# APPENDIX H ECONOMIC AND FINANCIAL EVLUATION

Table H.1.1 Summary of Economic Benefits to be Generated from the Project in Conventional Cargo Handling at La Union Port by Major Commodity Ite

|         | T        | Cereals ar       | d Soy Be          | ean Meal        |           |         | <u> </u>         | ertilizer         |                 |          |            | Iron and         | Steel P           | oducts          |             |          | 3                | ≷aw Suga          | r ·             |          | Majo      | or Conve         | ntional C         | argo Tota       | al      |
|---------|----------|------------------|-------------------|-----------------|-----------|---------|------------------|-------------------|-----------------|----------|------------|------------------|-------------------|-----------------|-------------|----------|------------------|-------------------|-----------------|----------|-----------|------------------|-------------------|-----------------|---------|
| Year    | Volume   | Sen<br>Transport | Land<br>Transport | Ship<br>Waiting | Total     | Volume  | Sea<br>Transport | Land<br>Transport | Ship<br>Waiting | Total    | Volume     | Sea<br>Transport | Land<br>Transport | Ship<br>Waiting | Total       | Volume   | Sea<br>Transport | Land<br>Transport | Ship<br>Waiting | Total    | Volume    | Sea<br>Transport | Land<br>Transport | Ship<br>Waiting | Total   |
|         | MT       | '000 US\$        | 1000 US\$         | 000 US\$        | 000 US\$  | MT      | 1000 US\$        | 000 US\$          |                 | 000 US\$ | MI         | 000 US\$         | 000 US\$          |                 | '000 US\$   | MIT      | 000 US\$         |                   |                 | 000 US\$ | MT        | 000 US\$         |                   |                 | 28U 000 |
| 2005    | 347,700  | 1,391            | 1,704             | 80              | 3,095     | 105,300 | 253              | 516               | -78             | 691      | 37,200     | 11               | 182               | -24             | 170         | 60,000   | 144              | 294               | -66             | 372      | 550,200   | 1,799            | 2,696             | -88             | 4,327   |
| 2000    | 362,100  | 1,448            | 1,774             | 70              | 3,223     | 105,300 | 253              | 516               | -87             | 682      | 40,860     | 12               | 200               | -29             | 183         | 60,000   | 144              | 294               | -66             | 372      | 568,260   | 1,857            | 2,784             | -112            | 4,460   |
| 2007    | 376,500  | 1,506            | 1,845             | 61              | 3,351     | 105,300 | 253              | 516               | -96             | 673      | 44,520     | 13               | 218               | -35             | 197         | 60,000   | 144              | 294               | -66             | 372      | 586,320   | 1,916            | 2,873             | -136            | 4,593   |
| 2008    | 390,900  | 1,564            | 1,915             | 51              | 3,479     | 105,300 | 253              | 516               | -105            | 664      | 48,180     | 14.              | 236               | -40             | 210         | 60,000   | 144              | 294               | -66             | 372      | 604,380   | 1,975            | 2,961             | -160            | 4.725   |
| 2009    | 405,300  | 1,621            | 1,986             | 42              | 3,607     | 105,300 | 253              | 516               | -113            | 655      | 51,840     | 16               | 254               | -46             | 224         | 60,000   | 144              | 294               | -66             | 372      | 622,440   | 2,033            | 3,050             | -184            | 4,858   |
| 2010    | 419,700  | 1,679            | 2,057             | 32              | 3,735     | 105,300 | 253              | 516               | -122            | 646      | 55,500     | 17               | 272               | -52             |             | 60,000   | 144              | 294               | -66             | 372      | 640,500   | 2,092            | 3,138             | -208            | 4,991   |
| 2011    | 435,180  | 1,741            | 2,132             | 120             | 3,873     | 105,300 | 253              | 516               | -108            | 660      | 60,180     | 18               | 295               | 1.5             |             | 60,000   | 144              | 294               | -72             | 366      | 660,660   | 2,155            | 3,237             | -44             | 5,228   |
| 2012    | 450,660  | 1,803            | 2,208             | 209             | 4,011     | 105,300 | 253              | 516               | -94             | 674      | 64,860     | 19               | 318               | 82              | 420         | 60,000   | 144              | 294               | -77             | 361      | 680,820   | 2,219            | 3,336             | 119             | 5,465   |
| 2013    | 466,140  | 1,865            | 2,284             | 297             | 4,149     | 105,300 | 253              | 516               | -80             | 688      | 69,540     | 21               | 341               | 149             | 511         | 60,000   | 144              | 294               | -83             | 355      | 700,980   | 2,282            | 3,435             | 283             | 5,703   |
| 2014    | 481,620  | 1,926            | 2,360             | 385             | 4,286     | 105,300 | 253              | 516               | -66             | 702      | 74,220     | 22               | 364               | 216             | 602         | 60,000   | 144              | 294               | -89             | 349      | 721,140   | 2,345            | 3,534             | 446             | 5,940   |
| 201     | 497,100  | 1,988            | 2,436             | 474             | 4,424     | 105,300 | 253              | 516               | -52             | 716      | 78,900     | 24               | 387               | 283             | 693         | 60,000   | 144              | 294               | -95             | 343      | 741,300   | 2,409            | 3,632             | 610             | 6,177   |
| 2016    | 516,556  | 2,066            | 2,531             | 463             | 4,597     | 105,300 | 253              | 516               | -22             | 747      | 86,101     | 26               | 422               | 961             | 1,408       | 60,000   | 144              | 294               | -95             | 343      | 767,957   | 2,489            | 3,763             | 1,308           | 7,096   |
| 2017    | 536,012  | 2,144            | 2,626             | 451             | 4,771     | 105,300 | 253              | 516               | 9               | 778      | 93,303     | 28               | 457               | 1,342           | 1,827       | 60,000   | 144              | 294               | -63             | 375      | 794,614   | 2,569            | 3,894             | 1,739           | 7,750   |
| 2018    | 555,467  | 2,222            | 2,722             | 473             | 4,944     | 105,300 | 253              | 516               | 40              | 809      | 100,504    | 30               | 492               | 1,860           | 2,383       | 60,000   | 144              | 294               | -65             | 373      | 821,271   | 2,649            | 4,024             | 2,308           | 8,508   |
| 2019    | 574,923  | 2,300            | 2.817             | 362             | 5,117     | 105,300 | 253              | 516               | 71              | 840      | 107,705    | 32               | 528               | 2,419           | 2,979       | 60,000   | 144              | 294               | -23             | 415      | 847,928   | 2,729            | 4,155             | 2,829           | 9,351   |
| 2020    | 594,379  | 2,378            | 2,912             | 434             | 5,290     | 105,300 | 253              | 516               | 102             | 870      | 114,906    | 34               | 563               | 3,057           | 3,655       | 60,000   | 144              | 294               | -74             | 364      | 874,585   | 2,809            | 4,285             | 3,519           | 10,179  |
| 2021    | 617,642  | 2,471            | 3,026             | 748             | 5,497     | 105,300 | 253              | 516               | 393             | 1,161    | 125,394    | 38               | 614               | 7,932           | 8,584       | 60,000   | 144              | 294               | -67             | 371      | 908,336   | 2,905            | 4,451             | 9,006           | 15,613  |
| 2022    | 640,905  | 2,564            | 3,140             | 828             | 5,704     | 105,300 | 253              | 516               | 377             | 1,145    | 135,882    | 169              | 694               | 7,341           | 8,204       | 60,000   | 144              | 294               | -60             | 378      | 942,087   | 3,130            | 4,645             | 8,485           | 15,431  |
| 2023    | 664,168  | 2,657            | 3,254             | 1,586           | 5,911     | 105,300 | 253              | 516               | 757             | 1,526    | 146,369    | 301              | 774               | 6,749           | 7,824       | 60,000   | 144              | 294               | -53             | 385      | 975,837   | 3,354            | 4,838             | 9,040           | 15,646  |
| 2024    | 687,431  | 2,750            | 3,368             | 1,562           | 6,118     | 105,300 | 253              | 516               | 1,736           | 2,505    | 156,857    | 432              | 854               | 6,158           | 7,444       | 60,000   | 144              | 294               | -47             | 391      | 1,009,588 | 3,579            | 5,032             | 9,410           | 16,459  |
| 2025    | 710,694  | 2,843            | 3,482             | 1,538           | 6,325     | 105,300 | 253              | 516               | 2,715           | 3,484    | 167,344    | 564              | 933               | 5,979           | 7,477       | 60,000   | 144              | 294               | -40             | 398      | 1,043,339 | 3,804            | 5,226             | 10,193          | 17,684  |
| 2026    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2,455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1,086,428 | 4,107            | 5,478             | 8,569           | 16,983  |
| 2027    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2,455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1,086,428 | 4,107            | 5,478             | 8.569           | 16,983  |
| 2028    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2,455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1.086.428 | 4.107            | 5,478             | 8.569           | 16,983  |
| 2029    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2,455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1,086,428 | 4,107            | 5,478             |                 | 16,983  |
| 2030    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2.455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1,086,428 | 4,107            | 5,478             |                 | 16,933  |
| 2031    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2,455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1,086,428 | 4,107            | 5,478             | 8,569           | 16,983  |
| 2032    | 738,510  | 2,954            | 3,619             | 1,171           | 6,573     | 105,300 | 253              | 516               | 2,455           | 3,223    | 182,618    | 756              | 1,049             | 5,040           | 6,845       | 60,000   | 144              | 294               | -96             | 342      | 1,086,428 | 4,107            | 5,478             | 8,569           | 16,983  |
| Note (1 | : Cement | currently        | handled a         | t Punta C       | iorda and | assumed | to shift to      | La Unio           | n Port w        | s excled | ed in econ | omic ber         | nefits esti       | mation as       | s it is cor | sidred n | t to affec       | t the said        | matter.         |          |           |                  |                   |                 |         |

Note (2): "Major cargo" in the heading of the above table excludes cement as mentioned Note (1) and other miscellaneous cargoes that are not clearly identified in generating economic benefits, resulting some gap between this table as weell as Table 11.1.2 and the table used in financial analysis such as Table 11.2.1that contains all cargo.

Table H.1.2 Economic Benefits Generated in Cereals and Soy Bean MealTransport

|                                  |      |         | Ship wa  | nsport cost | (sea navigat | ion + berth : | staying) |          | Lan        | d Trasport | Cost       |          |                     |           | Offshor                                 | e Ship Wait | ting Cost           |            |                   | Γ           |
|----------------------------------|------|---------|----------|-------------|--------------|---------------|----------|----------|------------|------------|------------|----------|---------------------|-----------|-----------------------------------------|-------------|---------------------|------------|-------------------|-------------|
| · ·                              |      | Volumme | With (La | Without     | Without      | Difference    | Total    | With (La | Without    | Without    | Difference | Total    |                     |           | }                                       |             | 1 .                 |            | Total             | Total       |
|                                  |      |         | Union)   | (Acajutla)  | (Quetzal)    | (benefit)     | bebefits | Union)   | (Acajutla) | (Quetzal)  | (benefit)  | bebefits |                     | a Union)  |                                         | czjutla)    |                     | (Acajutla) | bebesit           | benefits    |
| Remarks in port saturation       | Year | _MT_    | US\$/MT  | US\$/MT     | US\$/MT      | US\$/MT       | 000 USS  | US\$/MT  | US\$/MT    | US\$/MT    | US\$/MT    | 000 USS  | US\$/vessel<br>/day | toal days | US\$/vessel<br>/day                     | toal days   | US\$/vessel<br>/day | toal days  | 000 USS           |             |
|                                  |      | Α       | В        | С           | ۵            | E = C-B       | F=AxE    | G        | н          | I          | J = H-G    | K=JxA    | L                   | М         | N                                       | . 0         | P                   | Q.         | R=PxQ-<br>NxO-LxM | S=F+K<br>+R |
| La Union: \$0,000 DWT            | 2005 | 347,700 | 6.0      | 10.0        |              | 4.0           | 1,391    | 2.5      | 7.4        |            | 4.9        | 1,704    | 10,033              | 3.5       | 8,583                                   | 2.3         | 8,583               | 15.7       | 80                | 3,174       |
| Acajutia: 34,000 DWT             | 2006 | 362,100 | 6.0      | 10.0        |              | 4.0           | 1,448    | 2.5      | 7.4        |            | 4.9        | 1,774    | 10,033              | 4.5       | , , , , , , , , , , , , , , , , , , , , | 2.4         | 8,583               | 15.9       | 70                | 3,293       |
|                                  | 2007 | 376,500 | 6.0      | 10.0        |              | 4.0           | 1,506    | 2.5      | 7.4        |            | 4.9        | 1,845    | 10,033              | 5.5       | 8,583                                   | 2.6         | 8,583               | 16.2       | 61                | 3,412       |
|                                  | 2008 | 390,900 | 6.0      | 10.0        |              | 4.0           | 1,564    | 2.5      | 7.4        |            | 4.9        | 1,915    | 10,033              | 6.6       | 8,583                                   | 2.7         | 8,583               | 16.4       | 51                | 3,530       |
|                                  | 2009 | 405,300 | 6.0      | 10.0        |              | 4.0           | 1,621    | 2.5      | 7.4        |            | 4.9        | 1,986    | 10,033              | 7.7       | 8,583                                   | 2.9         | 8,583               | 16.7       | 42                | 3,649       |
|                                  | 2010 | 419,700 | 6.0      | 10.0        |              | 4.0           | 1,679    | 2.5      | 7.4        |            | 4.9        | 2,057    | 10,033              | 8.7       | 8,583                                   | 3.0         | 8,583               | 16.9       | 32                | 3,767       |
|                                  | 2011 | 435,180 | 6.0      | 10.0        |              | 4.0           | 1,741    | 2.5      | 7.4        |            | 4.9        | 2,132    | 10,033              | 9.6       | 8,583                                   | 4.2         | 8,583               | 29.4       | 120               | 3,993       |
|                                  | 2012 | 450,660 | 6.0      | 10.0        |              | 4.0           | 1,803    | 2.5      | 7.4        |            | 4.9        | 2,208    | 10,033              | 10.4      | 8,583                                   | 5.4         | 8,583               | 41.9       | 209               | 4,220       |
|                                  | 2013 | 466,140 | 6.0      | 10.0        |              | 4.0           | 1,865    | 2.5      | 7.4        |            | 4.9        | 2,284    | 10,033              | 11.3      | 8,583                                   | 6.7         | 8,583               | 54.5       | 297               | 4,446       |
|                                  | 2014 | 481,620 | 6.0      | 10.0        |              | 4.0           | 1,926    | 2.5      | 7.4        |            | 4.9        | 2,360    | 10,033              | 12.1      | 8,583                                   | 7.9         | 8,583               | 67.0       | 385               | 4,672       |
|                                  | 2015 | 497,100 | 6.0      | 10.0        |              | 4.0           | 1,988    | 2.5      | 7.4        |            | 4.9        | 2,436    | 10,033              | 13.0      | 8,583                                   | 9.1         | 8,583               | 79.5       | 474               | 4,898       |
|                                  | 2016 | 516,556 | 6.0      | 10.0        |              | 4.0           | 2,066    | 2.5      | 7.4        |            | 4.9        | 2,531    | 10,033              | 14.7      | 8,583                                   | 10.7        | 8,583               | 81.8       | 463               | 5,060       |
|                                  | 2017 | 536,012 | 6.0      | 10.0        |              | 4.0           | 2,144    | 2.5      | 7.4        |            | 4.9        | 2,626    | 10,033              | 16.5      | 8,583                                   | 12.3        | 8,583               | 84.2       |                   | 5,222       |
|                                  | 2018 | 555,467 | 6.0      | 10.0        |              | 4.0           | 2,222    | 2.5      | 7.4        |            | 4.9        | 2,722    | 10,033              | 15.0      | 8,583                                   | 13.9        | 8,583               | 86.5       | 473               |             |
|                                  | 2019 | 574,923 | 6.0      | 10.0        |              | 4.0           | 2,300    | 2.5      | 7.4        |            | 4.9        | 2,817    | 10,033              | 26.7      | 8,583                                   | 15.5        | 8,583               | 88.9       | 362               | 1           |
|                                  | 2020 | 594,379 | 6.0      | 10.0        |              | 4.0           | 2,378    | 2.5      | 7.4        |            | 4.9        | 2,912    | 10,033              | 20.1      | 8,583                                   | 17.1        | 8,583               | 91.2       | 434               | 5,724       |
|                                  | 2021 | 617,642 | 6.0      | 10.0        |              | 4.0           | 2,471    | 2.5      | 7.4        |            | 4.9        | 3,026    | 10,033              | 23.3      | 8,583                                   | 24.2        | 8,583               | 138.7      | 748               | 6,245       |
|                                  | 2022 | 640,905 | 6.0      | 10.0        |              | 4.0           | 2,564    | 2.5      | 7.4        |            | 4.9        | 3,140    | 10,033              | 26.6      | 8,583                                   | 31.3        | 8,583               | 158.9      | 828               | 6,532       |
|                                  | 2023 | 664,168 | 6.0      | 10.0        |              | 4.0           | 2,657    | 2.5      | 7.4        |            | 4.9        | 3,254    | 10,033              | 29.8      | 8,583                                   | 38.5        | 8,583               | 258.1      | 1,586             | 7,497       |
|                                  | 2024 | 687,431 | 6.0      | 10.0        |              | 4.0           | 2,750    | 2.5      | 7.4        |            | 4.9        | 3,368    | 10,033              | 33.1      | 8,583                                   | 45.6        | 8,583               | 266.2      | 1,562             | 7,680       |
|                                  | 2025 | 710,694 | 6.0      | 10.0        |              | 4.0           | 2,843    | 2.5      | 7.4        |            | 4.9        | 3,482    | 10,033              | 36.3      | 8,583                                   | 52.7        | 8,583               | 274.3      | 1,538             | 7,863       |
| With case: MPT saturation        | 2026 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | 1,171             | 7,744       |
|                                  | 2027 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | 1,171             | 7,744       |
|                                  | 2028 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | 1,171             | 7,744       |
|                                  | 2029 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | 1,171             | 7,744       |
| Without case: cereals saturation | 2030 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | . 1,171           | 7,744       |
|                                  | 2031 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | 1,171             | 7,744       |
|                                  | 2032 | 738,510 | 6.0      | 10.0        |              | 4.0           | 2,954    | 2.5      | 7.4        |            | 4.9        | 3,619    | 10,033              | 41.8      | 8,583                                   | 103.7       | 8,583               | 289.0      | 1,171             | 7,744       |

Note (1): "With" and "Without in the heading of the table mean "with-the project" case and "without-the project" case, respective

DETAILED DESIGN ON PORT REACTIVATION PROJECT IN LA UNION PROVINCE (JICA)

|                                     |      |         | N .      |             | + 4          | Table H.      | 1.3 Econ  | omic Ber | aefits Ger | serated in   | r Fertiliz | er Trans | ort                |           |                     |            |                     |            |                   |             |
|-------------------------------------|------|---------|----------|-------------|--------------|---------------|-----------|----------|------------|--------------|------------|----------|--------------------|-----------|---------------------|------------|---------------------|------------|-------------------|-------------|
|                                     | 1    |         |          | nsport cost | (sea navigat | ion + berth : |           |          |            | d Trasport ( |            |          |                    |           | Offshore            | Ship Waiti | ng Cost             |            |                   |             |
|                                     |      | Volumme | With (La | Without     |              | Difference    |           | With (La | Without    | 1            | Difference | l .      |                    |           |                     |            |                     |            | Total             | Total       |
|                                     | l    |         | Union)   | (Acajutla)  | (Quetzai)    | (benefit)     | bebefits  | Union)   | (Acapulla) | (Quetzal)    | (benefit)  | bebefits |                    | a Union)  | With (A             |            |                     | (Acajutia) | bebefit           | benefits    |
| Remarks in port saturation          | Year | ··· MT  | USSAMT   | USS/MIT     | US\$/MT      | US\$/MT       | '000 US\$ | US\$/MT  | US\$/MT    | US\$/MT      | US\$/MT    | 2SU 000  | USS/vesse<br>1/day | toal days | US\$/vessel/<br>day | toal days  | US\$/vesse<br>1/day | toal days  | 1000 US\$         |             |
|                                     |      | Α.      | В        | С           | D            | <del> </del>  |           | G        | H          | 1            | J = H-G    | K=J×A    | L                  | М         | N                   | 0          | P                   | Q          | R≂PxQ-<br>NxO-LxM | S=F+K<br>+R |
| La Union: 26,000 DWT                | 2005 | 105,300 | 20.8     | 23,2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 11.3      | 7,942               | 1.3        | 7,942               | 2.8        | -78               | 691         |
| Acajutla: 26,000 DWT                | 2006 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 12.4      | 7,942               | 1.1        | 7,942               | 2.6        | -87               | 682         |
|                                     | 2007 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 13.6      | 7,942               | 0.9        | 7,942               | 2.4        | -96               | 673         |
|                                     | 2008 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 14.7      | 7,942               | 0.7        | 7,942               | 2.3        | -105              | 664         |
|                                     | 2009 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 15.9      | 7,942               | 0.5        | 7,942               | 2.1        | -113              | 655         |
|                                     | 2010 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 17.0      | 7,942               | 0.3        | 7,942               | 1.9        | -122              | 646         |
|                                     | 2011 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 16.2      | 7,942               | 1.1        | 7,942               | 3.7        | -108              | 660         |
|                                     | 2012 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 15.5      | 7,942               | 1.9        | 7,942               | 5.5        | -94               | 674         |
|                                     | 2013 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 14.7      | 7,942               | 2.6        | 7,942               | 7.2        | -80               | 688         |
|                                     | 2014 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 14.0      | 7,942               | 3.4        | 7,942               | 9.0        | -66               | 702         |
|                                     | 2015 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 13.2      | 7,942               | 4.2        | 7,942               | 10.8       | -52               | 716         |
|                                     | 2016 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 13.9      | 7,942               | 4.4        | 7,942               | 15.5       | -22               | 747         |
|                                     | 2017 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 14.5      | 7,942               | 4.5        | 7,942               | 20.2       | 9                 |             |
|                                     | 2018 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 15.2      | 7,942               | 4.7        | 7,942               | 24.9       |                   |             |
|                                     | 2019 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 15.8      | 7,942               | 4.8        | 7,942               | 29.6       |                   | 1           |
|                                     | 2020 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 16.5      | 7,942               | 5.0        | 7,942               | 34.3       |                   | 870         |
|                                     | 2021 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 17.1      | 7,942               | 7.2        | 7,942               | 73.7       | 393               | 1,161       |
|                                     | 2022 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 17.7      | 7,942               | 9.3        | 7,942               | 74.4       | 377               | 1,145       |
|                                     | 2023 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 18.2      | 7,942               | 11.5       | 7,942               | 125.1      | 757               | 1,526       |
|                                     | 2024 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 18.8      | 7,942               | 13.6       | 7,942               | 251.1      | 1,736             | 2,505       |
| Without case: fertilizer saturation | 2025 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 19.4      | 7,942               | 15.8       | 7,942               | 377.1      | 2,715             | 3,484       |
| With case: MPT saturation           | 2026 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |
|                                     | 2027 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |
|                                     | 2028 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |
|                                     | 2029 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |
|                                     | 2030 | 105,300 | 20.8     | 23.2        | L            | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |
|                                     | 2031 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        |              | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |
|                                     | 2032 | 105,300 | 20.8     | 23.2        |              | 2.4           | 253       | 2.5      | 7.4        | L            | 4.9        | 516      | 7,942              | 28.5      | 7,942               | 39.5       | 7,942               | 377.1      | 2,455             | 3,223       |

Note (1): "With" and "Without in the heading of the table mean "with-the project" case and "without-the project" case, respectively

Table H.1.4 Economic Benefits Generated in Iron & Steel Products Transport

|                             |      |         | Ship tra | insport cost | (sea naviga | ion + berth             | staying' |          | Lan        | d Trasport | Cost                     |           |                     |           | Offshor             | e Ship Wait | ing Cost           |              |                   |             |
|-----------------------------|------|---------|----------|--------------|-------------|-------------------------|----------|----------|------------|------------|--------------------------|-----------|---------------------|-----------|---------------------|-------------|--------------------|--------------|-------------------|-------------|
|                             | }    | Volumme | With (La | Without      | Without     | Difference              | Total    | With (La | Without    | Without    | Difference               | Total     |                     |           |                     |             |                    |              | Total             | Total       |
| Remarks in port             |      | i       | Union)   | (Acajutia)   | (Quetzal)   | (benefit)               | bebefits | Union)   | (Acajutla) | (Quetzal)  | (benefit)                | bebefits  |                     | a Union)  |                     | Acajutla)   |                    | (Acajutla)   | bebefit           | benefits    |
| saturation                  | Year | MT      | US\$/MT  | US\$/MT      | US\$/MT     | US\$/MT                 | '000 USS | US\$/MT  | US\$/MT    | US\$/MT    | US\$/MT                  | '000 US\$ | US\$/vessel<br>/dav | toal days | US\$/vessel<br>/day | toal days   | USS/vessel<br>/day | toal days    | '000 US\$         |             |
|                             |      | A       | В        | . с          | D .         | E=<br>Cxa+Dx(1<br>-a)-B | F=AxE    | G.       | н          | . I        | J =<br>Hxa+lx(1-<br>a)-G | K=J×A     | L                   | М         | , N                 | 0           | P                  | Q            | R=PxQ-<br>NxO-LxM | S=F+K<br>+R |
| La Union: 32,000 DW         | 2005 | 37,200  | 24.0     | 24.3         |             | 0.3                     | 11       | 2.5      | 7.4        |            | 4.9                      | 182       | . 8,450             | 3.9       | 8,450               | 4.2         | 8,450              | 5.3          | -24               | 170         |
| Acajutla: 32,000 DW         | 2006 | 40,860  | 24.0     | 24.3         |             | 0.3                     | 12       | 2.5      | 7.4        |            | 4.9                      | 200       | 8,450               | 6.5       | 8,450               | 5.3         | 8,450              | 8.4          | -29               | 183         |
|                             | 2007 | 44,520  | 24.0     | 24.3         |             | 0.3                     | 13       | 2.5      | 7.4        |            | 4.9                      | 218       | 8,450               | 9.2       | 8,450               | 6.4         | 8,450              | 11.5         | -35               | 197         |
|                             | 2008 | 48,180  | 24.0     | 24.3         |             | 0.3                     | 14       | 2.5      | 7.4        |            | 4.9                      | 236       | 8,450               | 11.8      | 8,450               | 7.6         | 8,450              | 14.6         | -40               | 210         |
|                             | 2009 | 51,840  | 24.0     | 24.3         |             | 0.3                     | 16       | 2.5      | 7.4        |            | 4.9                      | 254       | 8,450               | 14.5      | 8,450               | 8.7         | 8,450              | 17.7         | -46               | 224         |
|                             | 2010 | 55,500  | 24.0     | 24.3         |             | 0.3                     | 17       | 2.5      | 7.4        |            | 4.9                      | 272       | 8,450               | 17.1      | 8,450               | 9.8         | 8,450              | 20.8         | -52               | 237         |
|                             | 2011 | 60,180  | 24.0     | 24.3         |             | 0.3                     | 18       | 2.5      | 7.4        |            | 4.9                      | 295       | 8,450               | 18.6      | 8,450               | 12.0        | 8,450              | 32.4         | 15                | 328         |
|                             | 2012 | 64,860  | 24.0     | 24.3         |             | 0.3                     | 19       | 2.5      | 7.4        |            | 4.9                      | 318       | 8,450               | 20.2      | 8,450               | 14.1        | 8,450              | 44.0         | 82                | 420         |
|                             | 2013 | 69,540  | 24.0     | 24.3         |             | 0.3                     | 21       | 2.5      | 7.4        |            | 4.9                      | 341       | 8,450               | 21.7      | 8,450               | 16.3        | 8,450              | <i>5</i> 5.7 | 149               | 511         |
|                             | 2014 | 74,220  | 24.0     | 24.3         |             | 0.3                     | 22       | 2.5      | 7.4        |            | 4.9                      | 364       | 8,450               | 23.3      | 8,450               | 18.4        | 8,450              | 67.3         | 216               | 602         |
|                             | 2015 | 78,900  | 24.0     | 24.3         |             | 0.3                     | 24       | 2.5      | 7.4        |            | 4.9                      | 387       | 8,450               | 24.8      | 8,450               | 20.6        | 8,450              | 78.9         | 283               | 693         |
|                             | 2016 | 86,101  | 24.0     | 24.3         |             | 0.3                     | 26       | 2.5      | 7.4        |            | 4.9                      | 422       | 8,450               | 9.8       | 8,450               | 29.2        | 8,450              | 152.7        | 961               | 1,408       |
|                             | 2017 | 93,303  | 24.0     | 24.3         |             | 0.3                     | 28       | 2.5      | 7.4        |            | 4.9                      | 457       | 8,450               | 29.9      | 8,450               | 37.8        | 8,450              | 226.4        | 1,342             | 1,827       |
|                             | 2018 | 100,504 | 24.0     | 24.3         |             | 0.3                     | 30       | 2.5      | 7.4        |            | 4.9                      | 492       | 8,450               | 33.7      | 8,450               | 46.3        | 8,450              | 300.2        | 1,860             | 2,383       |
|                             | 2019 | 107,705 | 24.0     | 24.3         |             | 0.3                     | 32       | 2.5      | 7.4        |            | 4.9                      | 528       | 8,450               | 32.7      | 8,450               | 54.9        | 8,450              | 373.9        | 2,419             | 2,979       |
|                             | 2020 | 114,906 | 24.0     | 24.3         |             | 0.3                     | 34       | 2.5      | 7.4        |            | 4.9                      | 563       | 8,450               | 22.4      | 8,450               | 63.5        | 8,450              | 447.7        | 3,057             | 3,655       |
| Without iron/steel saturati | 2021 | 125,394 | 24.0     | 24.3         |             | 0.3                     | 38       | 2.5      | 7.4        |            | 4.9                      | 614       | 8,450               | 43.6      | 8,450               | 112.3       | 8,450              | 1,094.5      | 7,932             | 8,584       |
| Start to Divert to Quetza!  | 2022 | 135,882 | 24.0     | 24.3         | 36.6        | 1.2                     | 169      | 2.5      | 7.4        | 10.1       | 5.1                      | 694       | 8,450               | 64.8      | 8,450               | 161.0       | 8,450              | 1,094.5      | 7,341             | 8,204       |
|                             | 2023 | 146,369 | 24.0     | 24.3         | 36.6        | 2.1                     | 301      | 2.5      | 7.4        | 10.1       | 5.3                      | 774       | 8,450               | 86.0      | 8,450               | 209.8       | 8,450              | 1,094.5      | 6,749             | 7,824       |
| With iron/steel saturation  | 2024 | 156,857 | 24.0     | 24.3         | 36.6        | 2.8                     | 432      | 2.5      | 7.4        | 10.1       | 5.4                      | 854       | 8,450               | 107.2     | 8,450               | 258.5       | 8,450              | 1,094.5      | 6,158             | 7,444       |
| Start to Divert to La Union | 2025 | 167,344 | 24.0     | 24.3         | 36.6        | 3.4                     | 564      | 2.5      | 7.4        | 10.1       | 5.6                      | 933       | 8,450               | 128.4     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,979             | 7,477       |
| With case: La Union MPT     | 2026 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |
|                             | 2027 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |
|                             | 2028 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |
|                             | 2029 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |
|                             | 2030 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |
|                             | 2031 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |
|                             | 2032 | 182,618 | 24.0     | 24.3         | 36.6        | 4.1                     | 756      | 2.5      | 7.4        | 10.1       | 5.7                      | 1,049     | 8,450               | 239.6     | 8,450               | 258.5       | 8,450              | 1,094.5      | 5,040             | 6,845       |

Note (1): "With" and "Without in the heading of the table mean "with-the project" case and "without-the project" case, respective

Note (2): In Colume "D" from the year 2022, payment of US\$ 2.6+9.35 to Quetzal Port for stevedoring and haulage is added to ship transport cost

Table H1.5 Economic Benefits Generated in Raw Sugar Transport

| *************************************** |      |         | Ship tre | ansport cost | (sea naviga | ion + berth | staying'  |          | Lan        | d Trasport | Cost       |           |              | ,         | Offshor      | e Ship Wait | ing Cost     |            |                   | 1           |
|-----------------------------------------|------|---------|----------|--------------|-------------|-------------|-----------|----------|------------|------------|------------|-----------|--------------|-----------|--------------|-------------|--------------|------------|-------------------|-------------|
| ļ ·                                     |      | Volumme | With (La | Without      | Without     | Difference  | Total     | With (La | Without    | Without    | Difference | Total     |              |           |              |             |              |            | Total             | Total       |
| Remarks in port                         |      |         | Union)   | (Acajutla)   | (Quetzal)   | (benefit)   | bebefits  | Union)   | (Acajutla) | (Quetzal)  | (benefit)  | bebefits  | With (L      | a Union)  | With (A      | Acajutla)   | Without      | (Acajutla) | bebefit           | benefits    |
| saturation                              | Year | мт      | US\$/MT  | US\$/MT      | US\$/MT     | US\$/MT     | '000 US\$ | US\$/MT  | US\$/MT    | US\$/MT    | US\$/MT    | '000 US\$ | S\$/vesse1/d | toal days | S\$/vessel/d | toal days   | S\$/vessel/d | toal days  | '000 USS          |             |
|                                         | ٠.   | A       | В        | С            | י מ         | E≃C-B       | F=AxE     | G        | H          | Ţ          | J = H-G    | K≈JxA     | L            | М         | N            | 0           | P            | Q          | R=PxQ-<br>NxO-LxM | S≃F+K<br>+R |
| La Union: 26,000 DW                     | 2005 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 8.3       | 7,942        | 0.0         | 7,942        | 0.0        | -66               | 372         |
| Acajutla: 26,000 DW                     | 2006 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 8.3       | 7,942        | 0.0         | 7,942        | 0.0        | -66               | 372         |
|                                         | 2007 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 8.3       | 7,942        | 0.0         | 7,942        | 0.0        | -66               | 372         |
|                                         | 2008 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 8.3       | 7,942        | 0.0         | 7,942        | 0.0        | -56               | 372         |
|                                         | 2009 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 8.3       | 7,942        | 0.0         | 7,942        | 0.0        | -66               | 372         |
|                                         | 2010 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 8.3       | 7,942        | 0.0         | 7,942        | 0.0        | -66               | 372         |
|                                         | 2011 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 9.0       | 7,942        | 0.0         | 7,942        | 0.0        | -72               | 366         |
|                                         | 2012 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 9.7       | 7,942        | 0.0         | 7,942        | 0.0        |                   | 361         |
|                                         | 2013 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 10.5      | 7,942        | 0.0         | 7,942        | 0.0        | -83               | 355         |
|                                         | 2014 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 11.2      | 7,942        | 0.0         | 7,942        | 0.0        | -89               | 349         |
|                                         | 2015 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 11.9      | 7,942        | 0.0         | 7,942        | 0.0        | -95               | 343         |
|                                         | 2016 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            | 1          | 4.9        |           | 7,942        | 11.9      | 7,942        | 0.0         | 7,942        | 0.0        | -95               | 343         |
|                                         | 2017 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 7.9       | 7,942        | 0.0         | 7,942        | 0.0        | -63               | 375         |
|                                         | 2018 | 60,000  | 26.8     |              |             | 2.4         | 144       | 2,5      |            |            | 4.9        | 294       | 7,942        | 8.2       | 7,942        | 0.0         | 7,942        | 0.0        |                   | 373         |
|                                         | 2019 | 60,000  | 26.8     |              |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 2.9       | 7,942        | 0.0         | 7,942        | 0.0        | 1                 | 415         |
|                                         | 2020 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | . 4.9      | 294       | 7,942        | 9.3       | 7,942        | 0.0         | 7,942        | 0.0        | 1                 | 364         |
|                                         | 2021 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 8.4       | 7,942        | 0.0         | 7,942        | 0.0        | 1                 | 371         |
|                                         | 2022 | 60,000  | 26.8     |              |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 7.6       | - 21 110     | 0.0         | 7,942        | 0.0        | -60               | 378         |
|                                         | 2023 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      |            |            | 4.9        | 294       | 7,942        | 6.7       | 7,942        | 0.0         | 7,942        | 0.0        | -53               | 385         |
|                                         | 2024 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 5.9       | 7,942        | 0.0         | 7,942        | 0.0        | -47               | 391         |
|                                         | 2025 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 5.0       | 7,942        | 0.0         | 7,942        | 0.0        | -40               | 398         |
| With case: La Union satur               | 2026 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | 0.0         | 7,942        | 0.0        | -96               | 342         |
|                                         | 2027 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | . 0.0       | 7,942        | 0.0        | -96               | 342         |
|                                         | 2028 | 60,000  | 26.8     |              |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | 0.0         | 7,942        | 0.0        |                   | 342         |
|                                         | 2029 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | 0.0         | 7,942        | 0.0        | -96               | 342         |
|                                         | 2030 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | 0.0         | 7,942        | 0.0        | -96               | 342         |
|                                         | 2031 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | 0.0         | 7,942        | 0.0        | -96               | 342         |
|                                         | 2032 | 60,000  | 26.8     | 29.2         |             | 2.4         | 144       | 2.5      | 7.4        |            | 4.9        | 294       | 7,942        | 12.1      | 7,942        | 0.0         | 7,942        | 0.0        | -96               | 342         |

Note (1): "With" and "Without in the heading of the table mean "with-the project" case and "without-the project" case, respective

Table H.1.6 Summary of Benefits Generated from the Project in Handling Containers at La Union Port

|                                         | <u> </u> |        | Sal       | vadorian k   | eal contair | ne re   | *************************************** | Poroion oc | ntainora to | transit La | Ilaian Bart |               |
|-----------------------------------------|----------|--------|-----------|--------------|-------------|---------|-----------------------------------------|------------|-------------|------------|-------------|---------------|
|                                         |          |        | Siti      | Vationali ic | icai coman  | icis    |                                         | roreign co |             | transit La | Onion Pon   |               |
|                                         |          |        |           |              |             | ·       |                                         | Currently  | Currently   |            |             | - 174<br>- 17 |
|                                         | La Union | Currer | ıtly via  | Currently    | transitting |         |                                         | via their  | transit-    |            |             | Bebefits      |
| Year                                    | Total    |        | ila port  |              | al Port     | Loca    | l total                                 | own        | ing         | Trans      | it total    | Total         |
|                                         | Volume   |        |           |              |             |         |                                         | foreign    | Quetzal     |            |             | [             |
|                                         |          | ar a   |           |              |             |         |                                         | ports      | Port        |            | 14 T 4 T    |               |
|                                         |          | Volume | Benefits  | Volume       | Benefits    | Volume  | Benefits                                | Volume     | Volume      | Volume     | Benefits    |               |
|                                         | TEUs     | TEUs   | '000 US\$ | TEUs         | '000 US\$   | TEUs    | '000 US\$                               | TEUs       | TEUs        | TEUs       | '000 US\$   | '000 US\$     |
| 2005                                    | 120,60   | 24,300 | 2,227     | 41,887       | 5,929       | 66,187  | 8,156                                   | 40,000     | 14,413      | 54,413     | 4,829       | 12,985        |
| 2006                                    | 133,400  | 27,180 | 2,473     | 46,292       | 6,434       | 73,472  | 8,907                                   | 44,000     | 15,928      | 59,928     |             |               |
| 2007                                    | 146,200  | 30,060 | 2,719     | 50,696       | 6,926       | 80,756  | 9,645                                   | 48,000     | 17,444      | 65,444     | 5,608       | 15,253        |
| 2008                                    | 159,000  | 32,940 | 2,964     | 55,101       | 7,407       | 88,041  | 10,372                                  |            | 18,959      | 70,959     | 5,983       |               |
| 2009                                    | 171,800  | 35,820 | 3,210     |              | 7,878       | ·····   | 11,088                                  |            | 20,475      | 76,475     | 6,350       |               |
| 2010                                    | 184,60   | 38,700 | 3,455     |              | 8,339       |         | 11,794                                  |            | 21,990      |            | 6,708       |               |
| 2011                                    | 202,800  | 42,960 | 3,817     | 70,710       |             | 113,670 | 13,016                                  |            | 24,330      | 89,130     | 7,275       | 20,291        |
|                                         | 221,000  | 47,220 | 4,179     |              |             | 124,730 | 14,238                                  |            | 26,670      | 96,270     | 7,842       | 22,080        |
|                                         | 239,200  | 51,480 | 4,541     | 84,310       |             | 135,790 | 15,459                                  |            |             | 103,410    | 8,409       |               |
|                                         | 257,400  | 55,740 |           | 91,110       |             | 146,850 | 16,679                                  |            |             | 110,550    | 8,977       | 25,656        |
|                                         | 275,60   | 60,000 |           | 97,910       |             | 157,91  | 17,900                                  | _          |             | 117,69     | 9,544       | 27,444        |
|                                         | 303,805  | 65,676 |           | 106,587      | _           | 172,263 | 19,517                                  |            |             | 131,542    | 10,668      | 30,185        |
|                                         | 332,010  | 71,889 |           | 116,032      |             | 187,921 | 21,281                                  |            |             | 144,089    | 11,685      | 32,966        |
| 2018                                    | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
| <del></del>                             | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
| *************************************** | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    | 50,270      |            | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    | 12,587      | 35,792        |
|                                         | 360,215  | 78,689 |           | 126,314      |             | 205,004 | -                                       | 104,941    |             | 155,211    | 12,587      | 35,792        |
| <u></u>                                 | 360,215  | 78,689 |           | 126,314      |             | 205,004 |                                         | 104,941    |             | 155,211    |             |               |
| Notes In                                |          |        | 0,903     |              | 10,302      | -00,004 | 2006 1                                  | 104,741    | 30,270      | 122,611    | 12,587      | 35,792        |

Note: In EIRR estimation, the benfits from the latter half of the year 2006 when operations will start to 2032 was considred.

Table H.1.7 Summary of Benefits Generated from the Project in Handling Container

|      | Ī .                |       | 1 111            |                  |             |                  |                  |                  |                  |                  | Salvadoria       | local co           | ntainer.         |                  |                  |                  |                                   | For                               | ign contain               | ers to tra       | nsit La U        | nion Por |                  |                  |                  |
|------|--------------------|-------|------------------|------------------|-------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------|------------------|-----------------------------------|-----------------------------------|---------------------------|------------------|------------------|----------|------------------|------------------|------------------|
| Year |                    | Ľa    | Union To         | tal (Local       | + Tran      | ısit)            |                  | Currently        | via Acaji        | utla port        | Currently 1      | ransittin;<br>Port | g Quetzal        |                  | Local total      | I                | Currently<br>via foreign<br>ports | Currentl<br>y<br>transitt-<br>ing |                           |                  | Transit          | total    |                  |                  | Total<br>bebefit |
|      | Laden +<br>Empty   | Laden | Laden            | Empty            | TEU/<br>Box | Laden            | Empty            | Laden +<br>Empty | Laden            | Total<br>bebefit | Laden +<br>Empty | Laden              | Total<br>bebefit | Laden +<br>Empty | Laden            | Total<br>bebefit | Laden +<br>Empty                  | Laden +<br>Empty                  | Laden +<br>Empty          | Laden            | Empty            |          |                  | Total<br>bebefit | 1,5              |
| 2005 | TEUs               | %     | TEUs             | TEUs             | 2 772       | Boxes            | Boxes            | TEUs             | TEUs             | '000 US\$        | TEUs             | TEUs               | \$2U 000         | TEUs             | TEUs             | '000 US\$        | TEUs                              | TEUs                              | TEUs                      | TEUs             | TEUs             |          |                  |                  | 000 US\$         |
| 2005 | 120,600            | 0.612 | 73,784           | 46,816           |             | 43,121           | 27,360           | 24,300           | 14,867           | 2,227            | 41,887<br>46,292 | 25,627             | 5.929            | 66,187<br>73,472 | 40,494           | 8.156            | 40,000<br>44,000                  | 14,413<br>15,928                  | 54,413<br>59,928          | 33,290           | 21.123           | 19,455   | 12,345           | 4,829            | 12,985           |
| 2000 | 133,400            | 0.604 | 81,031           | 52,369           | 1.75        | 46,176           | 29,843           | 27,180           | 16,510           | 2,473            | 50,696           | 28,119             | 6,434<br>6,926   | 80,756           | 44,629           | 8,907            | 48,000                            | 17,444                            |                           | 36,402           | 23,526           | 20,744   | 13,407           | 5,224            | 14,130           |
| 2007 | 146,200<br>159,000 | 0.601 | 88,277<br>95,524 | 57,923           |             | 49,083<br>51,852 | 32,206<br>34,456 | 30,060<br>32,940 | 18,151<br>19,790 | 2,719<br>2,964   | 55,101           | 30,611             | 7,407            | 88,041           |                  | 9,645<br>10,372  | 52,000                            | 18,959                            | 65,444<br>70,9 <b>5</b> 9 | 39,516<br>42,631 | 25,928<br>28,328 | 23.141   | 14,416           | 5,608<br>5,983   | 15,253<br>16,355 |
| 2009 | 171.800            | 0.598 | 102,770          | 63,476<br>69,030 |             | 54,493           | 36,602           | 35,820           | 21.427           | 3,210            | 59,505           | 33,103<br>35,596   | 7,407            | 95,325           | 52,893<br>57,023 | 11.088           | 56,000                            | 20,475                            | 76,475                    | 45,747           | 30.728           | 24.257   | 15,377<br>16,293 | 6,350            | 17,438           |
| 2010 | 184,600            | 0.596 |                  | 74,583           |             | 57.014           | 38,651           | 38,700           | 23,064           | 3,455            | 63,910           | 38,089             | 8.339            |                  | 61,153           | 11.794           | 60,000                            | 21,990                            | 81,990                    | 48,864           | 33,126           | 25,323   | 17,167           | 6,708            |                  |
| 2011 | 202,800            | 0.598 | 120.292          | 82,508           |             | 62,339           | 42,758           | 42,960           | 25,482           | 3,433            | 70,710           | 41.942             | 9.199            |                  | 67,424           | 13.016           | 64,800                            | 24,330                            | 89,130                    | 52.868           | 36,262           | 27,398   | 18,792           | 7,275            |                  |
| 2012 | 221,000            | 0.591 | 130,566          | 90,434           | 1.93        | 67,663           | 46,866           | 47,220           | 27,897           | 4,179            | 77,510           | 45,793             | 10.059           | 124,730          | 73,690           | 14,238           | 69,600                            | 26,670                            | 96,270                    | 56,876           | 39,394           | 29,475   | 20.415           | 7.842            | 22,080           |
| 2012 | 239,200            | 0.589 | 140,841          | 98,359           | 1.93        | 72,988           | 50,973           | 51,480           | 30,311           | 4,541            | 84,310           | 49,642             | 10,039           | 135,790          | 79,953           | 15,459           | 74,400                            | 29,010                            | 103,410                   | 60.888           | 42,522           | 31,554   | 22,036           | 8,409            | 23,868           |
| 2013 | 257,400            | 0.587 | 151,115          | 106.285          |             | 78,313           | 55,080           | 55,740           | 32,724           | 4,902            | 91.110           | 53,489             | 11,777           | 146,850          | 86,213           | 16,679           | 79,200                            | 31,350                            | 110,550                   | 64,902           |                  | 33,634   | 23,656           | 8,977            | 25,656           |
| 2015 | 275,600            | 0.586 |                  | 114,210          | 7.2.7       | 83,637           | 59,187           | 60,000           | 35,136           | 5,263            | 97,910           | 57.336             | 12,636           | 157,910          | 92,472           | 17,900           | 84,000                            | 33,690                            | 117,690                   | 68,918           | 48,771           | 35,716   | 25,275           | 9,544            | 27,444           |
| 2016 | 303,805            | 0.586 | 177.907          | 125.898          |             | 92,197           | 65,244           | 65,676           | 38,459           | 5,761            | 106,587          | 62,417             | 13,756           | 172,263          | 100,876          | 19,517           | 90,469                            | 41.073                            | 131,542                   | 77.031           | 54.512           | 39,920   | 28,250           | 10.668           | 30.185           |
| 2017 | 332,010            | 0.586 | 194,423          | 137.587          |             | 100,756          | 71,302           | 71,889           | 42,098           | 6,306            | 116,032          | 67.948             | 14,975           | 187,921          | 110,045          | 21,281           | 97,437                            | 46,652                            | 144,089                   | 84,378           | 59.711           | 43,727   | 30,944           | 11,685           | 32,966           |
| 2018 | 360,215            | 0.586 | 210.940          | 149.275          | 1.93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126.314          | 73.969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47,102   | 33,333           | 12.587           | 35,792           |
| 2019 | 360,215            |       | 210,940          | 149,275          | 1.93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47,102   | 33,333           | 12.587           | 35,792           |
| 2020 | 360,215            | 0.586 | 210,940          | 149,275          | 1.93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90.891           | 64,320           | 47,102   | 33,333           | 12,587           | 35,792           |
| 2021 | 360,215            |       | 210,940          | 149,275          |             | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90.891           | 64,320           | 47,102   | 33,333           | 12.587           | 35,792           |
| 2022 | 360,215            |       | 210,940          | 149,275          | 1.93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47,102   | 33,333           | 12.587           | 35,792           |
| 2023 | 360,215            |       | 210,940          | 149,275          | 1.93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16.302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47,102   | 33,333           | 12,587           | 35,792           |
| 2024 | 360,215            |       | 210,940          | 149,275          |             | 109,316          | 77,359           | 78,689           | 46.080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           |          | 33.333           | 12,587           | 35,792           |
| 2025 | 360,215            |       | 210,940          | 149,275          | 1.93        | 109,316          | 77,359           | 78.689           | 46,080           | 6,903            | 126,314          | 73,969             |                  | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           |          | 33,333           | 12,587           | 35,792           |
| 2026 | 360,215            |       | 210,940          | 149,275          | 1,93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47.102   | 33,333           | 12,587           | 35,792           |
| 2027 | 360,215            | 0.586 | 210,940          | 149,275          | 1,93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64.320           | 47.102   | 33,333           | 12,587           | 35,792           |
| 2028 | 360,215            | 0.586 | 210,940          | 149,275          | _           | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16.302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47,102   | 33,333           | 12,587           | 35,792           |
| 2029 | 360,215            |       | 210,940          | 149,275          |             | 109.316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             |                  | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           |          | 33.333           | 12,587           | 35,792           |
| 2030 | 360,215            |       | 210,940          | 149.275          | 1.93        | 109,316          | 77,359           | 78,689           | 46,080           | 6,903            | 126,314          | 73.969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47.102   | 33,333           | 12,587           | 35,792           |
| 2031 | 360,215            |       | 210.940          | 149,275          | 1.93        | 109.316          | 77.359           | 78,689           | 46,080           | 6,903            | 126,314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155,211                   | 90,891           | 64,320           | 47.102   | 33.333           | 12.587           | 35,792           |
| 2032 | 360.215            |       | 210,940          | 149,275          | 1.93        | 109,316          | 77.359           | 78,689           | 46,080           | 6,903            | 126.314          | 73,969             | 16,302           | 205,004          | 120,049          | 23,205           | 104,941                           | 50,270                            | 155.211                   | 90,891           | 64,320           | 47.102   | 33.333           | 12.587           | 35,792           |
|      |                    |       |                  | ,,_              |             |                  | 1000             | . 0,000          | , -, -           | 9,790            |                  |                    |                  |                  |                  |                  |                                   |                                   |                           | -,,              | 2.40.00          | ,202     | -21223           | ///              |                  |

APPENDIX H

|                                        |                                                |         |                   |                   |                   | ts Generated in (    |               | ansport (cı  | irrently vi   | a Acajutla pat    | tern)             |                   |                      |               |               |
|----------------------------------------|------------------------------------------------|---------|-------------------|-------------------|-------------------|----------------------|---------------|--------------|---------------|-------------------|-------------------|-------------------|----------------------|---------------|---------------|
|                                        |                                                | Volume  |                   |                   |                   | a navigation + be    |               |              |               |                   |                   | and Trasport Cos  |                      |               | Total pebefit |
| Remarks in port                        | Year                                           | (Laden) | With (La Union)   |                   |                   | Difference (benefit) | Total bebefit | Contribution | Total bebefit | With (La Union)   | Without (Acajuda) | Without (Quetzal) | Difference (benefit) | Total bebefit |               |
| saturation                             | 1 Can                                          | TEUs    | Unit price \$/TEU | Unit price \$/TEU | Unit price \$/TEU | Unit price \$/TEU    | 900 US\$      | %            | 1000 US\$     | Unit price \$/TEU | Unit price \$/TEU | Unit price \$/TEU | Unit price S/TEU     | 500 T22       | 900 US\$      |
|                                        | <u>i                                      </u> | Α       | В                 | C                 | D                 | E = C+D-B            | F=AxE         | Fl           | F2            | G                 | Н                 | I                 | J = H+1-G            | K=AxI         | L = F+ K      |
|                                        | 2005                                           | 14,867  | 1,365.0           | 1,664.0           |                   | 299.0                | 4,445         |              | 2,223         |                   | 72.6              |                   | 0.3                  | 4             | 2,227         |
|                                        | 2006                                           | 16,510  |                   | 1,664.0           |                   | 299.0                | 4,936         |              | 2,468         | 72.3              | 72.6              |                   | 0.3                  | 5             | 2,473         |
|                                        | 2007                                           | 18,151  | 1,365.0           | 1,664.0           |                   | 299.0                | 5,427         | 0.5          | 2,714         |                   | 72.6              |                   | 0.3                  |               | 2,719         |
|                                        | 2008                                           | 19,790  | 1,365.0           |                   |                   | 299.0                | 5,917         |              | 2,959         | 72.3              | 72.6              |                   | 0.3                  | 6             | 2,964         |
|                                        | 2009                                           | 21,427  | 1,365.0           | 1,664.0           |                   | 299.0                | 6,407         | 0.5          | 3,203         | 72.3              | 72.6              |                   | 0.3                  | 6             | 3,210         |
|                                        | 2010                                           | 23,064  | 1,365.0           | 1,664.0           |                   | 299.0                | 6,896         | 0.5          | 3,448         | 72.3              | 72.6              |                   | 0.3                  | 7             | 3,455         |
|                                        | 2011                                           | 25,482  | 1,365.0           | 1,664.0           |                   | 299.0                | 7,619         | 0.5          | 3,810         | 72.3              | 72.6              |                   | 0.3                  | 8             | 3,817         |
|                                        | 2012                                           | 27,897  | 1,365.0           | 1,664.0           |                   | 299.0                | 8,341         | 0.5          | 4,171         | 72.3              | 72.6              |                   | 0.3                  | 8             | 4,179         |
|                                        | 2013                                           | 30,311  | 1,365.0           | 1,664.0           |                   | 299.0                | 9,063         | 0.5          | 4,532         | 72.3              | 72.6              |                   | 0.3                  | 9             | 4,541         |
| · · · · · · · · · · · · · · · · · · ·  | 2014                                           | 32,724  | 1,365.0           | 1,664.0           |                   | 299.0                | 9,784         | 0.5          | 4,892         | 72.3              | 72.6              |                   | 0.3                  | 10            | 4,902         |
|                                        | 2015                                           | 35,136  | 1,365.0           | 1,664.0           |                   | 299.0                | 10,506        | 0.5          | 5,253         | 72.3              | 72.6              |                   | 0.3                  | 11            | 5,263         |
|                                        | 2016                                           | 38,459  | 1,365.0           | 1,664.0           |                   | 299.0                | 11,499        | 0.5          | 5,750         | 72.3              | 72.6              |                   | 0.3                  | 12            | 5,761         |
|                                        | 2017                                           | 42,098  | 1,365.0           | 1,664.0           |                   | 299.0                | 12,587        | 0.5          | 6,294         | 72.3              | 72.6              |                   | 0.3                  | 13            | 6,306         |
| With case: La Union saturation         | 2018                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2019                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2020                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2021                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         |                   | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2022                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2023                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2024                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2025                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2026                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0_3                  | 14            | 6,903         |
| ······································ | 2027                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2028                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2029                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2030                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6.903         |
|                                        | 2031                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |
|                                        | 2032                                           | 46,080  | 1,365.0           | 1,664.0           |                   | 299.0                | 13,778        | 0.5          | 6,889         | 72.3              | 72.6              |                   | 0.3                  | 14            | 6,903         |

Note (1): "With" and "Without in the heading of the table mean "with the project" case and "without the project" case, respective Note (2): Laden containers handling base, origins/destinations are Asian countric Note (3): Benefits to contribute to El Salvador is considered to be 50% of the total generated in savings of ship transport cos

Note (4): Combined Conversion Factor of 0.790 is used for estimateing economic costs for land transpor

APPENDIX H

DETAILED DESIGN ON PORT REACTIVATION PROJECT IN LAUNION PROVINCE (JICA)

|                              |      |         |         |          | Table H.1.9 F     | Conomic Benefi    | is Generated in   | Container Tran       | sport (local  | containers   | currently '   | via Quetzal Po    |                    | ·                 |                      |               |                   |                   |               |               |
|------------------------------|------|---------|---------|----------|-------------------|-------------------|-------------------|----------------------|---------------|--------------|---------------|-------------------|--------------------|-------------------|----------------------|---------------|-------------------|-------------------|---------------|---------------|
|                              |      |         | Volume  |          |                   |                   |                   | a navigation + ber   |               |              |               |                   |                    | nd Trasport Cos   |                      |               | Payment to For    |                   |               | Total behefit |
| Remarks in port              | Year | (Lacos) | (Laden) | (Ecopty) |                   |                   |                   | Difference (Denetif) | Total behalis | Contribution | Total benefit | With (La Union)   | Without (Acajutla) | Without (Quetzal) | Difference (benefit) | Total benefit | Without (Quetzal) | Without (Quetral) | Total behefit | 100100101     |
| saturation                   | `    | TEUs    | boxes   | boxes    | Unit price \$/TEU | Unit price \$/1EU | Unit price \$/TEU | Unit price \$77EU    | 000 US\$      | 9%           | 000 US\$      | Unit price \$/TEU | Unit price \$/TEU  | Unit price \$/TEU | Unit price \$/TEU    | 000 US\$      | ardfladen 5/box   | And Empty Sobox   | 200 US\$      | 7000 US\$     |
|                              |      | _ A     | Α'      |          | В                 | C                 | ם                 | E = D-B              | FEAXE         | Fi           | F2            |                   | H                  | I                 | J = I-G              | K=AxI         | L                 |                   | M=A'xL        | L = F2+ K+M   |
|                              | 2005 | 25,627  | 14,977  | 9,503    |                   | 1,078.0           | 1,041.0           | 99.0                 | 2,537         | 0.5          |               |                   | 72.6               | 125.8             | 53.5                 | 1,371         |                   | 94.0              | 3,290         | 5,929         |
|                              | 2006 | 28,115  | 16,024  | 10,350   |                   | 1.078.0           |                   | 99.0                 | 2,784         |              |               |                   | 72.6               | 125.8             | 53.5                 | 1.504         |                   | 94.0              | 3,537         | 6,434         |
|                              | 2007 | 30,611  | 17,020  |          |                   |                   |                   | 99.0                 |               |              |               |                   | 72.6               | 125.8             | 53.5                 | 1,638         |                   | 94.0              | 3,773         | 6,926         |
|                              | 2008 | 33,103  | 17,969  |          |                   |                   | 1,041.C           | 99.0                 | 3,277         |              |               |                   | 72.6               | 125.8             | 53.5                 | 1,771         |                   | 94.0              | 3,997         | 7,407         |
|                              | 2009 | 35,596  | 18,874  | 12,678   |                   |                   |                   | 99.0                 | 3,524         |              |               |                   | 72.6               | 125.8             | 53.5                 | 1,904         |                   | 94.0              | 4,212         | 7,878         |
|                              | 2010 | 38,089  | 19,739  | 13,381   |                   | 1,078.0           |                   | 99.0                 | 3,771         |              |               |                   | 72.6               | 125.8             | 53.5                 | 2,038         |                   | 94.0              | 4,416         | 8,339         |
|                              | 2011 | 41,942  | 21,736  | 14,908   |                   | 1,078.0           | 1,041.0           | 99.0                 | 4,152         |              |               |                   | 72.6               | 125.8             | 53.5                 | 2,244         |                   | 94.0              | 4,879         | 9,199         |
|                              | 2012 | 45,793  | 23,731  | 16,437   | 942.0             | 1,078.0           | 1,041.0           | 99.0                 | 4,533         | 0.5          |               | 72.3              | 72.6               | 125.8             | 53.5                 | 2,450         | 160.0             | 94.0              | 5,342         | 10,059        |
|                              | 2013 | 49,642  | 25,726  | 17,966   | 942.0             | I,078.C           | 1,041.0           | 99.0                 | 4,915         | 0.5          | 2,457         | 72.3              | 72.6               | 125.8             | 53.5                 | 2,656         | 160.0             | 94.0              | 5,805         | 10,918        |
|                              | 2014 | 53,485  | 27,720  | 19,496   | 942.0             | 1.078.0           | 1,041.0           | 99.0                 | 5,295         | 0.5          | 2,648         | 72.3              | 72.6               | 125.8             | 53.5                 | 2,862         | 160.0             | 94.0              | 6,268         | 11,777        |
|                              | 2015 | 57,336  | 29,713  | 21,027   | 942.0             | 1,078.0           | 1,041.0           | 99.0                 | 5,676         | 0.5          | 2,838         | 72.3              | 72.6               | 125.8             | 53.5                 | 3,067         | 160.0             | 94.0              | 6,731         | 12,636        |
|                              | 2016 | 62,417  | 32,346  | 22,890   | 942.0             | 1,078.0           | 1.041.C           | 99.0                 | 6,179         | 0.5          | 3,090         | 72.3              | 72.6               | 125.8             | \$3.5                | 3,339         | 160.0             | 94.0              | 7,327         | 13,756        |
| -                            | 2017 | 67,948  | 35,213  | 24,919   | 942.0             | 1,078.0           | 1,041.0           | 99.0                 | 6,727         | 0.5          | 3,363         | 72.3              | 72.6               | 125.8             | 53.5                 | 3,635         | 160.0             | 94.0              | 7,976         | 14,975        |
| ith case; La Union saturatio | 2018 | 73,965  | 38,333  | 27,127   | 942.0             | 1,078,0           | 1,041.0           | 99.0                 | 7.323         | 0.5          | 3,661         | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |
|                              | 2019 | 73,969  | 38,333  | 27,123   | 942.0             | 1.078.0           | 1,041.0           |                      | 7,323         | 0.5          |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2020 | 73,969  | 38,333  | 27,127   |                   | 1,078.0           | 1.041.0           |                      |               |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2021 | 73,969  | 38,333  | 27,127   |                   | 1,078.0           |                   | 99.0                 | 7,323         |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2022 | 73,969  | 38,333  | 27,127   |                   | 1,078.0           | 1,041.0           | 99.0                 | 7,323         |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |
|                              | 2023 | 73,969  | 38,333  | 27,127   |                   | 1,078.0           | 1,041.C           |                      | 7,323         | 0.5          |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2024 | 73,969  | 38,333  | 27,127   |                   |                   | 1,041.0           | 99.0                 | 7,323         | ک0           |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2025 | 73,969  | 38,333  | 27,127   |                   | 1,078.C           | 1,041.0           | 99.0                 | 7,323         | 0.5          |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2026 | 73,969  | 38,333  |          |                   | 1,078.0           | 1,041.0           |                      | 7,323         |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8,683         | 16,302        |
|                              | 2027 | 73,969  | 38,333  | 27,127   |                   | 1,078.0           | 1,041.0           | 99.0                 |               | 0.5          |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |
|                              | 2028 | 73,969  | 38,333  | 27,127   |                   | 1.078.C           | 1,041.0           | 99.0                 | 7,323         |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |
|                              | 2029 | 73,969  | 38,333  | 27,127   |                   | 1.078.C           | 1.041.0           | 99.0                 | 7,323         |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         |                   | 94.0              | 8.683         | 16,302        |
|                              | 2030 | 73,969  | 38,333  | 27,127   |                   | 1.078.0           | 1,041.0           | 99.0                 |               |              |               |                   | 72.6               | 125,8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |
|                              | 2031 | 73,969  | 38,333  | 27,127   |                   | 1,078.0           | 1,041.0           | 99,0                 |               |              |               | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |
|                              | 2032 | 73,969  | 38,333  | 27,127   | 942.0             | 1,078,0           | 1.041.0           | 99.0                 | 7,323         | 0.5          | 3,661         | 72.3              | 72.6               | 125.8             | 53.5                 | 3,957         | 160.0             | 94.0              | 8,683         | 16,302        |

Note (1): "With" and "Without in the heading of the table mean "with-the project" case and "without-the project" case, respectively

Note (2): Laden containers handling base, origins/destinations are assumed mainly USA(74%) and Asian(26%)

Note (3): Benefits to contribute to El Salvador is considered to be 50% of the total generated in savings of ship transport cost

Note (4): Combined Conversion Factor of 0.790 is used for estimateing economic costs for land transport.

Note (5): In without case, half of containers currently via Quetzal Port is assumed to return to Acajuda due to the progress of privatization

Note (6): In land transport costs are combined costs assuming from/to Sanlavador (70%) and San Migel (30%).

Table H.1.10 Economic Benefits Generated from Handling Foreign Containers

|                              |      |        | Volun  | ne     |         | E             | arnings from  | ı foreign co  | untries           |
|------------------------------|------|--------|--------|--------|---------|---------------|---------------|---------------|-------------------|
| Remarks in port              | 37   | Laden  | Empty  | L      | aden    | Laden         | Empty         | Laden         | Total bebefit     |
| saturation                   | Year | boxes  | boxes  | MT/box | MT      | tariff \$/box | tariff \$/box | tariff\$/MT   | '000 US\$         |
|                              |      | Α      | В      | B,     | · C.    | D             | Ē             | F             | E = AxD + BxE + C |
|                              | 2005 | 19,455 | 12,345 | 18.8   | 366,313 | 85.25         | 91.86         | 5.56          | 4,82              |
|                              | 2006 | 20,744 | 13,407 | 19.3   | 399,935 | 85.25         | 91.86         | 5.56          | 5,22              |
|                              | 2007 | 21,971 | 14,416 | 19.7   | 433,583 | 85.25         | 91.86         | 5.56          | 5,60              |
|                              | 2008 | 23,141 | 15,377 | 20.2   | 467,250 | 85.25         | 91.86         | 5.56          | 5,98              |
|                              | 2009 | 24,257 | 16,293 | 20.7   | 500,931 | 85.25         | 91.86         | · 5.56        | 6,35              |
|                              | 2010 | 25,323 | 17,167 | 21.1   | 534,624 | 85.25         | 91.86         | 5.56          | 6,70              |
|                              | 2011 | 27,398 | 18,792 | 21.1   | 577,887 | 85.25         | 91.86         | 5.56          | 7,27              |
|                              | 2012 | 29,475 | 20,415 | 21.1   | 621,208 | 85.25         | 91.86         | 5 <b>.5</b> 6 | 7,84              |
|                              | 2013 | 31,554 | 22,036 | 21.1   | 664,574 | 85.25         | 91.86         | 5.56          | 8,40              |
|                              | 2014 | 33,634 | 23,656 | 21.0   | 707,975 | 85.25         | 91.86         | 5.56          | 8,91              |
|                              | 2015 | 35,716 | 25,275 | 21.0   | 751,405 | 85.25         | 91.86         | 5.56          | 9,5               |
|                              | 2016 | 39,920 | 28,250 | 21.0   | 839,850 | 85.25         | 91.86         | 5.56          | 10,60             |
|                              | 2017 | 43,727 | 30,944 | 21.0   | 919,957 | 85.25         | 91.86         | 5.56          | 11,6              |
| With case: La Union saturati | 2018 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
| •                            | 2019 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2020 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2021 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2022 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
| •                            | 2023 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2024 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2025 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2026 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,58             |
|                              | 2027 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2028 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2029 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2030 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2031 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |
|                              | 2032 | 47,102 | 33,333 | 21.0   | 990,968 | 85.25         | 91.86         | 5.56          | 12,5              |

APPENDICES

Table H1.11 Forecast Cargo Volume in Salvadorian Overses Trade and Transit Cargo via Salvadorian Ports (With-the Project Case)

|          | Cargo Ca  | tegney &   |                                    | Actual Record | Projectio | n in Salvadoria | n Ports   |         | ction in Cutuco |         | Projec    | tion in Acajutl | Port      |
|----------|-----------|------------|------------------------------------|---------------|-----------|-----------------|-----------|---------|-----------------|---------|-----------|-----------------|-----------|
| Trade    |           | e Style    | Commodity                          |               |           |                 |           |         | Volume (MT or   | TEUs)   | Cargo '   | Volume (MT or   | TEUs)     |
|          | . I acang | C Style    |                                    | 2000          | . 2005    | 2010            | 2015      | 2005    | 2010            | 2015    | 2005      | 2010            | 2015      |
| ļ !      | ,         |            | Miscellaneous                      | 14,452        | 15,000    | 15,000          | 18,000    |         | J               |         | 15,000    | 15,000          | 18,000    |
| 1: 1     | 1         |            | Chemical products                  | 15,004        | 32,000    | 52,000          | 78,000    | · _ ·   |                 |         | 32,000    | 52,000          | 78,000    |
|          |           |            | Iron and Steel, and their products | 218,558       | 372,000   | 555,000         | 789,000   | 37,200  | 55,500          | 78,900  | 334,800   | 499,500         | 710,100   |
|          | General   | Break-     | Fertilizer in bag                  | 22,579        | 39,000    | 39,000          | 39,000    |         |                 |         | 39,000    | 39,000          | 39,000    |
| -        | Cargo     | bulk       | Vehicles                           | 10,357        | 15,000    | 22,000          | 33,000    | 4,500   | 6,600           | 9,900   | 10,500    | 15,400          | 23,100    |
| ļ · · ·  | Cargo     |            | Nonferrous metal products          | 6,948         | 17,000    | 29,000          | 45,000    |         |                 |         | 17,000    | 29,000          | 45,000    |
|          |           |            | Cement in bag                      | 3,000         | 60,000    | 70,000          | 80,000    | 60,000  | 70,000          | 80,000  | 0         | . 0             | 0         |
|          |           |            | Total (MT)                         | 290,898       | 550,000   | 782,000         | 1,082,000 | 101,700 | 132,100         | 168,800 | 448,300   | 649,900         | 913,200   |
| 1 . 1    |           | Cont       | ainers including empty (TEUs)      | 29,876        | 40,500    | 62,500          | 96,000    | 40,100  | 62,100          | 95,600  | 400       | 400             | 400       |
|          |           |            | Cereals including maize flou-      | 751,363       | 965,000   | 1,190,000       | 1,432,000 | 289,500 | 357,000         | 429,600 | 675,500   | 833,000         | 1,002,400 |
| [        |           | 5          | Fertilizer                         | 272,666       | 351,000   | 351,000         | 351,000   | 105,300 | 105,300         | 105,300 | 245,700   | 245.700         | 245,700   |
|          | Dry l     | Bulk       | Soybean flour                      | 158,623       | 194,000   | 209,000         | 225,000   | 58,200  | 62,700          | 67,500  | 135,800   | 146,300         | 157,500   |
| with     | •         |            | Others                             | 8,788         | 9,000     | 9,000           | 9,000     |         |                 |         | 9,000     | 9,000           | 9,000     |
|          | 1.1       | 100        | Total (MT)                         | 1,191,440     | 1.519.000 | 1,759,000       | 2,017,000 | 453,000 | 525,000         | 602,400 | 1,066,000 | 1,234,000       | 1,414,600 |
|          |           |            | Diesel oil                         | 202,986       | 276,000   | 375,000         | 494,000   | 20,000  | ,               | 302,100 | 276,000   | 375,000         | 494,000   |
|          |           |            | Gasoline                           | 128,268       | 166,000   | 225,000         | 276,000   | ·       |                 |         | 166,000   | 225,000         | 276,000   |
|          | n 1       |            | Animal and vegetable fats          | 65,198        | 77,000    | 90,000          | 107,000   |         |                 |         | 77,000    | 90,000          | 107,000   |
|          | 2.00      |            | Soybean oil                        | 19,804        | 19,000    | 19,000          | 19,000    |         |                 |         | 19,000    | 19,000          | 19,000    |
|          |           |            | Alcohol                            | 17,753        | 18,000    | 18,000          | 18,000    |         |                 |         | 18,000    | 18,000          | 18,000    |
| 1. 1     | Liquic    | Bulk       | Butane gas                         | 15,086        | 15,000    | 15,000          | 15,000    |         |                 |         | 15,000    | 15,000          | 15,000    |
|          |           |            | Caustic soda                       | 15,015        | 28,000    | 43,000          | 63,000    |         |                 |         | 28,000    | 43,000          | 63,000    |
|          |           |            | Alkane (methane hydrocarbonite)    | 5,364         | 5,000     | 5,000           | 5,000     |         |                 |         | 5,000     | 5,000           | 5,000     |
| 1        |           |            | Others                             | 30,965        | 30,000    | 30,000          | 30,000    |         |                 |         | 30,000    | 30,000          | 30,000    |
|          |           |            | Total (MT)                         | 500,439       | 634,000   | 820,000         | 1,027,000 |         |                 |         | 634,000   | 820,000         | 1,027,000 |
| 1        |           | Total exc  | luding containers (MT              | 1,982,777     | 2,703,000 | 3,361,000       | 4,126,000 | 554,700 | 657,100         | 771,200 | 2,148,300 | 2,703,900       | 3,354,800 |
|          | <u></u>   | Break-     | Miscellaneous                      | 2,782         | 4,000     | 2,000           | 2,000     |         |                 |         | 4,000     | 2,000           | 2,000     |
|          | General   | bulk       | Total (MT)                         | 2,782         | 4,000     | 2,000           | 2,000     |         |                 |         | 4,000     | 2,000           | 2,000     |
| · 1      | Cargo     | Cont       | iners including empty (TEUs)       | 7,247         | 40,500    | 62,500          | 96,000    | 40,500  | 62,500          | 96,000  | 0         | 0               | 0         |
|          | ~         | S 11 .     | Sugar                              | 256,367       | 250,000   | 250,000         | 250,000   | 60,000  | 60,000          | 60,000  | 190,000   | 190,000         | 190,000   |
| Export   | Dry l     | Sulk       | Total                              | 256,367       | 250,000   | 250,000         | 250,000   | 60,000  | 60,000          | 60,000  | 190,000   | 190,000         | 190,000   |
|          |           |            | Molasses                           | 149,512       | 160,000   | 160,000         | 160,000   | 10,000  | 10,000          | 10,000  | 150,000   | 150,000         | 150,000   |
|          | Liquid    | Bulk       | Ethyl alcohol                      | 19,644        | 19,000    | 19,000          | 19,000    |         | ,               |         | 19,000    | 19,000          | 19,000    |
|          | •         | l          | Total (MT)                         | 169,156       | 179,000   | 179,000         | 179,000   | 10,000  | 10,000          | 10,000  | 169,000   | 169,000         | 169,000   |
|          |           | Total exc  | luding containers (MT              | 428,305       | 433,000   | 431,000         | 431,000   | 70,000  | 70,000          | 70,000  | 363,000   | 361,000         | 361,000   |
| Overseas | G         | rand Total | excluding containers (MT           | 2,411,082     | 3,136,000 | 3,792,000       | 4,557,000 | 624,700 | 727,100         | 841,200 | 2,511,300 | 3,064,900       | 3,715,800 |
| Trade    |           |            | ntainers (TEUs)                    | 37,123        | 81,000    | 125,000         | 192,000   | 80,600  | 124,600         | 191,600 | 400       | 400             | 400       |
| Transit  |           |            | ntainers (TEUs)                    | 0             | 40,000    | 60,000          | 84,000    | 40,000  | 60,000          | 84,000  | 0         | 0               | 0         |
|          | Co        |            | nd Total (TEUs)                    | 37,123        | 121,000   | 185,000         | 276,000   | 120,600 | 184,600         | 275,600 | 400       | 400             | 400       |

Source: Projected by the study team using the original data from CEPA Excluding LPG and butane gas handled at Punta Gorda

APPENDICES

Table H1.12 Forecast Cargo Volume in Salvadorian Overses Trade and Transit Cargo via Salvadorian Ports (Without-the Project Case)

|          | G G.     | O.          |                                    | Actual Record | Projectio | n in Calendaria   |           | Proj  | ection in Cutuco | Port  | Proje     | ction in Acajutla | Port      |
|----------|----------|-------------|------------------------------------|---------------|-----------|-------------------|-----------|-------|------------------|-------|-----------|-------------------|-----------|
| Trade    | Cargo Ca | 1           | Commodity                          | Acidal Record | rrojectio | on in Salvadoria: | a rons    | Cargo | Volume (MT or    | TEUs) | Cargo `   | Volume (MT or     | TEUs)     |
| <b>\</b> | Packag   | e Style     |                                    | 2080          | 2005      | 2010              | 2015      | 2005  | 2010             | 2015  | 2005      | 2010              | 2015      |
|          |          |             | Miscellaneous                      | 14,452        | 15,000    | 15,000            | 18,000    |       |                  |       | 15,000    | 15,000            | 18,000    |
| 1        |          |             | Chemical products                  | 15,004        | 32,000    | 52,000            | 78,000    |       |                  |       | 32,000    | 52,000            | 78,000    |
|          | 1        |             | Iron and Steel, and their products | 218,558       | 372,000   | 555,000           | 789,000   |       |                  |       | 372,000   | 555,000           | 789,000   |
|          |          | Break-      | Fertilizer in bag                  | 22,579        | 39,000    | 39,000            | 39,000    |       |                  |       | 39,000    | 39,000            | 39,000    |
| Ī        | General  | bulk        | Vehicles                           | 10,357        | 15,000    | 22,000            | 33,000    |       |                  |       | 15,000    | 22,000            | 33,000    |
| ł        | Cargo    | ·           | Nonferrous metal products          | 6,948         | 17,000    | 29,000            | 45,000    |       |                  |       | 17,000    | 29,000            | 45,000    |
|          |          |             | Cement in bag                      | 3,000         | 60,000    | 70,000            | 80,000    |       |                  |       | -         |                   |           |
|          |          |             | Total (MT)                         | 290,898       | 550,000   | 782,000           | 1,082,000 |       |                  |       | 550,000   | 782,000           | 1,082,000 |
|          |          | Conta       | ainers including empty (TEUs)      | 29,876        | 40,500    | 62,500            | 96,000    |       | -                |       | 40,500    | 62,500            | 96,000    |
| ļ        |          |             | Cereals including maize flour      | 751,363       | 965,000   | 1,190,000         | 1,432,000 | •     |                  |       | 965,000   | 1,190,000         | 1,432,000 |
|          |          |             | Fertilizer                         | 272,666       | 351,000   | 351,000           | 351,000   |       |                  |       | 351,000   | 351,000           | 351,000   |
| Ï        | Dry I    | Bulk        | Soybean flour                      | 158,623       | 194,000   | 209,000           | 225,000   | -     |                  |       | 194,000   | 209,000           | 225,000   |
| Import   |          | ľ           | Others                             | 8,788         | 9,000     | 9,000             | 9,000     |       |                  |       | 9,000     | 9,000             | 9,000     |
|          |          |             | Total (MT)                         | 1,191,440     | 1,519,000 | 1,759,000         | 2,017,000 |       |                  |       | 1,519,000 | 1,759,000         | 2,017,000 |
| İ        |          |             | Diesel oil                         | 202,986       | 276,000   | 375,000           | 494,000   |       |                  |       | 276,000   | 375,000           | 494,000   |
| 1        |          | Ţ           | Gasoline                           | 128,268       | 166,000   | 225,000           | 276,000   |       |                  |       | 166,000   | 225,000           | 276,000   |
|          |          | Ī           | Animal and vegetable fats          | 65,198        | 77,000    | 90,000            | 107,000   |       |                  | •     | 77,000    | 90,000            | 107,000   |
|          |          | Ĩ           | Soybean oil                        | 19,804        | 19,000    | 19,000            | 19,000    |       |                  |       | 19,000    | 19,000            | 19,000    |
|          | Liquid   | Duth [      | Alcohol                            | 17,753        | 18,000    | 18,000            | 18,000    |       |                  |       | 18,000    | 18,000            | 18,000    |
|          | Main     | Bu.k        | Butane gas                         | 15,086        | 15,000    | 15,000            | 15,000    | •     |                  |       | 15,000    | 15,000            | 15,000    |
|          |          |             | Caustic soda                       | 15,015        | 28,000    | 43,000            | 63,000    |       |                  |       | 28,000    | 43,000            | 63,000    |
|          |          |             | Alkane (methane hydrocarbonite)    | 5,364         | 5,000     | 5,000             | 5,000     |       |                  |       | 5,000     | 5,000             | 5,000     |
|          |          | . [         | Others                             | 30,965        | 30,000    | 30,000            | 30,000    |       |                  |       | 30,000    | 30,000            | 30,000    |
|          |          | . [         | Total (MT)                         | 500,439       | 634,000   | 820,000           | 1,027,000 |       |                  |       | 634,000   | 820,000           | 1,027,000 |
| l i      |          | Total excl  | uding containers (MT               | 1,982,777     | 2,703,000 | 3,361,000         | 4,126,000 |       |                  |       | 2,703,000 | 3,361,000         | 4,126,000 |
|          | General  | Break-      | Miscellaneous                      | 2,782         | 4,000     | 2,000             | 2,000     |       |                  |       | 4,000     | 2,000             | 2,000     |
|          | Cargo    | bulk        | Total (MT)                         | 2,782         | 4,000     | 2,000             | 2,000     |       |                  |       | 4,000     | 2,000             | 2,000     |
| •        | Cargo    | Conta       | iners including empty (TEUs)       | 7,247         | 40,500    | 62,500            | 96,000    |       |                  |       | 40,500    | 62,500            | 96,000    |
|          | Dry E    | hilk        | Sugar                              | 256,367       | 250,000   | 250,000           | 250,000   |       |                  |       | 250,000   | 250,000           | 250,000   |
| Export   | Diy      | DELIA.      | Total                              | 256,367       | 250,000   | 250,000           | 250,000   |       |                  |       | 250,000   | 250,000           | 250,000   |
|          |          |             | Molasses                           | 149,512       | 160,000   | 160,000           | 160,000   |       |                  |       | 160,000   | 160,000           | 160,000   |
|          | Liquid   | Bulk        | Éthyl alcohol                      | 19,644        | 19,000    | 19,000            | 19,000    |       |                  |       | 19,000    | 19,000            | 19,000    |
|          | -        | [           | Total (MT)                         | 169,156       | 179,000   | 179,000           | 179,000   |       |                  |       | 179,000   | 179,000           | 179,000   |
| 1        |          |             | uding containers (MT               | 428,305       | 433,000   | 431,000           | 431,000   |       |                  |       | 433,000   | 431,000           | 431,000   |
| Overseas | Ģ1       | and Total e | excluding containers (MT           | 2,411,082     | 3,136,000 | 3,792,000         | 4,557,000 |       |                  |       | 3,136,000 | 3,792,000         | 4,557,000 |
| Trade    |          | Cox         | ntainers (TEUs)                    | 15,000        | 24,000    | 39,000            | 60,000    |       |                  |       | 24,000    | 39,000            | 60,000    |
| Transit  |          | Con         | ntainers (TEUs)                    | 0             | 0         | 0                 | 0         |       |                  |       | .0        | 0                 | 0         |
|          | Con      | tainer Gran | nd Total (TEUs)                    | 15,000        | 24,000    | 39,000            | 60,000    |       |                  |       | 24,000    | 39,000            | 60,000    |

Source: Projected by the study team using the original data from CEPA Excluding LPG and butane gas handled at Punta Gorda

## APPENDIX I ENVIRONMENTAL SURVEYS

#### APPENDIX I ENVIRONMENTAL SURVEYS

#### I.1 Scope of Environmental Surveys

The following additional environmental surveys were conducted to collect additional information required for the study and predictions of sediment dispersion behavior.

- 1) Ecological survey in the reclamation area (benthos, marine biology)
- 2) Ecological survey in the borrow area (terrestrial plant an animal)
- 3) Offshore ecological survey in the dredging area (tidal current, water quality, seabed material, benthos)
- 4) Offshore ecological survey in the dumping area (water quality, seabed material, benthos)
- 5) Fishery activity survey
- 6) Present condition survey (water quality, seabed material, benthos)
- 7) Air quality observation
- 8) Water quality for future monitoring purpose (water quality)

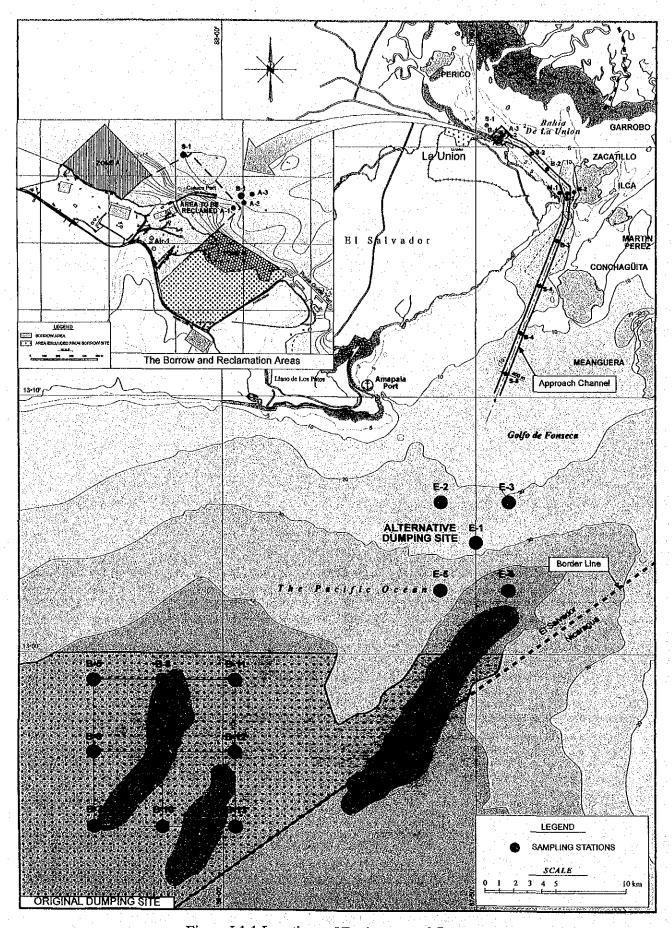



Figure I.1.1 Locations of Environmental Surveys

#### I.2 Ecology Survey of Sunken Rocks

Table I.2.1 Structure of Biotic in Marine Area, Rock and Sand (50 meters by sampling station) in North Area from "Cutuco" Dock, La Unión Bay, Fonseca Gulf de December 2001

| STATION.          | BIOTIC<br>COBERTURE<br>(%) | ROCK (%)    | (%)           | SPECIES<br>(Quantity) | DIVERSITY<br>(H) | EQUITA-<br>TIVITY<br>(J) |
|-------------------|----------------------------|-------------|---------------|-----------------------|------------------|--------------------------|
|                   |                            |             |               |                       |                  |                          |
| 1                 | 10.8                       | 15.2        | 74            | 13                    | 1.59             | 0.62                     |
| 2                 | 15.8                       | 32          | 52.2          | 10                    | 1.63             | 0.71                     |
| 3                 | 22.6                       | 42.4        | 35            | 9                     | 1.64             | 0.74                     |
| 4                 | 15.8                       | 27.2        | 57            | 10                    | 1.78             | 0.77                     |
| 5                 | 18.4                       | 28          | 53.6          | 12                    | 1.76             | 0.71                     |
| 6                 | 16.6                       | 30          | 53.4          | 12                    | 1.77             | 0.71                     |
|                   |                            |             |               |                       |                  |                          |
| X +/- S           |                            | 29.1 +/-8.8 | 54.2 +/- 12.4 |                       |                  |                          |
| eri<br>Taretinski |                            |             |               |                       |                  |                          |
| TOTAL SPE         | ECIES FOUNDED              |             |               |                       |                  |                          |

Table I.2.2 Total Coberture by Biotic Species on each Sampling Station

| ta ta San San Salah salah Kilo<br>Tabuh Tabuhan Kalandara |             |      |             |                                       |      |      |                                       |                      |                |
|-----------------------------------------------------------|-------------|------|-------------|---------------------------------------|------|------|---------------------------------------|----------------------|----------------|
| SPECIE                                                    |             |      | STAT        | TON                                   |      |      | Sammary                               | Density<br>(ind/m/2) | Percenture (%) |
|                                                           |             | 0    |             |                                       |      |      |                                       |                      |                |
|                                                           | 1           | 2    | 3           | 4 .                                   | 5    | 6    |                                       |                      |                |
| Nerita sp "caracol negro"                                 | 29          | 207  | 274         | 89                                    | 190  | 150  | 939                                   | 9,39                 | 13.5           |
| Ostrea iridescens "ostra"                                 | 24          | 48   | 143         | 130                                   | 107  | 95   | 547                                   | 5.47                 | 7.8            |
| Bostrychyla moritziana                                    |             |      | 6           | . 5                                   | . 7  | 6    | 24                                    | 0.24                 | 0.32           |
| "alga filamentosa"                                        |             |      |             |                                       |      |      |                                       |                      |                |
| Bostrychyia sp "alga                                      | 8           |      |             | 10                                    |      | 9    | 27                                    | 0.27                 | 0.4            |
| costrosa"                                                 |             |      |             |                                       | · ·  |      |                                       |                      |                |
| Cladophora "alga mechuda"                                 | 11          | 1    |             |                                       | 3    |      | 15                                    | 0.15                 | 0.2            |
| Polimesoda solida "miona o                                | 5           | 21   | 51          | 30                                    | 35   | 39   | 181                                   | 1.81                 | 2.6            |
| almeja"                                                   |             |      | <del></del> | · · · · · · · · · · · · · · · · · · · |      |      |                                       |                      |                |
| "esponja amarilla"                                        | 10          |      |             |                                       | 8    |      | 18                                    | 0.18                 | 0.3            |
| "esponja blanca"                                          | 10          |      |             |                                       |      | 5    | 15                                    | 0.15                 | 0.2            |
| Balanus sp. "cirriperidos o                               | <b>4</b> 04 | 465  | 614         | 360                                   | 480  | 460  | 2783                                  | 27.83                | 40             |
| bromas"                                                   |             |      |             | · ·                                   |      | · i  |                                       |                      |                |
| Chiton stokesii "quitón"                                  | 1           |      |             |                                       | 2    |      | 3                                     | 0.03                 | 0.04           |
| Cerithidea sp. "caracolillos"                             | 48          | 126  | 90          | 105                                   | 110  | 95   | 574                                   | 5.74                 | 8.2            |
| "tubos de poliquetos"                                     | 84          | 172  | 348         | 300                                   | 275  | 226  | 1405                                  | 14.05                | 20.1           |
| Mytella guyanensis "churria                               | 110         | 51   | 43          | 45                                    | 52   | 60   | 361                                   | 3.61                 | 5.2            |
| o mejillón"<br>Clibanarius panamensis                     | 10          | 11   | 5           |                                       |      |      | · · · · · · · · · · · · · · · · · · · |                      |                |
| "cangrejo ermitaño"                                       | 10          | 11   | 3           | 25                                    | 15   | 13   | 79                                    | 0.79                 | 1.1            |
| Nudy branchia "babosa                                     |             | 1    |             |                                       |      | 2    | 3                                     | 0.03                 | 0.04           |
| marina"                                                   |             |      |             |                                       |      | . 4  | 3                                     | 0.03                 | 0.04           |
|                                                           |             |      |             |                                       |      |      |                                       |                      |                |
| SUMMARY                                                   | 754         | 1103 | 1574        | 1099                                  | 1284 | 1160 | 6974                                  | ,                    | 100            |
| PERCENTAGE                                                | 10.8        | 15.8 | 22.6        | 15.8                                  | 18.4 | 16.6 |                                       | <u></u>              | 100            |

Table I.2.3 Importance Value Index (IVI) Considering Coberture of Biota, Rock and Sand on Six Sampling Stations

| SPECIES                                   | ABSOLUTE  | RELATIVE         | ABSOLUTE | RELATIVE | ABSOLUTE  | RELATIVE  | 171      |
|-------------------------------------------|-----------|------------------|----------|----------|-----------|-----------|----------|
|                                           | FREQUENCY | FREQUENCY        | DENSITY  | DENSITY  | COBERTURE | COBERTURE |          |
| Nerita sp "caracol negro"                 | 153       | 8.16             | 6.14     | 4.26     | 939       | 2.89      | 15.31    |
| Ostrea iridescens "ostra" (oister)        | 108       | 5.76             | 5.06     | 3.51     | 547       | 1.68      | 10.95    |
| Bostrychyia moritziana "alga filamentosa" | 6         | 0.32             | 4        | 2.78     | 24        | 0.07      | 3.17     |
| Bostrychyia sp "alga costrosa"            | 5         | 0.27             | 5.4      | 3.75     | 27        | 0.08      | 4.1      |
| Cladophora "alga mechuda"                 | 7         | 0.37             | 2.14     | 1.49     | 15        | 0.06      | 1.91     |
| Polimesoda solida "miona o almeja"        | 79        | 4.21             | 2.29     | 1.59     | 181       | 0.56      | 6.36     |
| "esponja amarilla"                        | 3         | 0.16             | 6        | 4.17     | 18        | 0.05      | 4.38     |
| "esponja blanca"                          | 2         | 0.11             | 7.5      | 5.21     | 15        | 0.05      | 5.4      |
| ROCA                                      | 323       | 17.23            | 28.12    | 19.53    | 9084      | 27.9      | 64.66    |
| ARENA                                     | 330       | 17.6             | 49.83    | 34.6     | 16446     | 50.6      | 102.8    |
| Balanus sp. "cirriperidos o bromas"       | 268       | 14.29            | 10.38    | 7.21     | 2783      | 8.56      | 30.06    |
| Chiton stokesiį "quitón"                  | 2         | 0.11             | 1.5      | 1.04     | 3         | 0.01      | 1.16     |
| Cerithidea sp. "caracolillos"             | 160       | 8.53             | 3.59     | 2.49     | 574       | 1.77      | 12.79    |
| "tubos de poliquetos"                     | 258       | 13.76            | 5.45     | 3.78     | 1405      | 4.33      | 21.86    |
| Mytella guyanensis "churria o mejillón"   | 139       | 7.41             | 2.6      | 1.81     | 361       | 1.11      | 10.36    |
| Clibanarius panamensis "cangrejo          | 30        | 1.6              | 2.5      | 1.74     | 75        | 0.27      | 3.57     |
| ermitaño" (crab).                         |           | ··· <del>-</del> |          |          |           |           | <u>.</u> |
| Nudy branchia "babosa marina"             | 2         | 0.11             | 1.5      | 1.04     | 3         | 0.01      | . 1.16   |
|                                           |           |                  |          |          |           |           |          |
| SUMMARY                                   | 1875      | 100              | 144      | 100      | 32500     | 100       | 300      |

Table I.2.4 Comparison of Biotic Community Structure between South and North Side of Dock

| STRUCTURAL CARACTERISTIC           | NORTH SIDE   | %  | SOUTH SIDE   |
|------------------------------------|--------------|----|--------------|
| DOMINANT COVERTURE (%)             | SAND: 54     |    | SAND: 38     |
|                                    | ROCK: 29     |    | ROCK: 58     |
|                                    |              |    |              |
| SPECIES QUANTITY                   | 15           |    | 16           |
|                                    |              |    |              |
| PRIORITY SPECIES DENSITY (ind/m2)  |              |    |              |
|                                    |              |    |              |
| a) Balanus sp "bromas"             | 28           |    | 33           |
| b) Tubos de poliquetos             | 14           |    | 5.5          |
| c) Cirithidea sp "caracolillos"    | 5.7          |    | 5.3          |
| d) Nerita sp. "caracol negro"      | 9.39         |    | 6.1          |
| e) Ostrea iridescens "ostra"       | 5.5          |    | 20           |
|                                    |              |    | 74 . 1       |
| DIVERSITY (H')                     | 1.59 TO 1.78 |    | 0.6 TO 1.6   |
| EQUITATIVITY (J´)                  | 0.62 TO 0.77 |    | 0.38 TO 0.99 |
| SIMILARITY INDEX IN BOTH AREAS (%) |              |    |              |
| a) Coverture                       |              | 84 |              |
| b) Precense or absence of species  | :            | 84 |              |

## 1.3 Inland Ecology Survey

Table I.3.1 Trees and Shrubs Identified by Ecological Survey for Borrow Site

| Table I.3.1   | Trees and Shrubs I          | Survey for Borrow Site     |                           |  |  |
|---------------|-----------------------------|----------------------------|---------------------------|--|--|
| FAMILY        | SCIENTIFIC NAME             | LOCAL COMMON               | ENGLISH NAME              |  |  |
|               |                             | NAME                       |                           |  |  |
| Leguminosae   | Enterolobium cyclocarpum    | Conacaste negro            | Guanacaste tree           |  |  |
|               | Pithecelobium oblongum*     | Mangollano                 | N/A                       |  |  |
|               | Pithecelobium saman         | Zorra                      | Monkey pod                |  |  |
|               | Mimosa farnesiana           | Espino blanco              | Sweet Acacia or Koa       |  |  |
|               | Caesaria racemosa           | Nacascol                   | N/A                       |  |  |
|               | Piptadenia constricta*      | Pintadillo                 | N/A                       |  |  |
| ·             | Albizzia caribeae*          | Conacaste blanco           | Caribean pine             |  |  |
|               | Gliricidia sepium           | Madrecacao                 | mother of cacao           |  |  |
|               | Mimosa pigra                | Zarza                      | catelaw mimosa            |  |  |
| <u> </u>      | Delonix regia               | Flor de fuego              | flame tree                |  |  |
|               | Acacia cornigera            | Iscanal                    | Bull-horn Acacia          |  |  |
|               | Andira inermis              | Almendro de río            | Cabbage Tree              |  |  |
|               | Bauhinia ungulata           | Casco de venado            | Orchid Tree               |  |  |
|               | Lysiloma divaricatum*       | Quebracho                  | N/A                       |  |  |
|               | Cassia grandis              | Carao                      | N/A                       |  |  |
|               | Lonchocarpus minimiflorus   | Cincho                     | N/A                       |  |  |
|               | Tamarindus indica           | Tamarindo                  | Tamarind Tree             |  |  |
| · ·           | Hymenaea coubaril           | Copinol                    | Red locus or Jatoba       |  |  |
|               | Crotalaria vitulina         | Chipilín montés            | N/A                       |  |  |
| Воггадіпасеае | Cordia dentata              | Tiguilote                  | N/A                       |  |  |
| Combretaceae  | Combretum farinosus         | Chupamiel                  | Wild bindweed             |  |  |
|               | Conocarpus erectus*         | Botoncillo                 | Buttonnwood               |  |  |
|               | Laguncularia racemosa*      | Sincahuite – Mangle Blanco | White Mangrove            |  |  |
| Burseraceae   | Bursera simaruba            | Palo jiote                 | Gumbo limbo               |  |  |
| Sterculiaceae | Sterculia apetala           | Caulote                    | French Peanut             |  |  |
| Bignoniaceae  | Tabebuia rosea              | Maquilishuat               | Pink Tecoma               |  |  |
|               | Crescentia cujete*          | Jícaro                     | Calabash Tree             |  |  |
|               | Crescentia alata            | Могго                      | Calabash Tree             |  |  |
| Polygonaceae  | Coccoloba floribunda*       | Iril .                     | N/A                       |  |  |
|               | Swietenia humilis*          | Caobo                      | Pacific Coast Mahogany    |  |  |
|               | Cedrela odorata*            | Cedar                      | Spanish Cedar             |  |  |
|               | Trichilia martiana*         | Cola de pava               | N/A                       |  |  |
| Simaroubaceae | Simaruba glauca             | Arbol de Olivas            | Olive Tree                |  |  |
| Аросупасеае   | Stemmadenia molli           | Cojón                      | N/A                       |  |  |
|               | Stemmadenia donnell-smithii | Cojón de puerco            | Horse balls               |  |  |
|               | Plumeria rubra              | Flor de mayo               | Plumeria or Franginapi    |  |  |
| <del></del>   | 1 ~                         | 1                          | 1 - milone of Franklinghi |  |  |

| FAMILY                                | SCIENTIFIC NAME         | LOCAL COMMON      | ENGLISH NAME               |
|---------------------------------------|-------------------------|-------------------|----------------------------|
|                                       |                         | NAME              |                            |
|                                       | Plumeria acutifolia     | Flor de ensarta   | Temple Tree                |
| Cochlospermaceae                      | Cochlospermum           | Tecomasuche       | Single Flower Buttercup    |
|                                       | vitifolium              |                   |                            |
| Moraceae                              | Cecropia peltata        | Guarumo           | Trumpet Tree               |
|                                       | Ficus glabrata*         | Amate             | Small leaved Fig           |
| Rutaceae                              | Murraya paniculata      | Myrtle or Mirto   | Orange Jasmin              |
|                                       | Citrus aurantifolia     | Limon             | Lemon                      |
| · · · · · · · · · · · · · · · · · · · | Citrus medica           | Grapefruit        | Grapefruit                 |
|                                       | Citrus lima             | Naranja lima      | Lime                       |
| Anacardiaceae                         | Spondias purpurea       | Jocote de verano  | Red Plum                   |
|                                       | Mangifera indica        | Mango             | Mango                      |
| Araliaceae                            | Polyscia sp             | Encaje            | Cortón                     |
| Casuarinaceae                         | Casuarina equisetifolia | Casuarina         | Australian Pine            |
| Malvaceae                             | Hibiscus rosa-sinensis  | Clavelón          | Hibiscus                   |
| Rubiaceae                             | Gardenia jasminioides   | Jazmín del cabo   | Gardenia                   |
|                                       | Randia armata           | Crucito           | N/A                        |
|                                       | Calycophyllum           | Salamo            | Guatagire                  |
|                                       | candidissimum*          |                   |                            |
| Arecaceae                             | Erythea salvadorensis*  | Palma de sombrero | Palm Tree                  |
| Bombacaceae                           | Ceiba pentandra*        | Ceiba             | Silk Cotton Tree or Kapok  |
| Euphorbiaceae                         | Jathropa curcas         | Tempate           | Nettlespurge               |
|                                       | Ricinus communis        | Higuerillo        | Castrobean                 |
|                                       | Alchornea Latifolia*    | Tambor            | N/A                        |
| Annonaceae                            | Annoma palustris        | Anona bayunca     | Silly Sweet Sop            |
| Verbenaceae                           | Gmelina arborea         | Melina            | Yemane                     |
|                                       | Tectona grandis         | Teca              | Teak                       |
|                                       | Avicennia germinans*    | Madresal          | Black Mangrove             |
| Malpighiaceae                         | Mascagnia ovatiforme    | Nance verde       | Golden Spoon               |
| Capparidaceae                         | Crataeva tapia*         | Cachimbo          | Garlic Pear                |
|                                       | Capparis indica         | Curumo            | Caper                      |
| Ulmaceae                              | Karwinskia calderonii*  | Huiliguishte      | N/A                        |
| Cactaceae                             | Opuntia salvadorensis   | Nopla             | Prickly Pear               |
| Solanaceae                            | Solanum hayesii         | Friega platos     | N/A                        |
| Asclepiadaceae                        | Calotropis gigantean    | Huisquil de playa | Milk Weed or Swallot-Wos   |
| Myrtaceae                             | Psidium guajava         | Guayabo           | Common Guava               |
| Caricaceae                            | Carica cauliflora*      | Molocote          | Nam-nam                    |
| Rhizophoraceae                        | Rhizophora mangle*      | Mangle Colorado   |                            |
| Piperaceae                            | Piper tuberculatum      | Cordoncillo       | Red Mangrove               |
| 1 spotacoac                           | Piper aurantium         | Santa María       | Candle Bus Root Beer Plant |

Note: \* It means nationally rare

Table 1.3.2 Herbaccous Flora Identified by Ecological Survey for Borrow Site

| FAMILY         | SCIENTIFIC NAME         | LOCAL<br>COMMON NAME | ENGLISH NAME             |  |
|----------------|-------------------------|----------------------|--------------------------|--|
| Rubiaceae      | Hamelia patens          | Sisipince            | Firebush                 |  |
| Verbenaceae    | Lantana camara          | Cinco negritos       | Hummingbird flower       |  |
| Sapindaceae    | Paullinia pinnata       | Nixtamal             | Fruiting vine            |  |
| Malvaceae      | Sida acuta              | Escobilla            | Spinyhead sida           |  |
| Solanaceae     | Capsicum bacatum        | Chiltepe             | Wild Pepper              |  |
| Acanthaceae    | Blechum brownie         | Corredora            | Green Shrimp Plant       |  |
| <u> </u>       | Justicia carthaginensis | Sacatinta            | Lavender Justicia        |  |
| Loasaceae      | Gronovia scandens       | Pan caliente         | N/A                      |  |
| Cucurbitaceae  | Luffa acutangula        | Paste                | Vegetable Sponge         |  |
|                | Cayaponia racemosa      | Sandía de culebra    | N/A                      |  |
|                | Elaterium ciliatum      | Tunquito             | Elaterium                |  |
| Oxalidaceae    | Oxalis neì              | Agrillo              | N/A                      |  |
| Convolvulaceae | Ipomoea spp             | Campanilla           | Morning Glory            |  |
| Sterculiaceae  | Waltheria americana     | Escobilla de buey    | Sleepy Morning           |  |
| Tilaceae       | Triunfetta lappula      | Mozote de caballo    | Grandcousin              |  |
| Graminaceae    | Cenchrus brownii        | Mozote               | Burgrass                 |  |
|                | Cenchrus echinatus      | Mozote de playa      | Burgrass                 |  |
|                | Pennisetum setosum      | Gusano               | Fountain Grass           |  |
|                | Paspalum fasciculatum   | Camalote             | Banboo Grass             |  |
|                | Ixophorus unisetus      | Zacate de agua       | Honduras Grass           |  |
| ·              | Hypharrennia ruffa      | Zacate illusion      | N/A                      |  |
| ·              | Paspalum notatum        | Grama negra          | Bahiagrass               |  |
|                | Nassella pubiflora      | Plumilla             | N/A                      |  |
| · · ·          | Cynodon dactylon        | Barrenillo           | Bermuda Grass            |  |
| Суреганскае    | Cyperus spp             | Coyolillo            | Nut sedge or Nutgrass    |  |
| Phytolaceae    | Petiveria alliacea      | Epacina              | Anamu                    |  |
| Compositae     | Baltimora recta         | Flor amarilla        | N/A                      |  |
|                | Melanthera nivea        | Botoncillo           | White Melanthera         |  |
|                | Elephantopus spicatus   | Oreja de chucho      | N/A                      |  |
| Passifloraceae | Passiflora coriaceae    | Ala de muerciélago   | Bat Leaf Pasión Flower   |  |
| Asclepiadaceae | Asclepias longicornis   | Matacoyote           | Milkweed                 |  |
| Amaranthaceae  | Gomphrena globosa       | Borla                | Globe Amaranth           |  |
| Lamiaceae      | Hyptis capitata         | Chichinguaste        | Buttonweed               |  |
| Leguminosae    | Senna occidentalis      | Frijolillo           | Coffe Senna or Coffeweed |  |
| Capparidaceae  | Cleome spinosa          | Alhelí               | Spring Spider-Flower     |  |
| Аросупасеае    | Rauwolfia tetraphylla   | Amatillo             | Rauwolfia                |  |

Table I.3.3 Reptiles and Aquatic Fauna Identified by Ecological Survey for Borrow Site

| SCIENTIFIC LATIN<br>NAME            | LOCAL<br>COMMON<br>NAME | ENGLISH<br>COMMON<br>NAME          | MAG <sup>(*)</sup><br>1998 |
|-------------------------------------|-------------------------|------------------------------------|----------------------------|
| Kinosternum scorpioides             | Tortuga candado         | Scorpion mud turtle                | Т                          |
| Rhinoclemys scorpioides             | Tortuga coralio         | Central America turtle             |                            |
| Iguana iguana                       | Iguana verde            | Green iguana                       | DE                         |
| Ctenosaura similes                  | Garrobo                 | Spiny-tailed iguana                |                            |
| Norops sp                           | Bebeleche               | Anole                              |                            |
| Ameiva undulata                     | Lagartija               | Whiptailed lizard                  |                            |
| Basiliscus vittatus                 | Tenguereche             | Common<br>grown basilisk           |                            |
| Boa Constrictor                     | Masacuata               | Boa<br>Constrictor                 | T                          |
| Oxybelis aeneus                     | Bejuquilla cafe         | Mexican vine snake                 | Т                          |
| Lampropeltis triangulum             | False coral             | Milk snake                         | DE                         |
| Micrurus nigrocinctus<br>zunilensis | Coral                   | Central<br>American<br>Coral Snake | Т                          |
| Masticophis mentovarius             | Zumbadora               | Neotropical<br>whipsnake           |                            |
| Crotalus durissus                   | Cascabel                | Rattlesnake                        | DE                         |

Note (\*): (T = Threatened, DE = in Danger of Extinction) classified according to the guidelines established by MAG)

Table I.3.4 Birds Identified by Ecological Survey for Borrow site

| SCIENTIFIC LATIN        | LOCAL<br>COMMON  | ENGLISH COMMON NAME       | MAG <sup>(*)</sup><br>1998 |
|-------------------------|------------------|---------------------------|----------------------------|
| NAME                    | NAME             |                           |                            |
| Pelecanus               | Pelicano blanco  | American white pelican    | · T                        |
| erythrorhynchus         | * .              |                           |                            |
| Pelecanus occidentalis  | Pelicano         | Brown pelican             |                            |
| Fregata magnificens     | Fragatas         | Magnificent frigatebird   |                            |
| Dendrocygna autumnalis  | Pichiche         | Black bellied             |                            |
|                         |                  | whistling-duck            |                            |
| Coragyps atratus        | Zope             | Black vulture             |                            |
| Cathartes aura          | Zope de cabeza   | Turkey vulture            |                            |
|                         | roja             |                           |                            |
| Falco sparverius        | Lilisque         | Sparrow kestrel           | T                          |
| Caracara plancus        | Querque          | Southern caracara         | T                          |
| Ortalis leucogastra     | Chachalaca       | White bellied             | Т                          |
|                         |                  | chachalaca                |                            |
| Colinus leucopogon      | Codorníz         | Spot-bellied bobwhite     |                            |
| Charadrius semipalmatus | Chorlito         | Semipalmated plover       |                            |
| Actitis macularia       | Alzacoleta       | Spotted sandpiper         |                            |
| Numenius phaeopus       | Chorlito         | Whimbrel                  |                            |
| Larus atricilla         | Gaviota          | Laughing gull             |                            |
| Sterna maxim            | Gaviota          | Maxim tern                |                            |
| Asian zenaida           | Paloma Blanca    | White wing dove           | <u>'</u>                   |
| Leptotila verreaxi      | Rodadora         | White tipped dove         |                            |
| Columbine talpacoti     | Tortolita rojiza | Ruddy ground-dove         | <del></del>                |
| Columba livia           | Paloma de        | Pigeon, rock dove         |                            |
|                         | Castilla         | rigeon, rock dove         |                            |
| Columbine inca          | Tortolita        | Incadove                  |                            |
| Arantinga strenua       | Pericón          | Pacific Parakeet          | T                          |
| Aratinga canicularis    | Chocoyo          | Orange fronted            | <u> </u>                   |
| Araunga cameataris      | Chocoyo          |                           | 1                          |
| Brotegeris yugularis    | Catalnica        | parakeet                  |                            |
| Amazon auropaliata      | Lora de nuca     | Red neck parapkeet        | DF                         |
| <u> </u>                | amarilla         | Yellow headed parrot      | DE                         |
| Crotophaga sulcirostris | Pijuyo           | Groove-billed ani         |                            |
| Piayua cayana           | Roasted          | Squirrel cuckoo           |                            |
|                         | bananas          | ·                         |                            |
| Glaucidium brasilianum  | Aurora           | Ferruginous pygmy-<br>owl |                            |
| Amazilia twinkles       | Colibri          | Hummingbird               |                            |
| Eumomota superciliosa   | Torogoz          | Turquoie-browned motmot   |                            |
| Momota momota           | Talapo           | Blue-crowned motmot       |                            |
| Melanerpes aurifrons    | Cheje            | Golden-fronted            |                            |
|                         | ]                | woodpecker                | J                          |
| Contopus cinreus        | Copetón          | Tropical pewee            | T                          |
| Pitangus sulphuratus    | Cristo fue       | Great kiskadee            | 1                          |

| SCIENTIFIC LATIN<br>NAME         | LOCAL<br>COMMON<br>NAME | ENGLISH COMMON<br>NAME        | MAG <sup>(7)</sup><br>1998 |
|----------------------------------|-------------------------|-------------------------------|----------------------------|
| Progne chalybea                  | Goloudrina gris         | Grey breasted martin          |                            |
| Rustica hirundo                  | Goloudrina              | Barn swallow                  |                            |
| Calocitta Formosa                | Magpie                  | White-throated magpie-<br>jay |                            |
| Campylorhynchus<br>rufinucha     | Guacalchía              | Rufous-naped wren             |                            |
| Turdus grayi                     | Chonte                  | Clay colored robin            |                            |
| Vermivora peregrinae             | Chipe                   | Tennessee warbler             |                            |
| Dendroica petechia erythacorides | Reinita del<br>manglar  | Yellow warbler                | Т                          |
| Içterus g. galbula               | Chiltota                | Baltimore oriole              |                            |
| Icterus gularis                  | Chiltota                | Altamira oriole               |                            |
| Quiscalus mexicanus              | Clarinero               | Great-Tailed grackle          |                            |

Note (\*): (T = Threatened, DE = in Danger of Extinction) classified according to the guidelines established by MAG

Table I.3.5 Mammals Identified by Ecological Survey for Borrow Site

| SCIENTIFIC LATIN                 | LOCAL COMMON<br>NAME | ENGLISH<br>COMMON<br>NAME | MAG <sup>(*)</sup> -<br>1998 |
|----------------------------------|----------------------|---------------------------|------------------------------|
| Didelphys marsupialis            | Tacuazin             | Opossums                  | ·                            |
| Dasypus novemcinctus fanestratus | Cuzuco               | Nine banded armadillo     | Т                            |
| Mephitis macroura                | Zorrillo             | Hooded Skunk              |                              |
| Canis Latrans dickeyi            | Coyote               | Coyote                    | T                            |
| Agouti paca                      | Tepezcuintle         | Paca Agouti               | DE                           |
| Sylvilagus floridanus            | Conejo salvaje       | Eastern cottontail rabbit | ·                            |
| Procyon lotor                    | Mapache              | Raccoon                   |                              |
| Herpailurus<br>yagoaroundi       | Gato zonto           | Otter cat                 | DE                           |
| Sciurus variegatoides            | Ardillas             | Squirrel                  |                              |
| Nyctamys sp                      | Ratón                | Mouse                     |                              |
| Rattus rattus                    | Rata                 | Wild rat                  |                              |

Note (\*): (T = Threatened, DE = in Danger of Extinction) classified according to the guidelines established by MAG

## I.4 Air Quality Survey

Table I.4.1 24 Hour Monitoring Results

| e earles d'        |      |     |               |       |       |                              |    |
|--------------------|------|-----|---------------|-------|-------|------------------------------|----|
| CONCENTE<br>24 HOU |      |     | D BANK<br>IDE | USEPA | CUIDE | EL SAL <sup>A</sup><br>NORMA |    |
| (mg/m              | 3)   |     | %             |       | %     |                              | %  |
| RAINY SEAS         | ON   |     |               |       |       |                              | ·  |
| PM10 (dust)        | 4.6  | 110 | 4             | 150   | - 3   | 150                          | 3  |
| SO2                | < 13 | 125 | 10            | 165   | 8     | 365                          | 4  |
| NO2                | < 9  | 150 | 6             | ND    |       | 150                          | 6  |
| DRY SEASO          | N    |     |               |       |       |                              |    |
| PM10 (dust)        | 21.1 | 110 | 19            | 150   | 14    | 150                          | 14 |
| SO2                | < 13 | 125 | 10            | 165   | 8     | 365                          | 4  |
| NO2                | < 9  | 150 | 6             | ND    |       | 150                          | 6  |

#### L5 Water Quality Survey

Table I.5.1 Quality of Surface Water along Proposed Approach Channel in September and December 2001

(Temperature, ph and Salinity)

|             |          | Temperature <sup>o</sup> C (Dec) | Ph (Sep) | pH (Dec) | Selinity 0/00 (Sep) | Salinity 0/00 (Dec) |
|-------------|----------|----------------------------------|----------|----------|---------------------|---------------------|
|             |          |                                  |          |          |                     |                     |
| A-1         | 33.0     | 28.0                             | 8,0      | 8.5      | 30                  | 29                  |
| A-2         | 33.0     | 28.0                             | 8,0      | 8.5      | 30                  | 29                  |
| A-3         | 33,0     | 28.0                             | 2.9      | 8,4      | 30                  | 29                  |
| B-2         | 33,0     | 30.0                             | 7.9      | 8,4      | 30                  | 31                  |
| B-3         | 32.0     | 30.0                             | 7,9      | 8.1      | 31                  | 31                  |
| B-4_        | 32.1     | 31.0                             | 7.9      | 8,2      | 32                  | 30                  |
| M-1         | 33.0     | 30.0                             | 7.9      | 8.3      | 30                  | 30                  |
| M-2         | 32.8     | 30.0                             | 8.0      | 8.3      | 30                  | 30                  |
| S-1         | 33.0     | 28.0                             | 7.9      | 8.5      | 30                  | 29                  |
| S-2         | 33.0     | 30.0                             | 8.0      | 8.4      | 30                  | 31                  |
| S-3         | 32.0     | 30.0                             | 7.8      | 8.2      | 30                  | 30                  |
| S-4         | 32,1     | 30.0                             | 7.9      | 8.4      | 33                  | 30                  |
| S-5         | 31.1     | 30.0                             | 8.0      | 8.2      | 33                  | 32                  |
| B-5         | 31.0     |                                  | 8.1      |          | 33                  |                     |
| B-6         | 31.0     | 31.0                             | 8.1      | 8.1      | 34                  | 34                  |
| <b>B</b> -7 | 31.0     |                                  | 8.2      | ·<br>    | 33                  |                     |
| B-8         | 31.0     |                                  | 8.1      |          | 33                  |                     |
| B-9         | 33.0     | 33.0                             | 8.2      | 8.2      | 35                  | 35                  |
| B-10        | 32.0     |                                  | 8.2      |          | 33                  |                     |
| B-11        | 31.0     |                                  | 8.2      |          | 35                  |                     |
| B-12        | 32.0     | 32.0                             | 8.2      | 8.2      | 33                  | 33                  |
| B-13        | 32.0     |                                  | 8.2      |          | 33                  |                     |
| E-1         |          | 31.D                             |          | 7.8      |                     | 33                  |
| E-2         |          | 30.0                             |          | 7.9      |                     | 33                  |
| E-3         |          | 30.0                             |          | 7.9      |                     | 33                  |
| E-4         | <u> </u> | 30.0                             |          | 7.9      | ·                   | 33                  |
| E-5         |          | 30.0                             |          | 7.9      |                     | 33                  |

Table I.5.2 Quality of Surface Water along Proposed Approach Channel in September and December 2001 (Transparency, turbidity and suspended solids).

|       | Transparency<br>m (Sep) | Transperency<br>m (Dec) | Turbidity<br>nt (Sep) | Turbidity<br>nt (Dec) | Guspended Solids<br>mg/ltr (sep) | Suspended Solid<br>mg/ltr (sep) |
|-------|-------------------------|-------------------------|-----------------------|-----------------------|----------------------------------|---------------------------------|
| A-1   | 0,71                    | 0.96                    | 2.2                   | 1.4                   | 186.5                            | 195,5                           |
| A-2   | 0.77                    | 0.98                    | 2,5                   | 1,8                   | 199.5                            | 198                             |
| A-3   | 0.82                    | 0.95                    | 2.0                   | 1.6                   | 170.5                            | 202                             |
| B-2   | 0.83                    | 0.83                    | 2.0                   | 1,3                   | 193                              | 218                             |
| B-3   | 0.97                    | 0.8                     | 1.8                   | 1                     | 195.5                            | 206                             |
| B-4   | 1.05                    | 0.85                    | 1.6                   | 1.4                   | 202,5                            | 200,5                           |
| M-1   | 0.80                    | 0.92                    | 2.1                   | 2.3                   | 193                              | 213.5                           |
| M-2   | 0.93                    | 0.82                    | 1,9                   | 2,3                   | 173.5                            | 215                             |
| S-1   | 0.77                    | 0.96                    | 2.6                   | 3                     | 402                              | 207.5                           |
| S-2   | 0.97                    | 8.0                     | 2.3                   | 1.6                   | 196.5                            | 203                             |
| S-3   | 0.89                    | 0.8                     | 2.2                   | 1.1                   | 213.5                            | 200,5                           |
| S-4   | 0.96                    | 1.14                    | 2.2                   | 1.5                   | 190                              | 215                             |
| S-5   | 1.43                    | 0.82                    | 1.4                   | 1.6                   | 379                              | 210.5                           |
| B-5   | 12.45                   |                         | 0.4                   |                       | 181.5                            |                                 |
| B-6   | 14.34                   | 14.34                   | 0.3                   | 0.3                   | 181                              | 181                             |
| B-7   | 14.8                    |                         | 1.5                   |                       | 189,5                            |                                 |
| 8-8   | 13.75                   |                         | 0.4                   |                       | 186.5                            |                                 |
| B-9 [ | 15.72                   | 15.72                   | 0.2                   | 0.3                   | 186.5                            | 186.5                           |
| B-10  | 18.2                    |                         | 0.2                   | ·                     | 184.5                            |                                 |
| B-11  | 14.84                   |                         | 0.2                   |                       | 180.5                            |                                 |
| B-12  | 13.9                    | 13.9                    | 0.3                   | 0.4                   | 177                              | 177                             |
| 6-13  | 19.8                    | ·                       | 0.2                   |                       | 173.5                            | :                               |
| E-1   |                         | 8.5                     |                       | 0.5                   |                                  | 176.5                           |
| E-2   |                         | 8.5                     |                       | 0.4                   |                                  | 166                             |
| E-3   | _                       | 8.5                     |                       | 0.3                   |                                  | 176.5                           |
| E-4   |                         | 8.5                     |                       | 0,3                   |                                  | 170                             |
| E-5   |                         | 8,5                     |                       | 0.3                   |                                  | 169                             |

Table I.5.3 Quality of Surface Water along Proposed Approach Channel in September and December 2001 (Chemical Oxygen Demand, and Total Oil and Grease)

| and the second | Total Oil    | Total Oil    | COD          | COD         |
|----------------|--------------|--------------|--------------|-------------|
|                | mg/ltr (Sep) | mg/ltr (Dec) | mg/ftr (Sep) | mg/tr (Dec) |
| A-1            | 31,30        | 23.5         | 86.1         | 111.8       |
| A-2            | 19.30        | 17           | 90.7         | 198.8       |
| A-3            | 14.30        | 18.3         | 104.3        | 111.8       |
| B-2            | 9.50         | 0            | 132.6        | 0           |
| B-3            | 2.30         | 0            | 204.0        | 0           |
| B-4            | 0            | 0            | 182.4        | . 0         |
| M-1            | 0            | 0            | 0            | 0           |
| M-2            | 0            | 0            | 0            | 0           |
| S-1            | 0            | 0            | 56.7         | 0           |
| S-2            | 0            | 0            | 70.3         | 0           |
| S-3            | 1.00         | 0            | 66.9         | 0           |
| S-4            | 0.50         | 0            | 77.1         | 0           |
| S-5            | 1.00         | 0            | 119.0        | 0           |
| B-5            | 0            |              | 102          |             |
| B-6            | 0            | 0            | 98.6         | 98.6        |
| B-7            | 0            |              | 60.1         | ·           |
| B-8            | 0            |              | 65.7         |             |
| B-9            | 0 .          | 0            | 79.3         | 79.3        |
| B-10           | 4.25         |              | 65.7         |             |
| B-11           | 13.8         |              | 66.9         |             |
| B-12           | 13.5         | 13.5         | 58.6         | 58. 6       |
| B-13           | 8            |              | 53.3         |             |
| E-1            |              | 5.5          |              | 242.2       |
| E-2            |              | 10.8         |              | 285.7       |
| E-3            |              | 12.5         |              | 173.9       |
| E-4            |              | 17.5         |              | 62.1        |
| E-5            |              | 9            |              | 211.2       |

## I.6.1 Scabed Quality Survey

Table I.6.1 Granulometry in Alternate Deposition Area

|             | FINE SAND (%) | SILT (%) | CLAY (%) |
|-------------|---------------|----------|----------|
| Station E-1 | 63.4          | 22.6     | 14       |
| Station E-2 | 60.9          | 25.1     | 14       |
| Station E-3 | 66.2          | 20.3     | 13.5     |
| Station E-4 | 66.6          | 18.4     | 15       |
| Station E-5 | 59.6          | 25.4     | 15       |

Table I.6.2 Loss on Ignition Results, Front of Wharf, Rainy Season

| STATION | ASH     | VOLATILE         |
|---------|---------|------------------|
| A-1     | 89.57 % | MATERIAL 10.43 % |
| A-2     | 89.65 % | 10.35 %          |
| A-3     | 94.27 % | 5.73 %           |

Table 1.6.3 Loss on Ignition Results, Front of Wharf, Dry Season

| STATION | ASH     | VOLATILE<br>MATERIAL |
|---------|---------|----------------------|
| A-1     | 85.86 % | 14.14 %              |
| A-2     | 92.50 % | 7.50 %               |
| A-3     | 86.89 % | 13.11 %              |

Table I.6.4 Loss on Ignition Results Alternative Deposition Area, Dry Season

| STATION | ASH     | VOLATILE |
|---------|---------|----------|
| E-5     | 89.38 % | 10.62 %  |
| E-4     | 89.57 % | 10.43 %  |
| E-3     | 90.74 % | 9.26 %   |
| E-2     | 90.74 % | 9.26 %   |
| E-1     | 91.96 % | 8.04 %   |

## I.7 Seabed Benthic Organism Survey

Table I.7.1 Density in Rainy Season

|                           |          |            |            |     |     |     |     | 1401     |       | . 1      |     | y III K  | LILLY L | Caso |     |         |     | Teamer. |          |      |          |             |               |
|---------------------------|----------|------------|------------|-----|-----|-----|-----|----------|-------|----------|-----|----------|---------|------|-----|---------|-----|---------|----------|------|----------|-------------|---------------|
|                           |          |            |            |     |     |     |     |          | Stati | ons      |     |          |         |      |     |         |     |         |          |      |          |             | Density/Total |
| Species                   | B-2      | <b>8-3</b> | 33-4       | 8-1 | 5-2 | 9-3 | 5-4 | 5-5      | A-1   | A-2      | A-3 | M-1      | M-2     | B-5  | B-6 | B-7     | 8-8 | B-9     | B-10     | 8-11 | B-13     | <b>B-13</b> | Species       |
| Acesta lopezi lopezi      | 171      | 29         |            | 71  |     | 229 |     | 143      |       |          | 200 | 86       | 114     |      |     |         |     |         |          |      |          |             | 1043          |
| Americonuphis sp          |          |            |            |     |     |     |     | ļ<br>——— |       |          |     | <u> </u> |         | 14   | 14  | 29      | 43  | 14      |          | 14   | 14       |             | 142           |
| Amphiodia oerstedi        | <u> </u> |            |            |     |     | 57  | 57  | 43       |       |          | -   | 29       | 100     |      |     |         |     |         |          |      |          |             | 286           |
| Anadara grandis           | 14       |            | 29         |     |     | 86  |     |          |       |          |     | 114      | 143     |      | · . |         |     |         |          |      | <u> </u> |             | 386           |
| Ancistrosyllis ocellata   | 29       |            |            |     |     |     |     |          | 57    | 14       | 14  | 57       | 86      |      |     |         |     |         | <u> </u> |      |          |             | 257           |
| Aratus sp.                | 29       | 57         | <b>5</b> 7 |     |     | 71  |     |          | 86    | 14       |     |          | 14      |      |     | <u></u> |     |         |          |      |          |             | 328           |
| Armandia salvadoriana     |          |            | 71         |     | 100 | 171 | 71  | 57       | 57    | 143      | 157 |          |         |      |     |         | ļ   |         |          |      |          |             | 827           |
| Callinectes toxotes       |          |            |            |     |     |     |     |          |       |          |     |          |         | 14   | 29  | 14      | 14  | 29      |          | 29   | 14       |             | 143           |
| Capitella capitata        |          |            | 57         | 71  | 86  |     | 14  |          | 29    | 114      | 86  | 29       |         | _    |     |         |     |         |          |      |          |             | 486           |
| Cerithidea sp             |          |            | ;          |     |     |     |     |          |       |          |     |          |         | 14_  |     | - 29    |     |         | 14       | 14   |          | 57          | 128           |
| Chone minuta              |          |            | 171        | 86  | 57  | 114 | 214 |          | 71    | <u> </u> | 100 |          |         |      |     |         |     |         |          |      |          |             | 813           |
| Dasybranchus lumbricoides |          |            |            | 71  |     | 100 |     | 43       |       |          | 43  |          |         |      |     |         |     |         |          |      |          |             | 257           |
| Diopatra omata            |          |            |            |     | 71  |     | 71  |          |       | 71       | 14  | 57       |         | 43   | 57  |         | _14 | 14      |          | 14   | 14       |             | 440           |
| Eteone estuarina          |          |            |            | 29  |     |     |     |          |       | 14       |     | ļ        |         |      |     |         | ļ   |         |          |      |          |             | 43            |
| Eunoe spi                 | ļ        |            |            |     |     | 71  |     | <br>     |       |          |     | 14       | 57      |      |     |         |     |         |          |      |          |             | 142           |
| Glycinda paucignatha      |          | 43         |            | 43  |     |     | 43  | <u> </u> |       |          | ·   | 43       |         | 71   |     |         |     |         |          |      |          |             | 243           |
| Haploscolopos elongatus   |          | 29         |            |     | 29  |     |     |          | 14    |          |     |          | 57      |      |     |         | ·   |         |          |      |          |             | 129           |
| Laconeris uncinigera      |          |            | 57         |     |     | 57  |     | 29       | 100   |          | 114 |          | 71      |      |     |         |     |         |          |      |          |             | 428           |
| Magelona pacifica         | 29       |            |            |     |     | 43  | . : |          |       |          |     |          |         |      |     |         |     |         |          |      |          |             | 72            |
| Magelona sp               | 14       |            |            |     | 57  |     |     | 71       |       | 57       | 71  |          | 71      |      |     |         |     |         |          |      |          |             | 341           |
| Menipe frontalis          |          |            |            |     |     |     |     |          |       |          |     | 114      | 29      |      |     |         |     |         |          |      |          |             | 143           |
| Mytella guyanensis        |          |            |            | 86  | 114 |     |     |          | 57    | 14       | 14  |          |         |      |     |         |     |         |          |      |          |             | 285           |

Table I.7.2 Density in Rainy Season

|                          |            |     |     |     |     |      |     |          | ault  | A - / - 24 |     | 13117 1  |      |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | en de commence |             | ******************************* | ****************** |      | *************************************** |      |               |
|--------------------------|------------|-----|-----|-----|-----|------|-----|----------|-------|------------|-----|----------|------|-----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|--------------------|------|-----------------------------------------|------|---------------|
|                          |            |     |     |     |     |      |     |          | STATI | ons        |     |          |      |     |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | DENSITY/FOTAL |
| SPECIES                  | B-2        | B-3 | R-4 | S-1 | 5-2 | 5-3  | 5-4 | 8-5      | A-1   | A-2        | A-3 | М-1      | M-2  | B-5 | B-6                                     | B-7                                                                                                            | B- <b>8</b> | B-9                             | B-10               | 3-11 | B-13                                    | B-13 | SPECIES       |
| Nephtys oculata          |            |     |     | 29  |     |      |     |          | 114   |            |     |          |      |     | 57                                      |                                                                                                                | <u> </u>    |                                 |                    |      | ļ <u>-</u>                              |      | 200           |
| Nerita sp                | 43         | ļ   | 14  | 114 |     |      |     | L        | 86    | <b>5</b> 7 | 29  |          |      |     |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | 343           |
| Opisthosyllis arborícora |            |     |     |     |     |      | 57  |          |       |            |     | <u> </u> |      |     | ļ                                       |                                                                                                                |             |                                 |                    |      |                                         |      | 57_           |
| Pachygrapsus transversus |            | 71  |     | 86  |     |      | 86  |          |       |            |     |          |      |     |                                         |                                                                                                                | ļ           | ļ                               | <u> </u>           |      |                                         |      | 243           |
| Parapriosnopio pinnata   | 171        |     | 100 |     | 129 |      |     | 71       | į     | 171        | 29  |          |      | 43  |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | 714           |
| Penaeus californiensis   | 29         | 29  |     |     | 29  |      | 57  |          | 86    |            |     | 57       |      | 57  |                                         |                                                                                                                | 14          |                                 |                    | 14   |                                         |      | 372           |
| Penaeus stylirostris     |            |     |     |     |     | 57   |     |          |       |            |     |          |      | 86  |                                         |                                                                                                                | 11          | ļ .                             |                    | 29   | }                                       |      | 286           |
|                          |            |     |     |     |     |      |     |          |       |            | L   |          |      |     |                                         |                                                                                                                | 4           |                                 |                    |      |                                         |      |               |
| Penaeus vannamei         |            | 14  | 29  | 29  |     | 14   |     | 100      |       |            | 43  |          | 71   | 29  |                                         |                                                                                                                |             |                                 | <u> </u>           |      |                                         | }    | 329           |
| Pinnixa valeril          | 43         |     | 71  |     | 14  |      |     |          |       |            |     |          |      |     |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | 128           |
| Portunus sp              |            |     |     |     |     |      |     | 1        |       |            |     |          |      |     | <u> </u>                                | 14                                                                                                             |             |                                 | 29                 |      |                                         | 14   | 57            |
| Protothaca sp            |            |     |     |     |     |      |     |          |       |            |     |          |      | 14  |                                         | 14                                                                                                             | 43          |                                 | 14                 | 29   |                                         | 14   | 128           |
| Renilla sp               |            |     |     |     |     | 43   |     | <u> </u> |       |            |     | 57       | 114  |     | <u> </u>                                |                                                                                                                | ļ           |                                 |                    |      |                                         |      | 214           |
| Sipunculus nudus         | <b>5</b> 7 | 29  | 71  |     |     |      |     |          |       |            |     |          |      |     |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | 157           |
| Sipunculus phalloides    |            | 43  |     | 86  |     | 29   | 129 |          |       |            |     | 29       | 57   |     |                                         |                                                                                                                |             |                                 | _                  |      |                                         |      | 373           |
| Telina sp1               | 14         |     |     |     | 57  | 14   |     |          | 14    | 114        | 14  | 14       | 57   |     |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | 298           |
| Telina sp2               |            | 43  |     |     |     | 100  |     |          |       |            |     | 29       | 14   |     |                                         |                                                                                                                |             |                                 |                    |      |                                         |      | 186           |
| Uca beebei               |            | 57  | _   | 71  |     |      | 71  |          | 71    | 57         | 14  |          |      |     | 1                                       |                                                                                                                |             | <u> </u>                        |                    |      |                                         |      | 341           |
| Uca limicola             | 57         |     | 71  | 86  |     | 14   |     |          |       |            |     | 43       | 14   |     |                                         |                                                                                                                |             |                                 |                    |      | ļ                                       |      | 285           |
| DENSITY/STATION          | 700        | 444 | 795 | 958 | 743 | 1270 | 870 | 557      | 842   | 846        | 942 | 772      | 1069 | 385 | 157                                     | 100                                                                                                            | 24          | 57                              | 57                 | 143  | 42                                      | 85   |               |
|                          |            |     |     |     | ·   |      |     | <u> </u> |       |            |     | •        |      |     |                                         |                                                                                                                | 2           |                                 |                    | -    |                                         |      |               |
| DIVERSITY (H')           | 2.2        | 2.3 | 2.3 | 2.6 | 2.3 | 2,6  | 2.2 | 2        | 2.4   | 2.2        | 2.3 | 2.5      | 2.6  | 2.1 | 1.3                                     | 1.6                                                                                                            | 1.5         | 1                               | 1                  | 1.9  | 1.1                                     | 0.9  |               |
| EQUITATIVITY (J)         | 0.8        | 0.9 | 0.9 | 0.9 | 0.9 | 0.9  | 0.9 | 0.9      | 0.9   | 0.8        | 0.8 | 0.9      | 0.9  | 0.9 | 0.9                                     | 0.9                                                                                                            | 0.9         | 0.8                             | 0.9                | 0.9  | 1                                       | 0.7  |               |

Table I.7.3 Density in Dry Season

| Acesta lopezi lopezi      |      | 43   | 86       | 129  |
|---------------------------|------|------|----------|------|
| Armandia salvadoriana     | 71   | 171  | 214      | 456  |
| Ancistrosyllis ocellata   | 29   |      |          | 29   |
| Chone minute              | 200  | 114  | 171      | 485  |
| Capitella capitata        | 886  | 229  | 486      | 1601 |
| Dasybranchus lumbricoides |      | 29   | 14       | 43   |
| Laconeris uncinigera      | 29   |      | 71       | 100  |
| Diopatra ornata           |      |      | 14       | 14   |
| Magelona sp               | 29   |      |          | 29   |
| Glycinda paucignatha      |      | 14   |          | 14   |
| Nephtys oculate           |      |      | 57       | 57   |
| Parapriosnopio pinnata    |      | 29   |          | 29   |
| Sipunculus nudus          |      | . 29 | 14       | 43   |
| Sipunculus phalloides     | 29   |      | 43       | 72   |
| Telina sp1                |      | 29   | 14       | 43   |
| Telina sp2                | 14   |      |          | 14   |
| Aratus sp.                |      |      | 29       | 29   |
| Pinnixa valerii           |      | 71   | 14       | 85   |
| Uca beebei                | 29   | 14   | 29       | 72   |
| Uca limicola              |      | 29   | <u> </u> | 29   |
| Eteone estuarina          | 71   | 14   | . 29     | 114  |
| Mytella guyanensis        | 29   | 86   | 57       | 172  |
| DENSITY/STATION           | 1416 | 901  | 1342     |      |
| DIVERSITY (H´)            | 1.4  | 2.2  | 2.1      |      |
| EQUITATIVITY (J')         | 0.6  | 0.8  | 0.7      |      |
|                           |      |      |          |      |

Table I.7.4 Density in Dry Season (Additional Stations)

| Species .              | Cepter | North | North | South | South | Total Density |
|------------------------|--------|-------|-------|-------|-------|---------------|
|                        |        | East  | West  | East  | West  | By Species    |
| Eurysquilla veleronis  | 14     | 14    |       |       | 14    | 42            |
| Protothaca sp          | 29     | 43    |       |       | 29    | 101           |
| Cerithidea sp          | 29     | 14    | 14    |       |       | 57            |
| Penacus vannamei       |        | 14    |       | 29    |       | 43            |
| Penaeus californiensis | 14     | 14    | 29    | 29    | 14    | 100           |
| Penacus stylirostris   | 29     | 57    | 29    | 43    | 29    | 187           |
| Parapriosnopio pinnata | 171    | 214   | 114   | 329   | 229   | 1057          |
| Eunoe sp. 1            | 14     | 86    | 29    | 14    | 43    | 186           |
| Diopatra omata         | 71     | 43    | 29    | 29    | 43    | 215           |
| Americonuphis sp       |        | 29    |       | 14    | 14    | 57            |
|                        |        |       |       |       |       |               |
| Density/Station        | 371    | 528   | 244   | 487   | 415   | :             |
| Diversity (H')         | 1.6    | 1.9   | 1.5   | 1.2   | 1.5   |               |
| Equitativity (J´)      | 0.7    | 0.8   | 0.8   | 0.6   | 0.7   |               |

Table 1.7.5 List of Marine Benthos Recorded in Vicinity of Cutuco Port

| Тахоновіс Стоир           | Scientific Name        |
|---------------------------|------------------------|
| Algae (seaweed)           | Bostrychyja moritziana |
|                           | Bostrychyia sp         |
|                           | Cladophora sp          |
| Segmented worms           | Serpulid polychaete    |
| Gastropod molluscs-snails | Nerita sp              |
|                           | Cerithidea sp          |
| Bivalve molluses-clams    | Ostrea iridescens      |
|                           | Mytella guyanensis     |
|                           | Polimesoda solida      |
| Crustacea – chitons       | Chiton stokesii        |
| Crustacea – barnacles     | Balanus sp             |
| Crustacea - crabs         | Menipe frontalis       |
|                           | Grapsid crab           |
| Crustacea – hermit crabs  | Clibanarius panamensis |
| Sponges                   | Red sponge             |
|                           | Yellow sponge          |
|                           | White sponge           |

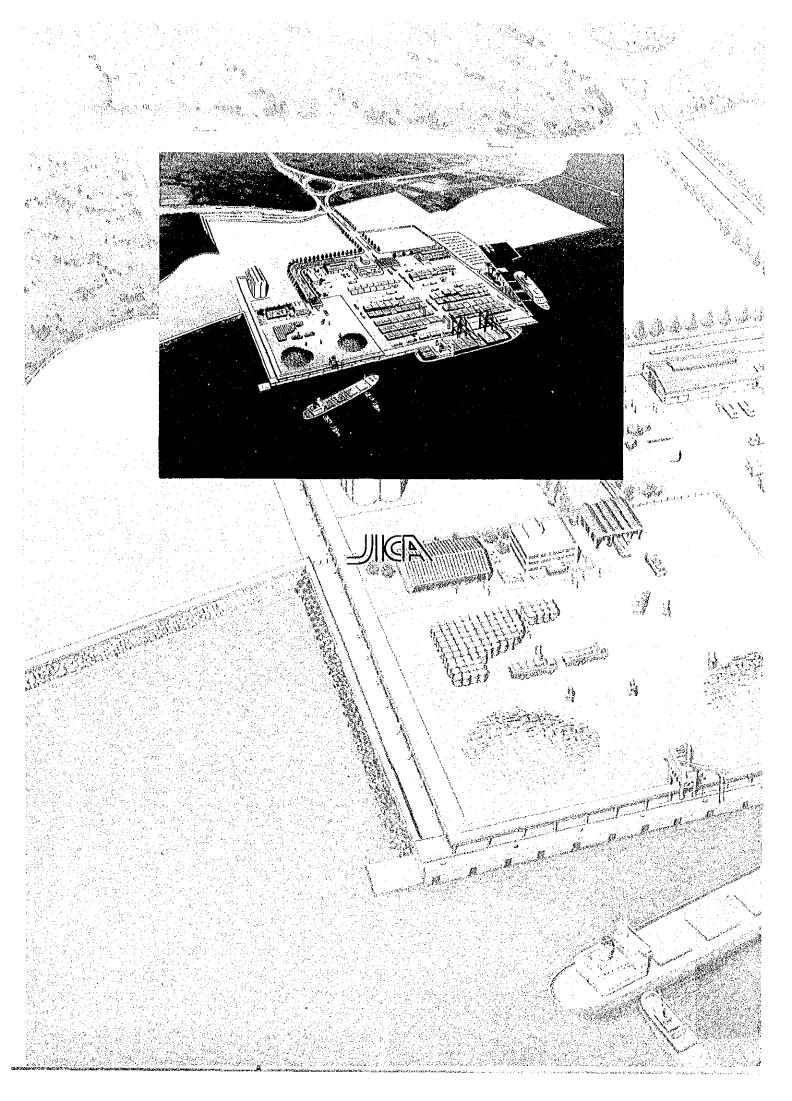

#### 1.8 Fishery Survey

Table I.8.1 Annual Volume of El Salvador Fish Catch (metric tons) Between 1991 and 2000

|                    | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999  | 2000  |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| Industrial Fishing | 2,013  | 2,821  | 4,012  | 4,228  | 4,910  | 6,391  | 4,229  | 4,821  | 2,921 | 2,099 |
| Artisanal: Inshore | 4,241  | 4,120  | 3,864  | 5,029  | 5,398  | 4,604  | 4,655  | 3,477  | 4,203 | 4,566 |
| Artisanal: Lakes   | 4,345  | 5,136  | 4,461  | 3,818  | 4,325  | 2,966  | 2,809  | 2,443  | 2,653 | 2,830 |
| TOTAL              | 10,599 | 12,077 | 12,337 | 13,075 | 14,533 | 13,961 | 11,693 | 10,741 | 9,777 | 9,495 |

Table I.8.2 Annual Catch (metric tons) of Main Species in Fonseca Gulf (1990-1996)

| SPECIES           | 1990   | 1991    | 1992  | 1993  | 1994  | 1995  | 1996  |
|-------------------|--------|---------|-------|-------|-------|-------|-------|
| Shark             | 254.5  | 381.6   | 145.1 | 106.0 | 130.8 | 19.2  | 90.9  |
| Red Snapper       | 196.0  | 490.9   | 67.3  | 108.4 | 100.8 | 117.3 | 51.6  |
| Grouper           | 155.8  | 250.2   | 89.4  | 114.6 | 87.4  | 56.3  | 85.2  |
| Mackerel          | 0.4    | 80.5    | 10.1  | 15.0  | 13.9  | 7.0   | 8.3   |
| Catfish           | 0.9    | 178.1   | 0.1   |       | 0.17  | 3.0   | 12.2  |
| Other fish        | 673.0  | 1853.90 | 104.0 | 135.7 | 143.8 | 154.6 | 129.4 |
| Shrimp            | 152.6  | 240.4   | 182.2 | 163.9 | 75.8  | 210.6 | 146.6 |
| Other Crustaceans | 128.1  | 244.1   | 14.9  | 19.9  | 17.2  | 39.9  | 7.2   |
| Molluscs          | 405.4  | 521.1   | 4.2   | 4.3   | 2.0   | 6.1   | 1.9   |
| Turtle eggs       | 0.1    |         |       |       |       |       |       |
| TOTAL             | 3956.8 | 7980.3  | 617.3 | 667.7 | 572.1 | 714.0 | 533.3 |

