6.3.2 Environmental Conservation by TES4

- (1) Exhaust Gas Countermeasures
 - 1) Measurement Result of Exhaust Gas

TES4 has measured SO_2 , NO_2 and the dust outlet electrostatic precipitator (ESP). The analysis method of each item is as follows:

Item	Method
SO_2	Controlled potential electrolysis method Model NOS-700
NO ₂	Controlled potential electrolysis method Model NOS-700
Dust	Dust collector with tube filter
O ₂	Zirconium-type oxygen method Model NOS-700 (Best Instrument Co., Ltd)

The results of the measurement carried out from 1998 to 2000 are shown in Table 6.3-11.

In addition, the measurement of SO_2 and NO_2 has not been carried out since the device broke down in 1999.

According to the measurement result of 1998, SO_2 and NO_2 concentrations (values revised by 6% O_2) from each boiler unit are within the range of 463 to 735 ppm and 142 to 475 ppm, respectively.

According to the measurement result from 1998 to 2000, dust concentration based on 6% O_2 is within the range of 190 to 942 mg/m³N. Furthermore, the emission standard for the exhaust gas of the power plant does not exist at present in Mongolia.

2) Environmental Impact by Emissions

As a flue gas countermeasure, only a stack with a height of 250 m considering the dispersion effect and ESP with a removal efficiency of 90% or more is adopted at TES4.

In consideration of these measures, the impact on ambient air quality by emissions (SO₂, NO_2 and dust) during TES4 operation is examined as follows:

(a) Condition of Dispersion Prediction

In consideration of the annual change of the SO_2 value and others measured by the 4 monitoring stations, attention was paid to the impact on ambient air in the winter season of 2000.

Simple calculation of short-term dispersion (CONCAWE formula for effective stack height, Plume formula-PG diagram) was performed based on a general method of Japanese environmental assessment to evaluate the impact on the ambient air of the winter season in 2000.

The dispersion formula used for the examination is shown in Table 6.3-12.

Moreover, conditions of dispersion prediction such as weather data are as follows:

Ave temp.	-21.5°C
Ground wind	Average velocity that appeared most: 1.9 m/s
velocity	Maximum velocity: 9.0 m/s
Ambient air stability	Pasquill atmospheric stability level E~F corresponding to the Mongolian value of 81.1~100%

- Weather condition: Winter season (January, February, and December)

- Exhaust gas condition: The following conditions are based on the measurement result by TES4

SO ₂	480 ppm (Average value of #3u, #5u and #6u in 1998)
NO ₂	310 ppm (Setting value based on a later description)
Dust	950 mg/m ³ N (Max. of the average of each unit from $1998 \sim 2000$)
Moisture	6.3% (Average from 1998-2000)
Gas Temp.	141°C (Design value)

 SO_2 concentration (value revised by 6% O_2) is set up to an average value of 480 ppm of boiler unit No.3, No.5 and No.6 measured on October 26, 1998.

As for NO_2 concentration (value revised by 6% O_2), two of the five boilers were considered to be a repaired boiler (average NO_2 of 142 ppm) the same as unit No.3. The remaining three boilers were considered to be not repaired like unit No.5 and No.6 with an average NO_2 of 422 ppm, the same as No.2 unit. Based on these assumptions, the average NO_2 value under the operation of five boilers was set up to 310 ppm.

Unit Items	3и	5 <i>u</i>	би	Set up value
SO ₂ ppm	463	530	458	480
NO ₂ ppm	142	404	439	310

- Operation number of boiler and exhaust gas volume

Exhaust gas volume	Gas volume concerning stack design: 194 m ³ N/sec/unit		
Operation number of boiler	5 boilers $(3,492,000 \text{ m}^3\text{N/h})$ in consideration of achievement in the winter season		

- Objects for comparison for the contribution of pollutant concentration

(Average value measured	by mo	nitoring	stations	in	winter	2000,	etc.)
(-)					,	

				(Unit: µg/m'N)
Items	No.1 Station	No.2 Station	No.3 Station	No.4 Station
SO_2	20	20	19	17
NO ₂	_	48	22	32
Dust *1	150	150	150	150

^{*1:} $150 \mu g / m^3 N$ corresponding to the daily standard level was set up because of the actual lack of data.

(b) Prediction Result (Prediction and evaluation on the impact)

The result of short-term dispersion calculation is shown in Fig. 6.3-7 to 6.3-8, and Table 6.3-13 to 6.3-14.

In winter, the grounding inversion layer occurred frequently every morning and evening. Since the atmospheric stability is strong (corresponding to Pasquill stability $E \sim F$), exhaust gas from an effective stack height usually flutters horizontally without diffusion in the air and the distance to maximum ground concentration will be more than 30 km in general.

For this reason, the contribution of emission concentration is considered to be very small in the city.

a) Sulfur Dioxide

When SO₂ discharge concentration is set up to 480 ppm, the discharge amount of SO₂ is approx. 4,492 t/h under the operation of the five boilers in the winter season.

As a calculation result of the short-term dispersion by wind velocity of 1.9m/s, the distance point to maximum ground concentration is 30 km or more in the case of strong stability (corresponding to Pasquill stability $E \sim G$).

Moreover, in the case of atmospheric stability D (neutral condition), the SO₂ contributed concentration is a very small value of grade 2 μ g/m³N at the 30-km point.

In this case, it is considered that there is almost no influence, even if the wind direction is in accordance with each monitoring station.

As a calculation result by the maximum wind velocity of 9.0 m/s, which appeared in December, the maximum ground level concentration point is 30 km or more in the case of atmospheric stability E to F, and the environmental impact is considered to be very small.

Furthermore, when atmospheric stability changes to a stability D level, the SO_2 contributed concentration is about 5 μ g/m³N at the maximum ground level concentration point of 27.3 km. In this case, the contribution rate to the average value 17 to 20 μ g/m³N for each monitoring station is about 0.4 to 9.2%, even if the wind direction is in accordance with each monitoring station.

Moreover, as the appearance frequency of the wind velocity of "6m/s or more" was about 1.1% in winter 2000, the environmental impact is considered to be very small.

Ground wind velocity	Pasquill atmospheric stability	Maximum ground level concentration point	Maximum ground level concentration (Daily average)	Contribution rate to the monitoring station (Wind direction is in accordance with each monitoring station)
1.9 m/s	E~ (Weak stability ~ strong stability)	30 km or more	-	Almost no influence
	D (Neutrality)	Ditto	2 μg/m ³ N at 30-km point	Ditto
9.0 m/s (Wind velocity	E~ (Weak stability ~ strong stability)	Ditto	0.4 μg/m ³ N at 30-km point	Ditto
occurring in Dec.)	D (Neutrality)	27.3 km	$5 \ \mu g/m^3 N$	0.4~9.2%

b) Nitrogen Oxide

When NO₂ discharge concentration is set up to 310 ppm, the discharge amount of NO₂ is about 2.079 t/h under the operation of the five boilers in the winter season.

As a calculation result by wind velocity of 1.9m/s like SO₂, the maximum ground concentration point is 30 km or more in either stability.

Moreover, it is considered that there is no influence of NO_2 contribution concentration in the city.

As a calculation result by the maximum wind velocity of 9.0 m/s, which appeared in December, the maximum ground level concentration point is 30 km or more in the case of atmospheric stability E to F, and the environmental impact is considered to be very small.

Furthermore, when atmospheric stability changes to stability level D, the NO_2 contributed concentration is about 2 μ g/m³N at the maximum ground level concentration point of 27.3 km.

In this case, the contribution rate to the average value of 22 to 48 μ g/m³N for each monitoring station is about 0.1 to 1.6%, even if the wind direction is in accordance with each monitoring station.

Ground wind velocity	Pasquill Atmospheric stability	Maximum ground level concentration point	Maximum ground level concentration (Daily average)	Contribution rate to the monitoring station (Wind direction is in accordance with each monitoring station)
1.9 m/s	E~ (Weak stability ~ strong stability)	30 km or more	_	Almost no influence
D (Neutrality)		Ditto	1 μg/m ³ N at 30-km point	Ditto
9.0 m/s (Wind velocity	E~ (Weak stability ~ strong stability)	Ditto	0.2 μg/m ³ N at 30-km point	Ditto
occurring in Dec.)	D (Neutrality)	27.3 km	$2 \ \mu g/m^3 N$	0.1~2.3%

c) Dust (SPM)

When dust discharge concentration is set up to $950 \text{ mg/m}^3\text{N}$, the discharge amount of dust is approx. 3.108 t/h under the operation of the five boilers in the winter season.

As for the calculation result by wind velocity of 1.9m/s like SO₂, the maximum ground level concentration point is 30 km or more in either stability and it is considered that there is no influence of dust contribution in the city.

As a result of calculation by the maximum wind velocity of 9.0 m/s, which appeared in December, the dust contributed concentration is about 1 μ g/m³N under atmospheric stability E (weak stability).

Furthermore, when atmospheric stability changes to stability level D, the dust contributed concentration is about $3.5 \,\mu g/m^3 N$ at the maximum ground level concentration point of 27.3 km. Even if the wind direction is in accordance with each monitoring station, the contribution rate is about $0.1 \sim 0.7\%$ to $150 \,\mu g/m^3 N$ (equivalent to the standard), and the environmental impact is considered to be very small.

Ground wind velocity	Pasquill atmospheric stability	Maximum ground level concentratio n point	Maximum ground level concentration (Daily average)	Contribution rate to the monitoring station (wind direction is accord with each monitoring station)
1.9 m/s	E ~ (Weak stability ~ strong stability)	30km or more	_	Influence does not almost exist
	D (Neutrality)	Ditto	$1.4 \ \mu \ \text{g/m}^3\text{N}$ at 30km point	Ditto
9.0 m/s (Wind velocity	E~ (Weak stability ~ strong stability)	Ditto	0.3μ g/m ³ N at 30km point	Ditto
occurred in Dec.)	D (Neutrality)	27.3km	$3.5 \mu \text{ g/m}^3\text{N}$	0.1~0.7% to 150 μg/m ³ N

Table 6.3-11 (1)Exhaust Gas Measurement Result of SO2, NO2 Outlet ESP (1998)

#6u	Oct.26	216	208	13.8
#6u	Oct.26	236	225	13.4
#6u	Oct.8	540	274	8.8
#5u	Oct.26	317	242	12
#5u	Oct.26	324	247	11.8
#5u	Oct.26	330	252	11.7
#5u	Oct.8	599	320	11.4
#3u	Oct.26	374	110	9.3
#3u	Oct.26	398	120	8.7
#3u	Oct.26	440	148	5.6
#3u	Oct.26	474	141	5.5
#3u	Oct.8	467	178	9.6
#2u	Feb24	480	296	11.2
#1u	Feb24	247	190	15
Unit	Date	ppm	ppm	%
		SO_2	NO_2	O_2
-				

Recorded by: TES4

SO₂, NO₂ Concentration revised by 6% O₂

#6u	Oct.26	450	433
#6u	Oct.26 C	466	444
#eu #	Oct.8 0	664	337
		528	403
#5u	5 Oct.26		7
#5u	Oct.26	528	403
ns#	Oct.26	532	406
#5u	Oct.8	936	500
#3u	Oct.26	479	141
#3u	Oct.26	485	146
#3u	Oct.26	429	144
#3u	Oct.26	459	136
#3u	Oct.8	614	234
#2u	Feb24	735	453
#1u	Feb24	618	475
Unit	Date	mdd	mqq
		SO_2	NO_2

Average Value for each Unit revised by 6% O₂ (1998)

AVE	561	383
n9#	458	439
#5u	530	404
#3u	463	142
#2u	735	453
#1u	618	475
Unit	undd	mdd
	SO_2	NO_2

Values of unit No.3, No.5 and No.6 measured on 8th October were regarded as an abnormal value

and were excluded from calculation of each average.

ESP (1998~2000)
÷
st Outle
of Dust (
Result
khaust Gas Measurement
Ē Ē
0
6.3-11

Е		5	0	4	8		2	~	
AVE		10.6	1.500	84.4	12.	7.1	80.	6.3	
	#8u	10.84	6.825	37	10.7	9.2	80.1	9.6	
0(n9#	5.03	0.169	96.6	12.6	7.2	80.2	6.1	
2000	#4u	12.89	0.116	99.1	14.4	5.3	80.3	3.2	
	#1u	6.98	0.077	98.8	1	ł	1	ł	
	n/#	8.267	6.957	15.84	13.5	6.2	80.3	8.3	
66	#3u	7.6	0.626	92	12.9	6.6	80.5	7.5	
1999	#2u	9.28	0.32	96	11.7	8	80.3	2.4	
	#1u	13.22	0.76	94.3	10.8	8.9	80.3	3.7	
	#8u	12.1	0.2	98	15	5.2	79.8	7.7	
8	n9#	5.24	0.32	94	14	6.2	79.8	7	
1998	#5u	14.2	0.46	67	13	6.6	80.4	7.8	
	#4u	21.5	1.18	95	11.2	8.5	80.3	6.2	
Year	Unit	Inlet ESP (g/m ³ N)	Outlet ESP (g/m ³ N)	Efficiency %	CO ₂ %	$O_2 \%$	$ m N_2$ %	H ₂ O %	

Recorded by: TES4

Dust Concentration based on 6% O₂

	199	98			1999	66			20	2000	
	#5u	n9#	#8u	#1u	#2u	#3u	#7u	#1u	#4u	n9#	#8u
.416	0.479	0.324	0.190	0.942	0.369	0.652	7.051	:	0.111	0.184	8.676

Mean Dust Concentration (based on 6% 02)

	#lu	#2u	#3u	#4u	#5u	#6u	#8u	AVE
Outlet ESP 0.9	0.942	0.369	0.369 0.652			0.254	0.190	0.521
(g/m^3N)								

Values of unit No.7 in 1999, No.8 in 2000 were regarded as an abnormal value

and were excluded from calculation of each average.

(1) Calculation of Effective Stack Height (CONCAWE Formula)

He = Ho + Δ H Δ H = 0.17 × QH^(1/2) × U^(-3/4) QH = ρ C p Q (T-T1)

Symbol	Item	Unit
Q	Exhaust gas quantity (wet)	m ³ N/s
U	Wind velocity at top of stack	m/s
ρ	Exhaust gas density at 0 °C	g/m ³
Ср	Specific heat at constant pressure	Cal/kg
Т	Exhaust gas temperature	° K
T1	Average air temperature	° K
QH	Discharged heat capacity	cal/s
ΔH	Height of exhaust gas ascent	m
Но	Actual stack height	m
Не	Effective stack height	m
q	Emission quantity	m ³ N/s

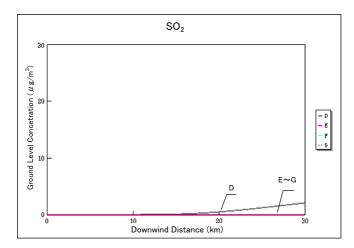
(2) Calculation of Exhaust Gas Dispersion (Plum Formula)

$$C(X) = \frac{q}{\pi \times \delta y(X) \times \delta z(X) \times U} \times exp\left(-\frac{He^{-2}}{2 \delta z(X)^{2}}\right) \times 10^{-6}$$

 $\delta y(X) = \gamma X \times X^{(\alpha y)} \times 1.82$ $\delta z(X) = \gamma z \times X^{\alpha z}$

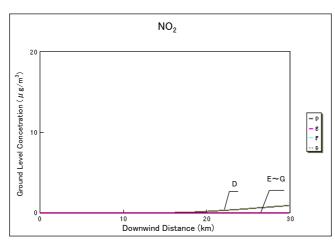
Dispersion	Parameter
------------	-----------

Stability	αγ	γу	Downwind
	5		Distance (m)
А	0.901	0.426	0~1000
	0.851	0.602	1001~
В	0.914	0.282	0~1000
	0.865	0.396	1001~
С	0.924	0.1772	0~1000
	0.885	0.232	1001~
D	0.929	0.1107	0~1000
	0.889	0.1467	1001~
Е	0.921	0.0864	0~1000
	0.897	0.1019	1001~
F	0.929	0.0554	0~1000
	0.889	0.0733	1001~
G	0.921	0.038	0~1000
	0.896	0.0452	1001~

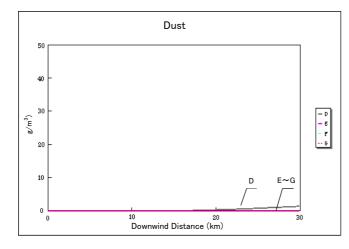

Stability	αz	γz	Downwind
			Distance (m)
А	1.122	0.08	0~1000
	1.514	0.00855	301~500
	2.109	0.000212	501~
В	0.964	0.1272	0~500
	1.094	0.057	501~
С	0.918	0.1068	0~
D	0.826	0.1046	0~1000
	0.632	0.4	100~10000
	0.555	0.811	10001~
E	0.788	0.0928	0~1000
	0.565	0.433	100~10000
	0.415	1.732	10001~
F	0.784	0.0621	0~1000
	0.526	0.37	100~10000
	0.323	2.41	10001~
G	0.794	0.0373	0~1000
	0.637	0.1105	1001~2000
	0.431	0.529	200~10000
	0.222	3.62	10001~

Exhaust Gas Specification (Daily Average)	
[Project: Illaanbaatar TES4]	

Five Boilers Operation


[Project: L	Jiaanbaatar	TE54]				
Items		Unit	Setup value	Items	Unit	Setup value
Gas volum	ne (Wet)	m ³ N/h	3492000	Ave.air temperature	°C	-21.5
Gas veloc	ity	m/s	29.3	Gas temperature	°C	141
Actual sta	ick height	m	250	Wind velocity at ground	m/s	1.9
Emission	SO ₂	kg/h	4492	Daily ave.coefficient		0.51
discharge	NO ₂	kg/h	2079			
quantity	Dust	kg/h	3108			

SO ₂ ppm	480
NOx ppm	310
Dust mg/m ³	950



Dispersion	Effective	Cmax.	Xmax.
parameter	stack		
	height		
	m	$\mu \text{g/m}^3$	km
D	663.5	2.0850	30
E	663.5	0.0001	30
F	616.6	0.0000	30
G	616.6	0.0000	30

Cmax.: Maximum ground level concentratior Xmax.: Distance to Cmax.

Dispersion		Cmax.	Xmax.
parameter			
	height		
	m	$\mu \text{g/m}^3$	km
D	663.5		30
Е	663.5	0.0001	30
F	616.6	0.0000	30
G	616.6	0.0000	30

Dispersion	Effective	Cmax.	Xmax.
parameter	stack		
	height		
	m	$\mu \text{g/m}^3$	km
D	663.5	1.4426	30
E	663.5	0.0001	30
F	616.6	0.0000	30
G	616.6	0 0000	30

Fig. 6.3-7 Dispersion Calculation Result under 5 Boilers Operation in Winter (Case of Ground Wind Velocity 1.9m/s)

Table 6.3-13Impact on the Air Quality by Exhaust Gas Contamination in Winter
(Case of Average Wind Velocity 1.9m)

When the wind direction with average velocity 1.9 m/s is in accord with direction of each monitoring station in 2000 winter, the impact on each air quality is as follows.

1. SO₂

Air quality	No.1St.:	20 μ g/m ³	No.2St.:	20 μ g/m ³	No.3St.:	19 μ g/m ³	No.4St.:	$17 \mu\mathrm{g/m}^3$
1 5	Additional	Additional	Additional	Additional	Additional	Additional	Additional	Additional
	value	rate	value	rate	value	rate	value	rate
	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)
Stability D	0	0	0	0	0	0	0.002	0
Stability E	0	0	0	0	0	0	0	0
Stability F	0	0	0	0	0	0	0	0
Stability G	0	0	0	0	0	0	0	0

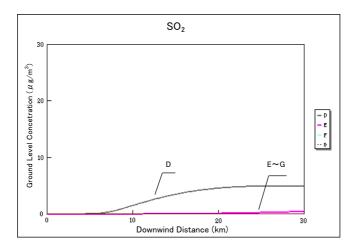
2. NO₂

Air quality	No.1St: 40 μ g/m ³		No.2St: $48 \mu \text{g/m}^3$		No.3St: 22 μ g/m ³		No.4St: $32 \mu \mathrm{g/m}^3$	
1 5	Additional	Additional	Additional	Additional	Additional	Additional	Additional	Additional
	value	rate	value	rate	value	rate	value	rate
	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)
Stability D	0	0	0	0	0	0	0.001	0
Stability E	0	0	0	0	0	0	0	0
Stability F	0	0	0	0	0	0	0	0
Stability G	0	0	0	0	0	0	0	0

3. Dust (SPM)

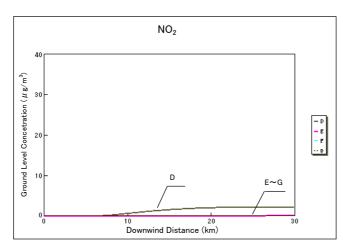
Air quality	No.1St:1	$50\mu{ m g/m}^3$	No.2St:1	$50\mu{ m g/m}^3$	No.3St:1	$50\mu{ m g/m}^3$	No.4St:1	50 μ g/m ³
1 5	Additional	Additional	Additional	Additional	Additional	Additional	Additional	Additional
	value	rate	value	rate	value	rate	value	rate
	$(\mu \text{ g/m}^3)$	(%)						
Stability D	0	0	0	0	0	0	0.002	0
Stability E	0	0	0	0	0	0	0	0
Stability F	0	0	0	0	0	0	0	0
Stability G	0	0	0	0	0	0	0	0

Location each monitoring station from TES4

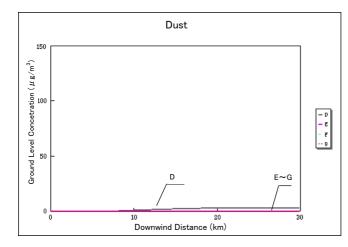

6							
Monitoring St.	Direction	Distance					
No.1	Е	About 6km					
No.2	ENE	About 7km					
No.3	NNE	About 3km					
No.4	ENE	About 10km					

Exhaust Gas Specification (Daily Avera	ge)
[Project: Illaanbaatar TES4]	

Five Boilers Operation


[Project: L	Jlaanbaatar	· TES4]				
Items		Unit	Setup value	Items	Unit	Setup value
Gas volum	ne (Wet)	m ³ N/h	3492000	Ave.air temperature	°C	-21.5
Gas veloc	ity	m/s	29.3	Gas temperature	°C	141
Actual sta	ick height	m	250	Wind velocity at ground	m/s	9
Emission	SO ₂	kg/h	4492	Daily ave.coefficient		0.51
discharge	NO ₂	kg/h	2079			
quantity	Dust	kg/h	3108			

SO ₂ ppm	480
NOx ppm	310
Dust mg/m ³	950



Effective	Cmax.	Xmax.
stack		
height		
m	$\mu \text{g/m}^3$	km
378.8	4.9850	27.3
378.8	0.4217	30
364.2	0.0000	30
364.2	0.0000	30
	stack height m 378.8 378.8 364.2	stack height <u>μ g/m³</u> 378.8 4.9850 378.8 0.4217 364.2 0.0000

Cmax.: Maximum ground level concentration Xmax.: Distance to Cmax.

Dispersion	Effective	Cmax.	Xmax.
parameter	stack		
	height		
	m	$\mu \text{g/m}^3$	km
D	378.8	2.3072	27.3
E	378.8	0.1952	30
F	364.2	0.0000	30
G	364.2	0.0000	30

Dispersion	Effective	Cmax.	Xmax.
parameter	stack		
	height		
	m	$\mu \text{g/m}^3$	km
D	378.8	3.4491	27.3
E	378.8	0.2917	30
F	364.2	0.0000	30
G	364.2	0 0000	30

Fig. 6.3–8 Dispersion Calculation Result under 5 Boilers Operation in Winter (Case of Ground Wind Velocity 9m/s)

Table 6.3-14Impact on the Air Quality by Exhaust Gas Contamination in Winter
(Case of Max Wind Velocity 9 m)

When the wind direction with maximum velocity 9 m/s is in accord with direction of each monitoring station in 2000 winter, the impact on each air quality is as follows.

1. SO ₂	
--------------------	--

Air quality	No.1St: $20 \mu \text{g/m}^3$		No.2St: $20 \mu \text{g/m}^3$		No.3St: 19 μ g/m ³		No.4St: $17 \mu \text{g/m}^3$	
1 5	Additional	Additional	Additional	Additional	Additional	Additional	Additional	Additional
	value	rate	value	rate	value	rate	value	rate
	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)	$(\mu \text{ g/m}^3)$	(%)
Stability D	0.080	0.4	0.327	1.6	0	0	1.572	9.2
Stability E	0	0	0	0	0	0	0.002	0
Stability F	0	0	0	0	0	0	0	0
Stability G	0	0	0	0	0	0	0	0

2. NO₂

Air quality	No.1St: 4	$10\mu{ m g/m}^3$	No.2St: 4	$18\mu{ m g/m}^3$	No.3St: 2	$22\mu{ m g/m}^3$	No.4St: 3	$32\mu{ m g/m}^3$
.1	Additional	Additional	Additional	Additional	Additional	Additional	Additional	Additional
	value	rate	value	rate	value	rate	value	rate
	$(\mu \text{ g/m}^3)$	(%)						
Stability D	0.037	0.1	0.151	0.3	0	0	0.728	2.3
Stability E	0	0	0	0	0	0	0.001	0
Stability F	0	0	0	0	0	0	0	0
Stability G	0	0	0	0	0	0	0	0

3. Dust(SPM)

	1	0		0		0		2
Air quality	No.1St:1	50 µ g∕ m°	No.2St:1	50 µ g∕m°	No.3St:1	50 µ g∕m°	No.4St:1	50 µ g∕ m°
1 5	Additional	Additional	Additional	Additional	Additional	Additional	Additional	Additional
	value	rate	value	rate	value	rate	value	rate
	$(\mu \text{ g/m}^3)$	(%)						
Stability D	0.056	0.1	0.226	0.2	0	0	1.088	0.7
Stability E	0	0	0	0	0	0	0.002	0
Stability F	0	0	0	0	0	0	0	0
Stability G	0	0	0	0	0	0	0	0

Location of each monitoring station from TES4

Monitoring St.	Direction	Distance
No.1	Е	About 6km
No.2	ENE	About 7km
No.3	NNE	About 3km
No.4	ENE	About 10km