

C

Live Load	Existing Bridge (A) Strength (kg/cm2)		Force and St	rength	
	σ c (Concrete)	Moment	Reinforcing Bar	Working	Allowable
	σs (Re-bar)	M (tfm)	As (cm2)	Strength σ	Strength σ a
Slab					• • • • • • • • • • • • • • • • • • •
Mongolia	σc	1.52	ľ	67	80
	σs			1281	1400
Japan- A	σс	2.62		115	80
	σ s		Dia.13-10 no./m	2200	1400
American	σ c	2.39	As=12.67cm2	105	80
AASHTO	σs			2013	1400
Japan- TL-14	σς	1.55		68	80
	σs			1302	1400
Girder					•
Mongolia	σc	88.4	······································	54	70-80
	σs			1817	1800
Japan-A	σε	102.8		62	70-80
	σs		Dia.29-10 no./ Girder	2111	1800
American	σ c	92.5	As=64.24cm2	56	70-80
AASHTO	σs			1901	1800
Japan- TL-14	σ c	85.8		52	70-80
	σs			1763	1800
Pier-Beam			·	I	1
Mongolia	σc	152		73	70-80
-	σs			1770	1800
Japan- A	σε	179		86	70-80
-	σs		Dia.29-15no./ Pier	2078	1800
American	σε	163	As=96.36cm2	78	70-80
AASHTO	σs		715 90.500112	1891	1800
Japan- TL-14	σς	151		72	70-80
	σs			1751	1800
Shoe-Bed			1	L	1
	Strength (kg/cm2)	İ	Force and	l Strength	
	τ	Shearing Force	Re-Bar Area	Working	Allowable
		(ton)	(cm2)	Strength t	Strength τ a
Mongolia		3.7		3.4	
Japan- A	ττ	4.4	As=1070cm2	4.1	0.5
AASHTO	-	4.0		3.7	8.5
Japan- TL14 Caisson Stab		3.6		3.3	
Jaisson 3180.	Displacement		Bridge I	Direction	
	(mm) δ		Blidge I	Jilection	
	Bearing capacity	Norma	al Case	Seismi	c Case
	(tf/m2) Q	Working	Allowable	Working	Allowable
Mongolia	δ	1.2	27	0.5	27
	Q	28.1	59	23.1	88
Japan- A	δ	1.6	27	00.5	27
	Q	32.5	59	23.1	88
AASHTO	δ	1.3	27	00.5	27
	Q	29.3	59	23.1	88
Japan- TL-14	δ	1.2	27	00.5	27
	Q	27.9	59	23.1	88

C-4 Calculation Results of Strength for Kherlen Bridge

Live Load	Strength (kg/cm2)		Force and St	rength	
	σ c (Concrete)	Moment	Reinforcing Bar	Working	Allowable
	σs (Re-bar)	M (tfm)	As (cm2)	Strength σ	Strength σ a
Slab (Increas	se thickness with R	C concrete in tot	al 20cm)		
Japan- A	σс	2.47		58	80
	σs		Dia.13-10 no./m	1396	1400
American	σς	2.26	As=12.67cm2	53	80
AASHTO	σs			1280	1400
Girder (Incre	ease web width with	n RC concrete in	total 36cm)	· · · · · · · · · · · · · · · · · · ·	•
Japan- A	σc	121.0		54	70-80
	σs		Dia.29-14 no./	1656	1800
American	σς	110.8	Girder	49	70-80
AASHTO			As=89.94cm2	1516	1800
Pier-Beam (Increase beam widt	h with RC concr	ete in total 1.80n	n)	
Japan- A	σς	220.02		69	70-80
	σs		Dia.29- 23 no./	1670	1800
American	σс	203.94	Pier	65	70-80
AASHTO	σs		As=147.75cm2	1548	1800

В.	Reinforcement of	of Existing Bridge	(Applying	International Live-Load)	
----	------------------	--------------------	-----------	--------------------------	--

Figure for Bridge Calculations

For Table-A. Section of Existing Bridge

C-5 Breakdown of Cost Estimate

Total	Cost	136,000	152,000	2,586,000	34,000	461,000	150,000	466,000	3,985,000	328,000	475,000	252,000	0	1,055,000
Overhead		\$ 10,100	11,300	191,500	2,500	34,200	11,100	34,500	295,200	24,300	35,200	18,600	0	78,100
	Material trans.	\$ 4,900	5,700	87,800	I	21,500	6,100	25,800	151,800	22,600	34,500	18,600	0	75,700
Indirect Cost	Facility trans. Material trans.	\$ 9,300	10,400	177,400	2,400	31,200	10,200	31,200	272,100	21,600	31,200	16,500	0	69,300
I	except trans.	\$ 18,600	20,800	354,800	4,800	62,400	20,400	62,400	544,200	43,200	62,400	33,000	0	138,600

			/	5,040,000
	/		373,300	
7	/	227,500	/	7
/	341,400	/	/	7
682,800	/	/	/	[

332,000	24,600 151,600	15,000	22,500	45,000
724,000	53,600	32,700	49,000	98,000
990,000	73,400	44,700	67,100	134,200

Pipe Culvert Pipe | Type-

1. Brea	 Breakdown of Bridge & Box Culvert 	e & Box C	ulvert					Direct Cost	
		unit	Unit Cost	Length	Width	Quantity	Quantity	Unit Cost	Cost
			\$/m2	ш	ш	m2	u	\$	s
Bridge	B1	m2	687.79	15	6	135	1	93,000	93,000
	B2	m2	660.40	17.5	6	157.5	1	104,000	104,000
	B3	m2	733.50	268.8	6	2419.2	1	1,774,000	1,774,000
	B3(Repair)	m2	10.00	268.8	6	2419.2	1	24,200	24,200
	B4	m2	660.40	52.5	6	472.5		312,000	312,000
	BS	m2	756.57	15	6	135	1	102,000	102,000
	B6	m2	660.40	52.5	6	472.5	1	312,000 -	312,000
Sub-Total	tal								2,721,200
Box	Tvne-D	•				-	12	18.000	216.000
	Type-E	•					12		312,000
	Type-F	•	•	,	,	,	5	33,000	165,000
	Type-G	1	ı	1	,		0	43,000	0
Sub-Total	tal								693,000
Direct Cost	Cost								3,414,200
Indirect Cost	Cost						except transportation	sportation	682.800
							Facility transportation:	nsportation:	341,400
<u></u>							Material tra	Material transportation:	227,500
Overhead	ad								373,300
Total	Box & Bridge								5,039,000
	2								

Pipe []	Type-A	1	F	ı	I	•	122	5,500	671,000
	Type-B	ı	1	I	ł	1	57	8,600	490,200
	Type-C		1	1	1	1	18	12,500	225,000
Direct Cost	ost								1,386,200
Indirect Cost	Cost						except transportation	tation	277,200
							Facility transportation:	ortation:	138,600
	,.						Material transportation:	ortation:	92,400
Overhead									151,600
Total I	Pipe		:						2,046,000

																	/		\uparrow		Zone 3	-
1	Cost	\$	4,900	5,700	87,800	1	21,500	6,100	25,800	151,800	 22,600	34,500	18,600	0	75,700	227,500		ea	— 75km —		_	<u>(</u>
	Unit Cost	\$/km·ton	0.204 }	0.204	0.204	•	0.204	0.204	0.204		 0.204	0.204	0.204	0.204			• - -	- Project Area			- Zone 2 -	_
	Equivalent Distance	km	297	297	297	•	372	372	447		347	372	372	372			_					<u>,</u>
	From Darkhan Equivalent Distance	km	370	370	370		445	445	520		420	445	445	445					■ 75km> ←		Zone 1	_
n	From UB	km	150	150	150		225	225	300		200	225	225	225			-	¥	V			
ransportatio	Quantity	ton	81	95	1,452	•	284	81	284		320	455	246	0					- 75km →			_
2. Breakdown of Material Transportation		Zone	1	1	1	I	2	2	3		1(6), 2(4), 3(2)	1(3), 2(6), 3(3)	1(1), 2(3), 3(1)	0					— 220km —>			
2. Breakdo		Bridge	B1	B2	B3	B3(Repair)	B4	B5	B6		Type-D	Type-E	Type-F	Type-G					_	, .		-

ranspoi	
F	į
Material	and the second s
5	
Breakdown	

Undurkhaan

Jargaltkhaan

Baganuur

Erdene

Ulaanbaatar: mainly Steel Re-bar, weight: 1/3

Darkhan: mainly Cement, weight 2/3

	Charifination		t=5cm.Khujirt to Kherlen Br.	t=5cm, σ 28=240kg/cm2, Tsenkher to Murun Br.	σ 28=240kg/cm2	SD295, 345, 390 (σ py>30kg/mm2)	Rubber joint		σ 28=400kg/cm2		[T-12.7mm (σ py=160kg/mm2)	3 σ 28=240kg/cm2	σ 28=210kg/cm2	3 SD295, 345, 390 (σ py>30 kg/mm2)	4 σ 28=160kg/cm2	σ 28=240kg/cm2	SD295, 345, 390 (σpy>30kg/mm2)	for Abutment, Pier		Average height 2m, width 5m	Concrete standard post	Stone pitched type, slope 1:1.5 or 1:2	
	To+o1	וטרמו	2410	960	331	26.6	184	706	1304	<u>96</u> . 9	65.2	303. 3	2697	161.8	220.4	687	101	4412	9978	1305	240	1888	1200
		NO. 6-B6	Ι	420	42	3.4	32	204		29.3		37.8	405	24. 3	34.5	I		710	1570	105	40	356	200
		NO. 5-B5	•	120	12	1.0	16	53	Ι	7.6		10.8	188	11.3	13.6	432	101	316	944	30	40	335	200
	tity	NO. 4-B4	1	420	42	3.4	32	204		29.3	1	37.8	403	24.2	34.5	1		710	1564	105	40	345	200
	Quantity	NO. 3-B3	2150	I	209	16.7	72	124	1304	13.3	65.2	193.5	1194	71.6	92. 2			1804	3384	1000	40	141	200
		NO. 2-B2	140	1	14		16	68	1	9.8		12.6	250	15.0	22.8	I		436	1235	35	40	345	200
		NO. 1-B1	120	1	12	1.0	16	53		7.6	1	10.8	257	15.4	22.8	1		436	1281	30	40	366	200
	+ : ••		m2	m2	Е	ton	ε	щЗ	щЗ	ton	ton	m3	ш3	ton	ц Ц	ε	Ŧ	m3	m3	E	no.	m2	ε
TITY (Bridge)		Material	Asphalt Pavement	Concrete Pavement	RC Hand Rail	Reinfocing Bar for Rai	expansion Joint	Superstructure Concrete (for RC)	Concrete (for PC)	Reinfocing Bar	Prestressed Cable	Leveling Concrete	Concrete	Reinfocing Bar	Lean Concrete	RC Pile	Length (m)	Up to 2m	Over 2m	Approach Road Construction Earth	Guide Post	Revetment	Guide Bank
3. LIST OF QUANTITY (Bridge)	V	uategory	Bridge Surface					Superstructure	No. of Girder				Substructure			Pile Foundation RC Pile	(Square 40cm)	Structural	Excavation	Approach Road		River Protection Revetment	

LIST OF QUANTITY FOR REPAIR OF EXISTING BRIDGE

				_						_
	Checification		t=3cm	with concrete σ28=240kg/cm2,joint parts	with asphalt material		Concrete & Reinforcing bar	0.4 Concrete or mortar	Concrete or mortar	
סאוטפ	Quantity	UII L NO. 3-B3	1882	4	388	512	26	0.4	0.2	392
וואט	+i - 1		ш2	m3	ш	ш	W	£ш	ST	ш2
IT FUR REPAIR UP EAISTING DRIDGE		Marellal	Asphalt Overlay	Surface Repair	Joint Repair	Hand Rail Repair	Hand Rail Replacement	Girder Crack Repair	Pier Crack Repair	Surface Repair
LIST UP UUANIIC	C + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	valegui y	Bridge Surface		•			Structures		Approach

[_1	-1								
	Specification		σ 28=210kg/cm2	1	SD295 (1	σ 28=210kg/cm2	σ 28=210kg/cm2	1	SD295 (1	σ 28=160kg/cm2		1	Ι
	Total		29.46	1	0.88	Ι	13.75	38.47	52.23	2.61	1	49.41	106.99	202.62	253.15
	Quantity	Type C	17.11	I	0.51	1	7.08	14. 71	21.79	1.09	1	27.36	50.03	81.38	119.71
		Type A Type B	8. 55		0.26	1	3.79	14.71	18.50	0.92	ł	13.94	33. 63	68. 78	79, 34
		-	3.80	Ι	0.11	1	2.88	9.06	11.94	0.60	1	8.11	23.33	52.47	54.10
	Unit		m3	Ι	ton	ł	m3	ш3	m3	m3	ļ	m3	щЗ	ш2	m3
TY (Pipe Culvert)	Location		PipeCulvert		PipeCulvert		Wall	Wing Wall	Sub-total			1		-	
4. LIST OF QUANTITY (Pipe Culvert)	Catomory	varegury	Concrete	(Pre-cast)	ıg Bar	(Pre-cast)		(Cast-in-situ)		Reinforcing Bar	(Cast-in-situ)	Levering Concrete	Gravel	Stone Pitching	Excavation

ST OF QUANTITY (Box Culvert) Category Location Unit Category Location Unit ete Box Culvert m3 cast) Mall m3 cin-situ) Wing Wall m3 Ving Wall Mall m3 orcing Bar Wing Wall m3 Joint m3 Joint m3 orcing Bar Wall & Wing Wall m3 Joint m3 Joint m3 orcing Bar Wall & Wing Wall m3 Joint m3 Joint m3 Pitching m3 m3 m3 Pitching m3 m3 m3 Onint m3 m3 m3 Pitching m3 m3 m3 Pitching m3 m3 m3 Pitching m3 m3 <		Total Cnarification		34.00 58.70 83.40 117.45 293.55 0.28=210kg/cm2	1.70 2.94 4.17 5.87 14.68 SD295 (σpy>30kg/mm2)		3. 26 6. 20 9. 14 10. 09 28. 68 σ 28=210kg/cm2	29.67 29.67 29.67 38.34 127.35 0 28=210kg/cm2	4.59 7.92 11.26 15.86 39.63 σ 28=210kg/cm2	37.52 43.79 50.07 64.29 195.66 -	1. 65 1. 79 1. 94 2. 42 7. 80 SD295 (σ py>30kg/mm2)	0.23 0.40 0.56 0.79 1.98 SD295 (σ py>30kg/mm2)	1.88 2.19 2.50 3.21 9.78 -	29.09 47.57 66.05 83.85 226.56 σ 28=160kg/cm2	58. 97 82. 70 106. 43 130. 70 378. 80 -	98.54 115.34 132.14 153.68 499.70 slope 1:2	
QUANTITY (Box Culvert ry Locatic Box Culvert Bar Box Culvert Nail Mall Cub-total Doint Cub-total Doint Ing Sub-total Ing Sub-total	rt)	_	Type D							- -	I m3					98.54	
	5. LIST OF QUANTITY (Box Culvert)				Reinforcing Bar Box Culvert	9	Wall	(Cast-in-situ) Wing Wall	Joint	Sub-tota	Reinforcing Bar Wall & Wing Wall	Joint	(Cast-in-situ) Sub-total	Levering Concrete] — —		Stone Pitching -	

۹/L	
-	
(Box	
≿	ļ
NŤ	
QUANTI	
Ч	
IST	Í
_	

7. Unit Cost of Major Materials (Structure)

					1US\$=1,100 Tg	
Materials	Unit	Foreign Portion	Local Portion	Total	Remarks	
N 11 10		(US\$)	(Tg.)	(US\$)		
Portland Cement	kg	0.00	75,000	68.18	Domestic	
Sand (for concrete)	m3	0.00	13,000	11.82	Domestic	
Pea-gravel (for Concrete)	m3	0.00	21,000	19.09	Domestic	
Admixture (for Concrete)*	kg	5.60	0	5.60	Imported	
Sand (for Asphalt)	m3	0.00	13,000	11.82	Domestic	
Aggregate (for Asphalt)	m3	0.00	21,000	19.09	Domestic	
Straight Asphalt*	ton	61.53	0	61.53	Imported	
Embankment Material	m3	0.00	12,700	11.55	Domestic	
Reinforcing Steel (SD 30)	ton	0.00	497,310	452.10	Domestic	
Plywood (12.5mm)	m2	0.00	17,000	15.45	Domestic	
Timber Plank	m3	0.00	113,000	102.73	Domestic	
Diesel Fuel	liter	0.00	725	0.66	Domestic	
Gasoline	liter	0.00	751	0.68	Domestic	
Lubricant	liter	0.00	1,943	1.77	Domestic	
Paint	kg	0.00	2,152	1.96	Domestic	
Rubber Shoe*	each	177.60	0	177.60	Imported	
Expantin Joint*	m	539.20	0	539.20	Imported	
PC Strand (12T12.7)*	kg	1.89	0	1.89	Imported	

.

Notes : 1. Unit Costs of imported goods (marked *) are based on CIF price, i.e.

including port handing and clearance costs, plus Mongolian tax and duty.

2. Mongolian value added tax (VAT) is not included.

6. Unit Cost of Labours (Structure)

0. Onit Cost of Labours (5	uuotuit)		1	IUS\$=1,100 Tg				
	Unit Cost							
Classification	Foreign Portion		Total	Remarks				
	(US\$/Day)	(Tg./Day)	(US\$/Day)					
Senior Field Engineer	0	21,000	19.09	Domestic				
Skilled Labour	0	15,000	13.64	Domestic				
Unskilled Labour	0	10,000	9.09	Domestic				
Mason/Carpenter	0	18,000	16.36	Domestic				
Equipment Operator	0	13,000	11.82	Domestic				
Crane Operator	0	17,000	15.45	Domestic				
Skilled Operator	0	15,000	13.64	Domestic				
Driver	0	10,000	9.09	Domestic				
Re-bar Specialist	0	12,000	10.91	Domestic				
Electrician	0	13,000	11.82	Domestic				
Welder	0	13,000	11.82	Domestic				
Steeplejack	0	13,000	11.82	Domestic				
Painter	0	19,000	17.27	Domestic				
Guardman	0	13,000	11.82	Domestic				