Ultimate limit state (Under ordinary conditions)
Sidewall(parallel to centerline:landside)—Perpendicular outside steel reinforcement
B = 100cm

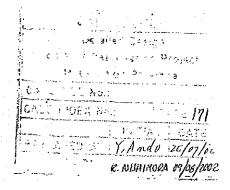
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	7 6 5 4 3 2	0, 000 14, 361 15, 111 16, 033 19, 686 33, 275 100, 690	29. 0 29. 0 29. 0 29. 0 29. 0 29. 0 35. 6	0.00 1.83 1.92 2.04 2.51 4.28 10.73	D13 D13 D13 D13 D13 D13, D13	20. 0 20. 0 20. 0 20. 0 20. 0 10. 0	6. 34 6. 34 6. 34 6. 34 6. 34 12. 67	53. 833 53. 833 53. 833 53. 833 53. 833 104. 945 130. 031	0.00 0.29 0.31 0.33 0.40 0.35 0.85
II	7 6 5 4 3 2	0.000 3.223 3.339 3.874 5.938 15.244 61.307	29. 0 29. 0 29. 0 29. 0 29. 0 29. 0 35. 6	0. 00 0. 41 0. 42 0. 49 0. 75 1. 94 6. 44	D13 D13 D13 D13 D13 D13 D13, D13	40. 0 40. 0 40. 0 40. 0 40. 0 20. 0 10. 0	3. 17 3. 17 3. 17 3. 17 3. 17 6. 34 12. 67	27. 249 27. 249 27. 249 27. 249 27. 249 53. 833 130. 031	0.00 0.13 0.13 0.16 0.24 0.31 0.52
111	7 6 5 4 3 2	0.000 3.857 9.135 14.413 19.691 20.097 0.000	35. 6 35. 6 35. 6 35. 6 35. 6 35. 6 35. 6	0, 00 0, 40 0, 94 1, 49 2, 04 2, 08 0, 00	D13 D13 D13 D13 D13 D13 D13	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 40. 0	3. 17 3. 17 3. 17 3. 17 3. 17 3. 17 3. 17	33. 525 33. 525 33. 525 33. 525 33. 525 33. 525 33. 525	0.00 0.13 0.30 0.47 0.65 0.66 0.00

CALC	ULATIO	NC	Anna and a second
Detai	ed Desi	gn	
en Port Rea	ctivation	P	rojact
in La Un	ion Prov	/ind	:0
GALC FILE No.:		-	
CALC INDEX NO		P/	GE/68
	INITIA	L	DATE
PREPARED BY	Y. And	0	26/07/0
SALCKED BA	e. Wshpio	93	09/08/20

Serviceability limit state
Sidewall(parallel to centerline:landside) - Perpendicular outside steel reinforcement
B = 100cm

		The second second			11			
NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crack width W (cm)
I	3	0.000 13.055 13.738 14.575 17.897 30.251 45.766	29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13, D13 35. 6 D13, D13		6. 34 6. 34 6. 34 6. 34 6. 34 12. 67	0.000 75.283 79.222 84.049 103.206 89.224 109.176	0. 0200 0. 0210 0. 0223 0. 0274 0. 0206	0. 0035 × 10. 0 = 0. 0350
n		0.000 2.930 3.036 3,522 5.399 13.858 27.866	29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13 29. 0 D13 35. 6 D13, D13	40. 0 40. 0 40. 0 40. 0 40. 0 20. 0 10. 0	3. 17 3. 17 3. 17 3. 17 3. 17 6. 34 12. 67	0.000 33.242 34.445 39.958 61.254 79.914 66.475	0.0112 0.0116 0.0134 0.0206 0.0212	0. 0035 × 10. 0 =0. 0350
П	7 6 5 4 3 2	0.000 1.753 4.152 6.551 8.950 9.135 0.000	35. 6 D13 35. 6 D13 35. 6 D13 35. 6 D13 35. 6 D13 35. 6 D13 35. 6 D13	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 40. 0	3. 17 3. 17 3. 17 3. 17 3. 17 3. 17 3. 17	0.000 16.138 38.224 60.309 82.395 84.098 0.000	0. 0054 0. 0128 0. 0202 0. 0276 0. 0282	0. 0035 × 10. 0 =0. 0350

CALC	ÜLATIC	 M				
Detailed Design on Port Reactivation Project in La Union Province						
CALC FILE No.:			· V			
CALC INDEX NO	.:	P	AGE 169			
	INITIA	L.	DATE			
PREPARED BY Y. Ando 20/01/02						
CHECKED SY	e. Audingo	ILA	09/08/2002			


Examination of as opposed to slip out and load of a partition wall (Ultimate limit state is examined)

Partition v	vall(perp	endicular t	co levee normal)		B = 100cm
Section	Td (kN/m)	rb ri	Asn Diameter Pitch (cm²) (mm) (cm)		Nud γi·Td/Nud (kN/m)
Horizontal	505, 61	1, 15 1, 10	18.54 D16, D19 10.0	24, 26	727. 800 0. 76
Perpendicular	754. 35	1.00 1.00	21. 87 D16, D22 10. 0	29. 29	1010. 505 0. 75
Partition v	wall(para	allel to cer	nterline)		B = 100cm
Section	Td (kN/m)	γb γi	Asn Diameter Pitch (cm²) (mm) (cm)		
Horizontal	487. 13	1, 15 1, 10	17.86 D16,D19 10.0	24. 26	727. 800 0. 74
Perpendicular	784, 51	1.00 1.00	22. 74 D16, D22 10. 0	29. 29	1010, 505 0. 78

Detailed Design
on Port Reactivation Project
in La Union Province
CALC FILE NO.:
CALC INDEX NO.:
PAGE 170
INITIAL DATE
PREPARED BY YAndo 26/07/62
OHE KEE BY RAISHHURA 09/05/2002;

Ultimate limit state (Under ordinary conditions)
Partition wall (perpendicular to levee normal) — Horizontal steel reinforcement
B = 100cm

				·				
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch As (cm) (cm²	Mud) (kN·m)	γi·Md/Mud
I	7 6 5 4 3 2	10. 602 10. 185 10. 209 10. 234 10. 234 8. 418 2. 307	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	4. 07 3. 90 3. 91 3. 92 3. 92 3. 20 0. 85	D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19	10. 0 24. 26 10. 0 24. 26	53. 411 53. 411 53. 411 53. 411 53. 411 53. 411	0. 22 0. 21 0. 21 0. 21 0. 21 0. 17 0. 05
II	7 6 5 4 3 2	2. 577 2. 552 2. 552 2. 552 2. 626 2. 577 1. 374	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	0. 95 0. 95 0. 95 0. 95 0. 97 0. 95 0. 51	D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19	10. 0 24. 26 10. 0 24. 26	53, 411 53, 411 53, 411 53, 411 53, 411	0. 05 0. 06 0. 05 0. 05 0. 05 0. 05 0. 05
ш	7 6 5 4 3 2	21. 523 20. 885 20. 787 20. 763 20. 983 18. 407 0. 000	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	8. 73 8. 44 8. 40 8. 38 8. 48 7. 34 0. 00	D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19	10. 0 24. 26 10. 0 24. 26	53, 411 53, 411 53, 411 53, 411 53, 411	0. 44 0. 43 0. 43 0. 43 0. 43 0. 38 0. 00

Serviceability limit state
Partition wall (perpendicular to levee normal)—Horizontal steel reinforcement
B = 100cm

NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crack width Wilm (cm)
I	7 6 5 4 3 2	4. 819 4. 630 4. 641 4. 652 4. 652 3. 826 1. 049	10. 0 D16, D19 10. 0 D16, D19	10. 0 10. 0 10. 0 10. 0 10. 0	24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26	23. 447 22. 528 22. 581 22. 635 22. 635 18. 616 5. 104	0.0052 0.0052 0.0052 0.0052 0.0052 0.0043	0.0040×10.0 =0.0400
П	7 6 5 4 3 2	1. 171 1. 160 1. 160 1. 160 1. 194 1. 171 0. 625	10. 0 D16, D19 10. 0 D16, D19	10. 0 10. 0 10. 0 10. 0 10. 0		5. 698 5. 644 5. 644 5. 644 5. 809 5. 698 3. 041	0.0013 0.0013 0.0013 0.0013 0.0013	0.0040×10.0 =0.0400
П	7 6 5 4 3 2	9. 783 9. 493 9. 449 9. 438 9. 538 8. 367 0. 000	10. 0 D16, D19 10. 0 D16, D19	10. 0 10. 0 10. 0 10. 0 10. 0	24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26	47. 600 46. 189 45. 975 45. 921 46. 408 40. 710 0. 000	0.0106 0.0105 0.0105 0.0106 0.0093	0. 0040 × 10. 0 =0. 0400

CALC	ULATIC	N						
Detai on Port Rea in La Un	ied Designation of the Province of the Provinc	Pre	jsct					
CALC FILE No.:								
CALC INDEX NO	. 45 .	PAC	SE 172					
	INITEA							
PREPARED BY	PREPARED BY Y. Anda 26/07/62							
CHECKED BY	e. WSHINOR	-	9/08/2002					

Ultimate limit state (Under ordinary conditions) Partition wall (perpendicular to levee normal) —Perpendicular steel reinforcement B=100 cm

		 71 4 4							D TOGOTH
NO		Md (kN⋅m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γ i·Md/Mud
Î	7 6 5 4 3 2 1	0.000 1.644 1.669 1.693 1.939 3.240 13.842	10, 0 10, 0 10, 0 10, 0 10, 0 10, 0 10, 0	0.00 0.61 0.62 0.63 0.72 1.20 5.39	D16 D16 D16 D16 D16 D16 D16 D16, D22	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	14. 097 14. 097 14. 097 14. 097 14. 097 14. 097 59. 637	0. 00 0. 13 0. 13 0. 13 0. 15 0. 25 0. 26
П	7 6 5 4 3 2 1	0.000 0.368 0.368 0.393 0.540 1.423 8.222	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	0.00 0.14 0.14 0.14 0.20 0.52 3.12	D16 D16 D16 D16 D16 D16 D16	40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	14. 097 14. 097 14. 097 14. 097 14. 097 14. 097 59. 637	0. 00 0. 03 0. 03 0. 03 0. 04 0. 11 0. 15
m	7 6 5 4 3 2 1	0. 000 3. 485 3. 460 3. 460 3. 510 3. 068 0. 000	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	0.00 1.30 1.29 1.29 1.31 1.14 0.00	D16 D16 D16 D16 D16 D16 D16	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	14. 097 14. 097 14. 097 14. 097 14. 097 14. 097 59. 637	0. 00 0. 27 0. 27 0. 27 0. 27 0. 27 0. 24 0. 00

CALC	JLATIO	N		_
Detaile on Port Read In La Uni		Pf		
CALC FILE No.:				_
CALC WHEX NO		?4	GE 17.	3
	1811 A	- 1	DATE	
PARTURED TV	Y. Ana	10	26/07/	0
CHECKED BY	e, without	24	09/08/20	O.

Serviceability limit state Partition wall (perpendicular to levee normal) — Perpendicular steel reinforcement B=100 cm

NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)	As (cm²)	σse ((N/mm²)	Crack width W(cm)	Permission crack width Wila (cm)
I	7 6 5 4 3 2	0. 000 0. 747 0. 759 0. 770 0. 881 1. 473 6. 292	10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16, D22	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	0. 000 16. 367 16. 630 16. 871 19. 303 32. 274 25. 668	0.0108	0.0040×10.0 =0.0400
П	7 6 5 4 3 2	0.000 0.167 0.167 0.178 0.245 0.647 3.737	10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16, D22	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	0. 000 3. 659 3. 659 3. 900 5. 368 14. 176 15. 245	0. 0012 0. 0012 0. 0013 0. 0018 0. 0047	0.0040×10.0 =0.0400
Ш	7 6 5 4 3 2 1	0. 000 1. 584 1. 573 1. 573 1. 595 1. 394 0. 000	10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16 10. 0 D16, D22	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	0. 000 34. 706 34. 465 34. 465 34. 947 30. 543 0. 000	0. 0116 0. 0115 0. 0115 0. 0117 0. 0102	0. 0040×10. 0 =0. 0400

CALC	ULATIC	N					
Detailed Design on Port Reactivation Project							
in La Un		Ìnc	e				
CALC FILE No .:	97						
CALC INDEX No		P	GE 174				
			DATE				
PREPARED BY			26/07/62				
			e9/08/2007				

Ultimate limit state (Under ordinary conditions) Partition wall (parallele to centerline) — Horizontal steel reinforcement B=100 cm

							2 1000111
NO	Md (kN∙m)	d Asn (cm) (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN⋅m)	γi·Md/Mud
I 7 6 5 4 3 2 1	11. 524 11. 043 11. 097 11. 150 11. 070 8. 696 2. 507	10. 0 4. 44 10. 0 4. 25 10. 0 4. 27 10. 0 4. 29 10. 0 4. 26 10. 0 3. 31 10. 0 0. 93	D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26	53. 411 53. 411 53. 411 53. 411 53. 411 53. 411	0. 24 0. 23 0. 23 0. 23 0. 23 0. 18 0. 05
II 7 6 5 4 3 2 1	2. 801 2. 774 2. 774 2. 801 2. 854 2. 748 1. 494	10, 0 1, 04 10, 0 1, 03 10, 0 1, 03 10, 0 1, 04 10, 0 1, 06 10, 0 1, 02 10, 0 0, 55	D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26	53, 411 53, 411 53, 411 53, 411 53, 411 53, 411	0. 06 0. 06 0. 06 0. 06 0. 06 0. 06 0. 03
III 7 6 5 4 3 2 1	23. 261 22. 594 22. 540 22. 567 22. 701 19. 206 0. 000	10.0 9.52 10.0 9.22 10.0 9.19 10.0 9.20 10.0 9.27 10.0 7.69 10.0 0.00	D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19 D16, D19	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26 24. 26	53. 411 53. 411 53. 411 53. 411 53. 411 53. 411	0. 48 0. 47 0. 46 0. 46 0. 47 0. 40 0. 00

CALC	ULATIO	ON				
Detailed Design on Port Reactivation Project In La Union Province						
SALC FILE No :						
CALC INDEX NO		PAGE 175				
	AITIM	L DATE				
FREDAR Y X, Ando 26/07/65						
İ	e.wishimu	109/08/200				

Serviceability limit state
Partition wall (parallele to centerline) —Horizontal steel reinforcement
B = 100cm

NO Ms (kN·		Pitch As (cm) (cm²		ermission crack width W _{lim} (cm)
I 7 5.2 6 5.0 5 5.0 4 5.0 3 5.0 2 3.9 1 1.1	20 10.0 D16, D19 44 10.0 D16, D19 68 10.0 D16, D19 32 10.0 D16, D19 53 10.0 D16, D19	10.0 24.20 10.0 24.20 10.0 24.20 10.0 24.20 10.0 24.20	3 24, 425 0 3 24, 542 0 5 24, 659 0 6 24, 484 0 6 19, 234 0	0040 × 10. 0 = 0. 0400
II 7 1.2 6 1.2 5 1.2 4 1.2 3 1.2 2 1.2 1 0.6	61 10.0 D16, D19 61 10.0 D16, D19 73 10.0 D16, D19 97 10.0 D16, D19 49 10.0 D16, D19	0 10.0 24.20 0 10.0 24.20 0 10.0 24.20 0 10.0 24.20 0 10.0 24.20	6. 135 0 6. 135 0 6. 194 0 6. 6. 311 0 6. 6. 077 0	0040 × 10. 0 =0. 0400
III 7 10.5 6 10.2 5 10.2 4 10.2 3 10.3 2 8.7 1 0.0 0	70 10.0 D16, D19 46 10.0 D16, D19 58 10.0 D16, D19 18 10.0 D16, D19 30 10.0 D16, D19	9 10. 0 24. 2 9 10. 0 24. 2 9 10. 0 24. 2 9 10. 0 24. 2 9 10. 0 24. 2	6 49. 969 0 6 49. 853 0 6 49. 911 0 6 50. 203 0 6 42. 476 0	0040 × 10. 0 =0. 0400

CALC	ULATIO	 	
Detail on Port Rea	led Desi ctivation	gn P	roject
in La Un CALC FILE No.:		inc	.
CALC INDEX NO		P	GE 176
	INITIA	L	DATE
PREPARED BY	YIAnd.		
CHECKEL BY	2. WISH 1HU	PA	09/08/202

Ultimate limit state (Under ordinary conditions)
Partition wall (parallele to centerline) —Perpendicular steel reinforcement
B = 100cm

NO		Md (kN∙m	d) (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	7 6 5 4 3 2 1	0, 00 1, 78 1, 81 1, 86 2, 21 3, 62 15, 07	7 10.0 4 10.0 7 10.0 4 10.0 8 10.0	0. 00 0. 66 0. 67 0. 69 0. 82 1. 35 5. 91	D16 D16 D16 D16 D16 D16 D16	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	14. 097 14. 097 14. 097 14. 097 14. 097 14. 097 59. 637	0.00 0.14 0.14 0.15 0.17 0.28 0.28
I	7 6 5 4 3 2	0. 00 0. 40 0. 40 0. 40 1. 60 9. 0	00 10.0 00 10.0 53 10.0 57 10.0 54 10.0	0.00 0.15 0.15 0.17 0.25 0.61 3.44	D16 D16 D16 D16 D16 D16 D16	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	14. 097 14. 097 14. 097 14. 097 14. 097 14. 097 59. 637	0.00 0.03 0.03 0.04 0.05 0.13 0.17
III	7 6 5 4 3 2 1	0. 00 3. 76 3. 76 3. 76 3. 20 0. 00	51 10.0 51 10.0 51 10.0 51 10.0 38 10.0 01 10.0	0. 00 1. 40 1. 40 1. 40 1. 41 1. 19 0. 00	D16 D16 D16 D16 D16 D16 D16	40. 0 40. 0 40. 0 40. 0 40. 0 40. 0 10. 0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	14. 097 14. 097 14. 097 14. 097 14. 097 14. 097 59. 637	0. 00 0. 29 0. 29 0. 29 0. 30 0. 25 0. 00

CALC	ULATION						
Detail	ed Design						
on Port Res		· 1					
in La Un	ion Provinc	:0					
CALC FILE No.:							
CALC INDEX No	.: P/	AGE 177					
	INITIAL	DATE					
PREPARED BY							
CHECKED BY	P. WISHHYPA	09/08/2002					

Serviceability limit state
Partition wall (parallele to centerline) — Perpendicular steel reinforcement
B = 100cm

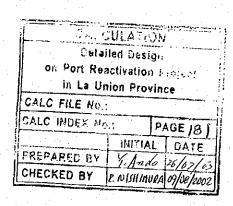
NO		Ms (kN·m)		meter Pitch (mm) (cm)	As (cm²)	øse (N/mm²)	Crack width W(cm)	Permission crac width Wiim (cm)
I	7 6 5 4 3 2 1	0. 000 0. 812 0. 825 0. 849 1. 006 1. 649 6. 851	10. 0 1 10. 0 1 10. 0 1 10. 0	016 40.0 016 40.0 016 40.0 016 40.0 016 40.0 016 40.0 016 40.0 6, D22 10.0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	0. 000 17. 791 18. 076 18. 602 22. 042 36. 130 27. 948	0.0060 0.0060 2.0.0062 2.0.0074 0.0121	0.0040×10.0 =0.0400
II	7 6 5 4 3 2 1	0.000 0.182 0.182 0.206 0.303 0.752 4.098	10. 0 10. 0 10. 0 10. 0 10. 0 10. 0	016 40.0 016 40.0 016 40.0 016 40.0 016 40.0 016 40.0 6, D22 10.0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	0. 000 3. 988 3. 988 4. 513 6. 639 16. 476 16. 717	3 0.0013 3 0.0013 3 0.0015 9 0.0022 6 0.0055	0.0040×10.0 =0.0400
П	7 6 5 4 3 2 1	0. 000 1. 710 1. 710 1. 710 1. 722 1. 455 0. 000	10. 0 10. 0 10. 0 10. 0 10. 0	D16 40.0 D16 40.0 D16 40.0 D16 40.0 D16 40.0 D16 40.0 G, D22 10.0	4. 97 4. 97 4. 97 4. 97 4. 97 4. 97 29. 29	0. 000 37. 466 37. 466 37. 729 31. 879 0. 000	6 0. 0125 6 0. 0125 6 0. 0125 9 0. 0126 9 0. 0107	0.0040×10.0 =0.0400

CALCULATION	
Detailed Design on Port Reactivation Froject In La Union Province	į.
CALC FILE No:	
CALC INDEX RE PAGE	178
IBMIAL LEA	15
PREPARED 1 1 XAndo 26/0	2/02
CHECKED BY R. NUILHUDA 09/02	/2002

Ultimate limit state (Under ordinary conditions)
Bottom slab(A Room) —Perpendicular to levee normal An upper steel reinforcement
B = 100cm

*					i			
NO	Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1	0.000 27.163 62.811 31.445 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0. 00 1. 89 4. 39 2. 19 0. 00	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	99. 479 99. 479 196. 171 99. 479 99. 479	0. 00 0. 30 0. 35 0. 35 0. 00
II 5 4 3 2 1	0.000 16.508 35.369 19.538 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0.00 1.14 2.46 1.36 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99. 479 99. 479 99. 479 99. 479 99. 479	0. 00 0. 18 0. 39 0. 22 0. 00
III 5 4 3 2 1	0.000 0.000 0.000 0.000 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0.00 0.00 0.00 0.00 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99, 479 99, 479 99, 479 99, 479 99, 479	0.00 0.00 0.00 0.00 0.00

CALC	ULATI	١١٢		
Detai	leg Desi	<u>កូ</u> ក		
on Port Rea	ctivatio	P	rojec	î
in La Un	ion Pro	ying	ē	
CALC FILE No.:				
CALC INDEX 10	-	0,	AGE	179
	111111	i.	DA	î i:
HREPARSD BY	Y Agre	lu	26/0	7/0
CHECKED BY	e. NISHIH			


Ultimate limit state (During an earthquake)
Bottom slab(A Room) — Perpendicular to levee normal An upper steel reinforcement
B = 100cm

21.							
NO		Md (kN·m)		sn Diamete m²) (mm)	r Pitch As (cm) (cm²)	Mud (kN·m)	γi∙Md/Mud
I	5 4 3 2 1	0, 000 41, 050 111, 361 63, 082 0, 000	53. 0 2. 53. 0 6. 53. 0 3.	00 D13 26 D13 17 D13, D13 47 D13 00 D13	20, 0 6, 34 20, 0 6, 34 10, 0 12, 67 20, 0 6, 34 20, 0 6, 34	114. 401 114. 401 225. 597 114. 401 114. 401	0. 00 0. 36 0. 49 0. 55 0. 00
11	5 4 3 2	0. 000 24. 269 62. 708 39. 860 0. 000	53. 0 1. 53. 0 3. 53. 0 2.	00 D13 33 D13 45 D13 19 D13 00 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	114. 401 114. 401 114. 401 114. 401 114. 401	0. 00 0. 21 0. 55 0. 35 0. 00
III	5 4 3 2	0.000 0.000 0.000 0.000 0.000	53. 0 0. 53. 0 0. 53. 0 0.	00 D13 00 D13 00 D13 00 D13 00 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	114. 401 114. 401 114. 401 114. 401 114. 401	0.00 0.00 0.00 0.00 0.00

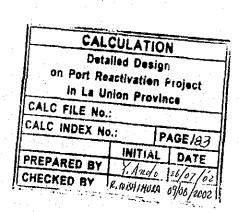
	<u> </u>		
CALC	ULATIO	NC	
	led Desi		·
on Port Rea	activation	; 	roject
in La Ur	ion Prov	inc	•
CALC FILE No.		_	
CALC INDEX NO).:	PA	GE 180
	INITIA	_	
PREPARED BY	TeAnd	_	
CHECKED BY		_	
PREPARED BY	INITIA TAN de L. MISUHUM	L "	DATE 26/07/6. 09/08/202

Serviceability limit state Bottom slab (A Room) —Perpendicular to levee normal An upper steel reinforcement $B=100 \, \mathrm{cm}$

NO		Ms (kN·m	d) (cm		Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crac width W (cm)
I	5 4 3 2 1	0. 00 10. 70 27. 09 14. 60 0. 00	9 53. 2 53. 2 53.	0 D13 0 D13, D13 0 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	0, 000 33, 306 42, 880 45, 413 0, 000	0. 0062 0. 0065 0. 0084	0.0040×6.0 =0.0240
I	5 4 3 2 1	0. 00 6. 41 15. 25 9. 16 0. 00	2 53. 6 53. 7 53.	0 D13 0 D13 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0. 000 19. 942 47. 447 28. 510 0. 000	0. 0037 0. 0088 0. 0053	0. 0040×6. 0 =0. 0240
Ш	5 4 3 2 1	0.00	0 53. 0 53. 0 53.	0 D13 0 D13 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000	0. 0040 × 6. 0 = 0. 0240

Ultimate limit state (Under ordinary conditions)
Bottom slab(A Room) —Perpendicular to levee normal A lower steel reinforcement
B = 100cm

-		<u> </u>	· · · · · · · · · · · · · · · · · · ·	. <u></u>		D - 1000III
NO) Md (kN·m)	d Asn (cm) (cm²)	Diameter (mm)	Pitch As (cm) (cm²)	Mud (kN·m)	γi·Md/Mud
1	5 151.313 4 0.000 3 0.000 2 0.000 1 161.523	57. 6 9. 82 51. 0 0. 00 51. 0 0. 00 51. 0 0. 00 57. 6 10. 49	D13, D16 D13 D13 D13 D13, D19	10. 0 16. 27 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 10. 0 20. 66	272. 448 95. 683 95. 683 95. 683 342. 945	0. 61
11	5 94,772 4 0.000 3 0.000 2 0.000 1 102,809	57. 6 6. 10 51. 0 0. 00 51. 0 0. 00 51. 0 0. 00 57. 6 6. 63	D13, D13 D13 D13 D13 D13, D13	10. 0 12. 67 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 10. 0 12. 67	213. 654 95. 683 95. 683 95. 683 213. 654	0. 49 0. 00 0. 00 0. 00 0. 53
<u> </u>	5 0.000 4 15.873 3 26.222 2 16.992 1 0.000	57. 6 0. 00 57. 6 1. 01 57. 6 1. 67 57. 6 1. 08 57. 6 0. 00	D13 D13 D13 D13 D13	20. 0 6. 34 20. 0 6. 34	108. 233 108. 233 108. 233 108. 233 108. 233	0. 00 0. 16 0. 27 0. 17 0. 00


lpha It determines from serviceability limit state.

	CALCULATION
	Detailed Design
	on Port Reactivation Project
	k. La Union Province
Ç4	LO FILE NO.:
•	LC MOEX NO.: PAGE 182
	LOCAL BATE
	TAXABLE BY LONG OF COLORS
CK	ECKED BY LEDISHIMURA 19/08/2003

Ultimate limit state (During an earthquake)
Bottom slab(A Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

NO	:	Md (kN⋅m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
ī	5 4 3 2 1	251. 052 0. 000 0. 000 0. 000 303. 589	57. 6 51. 0 51. 0 51. 0 57. 6	12. 95 0. 00 0. 00 0. 00 15. 75	D13, D16 D13 D13 D13 D13, D19	10. 0 20. 0 20. 0 20. 0 20. 0 10. 0	16. 27 6. 34 6. 34 6. 34 20. 66	313. 316 110. 035 110. 035 110. 035 394. 387	0.80
I	5 4 3 2 1	154. 474 0. 000 0. 000 0. 000 195. 826	57. 6 51. 0 51. 0 51. 0 57. 6	7. 89 0. 00 0. 00 0. 00 10. 05	D13, D13 D13 D13 D13 D13, D13	10. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	245. 702 110. 035 110. 035 110. 035 245. 702	0. 63 0. 00 0. 00 0. 00 0. 80
Ш	5 4 3 2 1	26. 141	57. 6 57. 6 57. 6 57. 6 57. 6	0. 00 1. 32 2. 35 1. 61 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	124. 468 124. 468 124. 468 124. 468 124. 468	0.00 0.21 0.37 0.26 0.00

^{*} It determines from serviceability limit state.

Serviceability limit state Bottom slab (A Room) —Perpendicular to levee normal A lower steel reinforcement B=100cm

***							D 1000III
NO	Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)		σse (N/mm²)	Crack width W(cm)	Permission crack width W _{iim} (cm)
I 5 4 3 2 1	62. 825 0. 000 0. 000 0. 000 72. 107	57, 6 D13, D16 51, 0 D13 51, 0 D13 51, 0 D13 57, 6 D13, D19	10. 0 20. 0 20. 0 20. 0 10. 0	16. 27 6. 34 6. 34 6. 34 20. 66	71. 598 0. 000 0. 000 0. 000 65. 217	0.0000 0.0000 0.0000	0. 0035 × 8. 0 = 0. 0280
II 5 4 3 2 1	38, 957 0, 000 0, 000 0, 000 46, 264	57. 6 D13, D13 51. 0 D13 51. 0 D13 51. 0 D13 57. 6 D13, D13	20. 0 20. 0 20. 0	12. 67 6. 34 6. 34 6. 34 12. 67	56. 605 0. 000 0. 000 0. 000 67. 222	0.0000 0.0000 0.0000	0.0035×8.0 =0.0280
III 5 4 3 2 1	0.000 6.563 11.310 7.581 0.000	57. 6 D13 57. 6 D13 57. 6 D13 57. 6 D13 57. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0. 000 18. 748 32. 308 21. 656 0. 000	3 0.0042 3 0.0073 5 0.0049	0.0035×8.0 =0.0280

CALC	ULATIO	N.		
Detail	ed Desig	jri		
on Port Rea	ctivation	Pr	oject	•
in La Un	ion Prov	Inc	ė	
CALC FILE No.:		- 1.		
CALC INDEX No	,.:	PA	GE /8	34
er and explicit	INITIA	L	DAT	Ε
PREPARED BY	Y.And		26/07	100
CHECKED BY	P. NUHHU	iru	09/00/2	2002

Ultimate limit state (Under ordinary conditions)
Bottom slab (A Room) — Parallel to centerline An upper steel reinforcement
B = 100cm

	**							
NO	Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2	0. 000 34. 645 62. 811 36. 094 0. 000	51.0 51.0 51.0 51.0 51.0	0. 00 2. 50 4. 56 2. 61 0. 00	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	95, 683 95, 683 188, 577 95, 683 95, 683	0, 00 0, 40 0, 37 0, 41 0, 00
II 5 4 3 2 1	0, 000 17, 298 29, 271 18, 747 0, 000	51.0 51.0 51.0 51.0 51.0	0. 00 1. 25 2. 11 1. 35 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	95. 683 95. 683 95. 683 95. 683 95. 683	0. 00 0. 20 0. 34 0. 22 0. 00
III 5 4 3 2 1	0.000 0.000 0.000 0.000 0.000	51.0 51.0 51.0 51.0 51.0	0.00 0.00 0.00 0.00 0.00	D13 D13 D13 D13 D13	20, 0 20, 0 20, 0 20, 0 20, 0	6. 34 6. 34 6. 34 6. 34 6. 34	95. 683 95. 683 95. 683 95. 683 95. 683	0. 00 0. 00 0. 00 0. 00 0. 00

CALC	ULATIC	NC						
Detailed Design on Port Reactivation Project in La Union Province								
CALC FILE No .:								
CALC INDEX No	.:	P/	GE 185					
	INITIA	_						
PREPARED BY			26/07/62					
CHECKED BY			09/08/2002					

Ultimate limit state (During an earthquake)
Bottom slab (A Room) -- Parallel to centerline An upper steel reinforcement
B = 100cm

NO	Md (kN·m)	d (cm)	Asn Diameter (cm²) (mm)	Pitch As (cm) (c	s Mud m²) (kN·m)	γi•Md/Mud
I 5 4 3 2 1	58, 980 111, 3 6 1	51. 0 51. 0 51. 0 51. 0 51. 0	0.00 D13 3.38 D13 6.42 D13, D13 3.81 D13 0.00 D13	20. 0 6. 10. 0 12. 20. 0 6.	34 110. 035 34 110. 035 67 216. 864 34 110. 035 34 110. 035	0. 00 0. 54 0. 51 0. 60 0. 00
II 5	28, 336 51, 896	51. 0 51. 0 51. 0 51. 0 51. 0	0. 00 D13 1. 62 D13 2. 97 D13 2. 04 D13 0. 00 D13	20. 0 6. 20. 0 6. 20. 0 6.	34 110. 035 34 110. 035 34 110. 035 34 110. 035 34 110. 035	0, 00 0, 26 0, 47 0, 33 0, 00
III 5	0.000	51. 0 51. 0 51. 0 51. 0 51. 0	0. 00 D13 0. 00 D13 0. 00 D13 0. 00 D13 0. 00 D13	20. 0 6. 20. 0 6. 20. 0 6.	34 110. 035 34 110. 035 34 110. 035 34 110. 035 34 110. 035	0. 00 0. 00 0. 00 0. 00 0. 00

CALCUL	ATION
Detailed on Port Reactiv in La Union	Design
SALS FILE No.	
CALC INSET : 17	PAGE 186
PREPARED BY YA	NITIAL DATE
CHECKED BY P. WI	Indo 26/07/02 14/4001 19/06/2012

Serviceability limit state Bottom slab (A Room) — Parallel to centerline An upper steel reinforcement $B=100 \mathrm{cm}$

NO		Ms (kN·		Diameter (mm)	Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crack width Wiim (cm)
I	5 4 3 2 1	0. 0 14. 5 27. 0 15. 9 0. 0	197 51.0 192 51.0 114 51.0) D13) D13, D13) D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	0. 000 47. 210 44. 600 51. 470 0. 000	0.0106 3 0.0085 0 0.0116	0. 0040 × 8. 0 =0. 0320
П	5 4 3 2 1	0. (7. 1 12. 6 8. 4 0. (31 51.0 325 51.0 148 51.0	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0. 000 23. 063 40. 833 27. 323 0. 000	3 0.0052 2 0.0092 3 0.0062	0. 0040 × 8. 0 = 0. 0320
Щ	5 4 3 2 1	0. (0. (0. (0. (0. (000 51.0 000 51.0	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0. 000 0. 000 0. 000 0. 000 0. 000	0.0000 0.0000 0.0000	0. 0040 × 8. 0 =0. 0320

CALCULATION								
Detailed Design on Port Reactivation Project in La Union Province								
CALC FILE No.:								
CALC INDEX 150		P/	GE 18	7				
	INITIA	L	[7, 7E					
PREPARED BY	Y.Ani	10	26/07/	o z				
CHECKED BY	e. Nijiyati	ORA	09/08/20	102				

Ultimate limit state (Under ordinary conditions)
Bottom slab(A Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

NO		Md (kN⋅m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch As (cm) (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1		25. 366 0. 000 0. 000 0. 000 27. 079	55. 6 49. 0 49. 0 49. 0 55. 6	1. 68 0. 00 0. 00 0. 00 1. 79	D13 D13 D13 D13 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	104, 429 91, 879 91, 879 91, 879 104, 429	0. 27 0. 00 0. 00 0. 00 0. 00 0. 29
II 5 4 3 2 1	10	15. 807 0. 000 0. 000 0. 000 17. 124	55, 6 49, 0 49, 0 49, 0 55, 6	1. 04 0. 00 0. 00 0. 00 1. 13	D13 D13 D13 D13 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	104. 429 91. 879 91. 879 91. 879 104. 429	0. 17 0. 00 0. 00 0. 00 0. 00 0. 18
III 5 4 3 2 1		0. 000 95. 761 156. 385 101. 821 0. 000	55. 6 55. 6 55. 6 55. 6 55. 6	0. 00 6. 40 10. 53 6. 81 0. 00	D13 D13, D13 D13, D19 D13, D13 D13	20. 0 6. 34 10. 0 12. 67 10. 0 20. 66 10. 0 12. 67 20. 0 6. 34	104, 429 206, 050 330, 546 206, 050 104, 429	0. 00 0. 51 0. 52 % 0. 54 0. 00

CAL	JULATI	<u> </u>	
Deta	led Des	UN inc	
on Port Rea	ctivation	n Froiece	
CALC FILE NO.			_
CALC INDEX NO		PAGE 188	
PREPARED BY	ibitia Yr Ang P. Nilhinu	12 DA : 10 76/07/1	2

Ultimate limit state (During an earthquake)
Bottom slab(A Room)—Parallel to centerline A lower steel reinforcement
B = 100cm

<u> </u>			1.5	100	i i				
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
ī	5 4 3 2	42. 084 0. 000 0. 000 0. 000 50. 897		2. 20 0. 00 0. 00 0. 00 2. 67	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	120. 093 105. 661 105. 661 105. 661 120. 093	0. 35 0. 00 0. 00 0. 00 0. 42
II	5 4 3 2 1	25, 802 0, 000 0, 000 0, 000 32, 581	55. 6 49. 0 49. 0 49. 0 55. 6	1. 35 0. 00 0. 00 0. 00 1. 70	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	120. 093 105. 661 105. 661 105. 661 120. 093	0, 21 0, 00 0, 00 0, 00 0, 27
Ш	5 4 3 2 1	0. 000 159. 559 277. 151 190. 742 0. 000		0. 00 8, 46 14. 89 10. 15 0. 00	D13 D13, D13 D13, D19 D13, D13 D13	20. 0 10. 0 10. 0 10. 0 20. 0	6. 34 12. 67 20. 66 12. 67 6. 34	120. 093 236. 957 380. 128 236. 957 120. 093	0.00 0.67 0.73 ※ 0.80 0.00

^{*} It determines from serviceability limit state.

		,,,,	Marie Commence
CALC	ULATIO	N	
Detail	ed Desig	Ð	
on Port Read	ctivation	P٢	ojert
in La Un	on Prov	inc	0
CALC FILE No.:			
CALC INDEX No		PA	IGE 189
	INITIA	L	DATE
PREPARED BY	Yellnet	0	26/07/07
CHECKED BY	e. Nishihu	121	09/08/2002

Serviceability limit state
Bottom slab(A Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)	As (cm²)	σse Cr (N/mm²)	ack width W(cm)	Permission crack width W _{lim} (cm)
I	5 4 3 2	10. 531 0. 000 0. 000 0. 000 12. 088	55. 6 D13 49. 0 D13 49. 0 D13 49. 0 D13 55. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6, 34 6, 34 6, 34 6, 34 6, 34	31. 187 0. 000 0. 000 0. 000 35. 798	0. 0083 0. 0000 0. 0000 0. 0000 0. 0095	0.0035 × 10.0 =0.0350
11	5 4 3 2 1	6. 503 0. 000 0. 000 0. 000 7. 701	55. 6 D13 49. 0 D13 49. 0 D13 49. 0 D13 55. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	19. 258 0. 000 0. 000 0. 000 22. 806	0. 0051 0. 0000 0. 0000 0. 0000 0. 0061	0.0035 × 10.0 =0.0350
Ш	5 4 3 2 1	0. 000 39. 856 67. 436 45. 365 0. 000	55. 6 D13 55. 6 D13, D13 55. 6 D13, D19 55. 6 D13, D13 55. 6 D13	10. 0	6. 34 12. 67 20. 66 12. 67 6. 34	0, 000 60, 053 63, 262 68, 354 0, 000	0. 0000 0. 0138 0. 0146 0. 0158 0. 0000	0. 0035 × 10. 0 =0. 0350

JLATIO	N	
d Desig	n.	4.5
tivation	F-1	oject
	PA	GE 190
INITIA	\L	DATE
e. NUHI	(UQA	09/06/2002
	tivation on Prov	JLATION de Design ctivation Fro on Province PA INITIAL Y. Ando P. NUSHIMURA

Ultimate limit state (Under ordinary conditions)
Bottom slab(B Room) — Perpendicular to levee normal An upper steel reinforcement
B = 100cm

					•				
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN⋅m)	γi·Md/Mud
	5 4 3 2	0.000 20.072 47.310 24.084 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0. 00 1. 39 3. 30 1. 67 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99. 479 99. 479 99. 479 99. 479 99. 479	0.00 0,22 0.52 ** 0.27 0.00
	5 4 3 2	0.000 12.161 26.641 15.001 0.000	53. 0 53. 0 53. 0 53. 0 53. 0 53. 0	0.00 0.84 1.85 1.04 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99. 479 99. 479 99. 479 99. 479 99. 479	0.00 0.13 0.29 0.17 0.00
	5 4 3 2	0,000 0,000 0,000 0,000 0,000	53, 0 53, 0 53, 0 53, 0 53, 0	0. 00 0. 00 0. 00 0. 00 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99. 479 99. 479 99. 479 99. 479 99. 479	0. 00 0. 00 0. 00 0. 00 0. 00

X It determines from serviceability limit state.

CALC	ULATIO	N
Detail	ed Desig	37.
on Port Rea	ctivation	of and
in La Uni	ion Prov	ince
CALC FILE No.		
CALC INDEX 10		PAGE 191
	NITIA	L DATE
PREPARED BY	Y.Ana	6 26/07/00
CHECKED BY	e.A) GHIH	ura 09/08/2002

Ultimate limit state (During an earthquake)
Bottom slab(B Room)—Perpendicular to levee norrmal An upper steel reinforcement
B = 100cm

NO		Md (kN·m)	d Asn (cm) (cm²)		Pitch (cm)	As (cm²)	Mud (kN∙m)	γi·Md/Mud
1	5	0. 000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
	4	8. 705	53. 0 0. 48	D13	20. 0	6. 34	114. 401	0. 08
	3	40. 500	53. 0 2. 23	D13	20. 0	6. 34	114. 401	0. 35 **
	2	29. 360	53. 0 1. 61	D13	20. 0	6. 34	114. 401	0. 26
	1	0. 000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
I	5	0. 000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
	4	4. 449	53. 0 0. 24	D13	20. 0	6. 34	114. 401	0. 04
	3	22. 806	53. 0 1. 25	D13	20. 0	6. 34	114. 401	0. 20
	2	19. 067	53. 0 1. 05	D13	20. 0	6. 34	114. 401	0. 17
	1	0. 000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
Ш	5	0.000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
	4	0.000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
	3	0.000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
	2	0.000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00
	1	0.000	53. 0 0. 00	D13	20. 0	6. 34	114. 401	0. 00

^{*} It determines from serviceability limit state.

		<u></u>
CALC	ULATION	j
Detail	ed Design	
on Port Rea	ctivation F	roject
	ion Provin	
CALC FILE No.:		
CALC INDEX No.	Р	AGE 192
	INITIAL	DATE
PREPARED BY	Y. Ando	26/07/62
August de la servició de la companya	e, wunthurs	

Serviceability limit state Bottom slab (B Room) — Perpendicular to levee norrmal An upper steel reinforcement $B=100 \, \mathrm{cm}$

		 							- ,	
NO		Ms (kN·m)	d (cm)		Pitch (cm)	As (cm²)	σse Cr (N/mm²)	rack width W(cm)	Permission width Wilm	
I	5 4 3 2	0.000 6.653 14.276 8.498 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	D13 D13 D13	20, 0 20, 0 20, 0 20, 0 20, 0 20, 0	6. 34 6. 34 6. 34 6. 34 6. 34	0, 000 20, 691 44, 399 26, 429 0, 000	0.0000 0.0038 0.0082 0.0049 0.0000	0. 0040 × 6. 0 =0. 0240	-
Π	5 4 3 2 1	0.000 4.089 8.039 5.403 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0.000 12.717 25.002 16.804 0.000	0.0000 0.0024 0.0046 0.0031 0.0000	0. 0040 × 6. 0 =0. 0240	.
Ш	5 4 3 2 1	0.000 0.000 0.000 0.000 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0040×6.0 =0.0240	

CALCULA	MOIT
Detailed D)esiន្ងៈ
on Port Reactiva	ition Project
in La Union	Province
CALC FILE No.	
CALC INDEL NO	PAGE 193
18	STAG! JAITH
PREFARED LY	Andr 26/076
Z NL	SHIHURA : 09/08/2002

Ultimate limit state (Under ordinary conditions)
Bottom slab(B Room) — Perpendicular to levee norrmal A lower steel reinforcement
B = 100cm

NO	Md (kN⋅m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γ i·Md/Mud
I 5 4 3 2 1	113. 032 0. 000 0. 000 0. 000 122. 599	57. 6 51. 0 51. 0 51. 0 57. 6	7. 30 0. 00 0. 00 0. 00 7. 92	D13, D13 D13 D13 D13 D13, D13	10. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	213. 654 95. 683 95. 683 95. 683 213. 654	0. 58 0. 00 0. 00 0. 00 0. 00 0. 63 **
II 5 4 3 2 1	70. 645 0. 000 0. 000 0. 000 78. 175	57. 6 51. 0 51. 0 51. 0 57. 6	4. 54 0. 00 0. 00 0. 00 5. 02	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	108. 233 95. 683 95. 683 95. 683 108. 233	0. 72 0. 00 0. 00 0. 00 0. 00 0. 79 **
III 5 4 3 2 1	0. 000 11. 846 19. 751 12. 895 0. 000	57. 6 57. 6 57. 6 57. 6 57. 6	0. 00 0. 76 1. 26 0. 82 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	108. 233 108. 233 108. 233 108. 233 108. 233	0.00 0.12 0.20 0.13 0.00

X It determines from serviceability limit state.

CALCULATIO	
Detailed Design on Port Reactivation	-
in La Union Prov	
CALC FILE No:	
CALC INDER No.	PAGE 194
INITIA	u oacija
	10 26/07/62
CHECKED BY Z.NOWN	EDS 19/18/2002

Ultimate limit state (During an earthquake)
Bottom slab(B Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

				**					- (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
NO		Md (kN⋅m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1		76. 226 0. 000 0. 000 0. 000 125. 482	57. 6 51. 0 51. 0 51. 0 57. 6	3.86 0.00 0.00 0.00 6.39	D13, D13 D13 D13 D13 D13	10. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	245. 702 110. 035 110. 035 110. 035 245. 702	0. 31 0. 00 0. 00 0. 00 0. 51
II 5 4 3 2 1	i	44. 313 0. 000 0. 000 0. 000 83. 082	57. 6 51. 0 51. 0 51. 0 57. 6	2. 24 0. 00 0. 00 0. 00 4. 21	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6, 34 6, 34 6, 34 6, 34 6, 34	124. 468 110. 035 110. 035 110. 035 124. 468	0. 36 0. 00 0. 00 0. 00 0. 67 *
III 5 4 3 2 1		0. 000 7. 756 16. 907 13. 158 0. 000	57. 6 57. 6 57. 6 57. 6 57. 6	0.00 0.39 0.85 0.66 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	124. 468 124. 468 124. 468 124. 468 124. 468	0. 00 0. 06 0. 14 0. 11 0. 00

^{*} It determines from serviceability limit state.

Marie Marie Company (1997)			
12 k	Ütz	•	
Detail	ed L		
on Port Rea			•
in La Un	ion Provi	nc	
CALC FILE No.:			
CALC INDE' No		PA	GE 195
			DATE
PREPARED BY			26/07/02
CHECKED BA	e. NISHIHU	04	09/08/2002

Serviceability limit state
Bottom slab(B Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

			<u> </u>	<u> </u>		÷ :		B = 100cm
NO		Ms (kN·m)	d Diameter (cm) (mm)	r Pitch (cm)	As (cm²)	ose (N/mm²)	Crack width W(cm)	Permission crack width W _{lim} (cm)
1	5 4 3 2 1	35, 550 0, 000 0, 000 0, 000 39, 867	57. 6 D13, D13 51. 0 D13 51. 0 D13 51. 0 D13 57. 6 D13, D13	20. 0 20. 0 20. 0	12. 67 6. 34 6. 34 6. 34 12. 67	51. 654 0. 000 0. 000 0. 000 57. 927	0.0000	0. 0035 × 8. 0 =0. 0280
n	5 4 3 2	22, 453 0, 000 0, 000 0, 000 25, 855	57. 6 D13 51. 0 D13 51. 0 D13 51. 0 D13 57. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	64. 139 0. 000 0. 000 0. 000 73. 857	0. 0145 0. 0000 0. 0000 0. 0000 0. 0167	0. 0035×8. 0 =0. 0280
	5 4 3 2 1	0, 000 3, 742 5, 960 4, 188 0, 000	57. 6 D13 57. 6 D13 57. 6 D13 57. 6 D13 57. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0.000 10.689 17.025 11.963 0.000	0. 0000 0. 0024 0. 0038 0. 0027 0. 0000	0. 0035 × 8. 0 =0. 0280

CALC	ULATIC	1/2
Detail	ed besig	}
on Port Rea	ctivation	2 to . 1 to
in La Un	ion Proy	ince
CALC FILE No.:		
CALC INDEX NO		PAGE 196
	MITLA	1 0225
PREPARED 64	Y. And	0 26/67/02
108777 T	L. NISHIM	URA: 09/08/2002

Ultimate limit state (Under ordinary conditions)
Bottom slab(B Room) —Parallel to centerline An upper steel reinforcement
B = 100cm

NO		 Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5 4 3 2 1	0.000 25.962 47.310 27.320 0.000	51.0 51.0 51.0 51.0 51.0	0.00 1.87 3.43 1.97 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	95, 683 95, 683 95, 683 95, 683 95, 683	0. 00 0. 30 0. 54 0. 31 0. 00
I	5 4 3 2 1	0.000 12.902 22.047 14.260 0.000	51.0 51.0 51.0 51.0 51.0	0.00 0.93 1.59 1.03 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	95, 683 95, 683 95, 683 95, 683 95, 683	0. 00 0. 15 0. 25 0. 16 0. 00
III	5 4 3 2 1	0.000 0.000 0.000 0.000 0.000	51.0 51.0 51.0 51.0 51.0	0.00 0.00 0.00 0.00 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	95. 683 95. 683 95. 683 95. 683 95. 683	0. 00 0. 00 0. 00 0. 00 0. 00

CALC	ULATIC)N	-	
Detai	ed Desig	'n		
on Port Rea	ctivation	Pr	oject	
in La Un	ion Prov	inc	• .	
CALC FILE Ne.	. 12		1 34	7.
CALC INDEX No):	P/	GE /	97
	INITIA	L	DAT	Ē
PREPARED MY	Y. And	0	26/07	loe.
CHECKED BY	e. Wishing	PA	01/00/2	CNO

Ultimate limit state (During an earthquake)
Bottom slab(B Room) — Parallel to centerline An upper steel reinforcement
B = 100cm

NO	Md (kN∙m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1	0.000	51.0	0.00	D13	20. 0	6. 34	110. 035	0. 00
	19.310	51.0	1.10	D13	20. 0	6. 34	110. 035	0. 18
	40.500	51.0	2.31	D13	20. 0	6. 34	110. 035	0. 37
	26.301	51.0	1.50	D13	20. 0	6. 34	110. 035	0. 24
	0.000	51.0	0.00	D13	20. 0	6. 34	110. 035	0. 00
II 5 4 3 2 1	0. 000	51. 0	0. 00	D13	20. 0	6. 34	110. 035	0. 00
	8. 263	51. 0	0. 47	D13	20. 0	6. 34	110. 035	0. 08
	18. 874	51. 0	1. 08	D13	20. 0	6. 34	110. 035	0. 17
	15. 254	51. 0	0. 87	D13	20. 0	6. 34	110. 035	0. 14
	0. 000	51. 0	0. 00	D13	20. 0	6. 34	110. 035	0. 00
III 5 4 3 2 1	0.000	51. 0	0.00	D13	20. 0	6. 34	110. 035	0. 00
	0.000	51. 0	0.00	D13	20. 0	6. 34	110. 035	0. 00
	0.000	51. 0	0.00	D13	20. 0	6. 34	110. 035	0. 00
	0.000	51. 0	0.00	D13	20. 0	6. 34	110. 035	0. 00
	0.000	51. 0	0.00	D13	20. 0	6. 34	110. 035	0. 00

CAL	CULAT	ION		
Deta	iled Da	s gr		
on Port Re	activati	ion (roject	
in La U	nina pi	ovin	ce .	
CALC FILE :				
SAUC BY		775	135 P	98
	.14		1247	Ξ.
			26/07/	
CHI WEO BY	e. Kist	HUUVA	09/08/2	200

		* -						D - 1000III
NO	(Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)	As (cm²)	σse Cr (N/mm²)	ack width W(cm)	Permission crack width W., m (cm)
I 5 4 3 2		0. 000 8. 039 4. 276 8. 649 0. 000	51.0 D13 51.0 D13 51.0 D13 51.0 D13 51.0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6, 34 6, 34 6, 34 6, 34 6, 34	26, 000 46, 172 27, 973	0. 0000 0. 0059 0. 0104 0. 0063 0. 0000	0. 0040 × 8. 0 =0. 0320
II 5 4 3 2 1		0. 000 4. 089 6. 653 4. 730 0. 000	51.0 D13 51.0 D13 51.0 D13 51.0 D13 51.0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	13. 225 21. 517 15. 298	0. 0000 0. 0030 0. 0049 0. 0035 0. 0000	0.0040 × 8.0 =0.0320
III 5 4 3 2 1		0.000 0.000 0.000 0.000 0.000	51. 0 D13 51. 0 D13 51. 0 D13 51. 0 D13 51. 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0.000 0.000 0.000	0. 0000 0. 0000 0. 0000 0. 0000 0. 0000	0. 0040 × 8. 0 =0. 0320

CALCULATION
Detailed Design
on Port Reactivation Project
in La Union Province
SALO FILE NO.
CALCINET - PAGE 199
LONG TATE
PREF 126 Y. Ando 26/07/6
CHECKED BY P. N. S. W. I HURA 09/08/100

Ultimate limit state (Under ordinary conditions)
Bottom slab(B Room) -- Parallel to centerline A lower steel reinforcement
B = 100cm

		·	· - · · · · · · · · · · · · · · · · · ·			D TOOGII
NO	Md (kN⋅m)	d Asn (cm) (cm²)		Pitch As (cm) (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1	18. 948 0. 000 0. 000 0. 000 20. 553	55. 6 1. 25 49. 0 0. 00 49. 0 0. 00 49. 0 0. 00 55. 6 1. 36	D13 D13 D13 D13 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	104. 429 91. 879 91. 879 91. 879 104. 429	0. 20 0. 00 0. 00 0. 00 0. 00 0. 22
II 5 4 3 2 1	11, 784 0, 000 0, 000 0, 000 13, 019	55. 6 0. 78 49. 0 0. 00 49. 0 0. 00 49. 0 0. 00 55. 6 0. 86	D13 D13 D13 D13 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	104, 429 91, 879 91, 879 91, 879 104, 429	0. 12 0. 00 0. 00 0. 00 0. 00 0. 14
III 5 4 3 2 1	0, 000 71, 570 117, 785 77, 249 0, 000	55. 6 0. 00 55. 6 4. 76 55. 6 7. 89 55. 6 5. 15 55. 6 0. 00	D13 D13 D13, D13 D13, D13 D13	20. 0 6. 34 20. 0 6. 34 10. 0 12. 67 10. 0 12. 67 20. 0 6. 34	104. 429 104. 429 206. 050 206. 050 104. 429	0.00 0.75 0.63 ** 0.41 0.00

It determines from serviceability limit state.

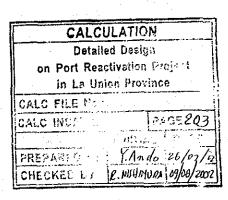
CALC			
Detail	2.4		
on Port Rea			
in La Un	ion F	rovin	ce :
ALC FILE No	5. 1		
og <mark>so iko</mark> n k			438 2
	: 3	0,4	
Prepared /	Y.1	ndo	21/07
CHECKED BY	e:Nisi	HHUDA	09/08/

Ultimate limit state (During an earthquake)
Bottom slab(B Room)—Parallel to centerline A lower steel reinforcement
B = 100cm

NO	Md (kN⋅m)	d Asn (cm) (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1	12. 776 0. 000 0. 000 0. 000 21. 039	55. 6 0. 67 49. 0 0. 00 49. 0 0. 00 49. 0 0. 00 55. 6 1. 10	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	120. 093 105. 661 105. 661 105. 661 120. 093	0. 11 0. 00 0. 00 0. 00 0. 18
II 5 4 3 2 1	7. 438 0. 000 0. 000 0. 000 13. 794	55. 6 0. 39 49. 0 0. 00 49. 0 0. 00 49. 0 0. 00 55. 6 0. 72	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	120. 093 105. 661 105. 661 105. 661 120. 093	0. 06 0. 00 0. 00 0. 00 0. 11
III 5 4 3 2 1	0.000 49.080 100.695 78.315 0.000	55. 6 0. 00 55. 6 2. 57 55. 6 5. 30 55. 6 4. 12 55. 6 0. 00	D13 D13, D13 D13, D13	20. 0 20. 0 10. 0 10. 0 20. 0	6. 34 6. 34 12. 67 12. 67 6. 34	120. 093 120. 093 236. 957 236. 957 120. 093	0. 00 0. 41 0. 42 0. 33 0. 00

It determines from serviceability limit state.

CALCULATION							
Detail	ed Desig	្រា					
on Port Rea	ctivation	?	ojast				
in La Un	ion Prov	inc	e				
CALC FILE No.:							
CALC INDEX No		94	(0520)				
	EITE	į	DATE				
PREPARED BY	Y. And	0	24/07/01				
CHECKED BY			03/08/200				


Serviceability limit state
Bottom slab(B Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

NO		Ms (kN·m)	d (cm)	Diameter (mm)	Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crack width Wiim (cm)
Ī	5 4 3 2	5, 960 0, 000 0, 000 0, 000 6, 684	55. 6 49. 0 49. 0 49. 0 55. 6	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	17. 650 0. 000 0. 000 0. 000 19. 794	0.0000 0.0000 0.0000	0. 0035×10. 0 =0. 0350
П	5 4 3 2	3. 742 0. 000 0. 000 0. 000 4. 300	55. 6 49. 6 49. 6 49. 6 55. 6	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	11. 082 0. 000 0. 000 0. 000 12. 734	0.0000 0.0000 0.0000	0. 0035×10. 0 =0. 0350
Ш	5 4 3 2	0.000 22.453 35.550 25.014 0.000	55. (55. (55. (55. (55. (5 D13 5 D13, D13 5 D13, D13	20. 0 20. 0 10. 0 10. 0 20. 0	6. 34 6. 34 12. 67 12. 67 6. 34	0. 000 66. 494 53. 568 37. 690 0. 000	0. 0177 0. 0123 0. 0087	0. 0035×10. 0 =0. 0350

	<u> </u>		
	CALC	JLATION	
	Detaile	ed Design	
on Po	rt Read	tivation P	roject
in	La Uni	on Provin	ce
TALC FIL	E ** : :	THE PARTY	
CALC INC		P	AGE 202
			CATE
PREFARE			26/07/or
CHECKE) BY	e. hishimor	1 09/08/2002

Ultimate limit state (Under ordinary conditions)
Bottom slab(C Room) — Perpendicular to levee normal An upper steel reinforcement
B = 100cm

					* *	** .			
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5 4 3 2 1	0. 000 15. 219 34. 590 18. 159 0. 000	53. 0 53. 0 53. 0 53. 0 53. 0	0. 00 1. 06 2. 41 1. 26 0. 00	D13, D13 D13 D13 D13 D13	10. 0 20. 0 20. 0 20. 0 20. 0	12. 67 6. 34 6. 34 6. 34 6. 34	196, 171 99, 479 99, 479 99, 479 99, 479	0.00 0.17 0.38 0.20 0.00
п	5 4 3 2	0. 000 9. 353 19. 479 11. 358 0. 000	53. 0 53. 0 53. 0 53. 0 53. 0	0.00 0.65 1.35 0.79 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99, 479 99, 479 99, 479 99, 479 99, 479	0.00 0.10 0.22 0.13 0.00
Ш	5 4 3 2 1	0, 000 0, 000 0, 000 0, 000 0, 000	53, 0 53, 0 53, 0 53, 0 53, 0	0. 00 0. 00 0. 00 0. 00 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99, 479 99, 479 99, 479 99, 479 99, 479	0. 00 0. 00 0. 00 0. 00 0. 00

Ultimate limit state (During an earthquake)
Bottom slab(C Room)—Perpendicular to levee normal An upper steel reinforcement
B = 100cm

				the second second		D ~ LOOCHI
NO		Md (kN·m)	d Asn (cm) (cm²)	Diameter (mm)	Pitch As Mud (cm) (cm²) (kN·m)	γ i ·Md/Mud
r	5 4 3 2	93. 545 0. 603 3. 884 3. 054 50. 133	53. 0 5. 17 53. 0 0. 03 53. 0 0. 21 53. 0 0. 17 53. 0 2. 76	D13, D13 D13 D13 D13 D13	10. 0 12. 67 225. 597 20. 0 6. 34 114. 401 20. 0 6. 34 114. 401 20. 0 6. 34 114. 401 20. 0 6. 34 114. 401	0. 41 0. 01 0. 03 0. 03 0. 44
п	5 4 3 2 1	62. 456 0. 264 2. 187 1. 999 28. 287	53. 0 3. 44 53. 0 0. 01 53. 0 0. 12 53. 0 0. 11 53. 0 1. 55	D13 D13 D13 D13 D13	20. 0 6. 34 114. 401 20. 0 6. 34 114. 401	0. 55 0. 00 0. 02 0. 02 0. 25
Ш	5 4 3 2 1	0. 000 10. 083 12. 043 5. 321 0. 000	53. 0 0. 00 53. 0 0. 55 53. 0 0. 66 53. 0 0. 29 53. 0 0. 00	D13 D13 D13 D13 D13	20. 0 6. 34 114. 401 20. 0 6. 34 114. 401	0. 00 0. 09 0. 11 0. 05 0. 00

CALC	ULATIC) []		7
Detail	ed Dasi	3		 i
on Port Rea	stivation	1	6 0 1	
in La Un	ion Prov	inc	9 :	. !
CALC FILE No.		- 5 TQ		
CALC INDEX //		P	IGE 20	Ī
	MIT (۱L	DATE	
PREPARED BY	YAna	/,	26/07/	à
CHECKED BY	2.NG414	JOA	109/08/2	ພ

Serviceability limit state
Bottom slab(C Room) — Perpendicular to levee normal An upper steel reinforcement
B = 100cm

		 					•	
NO		Ms (kN·m)	d Diameter (cm) (nm)	Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crack width Wiim (cm)
I	5 4 3 2 1	4. 997 6. 653 14. 276 6. 653 2. 678	53. 0 D13, D13 53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13	10. 0 20. 0 20. 0 20. 0 20. 0 20. 0	12. 67 6. 34 6. 34 6. 34 6. 34	7, 909 20, 691 44, 399 20, 691 8, 329	0. 0038 0. 0082 0. 0038	0. 0040 × 6. 0 = 0. 0240
I	5 4 3 2 1	3. 336 4. 089 8. 039 4. 089 1. 511	53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	10, 375 12, 717 25, 002 12, 717 4, 699	7 0.0024 2 0.0046 7 0.0024	0. 0040 × 6. 0 = 0. 0240
Ш	5 4 3 2 1	0. 000 0. 539 0. 643 0. 284 0. 000	53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0. 000 1. 676 2. 000 0. 883 0. 000	0.0003 0.0004 0.0002	0. 0040 × 6. 0 =0. 0240

	 ,
CALCULATION	
Detailed Design	
on Port Reactivation 🗀 🐇	t
in La Union Province	
CALC FILE F	
CALC FOR FAGE	205
31 in 1 in	
PREFERE : Y Ando 126/0	
CHECKED . P. MINIMURA 09/00	/rcoz

Ultimate limit state (Under ordinary conditions)
Bottom slab(G Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

 ,	·								D - TOOGIII
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γ i · Md/Mud
I 5 4 3 2 1		81. 353 0. 000 0. 000 0. 000 90. 927	57. 6 51. 0 51. 0 51. 0 57. 6	5. 23 0. 00 0. 00 0. 00 5. 85	D13, D13 D13 D13 D13 D13, D13	10. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	213. 654 95. 683 95. 683 95. 683 213. 654	0. 42
II 5 4 3 2 1		51, 364 0, 000 0, 000 0, 000 58, 173	57. 6 51. 0 51. 0 51. 0 57. 6	3. 29 0. 00 0. 00 0. 00 3. 73	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	108. 233 95. 683 95. 683 95. 683 108. 233	0. 52
III 5 4 3 2 1		0.000 8.561 14.441 9.561 0.000	57. 6 57. 6 57. 6 57. 6 57. 6	0.00 0.55 0.92 0.61 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	108. 233 108. 233 108. 233 108. 233 108. 233	0.00 0.09 0.15 0.10 0.00

 $[\]ensuremath{\mathbb{X}}$ It determines from serviceability limit state.

CALCULATION
Detailed Design
on Port Reactivation Project
in La Unies Province
ALC FAR feet the Committee of
CALS INTER NOT PAGE 206
BUTTAL CATE
28: ATTO 1 1. Ando 26/07/02
CHECKED BY P. WISHINDA 09/08/200

Ultimate limit state (During an earthquake)
Bottom slab(C Room) - Perpendicular to levee normal A lower steel reinforcement
B = 100cm

				<u></u>			······································	
NO	Md (kN∙m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5	22. 406 28. 848	57. 6 51. 0 51. 0 51. 0 57. 6	0, 34 1, 28 1, 65 0, 24 0, 63	D13, D13 D13 D13 D13 D13, D13	10. 0 20. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	245. 702 110. 035 110. 035 110. 035 245. 702	0. 03 3 0. 20 0. 26 0. 04 0. 05
II 5	14. 564	57. 6 51. 0 51. 0 51. 0 57. 6	0. 19 0. 83 0. 93 0. 10 0. 42	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	124. 468 110. 035 110. 035 110. 035 124. 468	0. 03 3 0. 13 0. 15 0. 02 0. 07
III 5	0. 679	57. 6 57. 6 57. 6 57. 6 57. 6	0. 00 0. 03 0. 08 0. 07 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	124. 468 124. 468 124. 468 124. 468 124. 468	0. 00 0. 01 0. 01 0. 01 0. 00

^{*} It determines from serviceability limit state.

CALC	ULAT	ION	
	ed Do		
on Port Rea	ctivati	on Projec	.t
in La Un	ion Pr	ovince	
ALC FAE IN			
ราย เป็นสาร์		400	20
	, . i		3
PREPAREDE	Y.A.	ndo 26/	6Z/
CHECKED BY	0 4:10	H 111010 09/	lue la

Serviceability limit state Bottom slab (C Room) — Perpendicular to levee normal A lower steel reinforcement B=100 cm

NO		Ms (kN·m)		neter Pitch mm) (cm)		σse C (N/mm²)	rack widt W(cm)	
Ţ	5 4 3 2 1	35. 550 1. 197 1. 541 0. 224 35. 550	51.0 D	D13 10.0 13 20.0 13 20.0 13 20.0 13 10.0	12. 67 6. 34 6. 34 6. 34 12. 67	51, 654 3, 871 4, 984 0, 724 51, 654	0. 0098 0. 0009 0. 0011 0. 0002 0. 0098	0. 0035 × 8. 0 =0. 0280
II	5 4 3 2 1	22. 453 0. 778 0. 868 0. 090 22. 453	51.0 D 51.0 D 51.0 D	13 20.0 13 20.0 13 20.0 13 20.0 13 20.0	6. 34 6. 34 6. 34 6. 34 6. 34	64. 139 2. 516 2. 807 0. 291 64. 139	0. 0145 0. 0006 0. 0006 0. 0001 0. 0145	0. 0035 × 8. 0 =0. 0280
Ш	5 4 3 2 1	0. 000 3. 742 5. 960 3. 742 0. 000	57.6 D 57.6 D 57.6 D	13 20.0 13 20.0 13 20.0 13 20.0 13 20.0	6. 34 6. 34 6. 34 6. 34 6. 34	0.000 10.689 17.025 10.689 0.000	0. 0000 0. 0024 0. 0038 0. 0024 0. 0000	0. 0035 × 8. 0 =0. 0280

	CALCULATION	•
_	Detailed Design	_
	on Port Reactivation Project	
Ŀ	in La Union Prevince	
	ALC FRE RESERVED	•
¢,	ALC 181 201	3
	A Section of the sect	
(2)	Y, Ando 26/07/0	2
-	HE KEL BY P NUMMUNA 01/08/20	02

Ultimate limit state (Under ordinary conditions)
Bottom slab(C Room) — Parallel to centerline An upper steel reinforcement
B = 100cm

-								
NO		Md (kN∙m)	d (cm)	Asn Diameter (cm²) (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5	0. 000	51.0	0.00 D13	20, 0	6, 34	95, 683	0. 00
	4	18. 799	51.0	1.36 D13	20, 0	6, 34	95, 683	0. 22
	3	34. 590	51.0	2.50 D13	20, 0	6, 34	95, 683	0. 40
	2	20. 158	51.0	1.45 D13	20, 0	6, 34	95, 683	0. 23
	1	0. 000	51.0	0.00 D13	20, 0	6, 34	95, 683	0. 00
11	5	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0.00
	4	9.353	51.0	0.67 D13	20. 0	6. 34	95. 683	0.11
	3	16.120	51.0	1.16 D13	20. 0	6. 34	95. 683	0.19
	2	10.617	51.0	0.76 D13	20. 0	6. 34	95. 683	0.12
	1	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0.00
Ш	5	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0, 00
	4	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0, 00
	3	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0, 00
	2	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0, 00
	1	0.000	51.0	0.00 D13	20. 0	6. 34	95. 683	0, 00

CALC	ULATIO	N
Detail	ed Desig	i.
on Port Rea	ctivation	Project
in La Un	ion Prov	nce
JALC FILE No :		
CALC INDE		PAGE 209
	olyik.	L I DATE
PREPAREDY	1 YeAnd	0 26/67/67
CHECKED BY	P. NUH MU	RA 19/08/2002

Ultimate limit state (During an earthquake)
Bottom slab(C Room)—Parallel to centerline An upper steel reinforcement
B = 100cm

NO		Md (kN·m)	d (cm)	Asn (cm²)		Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5 4 3 2	15. 684 1. 772 3, 884 2. 602 8. 402	51.0 51.0 51.0 51.0 51.0	0. 89 0. 10 0. 22 0. 15 0. 48	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	110. 035 110. 035 110. 035 110. 035 110. 035	0. 14 0. 02 0. 04 0. 02 0. 08
Ī	5 4 3 2 1	10. 363 0. 717 1. 810 1. 546 4. 761	51.0 51.0 51.0 51.0 51.0	0. 59 0. 04 0. 10 0. 09 0. 27	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	110. 035 110. 035 110. 035 110. 035 110. 035	0. 09 0. 01 0. 02 0. 01 0. 04
III	5 4 3 2 1	0, 000 58, 255 71, 979 32, 489 0, 000	51. 0 51. 0 51. 0 51. 0 51. 0	0. 00 3. 33 4. 13 1. 85 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	110. 035 110. 035 110. 035 110. 035 110. 035	0. 00 0. 53 0. 65 0. 30 0. 00

CA	LCULATION
De	tailed Design
on Port I	Resotivation Project
in La	Union Province
CALC FILE !	10:1
CALC INDEX	PAGE 210
	NiTiAL TO E
PREPARED :	5 Y. Ando 26/07/02
CHECKED BY	

NO	Ms (kN⋅m)	d Diameter (cm) (mm)	Pitch (cm)	(cm²)	σse (N/mm²)	Crack width W(cm)	Permission crack width Wilm (cm)
I 5 4 3 2 1	0. 838 8. 039 14. 276 8. 039 0. 449	51. 0 D13 51. 0 D13 51. 0 D13 51. 0 D13 51. 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	2. 710 26. 000 46. 172 26. 000 1. 452	0.0059 0.0104 0.0059	0. 0040 × 8. 0 =0. 0320
II 5 4 3 2 1	0. 554 4. 089 6. 653 4. 089 0. 254	51.0 D13 51.0 D13 51.0 D13 51.0 D13 51.0 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	1. 792 13. 225 21. 517 13. 225 0. 822	0.0030 0.0049 0.0030	0. 0040 × 8. 0 =0. 0320
III 5 4 3 2 1	0. 000 3. 112 3. 845 1. 735 0. 000	51. 0 D13 51. 0 D13 51. 0 D13 51. 0 D13 51. 0 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	0. 000 10. 065 12. 436 5. 611 0. 000	0, 0023 0, 0028 0, 0013	0. 0040 × 8. 0 =0. 0320

	- A T (O) 1
	HATION
	d basign
	director Project
in La Uni	ca Moviera
CALO FILE 13	
CALC INCEX IN	112 EDAG
	BTAC LAITINE
PREPARED BY	Y. And 6 26/07/p2
CHECKED BY	2. NEHHURA 09/08/2002

Ultimate limit state (Under ordinary conditions)
Bottom slab(C Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

NO		Md (kN·m)	d (cm)	Asn (cm²)		Pitch (cm)	As (cm²)	Mud (kN·m)	γi∙Md/Mud
I	5 4 3 2 1	13. 638 0. 000 0. 000 0. 000 15. 244	55. 6 49. 0 49. 0 49. 0 55. 6	0. 90 0. 00 0. 00 0. 00 1. 01	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	104. 429 91. 879 91. 879 91. 879 104. 429	0. 14 0. 00 0. 00 0. 00 0. 16
П	5 4 3 2 1	8, 561 0, 000 0, 000 0, 000 9, 685	55. 6 49. 0 49. 0 49. 0 55. 6	0.57 0.00 0.00 0.00 0.64	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	104. 429 91. 879 91. 879 91. 879 104. 429	0. 09 0. 00 0. 00 0. 00 0. 10
Щ	5 4 3 2	0. 000 51. 564 86. 109 57. 246 0. 000	55. 6 55. 6 55. 6 55. 6 55. 6	0. 00 3. 42 5. 74 3. 80 0. 00	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	104. 429 104. 429 206. 050 104. 429 104. 429	0. 00 0. 54 0. 46 0. 60 0. 00

CALC	ULATIO	MC		
Detai	led Dasi	(ii)		:
on Port Rea	stivesion	, ,		
ia La Un	ion Prev	ino	3	
ALS FILE Fig.				
CALC INDEA to		24	G.	212
	HITT	Ų,	ÜΑ) = 1 =
PREPARED BY	i	,		
CHECKED BY	P. WISHIM	IRA	09/08	12002

Ultimate limit state (During an earthquake)
Bottom slab(C Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

				1. 1			* **	:	
NO		Md (kN⋅m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I !	5	1. 131	55. 6	0. 06	D13	20. 0	6. 34	120. 093	0. 01
	4	19. 325	49. 0	1. 15	D13	20. 0	6. 34	105. 661	0. 18
	3	28. 848	49. 0	1. 71	D13	20. 0	6. 34	105. 661	0. 27
	2	13. 163	49. 0	0. 78	D13	20. 0	6. 34	105. 661	0. 12
	1	2. 112	55. 6	0. 11	D13	20. 0	6. 34	120. 093	0. 02
	5	0. 641	55. 6	0. 03	D13	20. 0	6. 34	120, 093	0. 01
	4	11. 203	49. 0	0. 66	D13	20. 0	6. 34	105, 661	0. 11
	3	13. 444	49. 0	0. 80	D13	20. 0	6. 34	105, 661	0. 13
	2	5. 041	49. 0	0. 30	D13	20. 0	6. 34	105, 661	0. 05
	1	1. 395	55. 6	0. 07	D13	20. 0	6. 34	120, 093	0. 01
	5	0.000	55. 6	0, 00	D13	20. 0	6. 34	120. 093	0. 00
	4	4.374	55. 6	0, 23	D13	20. 0	6. 34	120. 093	0. 04
	3	9.653	55. 6	0, 50	D13, D13	10. 0	12. 67	236. 957	0. 04
	2	7.843	55. 6	0, 41	D13	20. 0	6. 34	120. 093	0. 07
	1	0.000	55. 6	0, 00	D13	20. 0	6. 34	120. 093	0. 00

a di se s <u>ea e e e e</u>			· 			
ÇALCI	JLATIO	N				
Detaile	ed Desig	n				
on Port Rear	divotion	F.	oject			
in La Uni	on Prov	inc	e			
CALC FILE (40.:						
CALC INDEX NO		P.	OE 213			
			DATE			
PREPARED BY YiAndo 26/07/02						
CHECKED BY	e.Nisum	ΰ£Α	09/00/2002			

Serviceability limit state
Bottom slab(C Room) — Parallel to centerline A lower steel reinforcement

R = 100cm

		· · · · · · · · · · · · · · · · · · ·					B = 100cm	
NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch (cm)	As (cm²)	σse Crack (N/mm²) W	width Permission (cm) width Wilm	- crack (cm)
Ι	5 4 3 2 1	5. 960 1. 032 1. 541 0. 703 5. 960	55. 6 D13 49. 0 D13 49. 0 D13 49. 0 D13 55. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	17. 650 0. 00 3. 477 0. 00 5. 192 0. 00 2. 368 0. 00 17. 650 0. 00	0.0035 × 10.0 014 = 0.0350	
п	5 4 3 2 1	3. 742 0. 598 0. 718 0. 269 3. 742	55. 6 D13 49. 0 D13 49. 0 D13 49. 0 D13 55. 6 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	11. 082	005 0.0035×10.0 006 =0.0350	
Ш	5 4 3 2 1	0.000 22.453 35.550 22.453 0.000	55. 6 D13 55. 6 D13 55. 6 D13, D13 55. 6 D13 55. 6 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	0.000 0.00 66.494 0.01 53.565 0.01 66.494 0.01 0.000 0.00	177 0.0035 × 10.0 123 =0.0350	

CALC	ULATIO	N
Detail	ed Design	ñ
on Port Res	ctivation	Project
in La Un	ios Provi	nce
CALC FILE No :		
CALC MOEA RO	. [PAGE 214
	MUNIC	. DADE
PREPARED BY	18, Ando	26/07/0
CHECKED BY	1	A 09/06/200

Ultimate limit state (Under ordinary conditions)
Bottom slab(D Room) —Perpendicular to levee norrmal An upper steel reinforcement
B = 100cm

NO	Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1	0.000 15.888 34.093 15.888 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0.00 1.10 2.37 1.10 0.00	D13, D19 D13 D13 D13 D13, D16	10. 0 20. 0 20. 0 20. 0 20. 0 10. 0	20, 66 6, 34 6, 34 6, 34 16, 27	314, 440 99, 479 99, 479 99, 479 249, 981	0.00 0.18 0.38 0.18 0.00
II 5 4 3 2 1	0.000 9.764 19.198 9.764 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0. 00 0. 68 1. 33 0. 68 0. 00	D13, D13 D13 D13 D13 D13 D13, D13	10. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	196. 171 99. 479 99. 479 99. 479 196. 171	0.00 0.11 0.21 0.11 0.00
田 5 4 3 2 1	0.000 0.000 0.000 0.000 0.000	53. 0 53. 0 53. 0 53. 0 53. 0	0.00 0.00 0.00 0.00 0.00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	99. 479 99. 479 99. 479 99. 479 99. 479	0.00 0.00 0.00 0.00 0.00

CALC	ULATIO	N	
	od Desig		*******
on Port Res	-		ect
in La Ur	ion Erav	nce	
ALC FILE I'm			
Cald March		1.60	£ 215
	ETT.		
PREPARED ME	Y. And	0 2	6/17/8
CHECKED BY	e. Kishim	URA O	9/08/200

Ultimate limit state (During an earthquake)
Bottom slab(D Room) — Perpendicular to levee normal An upper steel reinforcement
B = 100cm

					- 1 1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>				
NO		Md (kN·m)		Asn cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5 4 3 2	242. 549 0. 000 0. 000 0. 000 216. 336	53. 0 0 53. 0 0 53. 0 0	65 . 00 . 00 . 00	D13, D19 D13 D13 D13 D13, D16	10. 0 20. 0 20. 0 20. 0 10. 0	20. 66 6. 34 6. 34 6. 34 16. 27	361, 606 114, 401 114, 401 114, 401 287, 478	0. 67 0. 00 0. 00 0. 00 0. 75
II	5 4 3 2	155. 227 0. 000 0. 000 0. 000 134. 594	53. 0 0 53. 0 0 53. 0 0	3. 64 0. 00 0. 00 0. 00 2. 48	D13, D13 D13 D13 D13 D13 D13, D13	10. 0 20. 0 20. 0 20. 0 10. 0	12. 67 6. 34 6. 34 6. 34 12. 67	225. 597 114. 401 114. 401 114. 401 225. 597	0. 69 0. 00 0. 00 0. 00 0. 60
Ш	5 4 3 2	0.000 25.674 38.464 22.799 0.000	53. 0 1 53. 0 2 53. 0 1), 00 , 41 2, 11 , 25), 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	114. 401 114. 401 114. 401 114. 401 114. 401	0. 00 0. 22 0. 34 0. 20 0. 00

CALCU	JLATIO	N		_
	ed Desig		. :	. '
on Port Read				
in La Uni	on Prov	ince		-
LALC FILE No :		1 4.		٠.
CALC INC. : *		94	GE 2/4	_
	MITTA	[]	DATE	j,
PREPARED BY	Y. An.			
CHECKED BY	e NISH IH	iei	19/08/20	02

		100				
NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch As (cm) (cm²)	σse Crack width (N/mm²) W(cm)	Permission crack width W ₁₁ (cm)
I	5 4 3 2 1	28. 014 6. 945 14. 903 6. 945 18. 732	53. 0 D13, D19 53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13, D16	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	27. 614 0. 0042 21. 599 0. 0040 46. 349 0. 0086 21. 599 0. 0040 23. 262 0. 0035	0. 0040 × 6. 0 =0. 0240
П	5 4 3 2 1	18. 415 4. 268 8. 392 4. 268 11. 108	53. 0 D13, D13 53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13, D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	29. 146 0. 0044 13. 274 0. 0025 26. 100 0. 0048 13. 274 0. 0025 17. 581 0. 0026	0. 0040 × 6. 0 = 0. 0240
Ш	5 4 3 2	0.000 2.999 3.918 1.981 0.000	53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13 53. 0 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	0.000 0.0000 9.327 0.0017 12.185 0.0023 6.161 0.0011 0.000 0.0000	0. 0040 × 6. 0 = 0. 0240

CALC	ULATIO)N				
Detailed Design on Port Reactivation Project in La Union Province						
CALC FILE NO						
CALC MOSS	1.	124	GE 2/7	ī		
	MITIE	1.	DATE	_		
PREPARED BY						
CHECKED BY	8. N 154 MU	IDA.	09/08/200	2		

Ultimate limit state (Under ordinary conditions)
Bottom slab(D Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

***************************************								D 1000M
NO	Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I 5 4 3 2 1	84. 901 0. 000 0. 000 0. 000 84. 901	57. 6 51. 0 51. 0 51. 0 57. 6	5, 46 0, 00 0, 00 0, 00 5, 46	D13, D13 D13 D13, D13 D13 D13, D13	10. 0 20. 0 10. 0 20. 0 10. 0	12. 67 6. 34 12. 67 6. 34 12. 67	213. 654 95. 683 188. 577 95. 683 213. 654	0. 44 0. 00 0. 00 0. 00 0. 00 0. 44
II 5 4 3 2 1	53. 621 0. 000 0. 000 0. 000 53. 621	57. 6 51. 0 51. 0 51. 0 57. 6	3. 44 0. 00 0. 00 0. 00 3. 44	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	108. 233 95. 683 95. 683 95. 683 108. 233	0. 54 0. 00 0. 00 0. 00 0. 00 0. 54
III 5 4 3 2 1	0. 000 8. 937 14. 233 8. 937 0. 000	57. 6 57. 6 57. 6 57. 6 57. 6	0. 00 0. 57 0. 91 0. 57 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	108. 233 108. 233 108. 233 108. 233 108. 233	0. 00 0. 09 0. 14 0. 09 0. 00

	<u>.</u>	
ULATIC	N.	<u></u>
ad Desig	} ii	
ctivation	100	Sisat
ion Prov	inc	9
	FA	CE 218
INITIA	1	DATE
YAno	10	26/07/61
P. NISHIM	UQA	09/08/2002
	ad Designotion Prov	

Ultimate limit state (During an earthquake)
Bottom slab(D Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

							•		***
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5	0.000	57. 6	0. 00	D13, D13	10. 0	12. 67	245. 702	0. 00
	4	48.349	51. 0	2. 76	D13	20. 0	6. 34	110. 035	0. 44
	3	92.134	51. 0	5. 30	D13, D13	10. 0	12. 67	216. 864	0. 42
	2	37.356	51. 0	2. 13	D13	20. 0	6. 34	110. 035	0. 34
	1	0.000	57. 6	0. 00	D13, D13	10. 0	12. 67	245. 702	0. 00
	5	0, 000	57. 6	0. 00	D13	20. 0	6. 34	124, 468	0. 00
	4	30, 193	51. 0	1. 72	D13	20. 0	6. 34	110, 035	0. 27
	3	51, 882	51. 0	2. 97	D13	20. 0	6. 34	110, 035	0. 47
	2	22, 414	51. 0	1. 28	D13	20. 0	6. 34	110, 035	0. 20
	1	0, 000	57. 6	0. 00	D13	20. 0	6. 34	124, 468	0. 00
Ш	5	0.000	57. 6	0.00	D13	20. 0	6. 34	124. 468	0. 00
	4	0.000	57. 6	0.00	D13	20. 0	6. 34	124. 468	0. 00
	3	0.000	57. 6	0.00	D13	20. 0	6. 34	124. 468	0. 00
	2	0.000	57. 6	0.00	D13	20. 0	6. 34	124. 468	0. 00
	1	0.000	57. 6	0.00	D13	20. 0	6. 34	124. 468	0. 00

CALC	JLATIO	V
Detaile	ed Desig:	1
on Port Read	ctivation	irojeri
in La Uni	an Provi	nce
DALC FILE Not		
CALC INDEA 16		PAGE 219
	MIYIAI	DATE
PREPARED DY	YAnd	26/07/02
CHECKED BY	e visilihu	24 04/18/2002

Serviceability limit state
Bottom slab(D Room) — Perpendicular to levee normal A lower steel reinforcement
B = 100cm

						2 ,000
NO		Ms (kN·m)	d Diameter (cm) (mm)	Pitch As (cm ²)	σse Crack width (N/mm²) W(cm)	Permission crack width W _{iim} (cm)
I	5 4 3 2 1	37. 113 6. 290 9. 385 2. 397 37. 113	57. 6 D13, D13 51. 0 D13 51. 0 D13, D13 51. 0 D13 57. 6 D13, D13	20. 0 6. 34 10. 0 12. 67 20. 0 6. 34	53, 925 0, 0103 20, 343 0, 0046 15, 453 0, 0029 7, 752 0, 0017 53, 925 0, 0103	0. 0035 × 8. 0 = 0. 0280
11	5 4 3 2 1	23, 440 4, 035 5, 285 1, 280 23, 440	57. 6 D13 51. 0 D13 51. 0 D13 51. 0 D13 57. 6 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	66. 958 0. 0151 13. 050 0. 0029 17. 093 0. 0039 4. 140 0. 0009 66. 958 0. 0151	0. 0035 × 8. 0 =0. 0280
Ш	5 4 3 2 1	0.000 3.907 6.222 3.907 0.000	57. 6 D13 57. 6 D13 57. 6 D13 57. 6 D13 57. 6 D13	20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34 20. 0 6. 34	0.000 0.0000 11.161 0.0025 17.774 0.0040 11.161 0.0025 0.000 0.0000	0. 0035 × 8. 0 = 0. 0280

		1000
CALC	ULATION	
Detai	led Design	
on Port Rea	ctivation P	roject
in La Un	ion Provin	ie.
CALO FILE N.		
CALC HIL'	73	AGE 220
	Milial	DAYE
PREPARED by	1 X. Ando	26/07/02
CHECKED BY	e. Pishingra	09/08/2002
	X. Ando	26/07/02

Ultimate limit state (Under ordinary conditions)
Bottom slab(D Room) — Parallel to centerline An upper steel reinforcement
B = 100cm

NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi Md/Mud
I	5	0. 000	51. 0	0. 00	D13	20. 0	6, 34	95, 683	0. 00
	4	19. 198	51. 0	1. 38	D13	20. 0	6, 34	95, 683	0. 22
	3	34. 093	51. 0	2. 46	D13	20. 0	6, 34	95, 683	0. 39
	2	19. 198	51. 0	1. 38	D13	20. 0	6, 34	95, 683	0. 22
	1	0. 000	51. 0	0. 00	D13	20. 0	6, 34	95, 683	0. 00
I	5	0. 000	51. 0	0. 00	D13	20. 0	6. 34	95. 683	0. 00
	4	9. 764	51. 0	0. 70	D13	20. 0	6. 34	95. 683	0. 11
	3	15. 888	51. 0	1. 15	D13	20. 0	6. 34	95. 683	0. 18
	2	9. 764	51. 0	0. 70	D13	20. 0	6. 34	95. 683	0. 11
	1	0. 000	51. 0	0. 00	D13	20. 0	6. 34	95. 683	0. 00
Ш	5	0, 000	51.0	0.00	D13	20. 0	6. 34	95, 683	0. 00
	4	0, 000	51.0	0.00	D13, D13	10. 0	12. 67	188, 577	0. 00
	3	0, 000	51.0	0.00	D13, D19	10. 0	20. 66	302, 055	0. 00
	2	0, 000	51.0	0.00	D13, D13	10. 0	12. 67	188, 577	0. 00
	1	0, 000	51.0	0.00	D13	20. 0	6. 34	95, 683	0. 00

CALC	JLATIC)N)
Detail	ed Desi	gn	
on Port Resi	ctivation	į Pi	oject
in La Uni	on Prov	daç	5
CALC FILE HA.			
CALC INDEX 100	1 11	P.	GE 22
	មេជ្រ	11.	0.478
PREPARED BY	Y. An	dr	26/07/02
CHECKED BY	e NISHI	wea	09/08/2002

Ultimate limit state (During an earthquake)
Bottom slab (D Room) — Parallel to centerline An upper steel reinforcement
B = 100cm

	 							1,000	D - TOOCH
NO		Md (kN·m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5 4 3 2 1	40. 663 0. 000 0. 000 0. 000 36. 266	51. 0 51. 0 51. 0 51. 0 51. 0	2. 32 0. 00 0. 00 0. 00 2. 07	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	110. 035 110. 035 110. 035 110. 035 110. 035	0. 37 0. 00 0. 00 0. 00 0. 00 0. 33
П	5 4 3 2 1	25. 843 0. 000 0. 000 0. 000 22. 461	51. 0 51. 0 51. 0 51. 0 51. 0	1. 47 0. 00 0. 00 0. 00 1. 28	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34	110. 035 110. 035 110. 035 110. 035 110. 035	0. 23 0. 00 0. 00 0. 00 0. 00 0. 20
Ш	5 4 3 2 1	0.000 152.690 229.527 137.131 0.000	51. 0 51. 0 51. 0 51. 0 51. 0	0.00 8.85 13.43 7.93 0.00	D13 D13, D13 D13, D19 D13, D13 D13	20. 0 10. 0 10. 0 10. 0 20. 0	6. 34 12. 67 20. 66 12. 67 6. 34	110. 035 216. 864 347. 363 216. 864 110. 035	0. 00 0. 70 0. 66 0. 63 0. 00

CALC	ULATIC)N	
Detail on Port Rea	led Dasiq ctivation	jn P	•
in La Un	ion Prov	inc	e
CALC FILE RO.:			Agraphic State
CALC INDEX NO		Ρ/	GE <i>222</i>
	INITIA	L	DATE
PREPARED BY	YiAnd	0	26/07/04
CHECKED BY	,	_	03/06/2002

				** *			•		
NO		Ms (kN·m)	d (cm)	Diameter (mm)	Pitch (cm)	As (cm²)	σse (N/mm²)	Crack width W(cm)	Permission crac width W Lim (cm)
I	5 4 3 2 1	4. 697 8. 392 14. 903 8. 392 3. 140	51.0 51.0 51.0 51.0	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	15, 191 27, 142 48, 200 27, 142 10, 156	2 0. 0061 0 0. 0109 2 0. 0061	0.0040 × 8.0 = 0.0320
П	5 4 3 2 1	3. 059 4. 268 6. 945 4. 268 1. 861	51.0 51.0 51.0 51.0	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	9, 894 13, 804 22, 462 13, 804 6, 019	0.0031 0.0051 0.0031	0. 0040 × 8. 0 = 0. 0320
ш	5 4 3 2 1	0. 000 17. 516 23. 403 12. 007 0. 000		D13, D13 D13, D19 D13, D13		6, 34 12, 67 20, 66 12, 67 6, 34	0, 000 28, 841 24, 005 19, 770 0, 000	0. 0055 0. 0046 0. 0038	0.0040×8.0 =0.0320

CALCULATION	
Detailed Design	
on Port Renativation F	roje c t
in La Union Provin	ce
CALC FILE No.	
CALC IND A PER P	AGE 223
restal.	DATE
PREPARED & Y. Ando	26/07/82
CHECKED BY 2. MITHINOTO	09/08/2002
CHECKED BY JE MINISTRO	107/08/2002

Ultimate limit stace (Under ordinary conditions)
Bottom slab(D Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

		 			· · · · · · · · · · · · · · · · · · ·			100	D 1000m
NO	.,	Md (kN m)	d (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud
I	5 4 3 2	14. 233 0. 000 0. 000 0. 000 14. 233	55. 6 49. 0 49. 0 49. 0 55. 6	0. 94 0. 00 0. 00 0. 00 0. 94	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	104. 429 91. 879 180. 957 91. 879 104. 429	0. 15 0. 00 0. 00 0. 00 0. 15
I	5 4 3 2 1	8. 937 0. 000 0. 000 0. 000 8. 937	55. 6 49. 0 49. 0 49. 0 55. 6	0. 59 0. 00 0. 00 0. 00 0. 59	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34	104. 429 91. 879 91. 879 91. 879 104. 429	0. 09 0. 00 0. 00 0. 00 0. 00
Ш	5 4 3 2 1	 0. 000 53. 621 84. 901 53. 621 0. 000	55. 6 55. 6 55. 6 55. 6 55. 6	0.00 3.56 5.66 3.56 0.00	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	104. 429 104. 429 206. 050 104. 429 104. 429	0. 00 0. 56 0. 45 0. 56 0. 00

			<u> </u>						
CALCULATION									
Detailed Design									
on Port Rea	on Port Reactivation Project								
in La Un	ion Prov	inc	9						
CALC FILE No.		•							
CALC INDA : :		P/	IGE 224						
	INITIA	L	DATE						
PREPARED 67			26/07/62						
CHECKED BY	P. NISHI H	ję,t	09/46/2002						

Ultimate limit state (During an earthquake)
Bottom slab(D Room) — Parallel to centerline A lower steel reinforcement
B = 100cm

NO		Md (kN·m	d) (cm)	Asn (cm²)	Diameter (mm)	Pitch (cm)	As (cm²)	Mud (kN·m)	γi∙Md/Mud
	5 4 3 2 1	0. 00 53. 74 92. 13 50. 02 0. 00	2 49. 0 4 49. 0 2 49. 0	0, 00 3, 20 5, 52 2, 98 0, 00	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	120. 093 105. 661 208. 101 105. 661 120. 093	0.00 0.51 0.44 0.47 0.00
Π	5 4 3 2 1	0. 00 28. 16 42. 93 24. 44 0. 00	4 49.0 7 49.0 3 49.0	0. 00 1. 67 2. 55 1. 45 0. 00	D13 D13 D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	120. 093 105. 661 105. 661 105. 661 120. 093	0. 00 0. 27 0. 41 0. 23 0. 00
Ш	5 4 3 2 1	0. 00 0. 00 0. 00 0. 00 0. 00	0 55.6 0 55.6 0 55.6	0.00 0.00 0.00 0.00 0.00	D13 D13 D13, D13 D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	120. 093 120. 093 236. 957 120. 093 120. 093	0. 00 0. 00 0. 00 0. 00 0. 00

CALCULATION										
<u> </u>	Detailed Design									
21	on Port Resolivation Project									
·	ior Province									
CALC FILE No :										
CALC THEFT has	7AGE 225									
	INTIAL DATE									
PREPARED 5Y	Y. Ando 26/07/02									
CHECKED BY	R NISH IMWOA 09/06/2002									

Serviceability limit state
Bottom slab (D Room) — Parallel to centerline A lower steel reinforcement

B =	100cm
-----	-------

		 ····	·					the state of the s	D == 1000H
NO		Ms (kN·m)	d (cm)	Diameter (mm)	Pitch (cm)	As (cm²)	σse C (N/mm²)	rack width W(cm)	Permission crack width Wilm (cm)
I	5 4 3 2 1	6. 222 5. 944 9. 385 4. 627 6. 222	55. 6 49. 0 49. 0 55. 6	D13 D13, D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6, 34 6, 34 12, 67 6, 34 6, 34	18. 426 20. 026 16. 104 15. 589 18. 426	0. 0049 0. 0053 0. 0037 0. 0041 0. 0049	0. 0035 × 10. 0 = 0. 0350
П	5 4 3 2 1	3. 907 3. 316 4. 374 1. 999 3. 907	55. 6 49. 0 49. 0 49. 0 55. 6	D13 D13 D13	20. 0 20. 0 20. 0 20. 0 20. 0 20. 0	6. 34 6. 34 6. 34 6. 34 6. 34	11. 570 11. 172 14. 737 6. 735 11. 570	0. 0031 0. 0030 0. 0039 0. 0018 0. 0031	0. 0035 × 10. 0 =0. 0350
П	5 4 3 2 1	0. 000 23. 440 37. 113 23. 440 0. 000	55. 6 55. 6 55. 6 55. 6 55. 6	D13 D13, D13 D13	20. 0 20. 0 10. 0 20. 0 20. 0	6. 34 6. 34 12. 67 6. 34 6. 34	0.000 69.417 55.920 69.417 0.000	0. 0000 0. 0184 0. 0129 0. 0184 0. 0000	0. 0035 × 10. 0 =0. 0350

<u> </u>	<u> </u>	<u> </u>							
CALCULATION									
Detailed Design									
on Port Reactivation Project									
in La Un	ion Provin	ce							
CALC FILE By									
CALCHNOL 6		AGE 226							
	INIT AL	DATE							
PREPARED BY	Y. Ando	26/07/02							
CHECKED BY	e.wisHidue	09/08/2002							

i) Exa Und	mination Her ordin	at the	time ndition	of ult ns	imate wh	ich rece	ives bend	ding	B = 100cm	
NO	(Md kN·m)	d (cm)	Asn (cm²)	Diamete (mm)	r Pitch (cm)	As (cm²)	Mud (kN·m)	γi·Md/Mud	•
Seaside	e above below 1		61. 0 61. 0	0. 00 10. 53	D13 D16, D19	20. 0	6. 34 24. 26	114, 698 424, 575	0. 00 0. 45	,
Landside		0. 717 0. 582	61. 0 61. 0	0. 04 0. 03	D16 D13	20. 0 20. 0	9. 93 6. 34	178. 470 114. 698	0. 00 0. 01	,
Dur	ing an e	arthqua	ake						B = 100cm	
NO	(Md kN·m)	d (cm)	Asn (cm²)	Diamete (mm)	r Pitch (cm)	n As (cm²)	Mud (kN·m)	γi·Md/Mud	
Seas i de	e above below 29		61. 0 61. 0	0.00 14.20	D13 D16, D19	20. 0 10. 0	6. 34 24. 26	131. 903 488. 261	0. 00 0. 60	,
Landside	above 11 below		61. 0 61. 0	5. 73 0. 00	D16 D13	20. 0 20. 0	9. 93 6. 34	205. 240 131. 903	0. 58 0. 00	
i i) Ur	nder serv	iceabi	lity	Examina	tion to	a crack			B = 100cm	
NO	(Ms kN·m)	d D (cm)	iameter (mm)	Pitch (cm)	7.0	se Crac /mm²)	k width W(cm)	Permission cr width Wiim (c	
Seaside	above below 15	0. 000 5. 480	61.0 61.0	D13 D16, D19					035x8=0, 0280 035x8=0, 0280	
Lands i de		8. 658 0. 000	61. 0 61. 0	D16 D13					035x8=0. 0280 035x8=0. 0280	

CALCULATION							
Detail	ed Desi	gn					
on Port Rea	on Port Reactivation Project						
in La Un	ion Prov	ince					
GALC FILE No :							
CALC INDE #.		PAGE 227					
1 1	ihr(14	LOFTE					
PREPARED 64	Y.Ano	lo 26/07/0					
CHECKED BY	2. Wishing	RA 09/02/2002					

iii)Examination to shearing

Sea side footing

	NO		Vd (kN/m)		γi	γb	βd	βp	βn	fycd (N/mm²)	Vcd γi (kN/m)	·Vd/Vcd
Sea	side	e abovi	e 0.00	ate (Und 00 54.0 08 54.0	1.10	1.30 1	1.16655	0.48910	1 1	0. 529 0. 529	125. 374 196. 287	0. 00 1. 25
Sea	a sid	e abov	e 0.00	ate (Dui 00 54.0 38 54.0	1.00	1.15	1. 16655	0.48910) 1			0.00 1.71
Sea	a sid	e abov	e 0.00	mit sta 00 54.0 70 54.0						0. 577 0. 577		0. 00 0. 73
		steel		cement					:			V 1 6
	NO			fwyd (N/mm2)	αs (°)	(mm)	γο	Vcd (kN/m)	V (kl		Vyd γi (kN/m)	·Va/Vya
Sea			380.	tate (Un 345.00 345.00	90	469.6	1. 15				393. 116 464. 029	0. 00 0. 53
Sea	Ulti side	mate i above below	380 . 1	tate (Du 345.00 345.00	90	an ear 469.6 469.6	thquake 1.00 1.00) 141. 727 221. 889			449. 631 529. 793	0. 00 0. 72
Sea			380.	imit sta 345.00 345.00		469. 6 469. 6	1.00 1.00	177. 775 278. 326			485. 679 586. 230	0. 00 0. 35
								· · · · · · · · · ·				-

CALC	ULATIO)N					
Detailed Design on Port Reactivation Project in La Union Province							
CALC FILE Ho:							
CALC INDEX 40	Not A		GE 228				
PREPARED BY	Y. And	0	26/07/02				
CHECKED BY	P. Nishim	124	09/48/2002				

Land side Footing

	NO		Vc				γb	βd	βp			γi·Vd/Vod
			(kN/		(cm)					(N/mm	²) (kN/m)	
Land		above	0.9	143	54.0	1.10	1, 30	ry cond 1.16655 1.16655	itions) 0,56877 0,48910	1 0. 52 1 0. 52		
Land	Ulti side	above	155. 2	275	54.0	1.00	1. 15	rthquak 1.16655 1.16655	e) 0. 56877 0. 48910	1 0, 52 1 0, 52		
Land	Serv side	iceabi above below	24.	284	. 54, ()	1. 00 1. 00	1. 16655 1. 16655	0. 56877 0. 48910	1 0.57 1 0.57	77 206. 73 77 177. 77	
	The	steel	rein	forc	ement	of D	13 is	arrange	d at inte	rvals of	400mm.	
	NO		Aw (mm/		wyd /mm2)	αs (°)	Z (mm)	γb	Vcd (kN/m)	Vsd (kN/m)	Vyd (kN/m)	γi·Vd/Vyd
Land	Utin side	above	126.	. 73	45.00	90	469.6		tions) 145, 796 125, 374	44. 624 44. 624	190. 420 169. 998	0. 01 0. 01
Land	Ulti side	above	126.	. 7 3	45.00	90	469.6	rthquak 1.00 1.00	e) 164. 813 141. 727	51. 317 51. 317	216. 130 193. 044	0. 72 0. 00
Land	Serv side	iceabi above below	126.	7 34	it st 45.00 45.00	90	469. 6 469. 6		206. 733 177. 775	51. 317 51. 317	258. 050 229. 092	0. 09 0. 00

CALC	ULATIO	N	_			
Detai	ed Desig]t]				
on Port Reactivation Project						
in La Union Province						
CALC FILE NO			14.			
CALC IN HE IS		77/	VOE 229			
	333	l,	I/ATE			
PREPARED BY	Y. Ando	,,	26/07/00			
CHECKED BY	P. WILLIAM	C//A	09/08/200			

Case.2 Date

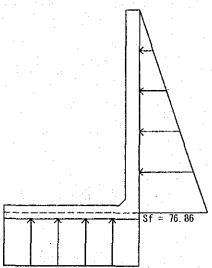
1.Design Conditions		
(1) Dimensions	1. The second second	
Crest elevation	+ 5.000	
Crest elevation of caisson	+ 2.000) (m)
Bottom end of caisson	- 14, 500) (m)
(2) Tidal levels		* - F
R. W. L	± 1.040	
L. W. L.	- 0. 130) (m)
(3) Unit Weight		
Reinforced concrete) (kN/m³)
Concrete lid	22.60) (kN/m³)
Filling materials(Air)) (kN/m³)
Filling materials(submerged)) (kN/m³)
Seawater		O (kN/m³)
Materials of ballast (while afloat)) (kN/m³)
Materials of ballast (after constru) (kN/m³)
Friction increasing mat	22.60	O (kN/m³)
(4) Materials		
Steel reinforcements		
Tensile yield strength	f'yk = 345.0) (N/mm²)
	$f'yd = f'yk/\gamma$	3
Modulus of elasticty	Es = 200.0) (kN/mm²)
Concrete		
Compressive yield strength	f'ck = 24.1	O (N/mm²)
Design compressive yield strength	$f' cd = f' ck / \gamma$	
Modulus of elasticty	Ec = 25.0) (kN/mm²)
(5) Arrangement of a steel reinforcement		, and the second
Coverring for steel reinforcement		
Outer wall Outer side) (ст)
Outer wall Inner side		0 (cm)
Bottom slab Outer side) (cm)
Bottom slab Inner side) (cm)
Footing Outer side) (cm)
Footing Inner side	8. (O (cm)
Use path		
D 25 ~ D 13		100
Steel reinforcement interval		
20.0 cm or 10.0 cm		
Coefficient of earth pressure of fillin	g	
K = 0.60		

CALCULATION	
Detailed Design	_1
on Port Reactivation Project	
in La Union Province	ļ
CALC FILE No.	
CALC INSTAL PAGE 23	0
INSTAL DATE	
PREPARED OF YAnde 20/07/0	\mathbb{Z}
CHECKED BY 12. NISTHHURA 09/08/20	ova

2. Design Loads

(1) While afloat

Sidewall


hydrostatic pressure of draft +1.000 (m) is considered. Sf = (6.910 + 1.000 - 0.600 / 2 - 0.000) \times 10.10 = 76.86(kN/m²) Ultimate limit state P = 1.1 \cdot Sf = 84.55(kN/m²) Serviceability limit state P = 0.5 \cdot Sf = 38.43(kN/m²)

Bottom Slab

It considers as the load which pulled the bottom slab deadweight from hydrostatic pressure at the bottom of caisson $Sf = (6.910 + 1.000) \times 10.10 = 79.89 (kN/m^2)$ $Df = (-0.600 \times 24.00) + (0.000 \times 18.00) + (0.000 \times 22.60) = -14.40 (kN/m^2)$ Ultimate limit state $P = 1.1 \cdot Sf + 0.9 \cdot Df = 74.92 (kN/m^2)$ Serviceability limit state $P = 0.5 \cdot Sf + 0.5 \cdot Df = 32.75 (kN/m^2)$

Partition Walls

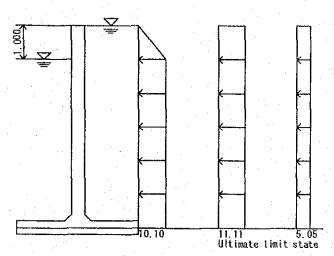
Although water pressure receives and compression power is received, since it is generally safe, examination is omitted.

Ultimate limit state 74 92 Serviceability limit state 32.75

CALCULATION

Detailed Design
on Port Reactivation Project
in La Union Province

CALC FILE No.

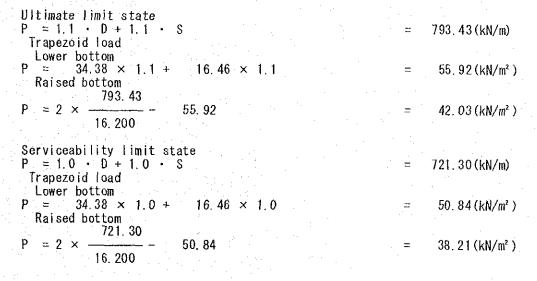

CALC RVOL 15. PAGE 231

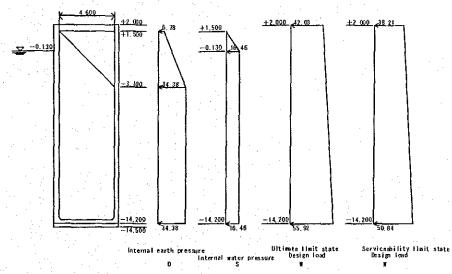
RVFIRL DATE

PREPARED SY Y. And 6 26/07/02

CHECKED BY R. NISHHURA 197/08/2002

(2) During Installation Partition Walls The hydrostatic head(1.00(m)) between chambers should be applied $S = 1.000 \times 10.10 = 10.10(kN/m^2)$ Ultimate limit state $Q = 1.1 \cdot S = 11.11(kN/m^2)$ Serviceability limit state $Q = 0.5 \cdot S = 5.05(kN/m^2)$

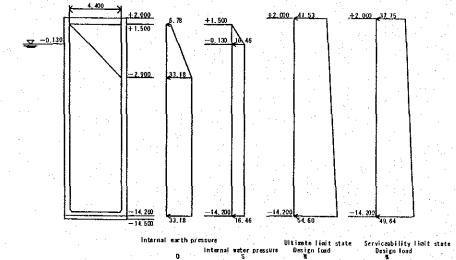

Serviceability limit state


CALCULATION	1 1							
Detailed Design								
on Port Reactivation Project								
In La Union Province								
. ALC FILE No.	<u> </u>							
CALC INDEX (EAST - PA)	GE 232							
JAITIM	DATE							
PREPAREULY YAndo	6/07/02							
CHECKED BY P. NISHIMURA O	4/08/2002							

(3) After Construction
Sidewall (perpendicular to levee normal
Internal earth pressure (K = 0.60)
P1 = ($0.000 + 0.000 + 0.500 \times 22.60) \times 0.60 = 6.78 (kN/m^2)$ P2 = $6.78 + (4.600 \times 10.00) \times 0.60 = 34.38 (kN/m^2)$ D = $1/2 \times (6.78 + 34.38) \times 4.600 + 34.38 \times 11.100 = 476.29 (kN/m)$ Internal water pressure
P = $1.630 \times 10.10 = 16.46 \times 1.630 + 16.46 \times 14.070 = 245.01 (kN/m)$

Design loads

It converts into uniform load and triangular distribution load to which sum total load and load area become equal, and considers as design load.

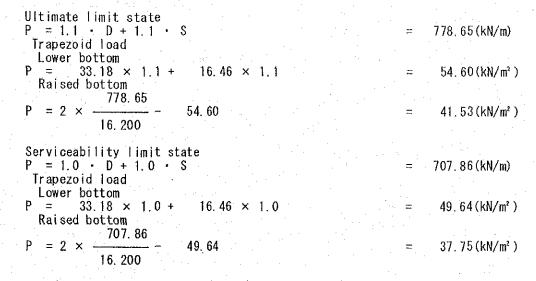


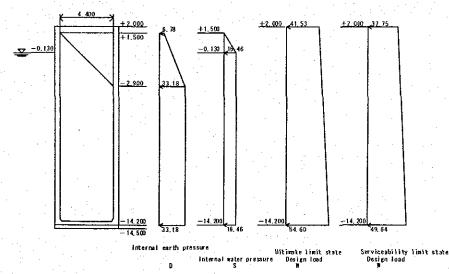
CALCULATION							
Detail	ed Design						
on Port Read	on Port Reactivation Project						
in Le Union Province							
GALC FILE ROT							
CALC INDES :	PAGE 233						
	INITIAL DATE						
PREPARED 67	Y. Ando 26/17/12						
CHECKED BY	E. WUHHUUA 09/08/2002						

Design loads

It converts into uniform load and triangular distribution load to which sum total load and load area become equal, and considers as design load.

Ultimate | limit state
$$P = 1.1 \cdot D + 1.1 \cdot S$$
 = 778.65(kN/m) Trapezoid load Lower bottom $P = 33.18 \times 1.1 + 16.46 \times 1.1$ = 54.60(kN/m²) Raised bottom 778.65 $P = 2 \times \frac{778.65}{16.200} - 54.60$ = 41.53(kN/m²) Serviceability | limit state $P = 1.0 \cdot D + 1.0 \cdot S$ = 707.86(kN/m) Trapezoid load Lower bottom $P = 33.18 \times 1.0 + 16.46 \times 1.0$ = 49.64(kN/m²) Raised bottom $P = 2 \times \frac{707.86}{16.200} - 49.64$ = 37.75(kN/m²)




CALCU	LATION
Detailed	Design
on Port React	ivation Project
in La Unio	n Province
CALC FILE No	
CALC INDE	PACE 23
	Wital Loads
PREPARED IN	1. Hndo 26/07/0
CHECKED BY &	NISHIHURA 09/08/200

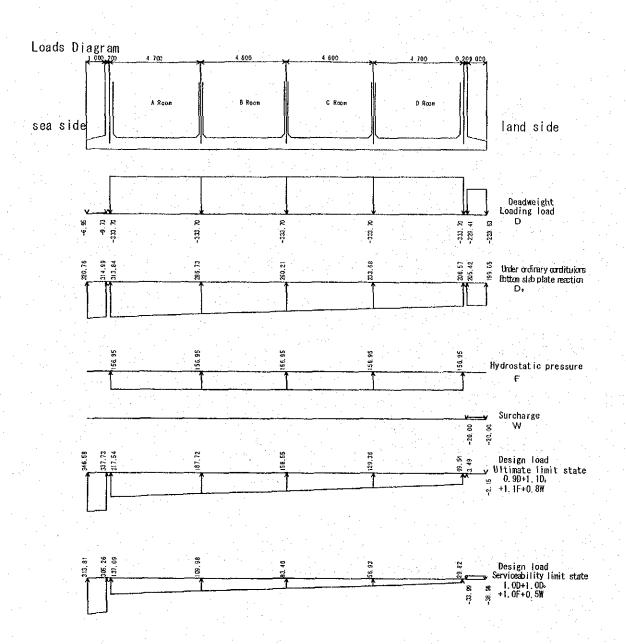
Rear wall(parallel to centerline : landside) Internal earth pressure (K = 0.60) P1 = $(0.000 + 0.000 + 0.500 \times 22.60)$ > P2 = $6.78 + (4.400 \times 10.00) \times 0.60$ $22.60) \times 0.60$ $6.78(kN/m^2)$ $33.18(kN/m^2)$ $D = 1/2 \times ($ 4.400 + 6.78 + 33.18) × 11,300 33.18 × 462.85 (kN/m) Internal water pressure $P = 1.630 \times 10.10$ 16.46(kN/m²) $S = 1/2 \times$ 16.46 × 1.630 +16.46 × 14.070 245.01(kN/m)

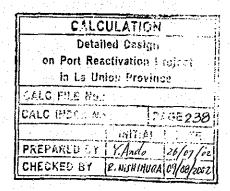
Design loads

It converts into uniform load and triangular distribution load to which sum total load and load area become equal, and considers as design load.

CAL	CULATION
Deta	ited Design
on Port Re	activation Project
	nion Province
CALC FILE Nº	
CALC IND!	AGE 235
	STIAL DATE
PREFARED	Y. Ando 26/07/02
CHECKED BY	E. NISHIMURA 09/08/2002

Summary of design load


```
Ultimate limit state
  Sidewall (perpendicular to levee normal)
     Load from an inner side
                     Raised bottom =
                                          42. 03 (kN/m²)
                     Lower bottom =
                                          55.92(kN/m²)
     Load from an outside
             Raised bottom =
                                 0.00(kN/m^2)
               Lower bottom =
                                 0.00(kN/m^2)
  Front wall (parallel to centerline: seaside)
     Load from an inner side
                                   \begin{array}{c} 41.53\,(kN/m^2) \\ 54.60\,(kN/m^2) \end{array}
             Raised bottom =
              Lower bottom =
     Load from an outside
              Raised bottom =
                                   0.00(kN/m^2)
               Lower bottom =
                                   0.00(kN/m^2)
  Front wall (parallel to centerline: landside)
     Load from an inner side
              Raised bottom =
                                    41.53 (kN/m²)
               Lower bottom =
                                    54. 60 (kN/m<sup>2</sup>)
     Load from an outside
              Raised bottom =
                                   0.00(kN/m^2)
               Lower bottom =
                                   0.00(kN/m^2)
Serviceability limit state
  Sidewall (perpendicular to levee normal)
     Load from an inner side
               Raised bottom =
                                    38. 21 (kN/m²)
               Lower bottom =
                                    50.84 (kN/m^2)
     Load from an outside
              Raised bottom = 0.00 (kN/m^2)
Lower bottom = 0.00 (kN/m^2)
  Front wall (parallel to centerline: seaside)
     Load from an inner side
                                    37. 75 (kN/m^2)
              Raised bottom =
               Lower bottom =
                                    49.64(kN/m^2)
     Load from an outside
              Raised bottom \approx 0.00 (kN/m^2)
               Lower bottom = 0.00(kN/m^2)
  Front wall (parallel to centerline: landside)
     Load from an inner side
              Raised bottom =
                                    37.75 (kN/m^2)
               Lower bottom =
                                    49.64(kN/m2)
     Load from an outside
              Raised bottom = 0.00(kN/m^2)
               Lower bottom = 0.00(kN/m^2)
```

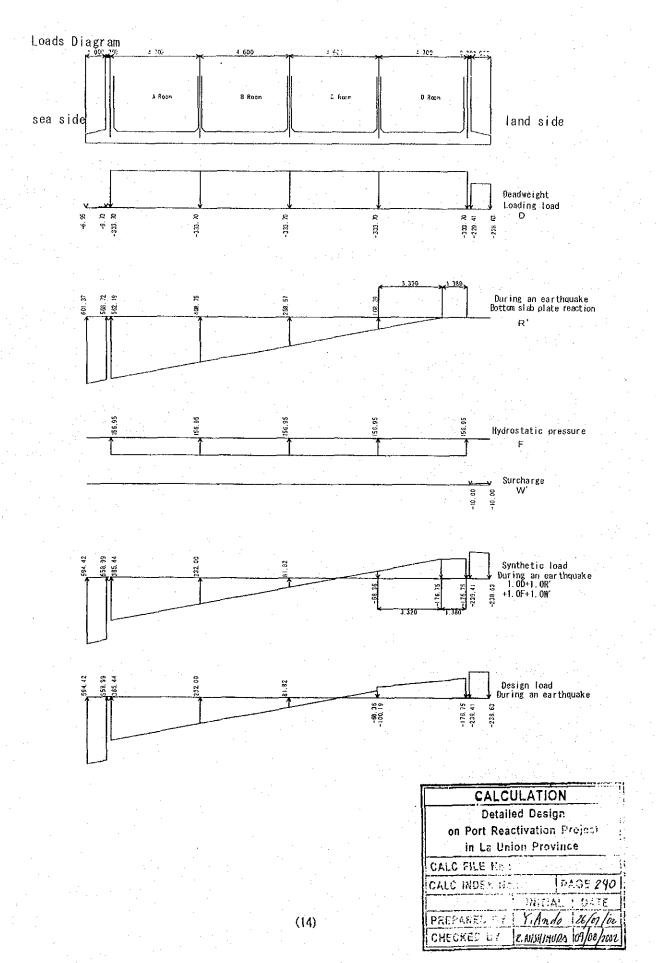

CALCULATION Detailed Design on Port Reactivation Project in La Union Province GALC FILE NO: CALC IND: 37 AGE 234 PREPARED BY S. Ando 26/27/62 CHECKED BY C. DUMMER 19/08/2002

```
Bottom Slab , Footing
Under ordinary conditions
Combination of load (Design loads)
```

```
Deadweight-Partition room
  D =concrete lid + sand of filling + materials of ballast + bottom slab + loading load
      333. 70 (kN/m^2)
Deadweight-Footing
   Deadweight + Loading load
The tip by the side of the sea = 0.50 \times (24.00 - 10.10) + 0.000 =
The root by the side of the sea = 0.70 \times (24.00 - 10.10) + 0.000 =
                                                                                                 6. 95 (kN/m<sup>2</sup>)
                                                                                                 9. 73 (kN/m²)
      The root by the side of land = 0.70 \times (24.00 - 10.10) + 219.680 = 229.41 \text{ (kN/m}^2)
The tip by the side of land = 0.50 \times (24.00 - 10.10) + 221.680 = 228.63 \text{ (kN/m}^2)
Bottom slab reaction — under ordinary condition D0 sea side= 320.76(kN/m^2), land side = 199.65(kN/m^2). Action width = 21.000(m)
Hydrostatic pressure Under R.W.L
   F = (R. W. L - Installation depth of water) \cdot \gamma w
= \{1.040 - (-14.500)\} \times 10.10
                                                                                              156. 95 (kN/m<sup>2</sup>)
 Surcharge — Partition room
                                                                                                 0.00 (kN/m^2)
 Surcharge—Footing
                                                                                                 0.00 (kN/m^2)
       The tip by the side of the sea
       The root by the side of the sea
The root by the side of land =
The tip by the side of land =
                                                                                                 0.00 (kN/m^2)
                                                                                                20. 00 (kN/m^2)
                                                                                                20. 00 (kN/m^2)
```

CALCULATION Detailed Design on Port Reactivation Project in La Union Province CALC FILE Not: CALC HISTORY FREPARED BY Y. Andle 26/07/62 CHECKED BY 2. MISHMUNA 109/08/2002


```
During an earthquake
Combination of load (Design loads)
```


```
Deadweight-Partition room
  D =concrete lid + sand of filling + materials of ballast + bottom slab + loading load
     333. 70 (kN/m^2)
Deadweight-Footing
  Deadweight+Loading load
     Sea side tip = 0.50 \times (24.00 - 10.10) + 0.000

Sea side root = 0.70 \times (24.00 - 10.10) + 0.000

Land side root = 0.70 \times (24.00 - 10.10) + 219.680

Land side tip = 0.50 \times (24.00 - 10.10) + 221.680
                                                                                    = 6. 95 (kN/m<sup>2</sup>)
                                                                                   = 9.73 (kN/m^2)
                                                                                           229.41 (kN/m<sup>2</sup>)
                                                                                          228. 63 (kN/m<sup>2</sup>)
Bottom slab reaction — During an eathquake R'
  Sea side= 601.37 (kN/m^2), Land side= 0.00 (kN/m^2), Action width = 18.420 (m)
Hydrostatic pressure Under R.W.L.
  F = (R. W. L) Hydrostatic pressure Under R. W. L
= \{1.040 - (-14.500)\} \times 10.10
                                                                                     156, 95 (kN/m<sup>2</sup>)
Surcharge-Partition room
                                                                                       0.00 (kN/m^2)
Surcharge — Footing
     The tip by the side of the sea
                                                                                       0.00 (kN/m^2)
     The root by the side of the sea
                                                                                       0.00 (kN/m^2)
     The root by the side of land =
                                                                                      10.00 (kN/m^2)
     The tip by the side of land
                                               =
                                                                                      10.00 (kN/m^2)
The irregular form in case of an earthquake is converted into uniform load and triangular distribution load.
• Calculation of \Sigma A
  1/2 × ( -68. 360 - 176. 750) × 1/2 × (-176. 750 - 176. 750) ×
                                                 3.320
                                                                                   -406.88 (kN/m<sup>2</sup>)
                                                 1.380
                                                                                   -243.92 (kN/m<sup>2</sup>)
   ΣΑ
                                                                                   -650.80 (kN/m<sup>2</sup>)
 · Conversion load
  Р1
                                                                                   -176.75 (kN/m<sup>2</sup>)
  P2 = (2 \cdot \Sigma A / L) - P1
= (2 × (-650.80) /
                                      4.700) - (-176.75)
                                                                                   -100.19 (kN/m<sup>2</sup>)
```

CALCI	JLATIO	N						
	Detailed Design							
on Port Reactivation Project								
in La Union Province								
CALC FILE No.:								
CALC INDEX NO	:	1-4	GE 239					
	MITIM	!	DATE					
PREPARED EY	Y. Ano	10	26/07/02					
CHECKED BY	P. WISHIH	COA	०१/०६/२००२					

(4) Dislodging of partition wall

To dislodging of a side wall, the maximum load strength of the composite load calculated on the occasion of the design of a side wall is used. (as the load per unit length)

a) Dislodging of partition wall and side wall

1) Partition wall (perpendicular to levee normal) and Side wall (parallel to centerline)

$$L = \frac{4.900 + 4.875}{4.888 \text{ (m)}}$$

$$T_d = 54.60 \times 4.888 = 266.83 (kN/m)$$

2) Partition wall (parallel to center line) and Side wall (perpendicular to levee normal)

$$L = \frac{2}{100} = 4.650 \text{ (m)}$$

$$T_d = 55.92 \times 4.650 = 260.03 \text{ (kN/m)}$$

b) Dislodging of partition wall and bottom wall

The maximum facing days load is used for load among the external force which acts on the bottom slab at the time of completion Load calculation of the bottom slab is used ₩ = $176.75(kN/m^2)$

1) Partition wall (perpendicular to levee normal) and Bottom slab

$$P1 = \frac{2}{3} \cdot W \cdot LX$$

$$= \frac{2}{3} \times 176.75 \times 4.700 = 553.82 (kN/m)$$

2) Partition wall (parallel to centerline) and Bottom slab

P2 = W · LX · (1 -
$$\frac{LX^2}{3 \times LY^2}$$
)
= 176.75 × 4.700 × (1 - $\frac{4.700^2}{3 \times 4.900^2}$) = 575.96 (kN/m)

CALCULATION Detailed Design on Port Reactivation Preject in La Union Province ALC FLE M 12. NIJUMURA 109/08/2002 CHECKED BY

- 3. The component which acts on each part material calculation of power Side wall
 Calculation of bending moment uses the monography of slab
 Note) The mark of bending moment (+): inside tensile
 (-): outside tensile

CALCULATION	
Detailed Design	
on Port Reactivation Project	
in La Union Province	
CALC FILE No :	
CALC INDEX NO. PAGE 242	
	IMITIAL DATE
PREPARED BY	Y. Ando 26/07/61
CHECKED BY	P.NISHMURA 189/00/2002