No.

JAPAN INTERNATIONAL COOPERATION AGENCY

MINISTRY OF SETTLEMENT & REGIONAL INFRASTRUCTURE REPUBLIC OF INDONESIA

THE STUDY ON RURAL WATER SUPPLY PROJECT IN NUSA TENGGARA BARAT AND NUSA TENGGARA TIMUR

FINAL REPORT VOLUME V SUPPORTING REPORT 3

CONSTRUCTION PLAN AND COST ESTIMATES

Appendix 11 CONSTRUCTION PLAN
Appendix 12 COST ESTIMATES

MAY 2002

NIPPON KOEI CO., LTD. NIHON SUIDO CONSULTANTS CO., LTD.

S	S	S	
	J R		
02	-1(2	

Exchange Rate as of the end of October 2001 US\$1 = JP\forall 121.92 = Rp.10,435

LIST OF VOLUMES

	VOLUME I	EXECU	TIVE S	UMMARY
--	-----------------	-------	--------	--------

VOLUME II MAIN REPORT

VOLUME III SUPPORTING REPORT 1

WATER SOURCES

Appendix 1	VILLAGE MAPS
Appendix 2	HYDROMETEOROLOGICAL DATA
Appendix 3	LIST OF EXISTING WELLS AND SPRINGS
Appendix 4	ELECTRIC SOUNDING SURVEY / VES-CURVES
Appendix 5	WATER QUALITY SURVEY / RESULTS OF WATER QUALITY ANALYSIS
Appendix 6	WATER QUALITY STANDARDS AND ANALYSIS METHODS
Appendix 7	TEST WELL DRILLING AND PUMPING TESTS

VOLUME IV SUPPORTING REPORT 2

WATER SUPPLY SYSTEM

Appendix 8 QUESTIONNAIRES ON EXISTING WATER SUPPLY SYSTEMS

Appendix 9 SURVEY OF EXISTING VILLAGE WATER SUPPLY

SYSTEMS AND RECOMMENDATIONS

PRELIMINARY BASIC DESIGN STUDIES

VOLUME V SUPPORTING REPORT 3

Appendix 10

CONSTRUCTION PLAN AND COST ESTIMATES

Appendix 11 CONSTRUCTION PLAN

Appendix 12 COST ESTIMATES

VOLUME VI SUPPORTING REPORT 4

ORGANIZATION AND MANAGEMENT

Appendix 13	SOCIAL DATA
Appendix 14	SUMMARY OF VILLAGE PROFILES
Appendix 15	RAPID RURAL APPRAISAL / SUMMARY SHEETS OF RAPID RURAL APPRAISAL (RRA) SURVEY
Appendix 16	SKETCHES OF VILLAGES
Appendix 17	IMPLEMENTATION PROGRAM FOR HEALTH AND HYGIENE EDUCATION
Appendix 18	MANUAL OF HYGIENE AND SANITATION EDUCATION
Appendix 19	COMMUNITY OPERATION AND MAINTENANCE PLAN
Appendix 20	PDAM DATA

OUTLINE OF THE STUDY – Bahasa Indonesia GARIS BESAR STUDI & SEMINAR UNTUK ALIH TEKNOLOGI

ABBREVIATIONS

ADB Asian Development Bank

APBD I Anggaran Pendapatan dan Belanja Daerah Tingkat I (Provincial Budget)
APBD II Anggaran Pendapatan dan Belanja Daerah Tingkat II (District Budget)

APBN Anggaran Pendapatan dan Belanja National (National Budget)

ARI Acute Respiratory Infections

AusAID Australian Agency for International Development

BAPPEDA Badan Perencanaan Pembangunan Daerah Tingkat-I and Tingkat-II

(Development Planning Board for Provincial and District Level)

BAPPENAS Badan Perencanaan Pembangunan Nasional (National Development

Planning Board)

BDD Bidan di Desa (Village midwife)

BHN Basic Human Needs

BMG Biro Meteorologi dan Geofisika (Meteorology and Geophysic Agency)
BPAM Badan Pengelola Air Minum (Management Board for new Drinking Water

Projects before being established as a PDAM)

BPD Village Representative Council

BPL Below Poverty Line

BPS Biro Pusat Statistik (Central Bureau of Statistics)

BPT Break Pressure Tank

Broncaptering Any small structure built to 'capture' a water source
Buis beton Traditional concrete rings used to line hand-dug wells

Bupati Kepala Kabupaten (Head of a District; sometimes called "Regent")

Camat Kepala Kecamatan (Head of a Sub-District)

CARE Co-operative for Assistance and Relief Everywhere (International NGO)

CCF Christian Children's Fund

CIDA Canadian International Development Agency

Cipta Karya Direktorat Jenderal Cipta Karya (Directorate General of Human

Settlements DGHS)now restructured and integrated into Ministry of

Settlement and Regional Infrastructure

CMR Child Mortality Rate

DATI I Daerah Tingkat I (Provincial Government Level)
DATI II Daerah Tingkat II (District Government Level)
Desa Rural village, lowest level of local Government

DG Directorate General

Dinas Provincial or District level governmental department
DIP Daftar Isian Proyek (List of Development Projects)

DPU Generic term for all departments of Public Works now included in

Kimpraswil.

Dukun Traditional birth attendant

DUPDA Daftar Usulan Proyek Daerah (List of Proposed Yearly Development

Projects at Tk.II.)

Dusun Sub-Village/Hamlet in rural area

EC Electric Conductivity

EIIKK Eastern Islands IKK Water Supply and Sanitation Project (Aus AID

program)

ESWS NTB Environmental Sanitation and Water Supply Project (Aus AID

program)

FGD Focus Group Discussions

FIRR Financial Internal Rate of Return

FLOWS Flores Water Supply and Sanitation Reconstruction and Rural

Development Project (AusAID program)

FRP Fiber Reinforced Plastics
GIP Galvanized Iron Pipe

GL Ground Level

GOI Government of Indonesia GOJ Government of Japan

GRDP Gross Regional Domestic Product

GSP Galvanized Steel Pipe

GTZ German Technical Cooperation Agency

Hamlet A small rural community not recognized as a Dusun

HC House Connection (To a piped water supply system, usually metered)

HDPE High Density Polyethylene Pipe

IBRD International Bank for Reconstruction and Development (World Bank)

IEC Information, Education and Communication

IGA Income Generation Activities

IKK Ibu Kota Kecamatan (Core Area of a Sub-District)

IMR Infant Mortality Rate

Ir. Insinyur (The Professional title 'Engineer')

JBIC Japan Bank For International Cooperation

JICA Japan International Cooperation Agency

K. Desa Kepala Desa (Head of a Village - Lowest official level of local

Government)

Kabupaten/Kab District/Regency (Local Government level II or Tk.II)

Kampung General term for any sub-village or hamlet, but more commonly used in

urban and rural areas

Kecamatan Sub-District

Kelompok An unofficial committee or group of people

Kelurahan Urban village, the lowest administrative unit in status equal to a Desa

Kepala Desa Head of a Village (Lowest official level of local Government)

Kepala Dusun Head of a Hamlet

Kepala Suka Traditional Religions Leader (In Sumba)

Keputusan Decree

KFW German Development Bank

KHPPIA Kelangsungan Hidup Perkembangan Perlindungan Ibu dan Anak

(Development and Protection for Mother and Child)

Kimpraswil Permukiman dan Prasarana Wilayah (Ministry of Settlement and Regional

Infrastructure)

KK or K/K Kepala Keluarga (Head of a family)

KLP Koperasi Listrik Pedesaan

Kotamadya City - equivalent administrative status to a Kabupaten

LBW Low Birth Weight

LKMD Lembaga Ketahanan Masyarakat Desa (Village self reliance organization,

village development council)

LRWSS Lombok Rural Water Supply and Sanitation Project (AusAID program)
Lb. Labuhan (Common place name) Coastal plain behind the seashore

M.A. Mata Air (Spring) MOH Ministry of Health

MOHA Ministry of Home Affairs (Dalam Negeri)

MOU Memorandum of Understanding

MSRI Ministry of Settlement and Regional Infrastructure

Musbangdes Musyawarah Pembangunan Desa (Village development planning

discussion)

NGO Non-governmental Organization

NTB Nusa Tenggara Barat (West Nusa Tenggara) NTT Nusa Tenggara Timur (East Nusa Tenggara)

O&M Operasi dan Pemeliharaan (Operation and Maintenance)

O/H Overhead (High tension electric power line)

OECF The former Overseas Economic Cooperation Fund of Japan (now JBIC)
P2AT Proyek Pengembangan Air Tanah (Groundwater Development Project)

P3P Proyek Peningkatan Prasarana Pemukiman (formerly P3AB)

(Development and Management of Water Supply Construction Projects)

PAM Perusahaan Air Minum (Water Enterprises) Generic term used for PDAM

and BPAMs

PDAM Perusahaan Daerah Air Minum (Regional Drinking Water Enterprise)
PEMDA PERPAMSI Persatuan Perusahaan Air Minum Seluruh Indonesia (Indonesian Water

Supply Association)

Peraturan Regulation
PH Public Hydrant

PKK Pembinaan Kesejahteraan Keluarga (Local Women's Welfare

Organization)

PLN Perusahaan Listrik Negara (National Electricity Enterprise)

PMD Department of Community Empowerment

POKMAIR Kelompok Pemakai Air (WUG)

Polindes Poliklinik Desa (Village health sub-clinic)
Propinsi Province (First level of local government Tk.I.)
Puskesmas Pusat Kesehatan Masyarakat (Village Health Center)

PVC Unplasticized Polyvinyl Chloride (Pipe)

PVP Photovoltaic System

Rakorbang Rapat Koordinasi Pembangunan (Project/Budget selection discussion at

Tk.II) (Coordination Meeting for Development Budget Planning)

RC (Reinforced Concrete)

RDWS GOI Rural Water Supply Development Program

RESV Reservoir

RK Rukun Kampung (Hamlet in a rural area)

RRA Rapid Rural Appraisal

RT/RW Rukun Tetangga (Neighborhood)/Rukun Warga (Hamlet in an urban area)

RWSS Rural Water Supply and Sanitation Project (ADB program)

Sawah An area of irrigated land used for growing paddy

SC Specific Capacity

Sekretaris Secretary, as in Sekretaris Desa

SISKES GOI Health Services Improvement Program SSF Slow Sand Filter (Water Treatment Plant))

SWL Static Water Level

T Temperature TB Tuberculosis

TBA Traditional Birth Attendant

TNI Tentara Nasional Indonesia. The Indonesian armed force

TP-PKK Women's Movement Organization

Tk.I Tingkat I. The first level of local government. I.e. Province Tk.II Tingkat II. The second level of local government. I.e. District

U5MR Under 5 Mortality Rate

UDKP Usulan Kecamatan (List of Development Planning Proposals)

UFW Unaccounted-for-Water

UNDP United Nations Development Program

UNICEF United Nation Children's Fund

UU Undang Undang (Law) VAP Village Action Plan

VES Vertical Electric Sounding WSS Water Supply and Sanitation

WSSLIC Water Supply and Sanitation Project for Low Income Communities (World

Bank program)

WTP Water Treatment Plant
WUA Water Users' Association
WUG Water Users' Group

WUG Water Users' Group

UNITS

Length

mm = millimeter cm = centimeter m = meter km = kilometer

Electric Measurement

V = Volt
A = Ampere
Hz = Hertz
W = Watt
kW = Kilowatt
MW = Megawatt

Area

cm² = square centimeter m² = square meter km² = square kilometer Ha/ha = hectare

Others

% = percent HP = horsepower °C = Celsius degree

Volume

cm³ = cubic centimeter m³ = cubic meter L = liter

MCM = million cubic meter

Derived Measures

Weight

mg = milligram g = gram kg = kilogram

Time as denominator

/sec. = per second /min. = per minute /hr. = per hour /day = per day /month = per month /yr. = per year

Abbreviation

m.bgl = meter below ground level m.agl = meter above ground level m.asl = meter above mean sea level m.bsl = meter below mean sea level

Appendix 11 CONSTRUCTION PLAN

Appendix 11 CONSTRUCTION PLAN

TABLE OF CONTENTS

11.1 IN	TRODUCTION	All-1
11.1.1	Background	A11-1
11.1.2	Outline of the Report	A11-1
11.2 PR	OJECT IMPLEMENTATION	A11-2
11.2.1	Phased Development	A11-2
11.2.2	Implementation Agency	A11-3
11.2.3	Ownership, Operation and Maintenance	A11-4
11.2.4	Cost Sharing	A11-4
11.2.5	Land Acquisition and Compensation	A11-4
11.2.6	Employment of Consultant	A11-5
11.2.7	Procurement of Works	A11-5
11.2.8	Implementation Schedule	A11-5
11.3 Sc	OPE OF WORKS	A11-7
11.3.1	Scope of Works	A11-7
11.3.2	Major Work Quantities	A11-11
11.4 Co	ONDITIONS AND ASSUMPTION FOR PLANNING	A11-12
11.4.1	Natural and Social Conditions	A11-12
11.4.2	Availability of Construction Resources	A11-20
11.4.3	Basic Conditions of Construction Works	A11-22
11.5 Co	ONSTRUCTION METHOD AND SEQUENCE	A11-27
11.5.1	Temporary Works	A11-27
11.5.2	Permanent Works	A11-28
11.5.3	Progress Rate of Works	A11-31
11.6 Co	ONSTRUCTION SCHEDULE	A11-33
11.6.1	Construction Time Schedule	A11-33
11.6.2	Required Construction Resources	A11-33
11.7 Co	ONSULTANTS' SETUP	A11-36
11.7.1	Personnel Requirement	A11-36

List of Tables

Table A11-3.1	Scope of Works	A11-38
Table A11-4.1	Natural and Social Condition of Proposed Villages for	
	Works	A11-40
Table A11-4.2	Monthly Precipitation	A11-41
Table A11-4.3	Sunday and National Holidays in Indonesia in 2002	A11-43
Table A11-4.4	Estimate of Workable Days	A11-44
Table A11-4.5	Production Rate of Major Construction Equipment	A11-47
Table A11-5.1	Progress Rate of Construction Works	A11-49
Table A11-7.1 (Plan 1)	Proposed Assignment Schedule of Consultant	A11-50
Table A11-7.2 (Plan 2)	Proposed Assignment Schedule of Consultant	A11-54
	List of Figures	
Figure A11-2.1	Project Area Map	A11-58
Figure A11-2.2 (Plan 1)	Options for Implementation Arrangements	A11-59
Figure A11-2.3 (Plan 2)	Options for Implementation Arrangements	A11-60
Figure A11-2.4 (Plan 1)	Proposed Implementation Schedule	A11-61
Figure A11-2.5 (Plan 2)	Proposed Implementation Schedule	A11-62
Figure A11-4.1	Location of Observatories and Rainfall Gauging Station	s A11-63
Figure A11-4.2	Averaged Monthly Precipitation	A11-64
Figure A11-4.3	Navigation of Freighter and Ferry around Nusa Tenggar	a A11-65
Figure A11-4.4	Weekly Flight Schedule for NTB and NTT	A11-66
Figure A11-7.1 (Plan 1)	Proposed Consultant's Setup for Phase 1	A11-67
Figure A11-7.2 (Plan 1)	Proposed Consultant's Setup for Phase 2	A11-68
Figure A11-7.3 (Plan 2)	Proposed Consultant's Setup for Phase 1	A11-69
Figure A11-7.4 (Plan 2)	Proposed Consultant's Setup for Phase 2	A11-70

Appendix 11 CONSTRUCTION PLAN

11.1 Introduction

11.1.1 Background

The Government of Indonesia (GOI) has endeavored to develop the east Indonesia region. Despite the efforts of the GOI, people in the region still face difficulties in obtaining clean and safe water. They are under severe pressure to use unsafe and unstable water from dug wells, surface water and rainwater. Water carrying for long distances is a common practice, particularly in the dry season. The installation of sustainable water supply systems is urgently required.

Under the above circumstances, the GOI requested the Government of Japan (GOJ) to provide technical and financial assistance for a Rural Water Supply Project in the Provinces of Nusa Tenggara Barat (NTB) and Nusa Tenggara Timur (NTT).

11.1.2 Outline of the Report

This appendix proposes a plan to construct facilities designed for the Rural Water Supply Project in the Provinces of Nusa Tenggara Barat (NTB) and Nusa Tenggara Timur (NTT), such as intake facilities for spring, tube and shallow wells, transmission pipelines, treatment facilities and distribution facilities for seventeen villages. It aims to present a basis for cost estimate for the study.

11.2 Project Implementation

11.2.1 Phased Development

The seventeen villages to be developed are spread across six islands in NTB and NTT Provinces stretching about 1,000 km from Mataram in the west to Kupang in the east, as shown in Figure A11-2.1. The islands of Lombok and Sumbawa are in NTB Province and the other four, Flores, Sumba, Rote and Timor are in NTT. It is proposed that the proposed villages would be developed in two phases because of the scale of the project.

There are two implementation plans conceivable for phased development of this project. One is phased development by province (Plan 1), the other simultaneous development in both provinces (Plan 2).

The merit and demerit of Plan 1 and Plan 2 are tabulated to compare below.

Comparison between Plan 1 and Plan 2

Comparison item	Plan 1	Plan 2
1. Number of phasing	2 phases	2 phases
2. Executing agency*1	Each of the provincial offices may be an executing agency on site.	Central government is to liaise with both provincial offices to coordinate them on site.
3. Policy*2	Implementation program meets well with the policy of the central government.	Implementation program does not meet with the policy of the central government very well.
4. Management ^{*3}	• Management is easier than that for Plan 2.	• Management is more difficult than that for Plan 1.
5. Time*4	• Work period may be shorter than that of Plan 2.	• Work period may be longer than that of Plan 1.
6. Cost*5	Cost is less than Plan 2.	Cost is more than Plan 1.
7. Quality*6	• Quality of works and services will be high.	Quality of works and services may not be high.
8. Risk*7	• It is safer than Plan 2.	It is more risky than Plan 1.
9. Budget arrangement*8	Donor may be willing to finance and it is easy to arrange the budget.	Donor may not be always willing to finance and it is difficult to arrange the budget.
10. Equality ^{*9}	It will not bring equal opportunity of development to the two provinces.	It will bring equal opportunity of development to the two provinces.

Note: Plan 1: Phased development by province in 2 phases

Plan 2: Simultaneous development in both provinces in 2 phases

- *1: Executing agency is the agency that is to conduct project management on site.
- *2: Accordance with the present policy of the government of Indonesia, i.e. decentralization.
- *3: Ease of project management. The smaller the number of local government and agencies to liaise with, the easier it will be to manage the project.
- *4: Period required to execute the project
- *5: Project cost, especially construction cost and consultancy services cost
- *6: Expected quality of works and services to be performed
- *7: Risk of implementation of the project, such as coincidence of investment by plural donors and delay or discontinuation of the project due to lack of coordination between two provinces. The lower the risk, the safer it is the donor to invest.
- *8: Ease of budget arrangement, or donors' willingness to finance
- *9: Equality between the two provinces in having the opportunity to develop the rural area

11.2.2 Implementation Agency

After an Inter-Governmental Agreement (E/N) for the implementation of a rural water supply project between the donor and the Ministry of Foreign Affairs, Indonesia, the Ministry of Settlement and Regional Infrastructure will be the execution agency for the project.

The Directorate General of Urban and Rural Affairs in the Ministry of Settlement and Regional Infrastructure has overall responsibility for rural water supply development in Indonesia. The DG has three regional Directorates; the eastern, central and western Directorates. NTB and NTT Provinces come under the Directorate of Urban and Rural Affairs, Eastern Region. The Directorate General will be responsible for the negotiation and signature of any procurement contract, such as employment of consultant and civil works, under the project. Also he should issue the certificates to settle the payment to the consultant and contractors in accordance with the contracts.

The operative GOI agencies at Provincial and District level are BAPPEDA Tk. I and Tk. II respectively, for matters of policy and liaison with other branches of PEMDA, but they are not engineers. Kimpraswil Tk. I and Tk. II, as the successors to the disbanded Ministry of Public Works, are responsible for the management of most engineering works carried out in their areas, but they are not normally involved in aid projects funded by foreign governments and donor agencies. Co-operation with Kimpraswil would involve liaison with eleven different offices at two separate levels of government (5 for NTB and 4 for NTT). P3P, which exists only at Provincial level, is responsible for the construction of water supply projects by contractors and is probably the most logical choice as Counterparts for foreign Contractors. PDAMs have no responsibility or capability for construction.

The Director of Urban and Rural Affairs will delegates, through the Directorate of Eastern Region, a provincial government officer to act as the Project Manager for the project at each phase. It will also dispatch a coordinator for the monitoring and coordination of on-site works. The coordinator will go to the site for inspection and for meeting from time to time. The implementation arrangements are proposed as shown in Figure A11-2.2 (Plan 1) and Figure A11-2.3 (Plan 2) for Plan 1 development and Plan 2 development, respectively.

It is also advisable that the donor, whoever that might be, retains authorization control over design, design change, technical supervision, performance monitoring, schedule control and financial control. The current situation is that the water supply pipelines are usually constructed 20 cm to 30 cm below the ground surface in the cities and rural villages, but they are designed 70 cm to 100 cm below the ground as standardized in AKS Gambar-Gambar Standar, Cipta Karya in the country.

11.2.3 Ownership, Operation and Maintenance

The ownership, management, operation and maintenance of rural water supply systems in Indonesia can be undertaken by the local PDAM, by a village WUA or by a combination of both. Bylaw decisions in this area are entirely at the discretion of the Bupati. In practice the decision is usually obvious, PDAMs will continue to manage all water supply facilities in villages where they already have a presence, and they will be required to assume responsibility for systems which serve more than one village or involve relatively sophisticated pumping facilities and metered distribution networks. Villages themselves will own and manage small gravity systems in remote areas.

11.2.4 Cost Sharing

The cost of all construction works up to and including the final stop-valve in the case of house connections, and all works in the case of public hydrants and public taps, will be financed by the project, including all consultancy and supervisory services. The cost of land acquisition and compensation (if any) will be borne by GOI. Connection from the final stop-valve to facilities inside buildings is the responsibility of the property owner, although this service is usually provided by the PDAM (for a fee).

11.2.5 Land Acquisition and Compensation

It is not anticipated that land acquisition and/or compensation will be a significant factor in the implementation of the project. These matters are usually dealt with summarily by the local Kepala Desa or Kepala Suka. The village WUA will be responsible for the detailed siting of most of the system facilities and are best qualified to deal with any potential problems by choosing a different location.

Land for pipelines can be used without payment, providing the land is reinstated after the work is completed. The only area where compensation is likely to be required is if crops are damaged or destroyed during construction. Even this eventuality can be avoided by sympathetic planning.

Land acquisition may only be required for the facilities and large areas such as wells and reservoirs. The land for pipelines can be possessed and acquired without payment in principle, on the conditions that the land should be reinstated after the works.

11.2.6 Employment of Consultant

An independent consultant will be employed for each phase of the project, to conduct detailed design, construction supervision and rural extension services.

11.2.7 Procurement of Works

Construction will be carried out through separate contract packages for Phase 1 and Phase 2. If the project is funded by grant-aid, the contracts will be let to bidders selected through donor nation competitive bidding. If loan funds are provided, selection would probably be by ICB. In either case Pre-qualification (PQ) will be required prior to bidding. The selected contractors will be required to manage all construction activities, including the employment of locally hired staff, material purchase, equipment and transport hiring and performance on site.

11.2.8 Implementation Schedule

After the completion of this Study, the following activities will be carried out before the commencement of construction works.

- 1) The financing arrangements will be agreed.
- 2) An Environmental Impact Assessment (EIA) will be carried out.
- 3) Any land acquisition problems will be resolved.
- 4) Consultants will be selected.
- 5) Detailed designs and tender documents will be prepared.
- 6) Social preparation will be carried out in the villages, including the creation of WUAs and the writing of VAPs.
- 7) Contractors will be pre-qualified and selected.

The social preparation, training and extension activities will be carried out by consultants simultaneously with the design works, in order to ensure the villagers' acceptance of the proposed projects. After the completion of the construction works, a one-year maintenance period will be provided during which the contractor remains liable for defect repair.

Proposed implementation schedules are shown in Figure A11-2.4 (Plan 1) and Figure A11-2.5 (Plan 2) for Plan 1 development and Plan 2 development, respectively.

11.3 **Scope of Works**

11.3.1 Scope of Works

Construction works, under two packages of contract, will be performed for seventeen villages that are spread across the East and West Nusa Tenggara Provinces as shown in Figure A11-2.1.

Works will provide (new construction, rehabilitation and both) a rural water supply system composed of the intake, reservoir, treatment, transmission and distribution facilities at each village. The most major work is the construction work of pipelines that are to be laid underground about 1 m below the ground surface. In particular, the laying of house connection pipe accounts for much of the work, comprising about half of the total pipeline length of the project. The materials to be used in the pipeline system are PVC (polyvinyl chloride) pipe and GS (galvanized steel) pipe, having a diameter of between 50 mm and 150 mm.

The intake facilities are designed for spring water from the foot of a mountain (6 Nr.), for tube wells (2 Nr.), for shallow wells (1 Nr.) and for tapping from a present water system (10 Nr.), depending on the present condition of the water supply condition in the villages. The transmission line will be constructed with GS pipe having a diameter of between 50 mm and 150 mm. The reservoirs are structures grounded with masonry or elevated with reinforced concrete. The distribution facilities have numbers of public hydrants. Each of the hydrants has a FRP (fiber reinforced plastics) tank of 2 m³ or 3 m³ in capacity and several faucets.

Details of the scope of works are given in a matrix of Table A11-3.1. The following is an outline of the scope of works by village.

Scope of works

Island	Serial No., JICA#, and village	Water source	Served area	Works	Total pipeline L
			(ha)		(m)
Lomb	<u>1</u> / NTB 1. Kuranji	E	28	- Construction of distribution system including a main distribution pipeline from existing PDAM pipeline network	6,020
	<u>2</u> / NTB 2. Bajur	Е	25	- Construction of distribution system including two main distribution pipelines from existing PDAM pipeline network	14,073

Island	Serial No., JICA#, and village	Water source	Served area	Works	Total pipeline L
	3/ NTB 3. Sembung	Е	(ha) 16	- Construction of distribution system including a main distribution pipeline from existing PDAM pipeline network (blow-off valve)	(m) 6,010
	4/ NTB 4a. Duman, upper 5/ NTB 4b. Duman, lower	S E	26 48	Reconstruction of distribution system Construction of distribution system including a main distribution pipeline from existing PDAM pipeline network (reservoir)	10,820 9,490
	<u>6</u> / nтв 10. Bagik Papan	E (S)	19	 Rehabilitation of existing distribution system in three hamlets Construction (extension) of a distribution pipeline to the Bagik Papan hamlet Construction of a distribution system in the Bagik Papan hamlet 	8,800
	7/ NTB 11. Selapang	E (S)	15	- Improvement of existing distribution system (regional system) in the Selaparang Timur hamlet	18,160
Sbwa	8/ NTB 13. Labuhan Mapin	S	29	 Rehabilitation of existing distribution system Construction of a reservoir at No. 6 BPT (Break Pressure Tank), EL. 90 m, upper from the Mapinrea hamlet 	10,270
	9/ NTB 14. Labuhan Lalar	W	42	 Construction of a new water system consisting of: Tube well intake facility at the existing test borehole; Transmission facilities; and Distribution facilities. 	11,160
	<u>10</u> / NТВ 16. Piong	W	19	 Construction of a new water system consisting of: Tube well intake facility by new boring; Transmission facilities; and Distribution facilities. 	6,830
	11/ NTB 18a. Kawuwu, lower	W	5	 Construction of a new water system consisting of: Shallow well intake facility by new digging work; Transmission facilities; and Distribution facilities. 	1,370

		XX7- 4	Served		Total
Island	Serial No., JICA #, and village	Water source	area	Works	pipeline L
			(ha)		(m)
	12/ NTB 18b. Kawuwu, upper	E (S)	6	 Rehabilitation of existing distribution system, such as: Partly replacement of pipeline; 	300
				 Addition of a public hydrant; and Replacement (enlargement) of an existing public hydrant at a school. 	
	Sub-total for NTB		<u>278</u>		103,303
Flor	13/ NTT 6. Sinar Hading	ntt 7	10	- Construction of a new water system consisting of:	7,490
				A reservoir; andDistribution network.	
	14/ NTT 7. Ile Padung	S	10	- Reconstruction of existing water supply system, such as:	11,580
				- A spring intake;	
				- Pump mains;	
				- A stop valve and a bulk meter installation (at the village boundary);	
				- Three concrete reservoirs; and	
				- Distribution pipelines.	
Sumb	15/ NTT 18. Weerame	S	45	- Construction of a water supply system and connection to the existing pipeline system, such as:	8,740
				- Cavern intake facilities with pump;	
				- A reservoir;	
				- Distribution main; and	
		(a)	205	- Connection to existing pipeline system.	0.050
	16/ NTT 19. Kondamara	E (S)	306	- Rehabilitation of existing system such as;	8,960
				Improvement of main header tank;Distribution main; and	
				- Distribution network.	
Rote	17/ NTT 21. Oebau	S	8	- Construction of a water supply	6,590
Rote	17 NITZI. Octobr	5	G	system such as; - Cavern intake facilities with	0,570
				pump;	
				- A reservoir;	
				- A break pressure tank;	
				- Distribution main; and	
				- Distribution network.	

Island	Serial No., JICA#, and village	Water source	Served area	Works	Total pipeline L
			(ha)		(m)
	18/ NTT 23. Nusakdale	S	16	- Reconstruction of existing water supply system such as:	2,900
				- Spring intake facilities;	
	- Distribution main; and - Distribution network.			- Distribution main; and	
			- Distribution network.		
Timo	19/ NTT 24. Tarus	E (S)	95	- Construction of water supply system including rehabilitation of existing intake facilities such as:	23,580
				 Rehabilitation of existing spring intake; 	
				- Two new reservoirs;	
				- Distribution mains; and	
				 Distribution network. 	
	Sub-total for NTT		<u>490</u>		<u>69,840</u>
	Total of NTB and NTT		768		173,143

Note: - Names of islands are abbreviated: Lombo< Lombok, Sbwa< Sumbawa, Flor< Flores, Sumb< Sumba, Rote= Rote, and Timo< Timor.

- The length of pipeline and the served area are roughly estimated. They do not indicate precise value, and they may be changed after the design in this study.
- The Duman and Kawuwu villages have works for two water systems each.
- Water sources "S", "W", and "E" mean spring water, tube or shallow well, and existing water system, respectively.
- "E (S)" means that the works will require tapping or diverting from an existing system that has the water source of spring.
- "Pipeline L., total" indicates the total length of PVC (polyvinyl chloride) pipe and GS (galvanized steel) pipe including service pipelines to public hydrants and house connections, but excluding pipes for crossing structures.

11.3.2 Major Work Quantities

The following are the major work quantities.

Major work quantities

Island	Villages	Excavation	Concrete	Masonry	PVC pipeline	GS pipeline	НС	PH	Pump
NITD		(m3)	(m3)	(m3)	(m)	(m)	(Nr.)	(Nr.)	(Nr.)
NTB				_					
Lomb	<u>1</u> / мтв 1. Kuran ji	3,092	117	2	2,640	3,380	114	17	0
	<u>2</u> / NTB 2. Bajur	7,124	235	5	2,738	11,335	490	35	0
	$\frac{3}{}$ NTB 3. Sembung	3,095	117	3	2,312	3,698	134	17	0
	4/ NTB 4a. Duman, upper	5,753	335	6	3,880	6,940	123	33	0
	5/ NTB 4b. Duman, lower	4,971	124	7	5,368	4,122	116	18	0
	<u>6</u> / NТВ 10. Bagik Papan	4,566	213	6	4,488	4,312	127	30	0
	<u>7</u> / NTB 11. Selapang	9,338	144	6	5,424	12,736	549	15	0
Sbwa	8/ NTB 13. Labuhan Mapin	5,123	45	4	1,448	8,822	446	7	0
	9/ NTB 14. Labuhan Lalar	5,879	176	8	5,496	5,664	188	24	1
	10/ NTB 16. Piong	3,504	107	0	3,088	3,742	133	13	1
	11/ NTB 18a. Kawuwu, lower	714	41	0	712	658	17	3	1
	12/ NTB 18b. Kawuwu, upper	162	20	4	160	140	0	3	0
	Sub-total for NTB	<u>53,321</u>	1,674	<u>51</u>	37,754	65,549	<u>2,437</u>	<u>215</u>	3
NTT									—
Flor	13/ NTT 6. Sinar Hading	3,801	66	0	2,520	4,970	207	5	0
	14/ NTT 7. Ile Padung	6,109	108	4	6,152	5,428	180	7	4
Sumb	15/ NTT 18. Weerame	4,439	82	0	2,640	6,100	259	8	2
	16/ NTT 19. Kondamara	4,669	116	11	5,600	3,360	73	15	2
Rote	17/ NTT 21. Oebau	3,493	114	3	4,824	1,766	13	10	1
	18/ NTT 23. Nusakdale	1,533	48	9	2,000	900	9	6	0
Timo	19/ NTT 24. Tarus	12,075	133	6	8,400	15,180	636	13	4
	Sub-total for NTT	<u>36,119</u>	<u>667</u>	<u>33</u>	32,136	37,704	1,377	64	<u>13</u>
	Total of NTB & NTT	89,440	2,341	84	69,890	103,253	3,814	279	16

Note: - Names of islands are abbreviated: Lombo< Lombok, Sbwa< Sumbawa, Flor< Flores, Sumb< Sumba, Rote= Rote, and Timo< Timor.

- The work quantities are roughly estimated. They do not indicate precise value.
- The Duman and Kawuwu villages have two water systems each.
- Masonry includes wet masonry, dry masonry and gabion mattress.
- Quantities of PVC and GS pipelines indicate the total length of the transmission and distribution systems including branch pipe for the house connection and public hydrant. The diameter of PVC and GS pipelines range between 50 mm and 150 mm.
- "HC" means house connection. One house connection has one faucet. Every GS pipe of about 20 m long, a connection pipe to be placed for each of the house connections, is counted under the "GS pipeline" column.
- "PH" means public hydrant. One public hydrant has a FRP (Fiber Reinforced Plastics) tank, and several faucets. The capacity the FRP tank is 2 m3 to 3 m3. Every GS pipe of about 20 m long, a connection pipe to be placed for each of public hydrants, is counted under the "GS pipeline" column.
- Submergible pumps will be installed at mainly well source sites. The diameter of pump ranges between 40 mm and 150 mm.

11.4 Conditions and Assumption for Planning

11.4.1 Natural and Social Conditions

(1) Location

The project area is located between S 8° and S 11° longitude and E115° and E125° latitude. The villages to be developed are located on six islands, i.e. Lombok, Sumbawa, Flores, Sumba, Rote, and Timor.

These islands are located east of Bali Island, and south of Sulawesi Island in Indonesia. These six islands stretch east and west about 1,000 km from tip to tip between the Flores Sea and the Indian Ocean.

Project area is shown in Figure A11-2.1.

(2) Geology

The Lombok, Sumbawa, Sumba, Flores, Rote and Timor islands form a part of the Lesser Sunda Islands.

The Nusa Tenggara area can be divided into two rock areas, i.e. volcanic rock and sedimentary rock. The volcanic rock areas covering the Lombok, Sumbawa, and Flores islands are mainly of andesitic and basaltic composition of volcanic breccia, lahar, tuff, ash and lava. Sedimentary rocks of the Tertiary to Quaternary age are widely distributed in the islands of Sumba, Rote and Timor, consisting mainly of limestone, clayey limestone intercalated with sandy marl and tuffaceous marl, marly sandstone, tuffaceous sandstone, sandy marl, limestone intercalations, coral limestone

(3) Topography

Topographically, the islands in NTB and NTT are dominated by mountainous areas with very rugged topography, consisting of a number of young volcanoes and old volcanic cones, particularly on the islands of Lombok, Sumbawa, and Flores. The islands of Sumba, Rote and Timor are composed of sedimentary rocks, having only a small percentage of flat areas.

The topography of every village is tabulated in Table A11-4.1.

(4) Vegetation

Lombok Island is well covered with green vegetation. The other islands of Sumbawa, Flores, Sumba, Rote and Timor are more sparsely covered with green vegetation.

In each island, the areas of spring intakes and their transmission lines for the villages are usually at higher elevations and are covered with forest dominated by palm trees (girth: 50cm to 80cm, density: a tree per 200m² to 400m²). The areas of villages and hamlets, where people have houses, are vegetated with garden trees such as palm trees, banana, mango, etc. The areas between villages and hamlets are usually cultivated to paddy and upland fields. Maize, tobacco, cassava, banana, palm trees, etc are cropped in the upland fields.

(5) Climate

The islands of Nusa Tenggara lie in the flora and fauna transition zone between southeast Asia and Australia, as marked by the imaginary Wallace line which passes between Lombok and Bali islands. Their climates are strongly influenced by both the continents of Asia and Australia. The distinct wet season is related to the Asiatic northwest monsoon from November to April, whereas the dry season is related to the southeasterly Australian winter anticyclone. The islands are subjected to a prolonged dry season, with rainfalls of less than 250 mm during a period from May to October.

Statistically, five gauging stations in the Nusa Tenggara area receive precipitation of less than 1,000 mm/year in the 1/10 drought year. In particular, Waingapu in Sumba Island receives only 586 mm of rainfall in the 1/10 draught year. The data indicates that both NTB and NTT are under such severe conditions that water resources must be considered to be extremely limited.

The following are the averaged monthly precipitation at eight observatories in the project area.

Averaged monthly rainfall

Observ	atory: G	unung S	arı, Lon	nbok (19	991-200	0)					(Uı	nit: mm)
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
174	260	213	139	129	46	84	8	29	209	245	201	1,737

Observatory: Slaparang, Lombok (1991-1995)										(Un	it: mm)	
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
203	347	213	175	66	38	16	3	15	181	213	154	1,624

Observ	Observatory: Sumbawa Besar, Sumbawa (1991-1994) (Unit: mn								iit: mm)			
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
242	286	140	107	17	6	4	0	4	26	106	209	1,147
Observ	atory: B	ima, Su	mbwa (1	991-199	95)						(Ur	it: mm)
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
257	157	137	37	5	8	2	1	3	16	116	153	892
Observ	atory: K	onga, Fl	ores (19	997-199	8)						(Ur	it: mm)
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
167	136	22	109	0	61	0	36	2	10	138	241	922
Observ	atory: M	Ialiru, S	umba (1	997-199	98)						(Ur	nit: mm)
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
108	23	59	130	15	10	3	1	10	11	68	239	677
Observ	Observatory: Tarus 010Kup, Timor (1980-1995) (Unit: mm)								it: mm)			
Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
399	361	141	65	12	10	6	1	3	4	104	176	1,282

Figure A11-4.1 shows the location of the observatories. Figure A11-4.2 and Table A11-4.2 shows averaged monthly rainfall at each of the observatories.

(6) Seaport and airport

Each of the islands, Lombok, Sumbawa, Flores, Sumba, Rote and Timor, has freighter (cargo ship) port and ferry port. Small freighters enter each freighter port every day. Rather large freighters enter each port about twice a month. Large freighters are usually scheduled to navigate among the islands in NTB and NTT, Sulawesi and Kalimantan based at the Surabaya and Jakarta ports. Ferries enter each ferry port a few to several times a day. Navigation of the freighters and ferries is illustrated in Figure A11-4.3.

Each of the islands has also an airport. Two air companies, Merpati and Air Mark, occupy the airways in the area of Nusa Tenggara. Merpati has many flights to the East and West Nusa Tenggara provinces, based at Dempasar Airport in Bali. Air Mark has flights to Dempasar and Bima based at the Mataram Airport in Lombok. The Dempasar and Mataram airports are connected to Jakarta Airport by Garuda Air. Mataram Airport has the most flights in Nusa Tenggara, mainly to and from Dempasar and Jakarta. The flight schedule for the NTB and NTT is charted in Figure A11-4.4.

(7) Access roads

It is possible to access each of the villages by vehicle using public roads from the seaports. Distance from seaport to each of the villages is listed in Table A11-4.1.

Lombok Island

All the villages are connected to the national roads, provincial roads and district roads. These roads are asphalt roads and maintained in a good condition. Access to each village is considered to be easy. Almost all villages are located along these roads. In the villages areas, main roads of the villages are made with asphalt pavement. However, surface pavements have broken up in places in some village, resulting in gravel road conditions. Also, earth roads were noted between some hamlets.

Surveyed villages are located 10-20 km from each provincial office.

Springs (Kuranji, Sembung, Bagik Papan) are located within the village and access is made using narrow earth roads. Springs, (Duman, Bagik Papan, Selaparang) which are situated in the forests, and rivers are located quite far from the village. Accessibility is considered to be fair to poor.

Sumbawa island

Almost all villages are located along national roads, provincial roads and district roads. These roads are asphalt roads and maintained in a good condition. Access to each village seems to be easy. Desa Kawuwu is located in a mountainous area and access is by a rough and steep road. In the village, the village main roads are made mainly with asphalt pavement. However, the surface pavement is broken in places and in some village the exposed base and sub-base materials provide gravel road conditions.

The surveyed villages are located 50-100 km from the provincial office, except Labuhan Lalar (135 km).

Access to each spring is quite far from the relevant village; 10 km from Labuhan Mapin, 3.5 km from Labuhan Lalar, and 1.5 km from Piong. These springs are situated in a mountainous forest, agricultural area and river/stream side respectively. The access to each spring is a narrow earth road used as a footpath.

Flores island

Access to all the village is available by national roads, provincial roads and district roads. The national road of about 4 m wide is asphalt pavement and in good surface condition. The access to each village is relatively easy.

The distance from Bupati Office of Flores Timur to each village office is 19 km to 23 km.

In Kabupaten Flores Timur, the access to all the village is by national road and district road. The village road of Desa Ille Padung is paved with concrete, and the surface condition is fair. Access to the site and other hamlet is mainly by foot.

Sumba island

Access to all the village is by national road, provincial and district roads. The distance from Bupati Office of the Sumba Timur to the Kondamara village office is about 60 km. The distance from Bupati Office of Sumba Barat to the Weerame village office is about 20 km. The national road of about 4 m wide is asphalt pavement.

The district roads of Sumba Timur are mainly paved with gravel and earth. They are in good condition, sufficient for daily traffic. The village roads are also paved gravel and earth, but the surface of the road is not in good condition. Access to springs and other hamlet is mainly by foot.

Many of the provincial roads of Sumba Barat are asphalt pavement, which are in good condition. The village roads are also paved with gravel and earth. But, they are not in good condition. Access to springs and the other hamlet is mainly by foot.

Rote island

Access to all the village is available by district road. The distance from Chamat Office of Pantaibaru to each village office is between 10 km and 17 km.

District roads are narrow and unpaved. The road surface is gravel and earth, and in rough surface condition. Access to Desa Nusakdale is considered to be difficult for normal traffic during the rainy season because there are no bridges and vehicles have to ford rivers or use ferries.

The village roads are paved with earth and gravel. Access to springs and other hamlet is by foot.

Timor island

Access to the Tarus Desa is by national road and district roads. The distance from the provincial office of Kupang to the village office is about 13 km.

These roads are paved with asphalt, and access to the village is quite easy. The village road is paved with asphalt or gravel and earth. Access to the springs and other hamlet is mainly by foot.

(8) Infrastructures and service facilities

1) Power supply

(a) Lombok island

All the proposed villages are connected to the existing 11 kV electric distribution line of PLN and stepped down to 440 V in each village. Two villages in Lombok Timur, Bagik Papan and Selaparang, are connected to another electric supply system of KLP (Koperasi Listrik Pedesaan "Sinar Rinjani").

(b) Sumbawa island

All the proposed villages are connected to the existing electric distribution line of PLN.

(c) Flores island

Almost all the proposed villages are connected to the existing electric distribution line of PLN, except for Flores Timur. However, some hamlets do not have a distribution line.

(d) Sumba island

Kondamara village is not connected to the existing electric distribution line of PLN, but is connected to Weerame.

(e) Rote island

None of the proposed villages are connected to the existing electric distribution line of PLN.

(f) Timor island

The proposed village is connected to the existing electric distribution line of PLN.

2) Telecommunication system

(a) Lombok island

Wired telephone line is not provided for each village. Each Kepala Desa has a mobile telephone.

(b) Sumbawa island

Wired telephone line is not provided for each village. Each Kepala Desa has a mobile telephone.

(c) Flores island

Wired telephone line is not provided for each village. Communication with the village is by a transceiver, car or motorcycle.

(d) Sumba island

Wired telephone line is not provided for each village. Communication with the village is by car or motorcycle.

(e) Rote island

Wired telephone line is not provided for each village. Communication with the village is by car or motorcycle.

(f) Timor island

The village is connected to the existing electric distribution line of PLN.

(9) Institutions

1) Labor law

(a) National holidays

There are fourteen (14) National holidays a year in Indonesia. There is no holiday in lieu of a National holiday that falls on a Sunday. The National holidays in Indonesia are listed in Table A11-4.3.

(b) Working hours and wage

Standard working hours are set at 40 hours a week as tabulated below.

Weekly working hours instructed by the government

D	ate of the week	Working hours	Calculation
1.	Mon Fri.	35	08:00-16:00, 7 hours/day x × 5 days
2.	Sat.	5	08:00-13:00, 5 hours/day x × 1 days
	Total	40	

Source: Counseling Guide for Company Regulations

It is customary in the construction industry to set working hours of 42 hours, exceeding the above standard working hours.

Actual practiced working hours in construction industry

Date of the week	Working hours	Calculation
1. Mon Sat.	42	08:00-16:00, 7 hours/day x × 6 days
Total	42	

Source: Hearing survey

It is possible for employers to have workers exceed the standard working hours where he gets previous permission from the human power resources department. An overtime allowance is regulated, calculated as follows.

Overtime allowance

	Working day	Overtime hours	Overtime allowance
1.	Normal - first 1 hour:		Standard hourly wage ×1.5
	Mon Sat.	- exceeding 1 hour:	Standard hourly wage × 2
2.	Holiday of	- first 7 hours:	Standard hourly wage × 2
	Mon Fri.	- exceeding 7 hours to 8 hours:	Standard hourly wage × 3
		- exceeding 8 hours:	Standard hourly wage × 4
3.	Holiday of	- first 5 hours:	Standard hourly wage × 2
	Saturday	- exceeding 5 hours to 6 hours:	Standard hourly wage × 3
		- exceeding 6 hours:	Standard hourly wage × 4

Source: Counseling Guide for Company Regulations

Note: - Overtime for Sunday is calculated in accordance with "2. Holiday of Mon. - Fri.".

- Standard hourly wage is taken as three twentieths (3/20) of the daily wage, or one hundred and seventy third (1/173) of the monthly wage.

Employers must give paid leave of 12 days a year to workers that have worked for him for more than 12 months. He must also pay a bonus of one month every year to workers who been with him for more than a year.

Employer must pay insurance fees as follows.

Insurance to be borne by employer

	Name of insurance	Insurance rate to basic wage
1.	Employer's Provident Fund	3.70 %
2.	Employer's Health Insurance	6.00 %
3.	Employer's Accidental Insurance	1.74 %
4.	Employer's Death Insurance	0.30 %
	Total	11.70 %

Source: Counseling Guide for Company Regulations

2) Environmental act

The following environmental acts will be respected by contractors during construction.

(a) Government Regulation of the Republic of Indonesia No. 20 of 1990 concerning

'Control of Water Pollution',

BAPEDAL (Environmental Impact Management Agency) with EMDI (Environmental Management Development in Indonesia), 1990

(b) Act of the Republic of Indonesia No. 4 of 1982 concerning

'Basis Provisions for the Management of the Living Environment',

BAPEDAL (Environmental Impact Management Agency), 1996

(c) Government Regulation of the Republic of Indonesia No. 41 of 1999 concerning

'Control of Air Pollution',

BAPEDAL (Environmental Impact Management Agency), 1999

11.4.2 Availability of Construction Resources

(1) Labor

Unskilled workers will be employed in and around the villages proposed for the works.

Skilled workers, such as concrete workers, form workers, pipe plumbers and operators, will be employed at Surabaya or Jakarta for the large scale construction works.

(2) Construction materials

1) General

Primary materials of earth and rock materials are available in and around the villages proposed for the works. Artificial construction materials required in large quantities, such as fuel, cement, rebar, pipes and gates will be purchased mainly at Surabaya or Jakarta.

(a) Lombok island

For the construction of water supply facilities such as pipelines, hydrant, wells, etc., unskilled labor and raw materials of gravel and sand are available in the villages. However, pipes, valves, pumps, cement, reinforcing steel, etc. will be transported from Mataram or Surabaya.

(b) Sumbawa island

For the construction of water supply facilities such as pipeline, hydrant, wells, etc., unskilled labor and raw materials of gravel and sand are available in the village. However, pipes, valves, pumps, cement, reinforcing steel, etc. will be transported from a town closest to the village, Mataram or Surabaya.

(c) Flores island

Raw materials of gravel and sand are available in the villages of Sinar Hading. Unskilled labor is available in all the villages. Major materials such as pipes, valves, pumps, cement, reinforcing steel, etc. and construction equipment will be transported through the Maumere and Larantuka ports.

(d) Sumba island

Raw materials of gravel and sand are not available in the villages except Weerame. Unskilled labor is available in all the villages. Major materials such as pipes, valves, pumps, cement, reinforcing steel, etc. and construction equipment will be transported through the Waingapu port.

(e) Rote island

Raw materials of gravel and sand, and unskilled labor are available in all the villages. Major materials such as pipes, valves, pumps, cement, reinforcing steel, etc. and construction equipment will be transported through the Pantai Baru port from Kupang.

(f) Timor island

Raw materials such as gravel and sand, and unskilled labor are available in all the villages. Major materials such as pipes, valves, pumps, cement, reinforcing steel, etc. and construction equipment will be transported through the Kupang port.

(3) Construction equipment

Some construction equipment is available in each of the islands from time to time. Where suitable equipment is not available, it will be transported from Surabaya by ship.

11.4.3 Basic Conditions of Construction Works

(1) General

Conventional and prevailing construction methods are adopted as much as possible.

The major work of the proposed construction works is pipe laying work. This work will be mainly performed manually because there is poor availability of construction equipment and the proposed route of the pipeline is over rather steep land and along narrow village streets.

Wells will be bored with boring machines.

Concrete will be mixed and placed manually. The work volumes of the structures the overall project are too small to require heavy concrete equipment. Portable concrete mixers will be operated from time to time, depending on the quantity of the works.

Construction equipment, such as trucks with cranes, will be used for installing pumps.

Masonry works will be done manually.

(2) Bulk factors

The following are swell and shrinkage factors assumed for earth/rock volume conversion.

Bulk factors

No.	Materials	Bank	Loose	Compacted
1.	Soil	1.00 (1.80)	1.20 (1.50)	0.90 (2.00)
2.	Rock	1.00 (2.44)	1.60 (1.53)	1.25 (1.95)
3.	Aggregate, river sand	1.00 (1.80)	1.20 (1.50)	0.90 (2.00)
4.	Aggregate, gravel	1.00 (1.90)	1.20 (1.58)	1.00 (1.90)

Note: - The value in parentheses indicates unit weight in tf/m³.

(3) Working hours

One shift working hours are applied to the works. The following are one shift working hours.

Normal working hours

Day of the week		Working hours
Monday-Saturday	7 hours in net	(8.5 hours in gross from 8:00 to 16:30, 1 hour for lunch,
		15 minutes rest each in the morning and afternoon teas)
Sunday	no work	
National holiday	no work	

(4) Workable days

Workable days are estimated, depending on the type of works, based on the precipitation data recorded at the observatories in the project area.

Annual net workable days available for construction works are estimated based on the following conditions, depending on the type of works.

Conditions of work suspension days

Day of the week/rainfall	Earthworks	Concrete works
1. Sunday and national holidays:	1.0	1.0
2. Rainfall (p):		
$0 \text{mm} \leq p < 5 \text{mm}$	0	0
$5 \text{mm} \leq p < 10 \text{mm}$	0	0
$10 \text{mm} \leq p < 20 \text{mm}$	0.5	0
$20 \text{mm} \leq p < 40 \text{mm}$	1.0	1.0
$40 \text{mm} \leq p$	1.5	1.0

Note: - Overlapping days of Sunday/holiday with rainy days shall be deducted in counting work suspension days.

The workable days are estimated on monthly basis through the following steps.

- (1) Listing and counting Sundays and National holidays
- (2) Counting rainy days
- (3) Listing number of rainy days
- (4) Estimating work suspension days due to rainfall
- (5) Estimating workable days

The process of the above steps is listed in Table A11-4.4. The following are the estimated workable days depending on the type of works.

Estimated workable days (1/4)

Observatory	Gunung Sari, Lombok (NTB)		Selaparang, L	ombok (NTB)
Month	Earthworks	Concrete works	Earthworks	Concrete works
January	23	24	22	24
February	17	19	15	17
March	21	22	20	22
April	22	23	21	22
May	23	24	23	24
June	25	26	25	25
July	25	25	26	26
August	26	26	26	26
September	24	25	25	25
October	23	24	23	24
November	21	23	21	23
December	19	21	20	21
Total	269	282	267	279

Estimated workable days (2/4)

Observatory	Sumbawa Besar,	Sumbawa (NTB)	Bima, Sumb	pawa (NTB)
Month	Earthworks	Concrete works	Earthworks	Concrete works
January	21	23	20	23
February	16	18	20	21
March	23	24	23	23
April	21	22	23	24
May	24	24	24	24
June	26	26	26	26
July	26	26	26	26
August	26	26	26	26
September	25	25	25	25
October	26	26	26	26
November	24	25	24	25
December	19	21	20	21
Total	277	286	283	290

Estimated workable days (3/4)

Observatory	Konga, Flo	ores (NTT)	Maliru, Su	mba (NTT)
Month	Earthworks	Concrete works	Earthworks	Concrete works
January	23	24	24	24
February	18	19	22	22
March	25	25	24	25
April	22	23	21	22
May	24	24	24	24
June	25	25	26	26
July	26	26	26	26
August	25	25	26	26
September	25	25	25	25
October	26	26	26	26
November	23	25	24	25
December	18	20	17	19
Total	280	287	285	290

Estimated workable days (4/4)

Observatory	Tarus 010 l	Kup (NTT)
Month	Earthworks	Concrete works
January	18	21
February	14	17
March	22	23
April	23	24
May	24	24
June	26	26
July	26	26
August	26	26
September	25	25
October	26	26
November	24	25
December	20	21
Total	274	284

The workable days estimated, based on the rainfall record of the Gunung Sari observatory, Lombok, are used for construction planning of the works in all the proposed villages in NTB and NTT for the following reasons.

- The rainfall data used for the estimate of workable days is much less (2 to 5 years data for an observatory, except 16 years for Tarus 010 Kup, Timor) than those of the Gunung Sari observatory (10 years data). The data of Gunung Sari is more reliable than the others.
- The workable days of 269 for earthworks are more conservative for formulating construction plans than the other estimates (274, 277, 280, 283, 285 days).
- The proposed works are not so large scale or complicated as to require different locations of data for construction planning. A single reliable data source is adequate to plan the proposed works.

(5) Production rate of construction equipment

Heavy equipment such as backhoes, dump trucks and boring machines have the potential to be used for the works. The production rates of backhoes and dump trucks are computed in Table A11-4.5.

The following are the production rates computed.

Production rate of construction equipment

Equipment	Job	Unit	Production	(measurement
Equipment	300	Omt	rate	type)
Backhoe, 0.35m ³	excavation, common	m³/hr	19	(bank)
Backhoe, 0.6m ³	excavation, common	m ³ /hr	33	(bank)
Backhoe, 0.35m ³	placing and spreading	m ³ /hr	25	(embankment)
Backhoe, 0.6m ³	placing and spreading	m ³ /hr	43	(embankment)
Vibratory plate compactor,	hauling, 5km	m³/day	38	(embankment)
70-80kg				

(6) Proportioning of concrete

Mixing proportions of concrete are assumed as below.

Proportioning of concrete

(per 1.0m³ concrete)

Туре	e Strength	Max aggr.	Water	Cement	F. aggr.	C. aggr.	Admixt.
	(N/mm ²) [kgf/cm ²]	(mm)	(kg)	(kg)	(kg)	(kg)	(lit.)
	175 [17.9]	40	114	300	770 (0.51)	1,200 (0.76)	1.00

Note: - Value in parentheses indicates volume of aggregates in loose condition in cubic meters.

(7) Curing days of concrete

The following curing period is scheduled for the concrete work program.

Curing days of concrete

Position of works	Removing form	Load/backfilling
Form for lining concrete	1 day	1 day
Vertical formwork to column and wall	7 days	7 days
Soffit formwork to slab	14 days	21 days

(8) Disposal area

The quantity of surplus materials is not so great as to require consideration of providing a disposal area. The surplus earth materials will be disposed beside the work site and leveled to the shape of the original ground.

11.5 Construction Method and Sequence

11.5.1 Temporary Works

(1) Access road

Since there are public roads to all villages, it is not necessary to construct new access for the villages proposed for the works. All the materials and equipment for the works will be transported up to the villages using existing public roads. Only maintenance works of the existing roads will be required for the works and for daily traffic.

The construction materials will be carried by manpower from the villages to the water sources and reservoirs, where there are no public roads for vehicles.

(2) Power supply

Electrical power will be supplied by diesel engine generator to execute the works.

(3) Water supply

The water, that is required for concrete production and for moisture control for filling works, will be supplied from the source of each water system by pump and water tanker. If the water source is far from the construction site, the water would be brought from other rivers and streams.

(4) Telecommunication system

Contractors will establish a radio communication system covering all the work sites and offices, such as satellite telephone system.

(5) First aid

Other than the use of the hospitals and clinics available around the project area, first aid facilities are to be provided by the contractor at his site office.

(6) Contractor's base camp

Contractor's base camps will be located in/around the proposed villages for the works. The contractor will provide the infrastructure required for the works in the base camps.

(7) Labor camp

A labor camp for skilled and semi-skilled workers will be provided by the contractor for the smooth operation of construction works in/around the proposed villages for the works.

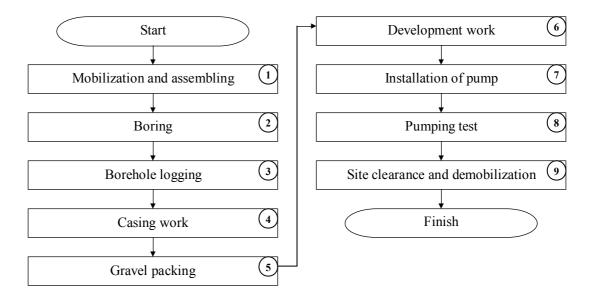
11.5.2 Permanent Works

(1) Intake facilities

1) Spring intake

Several Broncapturing structures will be constructed or reconstructed. Each of the structures is rather small. All the works, such as excavation, wet masonry weir, stone and gravel filling, pipe laying, concrete covering, and backfilling, will be done manually.

2) Cavern water intake


One cave water intake will be constructed at the Weerame and Oebau villages. There is a water cave upstream of each of the villages. A simple pump station will be constructed and a concrete slab will be placed to cover the cavern at the intake site. The work site is very steep and less excavation works will be required. All the construction works will be done manually.

3) Tube well

A tube well will be constructed at the Pion village in Sumbawa. A spindle type boring machine, 15 kW class, will be used for the boring. Well head facilities, such as the concrete pad, drainage ditch, drainage pit, and animal troughs, will be constructed manually. A portable concrete mixer will be used for mixing concrete for the concrete pad and others. A cargo truck with crane will be used for transporting and installing the pump.

The borehole construction will be performed using the following process.

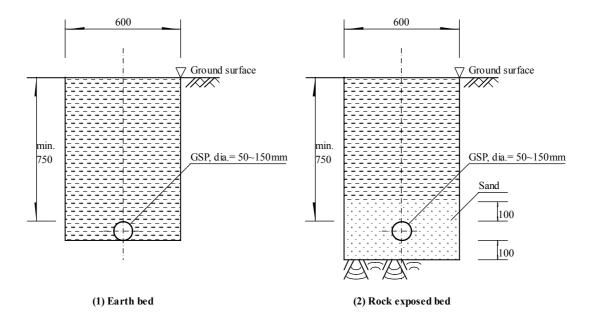
A11-28

Borehole construction sequence

Note: - Boring includes placing conductor pipe, boring and mud circulation.

4) Shallow well

A shallow well, of diameter 2.5 m and a depth of 4 m, will be constructed at the Kawuwu village in Sumbawa. The well will be dug manually. Well head facilities, such as the concrete pad, drainage ditch, drainage pit, and animal troughs, will be constructed manually. A portable concrete mixer will be used for mixing concrete for the concrete pad and others. A cargo truck with crane will be used for transporting and installing the pump.


5) Tapping works from existing water supply system

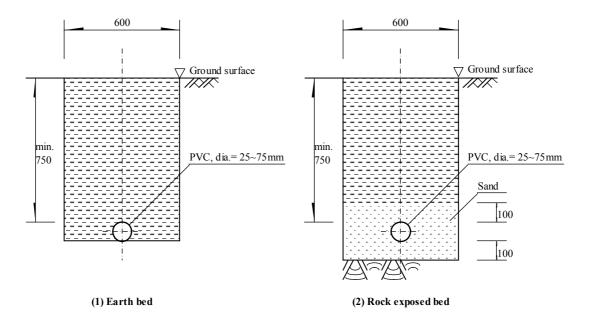
Tapping and diversion works will be carried out from the existing water supply system in several villages. The tapping works will be performed blocking water by closing valves neighboring. The works will be carried out by plumbers.

(2) Transmission facilities

1) Transmission pipeline

Galvanized steel pipe (GSP), with a nominal diameter of between 50 mm and 150 mm, will be placed underground. The soil covering of the pipeline is designed to be 75 cm. An excavation depth of 80 to 100 cm will be required, depending on the pipe diameter and the soil condition of the bed. The following are typical cross sections of the laid pipeline.

Typical cross sections of transmission pipeline


(3) Distribution facilities

1) Ground reservoir

Ground reservoirs will be constructed mainly for the spring intake systems. Excavation and masonry works will be done during the construction. All the works will be done manually.

2) Distribution pipeline

Polyvinyl chloride (PVC) pipe, with a nominal diameter of between 50 mm and 150 mm, will be placed underground. Where the pipe is exposed on steep areas, galvanized steel pipe (GSP) will be used instead of the PVC pipe, especially for the main distribution pipeline. The soil covering of the pipeline is designed to be 75 cm. An excavation depth of 80 to 100 cm will be required depending on the pipe diameter and the soil condition of the bed. The following are typical cross sections of the laid pipeline.

Typical cross sections of distribution pipeline

Excavation, plumbing and backfilling will be required for the construction. All the works will be done manually.

3) House connection

About 4,500 house connection pipes in total will be constructed for the project. Each of them is a PVC pipe of 25 mm diameter and about 20 m long. Excavation, plumbing and backfilling will be done manually.

4) Public hydrant and public tap

About 220 public hydrants in total will be constructed for the project. Each of them is a cylinder type tank, made of fiber reinforced plastics (FRP), with a capacity of 3 m³, connected to several faucets for public use. A concrete pad, drainage ditch, drainage pit, and animal trough will be also be constructed.

The FRP tanks will be prefabricated at the factory for installation at the proposed site. All the works will be done manually.

Progress Rate of Works 11.5.3

(1) General

Progress rates of the works are estimated based on the productivity of workers by trade and of equipment to be operated. A certain period of work is assumed to

compute work quantities for each segment of the works. For each of the segments, a team of workers and equipment is formed to perform the works.

Progress rates of works are estimated for the physical works on site, for the period from when the construction materials and equipment are mobilized to when the works are completed.

(2) Critical Path Work

Works will be performed progressively village by village. Pipe laying works will form a critical path in the construction work program in each village, since there is more work involved than in the intake construction or rehabilitation, well exploitation, reservoir construction, BPT (Break Pressure Tank) construction and construction of crossing structures. During the pipe laying works, the other works will have been finished at each of the villages.

The pipe laying works will be performed by two kinds of work units. One is a manual team and the other is an equipment operating team. The manual team performs the works, excavation, pipe setting, jointing and backfilling, using manpower only. The equipment operating team uses a backhoe of $0.35 \, \mathrm{m}^3$ for excavation and backfilling and a vibratory plate compactor of 70-80kg for compaction of backfilling.

The following are the estimated progress rates of the pipe laying work.

Progress rates of pipe laying works

	Item	Manpowered work team	Equipment team
1. F	Progress rate by a team	15 m/day	237 m/day
2. T	Team formation		
1) Operator	-	2
2	Plumber	1	15
3	Common worker	18	28
4	Backhoe, 0.35m3	-	2
5	Vib. plate compactor, 70-80kg	-	4

Note: - The diameter of pipes to be laid ranges between 25 mm and 150 mm.

The estimation is given in Table A11-5.1.

⁻ Daily operation hours of equipment is set at 6.75.

11.6 Construction Schedule

11.6.1 Construction Time Schedule

The construction time schedule is prepared based on the work progress of the pipe laying works. Manpowered work teams will be assigned to about 75% of the total pipeline length and equipment teams to the remaining 25% of the pipeline.

The construction schedule is prepared so that the construction resources should be deployed as uniformly through the construction period as possible. The works will not be performed at all villages simultaneously, but performed at a few villages simultaneously. The works will be progressively finished area by area.

Works for Phase 1 will require eight months including two months for mobilization. Works for Phase 2 will require seven months including two months for mobilization.

11.6.2 Required Construction Resources

(1) Labor

The following are total man-days required for the works.

Major construction equipment required for the works

Item	Unit	Phase 1	Phase 2	Total
1. Total man-days of labor	man-day	107,000	69,000	176,000

(2) Materials

The following are the quantities of major construction materials required for the works.

Major construction materials required for the works

	Item	Unit	Phase 1	Phase 2	Total
1.	Light oil	m3	35	37	72
2.	Cement	ton	530	210	740
3.	Re-bar	ton	85	35	120
4.	Plywood	m3	350	150	500
5.	Fine aggregate	ton	1,350	540	1,890
6.	Coarse aggregate	ton	2,100	840	2,940
7.	Stone for masonry	ton	100	65	165
8.	PVC pipe, dia.= 25mm	m	0	0	0
9.	PVC pipe, dia.= 50mm~150mm	m	43,600	36,400	80,000
10.	Water tank, FRP, 3m ³	Nr.	215	64	279
11.	GS pipe, dia.= 25mm	m	56,100	29,700	85,800
12.	GS pipe, dia.= 50mm~150mm	m	3,600	3,800	7,400
13.	Faucet	Nr.	3,400	1,700	5,100

Note: Quantity of light oil is estimated based on the operation of backhoe that will be used for pipe laying works.

Refer to **Table A11-3.1** and Section 3.2.

(3) Equipment

The following are the number of major construction equipment required for the works.

Major construction equipment required for the works

	Item	Unit	Phase 1	Phase 2	Total
1.	Backhoe, 0.35m3	Nr.	4	4	8
2.	Vibratory plate compactor, 70-80kg	Nr.	8	8	16

(4) Contractor's yard

The contractors will not require much office space. Since they use small numbers of equipment that are to be operated village by village, they will not require any motor pool at a location. A storage area should be used by the contractor during construction because of the quantity of pipe materials that needs to be purchased and handled for the construction.

The contractors will require an area of land near the freighter ports in Phase 1 and Phase 2.

The following are the areas needed for the storage of materials required for the works.

Estimated storage area required for the works (Plan 1)

	Item	Unit	Phase 1	Phase 2	Total
1.	Storage area (Phase 1)	m^2	5,000	0	5,000
2.	Storage area (Phase 2)	m^2	0	2,000	2,000
	Total	m^2	5,000	2,000	7,000

Note: The area is estimated assuming that about a quarter of the total materials to be purchased from outside of the villages should be stored at a time.

Estimated storage area required for the works (Plan 2)

	Item	Unit	Phase 1	Phase 2	Total
1.	Storage area (Phase 1)	m_2^2	3,000	0	3,000
2.	Storage area (Phase 2)	m ²	0	4,000	4,000
	Total	m ²	3,000	4,000	7,000

Note: The area is estimated assuming that about a quarter of the total materials to be purchased from outside of the villages should be stored at a time.

11.7 Consultants' Setup

11.7.1 Personnel Requirement

The following are the foreign and local experts required to execute the design, supervision, and community development and PDAM capacity building at Phase 1 and Phase 2.

Required Consultant Personnel (Plan 1)

(Unit: M/M)

		Phase 1			Phase 2		
Work	(F)	(L)	Total	(F)	(L)	Total	Total
1. Design	21	16	37	21	16	37	74
2. Supervision	22	51	73	21	54	75	148
3. Soft component services *1	19	234	253	14	171	185	438
Total	62	301	363	56	241	297	660

Note: (F): Foreign expert

(L): Local expert and staff, including field officers

*1: Field officers (L) make up a large proportion of the above personnel quantities; i.e. 154 M/M in Phase 1 and 95 M/M in Phase 2.

Required Consultant Personnel (Plan 2)

(Unit: M/M)

			Phase 1			Phase 2	`	Í
	Work	(F)	(L)	Total	(F)	(L)	Total	Total
1.	Design	21	16	37	21	16	37	74
2.	Supervision	22	51	73	20	57	77	150
3.	Soft component services ^{*1}	19	203	222	14	208	222	444
	Total	62	270	332	55	281	336	668

Note: (F): Foreign expert

(L): Local expert and staff, including field officers

A team leader will manage the overall services of the consultants at each step of Phase 1 and Phase 2. A design engineer, a design/supervision engineer and a community specialist, all foreign experts, will be in charge of overall design, supervision, and soft component services respectively, under the team leader.

The soft component services are composed of health and hygiene education, community development and PDAM capacity building. The health and hygiene education and the community development will be conducted before and during construction. The PDAM capacity building will be conducted during construction. The education and extension works before construction is called social preparation.

Proposed consultant's setups in the case of Plan 1 development are shown in Figure A11-7.1 (Plan 1) and Figure A11-7.2 (Plan 1) for Phase 1 and Phase 2, respectively.

^{*1:} Field officers (L) make up a large proportion of the above personnel quantities; i.e. 123 M/M in Phase 1 and 132 M/M in Phase 2.

Proposed consultant's setups in the case of Plan 2 development are shown in Figure A11-7.3 (Plan 2) and Figure A11-7.4 (Plan 2) for Phase 1 and Phase 2, respectively.

Proposed assignment schedule of consultant personnel in the case of Plan 1 development is shown in Table A11-7.1 (Plan 1).

Proposed assignment schedule of consultant personnel in the case of Plan 2 development is shown in Table A11-7.2 (Plan 2).

Table A11-3.1 Scope of Works (1/2)

					De	esign cond	itions		Pumpin	g, transmis	ssion and o	distribution	n main*²	Storage,	reservoir
														and E	BPTs*3
	Serial			Design	Served	Торо.	Annual								Total
Island	No.	JICA#	Name of village	pop.	area	gradient	rainfall	Source*1	150mm	100mm	75mm	50mm	Total	Number	capacity
				(Nr.)	(ha)	(1/i)	(mm)		(m)	(m)	(m)	(m)	(m)	(Nr.)	(m3)
NTB															
Lombok	1/	ΝТВ 1.	Kuranji	1,894	28	400	,		-	-	360	-	360	1	-
	_	NTB 2.	Bajur	6,130	25	400	,		-	580	-	-	580		-
	3/	NTB 3.	Sembung	2,225	16	100	,		-	-	500	-	500	-	-
		nтв 4 а.	Duman, upper	3,078	26	15	1,725		-	-	1,650	1,530	3,180	6	47
	5/	nтв 4b.	Duman, lower	1,926	48	60	,		-	1,900	-	-	1,900	-	-
	6/	ΝТВ 10.	Bagik Papan	3,182	19	50	1,624	E (Sp)	-	-	2,435	-	2,435	1	30
	7/	ΝТВ 11.	Selaparang	3,433	15	50	1,624	E (Sp)	800	1,240	2,500	-	4,540	2	84
Sumbawa	8/	ΝТВ 13.	Lb. Mapin	3,570		200	1,145	Sp	-	-	-	-	-	-	-
	9/	ΝТВ 14.	Lb. Lalar	3,136	42	200	1,145	TW	-	2,800	-	-	2,800	1	40
	10/	ΝТВ 16.	Piong	1,662	19	100	890	TW	-	-	590	-	590	1	20
	11/	NТВ 18a.	Kawuwu, lower	414	5	20	890	SW	-	-	-	890	890	-	-
	12/	NТВ 18b.	Kawuwu, upper	404	6	8	890	E (Sp)		-	100	100	200	-	-
			for Phase 1	31,054	<u>278</u>				<u>800</u>	<u>6,520</u>	<u>8,135</u>	<u>2,520</u>	<u>17,975</u>	<u>11</u>	<u>221</u>
NTT															
Flores	13/	NTT 6.	Sinar Hading	1,294	10	10	922	NTT 7.	-	-	-	-	-	1	20
	14/	NTT 7.	Ile Padung	1,122	10	8	922	Sp	-	3,500	1,340	-	4,840	3	17
Sumba	15/	NTT 18.	Weerame	1,616	45	35	676	Cv	-	-	550	-	550	1	26
	16/	NTT 19.	Kondamara	1,828	306	400	676	E (Sp)	-	-	2,975	4,025	7,000	-	-
Rote	17/	NTT 21.	Oebau	632	8	60	1,282	Cv	-	-	1,080	-	1,080	2	8
	18/	NTT 23.	Nusakdale	450	16	30	1,282	Sp	-	-	-	1,500	1,500	-	-
Timor	19/	NTT 24.	Tarus	3,977	95	200	1,282	E (Sp)	-	3,700	100	-	3,800	2	70
		Sub-total	for Phase 2	10,919	<u>490</u>				_	<u>7,200</u>	<u>6,045</u>	<u>5,525</u>	18,770	<u>9</u>	<u>141</u>
	Sub-total for Phase 2 Total of Phase 1 and Phase 2			41,973	768				800	13,720	14,180	8,045	36,745	20	362

Note:

E: existing water supply sytem; Sp: spring; E(Sp): existing system having spring source; TW: tube well; SW: shallow well; Cv: cavern water. *1:

About 80% of "Pumping, transmission and distribution mains" will be uPVC, the other 20% GS. *2:

*3: BPT: break pressure tank

Table A11-3.1 Scope of Works (2/2)

-							Distribut	ion netwo	ork			Stre	am/	
				Public		House		***************************************				riv	/er	Total
	Serial			hyd-	Public	connec-		Service p	pipelines*4		Service	cross	sings	of
Island	No.	JICA#	Name of village	rant	taps	tions	75mm	50mm	25mm	Total	meter	L>15m	L<15m	pipeline
				(Nr.)	(Nr.)	(Nr.)	(m)	(m)	(m)	(m)	(Nr.)	(Nr.)	(Nr.)	(m)
NTB														
Lombok	<u>1/</u>	ΝТВ 1.	Kuranji	17	10	114	1,560	1,380	2,720	5,660	141	1	2	6,020
	_	NTB 2.	Bajur	35	15	490	440	2,403		13,493		1	5	14,073
	<u>3/</u>	NТВ 3 .	Sembung	17	10	134	1,250	1,140	3,120	5,510	161	-	2	6,010
	<u>4/</u>	nтв 4 а.	Duman, upper	33	10	123	-	1,670	5,970	7,640		-	1	10,820
		nтв 4b.	Duman, lower	18	10	116	2,110	2,700	2,780	7,590		2	2	9,490
	<u>6/</u>	ΝТВ 10.	Bagik Papan	30	5	127	-	3,175	3,190	6,365	-	1	-	8,800
	_	ΝТВ 11.	Selaparang	15	10	549	420	1,820	11,380	13,620		1	-	18,160
Sumbawa	<u>8/</u>	ΝТВ 13.	Lb. Mapin	7	-	446	-	1,810	8,460	10,270	454	-	-	10,270
	<u>9/</u>	ΝТВ 14.	Lb. Lalar	24	5	188	1,350	2,720	4,290	8,360	-	2	3	11,160
	<u>10/</u>	ΝТВ 16.	Piong	13	5	133	-	3,270	2,970	6,240	-	-	-	6,830
		nтв 18a.	Kawuwu, lower	3	2	17	-	-	480	480	-	-	-	1,370
	<u>12/</u>	nтв 18b.	Kawuwu, upper	3	-	-	-	-	100	100	-	-	-	300
		Sub-total	for Phase 1	<u>215</u>	<u>82</u>	<u>2,437</u>	<u>7,130</u>	<u>22,088</u>	<u>56,110</u>	<u>85,328</u>	<u>2,014</u>	<u>6</u>	<u>15</u>	103,303
NTT														
Flores	<u>13/</u>	NTT 6.	Sinar Hading	5	10	207	-	3,150	4,340	7,490	222	-	-	7,490
	<u>14/</u>	NTT 7.	Ile Padung	7	-	180	-	2,850	3,890	6,740	202	-	-	11,580
Sumba	<u>15/</u>	NTT 18.	Weerame	8	10	259	420	2,330	5,440	8,190	-	-	-	8,740
	<u>16/</u>	NTT 19.	Kondamara	15	20	73	-	-	1,960	1,960	-	-	4	8,960
Rote	<u>17/</u>	NTT 21.	Oebau	10	10	13	-	4,950	560	5,510	-	2	-	6,590
	<u>18/</u>	NTT 23.	Nusakdale	6	10	9	-	1,000	400	1,400	-	-	3	2,900
Timor	<u>19/</u>	NTT 24.	Tarus	13	10	636	1,100	5,600	13,080	19,780	659	1	-	23,580
		Sub-total	for Phase 2	<u>64</u>	<u>70</u>	<u>1,377</u>	<u>1,520</u>	<u>19,880</u>	<u>29,670</u>	<u>51,070</u>		3	<u>7</u>	<u>69,840</u>
	Total o	of Phase 1	and Phase 2	279 *4.	152	3,814	8,650		85,780	136,398	3,097	9	22	173,143

Note: *4: Service pipeline having the 75mm and 50mm diameter are of uPVC, 25mm of GS.

Table A11-4.1 Natural and Social Condition of Proposed Villages for Works

		Number	Name of	Pop	oulation	A	\rea	Торо	graphic	Annı	ual precipitation	Dry	Freight	er port	Ferry	port
Province	Island	(JICA #)	village	Total	Proposed	Total	Proposed	gra	dient	Rainfall	Observatory	season	Port	Distance	Port	Distance
						(ha)	(ha)	(1/i)		(mm)				(km)		(km)
NTB	Lombok	1.	Kuranji	4,960	2,480	600	40	400	Flat	1,725	Gunungsari	FebJul.	Lember	29	Lember	29
		2.	Bajur	5,970	3,000	320	30	400	Flat	1,725	Gunungsari	FebJul.	Lember	29	Lember	29
		3.	Sembung	2,820	1,860	164	60	100	Flat	1,725	Gunungsari	FebJul.	Lember	30	Lember	30
		4. (a)	Duman	1,760	1,300	550	18	15	Steep	1,725	Gunungsari	FebJul.	Lember	30	Lember	30
		4. (b)		2,720	2,000	850	32	60	Gentle	1,725	Gunungsari	FebJul.	Lember	30	Lember	30
		10.	Bagik Papan	8,940	1,600	900	24	50	Gentle	1,624	Selaparang	AprNov.	Lember	68	Lember	68
		11.	Selaparang	3,570	1,520	800	50	50	Gentle	1,624	Selaparang	AprNov.	Lember	68	Lember	68
	Sumbawa	13.	Lb. Mapin	5,020	3,500	2,369	46	200	Flat	1,145	Sumbawa Besar	JulSep.	Bima	256	Badas	69
		14.	Lb. Lalar	3,410	2,280	3,079	27	200	Flat	1,145	Sumbawa Besar	AprOct.	Bima	326	Badas	139
		16.	Piong	1,750	1,750	36,600	34	100	Flat	890	Bima	AprOct.	Bima	114	Bima	114
		18. (a)	Kawuwu	450	450	662	15	20	Steep	890	Bima	May-Dec.	Bima	40	Bima	40
		18. (b)		450	450	662	15	8	Steep	890	Bima	May-Dec.	Bima	43	Bima	43
		Sub-total o	<u>f NTB</u>	41,820	<u>22,190</u>	47,556	<u>391</u>									
NTT	Flores	6.	Sinar Hading	1,250	1,000	1,922	32	10	Steep	922	Konga	May-Nov.	Larantuka	25	Larantuka	25
		7.	Ile Padung	1,130	1,000	2,235	27	8	Steep	922	Konga	AugNov.	Larantuka	28	Larantuka	28
	Sumba	18.	Weerame	2,290	1,500	1,026	18	35	Gentle	676	Maliru	May-Sep.	Waingapu	24	Waingapu	24
		19.	Kondamara	1,600	1,000	3,120	31	400	Flat	676	Maliru	May-Nov.	Waingapu	72	Waingapu	72
	Rote	21.	Oebao	940	500	2,800	14	60	Gentle	1,282	Tarus 010 Kup	May-Nov	Pantai Baru	42	Pantai Baru	42
		23.	Nusakdale	840	150	769	10	30	Gentle	1,282	Tarus 010 Kup	AprNov.	Pantai Baru	47	Pantai Baru	47
	Timor	24.	Tarus	6,210		1,019	200	200	Flat	1,282	Tarus 010 Kup	May-Nov	Kupan	21	Kupan	21
		Sub-total o	<u>f NTT</u>	14,260	<u>5,150</u>	12,891	<u>332</u>									
	Total for N	 TB and NT	T	56,080	27,340	60,447	723									

Note:

- "proposed" of the "Population" and "Area" columns means 'proposed to be served with water supply at present'.
- "Dry season" shows the period of dry season heard from the villagers.
- Topographic gradient is classified "Steep" (1/i< about 30), "Gentle" (1/i< about 100), and "Flat" (about 100 ≤ 1/i).
- The ferry port, Badas, is a port of Labuhan Sumbawa located near Sumbawa Besar.

 Another ferry port, Labuhan Tano, is also usable for the works at Labuhan Mapin and Labuhan Lalar, that is connected to the Labuhan Lombok port.

Table A11-4.2 Monthly Precipitation (1/2)

Observatory: Gunung Sari, Lombok, NTB

(Unit: mm)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1991	314	712	29	84	130	0	87	0	6	44	350	192	1,948
1992	164	354	225	260	36	4	5	2	110	476	239	213	2,087
1993	177	206	212	104	30	99	7	12	25	216	387	308	1,783
1994	242	290	645	289	0	13	0	12	4	53	210	205	1,963
1995	204	266	316	181	85	62	16	0	5	40	372	320	1,868
1996	135	231	247	60	90	63	20	20	30	450	330	323	1,999
1997	180	360	10	131	23	10	13	0	0	0	142	168	1,037
1998	98	12	65	83	761	127	608	4	41	562	74	110	2,544
1999	117	171	177	111	34	33	85	25	55	164	189	161	1,320
2000	105	0	206	92	102	50	4	0	17	82	162	7	827
Mean	174	260	213	139	129	46	84	8	29	209	245	201	1,738

Observatory: Selaparang, Lombok, NTB

(Unit: mm)

		1 4	J,										
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1991	298	778	89	89	138	0	44	0	1	51	201	138	1,827
1992	220	292	194	293	11	23	13	6	60	433	134	182	1,861
1993	137	231	209	113	87	94	6	6	14	135	269	272	1,573
1994	207	183	309	246	11	1	1	1	2	20	118	170	1,269
1995	154	249	263	136	82	72	17	0	0	268	343	8	1,592
Mean	203	347	213	175	66	38	16	3	15	181	213	154	1,624

Observatory: Sumbawa Besar, Sumbawa, NTB

(Unit: mm)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1991	183	386	77	146	0	0	13	0	0	0	171	87	1,063
1992	331	347	291	185	53	1	1	1	17	60	84	129	1,500
1993	251	234	167	70	8	23	0	0	0	45	93	219	1,110
1994	201	175	26	26	5	0	0	0	0	0	74	399	906
Mean	242	286	140	107	17	6	4	0	4	26	106	209	1,145

Observatory: Bima, Sumbawa, NTB

(Unit: mm)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1991	321	171	71	3	0	0	3	3	0	0	129	101	802
1992	234	237	84	46	11	1	6	1	10	52	199	179	1,060
1993	118	123	134	63	10	32	0	0	1	6	75	194	756
1994	355	95	257	35	0	0	0	0	0	4	59	137	942
Mean	257	157	137	37	5	8	2	1	3	16	116	153	890

Table A11-4.2 Monthly Precipitation (2/2)

Observatory: Turus 010 KUP, Timor, NTT

(Unit: mm)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1980	425	532	24	37	0	0	0	0	0	5	111	88	1,222
1981	685	533	172	0	57	15	0	0	0	1	297	296	2,055
1982	236	427	207	52	4	4	4	1	0	0	33	81	1,048
1983	213	428	245	217	2	1	0	0	0	0	121	53	1,278
1984	475	318	0	6	9	2	0	0	1	4	120	0	935
1985	104	152	88	67	0	11	0	0	0	0	96	107	622
1986	550	261	67	3	4	14	71	3	6	0	83	120	1,179
1987	795	252	62	14	34	1	9	0	0	0	62	238	1,465
1988	337	333	243	19	0	0	0	2	20	4	272	289	1,518
1989	237	176	330	82	27	42	17	0	0	6	43	117	1,075
1990	302	286	233	19	5	0	0	0	0	0	28	331	1,202
1991	467	341	30	87	1	24	1	0	11	0	231	85	1,276
1992	185	364	43	182	27	0	0	7	11	17	54	121	1,010
1993	513	299	204	28	11	24	1	0	0	10	11	251	1,351
1994	260	434	216	176	0	0	0	0	0	0	38	208	1,332
1995	608	646	88	57	18	18	0	0	1	18	69	428	1,951
Mean	399	361	141	65	12	10	6	1	3	4	104	176	1,282

Observatory: Maliru, Sumba, NTT

(Unit: mm)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1997	0	0	0	120	13	19	0	2	0	0	2	216	372
1998	216	46	118	140	16	0	6	0	20	22	134	262	980
Mean	108	23	59	130	15	10	3	1	10	11	68	239	676

Observatory: Konga, Flores, NTT

(Unit: mm)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1997	211	130	0	165	0	95	0	0	0	6	145	63	814
1998	124	141	43	54	0	27	0	72	5	14	131	419	1,030
Mean	167	136	22	109	0	61	0	36	2	10	138	241	922

Table A11-4.3 Sunday and National Holiday in Indonesia in 2002

	Da		Sunday and National Holiday
January	1	Tuesday	New Year's Day
-	6	Sunday	
	13	Sunday	
	20	Sunday	
	27	Sunday	
February	3	Sunday	
	10	Sunday	CI: 1
	12 17	Tuesday	Chinese Lunar Year2553(facultative holiday)
	23	Sunday Saturday	Idlul Adla (Davihiii ah 10, 1422H)
	24	Sunday	Id'ul Adha(Dzulhijjah 10, 1422H)
March	3	Sunday	
iviai cii	10	Sunday	
	15	Friday	Hijriyah New Year(Muharram 1, 1423H)
	17	Sunday	, , , , , , , , , , , , , , , , , , , ,
	24	Sunday	
	29	Friday	Good Friday
	31	Sunday	·
April	7	Sunday	
	13	Saturday	Hindu Day of Quiet(Caka New Year 1924)
	14	Sunday	
	21	Sunday	
	28	Sunday	
May	5	Sunday	A security Des
	9	Thursday	Ascension Day
	12 19	Sunday Sunday	
	25	Saturday	Birthday of Prophet Muhammad SAW
	26	Sunday	Buddhist Waicak Day
June	2	Sunday	Buddiist Walcak Buy
Julie	9	Sunday	
	16	Sunday	
	23	Sunday	
	30	Sunday	
July	7	Sunday	
	14	Sunday	
	21	Sunday	
	28	Sunday	
August	4	Sunday	
	11	Sunday	
	17	Saturday	Independence Day
	18	Sunday	
September	25 1	Sunday Sunday	
September	8	Sunday	
	15	Sunday	
	22	Sunday	
	29	Sunday	
Octorber	4	Friday	Ascension of Prophet Muhammad SAW
	6	Sunday	1
	13	Sunday	
	20	Sunday	
	27	Sunday	
Novenber	3	Sunday	
	10	Sunday	
	17	Sunday	
D	24	Sunday	
December	1	Sunday	Idbyl Eitr/Cygyyol 1 1422II)
	6 7	Friday	Id'ul Fitr(Syawal 1, 1423H)
	8	Saturday	Id'ul Fitr(Syawal 2, 1423H)
	15	Sunday Sunday	
	22	Sunday	
	25	Wednesday	First Day Christmas
	29	Sunday	
D			Decree of Minister of Religious Affairs No 383/2001

Remarks: This data is based on Decree of Minister of Religious Affairs No.383/2001.

Table A11-4.4 Estimate of Workable Days (1/3)

												ДI	nit: day)
Day	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Lombok Barat (Observatory : G	unung S	ari, Lom	bok, NT	B)									
Earthworks		150	10.6		22.5	242	261	260	24.4	22.0	21.0		260.6
Workable days	22.8 23	17.0 17	19.6 20	22.5 23	23.7 24	24.3 24	26.1 26	26.0 26	24.4 24	23.0 23	21.0 21	19.2 19	269.6 270
Workable days, rounded off	23	17	20	23	24	24	26	26	24	23	21	19	270
Work suspension days													
Sunday	4.0	4.0	5.0	4.0	4.0	5.0	4.0	4.0	5.0	4.0	4.0	5.0	52.0
Holiday	1.0	2.0	2.0	1.0	2.0	0.0	0.0	1.0	0.0	1.0	0.0	3.0	13.0
Rainfall	4.0	6.2	5.5	3.1	1.8	0.9	1.1	0.2	0.7	3.7	5.9	4.9	37.6
Overrap	0.7	1.2	1.1	0.6	0.5	0.1	0.2	0.2	0.1	0.7	0.8		
Total	8.2	11.0	11.4	7.5	7.3	5.7	4.9	5.0	5.6	8.0	9.0	11.8	95.4
Concreteworks													
Workable days	24.3	18.9	21.0	23.8	24.5	24.6	26.4	26.1	24.7	24.3	23.1	21.0	282.8
Workable days, rounded off	24	19	21	24	25	25	26	26	25	24	23	21	283
Work suspension days													
Sunday	4.0	4.0	5.0	4.0	4.0	5.0		4.0	5.0	4.0	4.0		
Holiday	1.0		2.0	1.0	2.0	0.0		1.0	0.0	1.0	0.0		
Rainfall	2.2	3.9	3.8	1.6	0.9	0.5	0.7	0.0	0.3	2.1	3.4		
Overrap Total	0.5 6.7	0.8 9.1	0.8 10.0	0.4 6.2	0.4 6.5	0.1 5.4	0.1 4.6	0.1 4.9	0.0 5.3	0.4 6.7	0.5 6.9		
Total	0.7	9.1	10.0	0.2	0.5	3.4	4.0	4.9	3.3	0.7	0.9	10.0	02.2
Lombok Timur (Observatory : S	Selaparan	ıg, Lomb	ok, NTI	3)									
Earthworks													
Workable days	21.943		19.229										
Workable days, rounded off	22	15	19	22	24	24	27	26	25	23	21	20	268
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0	1	0	3	13
Rainfall	4.9	8.2	5.9	4	1.3	1.1	0.3	0	0.5	3.4	5.3	1 1	39.1
Overrap	0.8429	1.4571	1.1286	0.7143	0.4714	0.1571	0.0429	0.1429	0.0714	0.6286	0.7571	1.0286	7.4429
Total	9.0571	12.743	11.771	8.2857	6.8286	5.9429	4.2571	4.8571	5.4286	7.7714	8.5429	11.171	96.657
G 1													
Concreteworks	23.914	17 214	21.371	23.086	24.6	24.486	26.829	26.143	24.829	24.086	22.086	20.857	280.6
Workable days, rounded off	23.914	17.314	21.371	23.080	24.0 25	24.460	20.829	26.143	24.829 25	24.080	23.080	20.837	280.6
workable days, founded off	27	17	21	23	23	27		20	23	24	23	21	200
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0	1	0	3	13
Rainfall	2.6	5.8	3.4	2.4	0.8	0.6	0.2	0	0.2	2.4	3.4	3	24.8
Overrap	0.5143			0.4857	0.4		0.0286						
Total	7.0857	10.686	9.6286	6.9143	6.4	5.5143	4.1714	4.8571	5.1714	6.9143	6.9143	10.143	84.4
Sumbawa Besar (Observatory :	I I Sumbaw	a Besar,	Sumbaw	ı va, NTB									
Earthworks													
Workable days	20.893	15.964	21.714	22.464	24.964	24.786	26.893	26.143	24.893	25.5	23.75	19.357	277.32
Workable days, rounded off	21	16	22	22	25	25	27	26	25	26	24	19	278
W/1													
Work suspension days		4	ے	4	4	_	4	4	_	4	4	ا	53
Sunday Holiday	4	4 2	5	4	4 2	5	4	1	5	4	4	5	52 13
Rainfall	6.125		3	3.125				0	0.125			-	28.625
Overrap	1.0179		-		0.3393								5.9464
Total	10.107					5.2143			5.1071		6.25		87.679
Concreteworks													
Workable days	23.357			23.214					25 25				286.21
Workable days, rounded off	23	18	23	23	25	25	27	26	25	26	25	21	287
	1 1		I	ı 1			ı 1			ı 1		ı 1	

Table A11-4.4 Estimate of Workable Days (2/3)

												Œ	nit: day)
Day	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Work suspension days	4	4	_	4	4	5	4	4	5	4	4	5	52
Sunday Holiday	1	2	5 2	1	2	0	0	1	0		0	3	13
Rainfall	3.25	4.5	2	2.25		0.25	0	0	0		1.75	3.25	
Overrap	0.6071	0.9286	0.5714	0.4643	0.3214	0.0357	0	0.1429			0.25	0.8929	
Total	7.6429	9.5714	8.4286	6.7857	5.9286	5.2143	4	4.8571	5	5.5	5.5	10.357	78.786
Observatory : Bima,Sumbawa,	NTB												
Earthworks Washahla days	20.257	10.714	21.5	24 202	25 206	24.893	27	26 142	25	25.929	22.526	19.679	202.42
Workable days Workable days, rounded off	20.357 20	19.714 20	21.5 22	24.393 24	25.286 25	24.893 25	27	26.143 26	25 25	25.929 26	23.536 24	19.679	283.43 284
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0		0	3	13
Rainfall	6.75	0.7142	3.25	0.875		0.125		0 1420	0		2.875	4.375	
Overrap Total	1.1071 10.643	0.7143 8.2857	0.75 9.5	0.2679 5.6071		0.0179 5.1071	4	0.1429 4.8571				1.0536 11.321	4.9286 81.571
Concreteworks													
Workable days	22.714	21	22.143	24.5	25.286	25	27	26.143	25	26.143	24.714	21.286	290.93
Workable days, rounded off	23	21	22	25	25	25	27	26	25	26	25	21	291
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday Rainfall	1 4	2 1.5	2 2.5	0.75	2 0	0	0	1	0	1 0	0 1.5	3 2.5	13 12.75
Overrap	0.7143	0.5	0.6429	0.73		0	0	0.1429		"			
Total	8.2857	7	8.8571	5.5		5	4	4.8571	5		5.2857		
Timor Barat (Observatory : Tur	us 010 K	UP, Tim	or, NTT)									
Earthworks Workship days	17 966	14.464	21.125	23.938	25.045	24 912	26.839	26.143	24.973	26.089	23.616	19.679	274.59
Workable days, rounded off	17.866 18	14.464	21.123	23.938 24	25.045 25	24.813 25	20.839	26.143	24.973 25	26.089	23.616 24	19.679 20	274.39 275
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0	1	0	3	13
Rainfall	9.6563	9.125							0.0313				
Overrap	1.5223	1.5893				0.0313							6.4018 90.411
Total	13.134	13.536	9.875	6.0625	3.9334	5.1875	4.1607	4.8571	5.0268	4.9107	6.3839	11.321	90.411
Concreteworks	20.571	17.25	22 204	24.5	25 125	24.046	26.046	26 142	25	26 142	24.661	20.004	204.20
Workable days Workable days, rounded off	20.571 21	17.25 17	22.304 22	24.5 25	25.125 25	24.946 25	26.946 27	26.143 26		26.143 26	24.661 25	20.804 21	284.39 285
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0		0	3	13
Rainfall	6.5		2.3125		0.1875				0			3.0625	
Overrap	1.0714	1.125											
Total	10.429	10.75	8.6964	5.5	5.875	5.0536	4.0536	4.8571	5	4.8571	5.3393	10.196	80.607
Sumbawa Barat (Observatory :	 <u>Mal</u> iru, S	Sumba, N	<u> </u>										
Earthworks													
Workable days	23.571	22.286		21.929					24.786				
Workable days, rounded off	24	22	23	22	25	25	27	26	25	26	24	17	286
Work suspension days Sunday	4	4	ے	4	4	ام	4	4	5	4	4	5	50
Holiday	1	4 2	5 2	1		5 0					0		52 13

Table A11-4.4 Estimate of Workable Days (3/3)

												(U	nit: day)
Day	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Rainfall	3	0	1.75	3.75		0.25		0	0.25	0.25	2	7.25	19
Overrap	0.5714					0.0357		0.1429					
Total	7.4286	5.7143	8.2143	8.0714	6.1429	5.2143	4	4.8571	5.2143	5.0714	5.7143	13.786	79.429
Concreteworks													
Workable days	24.429	22.286	23.857	23	25.286	25	27	26.143	25	26.143	25.143	19.143	292.43
Workable days, rounded off	24	22	24	23	25	25	27	26	25	26	25	19	291
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	i	2	2	1	2	0	0	1	0	1	0	3	13
Rainfall	2	0	0.5	2.5	0	0	0	0	0	0	1	5	11
Overrap	0.4286	0.2857	0.3571	0.5	0.2857	0	0	0.1429	0	0.1429	0.1429	1.1429	3.4286
Total	6.5714		0.000		5.7143	5	4	4.8571	5	4.8571	4.8571		
10	0.5711	0.71.0	,2		0.,1.0					1.0071	1.0071	11.007	72.071
Flores Timur (Observatory : Ko	l nga, Floi	es, NTT	.)										
Earthworks													
Workable days	22.5	18.429	23.857	23	25.286	23.714	27	25.071	25	25.929	23.214	18.071	281.07
Workable days, rounded off	23	18	24	23	25	24	27	25	25	26	23	18	281
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0	1	0	3	13
Rainfall	4.25	4.5	0.5	2.5	0	1.5	0	1.25	0	0.25	3.25	6.25	24.25
Overrap	0.75	0.9286	0.3571	0.5	0.2857	0.2143	0	0.3214	0	0.1786	0.4643	1.3214	5.3214
Total	8.5	9.5714	7.1429	7	5.7143	6.2857	4	5.9286	5	5.0714	6.7857	12.929	83.929
Concreteworks													
Workable days	24	19.286	23.857	24.286	25.286	24.143	27	25.286	25	26.143	24.714	20	289
Workable days, rounded off	24	19	24	24	25	24	27	25	25	26	25	20	288
Work suspension days													
Sunday	4	4	5	4	4	5	4	4	5	4	4	5	52
Holiday	1	2	2	1	2	0	0	1	0	1	0	3	13
Rainfall	2.5	3.5	0.5	1	0	1	0	1	0	0	1.5	4	15
Overrap	0.5	0.7857	0.3571	0.2857	0.2857	0.1429	0	0.2857	0	0.1429	0.2143	1	4
Total	7	8.7143	7.1429	5.7143	5.7143	5.8571	4	5.7143	5	4.8571	5.2857	11	76

Table A11-4.5 Production Rate of Major Construction Equipment (1/2)

Backhoe excavation, (including loading)

 $Q = 3,600 \times q \times k \times f \times E / Cm$

Where, Q: Hourly production (m3/hr)

q: Moldboard capacity, struck (m3)

k: Coefficient of bucketE: Job-management factorf: Soil conversion factor

Cm: Cycle time (sec)

- Backhoe, 0.35m3 E020212

Material	q	k	f	E	Cm	Q
(Bank measurement)						
Soil	0.35	0.80	0.833	0.65	289	$\bigcirc 19$
Rock	0.35	0.60	0.625	0.65	32	10
(Embankment measurem	ent)					
Soil	0.35	0.80	0.750	0.65	28	18
Rock	0.35	0.60	0.781	0.65	32	12
(Weight measurement, Q	(t/hr))					
Aggregate, river sand	0.35	0.75	1.500	0.65	28	33
Aggregate, gravel	0.35	0.75	1.580	0.65	28	35

- Backhoe, 0.6m3 E020215

Material	q	k	f	Е	Cm	Q
(Bank measurement)						
Soil	0.60	0.80	0.833	0.65	28	\bigcirc 33
Rock	0.60	0.60	0.625	0.65	32	16
(Embankment measurem	ent)					
Soil	0.60	0.80	0.750	0.65	28	30
Rock	0.60	0.60	0.781	0.65	32	21
(Weight measurement, Q	(t/hr))					
Aggregate, river sand	0.60	0.75	1.500	0.65	28	56
Aggregate, gravel	0.60	0.75	1.580	0.65	28	59

Backhoe placing and spreading

 $Q = 3,600 \times q \times k \times f \times E / Cm$

Where, Q: Hourly production (m3/hr)

q: Moldboard capacity, struck (m3)

k: Coefficient of bucketE: Job-management factorf: Soil conversion factorCm: Cycle time (sec)

Table A11-4.5 Production Rate of Major Construction Equipment (2/2)

- Backhoe, 0.35m3 E02	20212
-----------------------	-------

Material	q	k	f	Е	Cm	Q
(Bank measurement)						
Soil	0.35	0.80	0.833	0.80	24	28
Rock	0.35	0.60	0.625	0.80	24	16
(Embankment measurem	ent)					
Soil	0.35	0.80	0.750	0.80	249	$\bigcirc 25$
Rock	0.35	0.60	0.781	0.80	24	20
(Weight measurement, Q	(t/hr))					
Aggregate, river sand	0.35	0.75	1.500	0.80	24	47
Aggregate, gravel	0.35	0.75	1.580	0.80	24	50

- Backhoe, 0.6m3 E020215

Material	q	k	f	Е	Cm	Q
(Bank measurement)						
Soil	0.60	0.80	0.833	0.80	24	48
Rock	0.60	0.60	0.625	0.80	24	27
(Embankment measurem	ent)					
Soil	0.60	0.80	0.750	0.80	249	\bigcirc 43
Rock	0.60	0.60	0.781	0.80	24	34
(Weight measurement, Q	(t/hr))					
Aggregate, river sand	0.60	0.75	1.500	0.80	24	81
Aggregate, gravel	0.60	0.75	1.580	0.80	24	85

Vibratory plate compactor, 70-80kg compaction E080712

 $Q = V \times W \times D \times f \times E / N$

Where, Q: Hourly production (m3/hr)

V: Working speed (m/hr)

W: Effective spreading width (m)

D: Finishing depth (m)f: Soil conversion factorE: Job-management factorN: Passing time (time)

Materials	D	N	V	W	D	f	Е	N	Q
(Embankment m	easuremer	nt)							m3/hr m3/day
Contact clay	0.1	6	600	0.40	0.10	1.000	0.70	6	2.8 19
Others	0.2	6	600	0.40	0.20	1.000	0.70	6	5.6 38

Table A11-5.1 Progress Rate of Construction Works

Work:		Pipe l	laying,	GS pipe, di	a.= 25mm	(Excavation	on by Man	pow	er)															
Work s	section:	30	m																					
					Produc-	Resource	Required								D	ays	*3							
No.	Work item	Unit	Q'ty	Resouce*1	tivity*2	input	days	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
									work	-		0m se	_	_										П
										▲ `	vork	cycle	for 3	Om s	ection	· •								
1 D	emoval of obstruct	L.S	1	CW	1	1	1.0	1		1		1		1		1		1		1		1		1
	cavation	m3		CW	1.2	10	2.0	_	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	pe works	III3	10	Cw	1.2	10	2.0	10	10	10	, 10	10	10	10	10	10	10	10	10	10	10	10	10	10
-	placement	m	30	PL	0.026	1	0.8		1		\bigcirc		1		1		1		1		1		1	
		m	30	CW	0.026	2	0.4		2		2		2		2		2		2		2		2	
-	Joint	Nr.	6	PL	0.14	1	0.9	1		1				1		1		1		1		1		1
		Nr.	6	CW	0.16	2	0.5	2		2		2		2		2		2		2		2		2
4. Ba	ackfilling	m3	16	CW	0.52	5	1.7	5	5	5	5	5	5	5	5 C		5	5	5	5	5	5	5	5
(Resour	rce total)		 	 	 	 	 	l 	 		l 	 			4 □	VI	 				 		ı İ	l
Formula	ation of a fleet		:	PL		1	¬ (100%)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
			:	cw		18	(97%)	18	17	18	17	18	17	18	17	18	17	18	17	18	17	18	17	18
				Total		19		19	18	19	18	19	18	19	18	19	18	19	18	19	18	19	18	19
							/																	
(Progre	ss rate)*4					/-	/ 																	
	pe laying, GS pipe,	dia.= 2	25mm (Excavation 1	by Manpo	wer) 🖊	CM (cycle	time	e)															
		m	30		\bigcirc 15	m/day	2.0																	

Note: *1: PL: plumber; CW: common worker

^{*4:} Progress rate of work by a fleet, 15m/day, is given dividing the work section (30m) by cycle time (2days).

Work:	Pipe l	laying,	GS pipe, di	a.= 25mm	(Excavation	on by Equip	ome	nt)															
Work section:	237	m																					
				Produc-	Resource	Required								D	ays	3							
No. Work item	Unit	Q'ty	Resouce*1	tivity*2	input	days	1	2	3	4	5	6	7	8	9		11	12	13	14	15	16	17
					Î	W	ork c	ycle	for 4	2m s	ection	1											
							W	ork c	ycle	for 4	2m s	ection	ı										ĺ
								`				1											ĺ
Removal of obstruct	L.S	1	CW	8	8	1.0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2. Excavation							1	_															١.
 excavation 	m3	128	eВН	0.0078	1	1.0	1	7	1	1	1	1	1	1	1	- 1	1	1	1	1	1	1	1
- operator			OP				1	<u> </u>	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Pipe works								1															
 placement 	m	237		0.026		0.9		7	\mathcal{I}	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	m		CW	0.026		0.9		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
- Joint	Nr.		PL	0.14		1.0	8	8	8	\bigcirc	8	8	8	8	8	8	8	8	8	8	8	8	8
	Nr.	52	CW	0.16	9	1.0	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
 Backfilling 										1													
 placing and spreadi 	m3	128	eBH	0.00593	1	0.8	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1
 compaction 	m3	128	eVC	0.02632	4	0.9	4	4	4	4	\bigcirc	4	4	4	4	4	4	4	4	4	4	4	4
- operator			OP				1	1	1	1	$\left(\right)$	1	1	1	1	1	1	1	1	1	1	1	1
- assistant			CW				4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
										Ì		СМ											ĺ
(Resource total)					· 						٠	→											
Formulation of a fleet		:	OP		2	- (100%)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		:	PL		15	(100%)	15	15	- 1		15	15	15	15	15	15	15	15	15	15	15	15	15
		l:	cw		28	(100%)		28		28	28	28	28	28	28	28	28	28	28	28	28	28	28
			eВН		2	(100%)		2	2	2	2	2	2	2	2	- 1	2	2	2	2	2	2	2
	$\succ \sim$		eVC		4	(100%)		4	4	4	4	4	4	4	4	- 1	4	4	4	4	4	4	4
			Total (labor		45)````	45	45	45	- 1	45	45	45	45				45	45	45	45	45	
			Total (equip	1	6	/	6	6	6	6	6	6	6	6	6	- 1	6	6	6	6	6	6	
			(-4)		Ž					1						1			1				
(Progress rate)*4		l 	I 	I 						ا		I	ا 			ا			ا				1
Pipe laying, GS pipe,	I dia = 3	25mm /	Excavation 1	v Fauinm	ent)	CM (cycle	time	, 1			Ī			1			1						
Tipe taying, G5 pipe,	m	237			m/day	1.0		'															
	""	237		257	111/ (111.)	1.0																	

Note: *1: OP: operator; PL: plumber; CW: common worker; eBH: backhoe, 0.35m3; eVC: vibratory plate compactor, 70-80kg

^{*2: &}quot;Productivity" indicates equipment-day or man-day required to execute the works of 1m3, 1m or 1Nr.

^{*3: &}quot;Days" are not calendar days but workable days. Numbers under day columns indicate quantities of resources to be put into.

^{*2: &}quot;Productivity" indicates equipment-day or man-day required to execute the works of 1m3, 1m or 1Nr.

^{*3: &}quot;Days" are not calendar days but workable days. Numbers under day columns indicate quantities of resources to be put into.

^{*4:} Progress rate of work by a fleet, 237m/day, is given dividing the work section (237m) by cycle time (1day).

Table A11-7.1 (Plan 1) Proposed Assignment Schedule of Consultant (1/4)

Stage/title 1	M/M	м	1 1	20 A		0 1	N D	1	F	м	АМ	20		A S	0	N	D .	J F	м	A		005 J	A :	0	N	D	1 1	РМ	A		200d		s	o N	D	1
ementation schedule		Phase	_	Ľ	Ì	1	1	Ĺ	Ė		1	Ĺ		Ť		Phase		Ĺ		Ť	T	Ĺ	Ť		Î		Ť	1	Ĥ	Ť	Ť	Ħ	П	+	Ť	ŕ
Design Mannuals for extension works and training			200	-														•	П										П							
Social preparation		П	Т	П		B)		L									Т	Т	10					_					П							
 Extension works of community development and PDAM ca 							Ţ	Ţ		_			Ξ.	┸	L						Ţ	Ţ	Į	Τ.			L	L	Ш							
5. Monitoring for 4. 6. Construction		П					100	Date	250	ulbal.	No.		20	7	ų.	1						Diff	700		-		7	Ψ.	4							
		Н	+	Н		+	100	-	200		200	BEGON!	100	+	+	Н	+	+	Н	Н	- 100		1000	No.	-		+	+	Н	Н	+	+	+	+	+	╀
se 1 (NTB)		П														П	1		П														П			
Design] 1. Design		П																																		
1010 Team leader	4	1	1	,												П	1		П																	
1110 Hydro-geologist	2	1	1	П												Н			П											П						
1120 Geodetic engineer	3															П			П																	
1210 Design engineer-1 1220 Design engineer-2	3															Н			П																	
1222 Design engineers (L)	6			2												Н	-		П											П						
1224 CAD operators (L)	6	2	2	2												Н			П																	
1412 Secretary/KBO	4	1	1	1												Н	1		П																	
2. Preparation of procurement documents 1310 Cost estimator	3	П	1																																	
1320 Specification specialist	3			1												П			П																	
Total for [Design]		П														Н			П	П										Н						
1010 Team leader	4			1	-	-		1 -	-	-	-		-		1		1	-			-		-			-	-				-	11		1		1 -
1110 Hydro-geologist 1120 Geodetic engineer	3		1					L				1:			1		1										1								1:	L
1210 Design engineer-1	3		- 1			-				-			-			.	-				-		-								-					
1220 Design engineer-2	3		1		-	-	-		-	-	-		-	-		-	-	-	-	-	-		-	-		-	-	-		-	-		-	-		
1222 Design engineers (L) 1224 CAD operators (L)	6			2 -				1.	-						1		1				1		1			1					1	11		1		1
1310 Cost estimator	3			1 1																																
1320 Specification specialist	3		1	1	-	-	-		-	-	-		-	-	- -	-	-	-	-	-	-		-	-		-	-	-		-	-		-			
1412 Secretary/KBO	4 37			1	-	1	-	-	-	-	1		-	1	1	1-1	1	1			-		-	-	-	-	-	-			-	- 1		1		1
Total for [Design] in Phase 1 (NTB) Supervision]	31	10	12 1	1 4	0	0	0 1	"	0	0	0	0 0	0	0	0	0	ů	9	0	0	0	0 0	0	9	0	°	0	9	0 0	0	0	0 0	0	0	, ,	1°
. Supervision		Н		П												Н			П																	
1010 Team leader	8			П				1 1			1	1 1	1			Н	1		П																	
2110 Design/supervision engineer-1	8							1 1	1	1	1																									
2120 Design/supervision engineer-2 2122 Pipe engineer-1	3 8			П			1	١,	,			1 1	1			Н			П											П						
2124 Pipe engineer-2	3							Ϊ.	Ĺ	i		1 1	1			П			П																	
2126 Pipe engineer-3	3											1 1	1																							
2128 Pipe engineer-4	0															П			П																	
2212 Supervisor-1 2214 Supervisor-2	6			П					1	1	1	1 1				Н			П																	
2216 Supervisor-3	3			П							- 1	1 1				Н	1		П																	
2218 Supervisor-4	0															Н			П																	
2312 Surveyor 2514 Secretary/KBO	8			П				1 1			1					П			П																	
2516 Secretary	3			П				Ϊ.	ľ	1		1 1				Н			П											П						
2516 Secretary	3	Ш										1 1				П			П																	
2516 Secretary	0	П		П												Н			П																	
2. Preparation of O&M manuals 2410 O&M expert-1	3	Н		П								1 1	1			Н			П																	
2410 O&M expert-1 2412 O&M expert-2	3											1 1				Н			П																	
Total for [Supervision]		П														П			П																	
1010 Team leader 2110 Design/supervision engineer-1	8		-	1	-	1	-			1	1	1 1	1	1	1	1-1	1	+			-		-	-		-	1	-		-	-					1
2110 Design/supervision engineer-1 2120 Design/supervision engineer-2	3							1 1	1	1	1	1 1	1	1	1		1						1				1								1:	L
2122 Pipe engineer-1	8							1 1	1	1	1	1 1	1																							١.
2124 Pipe engineer-2	3		-		-	-	-		-	-	-	1 1	1	-		-	-	-		-	-		-	-		-	-	-		-	-		-	-		
2126 Pipe engineer-3	3 0		1		-	1	1	1.	-	-	1	1 1	1	1	1		1	1			1	1	1	1		-	1	1	11		-	11		1	1 :	1
2128 Pipe engineer-4 2212 Supervisor-1	6							П	1	1	1	1 1	1		1		1	1					1												П	L
2214 Supervisor-2	3	-	-		-	-	-		-	-	-	1 1	1	-		-	-	-		-	-		-	-		-	-	-		-	-		-	-		
2216 Supervisor-3	3		-		-	-	-		-	-	-	1 1	1	-	1		-	-			-		-	-		-	-	-	1		-			-		1 -
2218 Supervisor-4 2312 Surveyor	0 8													1	1		1	1									1						d	1	1	1
2410 O&M expert-1	3		-					ŢĹ			-	1 1	1	-	. [П					-		-				-					11			. [.	. [.
2412 O&M expert-2	3		-		-	-	-	-	-	-	-	1 1	1	-		H	+	-		Н	-		-	-	-	-	-	-		-	-		H	-		1 -
2514 Secretary/KBO 2516 Secretary	8 6							1 1	1	1	1	1 1	1		1	П	1	1									1							1	1	1
Total for [Supervision] in Phase 1 (NTE	73		0	0 0	0	0	0	5 5	6	6	6 1	5 15	15	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 1	0 0	0	0	0 0	0	0 (0 0	0
Soft component services]		П																																		
1. Overall management		Н		П												Н	-		П											П						
1010 Team leader	1 8														1	П			П																	
3010 Community specialist 3712 Administrator	18		1	1		1	1	1 1	1	1	,	1	1			Н			П																	
2. Preparation of manuals, business planning, budgeting an						1		Ϊ.	ľ	Ì	1	Ϊ.		1	Ϊ.	П			П																	
3010 Community specialist	3		1													Н			П											П						
3110 Training specialist-1 3112 Training specialist-2	1		1													П			П																	
3212 Community development specialist	1		1														ł		П										П							
3222 Community health education specialist	1	П	1													П	1		П																	
3410 Management specialist-1	3		1	П		1										Н			П											П						
3412 Management specialist-2	6			1		1										Н			П																	
3422 Finance/tariff specialist-1	6		1	1	1	1										П			П	П									П	П			П			
3432 Water supply planning specialist	,			П												П	-		П	П										П			П			
3432 Water supply planning specialist 3. Training		П														П				П													П			
3. Training 1) Employment of field officers	1															П	-		П	П													П			
Training Employment of field officers 3112 Training specialist-2			- 1	1												П			П	П										П			П			
3. Training 1) Employment of field officers 3112 Training specialist-2 3212 Community development specialist	1		- 1	. 1													- 1																			
3. Training 1) Employment of field officers 3112 Training specialist-2 3212 Community development specialist 3222 Community health education specialist	1 1		- 1													ш	-																1			
3. Training 1) Employment of field officers 3112 Training specialist-2 3212 Community development specialist			- 1																																	
3. Training 1) Employment of field officers 3112 Training specialist-2 3212 Community development specialist 3222 Community health education specialist 2) Training /10 Trainer 3112 Training specialist-2	1		- 1	1																																
3. Training 1) Employment of field officers 3112 Training specialist-2 3212 Community development specialist 3222 Community health education specialist 2) Training /10 Trainer	1		- 1	1																																

Table A11-7.1 (Plan 1) Proposed Assignment Schedule of Consultant (2/4)

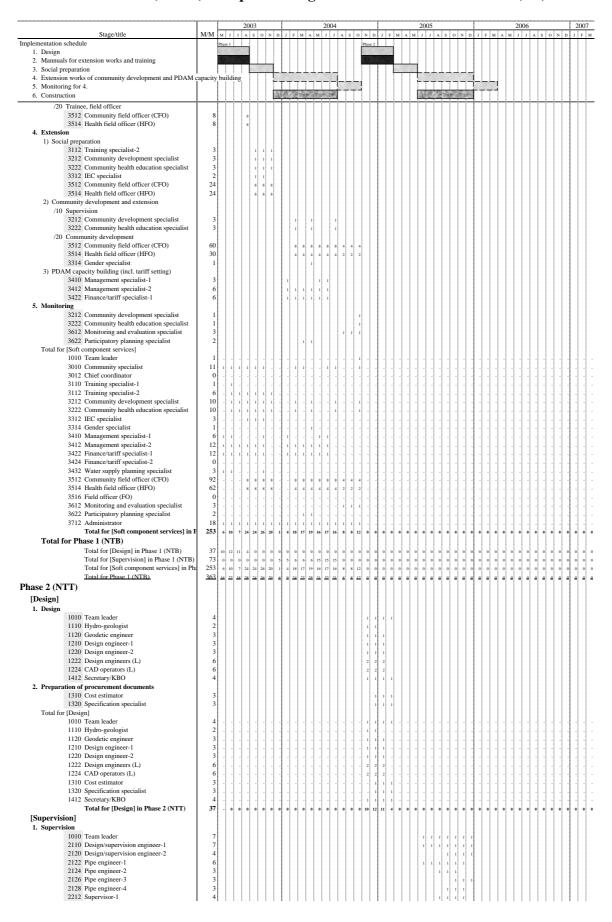


Table A11-7.1 (Plan 1) Proposed Assignment Schedule of Consultant (3/4)

			3	A	1	J	vi	M		М	Ī	J	D	N	0	3	A S	Î	Í			М	A	1	м		1		D ise 2	Phar		3	s		,	,		N		М			Ľ						s		A			+	J e 1	ase	_	_	-	-	_	-	_	_	-	-	-	+
													١												L																		L							L										į	į	ı	į	į		į		
																- 1								- 1		50						- 1					l		L			L	L	١	i.		_	_	_	_	_1	Ţ		۳		۳			r	f	ň	ı	ň	ř	ř	F	F	Ħ
														Ш		Т	Ι.			L	1			à	i			T		_	1			J											ш_			Œ				1									- 1	- 1	- 1	- 1	-	н	1	1
										L	L	Ł		Ţ		q	Ţ.		Į	Į	Ţ	Γ			Γ	Ī		ı			_	_	L	L		_,	4	,	,	_	4	Ŧ		-	Į					Γ		g,	ng	dir	ild	uil	bu	bı	įb	y l	y l	ty.	y l	y l	y l	y l	įŀ	b
									4	7	Τ.	-	۳		200	200	100	-	and the	en/	100							١			4	Ŧ	Ŧ	-	ani	100		100		122	50	100	38	NII.	Ь							ı		ı					l	ı	1	1	1	1	١	ı	l	l
	+	+	╁	Н	\dashv	+	+	╁	╁	╁	╁	╄	F	П	7	于	Ŧ	E	₹	Ŧ	F	H	-	÷	H	-	+	÷	╁	-	-	+	t	-	100		Ŧ	Ŧ			-	Ŧ	F	7	F		+	H	+	ł		t		t		t	-	H	ł	1	3	3	3	3	3	1	ł	ł
													1	1	1													١																1								ı		ı								3						
													'	1 1	1	- 1												l																ı								ı		ı						3	3	3	3	3	3	3		l
												1	11	1 1		- 1	- 1	1	1	1								١				1					ı					ı		١	ı					l		ı		ı		ı						7						
													"		1	- 1		1	1	1								١				١					ı	l				ı		١	ı		١			l		ı		ı		ı						3						
												1	1	1	1													ı									ı	l				ı		ı	ı		١			ı		ı		ı		ı			1	3	3	3	3	3	3	3	1	l
													'	1	1	1												l									ı					l		ı						l		ı		ı					1	1	3	3	3	3	3	1		
													l.	П														l														l		ı						l		ı		ı							3	3	3	3	,			l
												1		1	1													١				١					ı	l				ı		١	ı		١			ı		ı		ı		ı						3						
												1		П														ı									ı	ı				ı		١	ı		١			ı		ı		ı		ı			ı	ı	1	١	1	1	ı	ı	l	l
11	1	1				1	1	1	1	1.	1	1	1	1	1	1		1	1	1	1		-	1		-	1	1	1		1	1	1	ŀ		1	1	1				1	ľ	1	1	-	1	ľ		1	-	1		1		1	-					7						
														1	1	1			-				-					1		ĺ.										ĺ.																	-					4						
- 1	-	-	-	-	-	-	-						1	1	1	1	1	1	1	1	-		-	-		-	-	-			-	-	-			-	-	-			-	-		-	-	-	-		-	-		-		-		-	-					6						
11	-	-	-	-	-	-	-	-	-		1	1			1	1	1	1	-	-	-		-	-		-	-	1	-		-	1	-			-	-	1			-	1		1	-	-	-	1	-	1		-		-		-	-					3						
								1	l.	1	1		'!			1								1				1				1		ľ			1			ľ		1					1							1								3						
- 1	-	-			-	-	-						.	1	1	1	1	1	-	-	-		-	-		-	-	-			-	-	-	١.		-	-	-			-	-	١.	-	-	-	-		-	-		-		-		-	-		1	1	4	4	4	4	1	1	ı	l
11	-	-	1	-	-	-	1	-	1		1	1	H		1	1	1	1	-	-	-	1	-	1	1	-	-	1	1		-	-	-			-	-	-			-	1		-	-	-	-	1	-	-	-	1		-		-	-					3						
			1				1	1	1		1	1	1		1			1			1			1				1		1				1			1			1		1					1		1	1		1					-					3						
11	-	-			-	-	-					1	1	1	1	1	1	1	1	1	-	ľ	-	-			-	-		Ĺ		-				-	-	-		Ĺ		-		-	-	-	-		-	-	-	-		-		-	-		1	7	7	7	7	7	7	7	1	l
	-	-		-	-	-	-	-			- -	1.	1	1	1	-	-		-	-	-		-	-		-	-	-			-	-	-			-	-	-			-	-		-	-	-	-		-	-	-	-		-		-	-					3						
11	-					1	1	1	1	1.	1	1	1	1	1			1			1	ľ	-	1	1	-	1	1	1		1	1	1	ŀ		1	1	1			1	1	ŀ	1	1	-	1	ľ	1	1	-	1		1		1	-					7						
			ľ				1							2	3	2	1	1	1	1		Ι		1				1		ĺ.				l i]			Ĺ		1]	ľ				1		1			-					9						
0 0	0 1	0) (0	0	0	0) (0	0	0 0	0	10	15	18	13	9 1	9	5	5	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0)		0	0	0	0	0	0	0	0	(0	•	0	0	0	0	0	-	-		1	5	5	5	5	5	5	5		
														П														l																ı								ı		ı					l	ı	1	ı	1	1	١	ı	l	l
										١.				П														l														ı		ı						l		ı		ı					l	ı	.	1	.	.	J	ı	l	l
										1			1	П			1	1					1	1	١,	1		١				١					ı	l				ı		١	ı		١			ı		ı		ı		ı						6						
										1 1	1 1	1	1	1	1	1	1	1	1	1	1	,	1	1	,	1	1	1	1	1							ı	l				ı		ı	ı		١			ı		l		ı					1	7	7	7	7	7	7	7	1	l
																												l									ı					ı		ı						ı		y I	icy	olio	pol	p	ff	iff 	rifi	rif	ri	ri	ri	ri	rif	rif	rif	ifi
														П														l		1														ı								ı		ı					l		il	1	il	il	1		l	l
														П														l		1							1					ı		1						l		ı		ı								1						l
														П									1					1		1							ı	l				ı		ı	ı		١			l		ı		ı		ı						3						
													'	П									1			1	1			1							ı	l				ı		١			١			ı		ı		ı								6						
													'	П									1	1	1	1	1			1							ı					l		ı						l		ı		ı								3						
																												l														l		ı						l		ı							l	l	1	ı	1	1	ı	l	l	l
												1		П														١				1					ı					ı		١	ı					l		ı		ı		ı			ı	ı	.	ı	.	.	J	ı	l	l
													'	П													1	ı				1					ı	l				ı		ı	ı		١			ı		ı		ı		ı			l	1	٠,	1	٠,	٠,	1	1	l	l
													'	П													1	١																1								ı		ı					l	ı	1	1	1	1	ı	ı	l	l
														П														l														l		ı						l		ı		ı					l	l	1	1	1	1	ı	l	l	l
														П														l									1					ı		1						l		ı		ı					l	ı	ıl	ıl	ıl	ıl	ı	ı	l	l
												1		П												1		ı									ı					ı		١	ı		١			ı		ı		ı		ı			ı		1	1	1	1	i		l	l
																										1		l									ı					ı		ı						l		ı		ı					l	- 1	- 1	1	- 1	- 1	- 1	- 1	l	l
																										1		l														l		ı						l		ı							l	1	1	1	1	1	1	1	l	l
												1		П												5		١				1					ı					ı		١	ı					l		ı		ı		ı			ı	5	5	5	5	5	5	5	ı	l
														П												5		ı									ı					ı		ı	ı		١			l		ı		ı		ı						5						
													'	П														١				١					ı	l				ı		١	ı		١			l		ı		ı		ı			ı	ı	1	١	1	1	١	ı	l	l
				П								1	'	П							1	1	1	1	١.												1						1				1												1	3	3	3	3	3	3	3	1	
													1	П							1		1	- 1													1										1												1	3	3	3	3	3	3	3	1	l
																					1		1					١																								ı										3						
													'	П		1					5		5	- 1	1												1										1			1												2						
													'	П							5		5					l				-					1										-															5						
							1					1	'	П	. 1									1				ı				-										1										1		1					ı		1		1	1			ı	l
													L	П										1																		1										1		1					1	,	,	2	,	,	,	,	1	l
													'	П		1																					1										1															2						
														П														l									1					ı		1						l		ı		ı					l	l	1	1	1	1	1	l	l	l
										3 3	3 3	3	5	5	5	5	5	5										ı									ı	ı				ı		١	ı		١			ı		ı		ı		ı						4						
										2 2	2 2	2	3	3	3	3	3	3										l									ı					l		ı						l		ı		ı														
													'	П														١																1								ı		ı					l		1	1	1	1	1		l	l
												1	1	1					1									l														ı		ı						l		ı		ı								3						
												1	1	1	1	1	1	1	1									١				١					ı	l				ı		١	ı		١			ı		ı		ı		ı												
													1	1	1	1	1	1	1									l									ı					ı		ı						l		ı		ı					1	1		١				1	1	l
										1																		l														l		ı						l		ı							l	ı	1	1	1	1	ı	ı	l	l
										1				П														ı									ı					ı		ı	ı		١			l		ı		ı		ı			ı	ı	1	1	1	1	ı	ı	ı	l
										1	1 1	1	'	П	. 1									1																		1												1														
													'	П	1	1																												-			1												1		4	4	4	4	1		1	
1.1		-				-				- 1			Į.	П		-	-	١.		-	-		-				-	-				-				-	-	-			-	-		-	-	-	-	١.	-	-	-			-		-	-					1						
	-	-	-	-	-	-	-			- 1	- -	1.	1	-	-	-	1	1	-	-	-		1	1	1	1	-	-		1	-	-	-			-	-	-		-	-	-		-	-	-	-		-	-	-	-		-		-	-					7						
	-	-	1		-	-	1	1			1	1 -	Н		-	-	-		-	-	-		-	1		-	-	1	1	-	-	-	-			-	-	-		-	-	1		-	-	-	-	ŀ	-	1	-	1		-		-	-											
	1		1				1					1						ľ		1	1		,			1	1	1		ľ										ľ		1				-]	ľ			-	1		1														
		-					-		1.	- 1						1		Į.			1		1	1		1	1			1		1					-	-		Į.		-				-	1	l i		-	-			-			-		1		9	9	9	9	9		1	ı
		-	-		-	-	-		-	- 1	- -	1.	1		-	1	-		-	-	1		1			1	1			1	-	-	-			-	-	-			-	-	١.	-	-	-	-		-	-	-	-		-		-	-		1		9	9	9	9	9		1	l
	-		-	-	-	-	-					1 -	1 -	-	-	-	-		-	-	-	-	1	1		1	-	-	١.		-	-	-			-	-	-			-	1		-	-	-	-	1				- 6		-1	-	.1			1	ı í	2 İ	ı٠	2 İ	2 İ	2 I	ıί	-1	1
		-												4 1						- 1				- 1	1		- 1	1	1		- 1	- 1				- 1	- 1					-1	1 -					1	-	1	-	1		1				ı	1			1					1	l
										3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	5 3 1 1 1 1 1	1	5 3 1	5 3 3	1 1 1 1		1			1		1	- 1	-		- 1										-																				3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 1 1 3 6 1 1 7 0 5 9	4 1 1 3 6 6 1 1 7 0 0 5 9	4 1 1 3 6 6 1 1 7 7 9	4 1 1 3 6 6 1 1 7 7 9	1 1 3 5 1 1 7 7 9	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

Table A11-7.1 (Plan 1) Proposed Assignment Schedule of Consultant (4/4)

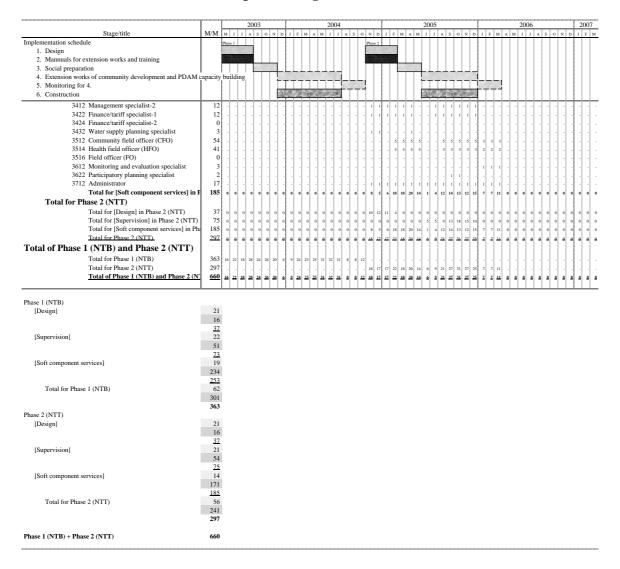


Table A11-7.2 (Plan 2) Proposed Assignment Schedule of Consultant (1/4)

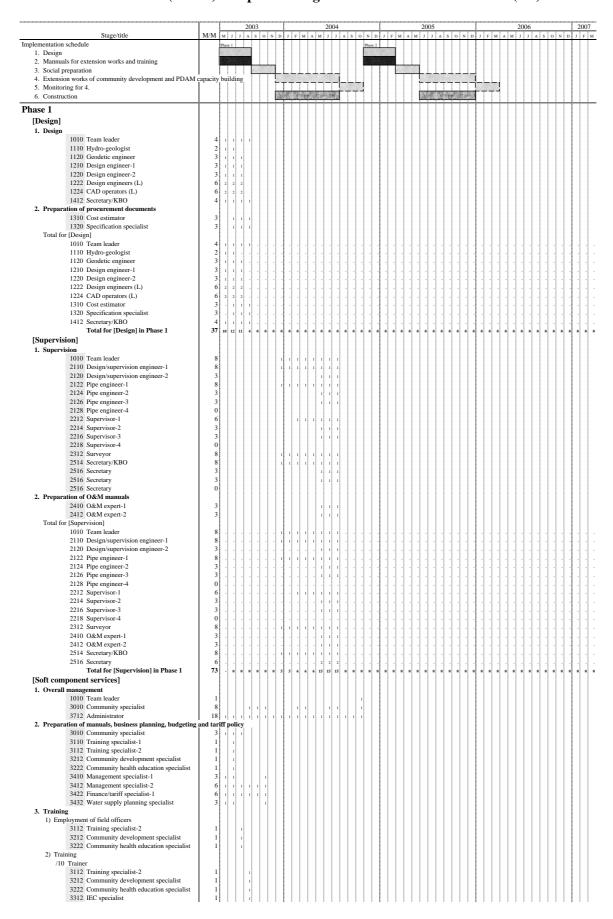


Table A11-7.2 (Plan 2) Proposed Assignment Schedule of Consultant (2/4)

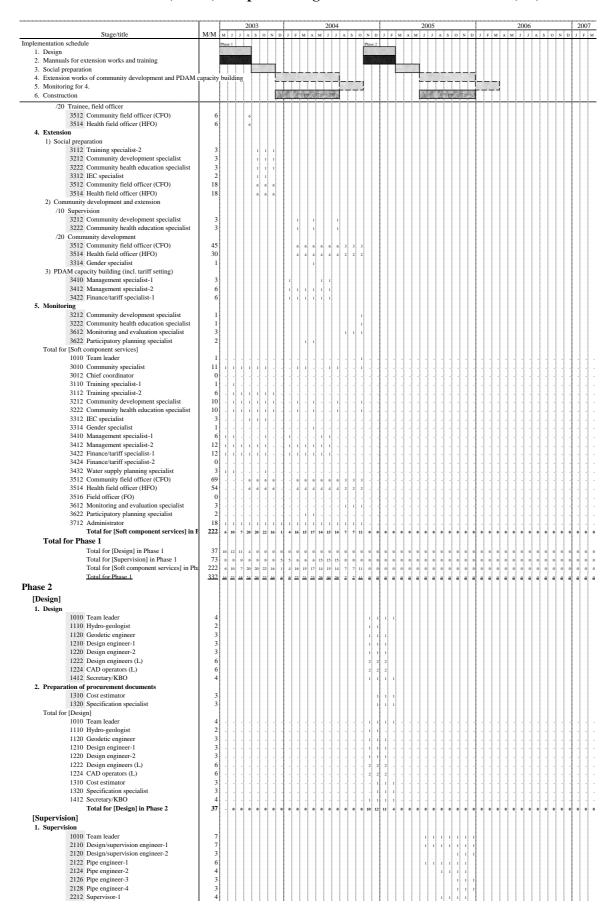


Table A11-7.2 (Plan 2) Proposed Assignment Schedule of Consultant (3/4)

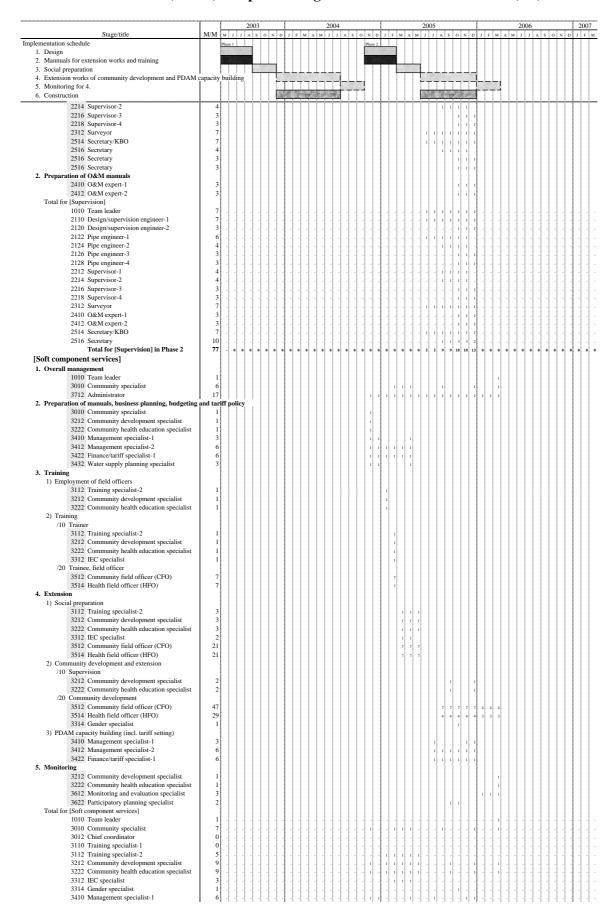
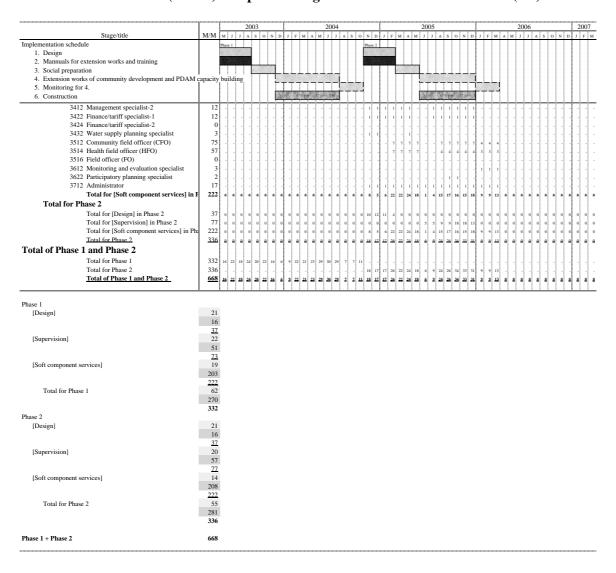
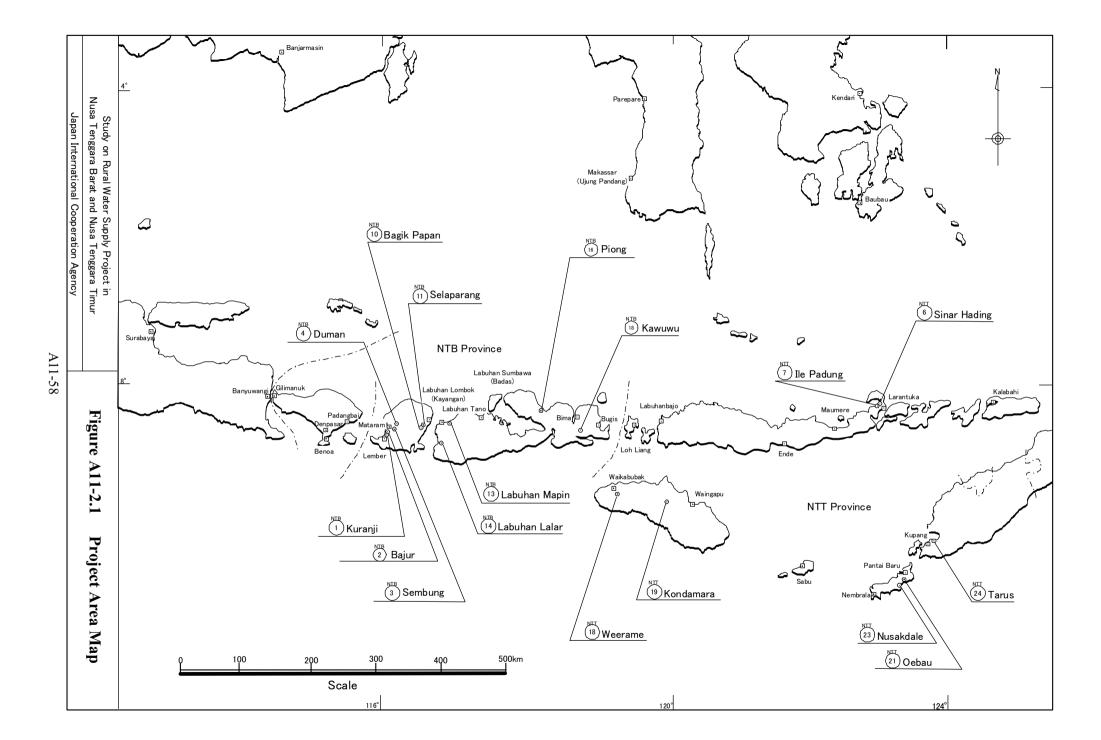
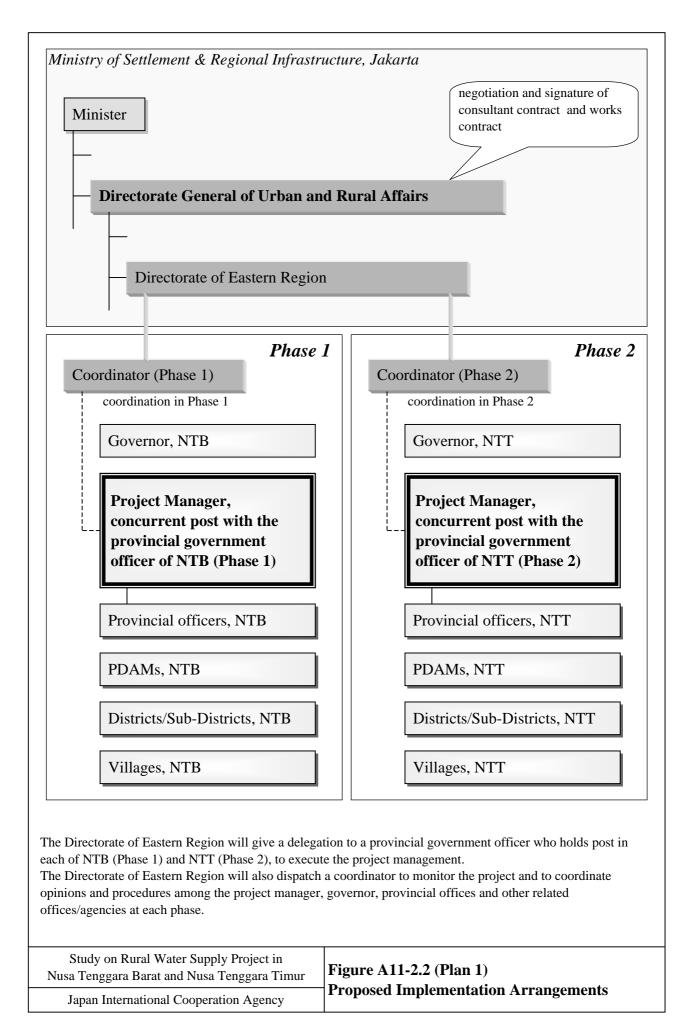
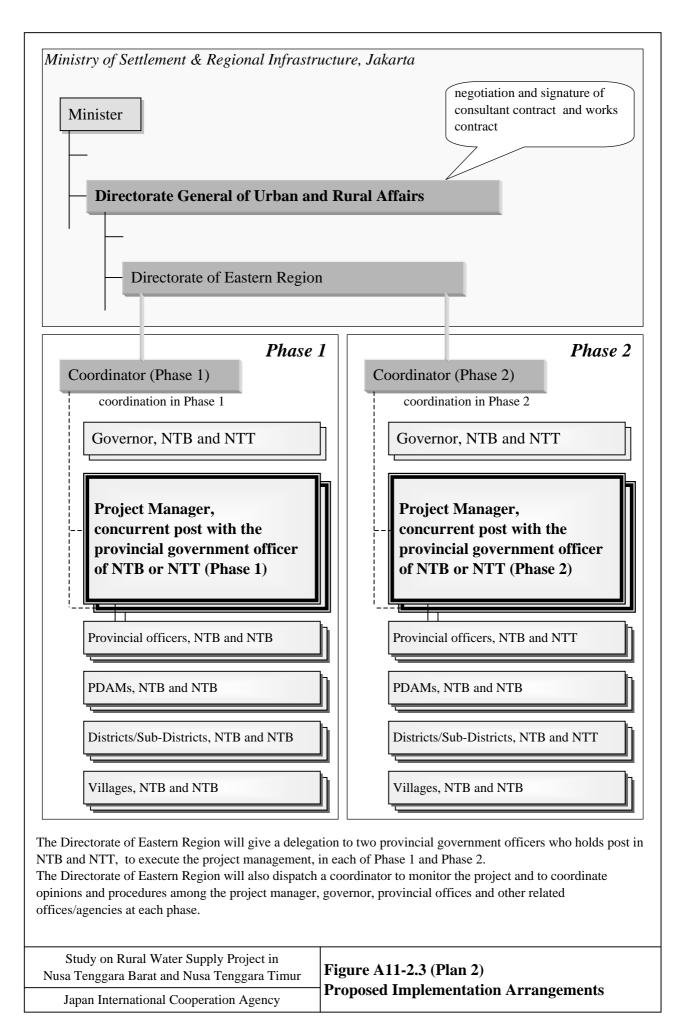
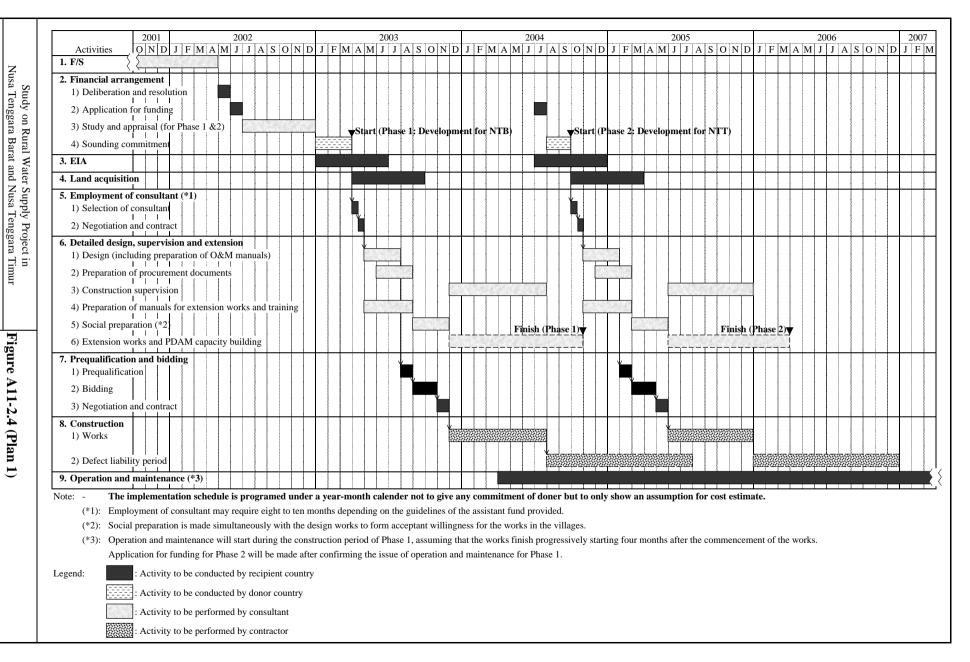
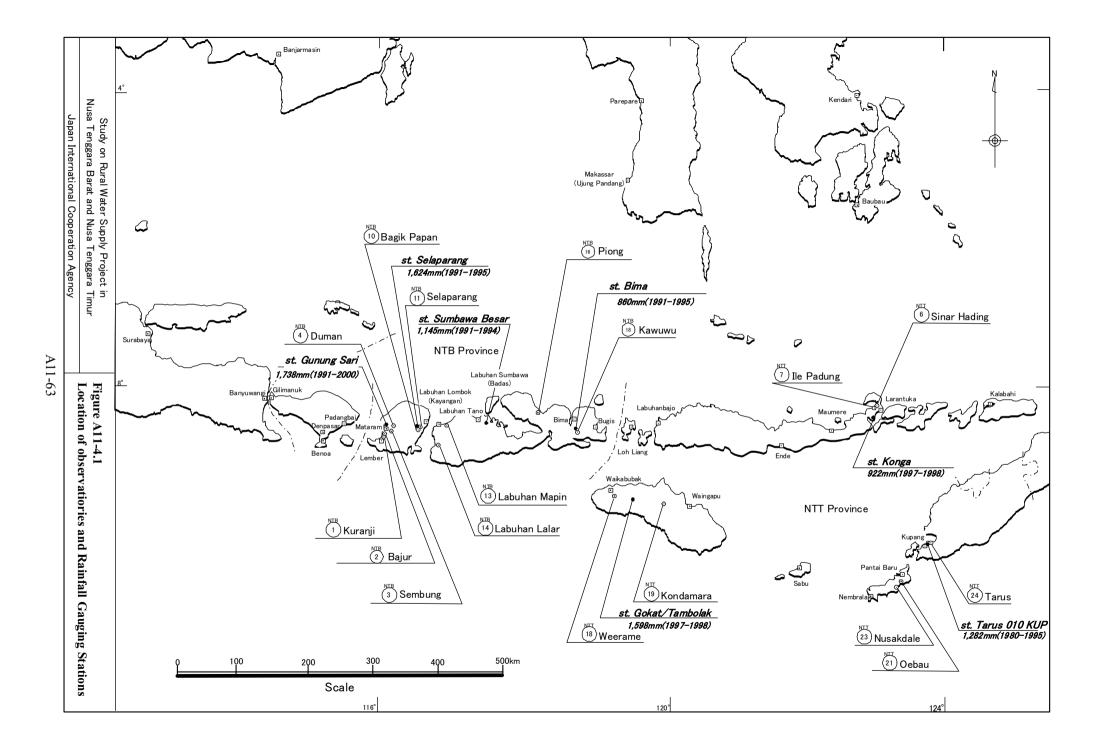
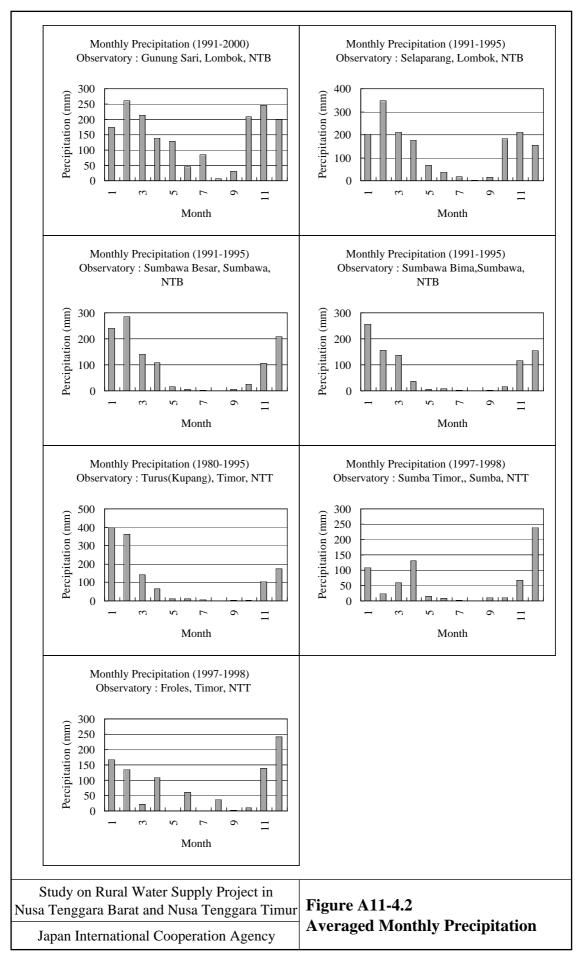
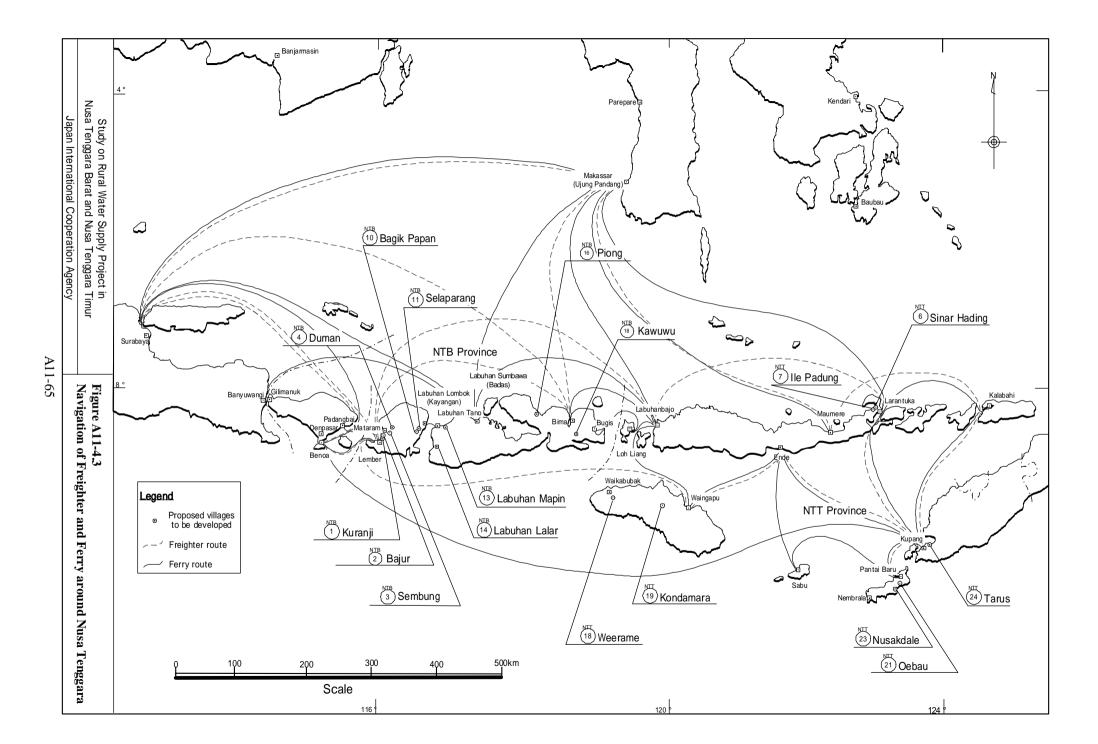






Table A11-7.2 (Plan 2) Proposed Assignment Schedule of Consultant (4/4)






Japan International Cooperation Agency



Japan International Cooperation Agency

Proposed Implementation Schedule Figure A11-2.5 (Plan 2)

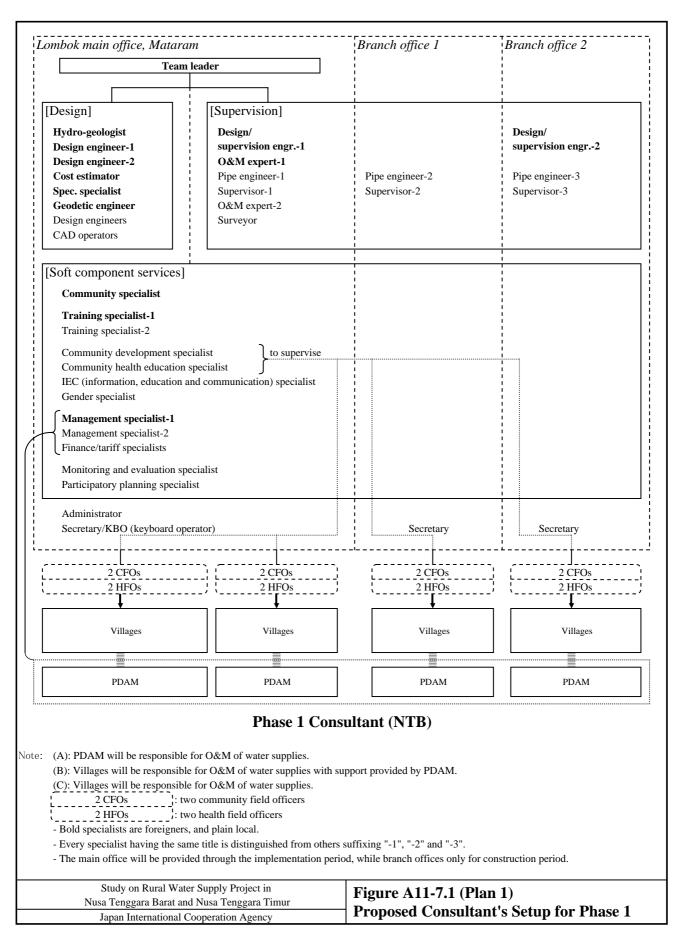
Tuesday (2)

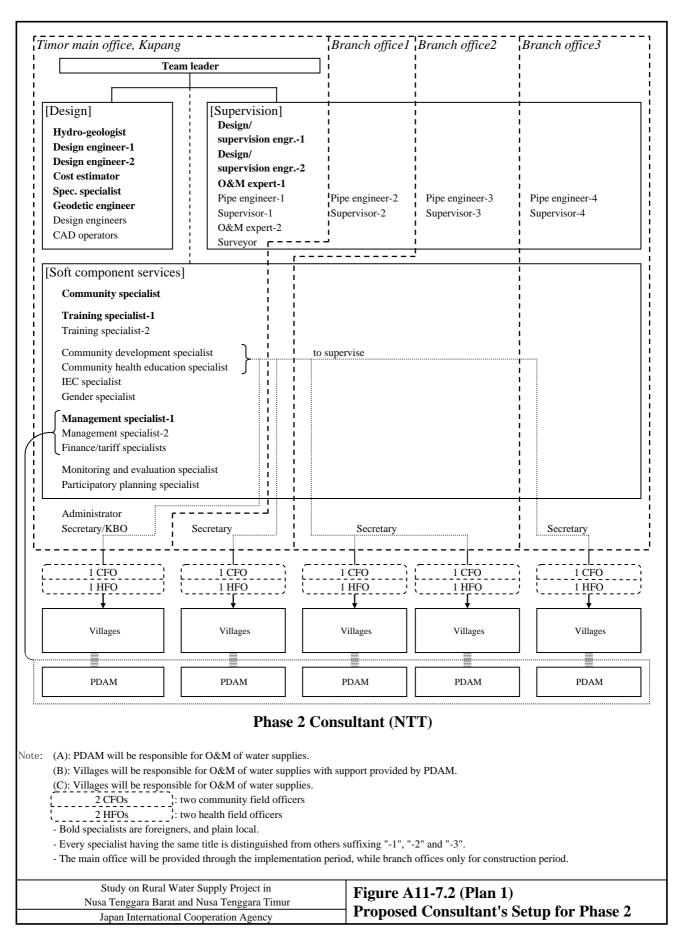
Wednesday (3)

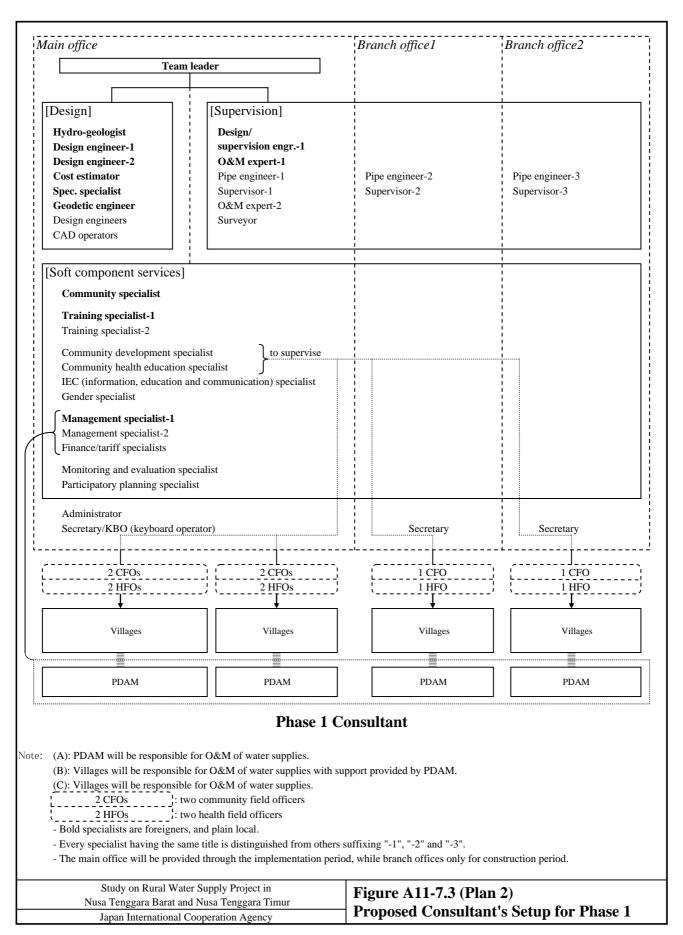
Thursday (4)

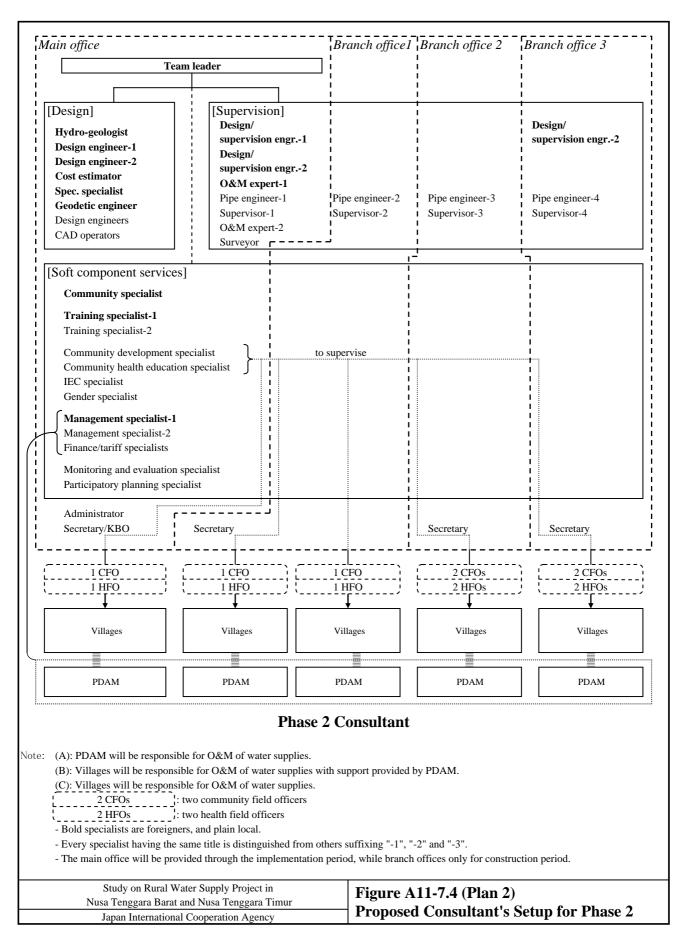
Friday (5)

Saturday (6)


Sunday (7)


Island


Airport


Time

Monday (1)

Appendix 12 COST ESTIMATES

Appendix 12 COST ESTIMATES

TABLE OF CONTENTS

Appendix 12	COST ESTIMATES	1
12.1 Con	IDITIONS AND ASSUMPTIONS FOR COST ESTIMATES	1
12.1.1	Price Level	1
12.1.2	Currency	1
12.1.3	Exchange Rate	1
12.1.4	Project Cost Component	1
12.1.5	Construction Cost.	2
12.1.6	Consulting Services Cost	3
12.1.7	Administration Cost	3
12.1.8	Land Acquisition Cost.	3
12.1.9	Taxes and Duties	3
12.1.10	Physical Contingency.	4
12.1.11	Price Contingency	4
12.2 EST	IMATE OF UNIT RATE	5
12.2.1	Labor Wage	5
12.2.2	Material Prices	5
12.2.3	Hourly/daily Cost of Equipment	5
12.2.4	Estimated Unit Rate	5
12.3 Pro	JECT COST	6
12.3.1	Construction Cost.	6
12.3.2	Consulting Service Cost.	7
12.3.3	Administration Cost	8
12.3.4	Land Acquisition Cost	9
12.3.5	Taxes and Duties	9
12.3.6	Project Cost	10
12.4 OPE	RATION AND MAINTENANCE COST	12
12.4.1	Annual Operation and Maintenance Cost	12
12.4.2	Replacement Cost	12

List of Tables

Table A12-1.1	Estimate of Price Escalation Rate	A12-13
Table A12-1.2	Rate of Price Contingency	A12-14
Table A12-2.1	Wage of Workers	A12-15
Table A12-2.2	Unit Price of Major Construction Materials	A12-16
Table A12-2.3	Hourly/daily Cost of Major Construction Equipment	A12-17
Table A12-2.4	Estimated Unit Rates of Construction Works	A12-18
Table A12-3.1 (Plan 1)	Breakdown of Construction Cost by Phase	A12-19
Table A12-3.2 (Plan 2)	Breakdown of Construction Cost by Phase	A12-21
Table A12-3.3	Breakdown of Construction Cost by Village	A12-23
Table A12-3.4 (Plan 1)	Estimated Cost for Consultancy Services	A12-42
Table A12-3.5 (Plan 2)	Estimated Cost for Consultancy Services	A12-44
Table A12-3.6 (Plan 1)	Breakdown of Preparation Cost of Manuals for Soft Con	mponent
	Services	A12-46
Table A12-3.7 (Plan 2)	Breakdown of Preparation Cost of Manuals for Soft Con	mponent
	Services	A12-48
Table A12-3.8 (Plan 1)	Estimated Administration Cost	A12-50
Table A12-3.9 (Plan 2)	Estimated Administration Cost	A12-52
Table A12-3.10 (Plan 1)	Estimated Project Cost	A12-54
Table A12-3.11 (Plan 2)	Estimated Project Cost	A12-55
Table A12-4.1	Estimated Annual O&M Cost	A12-56
Table A12-4.2	Estimated Replacement Cost	A12-59

Appendix 12 COST ESTIMATES

12.1 Conditions and Assumptions for Cost Estimates

12.1.1 Price Level

Project cost is estimated at the price level as of October 2001.

12.1.2 Currency

The cost of all items that are imported shall be estimated in Japanese yen (¥). The cost of items that are procured in the country shall be estimated in Indonesian rupiah (Rp.).

The foreign currency portion (¥) includes wages of foreign labor, costs of imported goods, international transportation cost and contractors' indirect cost and profit. The local currency portion (Rp.) includes wages of local labor, cost of goods to be purchased in the domestic market, inland transportation cost, contractor's indirect cost, compensation cost and purchasing cost of land and other real property.

For imported goods and for goods that are manufactured of or assembled from foreign materials and parts in the country, the cost will be estimated in Indonesian rupiah (Rp.) as long as they can be purchased in the domestic market.

12.1.3 Exchange Rate

The following are the exchange rates used for the cost estimate. (the mean value for selling and buying, as of the end of October, 2001)

US\$ 1.0 =\frac{\pm 121.92}{}

US\$ 1.0 = Rp.10,435

 Ψ 1.0 = Rp. 85.59

12.1.4 Project Cost Component

The following are the components of the project cost

- (1) Construction cost,
- (2) Consultancy service cost,
- (3) Administration cost, and

- (4) Land acquisition cost,
- (5) Taxes and duties

Note: - Items (1) and (2) shall be estimated excluding taxes and duties.

- Items (3) and (4) shall include taxes and duties.
- Item (5) includes all the taxes and duties levied on items (1) and (2).
- Items (1), (2), (3), (4), and (5) include physical and price contingencies.

Cost for the civil works including equipment supply and for the consulting services will be financed under a loan to be agreed between the government of Indonesia and a foreign country or other assistant fund, or under a grant aid. Other costs than the construction and consultancy services will be borne by the Government of Indonesia.

12.1.5 Construction Cost

Construction works and the supply of equipment will be executed on a contract basis through international competitive bidding (ICB). All the labor, materials and equipment required for the works will be provided by the contractor.

The works will be executed under a contract. The contract will be a unit price contract. The contract price is estimated by multiplying work quantities by unit prices estimated.

Each of the unit prices (rates) are estimated as the sum of labor wages, material cost, equipment cost, and overhead and profit. The following are referred to for fixing the unit rate.

- Unit Rate for Construction Works-2000, Ministry of Publics Works Cipta Karya,
- Journal of Building Construction and Interior-May 2001, the 16th edition,
- Law of Manpower, Law of The Republic of Indonesia No.1 Year 1951,
- Regulation of The Ministry of Labor No:Per.06/Men/1993,
- Law of Manpower, Law of The Republic of Indonesia No.25 Year 1997,

Overhead and profits for the contractor is set at 25 % of the net cost of carrying out the construction works.

12.1.6 Consulting Services Cost

A consultant will be employed for design, supervision, and extension services for the project by the Government of Indonesia, under the loan or grant aid to be agreed.

The major scope of works of the consultant will be the following:

- (i) Engineering services:
- Detailed design including preparation of procurement documents,
- Construction supervision,
- (ii) Soft component services:
- Soft component services (health and hygiene education, community development and PDAM capacity building).

12.1.7 Administration Cost

Administration cost includes all the expenses required for the administrative activities, directly associated with the project implementation, such as personnel, vehicle, training and office running costs. This cost will be provided by the executing agencies.

12.1.8 Land Acquisition Cost

The Government of Indonesia will be responsible for the cost of land acquisition for the facilities to be constructed.

In practice, the land costs depend on the village, topography and present land use. In this report, however, the cost is estimated, based on a common unit rate using the average land price, since the land needed for the facilities has not been finalised yet. The area of land is estimated assuming that half of the land would be required for facilities such as pump houses, BPTs (break pressure tanks), public hydrants and public taps.

12.1.9 Taxes and Duties

Taxes and duties are estimated based on the following:

- Government Regulation Number 42 of the Year 1995
- Ministry of Finance decree Number 486/KMK.04/2000,
- Director General of Taxation decree Number Kep-526/PJ/2000,

(i) Customs duty

The goods to be imported for public works will be exempted from Customs duty, as will equipment supplied under grant and loan projects in Indonesia. Neither customs duty nor extra duty is estimated on the works.

(ii) Value-added Tax (VAT)

Value-added tax (VAT) is levied at a rate of 10% against that part of the contract amount that is funded by the National Budget (A.P.B.N). The portion of the contract that is funded by foreign loan is not subject to VAT or luxury tax). This applies to the main contractors, subcontractors, suppliers and consultants that are to work for the project.

For the work portion that is to be borne by the Government of Indonesia, VAT will be levied at a rate of 10 %. For the remainder of the work, value-added tax is estimated at 0 (zero) percent, assuming that the non-GOI contract cost is funded entirely by foreign loan or grant aid.

12.1.10 Physical Contingency

Physical contingency is estimated at 5% to 15% depending on the accuracy of design. The physical contingency is included in each of the cost component.

12.1.11 Price Contingency

Price escalation rates are set at 0.4% per annum for the foreign currency portion and 7.5% per annum for local currency portion, as estimated in Table A12-1.1. The rate of price contingency for each project component is estimated in Table A12-1.2. The price contingency is included in each of the cost components.

12.2 Estimate of Unit Rate

12.2.1 Labor Wage

The different labor wages for skilled, semi-skilled and unskilled labor by trade have been obtained from the Unit Rate for Construction Works-2000, Ministry of Public Works Cipta Karya, concerning the minimum labor wage for public and construction works sector.

The daily wage of workers is estimated in accordance with the law and guidelines of the Government of Indonesia (Section 4.1.9 of Appendix 11). Estimated wages of workers are listed in Table A12-2.1.

12.2.2 Material Prices

Almost all materials required for the construction are available in Indonesia and the rest are imported. The locally produced items have been obtained from reputable manufactures and suppliers. The prices for imported materials have been fixed by obtaining quotations from major importers of such items. Material prices are listed in Table A12-2.2.

12.2.3 Hourly/daily Cost of Equipment

The hourly/daily cost of major equipment is estimated based on the quotations for equipment lease. The estimated hourly/daily cost of equipment is listed in Table A12-2.3.

12.2.4 Estimated Unit Rate

The following are the assumptions used for estimating the unit rate for each of the construction work items.

- The same wages, unit price, and unit rate of works are used in each village, regardless of province.
- Unit prices of construction materials are the cost at the ports close to the villages. The transportation cost from the ports to the villages is included in the overhead and profit estimated in each of the unit rates.
- The unit rate of pipe laying work includes the cost of the fittings, such as joints, bends, valves, etc.. that is 30 % of the pipe laying work cost (including pipe material cost).

Estimated unit rates of the major work items are listed in Table A12-2.4.

12.3 Project Cost

12.3.1 Construction Cost

The estimated construction cost is summarized below.

Estimated construction cost (Plan 1)

		Foreign	Local	Total	Equivalent
No.	Item	portion	portion		(Rp., billion)
		(Y, million)	(Rp., million)	(Y, million)	(Kp., Ullion)
Phase 1	NTB				
1.	Preparatory works	51.4	0	51.4	4.4
2.	Water works	154.3	1,106.9	167.2	14.3
3.	Physical contingency	30.8	166.0	32.8	2.8
4.	Price contingency	46.8	305.5	50.4	4.3
	Total for Phase 1	<u>283.3</u>	<u>1,578.4</u>	<u>301.7</u>	<u>25.8</u>
	(NTB)				
Phase 2	NTT				
1.	Preparatory works	58.1	0	58.1	5.0
2.	Water works	98.2	605.9	105.3	9.0
3.	Physical contingency	23.5	90.9	24.5	2.1
4.	Price contingency	46.5	236.9	49.3	4.2
	Total for Phase 2	<u>226.3</u>	<u>933.7</u>	<u>237.2</u>	<u>20.3</u>
	(NTT)				
	Total of Phase 1	509.5	2,512.1	538.9	46.1
	and Phase 2				

Note: Price level: October 2001

Foreign portion : Amount that may be financed by foreign assistant agency Local portion : Amount that would be borne by Government of Indonesia

A breakdown of the above estimate is given in Table A12-3.1 (Plan 1) for Plan 1 development.

Estimated construction cost (Plan 2)

		Foreign	Local	Total	Equivalent
No.	Item	portion	portion		(Rp., billion)
		(Y, million)	(Rp., million)	(1, 1111111011)	(Kp., Ullion)
Phase 1					
1.	Preparatory works	51.5	0	51.5	4.4
2.	Water works	137.2	1,035.7	149.3	12.8
3.	Physical contingency	28.3	155.4	30.1	2.6
4.	Price contingency	42.1	285.9	45.5	3.9
	Total for Phase 1	<u>259.2</u>	<u>1,477.0</u>	<u>276.4</u>	<u>23.7</u>
Phase 2					
1.	Preparatory works	59.8	0	59.8	5.1
2.	Water works	115.2	677.1	123.1	10.5
3.	Physical contingency	26.3	101.6	27.4	2.3
4.	Price contingency	53.8	264.7	56.9	4.9
	Total for Phase 2	<u>255.1</u>	<u>1,043.3</u>	<u> 267.2</u>	<u>22.9</u>
	Total of Phase 1 and	514.2	2,520.3	543.7	46.5
	Phase 2				

Note: Price level: October 2001

Foreign portion : Amount that may be financed by foreign assistant agency Local portion : Amount that would be borne by Government of Indonesia

A breakdown of the above estimate is given in Table A12-3.2 (Plan 2) for Plan 2 development.

Another breakdown of the water works cost by village is given in and Table A12-3.3.

12.3.2 Consulting Service Cost

The following are the estimated amounts for consulting services.

Estimated consulting service cost (Plan 1)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
Phase 1	NTB	· · · · · · · · · · · · · · · · · · ·	\ 1
1.	Consulting service cost		
	Detailed design	64.9 (34 %)	5.6
	2) Construction supervision	67.6 (36 %)	5.8
	3) Soft component services	56.1 (30 %)	4.8
	Sub-total for 1.	<u>188.6 (100 %)</u>	<u>16.1</u>
2.	Physical contingency	9.4	0.8
3.	Price contingency	7.8	0.7
	Total for Phase 1 (NTB)	205.9	17.6
Phase 2	NTT		
1.	Consulting service cost		
	 Detailed design 	61.6 (36 %)	5.3
	2) Construction supervision	64.9 (38 %)	5.6
	3) Soft component services	43.9 (26 %)	3.8
	Sub-total for 1.	<u>170.4</u> (100 %)	<u>14.6</u>
2.	Physical contingency	8.5	0.7
3.	Price contingency	9.9	0.8
	Total for Phase 2 (NTT)	188.8	<u>16.2</u>
	Total of Phase 1 and Phase 2	394.7	33.8

Note: Price level: October 2001

A breakdown of the above estimate is given in Table A12-3.4 (Plan 1) for Plan 1 development.

Estimated consulting service cost (Plan 2)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
Phase 1			
1.	Consulting service cost		
	 Detailed design 	65.4 (34 %)	5.6
	2) Construction supervision	69.7 (37 %)	6.0
	3) Soft component services	55.3 (29 %)	4.7
	Sub-total for 1.	<u>190.3</u> (100 %)	<u>16.3</u>
2.	Physical contingency	9.5	0.8
3.	Price contingency	8.1	0.7
	Total for Phase 1	207.9	17.8
Phase 2			
1.	Consulting service cost		
	 Detailed design 	62.0 (32 %)	5.3
	2) Construction supervision	63.2 (32 %)	5.4
	3) Soft component services	49.6 (26 %)	4.2
	Sub-total for 1.	<u>174.9</u> (100 %)	<u>15.0</u>
2.	Physical contingency	8.7	0.7
3.	Price contingency	12.0	1.0
	Total for Phase 2	<u> 195.6</u>	<u>16.7</u>
	Total of Phase 1 and Phase 2	403.5	34.5

Note: Price level: October 2001

A breakdown of the above estimate is given in Table A12-3.5 (Plan 2) for Plan 2 development.

Another breakdown of the preparation cost of manuals for community extension works and PDAM capacity building, that is a part of the soft component services, is given in Table A12-3.6 (Plan 1) and Table A12-3.7 (Plan 2) for Plan 1 development and Plan 2 development, respectively

12.3.3 Administration Cost

The following are the estimated administration costs.

Estimated administration cost (Plan 1)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
Phase 1	Administration cost	12.1	1.0
Phase 2	Administration cost	14.0	1.2
	Total of Phase 1 and Phase 2	26.1	2.2

Note: Price level: October 2001

A breakdown of the above estimate is given in Table A12-3.8 (Plan 1) for Plan 1 development.

Estimated administration cost (Plan 2)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
Phase 1	Administration cost	13.8	1.2
Phase 2	Administration cost	15.7	1.3
	Total of Phase 1 and Phase 2	29.5	2.5

Note: Price level: October 2001

A breakdown of the above estimate is given in Table A12-3.9 (Plan 2) for Plan 2 development.

12.3.4 Land Acquisition Cost

The following are the estimated costs of land acquisition.

Estimated land acquisition cost (Plan 1)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
Phase 1	Land acquisition cost	0.08	0.006
Phase 2	Land acquisition cost	0.03	0.003
	Total of Phase 1 and Phase 2	0.11	0.009

Note: Price level: October 2001

Estimated land acquisition cost (Plan 2)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
Phase 1	Land acquisition cost	0.07	0.006
Phase 2	Land acquisition cost	0.04	0.003
	Total of Phase 1 and Phase 2	0.11	0.009

Note: Price level: October 2001

12.3.5 Taxes and Duties

The following are the estimated taxes and duties to be levied on the construction and consulting services.

Estimated taxes and duties (Plan 1)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
1.	Value-added tax (VAT)	2.9	0.25
2.	Customs duty	0	0
	Total of 12.	2.9	0.25

Note: VAT is levied at 10% of the works that would be borne by GOI. No customs duty is estimated because no equipment and materials would be imported under the project.

Estimated taxes and duties (Plan 2)

No.	Item	Amount (Y, million)	Equivalent (Rp., billion)
1.	Value-added tax (VAT)	2.9	0.25
2.	Customs duty	0	0
	Total of 12.	2.9	0.25

Note: VAT is levied at 10% of the works that would be borne by GOI. No customs duty is estimated because no equipment and materials would be imported under the project.

12.3.6 Project Cost

The following is the estimated project cost for the options outlined in this chapter.

Estimated project cost (Plan 1)

		T	otal	Foreig	n portion	Local	portion
No.	Item	Yen	Equivalent	Yen	Equivalent	Yen	Equivalent
		(Y, million)	(Rp., billion)	(Y, million)	(Rp., billion)	(Y, million)	(Rp., billion)
Phase 1	NTB						
1.	Construction cost	301.7	25.8	283.3	24.2	18.4	1.6
2.	Consultancy services cost	205.9	17.6	205.9	17.6	0	0
3.	Administration cost	12.1	1.0	0	0	12.1	1.0
4.	Land acquisition cost	0.08	0.007	0	0	0.08	0.007
5.	Taxes and duties	1.8	0.16	0	0	1.8	0.16
	Total for Phase 1 (NTB)	<u>521.6</u>	<u>44.6</u>	<u>489.2</u>	<u>41.9</u>	<u>32.5</u>	2.8
Phase 2	NTT						
1.	Construction cost	237.2	20.3	226.3	19.4	10.9	0.9
2.	Consultancy services cost	188.8	16.2	188.8	16.2	0	0
3.	Administration cost	14.0	1.2	0	0	14.0	1.2
4.	Land acquisition cost	0.03	0.003	0	0	0.03	0.003
5.	Taxes and duties	1.1	0.09	0	0	1.1	0.09
	Total for Phase 2 (NTT)	<u>441.1</u>	<u>37.8</u>	<u>415.1</u>	<u>35.5</u>	<u>26.0</u>	<u>2.2</u>
Total o	of Phase 1 and Phase 2	962.7	82.4	904.3	77.4	58.5	5.0

Note: Price level: October 2001

Foreign portion : Amount that may be financed by foreign assistant agency Local portion : Amount that would be borne by Government of Indonesia

A breakdown of the above estimate is given in Table A12-3.10 (Plan 1) for Plan 1 development.

Estimated project cost (Plan 2)

		Te	otal	Foreign	n portion	Local	l portion		
No.	Item	Yen	Equivalent	Yen	Equivalent	Yen	Equivalent		
		(Y, million)	(Rp., billion)	(Y, million)	(Rp., billion)	(Y, million)	(Rp., billion)		
Phase 1									
1.	Construction cost	276.4	23.7	259.2	22.2	17.3	1.5		
2.	Consultancy services cost	207.9	17.8	207.9	17.8	0	0		
3.	Administration cost	13.8	1.2	0	0	13.8	1.2		
4.	Land acquisition cost	0.07	0.006	0	0	0.07	0.006		
5.	Taxes and duties	1.7	0.15	0	0	1.7	0.15		
	Total for Phase 1	<u>499.9</u>	<u>42.8</u>	<u>467.1</u>	<u>40.0</u>	32.8	<u>2.8</u>		
Phase 2									
1.	Construction cost	267.3	22.9	255.1	21.8	12.2	1.0		
2.	Consultancy services cost	195.6	16.7	195.1	16.7	0	0		
3.	Administration cost	15.7	1.3	0	0	15.7	1.3		
4.	Land acquisition cost	0.04	0.003	0	0	0.04	0.003		
5.	Taxes and duties	1.2	0.10	0	0	1.2	0.1		
	Total for Phase 2	<u>479.8</u>	<u>41.1</u>	<u>450.7</u>	<u>38.6</u>	<u>29.2</u>	<u>2.5</u>		
Total	of Phase 1 and Phase 2	979.7	83.9	917.8	78.6	62.0	5.3		

Note: Price level: October 2001

Foreign portion : Amount that may be financed by foreign assistant agency Local portion : Amount that would be borne by Government of Indonesia

A breakdown of the above estimate is given in Table A12-3.11 (Plan 2) for Plan 2 development.

12.4 Operation and Maintenance Cost

12.4.1 Annual Operation and Maintenance Cost

Annual operation and maintenance (O&M) costs consist of:

- 1) Salaries and wages,
- 2) Operation cost, and
- 3) Maintenance cost of the facility.

The operation and maintenance cost at the full development stage is estimated below.

Estimated annual operation and maintenance cost

No.	Item	Amount	Equivalent
INO.	nem	(Y, thousand)	(Rp., thousand)
1.	Annual operation and maintenance	2,090	178,743

Note: Price level: October 2001

A breakdown of the above estimate is given in Table A12-4.1.

12.4.2 Replacement Cost

Some of the project facilities, especially equipment and mechanical works such as pumps and generators, have a shorter useful life than the civil and pipe works. The life of the pumps and generators is set at 15 years, while the PVC pipe laid underground and the GSP (galvanized steel pipe) exposed could be usable for about twenty years and more respectively. Since the project life is set at 20 years for the pipe works, replacement cost is only estimated for the pumps and generators whose life expectancy is less than that of the pipe works.

The following are the estimated replacement cost.

Estimated replacement cost

No.	Item	Replacement cycle	Amount (Y, thousand)	Equivalent (Rp., thousand)
1.	Replacement cost	15 years	5,854	501,034

Note: Price level: October 2001

A breakdown of the above estimate is given in Table A12-4.2.

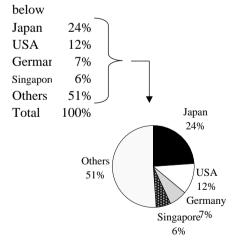
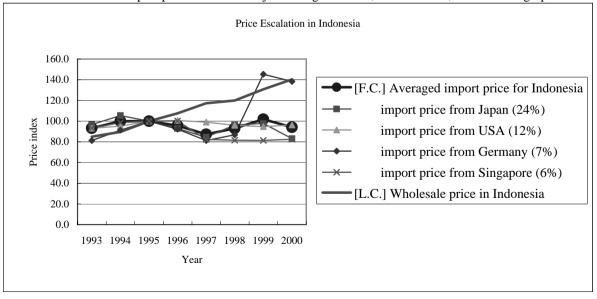

Since it is hard for villagers to pay for the replacement cost in the year of replacement, the villagers are to save money regularly every month for replacement at 15 years.

Table A12-1.1 Estimate of Price Escalation Rate

							Foreign c	urrency po	ortion						Loca	al currency	portion
						In	ternationa	l market (Iı	mport)*1						Ι	Domestic m	arket
		Export price indices Exchange rate (per US dollar) Estimated import price for Indonesia							Wholesale price		Reference						
Year	Japan	USA	Germany	Singapore	Japan	USA	Germany	Singapore	Japan	USA	Germany	Singapore	Average*2	Escalation	Index	Escalation	Exch. rate
1993	105.2	93.2	97.8	106.1	111.85	1.0	1.7263	1.6080	96.7	93.2	81.2	93.3	93.2		85.0		2,110.0
1994	102.2	95.2	98.6	101.8	99.74	1.0	1.5488	1.4607	105.4	95.2	91.3	98.6	100.0	7.3%	89.6	5.4%	2,200.0
1995 *3	100.0	100.0	100.0	100.0	102.83	1.0	1.4335	1.4143	100.0	100.0	100.0	100.0	100.0	0.0%	100.0	11.6%	2,308.0
1996	104.8	100.6	100.0	99.1	116.00	1.0	1.5548	1.3998	92.9	100.6	92.2	100.1	95.6	-4.4%	107.5	7.5%	2,383.0
1997	106.7	99.0	101.5	97.6	129.95	1.0	1.7921	1.6755	84.4	99.0	81.2	82.4	87.3	-8.7%	117.3	9.1%	4,650.0
1998	108.2	95.9	101.4	95.7	115.60	1.0	1.6730	1.6605	96.2	95.9	86.9	81.5	93.0	6.6%	120.0	2.3%	8,025.0
1999	97.2	94.7	100.9	95.9	102.20	1.0	0.9954	1.6660	97.8	94.7	145.3	81.4	101.8	9.5%	130.8	9.0%	7,085.0
2000	92.9	96.2	103.9	101.0	114.90	1.0	1.0772	1.7315	83.1	96.2	138.3	82.5	94.1	-7.5%	140.4	7.3%	9,595.0
Average 0.4%												7.5%					
Radical number minus one, $[= (Index_{2000} / Index_{1993})^{(1/7)} -1]$ (for the reference only)												7.4%					


Note: - Data resource for price indices and exchange rates: International Finance Statistics, IMF, February 2001

*1: Price escalation rate for foreign currency portion is estimated based on the export price indices of major trading countries, for Indonesia, as listed and graphed

*2: weighted average of import price

*3: indices are set at 100 in 1995.

Table A12-1.2 Rate of Price Contingency

(Unit: %)

	Construction works				S	(Consi	ıltan	cy se	rvice	es		Lar	nd ac	quisi	tion			Administration					
	P	hase	1	P	hase	2	P	hase	1	P	hase	2	P	hase	1	P	hase	2	P	hase	1	P	hase	2
Year	dis.	F.C	L.C	dis.	F.C	L.C	dis.	F.C	L.C	dis.	F.C	L.C	dis.	F.C	L.C	dis.	F.C	L.C	dis.	F.C	L.C	dis.	F.C	L.C
2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2003	10	-	2	-	-	-	50	-	8	-	-	-	100	1	16	-	-	-	50	-	8	-	-	-
2004	90	1	22	-	-	-	50	1	12	40	-	10	-	-	-	50	1	12	50	1	12	40	-	10
2005	-	-	-	100	2	34	-	-	-	55	1	18	-	-	-	50	1	17	-	-	-	50	1	17
2006	-	-	-	-	-	-	-	-	-	5	-	2	-	-	-	-	-	-	-	-	-	10	-	4
2007	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2008	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2009	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	100	1	24	100	2	34	100	1	20	100	1	30	100	1	16	100	2	29	100	1	20	100	1	31
						0																		

Note: - Price level: October 2001

- Price escalation rate (per annum)

F.C: 0.40% L.C: 7.50%

Table A12-2.1 Wage of Workers

Trade	Unit	Basic wage (Rp.)	Surcharge 22%	Surcharge*2	Total wage (Rp.)
		` * ′			1
Civil and Building Works (Daily basis					
Foreman (general)	day	23,500	5,170	5,875	35,000
Skilled labor	day	22,000	4,840		27,000
Common labor (unskilled)	day	12,500	2,750		15,000
Operator, heavy equipment	day	27,500	6,050	6,875	40,000
Operator, medium equipment	day	25,000	5,500	6,250	37,000
Operator, light equipment	day	22,000	4,840		27,000
Operator, plant	day	25,000	5,500		31,000
Assistant operator	day	16,500	3,630		20,000
Driver, dump truck	day	25,000	5,500		31,000
Driver, vehicle	day	22,000	4,840		27,000
Mechanic	day	22,000	4,840		27,000
Assistant mechanic	day	16,500	3,630		20,000
Electrician	day	22,000	4,840		27,000
Assistant electrician	day	16,500	3,630		20,000
Reinforcement worker	day	22,000	4,840		27,000
Welder	day	22,000	4,840		27,000
Rigger	day	27,500	6,050		34,000
Plumber	day	22,000	4,840	5,500	32,000
Plasterer	day	27,500	6,050	- 7	34,000
Concrete worker	day	22,000	4,840		27,000
Form worker	day	23,500	5,170		29,000
Carpenter	day	22,000	4,840		27,000
Pavement worker	day	27,500	6,050		34,000
Mason	day	22,000	4,840		27,000
Stone worker	day	22,000	4,840		27,000
Steel worker, steel structure	day	22,000	4,840		27,000
Pipe fitter	day	22,000	4,840		27,000
Concrete block/brick worker	day	22,000	4,840		27,000
Supervisory/Office Personnel (Monthly basis					
(A): 20 years, (B): 15 years, (C): 10 years					
Civil engineer (A)	month	5,000,000	1,100,000		6,100,000
Civil engineer (B)	month	3,500,000	770,000		4,270,000
Civil engineer (C)	month	2,880,000	633,600		3,514,000
Pipe engineer (A), for water supply system	month	5,000,000	1,100,000		6,100,000
Pipe engineer (B), for water supply system	month	3,500,000	770,000		4,270,000
Building engineer (A)	month	5,000,000	1,100,000		6,100,000
Building engineer (B)	month	4,000,000	880,000		4,880,000
Survey engineer	month	2,400,000	528,000		2,928,000
Assistant surveyor	month	1,000,000	220,000		1,220,000
Computer operator	month	1,800,000	396,000		2,196,000
Administrator officer	month	2,000,000	440,000		2,440,000
Secretary	month	1,200,000	264,000		1,464,000

Remarks

- Project site and area: Nusa Tenggara Barat and Nusa Tenggara Timur
- Surcharge(*1) of 22% consists of overtime allowance for 2 hours on Saturday (10%) and insurance to be borne by employer (12%).
- Surcharge(*2) is provided for the skilled workers that would be employed much in number from Java.
- Price level: Oct. 2001
- Exchange rate:

US\$ 1.0 = Rp.10,435

US\$ 1.0 = J. Yen 121.92

J. Yen 1.0 = Rp.85.59

Table A12-2.2 Unit Price of Major Construction Materials

Materials	Specifications	Unit	Unit price (Rp.)
Portland cement	•	ton	540,000
Reinforcing bar	deformed, D10 -D13	ton	5,750,000
Reinforcing bar	deformed, D16 - D22	ton	5,750,000
Structural steel	Steel plate, H-beam, etc.	ton	45,000,000
Timber, plank		m3	2,650,000
Timber, square		m3	2,500,000
Timber log		m3	2,500,000
Plywood	t=12mm	m3	2,500,000
Form oil		liter	15,750
uPVC pipe	dia.=25mm, L=6m	Nr.	25,000
uPVC pipe	dia.=50mm, L=6m	Nr.	70,500
uPVC pipe	dia.=75mm, L=6m	Nr.	129,000
uPVC pipe	dia.=100mm, L=6m	Nr.	188,500
uPVC pipe	dia.=150mm, L=6m	Nr.	394,000
GS pipe	dia.=25mm, L=6m	Nr.	105,000
GS pipe	dia.=50mm, L=6m	Nr.	195,000
GS pipe	dia.=75mm, L=6m	Nr.	325,000
GS pipe	dia.=100mm, L=6m	Nr.	475,000
GS pipe	dia.=150mm, L=6m	Nr.	725,000
FRP tank	3 m3	Nr.	25,500
Faucet	dia. = 25mm	Nr.	20,000
Calcium hypochlorite (powder)	for disinfecting water	kg	12,000
Brick		Nr.	150
Sand		m3	30,000
Gravel,		m3	30,000
Cobble/boulder		m3	32,500
Gasoline		liter	1,500
Light oil (diesel, fuel)		liter	900

Remarks

- Project site and area: Nusa Tenggara Barat and Nusa Tenggara Timur.
- Sand, sravel and stone are puchased close to the villages.
- Material price excludes VAT.
- Price level: Oct. 2001
- Exchange rate:

US\$1.0 = Rp.10,435

US\$ 1.0 = J. Yen 121.92

J. Yen 1.0 = Rp.85.59

Table A12-2.3 Daily/hourly Cost of Major Construction Equipment

				Engine	<u>H</u>	ourly/daily	cost
<u>Code</u>	<u>Equipment</u>	<u>Unit</u>	<u>Fuel</u>	capacity	<u>F.C</u>	<u>L.C</u>	<u>Total</u>
				(PS/kW)	(Yen)	(Rp.)	(Rp.)
E010115	Bulldozer, 11t	hr	Light oil	100	0	224,205	224,205
E010116	Bulldozer, 15t	hr	Light oil	141	0	297,427	297,427
E010117	Bulldozer, 21t	hr	Light oil	207	0	492,400	492,400
E020212	Backhoe, 0.35m3	hr	Light oil	75	0	151,128	151,128
E020215	Backhoe, 0.6m3	hr	Light oil	126	0	227,380	227,380
E030105	Dump truck,11t	hr	Light oil	335	0	71,758	71,758
E030224	Truck-bed crane, 4t, 2.9t	hr	Light oil	180	0	99,967	99,967
E040226	Truck crane, hyd., 30t	hr	Light oil	286	0	467,504	467,504
E080712	Vibratory compactor, 70-80kg	day	Gasoline	4	0	42,053	42,053
Note: -	Price level: October, 2001	00000000000000000000000000000000000000			000000000000000000000000000000000000000	0\$0000\$0000\$0000\$0000\$0000\$0000	
-	Exchange rate: US\$1.0= Yen		121.92				
	Exchange rate: US\$1.0= Rp.		10,435				
	Exchange rate: Yen1.0= Rp.		85.59				

Table A12-2.4 Estimated Unit Rates of Construction Works

		Ra	te
Work items	Unit	F.C.(Y)	L.C (Rp.)
1. Intake facilities			_
1) Intake facilities			
/10 Tappimg works from existing water system	Nr.	0	3,618,000
/20 Spring water intake	Nr.	0	2,222,000
/30 Tube well	Nr.	0	282,181,000
/40 Shallow well	Nr.	0	41,835,000
/50 Cave water intake	Nr.	0	3,866,000
2) Pumps			
/10 Submersible	Nr.	0	203,500,000
/20 Surface Centri-fugal	Nr.	0	46,924,000
2. Transmission and Distribution ma			
1) Pipeline exca. Inst. Backfill.			
/10 Pipeline dia. 150 mm	m	0	166,900
/20 Pipeline dia. 100 mm	m	0	100,500
/30 Pipeline dia. 75 mm	m	0	76,300
/40 Pipeline dia. 50 mm	m	0	53,500
2) Asphalt Pavement			
/10 Pipeline dia. 150 mm	m	0	16,100
/20 Pipeline dia. 100 mm	m	0	16,100
/30 Pipeline dia. 75 mm	m	0	16,100
/40 Pipeline dia. 50 mm	m	0	16,100
3. Stream/River crossing			
1) Bridge (L>15m)	Nr.	0	10,704,100
2) Bridge (L<15m)	Nr.	0	4,733,300
4. Distribution networl			
1) Ground reservoir	Nr.	0	22,547,000
2) Cholorinator	Nr.	0	2,184,000
3) Service pipeline			
/10 Pipeline dia. 75 mm	m	0	76,300
/20 Pipeline dia. 50 mm	m	0	53,500
/30 Pipeline dia. 25 mm	m	0	35,500
4) Asphalt Pavement			
/10 Pipeline dia. 75 mm	m	0	16,100
/20 Pipeline dia. 50 mm	m	0	16,100
/30 Pipeline dia. 25 mm	m	0	16,100
5) Pulic hydrant	Nr.	0	5,189,000
6) Pulic taps	Nr.	0	2,061,000
7) House conection	Nr.	0	1,550,000

Note: - Price level; Oct. 2001

- Exchange rate:

US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92

J. Yen 1.0 = Rp.85.59

Table A12-3.1 (Plan 1) Breakdown of Construction Cost by Phase (1/2)

Construction works / Phase1 (NTB)

	Т	Т	n - 4		A	- I	
Works Items	Unit	Q'ty	Rate F.C.(Y)	e L.C (Rp.)	Amo F.C.(Y)	L.C (Rp.)	Total (Y)
Site preparation and expenses	Cint	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.0.(1)	L.C (Kp.)	37,610,000	1,176,906,000	51,360,508
The propagation and expenses					57,010,000	1,170,200,000	21,200,200
2. Intake facilities							
1) Intake facilities							
/10 Tapping works from existing water system	Nr.	4	0	3,618,000	0	14,472,000	169,085
/20 Spring water intake	Nr.	5	0	2,222,000	0	11,110,000	129,805
/30 Tube well	Nr.	2	0	282,181,000	0	564,362,000	6,593,784
/40 Shallow well	Nr.	1	0	41,835,000	0	41,835,000	488,784
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	(
2) Pumps							
/10 Submersible	Nr.	3	0	203,500,000	0	610,500,000	7,132,843
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 2.	-				0	1,242,279,000	14,514,301
Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	800	0	166,900	0	133,520,000	1,559,995
/20 Pipeline dia. 100 mm	m	6,520	0	100,500	0	655,260,000	7,655,801
/30 Pipeline dia. 75 mm	m	8,135	0	76,300	0	620,700,500	7,252,021
/40 Pipeline dia. 50 mm	m	2,520	0	53,500	0	134,820,000	1,575,184
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	1	600	0	16,100	0	9,660,000	112,864
/20 Pipeline dia. 100 mm 75%	1	4,890	0	16,100	0	78,729,000	919,839
/30 Pipeline dia. 75 mm 75%	1	6,101	0	16,100	0	98,230,125	1,147,682
/40 Pipeline dia. 50 mm 75%	m	1,890	0	16,100	0	30,429,000	355,521
Sub-total for 3.	+				<u> </u>	1,761,348,625	20,578,907
4. Stream/River crossing	Nr.	6	0	10,704,100	0	64 224 600	750,375
1) Bridge (L>15m) 2) Bridge (L<15m)	Nr.	12	0	4,733,300	0	64,224,600 56,799,600	663,624
Sub-total for 4.	INI.	12	U	4,733,300	0	121,024,200	1,413,999
5. Distribution network	-				U	121,024,200	1,413,333
Ground reservoir	Nr.	11	0	22,547,000	0	248,017,000	2,897,733
2) Cholorinator	Nr.	9	0	2,184,000	0	19,656,000	229,653
3) Service pipeline	111.	1	Ü	2,104,000	Ü	17,030,000	227,033
/10 Pipeline dia. 75 mm	m	7,130	0	76,300	0	544,019,000	6,356,105
/20 Pipeline dia. 50 mm	m	22,088	0	53,500	0	1,181,708,000	13,806,613
/30 Pipeline dia. 25 mm	m	56,110	0	35,500	0	1,991,905,000	23,272,637
4) Asphalt Pavement		,		,		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,_,_,_,
/10 Pipeline dia. 75 mm 75%	m	5,348	0	16,100	0	86,094,750	1,005,897
/20 Pipeline dia. 50 mm 75%	1	16,566	0	16,100	0	266,712,600	3,116,165
/30 Pipeline dia. 25 mm 75%	1	42,083	0	16,100	0	677,528,250	7,915,974
5) Pulic hydrant	Nr.	215	0	5,189,000	0	1,115,635,000	13,034,642
6) Pulic taps	Nr.	82	0	2,061,000	0	169,002,000	1,974,553
7) House conection	Nr.	2,437	0	1,550,000	0	3,777,350,000	44,133,076
8) Service meter	Nr.	2,014	0	0	0	0	0
Sub-total for 5.					0	10,077,627,600	117,743,049
Total of 15.					37,610,000	14,379,185,425	205,610,764
6. Physical Contingency 15% of total 14.			15%	15%	5,641,500	2,156,877,814	30,841,615
Total of 16.					43,251,500	16,536,063,239	236,452,379
7. Price Contingency			1%	24%	432,515	3,968,655,177	46,800,726
Total of 17.					43,684,015	20,504,718,416	283,253,105
Notes Price levels Oct 2001							
Note: - Price level; Oct. 2001 - Exchange rate:			F	hase 1 (NTB)	43,684.015	20,504,718,416	283,253,106
US\$ 1.0 = Rp.10.435				Phase 2 (NTT)		15,372,724,751	226,277,867

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59
 Phase 1 (NTB)
 43,684,015
 20,504,718,416
 283,253,106

 Phase 2 (NTT)
 46,668,978
 15,372,724,751
 226,277,867

 90,352,993
 35,877,443,167
 509,530,972

Table A12-3.1 (Plan 1) Breakdown of Construction Cost by Phase (2/2)

Construction works / Phase2 (NTT)

	T		Rat	e	Amo	ount	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Site preparation and expenses					39,786,000	1,569,986,600	58,129,1
2. Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	4	0	2,222,000	0	8,888,000	103,8
/30 Tube well	Nr.	0	0	282,181,000	0	0	
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	2	0	3,866,000	0	7,732,000	90,3
2) Pumps							
/10 Submersible	Nr.	2	0	203,500,000	0	407,000,000	4,755,2
/20 Surface Centri-fugal	Nr.	11	0	46,924,000	0	516,164,000	6,030,
Sub-total for 1.	-				0	939,784,000	10,980,0
3. Transmission and Distribution main							
1) Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	
/20 Pipeline dia. 100 mm	m	7,200	0	100,500	0	723,600,000	8,454,
/30 Pipeline dia. 75 mm	m	6,045	0	76,300	0	461,233,500	5,388,
/40 Pipeline dia. 50 mm	m	5,525	0	53,500	0	295,587,500	3,453,
Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	1	0	0	16,100	0	0	
/20 Pipeline dia. 100 mm 75%	1	5,400	0	16,100	0	86,940,000	1,015,
/30 Pipeline dia. 75 mm 75%	1	4,534	0	16,100	0	72,993,375	852,
/40 Pipeline dia. 50 mm 75%	m	4,144	0	16,100	0	66,714,375	779,
Sub-total for 3.	-				0	1,707,068,750	19,944,
4. Stream/River crossing				10.704.100		22 112 200	255
1) Bridge (L>15m)	Nr.	3	0	10,704,100	0	32,112,300	375,
2) Bridge (L<15m)	Nr.	7	0	4,733,300	0	33,133,100	387,
Sub-total for 4.	-	-			0	65,245,400	762,
5. Distribution network		9	0	22 5 47 000	0	202 022 000	2 270
1) Ground reservoir	Nr.	14	0	22,547,000	0	202,923,000	2,370,
2) Cholorinator	Nr.	14	0	2,184,000	0	30,576,000	357.
3) Service pipeline		1.520	0	76 200	0	115 076 000	1 255
/10 Pipeline dia. 75 mm	m	1,520		76,300		115,976,000	1,355,
/20 Pipeline dia. 50 mm /30 Pipeline dia. 25 mm	m	19,880 29,670	0	53,500	0	1,063,580,000	12,426,
4) Asphalt Pavement	m	29,070	U	35,500	U	1,053,285,000	12,306,
, 1		1 140	0	16 100	0	19 25 4 000	214
/10 Pipeline dia. 75 mm 75% /20 Pipeline dia. 50 mm 75%	1	1,140 14,910	0	16,100	0	18,354,000	214
•	1		0	16,100	0	240,051,000	2,804,
/30 Pipeline dia. 25 mm 75%	m Nr.	22,253	0	16,100 5,189,000	0	358,265,250	4,185,
5) Pulic hydrant 6) Pulic taps	Nr.	70	0	2,061,000	0	332,096,000 144,270,000	3,880,
7) House conection	Nr.	1,377	0	1,550,000	0		1,685
8) Service meter	Nr.	1,083	0	1,550,000	0	2,134,350,000	24,936,
Sub-total for 5.	INI.	1,065	U	U U	0	5,693,726,250	66,523,
					-	9,975,811,000	
Total of 15. 5. Physical Contingency 15% of total 14.	-	-	15%	15%	39,786,000 5,967,900	1,496,371,650	156,339,
Total of 16.			13%	15%			23,450,
7. Price Contingency			2%	34%	45,753,900 915,078	11,472,182,650 3,900,542,101	179,790, 46,487,
. The contingency	1		2%	34%	913,078	3,700,342,101	40,467,
Total of 17.					46,668,978	15,372,724,751	226,277,
fote: - Price level; Oct. 2001							
- Exchange rate:			F	Phase 1 (NTB)	43,684,015	20,504,718,416	283,253,

⁻ Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

 Phase 1 (NTB)
 43,684,015
 20,504,718,416
 283,253,106

 Phase 2 (NTT)
 46,668,978
 15,372,724,751
 226,277,867

 90,352,993
 35,877,443,167
 509,530,972

Table A12-3.2 (Plan 2) Breakdown of Construction Cost by Phase (1/2)

Construction works / Phase 1

Constitution works / I hase I	T	Т	Rat	ρ [Amo	ount	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Site preparation and expenses			. ,		37,610,000	1,185,956,000	51,466,245
2 7 - 1 6 333							
2. Intake facilities							
1) Intake facilities	NY		0	3,618,000	0	14 472 000	169,08
/10 Tapping works from existing water system /20 Spring water intake	Nr. Nr.	4 5	0	2,222,000	0	14,472,000 11,110,000	129,80
/20 Spring water intake /30 Tube well	Nr.	0	0	282,181,000	0	11,110,000	129,80
/40 Shallow well	Nr.		0	41,835,000	0	0	
/50 Cave water intake	Nr.	1	0	3,866,000	0	3,866,000	45,16
2) Pumps	111.	1	Ü	3,800,000	U	3,800,000	43,10
/10 Submersible	Nr.	0	0	203,500,000	0	0	
/20 Surface Centri-fugal	Nr.	5	0	46,924,000	0	234,620,000	2,741,20
Sub-total for 2.	1			10,521,000	0	264,068,000	3,085,26
3. Transmission and Distribution main						201,000,000	2,002,20
Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	m	800	0	166,900	0	133,520,000	1,559,99
/20 Pipeline dia. 100 mm	m	7,220	0	100,500	0	725,610,000	8,477,74
/30 Pipeline dia. 75 mm	m	9,865	0	76,300	0	752,699,500	8,794,24
/40 Pipeline dia. 50 mm	m	3,030	0	53,500	0	162,105,000	1,893,97
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	600	0	16,100	0	9,660,000	112,86
/20 Pipeline dia. 100 mm 75%	m	5,415	0	16,100	0	87,181,500	1,018,59
/30 Pipeline dia. 75 mm 75%	m	7,399	0	16,100	0	119,119,875	1,391,75
/40 Pipeline dia. 50 mm 75%	m	2,273	0	16,100	0	36,587,250	427,47
Sub-total for 3.					0	2,026,483,125	23,676,63
Stream/River crossing							
1) Bridge (L>15m)	Nr.	6	0	10,704,100	0	64,224,600	750,37
2) Bridge (L<15m)	Nr.	12	0	4,733,300	0	56,799,600	663,62
Sub-total for 4.	-				0	121,024,200	1,413,99
5. Distribution network							
1) Ground reservoir	Nr.	15	0	22,547,000	0	338,205,000	3,951,45
2) Cholorinator	Nr.	14	0	2,184,000	0	30,576,000	357,23
3) Service pipeline		5.500		7.5 200		441.014.000	5 150 co
/10 Pipeline dia. 75 mm	m	5,780	0	76,300	0	441,014,000	5,152,63
/20 Pipeline dia. 50 mm	m	26,238	0	53,500	0	1,403,733,000	16,400,66
/30 Pipeline dia. 25 mm	m	49,000	0	35,500	0	1,739,500,000	20,323,63
4) Asphalt Pavement		4 225	0	16 100	0	60 702 500	015 44
/10 Pipeline dia. 75 mm 75%	1	4,335	0	16,100 16,100	0	69,793,500	815,44
/20 Pipeline dia. 50 mm 75%	1	19,679	0	16,100	0	316,823,850	3,701,64
/30 Pipeline dia. 25 mm 75% 5) Pulic hydrant	m Nr.	36,750 193	0	5,189,000	0	591,675,000 1,001,477,000	6,912,89 11,700,86
6) Pulic taps	Nr.	100	0	2,061,000	0	206,100,000	2,407,99
7) House conection	Nr.	2,062	0	1,550,000	0	3,196,100,000	37,341,97
8) Service meter	Nr.	1,984	0	1,330,000	0	3,190,100,000	37,341,97
Sub-total for 5.	INI.	1,904	U	٥	0	9,334,997,350	109,066,44
Total of 15.					37,610,000	12,932,528,675	188,708,59
6. Physical Contingency 15% of total 14.			15%	15%	5,641,500	1,939,879,301	28,306,289
Total of 16.			1370	13,0	43,251,500	14,872,407,976	217,014,88
7. Price Contingency			1%	24%	432,515	3,569,377,914	42,135,72
<u> </u>	1				·		
Total of 17.					43,084,015	18,441,785,890	259,150,61
Note: - Price level; Oct. 2001 - Exchange rate:			г	Phase 1	43,684,015	18,441,785,890	259,150,61
US\$ 1.0 = Rp.10,435				hase 1		17,836,167,275	255,059,76
US\$ 1.0 = Kp.10,433			<u></u>	11030 4	40,000,976	26.255.052.165	514 210 25

US\$ 1.0 = Rp.10,433 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

90,352,993 36,277,953,165 514,210,374

Table A12-3.2 (Plan 2) Breakdown of Construction Cost by Phase (2/2)

Construction works / Phase 2

			Ra	te.	Amo	ount	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Site preparation and expenses				1 2	39,786,000	1,712,879,800	59,798,61
2. Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	4	0	2,222,000	0	8,888,000	103,8
/30 Tube well	Nr.	2	0	282,181,000	0	564,362,000	6,593,7
/40 Shallow well	Nr.	1	0	41,835,000	0	41,835,000	488,7
/50 Cave water intake	Nr.	1	0	3,866,000	0	3,866,000	45,1
2) Pumps		_					
/10 Submersible	Nr.	5	0	203,500,000	0	1,017,500,000	11,888,0
/20 Surface Centri-fugal	Nr.	6	0	46,924,000	0	281,544,000	3,289,4
Sub-total for 1.					0	1,917,995,000	22,409,1
3. Transmission and Distribution main							
1) Pipeline exca. Inst. Backfill.			0	166,000	0	0	
/10 Pipeline dia. 150 mm /20 Pipeline dia. 100 mm	m		0	166,900	0	~	7 (22 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m	6,500 4,315	0	100,500 76,300	0	653,250,000 329,234,500	7,632,3 3,846,6
/30 Pipeline dia. 75 mm /40 Pipeline dia. 50 mm	m	5,015	0	53,500	0		3,134,7
2) Asphalt Pavement	m	3,013	U	33,300	U	268,302,500	3,134,7
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	
/10 Pipeline dia. 130 mm /5%	1	4,875	0	16,100	0	78,487,500	917,0
/30 Pipeline dia. 75 mm 75%	1	3,236	0	16,100	0	52,103,625	608,7
/40 Pipeline dia. 50 mm 75%	m	3,761	0	16,100	0	60,556,125	707,5
Sub-total for 3.	111	3,701	U	10,100	0	1,441,934,250	16,846,9
4. Stream/River crossing	-				<u> </u>	1,441,754,250	10,040,2
1) Bridge (L>15m)	Nr.	3	0	10,704,100	0	32,112,300	375,1
2) Bridge (L<15m)	Nr.	7	0	4,733,300	0	33,133,100	387,1
Sub-total for 4.	111.	'	· ·	1,755,500	0	65,245,400	762,3
5. Distribution network						00,210,100	, , , ,
1) Ground reservoir	Nr.	5	0	22,547,000	0	112,735,000	1,317,1
2) Cholorinator	Nr.	9	0	2,184,000	0	19,656,000	229,6
3) Service pipeline				, , , , , , ,		.,,	- /-
/10 Pipeline dia. 75 mm	m	2,870	0	76,300	0	218,981,000	2,558,4
/20 Pipeline dia. 50 mm	m	15,730	0	53,500	0	841,555,000	9,832,3
/30 Pipeline dia. 25 mm	m	36,780	0	35,500	0	1,305,690,000	15,255,1
4) Asphalt Pavement							
/10 Pipeline dia. 75 mm 75%	m	2,153	0	16,100	0	34,655,250	404,8
/20 Pipeline dia. 50 mm 75%	m	11,798	0	16,100	0	189,939,750	2,219,1
/30 Pipeline dia. 25 mm 75%	m	27,585	0	16,100	0	444,118,500	5,188,9
5) Pulic hydrant	Nr.	86	0	5,189,000	0	446,254,000	5,213,8
6) Pulic taps	Nr.	52	0	2,061,000	0	107,172,000	1,252,1
7) House conection	Nr.	1,752	0	1,550,000	0	2,715,600,000	31,728,0
8) Service meter	Nr.	1,113	0	0	0	0	
Sub-total for 5.					0	6,436,356,500	75,199,8
Total of 15.					39,786,000	11,574,410,950	175,016,8
6. Physical Contingency 15% of total 14.			15%	15%	5,967,900	1,736,161,643	26,252,5
Total of 16.					45,753,900	13,310,572,593	201,269,4
7. Price Contingency			2%	34%	915,078	4,525,594,682	53,790,3
Total of 17.					46,668,978	17,836,167,275	255,059,7
Note: - Price level; Oct. 2001							
- Exchange rate:				Phase 1	43,684,015	18,441,785,890	259,150,6
US\$ $1.0 = \text{Rp.}10,435$			<u>_1</u>	Phase 2	46,668,978	17,836,167,275	255,059,70

US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Phase 1	43,684,015	18,441,785,890	259,150,611
Phase 2	46,668,978	17.836,167,275	255,059,763
Thase 2	-,,-	36.277.953.165	514.210.374

Table A12-3.3 Breakdown of Construction Cost by Village (1/19)

Construction works / Kuranji (NTB 1)

			Ra		Amo	ınt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	1	0	3,618,000	0	3,618,000	42,271
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	C
/30 Tube well	Nr.	0	0	282,181,000	0	0	(
/40 Shallow well	Nr.	0	0	41,835,000	0	0	C
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	C
2) Pumps							_
/10 Submersible	Nr.	0	0	203,500,000	0	0	C
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.	-	-			0	3,618,000	42,271
Transmission and Distribution main							
1) Pipeline exca. Inst. Backfill.				1.55.000			
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	220.025
/30 Pipeline dia. 75 mm	m	360	0	76,300	0	27,468,000	320,925
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
2) Asphalt Pavement			0	16 100	0		
/10 Pipeline dia. 150 mm 75% /20 Pipeline dia. 100 mm 75%	m	0	0	16,100 16,100	0	0	0
	m	270	0	16,100	0	4,347,000	50,789
•	m	270	0	16,100	0	4,347,000	50,789
/40 Pipeline dia. 50 mm 75% Sub-total for 2.	m	0	Ü	16,100	0	31,815,000	371,714
3. Stream/River crossing		\vdash			<u> </u>	31,013,000	3/1,/14
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	1	0	4,733,300	0	4,733,300	55,302
Sub-total for 3.	111.	1	Ü	4,733,300	0	4,733,300	55,302
4. Distribution network					<u> </u>	4,733,300	33,302
Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator		0	0	2,184,000	0	0	0
3) Service pipeline			_	_,,	-		_
/10 Pipeline dia. 75 mm	m	1,560	0	76,300	0	119,028,000	1,390,676
/20 Pipeline dia. 50 mm	m	1,380	0	53,500	0	73,830,000	862,601
/30 Pipeline dia. 25 mm	m	2,720	0	35,500	0	96,560,000	1,128,169
4) Asphalt Pavement		'		,		, ,	, .,
/10 Pipeline dia. 75 mm 75%	m	1,170	0	16,100	0	18,837,000	220,084
/20 Pipeline dia. 50 mm 75%	m	1,035	0	16,100	0	16,663,500	194,690
/30 Pipeline dia. 25 mm 75%	m	2,040	0	16,100	0	32,844,000	383,736
5) Pulic hydrant	Nr.	17	0	5,189,000	0	88,213,000	1,030,646
6) Pulic taps	Nr.	10	0	2,061,000	0	20,610,000	240,799
7) House conection	Nr.	114	0	1,550,000	0	176,700,000	2,064,494
8) Service meter	Nr.	141	0	0	0	0	0
Sub-total for 4.					0	643,285,500	7,515,896
Total of 1 4.					0	683,451,800	7,985,183

Note: - Price level; Oct. 2001 - Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Table A12-3.3 Breakdown of Construction Cost by Village (2/19)

Construction works / Bajur (NTB 2)

			Rat	e	Amo	unt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	1	0	3,618,000	0	3,618,000	42,271
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	0
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.					0	3,618,000	42,271
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	580	0	100,500	0	58,290,000	681,038
/30 Pipeline dia. 75 mm	m	0	0	76,300	0	0	0
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	435	0	16,100	0	7,003,500	81,826
/30 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	0
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0
Sub-total for 2.				.	0	65,293,500	762,864
Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	3	0	4,733,300	0	14,199,900	165,906
Sub-total for 3.					0	14,199,900	165,906
Distribution network							
Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator		0	0	2,184,000	0	0	0
3) Service pipeline							
/10 Pipeline dia. 75 mm	m	440	0	76,300	0	33,572,000	392,242
/20 Pipeline dia. 50 mm	m	2,403	0	53,500	0	128,560,500	1,502,050
/30 Pipeline dia. 25 mm	m	10,650	0	35,500	0	378,075,000	4,417,280
4) Asphalt Pavement				·		, ,	, ,
/10 Pipeline dia. 75 mm 75%	l m	330	0	16,100	0	5,313,000	62,075
/20 Pipeline dia. 50 mm 75%	m	1.802	0	16,100	0	29,016,225	339,014
/30 Pipeline dia. 25 mm 75%	m	7,988	0	16,100	0	128,598,750	1,502,497
5) Pulic hydrant	Nr.	35	0	5,189,000	0	181,615,000	2,121,918
6) Pulic taps	Nr.	15	0	2,061,000	0	30,915,000	361,199
7) House conection	Nr.	490	0	1,550,000	0	759,500,000	8,873,700
8) Service meter	Nr.	540	0	0	0	0	0,0.2,.00
Sub-total for 4.					0	1,675,165,475	19,571,977
Total of 1 4.					0	1,758,276,875	20,543,018

Table A12-3.3 Breakdown of Construction Cost by Village (3/19)

Construction works / Sembung (NTB 3)

Construction works / Sembung (NTB 3)			Ra	te	Amo	unt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
1) Intake facilities							
/10 Tapping works from existing water system	Nr.	1	0	3,618,000	0	3,618,000	42,271
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	0
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.		0	46,924,000	0	0	0
Sub-total for 1.				-,- ,	0	3,618,000	42,271
2. Transmission and Distribution main					·		
1) Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	m		0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	500	0	76,300	0	38,150,000	445,730
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
2) Asphalt Pavement			Ü	22,200	v		0
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	1		0	16,100	0	0	0
/30 Pipeline dia. 75 mm 75%	1	375	0	16,100	0	6,037,500	70,540
/40 Pipeline dia. 50 mm 75%	1	0	0	16,100	0	0,037,500	70,540
Sub-total for 2.	""	"	U	10,100	0	44,187,500	516,269
3. Stream/River crossing	-				<u>_</u>	44,107,500	310,207
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	2	0	4,733,300	0	9,466,600	110,604
Sub-total for 3.	111.	-	O	4,733,300	0	9,466,600	110,604
4. Distribution network					U	2,400,000	110,004
1) Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator	111.		0	2,184,000	0	0	0
3) Service pipeline		1 4	U	2,104,000	Ü	٥	Ü
/10 Pipeline dia. 75 mm	m	1,250	0	76,300	0	95,375,000	1,114,324
/20 Pipeline dia. 50 mm	m	1,140	0	53,500	0	60,990,000	712,583
/30 Pipeline dia. 25 mm	m	3,120	0	35,500	0	110,760,000	1,294,076
4) Asphalt Pavement	1111	3,120	U	33,300	U	110,700,000	1,294,070
/10 Pipeline dia. 75 mm 75%	m	938	0	16,100	0	15,093,750	176,349
	1	855	0		0		
/20 Pipeline dia. 50 mm 75% /30 Pipeline dia. 25 mm 75%	1	2,340	0	16,100 16,100	0	13,765,500	160,831 440,168
/30 Pipeline dia. 25 mm 75% 5) Pulic hydrant	Nr.	2,340	0	5,189,000	0	37,674,000	
		10	0			88,213,000	1,030,646
6) Pulic taps	Nr.			2,061,000	0	20,610,000	240,799
7) House conection	Nr.	134	0	1,550,000	0	207,700,000	2,426,685
8) Service meter	Nr.	161	0	0	0	0	0
Sub-total for 4.	-				0	650,181,250	7,596,463
T-4-1-61 4					Δ.	707 452 250	0.265.000
Total of 1 4.					0	707,453,350	8,265,608

Table A12-3.3 Breakdown of Construction Cost by Village (4/19)

Construction works / Duman (NTB 4-a)

			Ra	te	Amo		
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,96
/30 Tube well	Nr.	0	0	282,181,000	0	0	
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	
Sub-total for 1.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	2,222,000	25,9
2. Transmission and Distribution main							,
1) Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	l m		0	166,900	0	0	
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	
/30 Pipeline dia. 75 mm	m	1.650	0	76,300	0	125,895,000	1,470,9
/40 Pipeline dia. 50 mm	m	1,530	0	53,500	0	81,855,000	956,3
2) Asphalt Pavement	"	1,550	· ·	33,300	· ·	01,033,000	750,5
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	
/20 Pipeline dia. 100 mm 75%	m		0	16,100	0	0	
/30 Pipeline dia. 75 mm 75%	m	1,238	0	16,100	0	19,923,750	232,7
/40 Pipeline dia. 50 mm 75%	m	1,148	0	16,100	0	18,474,750	215,8
Sub-total for 2.	""	1,140	U	10,100	0	246,148,500	2,875,9
3. Stream/River crossing	 					240,140,200	2,072,5
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	
2) Bridge (L<15m)	Nr.	1 1	0	4,733,300	0	4,733,300	55,3
Sub-total for 3.	1	1 1	· ·	4,733,300	0	4,733,300	55,3
4. Distribution network						4,755,500	22,0
Ground reservoir	Nr.	6	0	22,547,000	0	135,282,000	1,580,5
2) Cholorinator	1	2	0	2,184,000	0	4,368,000	51,0
3) Service pipeline		-	Ü	2,104,000	· ·	4,500,000	31,0
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	
/20 Pipeline dia. 50 mm	m	1.670	0	53,500	0	89.345.000	1.043.8
/30 Pipeline dia. 25 mm	m	5,970	0	35,500	0	211,935,000	2,476,1
4) Asphalt Pavement	1111	3,970	U	33,300	U	211,933,000	2,470,1
		0	0	16,100	0	0	
	m					~	225.6
/20 Pipeline dia. 50 mm 75%	m	1,253	0	16,100	0	20,165,250	235,6
/30 Pipeline dia. 25 mm 75%	m	4,478	0	16,100	0	72,087,750	842,2
5) Pulic hydrant	Nr.	33	0	5,189,000	0	171,237,000	2,000,6
6) Pulic taps	Nr.	10	0	2,061,000	0	20,610,000	240,7
7) House conection	Nr.	123	0	1,550,000	0	190,650,000	2,227,4
8) Service meter	Nr.	0	0	0	0	0	
Sub-total for 4.	-				0	915,680,000	10,698,4
m					_		
Total of 1 4.					0	1,168,783,800	13,655,61

Table A12-3.3 Breakdown of Construction Cost by Village (5/19)

Construction works / Duman (NTB 4-b)

				Ra	te	Amo	unt	
Works Items	1	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities								
 Intake facilities 								
/10 Tapping works from existing water s		Nr.	1	0	3,618,000	0	3,618,000	42,27
/20 Spring water intake		Nr.	0	0	2,222,000	0	0	(
/30 Tube well		Nr.	0	0	282,181,000	0	0	(
/40 Shallow well		Nr.	0	0	41,835,000	0	0	(
/50 Cave water intake		Nr.	0	0	3,866,000	0	0	(
2) Pumps								
/10 Submersible		Nr.	0	0	203,500,000	0	0	(
/20 Surface Centri-fugal		Nr.	0	0	46,924,000	0	0	
Sub-total for 1.						0	3,618,000	42,27
2. Transmission and Distribution main								
1) Pipeline exca. Inst. Backfill.					155000	0		
/10 Pipeline dia. 150 mm		m	1 000	0	166,900	0	100 050 000	2 220 000
/20 Pipeline dia. 100 mm		m	1,900	0	100,500	0	190,950,000	2,230,985
/30 Pipeline dia. 75 mm		m	0	0	76,300 53,500	0	0	(
/40 Pipeline dia. 50 mm		m	U	0	33,300	U	U	,
2) Asphalt Pavement /10 Pipeline dia. 150 mm	75%		0	0	16,100	0		(
/10 Pipeline dia. 150 mm /20 Pipeline dia. 100 mm	75%	m m	1,425	0	16,100	0	22,942,500	268,05
/30 Pipeline dia. 75 mm	75%	m	1,423	0	16,100	0	22,942,300	208,031
/40 Pipeline dia. 50 mm	75%	m	0	0	16,100	0	0	(
Sub-total for 2.	73%	111	U U	U	10,100	0	213,892,500	2,499,036
3. Stream/River crossing						<u> </u>	213,692,300	2,477,030
1) Bridge (L>15m)		Nr.	2	0	10,704,100	0	21,408,200	250,125
2) Bridge (L<15m)		Nr.	2	0	4,733,300	0	9,466,600	110,604
Sub-total for 3.			-	· ·	1,755,500	0	30,874,800	360,729
4. Distribution network							20,07 1,000	200,72
1) Ground reservoir		Nr.	0	0	22,547,000	0	0	(
2) Cholorinator			0	0	2,184,000	0	0	(
3) Service pipeline					, . ,			
/10 Pipeline dia. 75 mm		m	2,110	0	76,300	0	160,993,000	1,880,979
/20 Pipeline dia. 50 mm		m	2,700	0	53,500	0	144,450,000	1,687,697
/30 Pipeline dia. 25 mm		m	2,780	0	35,500	0	98,690,000	1,153,055
4) Asphalt Pavement					·		· · ·	
/10 Pipeline dia. 75 mm	75%	m	1,583	0	16,100	0	25,478,250	297,678
/20 Pipeline dia. 50 mm	75%	m	2,025	0	16,100	0	32,602,500	380,915
/30 Pipeline dia. 25 mm	75%	m	2,085	0	16,100	0	33,568,500	392,20
5) Pulic hydrant		Nr.	18	0	5,189,000	0	93,402,000	1,091,272
6) Pulic taps		Nr.	10	0	2,061,000	0	20,610,000	240,799
7) House conection		Nr.	116	0	1,550,000	0	179,800,000	2,100,713
8) Service meter		Nr.	144	0	0	0	0	(
Sub-total for 4.						0	789,594,250	9,225,310
Total of 1 4.						0	1,037,979,550	12,127,346

Table A12-3.3 Breakdown of Construction Cost by Village (6/19)

Construction works / Bagik Papan (NTB 10)

			Rai	te	Amou	ınt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,961
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.					0	2,222,000	25,961
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	2,435	0	76,300	0	185,790,500	2,170,703
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
2) Asphalt Pavement			_				_
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	0
/30 Pipeline dia. 75 mm 75%	m	1,826	0	16,100	0	29,402,625	343,529
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0 514 222
Sub-total for 2. 3. Stream/River crossing	-	\vdash			0	215,193,125	2,514,232
2	Nr.	1	0	10,704,100	0	10,704,100	125,063
1) Bridge (L>15m) 2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	10,704,100	125,063
Sub-total for 3.	INI.		U	4,733,300	0	10,704,100	125,063
4. Distribution network					U	10,704,100	123,003
Ground reservoir	Nr.	1	0	22,547,000	0	22,547,000	263,430
2) Cholorinator	111.	1	0	2,184,000	0	2,184,000	25,517
3) Service pipeline		1	O	2,104,000	O	2,104,000	23,317
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	0
/20 Pipeline dia. 50 mm	m	3,175	0	53,500	0	169,862,500	1,984,607
/30 Pipeline dia. 25 mm	m	3,190	0	35,500	0	113,245,000	1,323,110
4) Asphalt Pavement		.,.,	-	,	-	,,	-,0-0,0
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 50 mm 75%	m	2,381	0	16,100	0	38,338,125	447,928
/30 Pipeline dia. 25 mm 75%	m	2,393	0	16,100	0	38,519,250	450,044
5) Pulic hydrant	Nr.	30	0	5,189,000	0	155,670,000	1,818,787
6) Pulic taps	Nr.	5	0	2,061,000	0	10,305,000	120,400
7) House conection	Nr.	127	0	1,550,000	0	196,850,000	2,299,918
8) Service meter	Nr.	0	0	0	0	0	0
Sub-total for 4.					0	747,520,875	8,733,741
Total of 1 4.					0	075 640 100	11 200 007
10tat 0t 1 4.					U	975,640,100	11,398,996

Table A12-3.3 Breakdown of Construction Cost by Village (7/19)

Construction works / Selaparang (NTB 11)

				Ra	te	Amo	unt	
Works I		Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
 Intake fa 								
,	ke facilities							
/10	Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20	Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,961
/30	Tube well	Nr.	0	0	282,181,000	0	0	0
/40	Shallow well	Nr.	0	0	41,835,000	0	0	0
/50	Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pum								
/10	Submersible	Nr.	0	0	203,500,000	0	0	0
/20	Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-tota						0	2,222,000	25,961
	ssion and Distribution main							
, 1	eline exca. Inst. Backfill.							
/10	Pipeline dia. 150 mm	m	800	0	166,900	0	133,520,000	1,559,995
/20	Pipeline dia. 100 mm	m	1,240	0	100,500	0	124,620,000	1,456,011
/30	Pipeline dia. 75 mm	m	2,500	0	76,300	0	190,750,000	2,228,648
/40	Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
	halt Pavement							
/10	Pipeline dia. 150 mm 75%	m	600	0	16,100	0	9,660,000	112,864
/20	Pipeline dia. 100 mm 75%	m	930	0	16,100	0	14,973,000	174,939
/30	Pipeline dia. 75 mm 75%	m	1,875	0	16,100	0	30,187,500	352,699
	Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0
Sub-tota			-			0	503,710,500	5,885,156
	River crossing	.,,	ا. ا		10 504 100		10.504.100	125.052
	lge (L>15m)	Nr.	1	0	10,704,100	0	10,704,100	125,063
	lge (L<15m)	Nr.	0	0	4,733,300	0	0	0
Sub-tota	tion network	-				0	10,704,100	125,063
		Nr.	ا ا	0	22,547,000	0	45,094,000	526,861
,	und reservoir	INT.	2	0	′ ′ ′	0	1 1	,
,	lorinator		1	Ü	2,184,000	0	2,184,000	25,517
	vice pipeline		420	0	76,300	0	32,046,000	374,413
/10 /20	Pipeline dia. 75 mm Pipeline dia. 50 mm	m m	1,820	0	53,500	0	97,370,000	1,137,633
/30	Pipeline dia. 25 mm	m	11,380	0	35,500	0	403,990,000	4,720,061
	halt Pavement	111	11,360	U	33,300	U	403,990,000	4,720,001
4) Asp.	Pipeline dia. 75 mm 75%	m	315	0	16,100	0	5,071,500	59,253
/20	Pipeline dia. 73 mm 75% Pipeline dia. 50 mm 75%	m	1,365	0	16,100	0	21,976,500	256,765
/30	Pipeline dia. 30 mm 75% Pipeline dia. 25 mm 75%	m	8,535	0	16,100	0	137,413,500	1,605,485
	c hydrant	Nr.	15	0	5,189,000	0	77,835,000	909,394
6) Puli		Nr.	10	0	2,061,000	0	20,610,000	240,799
,	se conection	Nr.	549	0	1,550,000	0	850,950,000	9,942,166
,	rice meter	Nr.	574	0	1,550,000	0	030,930,000	9,942,100
Sub-tota		111.	314	U	٩	0	1,694,540,500	19,798,347
200 101							_,5> 1,0 10,000	25,75,547
Total of	1 4.					0	2,211,177,100	25,834,526

Table A12-3.3 Breakdown of Construction Cost by Village (8/19)

Construction works / Labuhan Mapin (NTB 13)

			Ra	te	Amo	unt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tappimg works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,96
/30 Tube well	Nr.	0	0	282,181,000	0	0	
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	
Sub-total for 1.					0	2,222,000	25,96
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	
/30 Pipeline dia. 75 mm	m	0	0	76,300	0	0	
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	
/30 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	
Sub-total for 2.				·	0	0	
3. Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	
Sub-total for 3.					0	0	
Distribution network							
Ground reservoir	Nr.	0	0	22,547,000	0	0	
2) Cholorinator		1	0	2,184,000	0	2,184,000	25,51
3) Service pipeline							
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	
/20 Pipeline dia. 50 mm	m	1,810	0	53,500	0	96,835,000	1,131,38
/30 Pipeline dia. 25 mm	m	8,460	0	35,500	0	300,330,000	3,508,93
4) Asphalt Pavement		',				, ,	- / /-
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	
/20 Pipeline dia. 50 mm 75%	1	1,358	0	16,100	0	21,855,750	255,35
/30 Pipeline dia. 25 mm 75%	1	6,345	0	16,100	0	102,154,500	1,193,53
5) Pulic hydrant	Nr.	7	0	5,189,000	0	36,323,000	424,38
6) Pulic taps	Nr.	0	0	2,061,000	0	0	.21,50
7) House conection	Nr.	446	0	1,550,000	0	691,300,000	8,076,87
8) Service meter	Nr.	454	0	0	0	0	0,0.0,0
Sub-total for 4.	1	154	O .	٩	0	1,250,982,250	14,615,98
N						_,200,02,200	1.,020,70
Total of 1 4.					0	1,253,204,250	14,641,94
	-						

Table A12-3.3 Breakdown of Construction Cost by Village (9/19)

Construction works / Labuhan Lalar (NTB 14)

			Ra		Amo		
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	
/30 Tube well	Nr.	1	0	282,181,000	0	282,181,000	3,296,89
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	
2) Pumps							
/10 Submersible	Nr.	1	0	203,500,000	0	203,500,000	2,377,61
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	
Sub-total for 1.					0	485,681,000	5,674,50
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	
/20 Pipeline dia. 100 mm	m	2,800	0	100,500	0	281,400,000	3,287,76
/30 Pipeline dia. 75 mm	m	0	0	76,300	0	0	
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	
Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	
/20 Pipeline dia. 100 mm 75%	m	2,100	0	16,100	0	33,810,000	395,02
/30 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	
Sub-total for 2.					0	315,210,000	3,682,79
Stream/River crossing							
1) Bridge (L>15m)	Nr.	2	0	10,704,100	0	21,408,200	250,12
2) Bridge (L<15m)	Nr.	3	0	4,733,300	0	14,199,900	165,90
Sub-total for 3.					0	35,608,100	416,03
Distribution network							
Ground reservoir	Nr.	1	0	22,547,000	0	22,547,000	263,43
2) Cholorinator		1	0	2,184,000	0	2,184,000	25,51
3) Service pipeline							
/10 Pipeline dia. 75 mm	m	1,350	0	76,300	0	103,005,000	1,203,47
/20 Pipeline dia. 50 mm	m	2,720	0	53,500	0	145,520,000	1,700,19
/30 Pipeline dia. 25 mm	m	4,290	0	35,500	0	152,295,000	1,779,35
4) Asphalt Pavement		/		,		, , , , , , , , , , , , , , , , , , , ,	,,.
/10 Pipeline dia. 75 mm 75%	m	1,013	0	16,100	0	16,301,250	190,45
/20 Pipeline dia. 50 mm 75%		2,040	0	16,100	0	32,844,000	383,73
/30 Pipeline dia. 25 mm 75%	8	3,218	0	16,100	0	51,801,750	605,23
5) Pulic hydrant	Nr.	24	0	5,189,000	0	124,536,000	1,455,03
6) Pulic taps	Nr.	5	0	2,061,000	0	10,305,000	120,40
7) House conection	Nr.	188	0	1,550,000	0	291,400,000	3,404,60
8) Service meter	Nr.	0	0	1,550,000	0	291,400,000	3,404,00
Sub-total for 4.	111.		U	ال	0	952,739,000	11,131,42
Sub-widi ivi 4.	-	 			U	734,137,000	11,131,42
Total of 1 4.					0	1,789,238,100	20,904,75
1 Utai UI 1. * 4.					U	1,707,430,100	40,704,750

Table A12-3.3 Breakdown of Construction Cost by Village (10/19)

Construction works / Piong (NTB 16)

			Ra		Amo	unt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	0
/30 Tube well	Nr.	1	0	282,181,000	0	282,181,000	3,296,892
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	1	0	203,500,000	0	203,500,000	2,377,614
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.					0	485,681,000	5,674,506
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	590	0	76,300	0	45,017,000	525,961
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	0
/30 Pipeline dia. 75 mm 75%	m	443	0	16,100	0	7,124,250	83,237
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0
Sub-total for 2.		-			0	52,141,250	609,198
3. Stream/River crossing				10 504 100			
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	0
Sub-total for 3. 4. Distribution network	-				0	U	0
	Nr.	1	0	22,547,000	0	22,547,000	263,430
1) Ground reservoir	INT.	1	0		0	4 4	
2) Cholorinator		1	Ü	2,184,000	Ü	2,184,000	25,517
3) Service pipeline		0	0	76,300	0	0	0
/10 Pipeline dia. 75 mm /20 Pipeline dia. 50 mm	m m	3,270	0	53,500	0	174,945,000	2,043,989
/30 Pipeline dia. 25 mm	m	2,970	0	35,500	0	105,435,000	1,231,861
4) Asphalt Pavement	1111	2,970	U	33,300	U	103,433,000	1,231,601
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	0
/10 Pipeline dia. 73 mm /3% /20 Pipeline dia. 50 mm 75%	m	2,453	0	16,100	0	39,485,250	461,330
/30 Pipeline dia. 25 mm 75%	m	2,228	0	16,100	0	35,862,750	419,006
5) Pulic hydrant	Nr.	13	0	5,189,000	0	67,457,000	788,141
6) Pulic taps	Nr.	5	0	2,061,000	0	10,305,000	120,400
7) House conection	Nr.	133	0	1,550,000	0	206,150,000	2,408,576
8) Service meter	Nr.	0	0	1,330,000	0	200,130,000	2,408,370
Sub-total for 4.	111.	ا ا	U	٥	0	664,371,000	7,762,250
COM COMM IN TO						30-1,27 1,300	7,702,230
Total of 1 4.					0	1,202,193,250	14,045,955
		L				, , , 0	,,

Table A12-3.3 Breakdown of Construction Cost by Village (11/19)

Construction works / Kawuwu (NTB 18-a)

			Rat		Amou		
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	C
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	0
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	1	0	41,835,000	0	41,835,000	488,784
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	(
2) Pumps							
/10 Submersible	Nr.	1	0	203,500,000	0	203,500,000	2,377,614
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.					0	245,335,000	2,866,398
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	l m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	0	0	76,300	0	0	C
/40 Pipeline dia. 50 mm	m	890	0	53,500	0	47,615,000	556,315
2) Asphalt Pavement		'		,		.,,	,-
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	ő	0
/30 Pipeline dia. 75 mm 75%	1	0	0	16,100	0	o l	0
/40 Pipeline dia. 50 mm 75%		668	0	16,100	0	10,746,750	125,561
Sub-total for 2.	"	000	· ·	10,100	0	58,361,750	681,876
3. Stream/River crossing						20,202,720	001,070
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.		0	4,733,300	0	ő	0
Sub-total for 3.	1	l ĭ	· ·	4,733,300	0	ŏ	ő
4. Distribution network					<u>v</u>		
Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator	1	1	0	2,184,000	0	2,184,000	25,517
3) Service pipeline		1	· ·	2,101,000	· ·	2,101,000	23,317
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	0
/20 Pipeline dia. 50 mm	m		0	53,500	0	0	0
/30 Pipeline dia. 25 mm	m	480	0	35,500	0	17,040,000	199,089
4) Asphalt Pavement	""	460	U	33,300	U	17,040,000	199,009
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	0
/10 Pipeline dia. 73 mm /3% /20 Pipeline dia. 50 mm 75%	m		0	16,100	0	0	0
/30 Pipeline dia. 30 mm /3%		360	0	16,100	0	5,796,000	67,718
	1		0		0		,
5) Pulic hydrant 6) Pulic taps	Nr.	3 2	0	5,189,000 2,061,000	0	15,567,000	181,879
, 1	Nr.	17				4,122,000	48,160
7) House conection 8) Service meter	Nr.	0	0	1,550,000	0	26,350,000	307,863
-,	Nr.		0	0	0	71 050 000	920 225
Sub-total for 4.	-				0	71,059,000	830,225
Total of 1 4.					0	374,755,750	4,378,499
10tai 0i 1 4.	l				U	3/4,/33,/30	4,370,499

Table A12-3.3 Breakdown of Construction Cost by Village (12/19)

Construction works / Kawuwu (NTB 18-b)

			Rat	te	Amou	ınt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	(
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,961
/30 Tube well	Nr.	0	0	282,181,000	0	0	(
/40 Shallow well	Nr.	0	0	41,835,000	0	0	(
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	(
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	(
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.					0	2,222,000	25,961
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	(
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	100	0	76,300	0	7,630,000	89,146
/40 Pipeline dia. 50 mm	m	100	0	53,500	0	5,350,000	62,507
Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	(
/30 Pipeline dia. 75 mm 75%	m	75	0	16,100	0	1,207,500	14,108
/40 Pipeline dia. 50 mm 75%	m	75	0	16,100	0	1,207,500	14,108
Sub-total for 2.					0	15,395,000	179,869
Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	0
Sub-total for 3.					0	0	0
Distribution network							
Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator		1	0	2,184,000	0	2,184,000	25,517
3) Service pipeline							
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	0
/20 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
/30 Pipeline dia. 25 mm	m	100	0	35,500	0	3,550,000	41,477
4) Asphalt Pavement							
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	(
/20 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	(
/30 Pipeline dia. 25 mm 75%	m	75	0	16,100	0	1,207,500	14,108
5) Pulic hydrant	Nr.	3	0	5,189,000	0	15,567,000	181,879
6) Pulic taps	Nr.	0	0	2,061,000	0	0	(
7) House conection	Nr.	0	0	1,550,000	0	0	Č
8) Service meter	Nr.	0	0	0	0	0	C
Sub-total for 4.					0	22,508,500	262,980
T 4 1 64 4					-	40 125 500	460.044
Total of 1 4.					0	40,125,500	468,811

Table A12-3.3 Breakdown of Construction Cost by Village (13/19)

Construction works / Sinar Hading (NTT 6)

			Ra		Amou		
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
1) Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	
/30 Tube well	Nr.	0	0	282,181,000	0	0	
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	
Sub-total for 1.	-				0	0	
2. Transmission and Distribution main							
1) Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	
/30 Pipeline dia. 75 mm	m	0	0	76,300	0	0	
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	1	0	0	16,100	0	0	
/20 Pipeline dia. 100 mm 75%	1	0	0	16,100	0	0	
/30 Pipeline dia. 75 mm 75%	1	0	0	16,100	0	0	
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	
Sub-total for 2.	-	-			0	0	
3. Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	
Sub-total for 3.	-	-			0	0	
4. Distribution network		,	0	22 5 47 000	0	22 5 47 000	262.4
1) Ground reservoir	Nr.	1	0	22,547,000	0	22,547,000	263,4
2) Cholorinator		4	0	2,184,000	0	8,736,000	102,0
3) Service pipeline			0	76 200	0		
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	1.050.0
/20 Pipeline dia. 50 mm	m	3,150	0	53,500	0	168,525,000	1,968,9
/30 Pipeline dia. 25 mm	m	4,340	0	35,500	0	154,070,000	1,800,0
4) Asphalt Pavement							
/10 Pipeline dia. 75 mm 75%	1	0	0	16,100	0	0	
/20 Pipeline dia. 50 mm 75%		2,363	0	16,100	0	38,036,250	444,4
/30 Pipeline dia. 25 mm 75%	1	3,255	0	16,100	0	52,405,500	612,2
5) Pulic hydrant	Nr.	5	0	5,189,000	0	25,945,000	303,1
6) Pulic taps	Nr.	10	0	2,061,000	0	20,610,000	240,7
7) House conection	Nr.	207	0	1,550,000	0	320,850,000	3,748,6
8) Service meter	Nr.	222	0	0	0	0	
Sub-total for 4.	-				0	811,724,750	9,483,8
m					_		
Total of 1 4.					0	811,724,750	9,483,8

Table A12-3.3 Breakdown of Construction Cost by Village (14/19)

Construction works / Ile padung (NTT 7)

Construction works / ne parting (1411 /			Ra	te	Amo	unt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,961
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.	4	0	46,924,000	0	187,696,000	2,192,966
Sub-total for 1.					0	189,918,000	2,218,927
Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	3,500	0	100,500	0	351,750,000	4,109,709
/30 Pipeline dia. 75 mm	m	1,340	0	76,300	0	102,242,000	1,194,555
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	2,625	0	16,100	0	42,262,500	493,778
/30 Pipeline dia. 75 mm 75%	m	1,005	0	16,100	0	16,180,500	189,047
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0
Sub-total for 2.					0	512,435,000	5,987,090
3. Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	0
Sub-total for 3.					0	0	0
4. Distribution network				22 5 45 000		c a c41 000	700 201
1) Ground reservoir	Nr.	3	0	22,547,000	0	67,641,000	790,291
2) Cholorinator		4	0	2,184,000	0	8,736,000	102,068
3) Service pipeline		0	0	76,300	0	0	0
/10 Pipeline dia. 75 mm	m	2.850		53,500	0	152,475,000	1,781,458
/20 Pipeline dia. 50 mm /30 Pipeline dia. 25 mm	m	3,890	0	′ 1	0		
/30 Pipeline dia. 25 mm 4) Asphalt Pavement	m	3,890	U	35,500	Ü	138,095,000	1,613,448
		0	0	16 100	0	0	0
/10 Pipeline dia. 75 mm 75% /20 Pipeline dia. 50 mm 75%	m	2,138	0	16,100 16,100	0	34,413,750	402.077
/20 Pipeline dia. 50 mm 75% /30 Pipeline dia. 25 mm 75%	m m	2,138	0	16,100	0	34,413,750 46,971,750	402,077 548,800
5) Pulic hydrant 75%	Mr.	2,918	0	5,189,000	0	36,323,000	548,800 424,384
6) Pulic taps	Nr.	0	0	2,061,000	0	30,323,000	424,384
7) House conection	Nr.	180	0	1,550,000	0	279,000,000	3,259,727
8) Service meter	Nr.	202	0	1,330,000	0	279,000,000	3,239,727
Sub-total for 4.	INI.	202	U	U	0	763,655,500	8,922,251
Dub-total IVI 4.					<u>U</u>	703,033,300	0,744,431
Total of 1 4.					0	1,466,008,500	17,128,268
- VVIII VA A1 T1					<u> </u>	2,100,000,000	17,120,200

Table A12-3.3 Breakdown of Construction Cost by Village (15/19)

Construction works / Weerame (NTT 18)

			Rat		Amo	unt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	0
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	1	0	3,866,000	0	3,866,000	45,169
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.	2	0	46,924,000	0	93,848,000	1,096,483
Sub-total for 1.					0	97,714,000	1,141,652
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	550	0	76,300	0	41,965,000	490,303
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	0
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	0
/30 Pipeline dia. 75 mm 75%	m	413	0	16,100	0	6,641,250	77,594
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0
Sub-total for 2.					0	48,606,250	567,896
3. Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	0
Sub-total for 3.					0	0	0
4. Distribution network							
1) Ground reservoir	Nr.	1	0	22,547,000	0	22,547,000	263,430
2) Cholorinator		1	0	2,184,000	0	2,184,000	25,517
3) Service pipeline							
/10 Pipeline dia. 75 mm	m	420	0	76,300	0	32,046,000	374,413
/20 Pipeline dia. 50 mm	m	2,330	0	53,500	0	124,655,000	1,456,420
/30 Pipeline dia. 25 mm	m	5,440	0	35,500	0	193,120,000	2,256,338
4) Asphalt Pavement							
/10 Pipeline dia. 75 mm 75%	m	315	0	16,100	0	5,071,500	59,253
/20 Pipeline dia. 50 mm 75%	m	1,748	0	16,100	0	28,134,750	328,715
/30 Pipeline dia. 25 mm 75%	m	4,080	0	16,100	0	65,688,000	767,473
5) Pulic hydrant	Nr.	8	0	5,189,000	0	41,512,000	485,010
6) Pulic taps	Nr.	10	0	2,061,000	0	20,610,000	240,799
7) House conection	Nr.	259	0	1,550,000	0	401,450,000	4,690,384
8) Service meter	Nr.	0	0	0	0	0	0
Sub-total for 4.					0	937,018,250	10,947,754
Total of 1 4.					0	1,083,338,500	12,657,302

Table A12-3.3 Breakdown of Construction Cost by Village (16/19)

Construction works / Kondamara (NTT 19)

			Ra	te	Amou	ınt	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tappimg works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,961
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.	2	0	46,924,000	0	93,848,000	1,096,483
Sub-total for 1.					0	96,070,000	1,122,444
Transmission and Distribution main							
Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	2,975	0	76,300	0	226,992,500	2,652,091
/40 Pipeline dia. 50 mm	m	4,025	0	53,500	0	215,337,500	2,515,919
Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	0
/30 Pipeline dia. 75 mm 75%	m	2,231	0	16,100	0	35,923,125	419,712
/40 Pipeline dia. 50 mm 75%	m	3,019	0	16,100	0	48,601,875	567,845
Sub-total for 2. 3. Stream/River crossing		-			0	526,855,000	6,155,567
č	Nr.		0	10,704,100	0	0	0
1) Bridge (L>15m) 2) Bridge (L<15m)	Nr. Nr.	4	0	4,733,300	0	18,933,200	221,208
Sub-total for 3.	111.	4	U	4,733,300	0	18,933,200	221,208
4. Distribution network					U	10,933,200	221,200
Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator	141.	1	0	2,184,000	0	2,184,000	25,517
3) Service pipeline		1 1	O O	2,104,000	O	2,104,000	23,317
/10 Pipeline dia. 75 mm	m		0	76,300	0	0	0
/20 Pipeline dia. 50 mm	m		0	53,500	0	0	0
/30 Pipeline dia. 25 mm	m	1,960	0	35,500	0	69,580,000	812,945
4) Asphalt Pavement		1,,,,,,	0	35,500	Ü	0,,500,000	012,7 10
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	0
/20 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	0
/30 Pipeline dia. 25 mm 75%	m	1,470	0	16,100	0	23,667,000	276,516
5) Pulic hydrant	Nr.	15	0	5,189,000	0	77,835,000	909,394
6) Pulic taps	Nr.	20	0	2,061,000	0	41,220,000	481,598
7) House conection	Nr.	73	0	1,550,000	0	113,150,000	1,322,000
8) Service meter	Nr.	0	0	0	0	0	0
Sub-total for 4.					0	327,636,000	3,827,971
Total of 1 4.					0	969,494,200	11,327,190

Table A12-3.3 Breakdown of Construction Cost by Village (17/19)

Construction works / Oebau (NTT 21)

			Ra		Amou		
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	(
/20 Spring water intake	Nr.	0	0	2,222,000	0	0	(
/30 Tube well	Nr.	0	0	282,181,000	0	0	
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	1	0	3,866,000	0	3,866,000	45,169
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	
/20 Surface Centri-fugal	Nr.	1	0	46,924,000	0	46,924,000	548,24
Sub-total for 1.	-	\vdash			0	50,790,000	593,41
2. Transmission and Distribution main							
1) Pipeline exca. Inst. Backfill.							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	(
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	
/30 Pipeline dia. 75 mm	m	1,080	0	76,300	0	82,404,000	962,770
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	(
2) Asphalt Pavement				4 - 400			
/10 Pipeline dia. 150 mm 75%	1	0	0	16,100	0	0	(
/20 Pipeline dia. 100 mm 75%		0	0	16,100	0	0	152.25
/30 Pipeline dia. 75 mm 75%	1	810	0	16,100	0	13,041,000	152,360
/40 Pipeline dia. 50 mm 75%	m	0	0	16,100	0	0	
Sub-total for 2.	-				0	95,445,000	1,115,142
3. Stream/River crossing	.,			10 504 100		21 400 200	250.12
1) Bridge (L>15m)	Nr.	2 0	0	10,704,100	0	21,408,200	250,125
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	٧	
Sub-total for 3. 4. Distribution network	-				<u>U</u>	21,408,200	250,12
	Nr.		0	22,547,000	0	45,094,000	526,861
1) Ground reservoir	INT.	2	0		0	' ' I	,
2) Cholorinator		1	Ü	2,184,000	Ü	2,184,000	25,51
3) Service pipeline		0	0	76,300	0	0	
/10 Pipeline dia. 75 mm /20 Pipeline dia. 50 mm	m	4,950	0	53,500	0	264,825,000	3,094,11
/20 Pipeline dia. 50 mm /30 Pipeline dia. 25 mm	m	560	0	35,500	0	19,880,000	232,270
4) Asphalt Pavement	m	300	U	33,300	U	19,000,000	232,270
/10 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	
/10 Pipeline dia. 73 mm /3% /20 Pipeline dia. 50 mm 75%		3,713	0	16,100	0	59,771,250	698,34
/30 Pipeline dia. 25 mm 75%	5	420	0	16,100	0	6,762,000	79,00
5) Pulic hydrant	m Nr.	10	0	5,189,000	0	51,890,000	606,26
6) Pulic taps	Nr.	10	0	2,061,000	0		,
7) House conection	Nr. Nr.	13	0	1,550,000	0	20,610,000 20,150,000	240,799 235,423
8) Service meter	Nr.	0	0	1,550,000	0	20,150,000	255,425
Sub-total for 4.	INT.	ا ا	Ü	o _l	0	491,166,250	5,738,594
Sub-total 10f 4.	-	 			<u> </u>	491,100,450	3,730,394
Total of 1 4.					0	658,809,450	7,697,271
1 0tai 01 1. * 4.					U	030,002,430	1,051,2/1

Table A12-3.3 Breakdown of Construction Cost by Village (18/19)

Construction works / Nusakdale (NTT 23)

			Rat	te	Amou	int	
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
 Intake facilities 							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	0
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,961
/30 Tube well	Nr.	0	0	282,181,000	0	0	0
/40 Shallow well	Nr.	0	0	41,835,000	0	0	0
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	0
2) Pumps							
/10 Submersible	Nr.	0	0	203,500,000	0	0	0
/20 Surface Centri-fugal	Nr.	0	0	46,924,000	0	0	0
Sub-total for 1.					0	2,222,000	25,961
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	0
/20 Pipeline dia. 100 mm	m	0	0	100,500	0	0	0
/30 Pipeline dia. 75 mm	m	0	0	76,300	0	0	0
/40 Pipeline dia. 50 mm	m	1,500	0	53,500	0	80,250,000	937,610
2) Asphalt Pavement							
/10 Pipeline dia. 150 mm 75%	m		0	16,100	0	0	0
/20 Pipeline dia. 100 mm 75%	m	0	0	16,100	0	0	0
/30 Pipeline dia. 75 mm 75%	m	0	0	16,100	0	0	0
/40 Pipeline dia. 50 mm 75%	m	1,125	0	16,100	0	18,112,500	211,619
Sub-total for 2.				.	0	98,362,500	1,149,229
3. Stream/River crossing							
1) Bridge (L>15m)	Nr.	0	0	10,704,100	0	0	0
2) Bridge (L<15m)	Nr.	3	0	4,733,300	0	14,199,900	165,906
Sub-total for 3.					0	14,199,900	165,906
Distribution network							·
Ground reservoir	Nr.	0	0	22,547,000	0	0	0
2) Cholorinator		1	0	2,184,000	0	2,184,000	25,517
3) Service pipeline							
/10 Pipeline dia. 75 mm	m	0	0	76,300	0	0	0
/20 Pipeline dia. 50 mm	m	1,000	0	53,500	0	53,500,000	625,073
/30 Pipeline dia. 25 mm	m	400	0	35,500	0	14,200,000	165,907
4) Asphalt Pavement				·		· · ·	, in the second
/10 Pipeline dia. 75 mm 75%	l m	0	0	16,100	0	0	0
/20 Pipeline dia. 50 mm 75%	m	750	0	16,100	0	12,075,000	141,080
/30 Pipeline dia. 25 mm 75%	m	300	0	16,100	0	4,830,000	56,432
5) Pulic hydrant	Nr.	6	0	5,189,000	0	31,134,000	363,757
6) Pulic taps	Nr.	10	0	2,061,000	0	20,610,000	240,799
7) House conection	Nr.	9	0	1,550,000	0	13,950,000	162,986
8) Service meter	Nr.	0	0	0	0	0	0
Sub-total for 4.					0	152,483,000	1,781,552
T 4 1 64 4						267.267.400	2 122 (40
Total of 1 4.					0	267,267,400	3,122,648

Table A12-3.3 Breakdown of Construction Cost by Village (19/19)

Construction works / Tarus (NTT 24)

			Rat		Amo		
Works Items	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Y)
Intake facilities							
Intake facilities							
/10 Tapping works from existing water system	Nr.	0	0	3,618,000	0	0	
/20 Spring water intake	Nr.	1	0	2,222,000	0	2,222,000	25,96
/30 Tube well	Nr.	0	0	282,181,000	0	0	
/40 Shallow well	Nr.	0	0	41,835,000	0	0	
/50 Cave water intake	Nr.	0	0	3,866,000	0	0	
2) Pumps							
/10 Submersible	Nr.	2	0	203,500,000	0	407,000,000	4,755,22
/20 Surface Centri-fugal	Nr.	2	0	46,924,000	0	93,848,000	1,096,48
Sub-total for 1.					0	503,070,000	5,877,67
2. Transmission and Distribution main							
 Pipeline exca. Inst. Backfill. 							
/10 Pipeline dia. 150 mm	m	0	0	166,900	0	0	
/20 Pipeline dia. 100 mm	l m	3,700	0	100,500	0	371,850,000	4.344.55
/30 Pipeline dia. 75 mm	m	100	0	76,300	0	7,630,000	89,14
/40 Pipeline dia. 50 mm	m	0	0	53,500	0	0	,
2) Asphalt Pavement				,			
/10 Pipeline dia. 150 mm 75%	m	0	0	16,100	0	0	
/20 Pipeline dia. 100 mm 75%	1	2,775	0	16,100	0	44,677,500	521.99
/30 Pipeline dia. 75 mm 75%		75	0	16,100	0	1,207,500	14,10
/40 Pipeline dia. 50 mm 75%		0	0	16,100	0	1,207,500	14,10
Sub-total for 2.			· ·	10,100	0	425,365,000	4,969,79
3. Stream/River crossing						120,000,000	.,,,,,,,
1) Bridge (L>15m)	Nr.	1	0	10,704,100	0	10,704,100	125,06
2) Bridge (L<15m)	Nr.	0	0	4,733,300	0	0	120,00
Sub-total for 3.			v	1,755,500	0	10,704,100	125,06
4. Distribution network						10,701,100	120,00
Ground reservoir	Nr.	2	0	22,547,000	0	45,094,000	526.86
2) Cholorinator	Nr.	2	0	2,184,000	0	4,368,000	51,03
Service pipeline		-	v	2,10.,000	· ·	1,500,000	21,03
/10 Pipeline dia. 75 mm	m	1,100	0	76,300	0	83,930,000	980,60
/20 Pipeline dia. 50 mm	m	5,600	0	53,500	0	299,600,000	3,500,40
/30 Pipeline dia. 25 mm	m	13,080	0	35,500	0	464,340,000	5,425,16
4) Asphalt Pavement	""	13,000	· ·	33,300	O	404,540,000	3,423,10
/10 Pipeline dia. 75 mm 75%	m	825	0	16,100	0	13,282,500	155,18
/20 Pipeline dia. 50 mm 75%		4,200	0	16,100	0	67,620,000	790.04
/30 Pipeline dia. 30 mm /3%		9.810	0	16,100	0	157,941,000	1,845,32
5) Pulic hydrant	Nr.	13	0	5,189,000	0	67,457,000	788,14
6) Pulic taps	Nr.	10	0	2,061,000	0		788,14 240,79
6) Pulic taps 7) House conection			0		0	20,610,000	
	Nr.	636		1,550,000		985,800,000	11,517,70
8) Service meter	Nr.	659	0	0	0	٧,	25 921 25
Sub-total for 4.	-	-			0	2,210,042,500	25,821,270
Total of 1 4.					0	2 140 191 600	26 702 90
10tai 0i 1 4.					U	3,149,181,600	36,793,803

Table A12-3.4 (Plan 1) Estimated Cost for Consultancy Services (1/2)

Phase 1 (NTB)

Item	Unit	Q'ty	F.C.(Y)	nount L.C. (Rp.)	Total (Y)	Equiv. (Rp.)		
1. Detailed design		()	()	(1 .)		1(17)		
1) Remuneration	M/M	<u>37</u>	18,430,000	44,652,000	18,951,696	1,622,075,700	29%	
- Foreign expert	M/M	21	18,430,000	0	18,430,000	1,577,423,700		
- Local expert	M/M	16	0	44,652,000	521,696	44,652,000		
•								
2) Transportation	L.S.		10,080,000	76,260,000	10,970,992	939,007,200	17%	
3) Survey, Boring and pumping test	L.S.		6,729,000	0	6,729,000	575,935,110	10%	
4) Report binding	page	9,000	0	6,120,000	71,504	6,120,000	0%	
5) Office equipment	L.S.		0	104,300,000	1,218,600	104,300,000	2%	
6) Office running cost	month	4	0	100,000,000	1,168,361	100,000,000	2%	
7) Overhead (140% of foreign expert) L.S.	140%	25,802,000	0	25,802,000	2,208,393,180	40%	
Total for 1.			61,041,000	331,332,000	64,912,153	5,555,831,190	100%	34%
2. Construction supervision								
1) Remuneration	M/M	<u>73</u>	21,540,000	170,414,000	23,531,050	2,014,022,600	35%	
- Foreign expert	M/M	22	21,540,000	0	21,540,000	1,843,608,600		
- Local expert	M/M	51	0	170,414,000	1,991,050	170,414,000		
2) Transportation	L.S.		9,360,000	169,760,000	11,343,409	970,882,400	17%	
3) Report binding	page	13,000	0	8,840,000	103,283	8,840,000	0%	
4) Office equipment	L.S.	, , , , ,	0	11,200,000	· ·	11,200,000	0%	
5) Office running cost	month	16	0	204,000,000		204,000,000	4%	
6) Overhead (140% of foreign expert) L.S.	140%	30,156,000	0	30,156,000	2,581,052,040	45%	
Total for 2.			61,056,000	564,214,000	67,648,055	5,789,997,040	100%	36%
3. Soft component services								
1) Remuneration	M/M	253	11.138.000	1,249,920,000	25,741,575	2,203,221,420	46%	
- Foreign expert	M/M	19	11,138,000	0	11,138,000	953,301,420	,	
- Local expert	M/M	234		1,249,920,000	14,603,575	1,249,920,000		
P				, ., ., ., .,	,,	, -,,		
2) Transportation	L.S.		10,440,000	195,525,000	12,724,437	1,089,084,600	23%	
3) Report binding	page	16,000	0	10,880,000	127,118	10,880,000	0%	
4) Office equipment	L.S.		0	11,000,000	128,520	11,000,000	0%	
5) Office running cost	month	6	0	150,000,000		150,000,000	3%	
6) Overhead (140% of foreign expert) L.S.	140%	15,593,200	0	15,593,200	1,334,621,988	28%	
Total for 3.			37,171,200	1,617,325,000	56,067,391	4,798,808,008	100%	30%
Total of 1 3.			159,268,200	2,512,871,000	188,627,599	16,144,636,238		100%
4. Physical Contingency		5%	7,963,410	125,643,550	9,431,380	807,231,812	l	
Total of 1 4.			167,231,610	2,638,514,550	198,058,979	16,951,868,050		
5. Price Contingency			1,672,316	527,702,910	7,837,790	670,836,436		
Total of 1 5.			168,903,926	3,166,217,460	205,896,769	17,622,704,486		

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

 Phase 1 (NTB): 205,896,769
 52%

 Phase 2 (NTT): 188,824,599
 48%

 394,721,368
 33,784,201,887
 100%

Table A12-3.4 (Plan 1) Estimated Cost for Consultancy Services (2/2)

Phase 2 (NTT)

inuse 2 (1/11)								
Item	Unit	Q'ty	An F.C.(Y)	nount L.C. (Rp.)	Total (Y)	Equiv. (Rp.)		
1. Detailed design	Cint	4.9	1.0.(1)	2.c. (rq.)	10 (1)	Equit. (Ep.)		
1) Remuneration	M/M	<u>37</u>	18,430,000	44,652,000	18,951,696	1,622,075,700	31%	
- Foreign expert	M/M	21	18,430,000	0	18,430,000	1,577,423,700	3170	
- Local expert	M/M	16	0	44,652,000	521,696	44,652,000		
nous empero	111/111		Ů	,002,000	221,000	,002_,000		
2) Transportation	L.S.		10,080,000	114,225,000	11,414,560	976,972,200	19%	
3) Survey, Boring and pumping test	L.S.		3,000,000	0	3,000,000	256,770,000	5%	
4) Report binding	page	9,000	0	6,120,000	71,504	6,120,000	0%	
5) Office equipment	L.S.		0	104,300,000		104,300,000	2%	
6) Office running cost	month	4	0	100,000,000	1,168,361	100,000,000	2%	
7) Overhead (140% of foreign expert) L.S.	140%	25,802,000	0	25,802,000	2,208,393,180	42%	
Total for 1.			57,312,000	369,297,000	61,626,721	5,274,631,080	100%	36%
2. Construction supervision								
1) Remuneration	M/M	<u>75</u>	20,338,000	177,150,000	22,407,751	1,917,879,420	35%	
- Foreign expert	M/M	21	20,338,000	0	20,338,000	1,740,729,420		
- Local expert	M/M	54	0	177,150,000	2,069,751	177,150,000		
2) Transportation	L.S.		9,000,000	225,550,000	11,635,238	995,860,000	18%	
3) Report binding	page	13,000	0,000,000	8,840,000	103,283	8,840,000	0%	
4) Office equipment	L.S.	13,000	0	16,800,000	196,285	16,800,000	0%	
5) Office running cost	month	19	0	181,000,000	· ·	181,000,000	3%	
6) Overhead (140% of foreign expert		140%	28,473,200	0	28,473,200	2,437,021,188	44%	
Total for 2.			57,811,200	609,340,000	64,930,490	5,557,400,608	100%	38%
1 0000 101 20			0.,011,200	00>,2 10,000	0.,,,,,,,,	2,227,100,000	100,0	307
3. Soft component services								
1) Remuneration	M/M	<u>185</u>	8,378,000	893,480,000	18,817,070	1,610,553,020	43%	
- Foreign expert	M/M	14	8,378,000	0	8,378,000	717,073,020		
- Local expert	M/M	171	0	893,480,000	10,439,070	893,480,000		
2) Transportation	L.S.		8,640,000	229,000,000	11,315,546	968,497,600	26%	
3) Report binding	page	16,000	0	10,880,000	127,118	10,880,000	0%	
4) Office equipment	L.S.		0	11,000,000	128,520	11,000,000	0%	
5) Office running cost	month	6	0	150,000,000	1,752,541	150,000,000	4%	
6) Overhead (140% of foreign expert) L.S.	140%	11,729,200	0	11,729,200	1,003,902,228	27%	
Total for 3.			28,747,200	1,294,360,000	43,869,995	3,754,832,848	100%	26%
Total of 1 3.			143,870,400	2,272,997,000	170,427,206	14,586,864,536		100%
4. Physical Contingency		5%	7,193,520	113,649,850	8,521,360	729,343,227	١	
Total of 1 4.			151,063,920	2,386,646,850	178,948,566	15,316,207,763		
5. Price Contingency			1,510,639	715,994,055	9,876,033	845,289,647		
Total of 1 5.			152,574,559	3,102,640,905	188,824,599	16,161,497,410		

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

 Phase 1 (NTB): 205,896,769
 52%

 Phase 2 (NTT): 188,824,599
 48%

 394,721,368
 33,784,201,887
 100%

Table A12-3.5 (Plan 2) Estimated Cost for Consultancy Services (1/2)

Phase 1

i nase i	1			,				
Item	Unit	Q'ty	F.C.(Y)	nount L.C. (Rp.)	Total (Y)	Equiv. (Rp.)		
	Cint	Qty	1.0.(1)	L.C. (Kp.)	10(41(1)	Equiv. (Rp.)		
1. Detailed design	200	27	10 420 000	44.652.000	10.051.606	1 (22 075 700	200/	
1) Remuneration	M/M	37	18,430,000	44,652,000		1,622,075,700	29%	
- Foreign expert	M/M	21	18,430,000	0	18,430,000	1,577,423,700		
- Local expert	M/M	16	0	44,652,000	521,696	44,652,000		
2) Transportation	L.S.		10,080,000	117,764,700	11,455,917	980,511,900	18%	
3) Survey, Boring and pumping test	L.S.		6,729,000	0	6,729,000	575,935,110	10%	
4) Report binding	page	9,000	0	6,120,000	71,504	6,120,000	0%	
5) Office equipment	L.S.		0	104,300,000		104,300,000	2%	
6) Office running cost	month	4	0	100,000,000	1,168,361	100,000,000	2%	
7) Overhead (140% of foreign exper	t) L.S.	140%	25,802,000	0	25,802,000	2,208,393,180	39%	
Total for 1.			61,041,000	372,836,700	65,397,078	5,597,335,890	100%	34%
2. Construction supervision								
1) Remuneration	M/M	<u>73</u>	21,540,000	170,414,000	23,531,050	2,014,022,600	34%	
- Foreign expert	M/M	22	21,540,000	0	21,540,000	1,843,608,600		
- Local expert	M/M	51	0	170,414,000	1,991,050	170,414,000		
2) Transportation	L.S.		10,080,000	284,039,200	13,398,603	1,146,786,400	19%	
3) Report binding	page	13,000	0	8,840,000		8,840,000	0%	
4) Office equipment	L.S.	15,000	0	11,200,000	l ′	11,200,000	0%	
5) Office running cost	month	14		203,000,000		203,000,000	3%	
6) Overhead (140% of foreign exper		140%		0	30,156,000	2,581,052,040	43%	
Total for 2.			61,776,000	677,493,200	69,691,565	5,964,901,040	100%	37%
3. Soft component services								
1) Remuneration	M/M	222	11.138.000	1,079,420,000	23,749,520	2,032,721,420	43%	
- Foreign expert	M/M	19	11,138,000	0	11,138,000	953,301,420	1070	
- Local expert	M/M	203		1,079,420,000	12,611,520	1,079,420,000		
2) Transportation	L.S.		10,440,000	296,094,100	13,899,447	1,189,653,700	25%	
3) Report binding	page	16,000	0	10,880,000	1 1	10,880,000	0%	
4) Office equipment	L.S.	,	0	11,000,000		11,000,000	0%	
5) Office running cost	month	6	0	150,000,000		150,000,000	3%	
6) Overhead (140% of foreign exper		140%	15,593,200	0	15,593,200	1,334,621,988	28%	
Total for 3.			37,171,200	1,547,394,100	55,250,346	4,728,877,108	100%	29%
Total of 1 3.			159,988,200	2,597,724,000	190,338,989	16,291,114,038		100%
4. Physical Contingency		5%	7,999,410	129,886,200	9,516,949	814,555,702	l	
Total of 1 4.			167,987,610	2,727,610,200	199,855,938	17,105,669,740		
5. Price Contingency			1,679,876	545,522,040	8,053,542	689,302,627		
Total of 1 5.			169,667,486	3,273,132,240	207,909,480	17,794,972,367		

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

 Phase-1: 207,909,480
 52%

 Phase-2: 195,634,679
 48%

 403,544,159
 34,539,344,569
 100%

Table A12-3.5 (Plan 2) Estimated Cost for Consultancy Services (2/2)

Phase 2

i nase 2	1							
ν.	**	O.		nount	T . 1 00	F : (P)		
Item	Unit	Q'ty	F.C.(Y)	L.C. (Rp.)	Total (Y)	Equiv. (Rp.)		
1. Detailed design								
1) Remuneration	M/M	<u>37</u>	18,430,000	44,652,000	<u>18,951,696</u>	1,622,075,700	31%	
- Foreign expert	M/M	21	18,430,000	0	18,430,000	1,577,423,700		
- Local expert	M/M	16	0	44,652,000	521,696	44,652,000		
2) Transportation	L.S.		10,080,000	148,142,400	11,810,838	1,010,889,600	19%	
3) Survey, Boring and pumping test	L.S.		3,000,000	0	3,000,000	256,770,000	5%	
4) Report binding	page	9,000	0	6,120,000	71,504	6,120,000	0%	
5) Office equipment	L.S.		0	104,300,000	1,218,600	104,300,000	2%	
6) Office running cost	month	4	0	100,000,000	1,168,361	100,000,000	2%	
7) Overhead (140% of foreign experi) L.S.	140%	25,802,000	0	25,802,000	2,208,393,180	42%	
Total for 1.			57,312,000	403,214,400	62,022,999	5,308,548,480	100%	35%
2. Construction supervision								
1) Remuneration	M/M	<u>77</u>	19,452,000	186,878,000	21,635,409	1,851,774,680	34%	
- Foreign expert	M/M	20	19,452,000	0	19,452,000	1,664,896,680		
- Local expert	M/M	57	0	186,878,000	2,183,409	186,878,000		
2) Transportation	L.S.		8,640,000	282,310,400	11,938,404	1,021,808,000	19%	
3) Report binding	page	13,000	0			8,840,000	0%	
4) Office equipment	L.S.	,,,,,,	0	16,800,000		16,800,000	0%	
5) Office running cost	month	17	0	180,000,000		180,000,000	3%	
6) Overhead (140% of foreign experi		140%	27,232,800	0	27,232,800	2,330,855,352	43%	
Total for 2.			55,324,800	674,828,400	63,209,230	5,410,078,032	100%	36%
3. Soft component services								
1) Remuneration	M/M	222	8,378,000	1,096,980,000	21,194,684	1,814,053,020	43%	
- Foreign expert	M/M	14	8,378,000	0	8,378,000	717,073,020		
- Local expert	M/M	208	0	1,096,980,000	12,816,684	1,096,980,000		
2) Transportation	L.S.		8,640,000	343,446,400	12,652,693	1,082,944,000	25%	
3) Report binding	page	16,000	0	10,880,000	127,118	10,880,000	0%	
4) Office equipment	L.S.		0	11,000,000		11,000,000	0%	
5) Office running cost	month	13	0	325,000,000	3,797,173	325,000,000	8%	
6) Overhead (140% of foreign experi) L.S.	140%	11,729,200	0	11,729,200	1,003,902,228	24%	
Total for 3.			28,747,200	1,787,306,400	49,629,387	4,247,779,248	100%	28%
Total of 1 3.			141,384,000	2,865,349,200	174,861,617	14,966,405,760		100%
4. Physical Contingency		5%	7,069,200	143,267,460	8,743,081	748,320,288		
Total of 1 4.			148,453,200	3,008,616,660	183,604,697	15,714,726,048		
5. Price Contingency			1,484,532	902,584,998	12,029,981	1,029,646,092		
11) -			140 027 722	2 011 201 650	105 624 670	16 744 272 140		
Total of 1 5.			149,937,732	3,911,201,058	193,034,079	16,744,372,140		

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

 Phase-1: 207,909,480
 52%

 Phase-2: 195,634,679
 48%

 403,544,159
 34,539,344,569
 100%

Table A12-3.6 (Plan 1) Breakdown of Preparation Cost of Manuals for Soft Component Services (1/2)

			Rat		Amo		
Item	Unit	Q'ty	F.C.(Y)	L.C. (Rp.)	F.C.(Y)	L.C. (Rp.)	Total (Y)
hase 1(NTB)							
1. Preparation of Manuals, business planning, budget	ing and	tariff poli	cy				
1) Remuneration							
Foreign expert							
- Community specialist	M/M	6	552,000	0	3,312,000	0	3,312,0
- Training specialist-1	M/M	1	552,000	0	552,000	0	552,0
- Management spesialist-1	M/M	3	552,000	0	1,656,000	0	1,656,0
Sub-total for foreign expert		<u>10</u>			5,520,000	<u>0</u>	5,520,0
Local expert	1,404		0	6 500 000	0	6 500 000	75.9
 Training specialist-2 Community development specialist 	M/M	1	0	6,500,000	0	6,500,000	,
- Community development specialist - Community health education specialist	M/M M/M	1	0	5,500,000	0	5,500,000 5,500,000	64,2 64,2
· · · · · · · · · · · · · · · · · · ·	M/M M/M	6	0	5,500,000	0		
 Management spesialist-2 Finance/tariff specialist 	M/M M/M	6	0	6,500,000 5,500,000	0	39,000,000 33,000,000	455,6 385,5
- Water supply planning specialist	M/M	3	0	5,500,000	0	16,500,000	383,3 192,7
- Administorator	M/M	6	0	2,440,000	0	14,640,000	171,0
Sub-total for local expert	IVI/IVI	24	U	2,440,000	0	120,640,000	1,409,5
Sub-total for 1)		34			5,520,000	120,640,000	6,929,5
Sub-total for 1)		34			3,320,000	120,040,000	0,929,.
2) Transportation							
- International air fare	round	3	360,000	0	1,080,000	0	1,080,0
- Local air fare (Jakaruta-Mataram)	round	6	0	1,800,000	0	10,800,000	126,
- Local ferry fare (Mataram - Sumbawa)	round	8	0	5,000	0	40,000	,
- Allowance for foreign consultants	day	300	12,000	0	3,600,000	0	3,600,0
 Vehicle rental charge (incl. drivers) 	month	6	0	4,000,000	0	24,000,000	280,
Sub-total for 2)					4,680,000	34,840,000	5,087,
3) Report binding							
- 100pages x 20vol. for TOT	page	2,000	0	680	0	1,360,000	15,
- 5pages x 1000vol.for villagers	page	5,000	0	680	0	3,400,000	39,
Sub-total for 3)		7,000			0	4,760,000	55,
4) Office equipment							
- Computer	unit	2	0	5,500,000	<u>0</u>	11,000,000	128,
Sub-total for 4)	l unit		O O	5,500,000	0	11,000,000	128,
Sub-total IVI 4)					v	11,000,000	120,
5) Office running cost							
- Main office (Mataram)	month	3	0	25,000,000	<u>0</u>	75,000,000	876,
Sub-total for 5)					0	75,000,000	876,
6) Overhead (140% of foreign expert)	L.S.		140%		7,728,000	0	7,728,
Total for 1.					17,928,000	246,240,000	20,804,
2. Physical Contingency			5%	5%	896,400	12,312,000	1,040,
			3/0	3/0			
Total of 1 2.					18,824,400	258,552,000	21,845,2
3. Price Contingency			1%	20%	188,244	51,710,400	792,
Total of 1 3.					19,012,644	310,262,400	22,637,

Note: - Price level; Oct. 2001

- Exchange rate:

US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Table A12-3.6 (Plan 1) Breakdown of Preparation Cost of Manuals for Soft Component Services (2/2)

			Rat	te	Amo	unt	
Item	Unit	Q'ty	F.C.(Y)	L.C. (Rp.)	F.C.(Y)	L.C. (Rp.)	Total (Y)
Phase 2 (NTT)							
1. Preparation of Manuals, business planning, budgeting	i ng and i	tariff polic	y				
1) Remuneration			•				
Foreign expert							
 Community specialist 	M/M	4	552,000	0	2,208,000	0	2,208,000
 Management spesialist-1 	M/M	3	552,000	0	1,656,000	0	1,656,000
Sub-total for foreign expert		7			3,864,000	<u>0</u>	3,864,000
Local expert							
 Community development specialist 	M/M	1	0	5,500,000	0	5,500,000	64,260
 Community health education specialist 	M/M	1	0	5,500,000	0	5,500,000	64,260
 Management spesialist-2 	M/M	6	0	5,500,000	0	33,000,000	385,559
 Finance/tariff specialist 	M/M	6	0	5,500,000	0	33,000,000	385,559
 Water supply planning specialist 	M/M	3	0	5,500,000	0	16,500,000	192,780
- Administorator	M/M	6	0	2,440,000	0	14,640,000	171,048
Sub-total for local expert		<u>23</u>			<u>0</u>	108,140,000	1,263,465
Sub-total for 1)		30			3,864,000	108,140,000	5,127,465
2) Transportation							
- International air fare	round	4	360,000	0	1,440,000	0	1,440,000
- Local air fare (Jakaruta-Kupang)	round	7	0	3,600,000	0	25,200,000	294,427
- Local air fare (Kupang - Maumere)	round	10	0	830,000	0	8,300,000	96,974
- Local air fare (Kupang - Waitabula)	round	10	0	1,582,800	0	15,828,000	184,928
- Local ferry fare with 2 car (Kupang - Rote)		10	0	12,200	0	122,000	1,425
- Allowance for foreign consultants	day	210	12,000	0	2,520,000	0	2,520,000
Vehicle rental charge (incl. drivers)	month	5	0	4,000,000	2,520,000	20,000,000	233,672
Sub-total for 2)	monu		V	4,000,000	3,960,000	69,450,000	4,771,427
3) Report binding							
- 100pages x 20vol. for TOT	page	2,000	0	680	0	1,360,000	15,890
- 5pages x 1000vol.for villagers	page	5,000	0	680	0	3,400,000	39,724
Sub-total for 3)		7,000			0	4,760,000	55,614
4) Office equipment							
- Computer	unit	2	0	5,500,000	0	11,000,000	128,520
Sub-total for 4)	umi	_		2,200,000	0	11,000,000	128,520
5) Office running cost							
- Main office (Kupang)	month	3	0	25,000,000	0	75,000,000	876,271
Sub-total for 5)					0	75,000,000	876,271
6) Overhead (140% of foreign expert)	L.S.		140%		5,409,600	0	5,409,600
Total for 1.					13,233,600	268,350,000	16,368,896
2. Physical Contingency			5%	5%	661,680	13,417,500	818,445
Total of 1 2.					13,895,280	281,767,500	17,187,341
3. Price Contingency			1%	30%	138,953	84,530,250	1,126,571
Total of 1 3.					14,034,233	366,297,750	18,313,912

Note: - Price level; Oct. 2001

- Exchange rate:

US\$ 1.0 = Rp.10,435

US\$ 1.0 = Rp.121.92

US\$ 1.0 = Rp.85.59

Table A12-3.7 (Plan 2) Breakdown of Preparation Cost of Manuals for Soft Component Services (1/2)

	T						
Item	Unit	Q'ty	Rat F.C.(Y)	L.C. (Rp.)	Amo F.C.(Y)	unt L.C. (Rp.)	Total (Y)
Phase 1	Cint	Q 0	1.0.(1)	2.c. (rq.)	1.0.(1)	2.c. (rep.)	10 (1)
1. Preparation of Manuals, business planning, budgeting	 no and :	 tariff no	liev				
1) Remuneration							
Foreign expert							
- Community specialist	M/M	6	552,000	0	3,312,000	0	3,312,000
- Training specialist-1	M/M	1	552,000	0	552,000	0	552,000
 Management spesialist-1 	M/M	3	552,000	0	1,656,000	0	1,656,000
Sub-total for foreign expert		<u>10</u>			5,520,000	<u>0</u>	5,520,000
Local expert							
- Training specialist-2	M/M	1	0	6,500,000	0	6,500,000	75,943
 Community development specialist 	M/M	1	0	5,500,000	0	5,500,000	64,260
- Community health education specialist	M/M	1	0	5,500,000	0	5,500,000	64,260
- Management spesialist-2	M/M	6	0	6,500,000	0	39,000,000	455,661
- Finance/tariff specialist	M/M	6	0	5,500,000	0	33,000,000	385,559
- Water supply planning specialist	M/M	3	0	5,500,000	0	16,500,000	192,780
- Administorator	M/M	6	0	2,440,000	0	14,640,000	171,048 1,409,510
Sub-total for local expert Sub-total for 1)		24 34			<u>0</u> 5,520,000	120,640,000 120,640,000	6,929,510
Sub-total for 1)		34			3,320,000	120,040,000	0,727,310
2) Transportation							
- International air fare	round	3	360,000	0	1,080,000	0	1,080,000
- Local air fare (Jakaruta-Mataram)	round	6	0	1,800,000	0	10,800,000	126,183
- Local air fare (Mataram -Maumere)	round	8	0	2,304,000	0	18,432,000	215,352
- Local air fare (Mataram - Kupang)	round	8	0	2,302,100	0	18,416,800	215,175
- Local ferry fare with 2 car (Kupang - Rote	round	8	0	12,200	0	97,600	1,140
 Allowance for foreign consultants 	day	300	12,000	0	3,600,000	0	3,600,000
 Vehicle rental charge (incl. drivers) 	month	6	0	4,000,000	0	24,000,000	280,407
Sub-total for 2)					4,680,000	71,746,400	5,518,257
3) Report binding			_		_		
- 100pages x 20vol. for TOT	page	2,000	0	680	0	1,360,000	15,890
- 5pages x 1000vol.for villagers	page	5,000 7,000	0	680	0 0	3,400,000	39,724
Sub-total for 3)		7,000			U	4,760,000	55,614
4) Office equipment							
- Computer	unit	2	0	5,500,000	<u>0</u>	11,000,000	128,520
- Printer	unit	0	0	2,200,000	<u>0</u>	0	0
- Photo copy machine	unit	0	0	64,000,000	<u>0</u>	0	0
- Fax Machine	unit	0	0	5,600,000	<u>0</u>	0	0
- Air-conditioner	unit	0	0	4,000,000	<u>0</u>	0	0
Sub-total for 4)					0	11,000,000	128,520
5) Office running cost							
- Main office (Mataram)	month	3	0	25,000,000	0	75,000,000	876,271
Sub-total for 5)					0	75,000,000	876,271
6) Overhead (140% of foreign expert)	L.S.		140%		7,728,000	0	7,728,000
o) Overhead (140% of foleigh expert)	L.S.		140/0		7,728,000	· ·	7,728,000
Total for 1.					17,928,000	283,146,400	21,236,172
					,,	, , , , ,	,,
2. Physical Contingency			5%	5%	896,400	14,157,320	1,061,809
Total of 1 2.					18,824,400	297,303,720	22,297,980
3. Price Contingency			1%	20%	188,244	59,460,744	882,960
Total of 1 2					10.012.644	356764464	22 100 040
Total of 1 3.					19,012,644	356,764,464	23,180,940
		L	L				

Note: - Price level; Oct. 2001

- Exchange rate:

US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Table A12-3.7 (Plan 2) Breakdown of Preparation Cost of Manuals for Soft Component Services (2/2)

			Rat	te	Amo	unt	
Item	Unit	Q'ty	F.C.(Y)	L.C. (Rp.)	F.C.(Y)	L.C. (Rp.)	Total (Y)
Phase 2							
1. Preparation of Manuals, business planning, budgeting	ng and	tariff polic	y				
1) Remuneration			•				
Foreign expert							
- Community specialist	M/M	4	552,000	0	2,208,000	0	2,208,000
 Management spesialist-1 	M/M	3	552,000	0	1,656,000	0	1,656,000
Sub-total for foreign expert		<u>7</u>			3,864,000	<u>0</u>	3,864,000
Local expert							
 Community development specialist 	M/M	1	0	5,500,000	0	5,500,000	64,260
 Community health education specialist 	M/M	1	0	5,500,000	0	5,500,000	64,260
 Management spesialist-2 	M/M	6	0	5,500,000	0	33,000,000	385,559
 Finance/tariff specialist 	M/M	6	0	5,500,000	0	33,000,000	385,559
 Water supply planning specialist 	M/M	3	0	5,500,000	0	16,500,000	192,780
- Administorator	M/M	6	0	2,440,000	0	14,640,000	171,048
Sub-total for local expert		23			<u>0</u>	108,140,000	1,263,465
Sub-total for 1)		30			3,864,000	108,140,000	5,127,465
2) Transportation							
Transportation International air fare	round	4	360,000	0	1,440,000	0	1,440,000
- Local air fare (Jakaruta-Kupang)	round	7	0	3,600,000	1,440,000	25,200,000	294,427
- Local air fare (Kupang - Waitabula)	round	10	0	1,582,800	0	15,828,000	184,928
- Local air fare (Kupang - Sembawa Besar)	round	10	0	2,790,400	0	27,904,000	326,019
- Local air fare (Kupang - Semoawa Besar) - Local air fare (Kupang - Bima)	round	10	0	1,820,400	0	18,204,000	212,688
- Allowance for foreign consultants	day	210	12,000	1,820,400	2,520,000	18,204,000	2,520,000
Vehicle rental charge (incl. drivers)	month	5	0	4,000,000	2,320,000	20,000,000	2,320,000
Sub-total for 2)	monui		V	4,000,000	3,960,000	107,136,000	5,211,735
3) Report binding							
- 100pages x 20vol. for TOT	page	2,000	0	680	0	1,360,000	15,890
 5pages x 1000vol.for villagers 	page	5,000	0	680	0	3,400,000	39,724
Sub-total for 3)		7,000			0	4,760,000	55,614
4) Office equipment							
- Computer	unit	2	0	5,500,000	0	11,000,000	128,520
Sub-total for 4)				.,,	0	11,000,000	128,520
5) Office running cost							
- Main office (Kupang)	month	3	0	25,000,000	0	75,000,000	876,271
Sub-total for 5)					0	75,000,000	876,271
6) Overhead (140% of foreign expert)	L.S.		140%		5,409,600	0	5,409,600
Total for 1.					13,233,600	306,036,000	16,809,205
							. ,
2. Physical Contingency			5%	5%	661,680	15,301,800	840,460
Total of 1 2.					13,895,280	321,337,800	17,649,665
3. Price Contingency			1%	30%	138,953	96,401,340	1,265,268
Total of 1 3.					14,034,233	417,739,140	18,914,933

Note: - Price level; Oct. 2001

- Exchange rate:

US\$ 1.0 = Rp.10,435

US\$ 1.0 = Rp.121.92

US\$ 1.0 = Rp.85.59

Table A12-3.8 (Plan 1) Estimated Administration Cost (1/2)

Phase 1 (NTB)

T.	**	O.		Rate	T. C. C.D.	Amo		E : (II)
Item	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Rp.)	Equiv. (Y)
1. Common expenses								
1) Personnel cost								
- Preparatory stage, 1staff, 11month, half	M/M	6	0	4.000.000	0	24,000,000	24,000,000	280,40
- Construction stage, 1staff, 19month, half	M/M	10	0	4,000,000	0	40,000,000	40,000,000	467,34
- Construction stage, 1staff, 19month	M/M	19	0	4,000,000	0	76,000,000	76,000,000	887,95
- Construction stage, 4staff, 19month, half		38	0	4,000,000	0	152,000,000	152,000,000	1,775,90
Sub-total of 1)	M/M	73		,,,,,,,,	0	292,000,000	292,000,000	3,411,61
2) Furniture		_			_			
- Desk and chair, bookshelf,					0	0	0	
conference table, etc.	unit	3	0	500,000	0	1,500,000	1,500,000	17,52
Sub-total of 2)					<u>0</u>	1,500,000	1,500,000	17,52
3) Equipment cost					_			·
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Photo copy machine	unit	1	0	64,000,000	0	64,000,000	64,000,000	747,75
- Leveling instrument	unit	1	0	2,500,000	0	2,500,000	2,500,000	29,20
Sub-total of 3)					<u>0</u>	77,500,000	77,500,000	905,48
4) Office running cost	month	8	0	25,000,000	0	200,000,000	200,000,000	2,336,72
Sub-total of 1) - 4)					0	571,000,000	571,000,000	6,671,34
5) Others	L.S.		10%	10%	0	0	0	
Total of 1.					0	571,000,000	571,000,000	6,671,3
2. EIA cost								
- Expert-A (foreign) for 6 months	M/M	0	886,000	0	0	0	0	
- Expert-B (foreign) for 3 months	M/M	0	886,000	0	0	0	0	
- 2 experts (local) for 6 months	M/M	12	0	4,270,000	0	51,240,000	51,240,000	598,6
- 4 local assistants for 6 months	M/M	24	0	2,928,000	0	70,272,000	70,272,000	821,0
- International air fare	round	0	360,000	0	0	0	0	
- Local air fare	round	12	0	1,800,000	0	21,600,000	21,600,000	252,3
 Allowance for foreign expert 	day	0	12,000	0	0	0	0	
 Vehicle rental charge (incl. drivers) 	month	6	0	4,000,000	0	24,000,000	24,000,000	280,4
- Photo copy machine	unit	1	0	64,000,000	0	64,000,000	64,000,000	747,7
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,5
- Printer	unit	1	0	2,200,000	0	2,200,000	2,200,000	25,7
- Fax Machine	unit	1	0	5,600,000	0	5,600,000	5,600,000	65,4
- Report binding (100page x 30 vol.)	page	3,000	0	680	0	2,040,000	2,040,000	23,8
- Overhead (100% of foreign expert)	L.S.		140%	140%	0	0	0	
Total for 2.					0	251,952,000	251,952,000	2,943,7
Total of 12.					0	822,952,000	822,952,000	9,615,0
3. Physical Contingency			5%	5%	0	41,147,600	41,147,600	480,7
Total of 1 3.					0	864,099,600	864,099,600	10,095,8
4. Price Contingency			1%	20%	0	172,819,920	172,819,920	2,019,10
Total					0	1,036,919,520	1,036,919,520	12,114,90

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Phae1 (NTB): 12,114,962 13,967,971 Phae2 (NTT): 2,232,438,235 26,082,933

Table A12-3.8 (Plan 1) Estimated Administration Cost (2/2)

Phase 2 (NTT)

				Rate		Amo	,	
Item	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Rp.)	Equiv. (Y)
Common avnances								
1. Common expenses 1) Personnel cost								
- Preparatory stage, 1staff, 3month, half	M/M	2	0	4,000,000	0	8.000.000	8,000,000	93,46
- Construction stage, 1staff, 18month, half	M/M	9	0	4,000,000	0	36,000,000	36,000,000	420,61
- Construction stage, 1staff, 18month	M/M	18	0	4,000,000	0	72,000,000	72,000,000	841,22
- Construction stage, 1staff, 18month, half	M/M	45	0	4,000,000	0	180,000,000	180,000,000	2,103,04
Sub-total of 1)	M/M	74	0	4,000,000	<u>0</u>	296,000,000	296,000,000	3,458,34
2) Furniture	101/101	/ -			<u>u</u>	290,000,000	290,000,000	5,450,54
- Desk and chair, bookshelf,					0	0	0	
conference table, etc.	unit	3	0	500,000	0	1,500,000	1,500,000	17,52
Sub-total of 2)	unit			300,000	<u>0</u>	1,500,000	1,500,000	17,52
3) Equipment cost					<u>u</u>	1,500,000	1,500,000	17,52
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Photo copy machine	unit	1	0		0	64,000,000	64,000,000	747,75
- Leveling instrument	unit	1	0	2,500,000	0	2,500,000	2,500,000	29,20
Sub-total of 3)	unit	1		2,300,000	<u>0</u>	77,500,000	77,500,000	905,48
4) Office running cost	month	7	0	25,000,000	0	175,000,000	175,000,000	2,044,63
4) Office fullining cost	monui	, '	U	23,000,000	Ü	173,000,000	173,000,000	2,044,03
Sub-total of 1) - 4)					0	550,000,000	550,000,000	6,425,98
5) Others	L.S.		10%	10%	0	0	0	
Total of 1.					0	550,000,000	550,000,000	6,425,9
2. EIA cost								
- Expert-A (foreign) for 6 months	M/M	0	886,000	0	0	0	0	
- Expert-B (foreign) for 3 months	M/M	0	886,000	0	0	0		
- 2 experts (local) for 6 months	M/M	12	0	4,270,000	0	51,240,000	51,240,000	598,66
- 4 local assistants for 6 months	M/M	24	0	2,928,000	0	70,272,000	70,272,000	821,03
- International air fare	round	0	360,000	0	0	0		, , , ,
- Local air fare	round	36	0	1,800,000	0	64,800,000	64,800,000	757,0
- Allowance for foreign expert	day	0	12,000	0	0	0	0	,
- Vehicle rental charge (incl. drivers)	month	12	0	4,000,000	0	48,000,000	48,000,000	560,8
- Photo copy machine	unit	1	0	64,000,000	0	64,000,000	64,000,000	747,7:
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Printer	unit	1	0	2,200,000	0	2,200,000	2,200,000	25,70
- Fax Machine	unit	1	0	5,600,000	0	5,600,000	5,600,000	65,42
- Report binding (100page x 30 vol.)	page	3,000	0	680	0	2,040,000	2,040,000	23,83
- Overhead (100% of foreign expert)	L.S.		140%	140%	0	0	0	Í
Total for 2.					0	319,152,000	319,152,000	3,728,84
Total of 12.					0	869,152,000	869,152,000	10,154,83
3. Physical Contingency			5%	5%	0	43,457,600	43,457,600	507,74
Total of 1 3.					0	912,609,600	912,609,600	10,662,57
Price Contingency			1%	31%	0	282,908,976	282,908,976	3,305,39
						1,195,518,576	1,195,518,576	

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Phae1 (NTB) : 12,114,962
Phae2 (NTT) : 13,967,971
2,232,438,235 26,082,933

Table A12-3.9 (Plan 2) Estimated Administration Cost (1/2)

Phase 1

_		_		Rate		Amo		
Item	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Rp.)	Equiv. (Y)
1. Common expenses								
1) Personnel cost								
- Preparatory stage, 1staff, 11month, half	M/M	6	0	4,000,000	0	24,000,000	24,000,000	280,40
- Construction stage, 1staff, 19month	M/M	19	0	4,000,000	0	76,000,000	76,000,000	887,95
- Construction stage, 2staff, 19month	M/M	38	0	4,000,000	0	152,000,000	152,000,000	1,775,90
- Construction stage, 4staff, 19month, half	M/M	38	0	4,000,000	0	152,000,000	152,000,000	1,775,90
Sub-total of 1)	M/M	<u>101</u>			<u>0</u>	404,000,000	404,000,000	4,720,17
2) Furniture								
 Desk and chair, bookshelf, 					0	0	0	
conference table, etc.	unit	3	0	500,000	0	1,500,000	1,500,000	17,52
Sub-total of 2)					<u>0</u>	1,500,000	1,500,000	17,52
3) Equipment cost								
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Photo copy machine	unit	1	0	′ ′ 1	0	64,000,000	64,000,000	747,75
- Leveling instrument	unit	1	0	2,500,000	0	2,500,000	2,500,000	29,20
Sub-total of 3)					<u>0</u>	77,500,000	77,500,000	905,48
4) Office running cost	month	8	0	25,000,000	0	200,000,000	200,000,000	2,336,72
Sub-total of 1) - 4)					0	683,000,000	683,000,000	7,979,90
5) Others	L.S.		10%	10%	0	0	0	
Total of 1.					0	683,000,000	683,000,000	7,979,90
2. EIA cost								
- Expert-A (foreign) for 6 months	M/M	0	886,000	0	0	0	0	
- Expert-B (foreign) for 3 months	M/M	0	886,000	0	0	0	0	
- 2 experts (local) for 6 months	M/M	12	0	4,270,000	0	51,240,000	51,240,000	598,66
- 4 local assistants for 6 months	M/M	24	0	2,928,000	0	70,272,000	70,272,000	821,03
- International air fare	round	0	360,000	0	0	0	0	
- Local air fare	round	12	0	1,800,000	0	21,600,000	21,600,000	252,36
 Allowance for foreign expert 	day	0	12,000	0	0	0	0	
- Vehicle rental charge (incl. drivers)	month	6	0	4,000,000	0	24,000,000	24,000,000	280,40
- Photo copy machine	unit	1	0	64,000,000	0	64,000,000	64,000,000	747,75
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Printer	unit	1	0	2,200,000	0	2,200,000	2,200,000	25,70
- Fax Machine	unit	1	0	5,600,000	0	5,600,000	5,600,000	65,42
- Report binding (100page x 30 vol.)	page	3,000	0	680	0	2,040,000	2,040,000	23,83
- Overhead (100% of foreign expert)	L.S.		140%	140%	0	0	0	
Total for 2.					0	251,952,000	251,952,000	2,943,70
Total of 12.					0	934,952,000	934,952,000	10,923,61
3. Physical Contingency			5%	5%	0	46,747,600	46,747,600	546,18
Total of 1 3.					0	981,699,600	981,699,600	11,469,79
4. Price Contingency			1%	20%	0	196,339,920	196,339,920	2,293,95
Total					0	1,178,039,520	1,178,039,520	13,763,75

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Phae 1: 13,763,752 Phae 2: 15,703,617 2,522,112,113 29,467,369

Table A12-3.9 (Plan 2) Estimated Administration Cost (2/2)

Phase 2

1			1	Rate		Amo		
Item	Unit	Q'ty	F.C.(Y)	L.C (Rp.)	F.C.(Y)	L.C (Rp.)	Total (Rp.)	Equiv. (Y)
1. C								
1. Common expenses								
1) Personnel cost	MA	,	_	4 000 000	0	0.000.000	0,000,000	02.44
- Preparatory stage, 1staff, 3month, half	M/M M/M	2 18	0 0	4,000,000 4,000,000	0	8,000,000	8,000,000	93,46
- Construction stage, 1staff, 18month	M/M		0		0	72,000,000	72,000,000	841,22
- Construction stage, 2staff, 18month	1	36 45		4,000,000		144,000,000	144,000,000	1,682,44
- Construction stage, 5staff, 18month, half	3		0	4,000,000	0	180,000,000 404,000,000	180,000,000 404,000,000	2,103,04 4,720,17
Sub-total of 1) 2) Furniture	M/M	<u>101</u>			<u>0</u>	404,000,000	404,000,000	4,720,17
- Desk and chair, bookshelf,					0	0	0	
conference table, etc.	unit	3	0	500,000	0	1,500,000	1,500,000	17,52
Sub-total of 2)	uiiit	,	0	300,000	<u>0</u>	1,500,000	1,500,000	17,52
3) Equipment cost					<u>u</u>	1,300,000	1,500,000	17,52
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Photo copy machine	unit	1	0		0	64,000,000	64,000,000	747,75
- Leveling instrument	unit	1	0	2,500,000	0	2,500,000	2,500,000	29,20
Sub-total of 3)	unit	1		2,300,000	<u>0</u>	77,500,000	77,500,000	905,48
4) Office running cost	month	7	0	25,000,000	0	175,000,000	175,000,000	2,044,63
4) Office running cost	monui	ĺ		23,000,000	V	173,000,000	173,000,000	2,044,03
Sub-total of 1) - 4)					0	658,000,000	658,000,000	7,687,81
5) Others	L.S.		10%	10%	0	0	0	
Total of 1.					0	658,000,000	658,000,000	7,687,81
. EIA cost								
- Expert-A (foreign) for 6 months	M/M	0	886,000	0	0	0	0	
- Expert-B (foreign) for 3 months	M/M	0	886,000	0	0	0	0	
- 2 experts (local) for 6 months	M/M	12	0	4,270,000	0	51,240,000	51,240,000	598,66
- 4 local assistants for 6 months	M/M	24	0	2,928,000	0	70,272,000	70,272,000	821,03
- International air fare	round	0	360,000	0	0	0	0	
- Local air fare	round	36	0	1,800,000	0	64,800,000	64,800,000	757,09
 Allowance for foreign expert 	day	0	12,000	0	0	0	0	
 Vehicle rental charge (incl. drivers) 	month	12	0	4,000,000	0	48,000,000	48,000,000	560,8
- Photo copy machine	unit	1	0	64,000,000	0	64,000,000	64,000,000	747,75
- Computer	unit	2	0	5,500,000	0	11,000,000	11,000,000	128,52
- Printer	unit	1	0	2,200,000	0	2,200,000	2,200,000	25,70
- Fax Machine	unit	1	0	5,600,000	0	5,600,000	5,600,000	65,42
- Report binding (100page x 30 vol.)	page	3,000	0	680	0	2,040,000	2,040,000	23,83
- Overhead (100% of foreign expert)	L.S.		140%	140%	0	0	0	
Total for 2.					0	319,152,000	319,152,000	3,728,84
Total of 12.					0	977,152,000	977,152,000	11,416,66
. Physical Contingency			5%	5%	0	48,857,600	48,857,600	570,83
Total of 1 3.					0	1,026,009,600	1,026,009,600	11,987,49
4. Price Contingency			1%	31%	0	318,062,976	318,062,976	3,716,12
Total					0	1,344,072,576	1,344,072,576	15,703,61

Note: - Price level; Oct. 2001

- Exchange rate: US\$ 1.0 = Rp.10,435 US\$ 1.0 = J. Yen 121.92 J. Yen 1.0 = Rp.85.59

Phae 1: 13,763,752 Phae 2: 15,703,617 2,522,112,113 29,467,369

Table A12-3.10 (Plan 1) Estimated Project Cost

						(unit:	Y, thousand or	Rp., thousand)
		Foreig	n portion		Local portion	Equivalent	Total	Equivalent
Cost Item	F.C. (Y)	L.C. (Rp.)	Total (Y)	Equiv. (Rp.)	(Rp.)	(Y)	(Y)	(Rp.)
Phase1 (NTB)								
1) Construction cost	43,684	20,504,718	283,253	24,243,633	1,578,380	18,441	301,694	25,822,013
2) Consultancy services cost	168,904	3,166,217	205,897	17,622,704	0	0	205,897	17,622,704
3) Administration cost	0	0	0	0	1,036,920	12,115	12,115	1,036,920
4) Land acquisition cost	0	0	0	0	6,526	76	76	6,526
5) Taxes and duties	0	0	0	0	157,838	1,844	1,844	157,838
Total for Phase1 (NTB)	212,588	23,670,936	489,150	41,866,338	2,779,663	32,476	521,626	44,646,001
Phase2 (NTT)								
1) Construction cost	46,669	15,372,725	226,278	19,367,123	933,740	10,909	237,187	20,300,863
2) Consultancy services cost	152,575	3,102,641	188,825	16,161,497	0	0	188,825	16,161,497
3) Administration cost	0	0	0	0	1,195,519	13,968	13,968	1,195,519
4) Land acquisition cost	0	0	0	0	2,930	34	34	2,930
5) Taxes and duties	0	0	0	0	93,374	1,091	1,091	93,374
Total for Phase2 (NTT)	199,244	18,475,366	415,102	35,528,620	2,225,562	26,003	441,105	37,754,182
Phase1 (NTB) + Phase2 (NTT)								
1 Construction cost	90,353	35,877,443	509,531	43,610,756	2,512,120	29,351	538,882	46,122,876
2 Consultancy services cost	321,478	6,268,858	394,721	33,784,202	0	0	394,721	33,784,202
3 Administration cost	0	0	0	0	2,232,438	26,083	26,083	2,232,438
4 Land acquisition cost	0	0	0	0	9,456	110	110	9,456
5 Taxes and duties	0	0	0	0	251,212	2,935	2,935	251,212
Project cost	411,831	42,146,302	904,252	77,394,958	5,005,226	58,479	962,731	82,400,183

Note: - Price level; Oct. 2001

US\$1.0 = Rp.10,435

US\$ 1.0 = J. Yen 121.92

J. Yen 1.0 = Rp.85.59

- Foreign portion: Amount that may be financed by foreign assistant agency
- Local portion: Amount that would be borne by the Government of Indonesia

Table A12-3.11 (Plan 2) Estimated Project Cost

						(unit:	Y, thousand or	Rp., thousand)
		Foreig	n portion		Local portion	Equivalent	otal	Equivalent
Cost Item	F.C. (Y)	L.C. (Rp.)	Total (Y)	Equiv. (Rp.)	(Rp.)	(Y)	(Y)	(Rp.)
Phase1								
1) Construction cost	43,684	18,441,786	259,151	22,180,701	1,476,953	17,256	276,407	23,657,654
2) Consultancy services cost	169,667	3,273,132	207,909	17,794,972	0	0	207,909	17,794,972
3) Administration cost	0	0	0	0	1,178,040	13,764	13,764	1,178,040
4) Land acquisition cost	0	0	0	0	6,172	72	72	6,172
5) Taxes and duties	0	0	0	0	147,695	1,726	1,726	147,695
Total for Phase1	213,352	21,714,918	467,060	39,975,673	2,808,860	32,818	499,878	42,784,533
Phase2								
1) Construction cost	46,669	17,836,167	255,060	21,830,565	1,043,346	12,190	267,250	22,873,911
2) Consultancy services cost	149,938	3,911,202	195,635	16,744,372	0	0	195,635	16,744,372
3) Administration cost	0	0	0	0	1,344,073	15,704	15,704	1,344,073
4) Land acquisition cost	0	0	0	0	3,324	39	39	3,324
5) Taxes and duties	0	0	0	0	104,335	1,219	1,219	104,335
Total for Phase2	196,607	21,747,369	450,694	38,574,937	2,495,077	29,151	479,846	41,070,014
Phase1 + Phase2								
1 Construction cost	90,353	36,277,953	514,210	44,011,266	2,520,299	29,446	543,657	46,531,565
2 Consultancy services cost	319,605	7,184,334	403,544	34,539,345	0	0	403,544	34,539,345
3 Administration cost	0	0	0	0	2,522,112	29,467	29,467	2,522,112
4 Land acquisition cost	0	0	0	0	9,496	111	111	9,496
5 Taxes and duties	0	0	0	0	252,030	2,945	2,945	252,030
Project cost	409,958	43,462,287	917,755	78,550,610	5,303,937	61,969	979,724	83,854,547

Note: - Price level; Oct. 2001 US\$ 1.0 = Rp.10,435

US\$ 1.0 = J. Yen 121.92

J. Yen 1.0 = Rp.85.59

⁻ Foreign portion: Amount that may be financed by foreign assistant agency

⁻ Local portion: Amount that would be borne by the Government of Indonesia

Table A12-4.1 Estimated Annual O&M Cost (1/3)

			Nr. of											Salary and	d allow					
Serial		Design	house-		O&M	Type of	Outp	ut	Diesel eng	gine	Fuel		Villag	ers		PDAM s	taff		Chemi	cal
No. JICA#	Name of village		holds	Source*1	type*2	pump*3	capac			Q'ty	type*4	Q'ty	Rate	Amount(1)	Q'ty	Rate	Amount(2)	Q'ty	Rate	Amount(3)
		(Nr.)	(Nr.)			(Nr.)	(kW)	(HP)	(HP)	(Nr.)		(M)	(Rp.)	(Rp., thous.)	(m.m)	(Rp.)	(Rp., thous.)	(kg)	(Rp.)	(Rp., thous.)
NTB			1																	
Lombok			_																	
<u>1/</u> NTB 1.	Kuranji	1,894		8	(A)	-	-	-	-	-	-	12	26,000	312		440,000	.,		,	1 ′
<u>2/</u> NTB 2.	Bajur	6,130			(A)	-	-	-	-	-	-	12	26,000	312	12	440,000	1 /		,	1 ′
<u>3/</u> NTB 3.	Sembung	2,225			(A)	-	-	-	-	-	-	12	26,000	312	12	440,000	/		,	/
<u>4/</u> NTB 4a.	Duman, upper	3,078		1 *	(C)	-	-	-	-	-	-	12	68,000	816	-	440,000	1		12,000	
<u>5/</u> NTB 4b.	Duman, lower	1,926			(A)	-	-	-	-	-	-	12	26,000	312	12	440,000	5,280		,	
<u>6/</u> NTB 10.	Bagik Papan	3,182		E (Sp)	(C)	-	-	-	-	-	-	12	68,000	816	-	440,000	-	168	12,000	
<u>7/</u> NTB 11.	Selaparang	3,433	687	E (Sp)	(A)	-	-	-	-	-	-	12	26,000	312	24	440,000	10,560	271	12,000	3,252
Sumbawa																				
<u>8/</u> NTB 13.	Lb. Mapin	3,570	714	Sp	(A)	-	-	-	-	-	-	12	26,000	312	12	440,000	5,280	274	12,000	3,288
9/ NTB 14.	Lb. Lalar	3,136	628	TW	(B)	ES	4.0	5.5	-	-	e	12	68,000	816	1	440,000	440	179	12,000	2,148
<u>10/</u> NTB 16.	Piong	1,662	333	TW	(B)	ES	1.5	2.0	-	-	e	12	68,000	816	1	440,000	440	102	12,000	1,224
11/ NTB 18a	. Kawuwu, lower	414	83	SW	(B)	ES	1.5	2.0	-	-	e	12	68,000	816	1	440,000	440	22	12,000	264
12/ NTB 18b	. Kawuwu, upper	404	81	E (Sp)	(C)	-	-	-	-	-	-	12	68,000	816	-	440,000	-	18	12,000	216
Sub-tota	al for NTB	31,054	6,215		, ,					-		(144)		6,768	(87)		38,280	(1,916)		22,992
NTT			_							_										
Flores																				
13/ NTT 6.	Sinar Hading	1,294	259	NTT 7.	(A)	-	_	-	_	-	-	12	26,000	312	12	440,000	5,280	103	12,000	1,236
14/ NTT 7.	Ile Padung	1,122		Sp	(A)	CV	2.2	3.0	10	2	d	12	26,000	312	18	440,000				
_	Č			^	(A)	CV	0.4	0.5	2	2		12	26,000	312	_	440,000	_	_	12,000	1
Sumba													-,			.,			,	
15/ NTT 18.	Weerame	1,616	324	CW	(B)	CV	2.2	3.0	10	2	d	12	68,000	816	1	440,000	440	128	12,000	1,536
16/ NTT 19.	Kondamara	1,828		E (Sp)	(B)	CV	2.2	3.0	10	2	l .	12	68,000	816	1	440,000		91		1 1
Rote	110114411414	1,020	500	L (SP)				5.0		-		1.2	00,000	010		,		'	12,000	1,0,2
17/ NTT 21.	Oebau	632	127	CW	(B)	CV	0.8	1.0	2	1	d	12	68,000	816	1	440,000	440	31	12,000	372
	Nusakdale	450		Sp	(C)	_	_		_	_	_	12	68,000	816		440,000		22	12,000	l .
Timor	rusukuut	150	, ,	БР								12	00,000	010		110,000			12,000	201
19/ NTT 24.	Tarus	3,977	796	E (Sp)	(A)	ES	7.5	10.2	_	_	e	12	26,000	312	24	440,000	10,560	314	12,000	3,768
12/ 1111 24.	- 61 00	3,777	,,,	2 (SP)	(A)	CV	7.5	10.2	10	2		1.2	20,000	312	-	110,000	10,500	514	12,000] 3,700
Sub-tots	al for NTT	10,919	2,187		(11)		1.5	10.2	10		"	(252)		4,512	(57)		25,080	(778)		9,336
Total of NTB a		41,973	8,402							11 11		(396)		11,280	(144)		63,360	(2,694)		32,328
Note:	14111	11,775	0,402	L						11	L	(570)		6%	(111)		35%	(2,0)4)		18%

- Price level: October 2001

- Exchange rate:

US\$ 1.0= Y 121.92 US\$ 1.0= Rp. 10,435 Rp. 85.59 Y 1.0=

E: existing water supply sytem. *1: Sp: spring.

E (Sp) means that the works will require tapping or diverting from an existing system that has the water source of spring.

(B)

(C)

68,000

68,000

TW: tube well. SW: shallow well. CW: cavern water. Monthly rate by O&M type: 26,000 (A)

- *2: (A): PDAM will be responsible for O&M of water supplies.
 - (B): Villages will be responsible for O&M of water supplies with support provided by PDAM.
 - (C): Villages will be responsible for O&M of water supplies.

*3: ES: Electrical submergible pump CV: Centrifugal volute pump

*4: e: electric power; 260 /kWh Rate: d: light oil; 900 /lit Rate:

Table A12-4.1 Estimated Annual O&M Cost (2/3)

			Nr. of										Mainter	ance and r	epair cos	t	Σ{Amount	Other	Annual
Serial		Design	house-		O&M		Electri	icity		Light	oil	Base	Pump	Standard	Repair		(1) to (6)}	expenses	total
No. JICA#	Name of village	pop.	holds	Source*1	type*2	Q'ty*5	Rate	Amount(4)	Q'ty*6	Rate	Amount(5)	price	Q'ty	life	rate*7	Amount(6)	Sub-total	5%	by village
		(Nr.)	(Nr.)			(kWh)	(Rp.)	(Rp., thous.)	(lit)	(Rp.)	(Rp., thous.)	(Rp., thous.)	(Nr.)	(Year)	(%)	(Rp., thous.)	(Rp., thous.)	(Rp., thous.)	(Rp., thous.)
NTB			1																
Lombok																			
<u>1/</u> NTB 1.	Kuranji	1,894	379	1	(A)	-	-	-	-	-	-	-	-	15.0		-	6,888	344	7,232
<u>2/</u> NTB 2.	Bajur	6,130	1,226		(A)	-	-	-	-	-	-	-	-	15.0	100%	-	10,092	505	10,597
<u>3/</u> NTB 3.	Sembung	2,225	445	E	(A)	-	-	-	-	-	-	-	-	15.0	100%	-	7,116	356	7,472
<u>4/</u> NTB 4a.	Duman, upper	3,078	616	Sp	(C)	-	-	-	-	-	-	-	-	15.0	100%	-	2,760	138	2,898
<u>5/</u> NTB 4b.	Duman, lower	1,926	386	E	(A)	-	-	-	-	-	-	-	-	15.0	100%	-	6,912	346	7,258
<u>6/</u> NTB 10.	Bagik Papan	3,182	637	E (Sp)	(C)	-	-	-	-	-	-	-	-	15.0	100%	-	2,832	142	2,974
<u>7/</u> NTB 11.	Selaparang	3,433	687	E (Sp)	(A)	-	-	-	-	-	-	-	-	15.0	100%	-	14,124	706	14,830
Sumbawa																			
<u>8/</u> NTB 13.	Lb. Mapin	3,570	714	Sp	(A)	-	-	-	-	-	-	-	-	15.0	100%	-	8,880	444	9,324
9/ NTB 14.	Lb. Lalar	3,136	628	TW	(B)	21,024	260	5,466	-	-	-	35,500	1	15.0	100%	2,367	11,237	562	11,799
10/ NTB 16.	Piong	1,662	333	TW	(B)	7,884	260	2,050	-	-	-	19,386	1	15.0	100%	1,292	5,822	291	6,113
11/ NTB 18a.	Kawuwu, lower	414	83	SW	(B)	5,256	260	1,367	-	-	-	19,386	1	15.0	100%	1,292	4,179	209	4,388
12/ NTB 18b.	Kawuwu, upper	404	81	E (Sp)	(C)	_	-	-	-	-	-		-	15.0	100%	-	1,032	52	1,084
Sub-total	l for NTB	31,054	6,215		` ′	(34,164)		8,883	(0)		-		(3)			4,951	81,874	4,095	85,969
NTT									_		_		_						
Flores																			
13/ NTT 6.	Sinar Hading	1,294	259	NTT 7.	(A)	-	_	_	-	_	-	-	_	15.0	100%	-	6,828	341	7,169
	Ile Padung	1,122	225	Sp	(A)	-	_	_	7,140	900	6,426	11,508	2	15.0	100%	1,534		863	21,289
_	Č			1	(A)	_	_	_	1,730	900	1,557	8,593		15.0	100%	1,146		151	, , , , , , , , , , , , , , , , , , ,
Sumba					` ′				,		, , , , , ,	.,				, -			
15/ NTT 18.	Weerame	1,616	324	CW	(B)	_	_	_	7,140	900	6,426	11,508	2	15.0	100%	1,534	10,752	538	11,290
16/ NTT 19.		1,828	366	E (Sp)	(B)	_	_	_	7,140	900	· /	· /		15.0		1,534		515	· ′
Rote		-,		(-F)	(-)				,,		,,,_,		_			-,			
17/ NTT 21.	Oebau	632	127	CW	(B)	_	_	_	1,300	900	1,170	8,593	1	15.0	100%	573	3,371	169	3,540
18/ NTT 23.		450		Sp	(C)	_	_	_	-,	_			-	15.0		-	1,080	54	1,134
Timor		.50	,											15.0	100/0		1,500	5.	1,151
19/ NTT 24.	Tarus	3,977	796	E (Sp)	(A)	5,256	260	1,367	_	_	_	18,915	2	15.0	100%	2,522	18,529	926	37,629
121 21.	40	2,,,,,	,,,	(SP)	(A)	2,230		1,507	16,430	900	14,787	· /		15.0		2,522		865	37,327
Sub-total	l for NTT	10,919	2,187	,	(1.1)	(5,256)		1,367		, , ,	36,792	· /	(13)	13.0	10070	11,365	1 ' 1	4,422	92,874
Total of NTB and		41,973	8,402			(39,420)					36,792		(16)			16,316	170,326	8,517	178,843
Note:		.1,,,,	3,.02	-		(32,120)		6%	(10,000)		21%		(23)			9%	1.0,520	5%	100%

US\$ 1.0= Y 121.92 US\$ 1.0= Rp. 10,435 Y 1.0= Rp. 85.59 Electricity's quantity includes about 30% of extra.

⁻ Price level: October 2001

⁻ Exchange rate:

^{*6:} Light oi's quantity includes about 30% of extra.

The value indicates the rate of total maintenance and repair cost against the base price of equipment for the whole of the standard life.

Table A12-4.1 Estimated Annual O&M Cost (3/3)

Serial		Design	Nr. of house-		O&M	Annual total	per house-	Ar	nnual O&M o by type	cost	Annual O	&M cost per l	household	Monthly O	&M cost per by type	household
No. JICA#	Name of village		holds	Source*1	type*2	by system*8	hold	(A)	(B)	(C)	(A)	(B)	(C)	(A)	(B)	(C)
NO. JICA#	Name of vinage	pop. (Nr.)	(Nr.)	Source	туре	(Rp., thous.)	(Rp.)	(Rp., thous.)	(Rp., thous.)	(Rp., thous.)	(Rp.)	(Rp.)	(Rp.)	(Rp.)	(Rp.)	(Rp.)
NTB Lombok			1			2	2/1	(1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1,,,	(1,,,,,,,,,	(17)	(17)	(17)	(17)	(19	(1)
1/ NTB 1.	Kuranji	1,894	379	Е	(A)	7,232	19,082	7,232	-	-	19,082	-	-	1,590	-	_
$\frac{2}{2}$ NTB 2.	Bajur	6,130	1,226	Е	(A)	10,597	8,644	10,597	-	-	8,644	-	-	720	-	-
$\overline{3/}$ NTB 3.	Sembung	2,225	445	Е	(A)	7,472	16,791	7,472	-	-	16,791	-	-	1,399	-	-
<u>4/</u> NTB 4a.	Duman, upper	3,078	616	Sp	(C)	2,898	4,705	-	-	2,898	-	-	4,705	-	-	392
<u>5/</u> NTB 4b.	Duman, lower	1,926			(A)	7,258	18,803	7,258	-	-	18,803	-	-	1,567	-	-
<u>6/</u> NTB 10.	Bagik Papan	3,182	637	E (Sp)	(C)	2,974		-	-	2,974	-	-	4,669	-	-	389
<u>7/</u> NTB 11.	Selaparang	3,433	687	E (Sp)	(A)	14,830	21,587	14,830	-	-	21,587	-	-	1,799	-	-
Sumbawa																
<u>8/</u> NTB 13.	Lb. Mapin	3,570	714	Sp	(A)	9,324	13,059	9,324	-	-	13,059	-	-	1,088	-	-
<u>9/</u> NTB 14.	Lb. Lalar	3,136	628	TW	(B)	11,799	18,788	-	11,799	-	-	18,788	-	-	1,566	-
<u>10/</u> NTB 16.	Piong	1,662		TW	(B)	6,113	18,357	-	6,113	-	-	18,357	-	-	1,530	-
	Kawuwu, lower	414		SW	(B)	4,388		-	4,388	-	-	52,867	-	-	4,406	-
<u>12/</u> NTB 18b.	Kawuwu, upper	404	81	E (Sp)	(C)	1,084	13,383	-	-	1,084	-	-	13,383	-	-	1,115
	l for NTB	31,054	<u>6,215</u>			<u>85,969</u>	13,833	<u>56,713</u>	22,300	<u>6,956</u>	14,781	21,360	<u>5,214</u>	1,232	<u>1,780</u>	<u>435</u>
NTT																
Flores																
<u>13/</u> NTT 6.	Sinar Hading	1,294		NTT 7.	(A)	28,458	58,798	28,458	-	-	58,798	-	-	4,900	-	-
<u>14/</u> NTT 7.	Ile Padung	1,122	225	Sp	(A)											
					(A)											
Sumba																
<u>15/</u> NTT 18.		1,616		CW	(B)	11,290		1	11,290		-	34,846	-	-	2,904	-
	Kondamara	1,828	366	E (Sp)	(B)	10,823	29,571	-	10,823	-	-	29,571	-	-	2,464	-
Rote												!				
<u>17/</u> NTT 21.		632	8	CW	(B)	3,540		1	3,540	1 1	-	27,874		-	2,323	
<u>18/</u> NTT 23.	Nusakdale	450	90	Sp	(C)	1,134	12,600	-	-	1,134	-	-	12,600	-	-	1,050
Timor																
<u>19/</u> NTT 24.	Tarus	3,977	796	E (Sp)	(A)	37,629	47,273	37,629	-	-	47,273	-	-	3,939	-	-
0.1	LC NOTE	10010	2.105		(A)	02.074	12.166		25.650		51 COO	21 200	12 600	4 202	2 (17	1.050
Sub-tota Total of NTB an	l for NTT	10,919 41,973	2,187 8,402			92,874 178,843	42,466 21,286		25,653 47,953		51,630 23,998	31,399	12,600 5,681	4,303 2,000	2,617 2,147	1,050 473
Note:	[Q [N 1]	41,9/3	8,402	L	L	(Y, thous.)	(Y)	, , , , , ,	(Y, thous.)	- ,	(Y)	25,767 (Y)	(Y)	(Y)	(Y)	(Y)
- Price level: Oc	stabar 2001					(Y, thous.) 2,090	()				280	301	(1)	23	(Y)	` ′
- I lice level. Oc	10001 2001					∠,090	∠49	1,433	300	93	280	301	00	23	23	6

US\$ 1.0= Y 121.92 Rp. 10,435 Rp. 85.59 US\$ 1.0= Y 1.0=

The villages of Sinar Hading and Ile Padung are combined to compute the cost since they are to operate a common water system.

⁻ Exchange rate:

Table A12-4.2 Estimated Replacement Cost

				Nr. of			Pun			ment rate			Amount		
Serial			Design	house-		O&M	Submer-	centri-	Submer-	centri-	Submer-	centri-		per hou	ısehold
No.	JICA#	Name of village	pop.	holds	Source*1	type*2	sible	fugal	sible	fugal	sible	fugal	Total*3	per annum	per month
			(Nr.)	(Nr.)			(Nr.)	(Nr.)	(Rp., thous.)	(Rp., thous.)	(Rp., thous.)	(Rp., thous.)	(Rp., thous.)	(Rp.)	(Rp.)
NTB															
Lombok															
<u>1/</u> N	νтв 1.	Kuranji	1,894	379	E	(A)	-	-	-	-	-	-	-	-	-
<u>2/</u> N	NTB 2.	Bajur	6,130			(A)	-	-	-	-	-	-	-	-	-
<u>3/</u> N	νтв 3.	Sembung	2,225	445	E	(A)	-	-	-	-	-	-	-	-	-
<u>4/</u> N	vтв 4a.	Duman, upper	3,078	616	Sp	(C)	-	-	-	-	-	-	-	-	-
<u>5/</u> N	тв 4ь.	Duman, lower	1,926			(A)	-	-	-	-	-	-	-	-	-
<u>6/</u> N	νтв 10.	Bagik Papan	3,182	637	E (Sp)	(C)	-	-	-	-	-	-	-	-	-
<u>7/</u> N	νтв 11.	Selaparang	3,433	687	E (Sp)	(A)	-	-	-	-	-	-	-	-	-
Sumbaw	va														
<u>8/</u> N	νтв 13.	Lb. Mapin	3,570	714	Sp	(A)	-	-	-	-	-	-	-	-	-
<u>9/</u> N	vтв 14.	Lb. Lalar	3,136	628	TW	(B)	1	-	35,500	-	35,500	-	35,500	3,769	314
10/ N	νтв 16.	Piong	1,662	333	TW	(B)	1	-	19,386	-	19,386	-	19,386	3,881	323
11/ N	vтв 18a.	Kawuwu, lower	414	83	SW	(B)	1	-	19,386	-	19,386	-	19,386	15,571	1,298
<u>12/</u> N	утв 18b.	Kawuwu, upper	404	81	E (Sp)	(C)	-	-	-	-	-	-	-	-	-
	Sub-total	for NTB	31,054	6,215			<u>3</u>	<u>-</u>			74,272	<u>-</u>	74,272	4,743	395
NTT															
Flores															
<u>13/</u> N	NTT 6.	Sinar Hading	1,294	259	NTT 7.	(A)	-	-	-	-	-	-	180,908	24,918	2,077
14/ N	NTT 7.	Ile Padung	1,122	225	Sp	(A)	-	4	-	45,227	-	180,908			
		-			_										
Sumba															
<u>15/</u> N	NTT 18.	Weerame	1,616	324	CW	(B)	-	2	-	25,893	-	51,786	51,786	10,656	888
16/ N	NTT 19.	Kondamara	1,828	366	E (Sp)	(B)	-	2	-	25,893	-	51,786	51,786	9,433	786
Rote						, ,									
17/ N	NTT 21.	Oebau	632	127	CW	(B)	-	1	-	19,334	-	19,334	19,334	10,149	846
18/ N	NTT 23.	Nusakdale	450	90	Sp	(C)	-	-	-	_	-	-	-	-	_
Timor						` ´									
<u>19/</u> N	NTT 24.	Tarus	3,977	796	E (Sp)	(A)	2	2	18,915	42,559	37,830	85,118	122,948	10,297	858
		for NTT	<u>10,919</u>				<u>2</u> 5	<u>11</u>			37,830	388,932		13,567	1,131
Total of	NTB an	d NT]	41,973	8,402			5	11			112,102	388,932	501,034	10,634	886
Note:													(Y, thous.)	(Y)	(Y)
- Price l	evel: Oc	tober 2001		*1:	E: existing	water s	upply syte	m.	Sp: spring.				5,854	124	10

⁻ Price level: October 2001

Y 121.92 US\$ 1.0= US\$ 1.0= Rp. 10,435 Rp. 85.59 Y 1.0 =

E (Sp) means that the works will require tapping or diverting from an existing system that has the water source of spring.

- TW: tube well. SW: shallow well. CW: cavern water.
- (A): PDAM will be responsible for O&M of water supplies.
 - (B): Villages will be responsible for O&M of water supplies with support provided by PDAM.
 - (C): Villages will be responsible for O&M of water supplies.
- The replacement cost will be required at a cycle of every 15 years. The villages of Sinar Hading and Ile Padung are combined to compute the cost since they are to operate a common water system.

⁻ Exchange rate:

E: existing water supply sytem.