Inventory Sheet (Existing Kherlen River Bridge 9/12)

Inventory Sheet (Existing Kherlen River Bridge 10/12)

Inventory Sheet (Existing Kherlen River Bridge 11/12)

Photo

Inventory Sheet (Existing Kherlen River Bridge 12/12)

C-4 Calculation Results of Strength for Kherlen Bridge

A. Existing Bridge (Applying Overseas Live-Load)

Live Load	Strength (kg/cm2) $\sigma \mathcal{c}$ (Concrete) $\sigma \mathrm{s}$ (Re-bar)	Force and Strength			
		Moment $M(\mathrm{tfm})$ M (tfm)	$\begin{aligned} & \text { Reinforcing Bar } \\ & \text { As (cm2) } \end{aligned}$	Working Strength	Allowable Strength σ a
Slab					
Mongolia	$\sigma \mathrm{c}$	1.52	$\begin{array}{r} \text { Dia. } 13-10 \mathrm{no} . / \mathrm{m} \\ \mathrm{As}=12.67 \mathrm{~cm} 2 \end{array}$	67	80
	$\sigma \mathrm{s}$			1281	1400
Japan- A	$\sigma \mathrm{c}$	2.62		115	80
	$\sigma \mathrm{s}$			2200	1400
American AASHTO	$\sigma \mathrm{c}$	2.39		105	80
	$\sigma \mathrm{s}$			2013	1400
Japan- TL-14	$\sigma \mathrm{c}$	1.55		68	80
	$\sigma \mathrm{s}$			1302	1400
Girder					
Mongolia	$\sigma \mathrm{c}$	88.4	$\begin{array}{r} \text { Dia. } 29-10 \mathrm{no} / / \\ \text { Girder } \\ \text { As }=64.24 \mathrm{~cm} 2 \end{array}$	54	70-80
	$\sigma \mathrm{s}$			1817	1800
Japan-A	$\sigma \mathrm{c}$	102.8		62	70-80
	$\sigma \mathrm{s}$			2111	1800
American AASHTO	$\sigma \mathrm{c}$	92.5		56	70-80
	$\sigma \mathrm{s}$			1901	1800
Japan- TL-14	$\sigma \mathrm{c}$	85.8		52	70-80
	$\sigma \mathrm{s}$			1763	1800
Pier-Beam					
Mongolia	$\sigma \mathrm{c}$	152	$\begin{array}{r} \text { Dia. } 29-15 \mathrm{no} / / \\ \text { Pier } \\ \text { As }=96.36 \mathrm{~cm} 2 \end{array}$	73	70-80
	$\sigma \mathrm{s}$			1770	1800
Japan- A	$\sigma \mathrm{c}$	179		86	70-80
	$\sigma \mathrm{s}$			2078	1800
American AASHTO	$\sigma \mathrm{c}$	163		78	70-80
	os			1891	1800
Japan- TL-14	$\sigma \mathrm{c}$	151		72	70-80
	$\sigma \mathrm{s}$			1751	1800
Shoe-Bed					
	$\begin{gathered} \text { Strength }(\mathrm{kg} / \mathrm{cm} 2) \\ \tau \end{gathered}$	Force and Strength			
		Shearing Force (ton)	$\begin{aligned} & \text { Re-Bar Area } \\ & \text { (cm2) } \\ & \hline \end{aligned}$	Working Strength τ	Allowable Strength τ a
Mongolia	${ }^{\tau}$	3.7	As $=1070 \mathrm{~cm} 2$	3.4	8.5
Japan- A		4.4		4.1	
AASHTO		4.0		3.7	
Japan- TL14		3.6		3.3	
Caisson Stability					
	Displacement (mm) δ Bearing capacity (tf/m2) Q	Bridge Direction			
		Normal Case		Seismic Case	
		Working	Allowable	Working	Allowable
Mongolia	δ	1.2	27	0.5	27
	Q	28.1	59	23.1	88
Japan- A	δ	1.6	27	00.5	27
	Q	32.5	59	23.1	88
AASHTO	δ	1.3	27	00.5	27
	Q	29.3	59	23.1	88
Japan- TL-14	δ	1.2	27	00.5	27
	Q	27.9	59	23.1	88

B. Reinforcement of Existing Bridge (Applying International Live-Load)

Figure for Bridge Calculations
For Table-A. Section of Existing Bridge
For Table-B. Section of Reinforcement of Bridge

C-5 Breakdown of Cost Estimate

$\left.$| Indirect Cost | | | Overhead |
| ---: | ---: | ---: | ---: | \(\left.\begin{array}{c}Total

Cost\end{array} \right\rvert\, $$
\begin{array}{|r|r|r|}\hline \text { except trans. } & \text { Facility trans. } & \text { Material trans. }\end{array}
$$\right)\)

134,200	67,100	44,700	73,400	990,000
98,000	49,000	32,700	53,600	724,000
45,000	22,500	15,000	24,600	332,000
277,200	138,600	92,400	151,600	$2,046,000$

2,046,000

1. Breakdown of Bridge

[^0]Overhead
Total Box \& Bridge

Indirect Cost
Total Pipe
2. Breakdown of Material Transportation

		Quantity	From UB	From Darkhan	Equivalen Distance	Unit Cost	Cost
Bridge	Zone	ton	km	km	km	$\$ / \mathrm{km} \cdot$ ton	$\$$
B1	1	81	150	370	297	0.204	4,900
B2	1	95	150	370	297	0.204	5,700
B3	1	1,452	150	370	297	0.204	87,800
B3(Repair)	-	-	-	-	-	-	-
B4	2	284	225	445	372	0.204	21,500
B5	2	81	225	445	372	0.204	6,100
B6	3	284	300	520	447	0.204	25,800
							151,800

Type-D	$1(6), 2(4), 3(2)$	320	200	420	347	0.204	22,600
Type-E	$1(3), 2(6), 3(3)$	455	225	445	372	0.204	34,500
Type-F	$1(1), 2(3), 3(1)$	246	225	445	372	0.204	18,600
Type-G	0	0	225	445	372	0.204	0

3. LIST OF QUANTITY (Bridge)

Category \quad Material

Category	Material	Unit	Quantity						Total	Specification
			N0. 1-B1	N0. 2-B2	N0. 3-B3	N0. 4-B4	NO. 5-B5	N0. 6-B6		
Bridge Surface	Asphalt Pavement	m2	120	140	2150	-	-	-	2410	t=5cm, Khujirt to Kherlen Br .
	Concrete Pavement	m2	-	-	-	420	120	420	960	$\mathrm{t}=5 \mathrm{~cm}, \sigma 28=240 \mathrm{~kg} / \mathrm{cm} 2$, Tsenkher to Murun Br .
	RC Hand Rail	m3	12	14	209	42	12	42	331	$\sigma 28=240 \mathrm{~kg} / \mathrm{cm} 2$
	Reinfocing Bar for Rai	ton	1.0	1.1	16.7	3.4	1.0	3.4	26.6	SD295, 345, 390 (σ py>30kg/mm2)
	expansion Joint	m	16	16	72	32	16	32	184	Rubber joint
Superstructure No. of Girder	Concrete (for RC)	m3	53	68	124	204	53	204	706	$\sigma 28=240 \mathrm{~kg} / \mathrm{cm} 2$
	Concrete (for PC)	m3	-	-	1304	-	-	-	1304	$\sigma 28=400 \mathrm{~kg} / \mathrm{cm} 2$
	Reinfocing Bar	ton	7.6	9.8	13.3	29.3	7.6	29.3	96.9	SD295, 345, 390 (σ py $>30 \mathrm{~kg} / \mathrm{mm2}$)
	Prestressed Cable	ton	-	-	65.2	-	-	-	65.2	$\mathrm{T}-12.7 \mathrm{~mm}(\sigma \mathrm{py}=160 \mathrm{~kg} / \mathrm{mm} 2)$
	Leveling Concrete	m 3	10.8	12.6	193.5	37.8	10.8	37.8	303.3	$\sigma 28=240 \mathrm{~kg} / \mathrm{cm} 2$
Substructure	Concrete	m3	257	250	1194	403	188	405	2697	
	Reinfocing Bar	ton	15.4	15.0	71.6	24.2	11.3	24.3	161.8	SD295, 345, 390 (σ py $>30 \mathrm{~kg} / \mathrm{mm} 2$)
	Lean Concrete	m3	22.8	22.8	92.2	34.5	13.6	34.5	220.4	$\sigma 28=160 \mathrm{~kg} / \mathrm{cm} 2$
Pile Foundation (Square 40 cm)	$\begin{aligned} & \text { RC Pile } \\ & \text { Length (m) } \end{aligned}$	m	-	-	-	-	432	-	432	$\sigma 28=240 \mathrm{~kg} / \mathrm{cm} 2$ SD295, 345,390 ($\sigma \mathrm{py}>30 \mathrm{~kg} / \mathrm{mm2}$)
Structural Excavation	Up to 2m	m3	436	436	1804	710	316	710	4412	for Abutment, Pier
	Over 2m	m3	1281	1235	3384	1564	944	1570	9978	
Approach Road	Construction Earth	m	30	35	1000	105	30	105	1305	Average height 2m, width 5m
	Guide Post	no.	40	40	40	40	40	40	240	Concrete standard post
River Protection	Revetment	m2	366	345	141	345	335	356	1888	Stone pitched type, slope 1:1.5 or 1:2
	Guide Bank	m	200	200	200	200	200	200	1200	

LIST OF QUANTITY FOR REPAIR OF EXISTING BRIDGE

Category	Material	Unit	$\begin{array}{\|l\|} \hline \text { Quantity } \\ \hline \text { NO. 3-B3 } \\ \hline \end{array}$	Specification
Bridge Surface	Asphalt Overlay	m2	1882	$\mathrm{t}=3 \mathrm{~cm}$
	Surface Repair	m3	4	with concrete $\sigma 28=240 \mathrm{~kg} / \mathrm{cm} 2$, joint parts
	Joint Repair	m	388	with asphalt material
	Hand Rail Repair	m	512	
	Hand Rail Replacement	m	26	Concrete \& Reinforcing bar
Structures	Girder Crack Repair	m3	0.4	Concrete or mortar
	Pier Crack Repair	LS	0.2	Concrete or mortar
Approach	Surface Repair	m2	392	

4. LIST OF QUANTITY (Pipe Culvert)

Category	Location	Unit	Quantity			Total	Specification
			Type A	Type B	Type C		
Concrete (Pre-cast)	PipeCulvert	m3	3.80	8.55	17.11	29.46	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	-	-	-	-	-	-	-
Reinforcing Bar (Pre-cast)	PipeCulvert	ton	0.11	0.26	0.51	0.88	SD295 (σ py>30kg/mm2)
	-	-	-	-	-	-	-
Concrete (Cast-in-situ)	Wall	m3	2.88	3.79	7.08	13.75	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	Wing Wall	m3	9.06	14.71	14.71	38.47	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	Sub-total	m3	11.94	18.50	21.79	52.23	-
Reinforcing Bar (Cast-in-situ)	-	m3	0.60	0.92	1.09	2.61	SD295 (σ py $>30 \mathrm{~kg} / \mathrm{mm} 2$)
	-	-	-	-	-	-	-
Levering Concrete	-	m3	8.11	13.94	27.36	49.41	$\sigma 28=160 \mathrm{~kg} / \mathrm{cm} 2$
Gravel	-	m3	23.33	33.63	50.03	106.99	-
Stone Pitching	-	m2	52.47	68.78	81.38	202.62	-
Excavation	-	m3	54.10	79.34	119.71	253.15	-

5. LIST OF QUANTITY (Box Culvert)

Category	Location	Unit	Type D	Type E	Type F	Type G	Total	Specification
$\begin{aligned} & \text { Concrete } \\ & \text { (Pre-cast) } \end{aligned}$	Box Culvert	m3	34.00	58.70	83.40	117.45	293.55	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	-	-	-	-	-	-	-	-
Reinforcing Bar (Pre-cast)	Box Culvert	ton	1.70	2. 94	4.17	5.87	14.68	SD295 ($\sigma \mathrm{py}>30 \mathrm{~kg} / \mathrm{mm2}$)
	- -	-	-	-	-	-	-	-
Concrete (Cast-in-situ)	Wal!	m3	3.26	6.20	9.14	10.09	28.68	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	Wing Wall	m3	29.67	29.67	29.67	38.34	127.35	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	Joint	m3	4.59	7.92	11.26	15.86	39.63	$\sigma 28=210 \mathrm{~kg} / \mathrm{cm} 2$
	Sub-total	m3	37.52	43.79	50.07	64. 29	195.66	-
Reinforcing Bar(Cast-in-situ)	Wall \& Wing Wall	m3	1.65	1.79	1.94	2.42	7.80	SD295 (σ py>30kg/mm2)
	Joint	m3	0.23	0.40	0.56	0.79	1.98	SD295 (σ py>30kg/mm2)
	Sub-total	m3	1.88	2.19	2.50	3.21	9.78	-
Levering Concrete	-	m3	29.09	47.57	66.05	83.85	226.56	$\sigma 28=160 \mathrm{~kg} / \mathrm{cm} 2$
Gravel	-	m3	58.97	82.70	106.43	130.70	378.80	-
Stone Pitching	-	m2	98.54	115.34	132.14	153.68	499.70	slope 1:2
Excavation	-	m3	130.92	182.37	233.82	286.72	833.84	-

7. Unit Cost of Major Materials (Structure)

Materials	Unit				1USS $=1,100 \mathrm{Tg}$
		Unit Cost			Remarks
		Foreign Portion (US\$)	$\begin{gathered} \text { Local Portion } \\ \text { (Tg.) } \end{gathered}$	Total (US\$)	
Portland Cement	kg	0.00	75,000	68.18	Domestic
Sand (for concrete)	m3	0.00	13,000	11.82	Domestic
Pea-gravel (for Concrete)	m3	0.00	21,000	19.09	Domestic
Admixture (for Concrete)*	kg	5.60	0	5.60	Imported
Sand (for Asphalt)	m3	0.00	13,000	11.82	Domestic
Aggregate (for Asphalt)	m3	0.00	21,000	19.09	Domestic
Straight Asphalt*	ton	61.53	0	61.53	Imported
Embankment Material	m3	0.00	12,700	11.55	Domestic
Reinforcing Steel (SD 30)	ton	0.00	497,310	452.10	Domestic
Plywood (12.5mm)	m2	0.00	17,000	15.45	Domestic
Timber Plank	m3	0.00	113,000	102.73	Domestic
Diesel Fuel	liter	0.00	725	0.66	Domestic
Gasoline	liter	0.00	751	0.68	Domestic
Lubricant	liter	0.00	1,943	1.77	Domestic
Paint	kg	0.00	2,152	1.96	Domestic
Rubber Shoe*	each	177.60	0	177.60	Imported
Expantin Joint*	m	539.20	0	539.20	Imported
PC Strand (12T12.7)*	kg	1.89	0	1.89	Imported

Notes : 1. Unit Costs of imported goods (marked *) are based on CIF price, i.e.
including port handing and clearance costs, plus Mongolian tax and duty.
2. Mongolian value added tax (VAT) is not included.
6. Unit Cost of Labours (Structure)

Classification				IUSS $=1,100 \mathrm{Tg}$
	Unit Cost			Remarks
	Foreign Portion (US\$/Day)	Local Portion (Tg./Day)	$\begin{gathered} \text { Total } \\ \text { (US\$/Day) } \end{gathered}$	
Senior Field Engineer	0	21,000	19.09	Domestic
Skilled Labour	0	15,000	13.64	Domestic
Unskilled Labour	0	10,000	9.09	Domestic
Mason/Carpenter	0	18,000	16.36	Domestic
Equipment Operator	0	13,000	11.82	Domestic
Crane Operator	0	17,000	15.45	Domestic
Skilled Operator	0	15,000	13.64	Domestic
Driver	0	10,000	9.09	Domestic
Re-bar Specialist	0	12,000	10.91	Domestic
Electrician	0	13,000	11.82	Domestic
Welder	0	13,000	11.82	Domestic
Steeplejack	0	13,000	11.82	Domestic
Painter	0	19,000	17.27	Domestic
Guardman	0	13,000	11.82	Domestic

[^0]: Indirect Cost

