structure factor (=1.0 (earthquake condition))

 $L = \sqrt{(6 \times 799,000,000/(700 \times 18.5)) \times 1.15 \times 1.0} = 700 \text{ mm}$

1					
1		Prepared by	YeAndo	Checked by	E. NISHIMURA
I			261 07 1200Z		08 1 08 12002

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.
Section	Civil	Calc. Index No.
Subject	Quaywall	Page No. 6/ Rev.
		References/

(3) Examination to axial force

The necessity embedding length to axial force computes from the following formulas.

$$L = P / (\phi \times fbod/\gamma b)$$

where,

P: calculated value of axial force acting on pile in design

(=Sd=765,600 N)

 ϕ : outer perimeter of the cross section of pile (diameter: 700 mm)

fbod: design bond strength between the pile and concrete

$$(=0.11 \times \text{fck}^{2/3} / \gamma \text{ c} = 0.11 \times 24^{2/3} / 1.3 = 0.704 \text{ N/mm}^2)$$

f'ck: characteristic compressive strength of concrete

γ c: material factor for concrete

γ b: member factor

 $L = 765,600 / (700 \times \pi \times 0.704 / 1.0) = 495 \text{ mm}$

(4) Determination of the embedding length of piles

The embedding length to superstructure of a steel pipe pile does as follows from the above-mentioned examination result.

L = 700 mm

Prepared by	Y. Ando	Checked by	E. NISHIHURA
	26 07 2002		08/06/2002

Section Civil Subject Quaywall		Calc. Index No. Page No. 62	Rev.
--------------------------------	--	-----------------------------	------

8) Examination of welding of reinforcing bar and steel pipe pile

The lower reinforcing bar of a beam is welded to the plate attached in the steel pipe pile. The diameter and number of lower reinforcing bar of the parallel and vertical directions beam to the face line are as follows.

Diameter: D22 , Number: 6 pieces

(1) Examination of thickness of plate

The thickness (t) of a plate is calculated by the following formula.

$$t = T/(L \times \tau_{ta})$$
 (mm)

where T: Action tension (N)

$$T = As \times \sigma_{sa} \times n$$

As : cross-section area of reinforcing bar (mm^2) (D22 As = 387.1mm²)

 σ_{sa} : allowable stress of reinforcing bar (SD345 : =176 N/mm²)

n: number of reinforcing bar (=6 pieces)

L: Welding length of a plate

 τ_{ta} : allowable tensile stress for steel at welded zone

$$(SS400 = 140 \text{ N/mm}^2)$$

· Welding length of a plate

The outer perimeter of steel pipe pile is 700mm, and a plate is divided into four.

$$L = \pi \times 700 / 4 = 550 \text{ m}$$

· Action tension

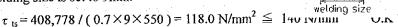
$$T = 387.1 \times 176 \times 6 = 408,778 \text{ N}$$

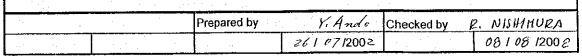
· Thickness of plate

$$t = 408,778 / (550 \times 140) = 5.3 \text{ mm} \rightarrow 9.0 \text{mm}$$

(2) Examination of the welding of steel pipe pile and a plate

Welding size is made into what satisfies the following formulas.


$$\tau_{ts} = T/(a \times L) \leq \tau_{ta}$$


The sign of an upper formula is shown

in the right figure.

where
$$a = 0.7 \times a$$

Welding size is set to 9mm.

welded zone

Steel

Project	Detailed Design on Port Reactivation Project in La Union	Calc. File No.	
Section	Civil	Calc. Index No.	
Subject	Quaywall	Page No. 63	Rev.
		Refe Note:	rences/

(3) Examination of the welding of a plate pile and reinforcing bar

The welding length of reinforcing bar computes by the following formulas.

$$l = \sigma_{sa} \times As / (\sqrt{2} \times \lambda \times \tau_{sa})$$

where λ : welding size (=D/3 D: diameter of reinforcing bar)

 τ_{sa} : allowable shearing stress for steel at welded zone (= 80 N/mm²)

$$1 = 176 \times 387.1 / (\sqrt{2} \times (22 / 3) \times 80) = 82.1 \text{ mm}$$

Therefore, welding length is set to l = 100 mm.

Prepared by	Y, Ando	Checked by	E. NISHIMURA
	2610712002		08 1 08 12002