JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NATIONAL WATER SUPPLY AND DRAINAGE BOARD MINISTRY OF HOUSING AND PLANTATION INFRASTRUCTURE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

THE DETAILED DESIGN STUDY ON GREATER KANDY WATER SUPPLY AUGMENTATION PROJECT IN THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

FINAL REPORT

VOLUME III

DATA AND ATTACHMENTS

MAY 2002

NJS CONSULTANTS CO., LTD. NIHON SUIDO CONSULTANTS CO., LTD.

ON GREATER KANDY WATER SUPPLY AUGMENTATION PROJECT IN THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

FINAL REPORT VOLUME III DATA AND ATTACHMENTS

CONTENTS

01	Intake and Water Treatment Plant Process Calculations
02	Intake and Water Treatment Plant Hydraulic Calculations
03	Transmission System Calculations
04	Distribution System Calculations
05	Mechanical Design Calculations
06	Electrical Design Calculations

Abbreviations and Acronyms

1. Unit

cm centimeter ft. foot g gram

gpcd gram per capita per day ha hectare $(1 \text{ ha} = 10,000\text{m}^2)$

hr hour
kg kilogram
km kilometer
km², or sq.km square kilometer

kV kilovolt
kW kilowatt
kWh kilowatt hour

l, or L liter

l/day, or l/d liter per day
l/sec, or l/s liter per second
lpcd, or Lpcd liter per capita per day

m meter

m/s, or m/sec meters per second m², or sq.m square meter m³, or cu.m cubic meter

m³/d, or cu.m/day cubic meter per day
m³/min cubic meter per minute
m³/s, or cu.m/sec cubic meter per second
MCM million cubic meter
mgd million gallons per day
mg/l milligram per liter

mm millimeter
Mpa megapascal
ppm parts per million
Rs. Sri Lankan Rupee

V volt

2. Water Quality

BOD₅ Biochemical Oxygen Demand (20°C, 5 days) COD Chemical Oxygen Demand

DO Dissolved Oxygen
EC Electrical Conductivity
pH Hydrogen ion potential
SS Suspended Solids
TS Total Solids

3. Organizations

ADB Asian Development Bank

CEA Central Environmental Authority

CEB Ceylon Electricity Board CPC Central Provincial Council

FINNIDA Finnish International Development Agency
GS Gramasevaka Divison (local administrative unit)

IBRD International Bank for Reconstruction and Development (World

Bank)

ICC Interagency Co-ordinating Committee

IDA International Development Association (soft loan facility of IBRD)

IMF International Monetary Fund

JBIC Japan Bank for International Cooperation (Japan)
JICA Japan International Cooperation Agency (Japan)

KMC Kandy Municipal Council MASL Mahaweli Authority of Sri Lanka

MHUD Ministry of Housing and Urban Development

MOF Ministry of Finance
MSL Mean Sea Level

NJS Nippon Jogesuido Sekkei Co., Ltd. NSC Nihon Suido Consultants Co., Ltd.

NWSDB, or NWS&DB National Water Supply and Drainage Board

OECD Organization for Economic Cooperation and Development

PS Pradeshiya Sabha (local administrative unit)

RDA Road Development Authority
RSC Regional Support Center, NWSDB

UC Urban Council

UDA Urban Development Authority

4. Others

BOT Build - Operate - Transfer
BWL Bottom Water Level

CED Central Environmental Division

CPI Consumer Price Index

EAC Environmental auditing Commission
EIA Environmental Impact Assessment
EIRR Economic Internal Rate of Return
FIRR Financial Internal Rate of Return

FY Fiscal Year

GDP Gross Domestic Product

GL Ground Level

GNP Gross National Product
GST Government Sales Tax
HWL High Water Level

HH Household

IEE Initial Environmental Examination

LWL Low Water Level L/S Lift Station

NGO Non-Governmental Organization

NRW Non-revenue Water

ODA Official Development Assistance
PEU Project Environmental Unit

P/S Pumping Station
SLS Sri Lankan Standards
STP Sewage Treatment Plant
T.A Technical Assistance
TWL Top Water Level
UFW Unaccounted-For-Water
VAT Value Added Tax

WID Women in Development
WTP Water Treatment Plant

WWTP Wastewater Treatment Plant (=STP)

01	Intake and Water Treatment Plant Process Calculations

Grit Chamber

Dimension: Width (m) Length (m) (Sand sedimentation Depth h=0.5m at Inlet Mouth)
6.00 33.50

Water Duty River Water Diameter of Sand Settling Sedi. Sand Grit Chamber Grit Chamber Effective Effective Required Retention Velocity Surface Load Remark H.W.L. (m) L.W.L. (m) Velocity (cm/sec) (units) Level (m) Sand (mm) Depth in G.C. Depth (m) Volume Flow Length (m) Time (min) (cm/sec) Ratio (mm/min) Case 1 115,500 437.60 0.15 0.00 437.11 434.06 3.05 1226 7.4 200 1.5 15.29 3.7 115,500 437.60 1.5 1.00 Case 2 0.15 437.09 435.06 2,03 816 7.4 10.17 5.5 200 Case 3 115,500 2 437,60 0,15 1.5 1 94 437.01 436.00 1.01 406 ---7.4 5.06 11.0 200 115,500 438.30 724 Case 4 0.15 1.5 1.94 437.80 436.00 1.80 7.4 9.02 200 Case 5 115,500 440.74 0.15 1.5 1.94 440.29 436.00 4.29 1725 7.4 21.50 2.6 200 115,500 437.60 0.8 1226 13.9 3.7 200 Case 6 0.10 0.00 437.11 434.06 3.05 15.29 115,500 437.60 Case 7 0.10 0.8 1.00 437.09 435.06 2.03 816 13.9 10.17 5.5 200 ~115,500 ·** 2 437.60 1.94 Case 8 -0.10 0.8 437.01 436.00 1.01 406 13.9 95,06 11.0 200 Case 9 115,500 438.30 0.8 1.94 724 0.10 437.80 436.00 1.80 13.9 9.02 6.2 200 Case 10 115,500 2 440.74 0.10 0.8 1.94 440.29 436.00 4.29 1725 13,9 21.50 2.6 200 115,500 437.60 0.15 1.5 0.00 Case II 436.87 434.06 2.81 565 29.7 7.04 7.9 199 0.15 1.00 436.78 437.60 346 Case 12 115,500 435,06 1,72 29.7 4.31 €13.0 399 Case 13 115,500 437.60 1.5 1.94 399 0.15 436.47 436.00 0.47 94 29.7 1.18 47.4 115,500 Case 14 438.30 0.15 1.5 1.94 437.54 436.00 1.54 310 29.7 3.86 14.5 399 Case 15 115,500 440.74 0.15 1.5 840 29.7 399 1.94 440.18 436.00 4.18 10.47 5,3 Case 16 115,500 437.60 0.10 0.8 0.00 436.87 434.06 2.81 565 55.7 7.04 7.9 399 115,500 437.60 346 55.7 399 Case 17 0.10 0.8 1.00 436.78 435,06 1.72 4.31 13.0 437.60 Case 18 115,500 0.10 0,8 1.94 436,47 436,00 0.47 94 55.7 1.18 47.4 399 115,500 0.8 310 Case 19 438.30 0.10 1.94 437.54 436.00 1.54 55.7 3.86 14.5 399 Case 20 115,500 440.74 0.10 0.8 437.54 436.00 1.54 310 55.7 3.86 14.5 399

Case I Capacity Calculatio	n of Grit Char	nber (River W	ater Level + 4	37.60m)	2 unit	duty
	(Grit Chamb	er High Water	Level	+ 437.11 m)		
	(Grit Chamb	er Low Water	Level	+ 434.06 m)	no soil	
Flow Rate	110000*	1.05=	115500	cum/day		
Average Velocity				2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Regired Length		L=K*(H*V/U	D/B=	20 2011111		7.4 m
roqued Dengar	L:	Required Len	*			,,,,
	K:	Safety Factor	~ ` '			2
	H:	Effective Dep	• •			3.05 m
	V:	Average Velo				3.7 cm/sec
	U:	Sand Settling	•	(Dia.0.15mm)		1.5 cm/sec
	B:	Number of B	-	(1718.0.1511111)		2
	W:	Width	asilis			6.0 m
	·VV.	Sediment				0.0 111
	Dia. of	I I				
	1	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
	0.08					
Water Level		Max. Flood		1447 ft		1.00 m
		Max. Operati		1446 ft		0.74 m
		Min. Operation		1438 ft		8.30 m
		Spillway Cres	st	1425 ft	43	4.34 m
n' n	T . I TO T .			1420.0	42	C 00
River Bottom Level at	Intake Point			1430 ft	43	6.00 m
				Effective		
Grit Chamber Dimens	ion	Width(m)	I oneth(m)		Basin	
GIR Chamber Dimens	ЮП	Width(m) 6.0×	Length(m) 33.5×	Depth(m)	Dasin	2
		0.0^	33.3^	5.1*		2
Effective Volume per	Pacin(m3)					613
Basin	Dasin(ins)				2	
	-1(m-2)				2 unit	1226
Effective Volume Tota	ai(m3)			15.20		1220
Retention Time				15.29	min	
Average Velocity				3.65	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		

Case 2 Capacity Calculation		mber (River W er High Water		37.60m) + 437.09 m)	2 unit duty	
		er Low Water		+ 435.06 m)	soil h=1.00m	
Flow Rate	110000*			cum/day	5011 11 11 10 1111	
Average Velocity	110000	1.03	115500	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
~						
Effective Depth				3-4m		
Retention Time		T TEL/TTATE/	/ T) 000	10-20min		
Reqired Length	_	L=K*(H*V/	•		7.4	m
	L:	Required Lea			_	
	K:	Safety Factor			2	
	H:	Effective De			2.03	m
	V:	Average Vel	ocity		5.5	cm/sec
	U:	Sand Settling	g Velocity	(Dia.0.15mm)	1.5	cm/sec
	B:	Number of B	asins		2	
	W:	Width			6.0	m
		Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
	0.08					
Water Level	0,00	Max. Flood		1447 f	t 441.00	m
Water Lever		Max. Operati	ion	1446 f		
		_		1438 f		
		Min. Operati				
		Spillway Cre	est	1425 f	t 434.34	m
River Bottom Level at	Intake Point			1430 f	t 436.00	m
				TOPE - stine		
0:4011		177: 1d. ()	T (1.6)	Effective	D	
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	2.0×	2	
Effective Volume per I	Basin(m3)				408	
Basin	ousni(ms)				2 unit duty	
Effective Volume Tota	1(m3)				816	
Retention Time				10.17	min	
Average Velocity				5.49	cm/sec	
				200	mm/min	
Surface Load Ratio					uminin	
Length/Width				5.6		

Case 3 Capacity Calculation					2 unit duty
		er High Water		+ 437.01 m)	11. 104
	•	er Low Water		+ 436.00 m)	soil h=1.94m
Flow Rate	110000*	1.05=	115500	cum/day	
Average Velocity				2-7 cm/sec	
Surface Load Ratio				200-500mm/min	
Width/Length				3-8	
Effective Depth				3-4m	
Retention Time				10-20min	
Reqired Length		L=K*(H*V/	U)/B=		7.4 m
	L:	Required Let	ngth(m)		
	K:	Safety Facto	r(-)		2
	H:	Effective De			1.01 m
	V:	Average Vel	•		11.0 cm/sec
	U:	Sand Settling	-	(Dia.0.15mm)	1.5 cm/sec
	B:	Number of E	-	(=	2
	W:	Width			6.0 m
	r '''	Sediment			
	Dia. of	Velocity			
	Sand(mm)	(cm/sec)			
	0.30				
	0.20				
	0.15	4			
	0.13				
	0.10				
XX . X 1	0.08			1447 £	441.00 m
Water Level		Max. Flood	•	1447 fi	
		Max. Operat		1446 fi	
		Min. Operati		1438 f	
		Spillway Cre	est	1425 f	434.34 m
River Bottom Level at	Intake Point			1430 fi	436.00 m
				Effective	
Cuit Chamban Dimanai		U7: Jel. ()	I amostly(ms)		Basin
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Dasiii 2
		6.0×	33.5×	1.0×	2
Effective Volume per I	Basin(m3)				203
Basin					2 unit duty
Effective Volume Tota	l(m3)				406
Retention Time				5.06	min
Average Velocity				11.03	cm/sec
Surface Load Ratio				200	mm/min
				5.6	IEDIN IIIIII
Length/Width				3.0	

Case 4 Capacity Calculation		nber (River W er High Water		38.30m) + 437.80 m)	2 unit duty	•
	•	er Low Water		+ 436.00 m)	soil h=1.94m	
Flow Rate	*110000			cum/day	3011 II-1.24III	
Average Velocity	110000	1.05	113300	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length		L=K*(H*V/U	η/ D —	10-20mm	7.4	m
-	L:	Required Ler	•		7.4	. 111
	K:	Safety Factor			2	
	к. Н:	Effective Dep			1.80	
	V:	_				
		Average Velo	-	(TS1= 0.1#		cm/sec
	U:	Sand Settling	-	(Dia.0.15mm)		cm/sec
	B: W:	Number of B	asıns		2	:) m
•	w:	Width			0.0	m
	D:£	Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.15					
	0.10					
Water Level	0,08	Max. Flood		1447	ft 441.00	٠
water Level				1446		
		Max. Operati				
		Min. Operation		1438		
		Spillway Cre	St	1425	ft 434.34	m
River Bottom Level at	Intake Point			1430	ft 436.00	m
				Effective		
Grit Chamber Dimension	on	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	1.8×	2	<u>.</u>
Effective Volume per E	Basin(m3)				362	<u>!</u>
Basin					2 unit duty	•
Effective Volume Total	l(m3)				724	
Retention Time				9.02	min	
Average Velocity				6.19	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		

Case 5 Capacity Calculati	2 unit dut	y				
		ber High Wate		+ 440.29 m)		
Flow Rate	110000	ber Low Water		+ 436.00 m)	soil h=1.94m	
Average Velocity	110000	* 1.05=	115500	cum/day		
Surface Load Ratio				2-7 cm/sec		
				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length		L=K*(H*V/	•		7.	4 m
	L:	Required Le	- ' '			
	K:	Safety Facto	r(-)			2
	H:	Effective De	pth		4.	3 m
	V:	Average Vel	ocity		2.	6 cm/sec
	U:	Sand Settling	y Velocity	(Dia.0.15mm)		5 cm/sec
	B:	Number of B	asins	` ,		2
	W:	Width				0 m
		Sediment			0	• •••
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
	0.08					
Water Level		Max. Flood		1447 f	t 441.00	١
		Max. Operati	On	1446 f		
		Min. Operation		1438 f		
		Spillway Cre				
		Spinway Cic	5L	1425 fi	t 434.34	m
River Bottom Level at	Intoka Point			1420.0		
Taver Dottom Bever at	make Foint			1430 fi	t 436.00) m
				T. C		
Grit Chamber Dimensi	ion	Width	T are methodoxia	Effective	. .	
on chamber binners	ion	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	4.3×	2	2
Effective Volume per l	Daniu (2)					
Basin	basin(m3)				862	
	1(2)				2 unit duty	
Effective Volume Tota Retention Time	u(m3)				1725	į.
				21.50	min	
Average Velocity				2.60	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		

Case 6 Capacity Calculation					2 unit duty	
	•	er High Water		+ 437.11 m)		
	•	er Low Water		+ 434.06 m)	no soil	
Flow Rate	110000*	1.05=	115500	cum/day		
Average Velocity				2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length		L=K*(H*V/	•		13.9	m
	L:	Required Le			_	•
	K;	Safety Factor			2	
	H:	Effective De	_		3.05	
	V:	Average Vel	-			cm/sec
	U:	Sand Settling		(Dia.0.10mm)		cm/sec
	B:	Number of B	asins		2	
,	W:	Width			6.0	m
į		Sediment				
5	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20	2.1				
	0.15	1.5				
1	0.10					
į	0.08					
Water Level		Max. Flood		1447 f		
		Max. Operat		1446 f		
		Min. Operati		1438 f	t 438.30	m
		Spillway Cre	est	1425 f	t 434.34	m
River Bottom Level at	Intake Point			1430 f	t 436.00	m
				Effective		
Grit Chamber Dimension	on	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	3.1×	2	
Effective Volume per E	Basin(m3)				613	
Basin					2 unit duty	•
Effective Volume Total	l(m3)				1226	,
Retention Time	-			15.29	min	
Average Velocity				3.65	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		
-						

Case 7 Capacity Calculation		mber (River V er High Wate		37.60m) + 437.09 m)	2 unit duty	
		er Low Water		+ 437.09 m)	soil h=1.00m	
Flow Rate	110000*			cum/day	S011 II-1.00XII	
Average Velocity	110000	1.05-	115500	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Regired Length		L=K*(H*V/	T 1\/D_	10-20mm	13.9	
Reques Length	τ.	-			13.9	. пі
	L: K:	Required Le			2	
		Safety Facto				
•	H: V:	Effective De	-		2.03	
		Average Vel	-	(D'- 0 10)		cm/sec
	U:	Sand Settling Number of E	-	(Dia.0.10mm)	0.8	cm/sec
	B:		sasıns			m
	W:	Width			0.0	m
	D:e	Sediment	ł			
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30	←				
	0.20					
	0.13					
	0.10					
Water Level	0.08	Max. Flood		1447 :	ft 441.00	
water Lever			inn	1446		
		Max. Operati Min. Operati		1438		
		Spillway Cre		1425 :		
		Spillway Cit	281	1423 .	II 434.34	. 111
River Bottom Level at	Intake Point			1430 :	ft 436.00	m
				Effective		
Grit Chamber Dimens	ion	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×		2	
		0.0	33.3	2.0	-	'
Effective Volume per	Basin(m3)				408	!
Basin					2 unit duty	•
Effective Volume Total	al(m3)				816	i
Retention Time				10.17	min	
Average Velocity				5.49	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		

Case 8 Capacity Calculation		mber (River W er High Water		37.60m) + 437.01 m)	2 unit duty	
	-	er High Water er Low Water		+ 436.00 m)	soil h=1.94m	
Elect Data	110000*			,	SOII II—1.94III	
Flow Rate	110000*	1.03=	113300	cum/day 2-7 cm/sec		
Average Velocity				2-7 cm/sec 200-500mm/min		
Surface Load Ratio						
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length		L=K*(H*V/U	•		13.9	m
	L:	Required Len	ıgth(m)			
	K:	Safety Factor	(-)		2	
	H:	Effective Dep	oth		1.01	m
	V:	Average Velo	city		11.0	cm/sec
	U:	Sand Settling	Velocity	(Dia.0.10mm)	0.8	cm/sec
	B:	Number of B	asins		2	
	W:	Width			6.0	m
	<u></u>	Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30	<u> </u>				
	0.20			•		
	0.15					
	0.10	4				
	0.10					
Water Level	0.00	Max. Flood		1447 fi	441.00	m
water Level			on	1447 fi		
		Max. Operati				
		Min. Operation		1438 fi		
		Spillway Cre	SI	1425 fi	434.34	m
River Bottom Level at	Intake Point			1430 fi	436.00	m
				Effective		
Grit Chamber Dimensi	an	Width(m)	I on ath(m)	Depth(m)	Basin	
Gitt Chamber Diffiensi	OII	Width(m)	Length(m)		2	
		6.0×	33.5×	1.0*	2	•
Effective Volume per I	Basin(m3)				203	
Basin					2 unit duty	,
Effective Volume Tota	l(m3)				406	
Retention Time				5.06	min	
Average Velocity				11.03	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		
Zongan maan				5.0		

e 9 Capacity Calculation					2 unit duty	
	•	er High Water		+ 437.80 m)		
	•	er Low Water		+ 436.00 m)	soil h=1.94m	
Flow Rate	110000*	1.05=	115500	cum/day		
Average Velocity				2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length		L=K*(H*V/	-		13.9 1	m
	L:	Required Let				-
	K:	Safety Factor			2	
	Н:	Effective De	-		1.80 1	
	V:	Average Vel	-			cm/sec
	U:	Sand Settling	•	(Dia.0.10mm)		cm/sec
	B:	Number of B	Basins		2	
	W:	Width			6.0 1	m
		Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
	0.08					
Water Level		Max. Flood		1447 :		
		Max. Operat		1446		
		Min. Operati		1438		
		Spillway Cre	est	1425	ft 434.34 i	m
River Bottom Level a	t Intake Point			1430	ft 436.00 i	m
				Effective		
Grit Chamber Dimens	sion	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	1.8×	2	
Effective Volume per	Basin(m3)				362	
Basin					2 unit duty	
Effective Volume Tot	al(m3)				724	
Retention Time				9.02	min	
Average Velocity				6.19	cm/sec	
Surface Load Ratio				200	mm/min	
Length/Width				5.6		

Case 10 Capacity Calculation	2 unit duty				
		oer High Wate oer Low Wate		+ 440.29 m) + 436.00 m)	soil h=1.94m
Flow Rate	110000			cum/day	50H H 115 HH
Average Velocity				2-7 cm/sec	
Surface Load Ratio				200-500mm/min	
Width/Length				3-8	
Effective Depth				3-4m	
Retention Time				10-20min	
Regired Length		L=K*(H*V/	(ID/B=	10-20Hilli	13.9 m
	L:	Required Le			13.9 111
	K:	Safety Facto			2
	H:	Effective De			4.29 m
	V:	Average Ve	•		2.6 cm/sec
	U:	Sand Settlin		(Dia.0.10mm)	0.8 cm/sec
	B:	Number of I	- ·	(Dia.o.Tolimit)	2
	W:	Width	3451115		6.0 m
	F	Sediment	1		0.0 111
	Dia. of	Velocity			
	Sand(mm)	(cm/sec)			
	0.30				
	0.20				
	0.15				
	0.10				
	0.08				
Water Level		Max. Flood		1447	ft 441.00 m
		Max. Operat	ion	1446	
		Min. Operati		1438	
		Spillway Cre		1425 1	
		, , ,		1,20	(5)151 111
River Bottom Level at	Intake Point			1430 1	ft 436.00 m
				Effective	
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Basin
		6.0×	33.5×	4.3×	2
Effective Volume per I	Basin(m3)				862
Basin					2 unit duty
Effective Volume Tota	l(m3)				2 diff duty 1725
Retention Time	· · · · · · ·			21.50	min
Average Velocity				2.60	cm/sec
Surface Load Ratio				200	mm/min
Length/Width				5.6	HHID HIH
				5.0	

ase 11 Capacity Calculation		mber (River V er High Water		37.60m) + 436.87 m)	I unit duty	
	•	er riigh Water er Low Water		+ 434.06 m)	no soil	
Flow Rate	110000*			cum/day	110 5011	
Average Velocity	110000	1.05-	115500	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
				3-8		
Width/Length				3-4m		
Effective Depth				3-4m 10-20min		
Retention Time		T TZ#/TT#17/T	n (n)	10-20min	20.7	
Reqired Length	т.	L=K*(H*V/U	,		29.7	m
	L:	Required Ler	•		0	
	K:	Safety Factor			2	
	H:	Effective Dep			2.81	
•	V:	Average Velo	_	(T) (A)		cm/sec
	U:	Sand Settling	-	(Dia.0.15mm)		cm/sec
	B:	Number of B	asins		1	
	<u>W:</u>	Width			6.0	m
	L	Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
	0.08					
Water Level		Max. Flood		1447 ft		
		Max. Operati		1446 ft		•
		Min. Operation		1438 ft		
		Spillway Cre	st	1425 ft	434.34	m
River Bottom Level at	Intake Point			1430 ft	436.00	m
				Effective		
Grit Chamber Dimens	ion	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	• • •	1	
Effective Volume per	Basin(m3)				565	
Basin	` ,				1 unit duty	,
Effective Volume Tota	al(m3)				565	
Retention Time	• •			7.04	min	
Average Velocity				7.93	cm/sec	
Surface Load Ratio				399	mm/min	
Length/Width				5.6		

(Grit Chamber High Water Level + 436.78 m) (Grit Chamber Low Water Level + 435.06 m) soil h=1.00m Flow Rate 110000* 1.05= 115500 cum/day Average Velocity 2-7 cm/sec Surface Load Ratio 200-500mm/min Width/Length 3-8	
Flow Rate 110000* 1.05= 115500 cum/day Average Velocity 2-7 cm/sec Surface Load Ratio 200-500mm/min	
Average Velocity 2-7 cm/sec Surface Load Ratio 200-500mm/min	
Surface Load Ratio 200-500mm/min	
······································	
Effective Depth 3-4m	
Retention Time 10-20min	
Required Length $L=K*(H*V/U)/B=$ 29.7 m	
L: Required Length(m)	
K: Safety Factor(-) 2	
H: Effective Depth 1.72 m	
V: Average Velocity 13.0 cm/s	eec.
U: Sand Settling Velocity (Dia.0.15mm) 1.5 cm/s	
B: Number of Basins 1	,cc
W: Width 6.0 m	
1 1	
Dia. of Velocity	
Sand(mm) (cm/sec)	
0.30 3.2	
0.20 2.1	
0.15 1.5	
0.10 0.8	
0.08 0.6	
Water Level Max. Flood 1447 ft 441.00 m	
Max. Operation 1446 ft 440.74 m	
Min. Operation 1438 ft 438.30 m	
Spillway Crest 1425 ft 434.34 m	
River Bottom Level at Intake Point 1430 ft 436.00 m	
70.0	
Effective	
Grit Chamber Dimension Width(m) Length(m) Depth(m) Basin	
6.0× 33.5× 1.7× 1	
Effective Volume per Basin(m3) 346	
Basin 1 unit duty	
Effective Volume Total(m3) 346	
Retention Time 4.31 min	
Average Velocity 12.95 cm/sec	
Surface Load Ratio 399 mm/min	
Length/Width 5.6	

Case 13 Capacity Calculation		mber (River ' er High Wate		37.60m) + 436.47 m)	1 unit duty	
	•	er Low Water		+ 436.00 m)	soil h=1.94m	
Flow Rate	110000*			cum/day	30H H 1.74H	
Average Velocity	110000	1.05	115500	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
				3-8		
Width/Length						
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length	_	L=K*(H*V/	,		29.7 m	
	L:	Required Le	•			
	K:	Safety Facto			2	
	H:	Effective De			0.47 m	
	V:	Average Vel	locity		47.4 cm/se	С
	U:	Sand Settlin	g Velocity	(Dia.0.15mm)	1.5 cm/se	С
	B:	Number of E	Basins		1	
	W:	Width			6.0 m	
		Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30	 				
	0.20					
	0.15					
	0.10	 				
	0.08					
Water Level	. 0.00	Max. Flood		1447	ft 441.00 m	
Water Level		Max. Plood Max. Operat	ion	1447		
		-				
		Min. Operat		1438		
		Spillway Cro	est	1425	ft 434.34 m	
River Bottom Level at	Intake Point			1430	ft 436.00 m	
				Effective		
Grit Chamber Dimensi		Width(m)	I amorth(ma)		Basin	
GHI Chambel Dimensi	OH	Width(m)	Length(m)	Depth(m)		
		6.0×	33.5×	0.5×	1	
Effective Volume per I	Basin(m3)				94	
Basin					1 unit duty	
Effective Volume Tota	l(m3)				94	
Retention Time				1.18	min	
Average Velocity				47.40	cm/sec	
Surface Load Ratio				399	mm/min	
Length/Width				5.6	**************************************	
20112012 11 10011				5.0		

Case 14 Capacity Calculatio		mber (River V er High Water		38.30m) + 437.54 m)	1 unit duty	
	-	er Low Water		+ 436.00 m)	soil h=1.94m	
Flow Rate	110000*			cum/day	\$011 II—1.54III	
Average Velocity	110000	1.05-	115500	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
= -						
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time		T TF4/774777	r. m	10-20min	20.5	
Reqired Length	_	L=K*(H*V/U	•		29.7 1	m
	L:	Required Ler			_	•
	K:	Safety Factor			2	
	H:	Effective Dep			1.54 1	
	V:	Average Velo	•		14.5	cm/sec
	U:	Sand Settling	•	(Dia.0.15mm)	1.5	cm/sec
	B:	Number of B	asins		1	
	W:	Width			6.0 1	m
		Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30	3.2				
	0.20	2.1				
	0.15	1.5				
	0.10	0.8				
-	0.08					
Water Level		Max. Flood		1447 f	t 441.00 i	m
		Max. Operati	on	1446 f	t 440.74 i	m
		Min. Operation		1438 f		
		Spillway Cre		1425 f		
		opinius ore	•	1,251		
River Bottom Level at	Intake Point			1430 f	t 436.00 i	m
				Effective		
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	1.5×	1	
Effective Volume per I	Basin(m3)				310	
Basin					1 unit duty	
Effective Volume Tota	l(m3)				310	
Retention Time				3.86	min	
Average Velocity				14.47	cm/sec	
Surface Load Ratio				399	mm/min	
Length/Width				5.6		

Case 15 Capacity Calculation		amber (River V oer High Water		•	1 unit duty	,
				+ 440.18 m)		
Flow Rate		per Low Water		+ 436.00 m)	soil h=1.94m	
	110000*	1.05=	115500	cum/day		
Average Velocity				2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Reqired Length		L=K*(H*V/	•		29.7	m
	L:	Required Ler	ngth(m)			
	K:	Safety Factor	r(-)		2	
	H:	Effective De	pth		4.18	m
	V:	Average Velo	ocity		5.3	cm/sec
	U:	Sand Settling	Velocity	(Dia.0.15mm)	1.5	cm/sec
	B:	Number of B	•	,	1	
	W:	Width			6.0	
		Sediment			0.0	***
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
	0.08					
Water Level	0.00	Max. Flood		1447 f	441.00	
		Max. Operati	on.			
		-		1446 f		
		Min. Operation		1438 f		
		Spillway Cres	St	1425 f	t 434.34	m
River Bottom Level at	Intoles Daine			1.00.0		
River Bottom Level at	make Point			1430 f	t 436.00	m
				T:CC4:		
Grit Chamber Dimensi	on	Width(m)	T am anth ()	Effective	ъ.	
Gitt Chamber Dimensi	OIL	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	4.2×	1	
Effective Volume per I	Pasin(m2)				0.40	
Basin	oasin(m5)				840	
	1(2)				1 unit duty	
Effective Volume Tota	ı(ms)				840	
Retention Time				10.47	min	
Average Velocity				5.33	cm/sec	
Surface Load Ratio				399	mm/min	
Length/Width				5.6		

ase 16 Capacity Calculation	on of Grit Cha	mber (River W	ater Level + 4	37.60m)	1 ı	anit duty	
	(Grit Chamb	er High Water	Level	+ 436.87 m))		
	(Grit Chamb	er Low Water I	Level	+ 434.06 m)	no soil		
Flow Rate	110000*	1.05=	115500	cum/day			
Average Velocity				2-7 cm/sec			
Surface Load Ratio				200-500mm/min			
Width/Length				3-8			
Effective Depth				3-4m			
Retention Time				10-20min			
Reqired Length		L=K*(H*V/U)/B=			55.7	m
;	L:	Required Len	gth(m)				
	K:	Safety Factors				2	
	H:	Effective Dep				2.81	m
	V:	Average Velo				7.9	cm/sec
	U:	Sand Settling	-	(Dia.0.10mm))	0.8	cm/sec
	B:	Number of Ba		· ·		1	
	W:	Width				6.0	m
		Sediment					
	Dia. of	Velocity					
	Sand(mm)	(cm/sec)					
	0.30						
	0.20						
	0.15						
	0.10						
	0.08						
Water Level		Max. Flood		1447	7 ft	441.00	m
		Max. Operation	on	1446	5 ft	440.74	m
		Min. Operation		1438	3 ft	438.30	m
		Spillway Cres		1425	5 ft	434.34	m
River Bottom Level at	Intake Point			1430) ft	436.00	m
				Effective			
Grit Chamber Dimens	ion	Width(m)	Length(m)	Depth(m)	В	asin	
		6.0×	33.5×	2.8>	C	1	
Effective Volume per	Basin(m3)					565	
Basin					1 1	unit duty	
Effective Volume Total	al(m3)					565	
Retention Time				7.04			
Average Velocity				7.93			
Surface Load Ratio				399		in	
Length/Width				5.6			

Case 17 Capacity Calculatio		mber (River V er High Water		37.60m) + 436.78 m)	1 unit duty	4
		er Low Water		+ 435.06 m)		
Flow Rate	110000*			cum/day	3011 1.0011	
Average Velocity	110000	1.05	115500	2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Regired Length		L=K*(H*V/	IN/R=	10-2011111	55 ′	7 m
Requed Eength	L:	Required Lei	•		55.	
	K:	Safety Factor			,	2
	H:	Effective De				2 m
	V:	Average Vel	•			cm/sec
	U:	Sand Settling	_	(Dia.0.10mm)		8 cm/sec
	B:	Number of B		(Dia.o.Toliuli)		1
	W:	Width	asilis) m
	· · ·	Sediment			0.0	J 111
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.13					
	0.08	1				
Water Level	0.00	Max. Flood		1447	ft 441.0	n m
Water Level		Max. Operati	ion	1446		
		Min. Operati		1438		
		Spillway Cre		1425		
		opinway Cic	,3t	1423	10 101.0	T 111
River Bottom Level at	Intake Point			1430	ft 436.0	0 m
				Effective		
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Basin	
GIN CIMING DIMENSI		6.0×	33.5×	- · · ·		1
		0,0	55.5			•
Effective Volume per I	Basin(m3)				34	6
Basin	` ′				l unit dut	у
Effective Volume Tota	ıl(m3)				34	6
Retention Time	- /			4.31	min	
Average Velocity				12.95		
Surface Load Ratio				399		
Length/Width				5.6		
-						

se 18 Capacity Calculati					1 unit duty	
	•	er High Water		+ 436.47 m)	71. 104	
P! D-4-	•	er Low Water		± 436.00 m)	soil h=1.94m	
Flow Rate	110000*	1.05=	115500	cum/day 2-7 cm/sec		
Average Velocity Surface Load Ratio						
-				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time		T 17+/TT+17/T	T) (T)	10-20min	55.5	
Reqired Length	τ.	L=K*(H*V/U			55.7	m
	L:	Required Ler			•	•
	K:	Safety Factor			2	
	H:	Effective Dep			0.47	
	V:	Average Velo	-	(7.1.0.10.)		cm/sec
	U:	Sand Settling	-	(Dia.0.10mm)		cm/sec
	B:	Number of B	asıns		1	
	<u>W:</u>	Width			6.0	m
	<i>z</i> . •	Sediment				
	Dia. of	Velocity				
	Sand(mm)	(cm/sec)				
	0.30					
	0.20					
	0.15					
	0.10					
Water Level	0.08			1447 6	441.00	
water Level		Max. Flood		1447 f		
		Max. Operati		1446 f		
		Min. Operation		1438 f		
		Spillway Cre	SI	1425 f	t 434.34	m
River Bottom Level a	t Intake Point			1430 f	t 436.00	m
	ii zimiio i oiii			11501	150.00	711
				Effective		
Grit Chamber Dimens	sion	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×	0.5×	1	
Effective Volume per	· Racin(m3)				94	
Basin	Dasin(mis)				I unit duty	
Effective Volume Tot	tal(m3)				94	
Retention Time				1.18	min	
Average Velocity				47.40	cm/sec	
Surface Load Ratio				399	mm/min	
Length/Width				5.6	MAID HIMI	
Conguir widui				2.0		

Case 19 Capacity Calculation		mber (River V er High Water		38.30m) + 437.54 m)	1 unit duty	
	-	er Low Water		+ 436.00 m)	soil h=1.94m	
Flow Rate	110000*			cum/day	DO21 11 117 1111	
Average Velocity	110000			2-7 cm/sec		
Surface Load Ratio				200-500mm/min		
Width/Length				3-8		
Effective Depth				3-4m		
Retention Time				10-20min		
Regired Length		L=K*(H*V/0	Л/ В =	10 20mm	55.7	m
reduce new part	L:	Required Lei	•		33.7	
	K:	Safety Factor			2	
	H:	Effective De	• •		1.54	
	V:	Average Vel				cm/sec
	U:	Sand Settling	-	(Dia.0.10mm)		cm/sec
	B:	Number of B		(1512.0.1011111)	1	
	W:	Width	43113		6.0	
	/ ''	Sediment			0.0	111
	Dia, of	Velocity				
i	Sand(mm)	(cm/sec)				
	0.30	<u>`</u>				
!	0.20					
	0.15					
	0.10					
	0.08	+				
Water Level	3.53	Max. Flood		1447	ft 441.00	m
.,		Max. Operati	ion	1446		
		Min. Operati		1438		
		Spillway Cre		1425		
		opining) or		1123		***
River Bottom Level at	Intake Point			1430	ft 436.00	m
				Effective		
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Basin	
		6.0×	33.5×		1	
Effective Volume per I	Basin(m3)				310	
Basin	,				I unit duty	
Effective Volume Tota	I(m3)				310	
Retention Time	`/			3.86	min	
Average Velocity				14.47	cm/sec	
Surface Load Ratio				399	mm/min	
Length/Width				5.6		
				2.0		

Case 20 Capacity Calculation	on of Grit Cha (Grit Chamb	amber (River V oer High Wate	Water Level + 4	40.74m) + 440.18 m)	1 unit duty
		er Low Water		+ 436.00 m)	soil h=1.94m
Flow Rate	110000*			cum/day	SOII II-1.94III
Average Velocity	110000	1.03	115500	2-7 cm/sec	
Surface Load Ratio				200-500mm/min	
Width/Length				3-8	
Effective Depth				3-4m	
Retention Time				10-20min	
Regired Length		L=K*(H*V/	() /D —	10-20mm	55.7
Request Length	L:	Required Les	•		55.7 m
	K:	Safety Factor			
	н:	Effective De	• •		2
	V:	Average Vel			4.2 m
	U:	Sand Settling	-	(D:- 0.10)	5.3 cm/sec
	о. В:	Number of B	•	(Dia.0.10mm)	0.8 cm/sec
	W:	Width	asins		1
		Sediment			6.0 m
	Dia. of	Velocity			
	Sand(mm)	(cm/sec)			
	0.30				
	0.30				
	0.15				
	0.10				
	0.08				
Water Level	0.00	Max. Flood		1447 1	t 441.00 m
		Max. Operati	on	1446 1	
		Min. Operation		1438 1	
		Spillway Cre		1425 1	
		Spinway Cre	St	1425 1	t 434.34 m
River Bottom Level at	Intake Point			1430 f	t 436.00 m
				Effective	
Grit Chamber Dimensi	on	Width(m)	Length(m)	Depth(m)	Basin
		6.0×	33.5×	4.2×	1
					1
Effective Volume per I	Basin(m3)				840
Basin	. ,				1 unit duty
Effective Volume Tota	l(m3)				840
Retention Time	•			10.47	min
Average Velocity				5.33	cm/sec
Surface Load Ratio				399	mm/min
Length/Width				5.6	COMPA BABBA
_				2.3	

Existing Small Stream Reconstruction Plan outside of Intake site (W=2.0m,H=1.00m,Water Depth h=0.50mQ2,h=0.67mQ3) Downstream (gate point of intake site - release point) 1 Existing Open Channel

at gate point of intake site h1= 443.500 m GL. 445.000 m Bottom Level 442.000 m EL 442.500 m at release point h2= Length L= 135.00 m

Average Gradient (I=(h1-h2)/L) Ι= 0.0111

2 Proposed Water Flow

2.1 Rainfall Discharge Flow

Q1=A+I+CR= 0.693 m3/sec (Rainfall discharge) 24.93 ha A= (Catchment area) where I= 50 mm/h (Rainfall intensity) CR= 0.2 (Coefficient of run-off)

2.2 Balancing Tank Oveflow Discharge Flow

Q2= 1.273 m3/sec (Overflow 110,000m3/day) Q3= 1.910 m3/sec (Overflow 110,000*1.5m3/day)

3 Proposed open channel

Bottom Level at gate point of intake site at release point

441.500 m (EL 442.500 m) Channel Depth H= 1.000 m hl= 441.000 m 442,500 m) Channel Depth H= Mahaweli River HHWL+441.00m

Level Deference between gate and release point h0=h1-h2=

0.500 m (0+325 - 0+462) 137.00 m Length Ľ= Adopted Gradient (I=(h1-h2)/L) 0.003650

4 Water Depth and Channel Bottom Gradient for Q2=1,273m3/sec

Sectional Area of Reconstruction Stream

Q2= 1.273 m3/sec

Inflow sectional area

2=b*h= 1.01 m2 where 2.00 m (Channel Width)

0.504 m (Water Depth)

Velocity

V2=Q2/a= 1.26 m/sec

Hydraulic radius

R=(h*b+(0.3*2*h)/2)/(b+1.044*2*h)= 0.380 m

Roughness coefficient

Head losses are calculated using Manning Formula.

h=n^2*L*v^2/R^(4/3)

137.00 m where L=

0.497 = 0.500 m 0.500 (Proposed Bottom Level Deference h0) ΟK

0.003649635 1= h/L =

5 Water Depth and Channel Bottom Gradient for Q3=1.910m3/sec

Sectional Area of Reconstruction Stream

1.910 m3/sec 03=

Inflow sectional area

a=b*h= 1.34 m2 2.00 m (Channel Width) where 0.670 m (Water Depth) h=

Velocity

V3=Q3/a= 1.43 m/sec

Hydraulic radius

R=(h+b+(0.3+2+h)/2)/(b+1.044+2+h)= 0.453 m

Roughness coefficient

0.025

Head losses are calculated using Manning Formula.

h=n^2*L*v^2/R^(4/3)

where 137.00 m

0.499 h= = 0.500 m0.500 (Proposed Bottom Level Deference h0) OK

Appendix 6.2 Sri Lanka - Kandy Water Supply Project
Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Item	Total System			First Stag	e	
Planned Flow	Q= 110,000 cu	m/day		Q= 36,670	cu m/day	
Plant Capacity	Q= 115,500 cu	m/day		Q= 38,500	cu m/day	
(Daily Max)	= 4,813 cu m/hour				cu m/hour	
	= 80.2 cu m/min			= 26.7	cu m/min	
	= 1.337 cu	m/sec		= 0.446	cu m/sec	
(1) Balancing Tank						
Criteria	Retention Time	T =	1.5 min	Retention Time	T =	1.5 min
	Recirculation	a =	0.0 %	Recirculation	a =	0.0 %
Dimension	Rectangular	l units		Rectangular	1 units	
	Lm x W m:	CDm xun	its	Lm x W	m x D m x ur	nits
	7.0 9.0	2.0	i	7.0 9.0	2.0	1
	V= 126,0 cu	m		V= 126.0	cu m	
	T= 1.57 mi	n		T= 4.49	min	

Appendix 6.2 Sri Lanka - Kandy Water Supply Project
Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Item	Total System	First Stage
Planned Flow	Q= 110,000 cu m/day	Q= 36,670 cu m/day
I latined 1 low	110,000 cu iib day	20,070 cu m/azy
Plant Capacity	Q= 115,500 cu m/day	Q= 38,500 cu m/day
(Daily Max)	= 4.813 cu m/hour	= 1,604 cu m/hour
(Daily Max)	= 80.2 cu m/min	= 26.7 cu m/min
	= 1.337 cu m/sec	= 0.446 cu m/sec
(1) Receiving Well	1.557 Cu iipsec	- 0.440 cu m/sec
(1) Receiving West Criteria	Retention Time T = 1.5 min	Retention Time T = 1.5 min
Cinena	Recirculation a = 3.0 %	
	Recirculation a = 3.0 %	Recirculation a = 3.0 %
Dimension	Rectangular 1 units	To a state of the
Dimension		Rectangular I units
	Lm x W mx Dm x units	Lm x W mx Dm x units
	4.5 8.1 5.0 1	4.5 8.1 5.0 1
	4	
	V= 182.3 cu m	V= 182.3 cu m
	T= 2.2 min	T= 6.3 min
(2) Mixing Chamber		
Criteria	Retention Time T= 1-5 min	Retention Time T= 1 - 5 min
	Recirculation a = 3.0 %	Recirculation a = 3.0 %
Dimension	Rectangular 6 units	Rectangular 2 units
	Lm x W mx Dm x units	Lm x W mx Dm x units
	3.5 2.5 3.90 6	3.5 2.5 3.90 2
		+
Unit Volume	UV = 34.1 cu m/unit	UV = 34.1 cu m/unit
Total Volume	V = 205 cu m	V = 68 cu m
Retention Time	t≖ 2.5 m.in	t = 2.5 min
Mixing	Hydraulic Mixing	Hydraulic Mixing
(3) Flocculator		
Criteria	Retention Time T = 20 - 40 min	Retention Time T = 20 - 40 min
	Recirculation a = 3.0 %	Recirculation a = 3.0 %
	Required Volume V = 1,652 cu.m to	Required Volume V = 551 cu.m to
	3,305 cu.m	1,102 cu.m
Unit Flow	q = 13.4 cu m/min/basin	q = 13.4 cu m/min/basin
Dimension	6 units	2 units
Step I	Wm xLm xDm xNo,ofChannel	W m x L m x D m x No.of Channel
	1.1 11.0 3.5 2	1.1 11,0 3.5 2
Step 2	I	Wm xLm xDm xNo.ofChannel
	1.5 11.0 3.5 2	1.5 11.0 3.5 2
Step 3	Wm xLm xDm xNo.ofChannet	Wm xLm xDm xNo.ofChannel
	2.3 11.0 3.5 2	2.3 11.0 3.5 2
Volume	Step 1 84.7 cu m/unit	Step 1 84.7 cu m/unit
	Step 2 115.5 cu m/unit	Step 2 115.5 cu m/unit
	Step 3 177.1 cu m/unit	Step 3 177.1 cu m/unit
	Volume / Unit 377.3 cu m/unit	Volume / Unit 377.3 cu m/unit
Total Volume	V = 2,264 cu m	V = 755 cu m
Retention Time		28.2 minutes

Appendix 6.2 Sri Lanka - Kandy Water Supply Project
Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Item	Total System	Phase !			
(4) Seddimentation Basin Type	Rectangular, Horizontal Flow	Rectangular, Horizontal Flow			
Unit Flow	q = 826 cu m/hr/basin (Recircutation a= 3.0 %)	q = 826 cu m/hr/basin (Recirculation a= 3.0 %)			
	(Recticulation a= 5.0 %)	(Recirculation a= 5,0%)			
Criteria	Retention Time T = 2.5 hours	Retention Time T = 2.5 hours			
	Surface Load a = 15 - 30 mm/min	Surface Load a = 15 - 30 mm/min			
	Hor. Flow Velocity v < 0.40 m/min L/W Ratio L/W = 3 - 8 times	Hor. Flow Velocity v < 0.40 m/min			
	L/W Ratio	L/W Ratio L/W = $3-8$ times Depth D = $3-4$ m			
	Depth of 50 cm or more is provided for sludge settlement.	Depth of 50 cm or more is provided for sludge settlement.			
Original Dimension	No. 6 basins Wm x L m x D m x N	No. 2 basins Wm x Lm x Dm x N			
	W m x L m x D m x N 11 50 4.0 6				
	11 ,0	11 30 4.0			
Volume	V = 2,200 cu m/basin	V = 2,200 cu m/basin			
	T = 2.66 hours	T = 2.7 hours			
	L/W = 4.5	L/W = 4.5			
	a = 25.0 mm/min v = 0.313 m/min	a = 25.0 mm/min v = 0.313 m/min			
nor row velocity	V = VICTO HYMMO	O.O.D. Mymm			
Revised Dimension	No. 6 basins	No. 2 basins			
ı	Wm xLm xDm xN	Wm xLm xDm xN			
•	11 41 4.0 6	11 41 4.0 2			
•	1st step 11.0 m 100 %Q 2nd step 10.0 m 100 %Q	1st step 11.0 m 100 %Q 2nd step 10.0 m 100 %Q			
:	3rd step 10.0 m 80 %Q	3rd step 10.0 m 80 %Q			
•	4th step 10.0 m 60 %Q	4th step 10.0 m 60 %Q			
İ	Total Length 41.0 m	Total Length 41.0 m			
	V = 1,804 cu m/basin	V = 1,804 cu m/basin			
	T = 2.18 hours	T = 2.18 hours			
L/W Ratio Surface Load	L/W = 3.7 a = 25.0 mm/min	L/W = 3.7 a = 25.0 mm/min			
	v = 0.313 m/min	v = 0.313 m/min			
1101.110.11 70100119	S.S.E. Hallet	V.S. I.S. Hyllrai			
Overflow Weir	Load = 500 m3/m/day	Load = 500 m3/m/day			
Trough Length	L = 24 m or longer	L = 24 m or longer			
	No. 8 troughs/unit	No. 8 troughs/unit			
	Lm x N	L m x N			
	2.0 8	2.0 8			
	L = 32.0 m	L = 32.0 m			
	Weir Load L= 372 m3/m/day	Weir Load L= 372 m3/m/day			
~! · · · ·					
Sludge Removal	Recipro Type Collector	Recipro Type Collector			
ļ		1			
Sludge Amount	So = Q * (K*(T1-T2)+B*156/666)*10^-6	}			
Solid Amount	where So:Sludge dry weight(ton)	1			
(ton-DS)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
!	K:Coefficient converting turbidity to SS (0.8-1.5 ->>1.2)	1			
,	T1:Turbidity in raw water (ave=	o 			
ļ	T2: Turbidity after Sedimentation (ave = 0)	1			
	B:Aium dosage rate (ave.=	D			
	$B = 4 + 2 * (T1-T2) ^ 0.5 = 16.6$				
	So = 5.81 ton-DS/day	So = 1.94 ton-DS/day			
	ŕ				
}	Water Contents of Drained Sludge	Water Contents of Drained Sludge			
	(with wash-out water) w = 98.0 %	(with wash-out water) w = 98.0 %			
	Frequency of Cleaning : Once a Year	Frequency of Cleaning: Once a Year			
	Frequency of Cleaning : Once a Year Total	Frequency of Cleaning : Once a Year			
	Total v = 106,115 cu.m/year	Total v = 35,372 cu.m/year			

Appendix 6.2 Sri Lanka - Kandy Water Supply Project
Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Item	Total Syste	em		First Stage	,,	1.0
(5) Rapid Sand Filter				1		
Туре	Down Flow, Single Me	edia		Down Flow, Single Media	ı	
No.]	12 units (wash	3 group)	4	units (wash	1 group)
Unit Flow	q = 9,90 (Recirculation	00 cu m/day/unit on a=	3.0 %)	q = 9,900 (Recirculation	cu m/day/unit a=	3.0 %)
	Filtration Rate	Fr = (for	150 m/day normal operation)	Filtration Rate	Fr = (for no.	150 m/day rmal operation)
	Filter Area per Unit	A <	150 sq m	Filter Area per Unit	A <	150 sq m
Dimension	Wm xLm 7.2 9.	x N units 6 12 (4 f	liters/group)	W m x L m 7.2 9.6	x N units 4 (4 filte	rs/group)
	A = 69	.l sqm/unit		A = 69.1	sq m/unit	
Filtration Rate	Fr = 143	.2 m/day		Fr = 143.2	m/day	
		.0 m/day		Fr'= 191.0	•	
Filters for Backwashing	3 units out of 12 are war. 2.	asning 3 filters/group		1 units out of 4 are washin	ng filters/group	
Filter Washing						
Frequency	Once a day for each fil	lter		Once a day for each filter		
Water Rate	Backwashing	rate = duration =	0.30 m3/m2/min 12 min	Backwashing	rate = duration =	0.30 m3/m2/min 12 min
Air Rate	Air Scouring	rate = duration =	1.00 m3/m2/min 3 min	Air Scouring	rate = duration =	1.00 m3/m2/min 3 min
Water Amount				i		
	Backwashing	Vb =	248.8 cu m/unit	Backwashing	Vb =	248.8 cu m/unit
for Total Units	Total Amount for Was Percentage for Planned	_	2,986.0 cu m/day 2.6 %	Total Amount for Washin Percentage for Planned Fl	-	995.3 cu m/day 2.6 %
Solid Amount	So = Q*K*(T1-T2)*1	10^-6				
in Wastewater		ludge dry weight(ton)				
(ton-DS)	l	ted water amount(m3/	d)			
` '1	,	ficient converting turb	•			
		to SS (0.8-1.5 ->>1	•			
	l	bidity before filter(ave				
	T2 :Turi	bidity after filter(ave =	. 0			
	So = 0.6	69 ton-DS/day		So = 0.23	ton-DS/day	
SS Contents		32 mg/l		s = 232	mg/l	
(6) Backwash Water Storag		tention [lait-		at the Outlet - £45 - E'll .	ian I laise	
	at the Outlet of the Filt V > Backwash Water f		l unit	at the Outlet of the Filtrat V > Backwash Water for	ion Units	1 unit
Required Volume	V = 248.8	cu m		V = 248.8	cu m	
Dimension	No.	1 units		No. 1	units	
	Lm x W m		N units	L m x W m	x Dm mxN	units l
Total Volume	v = 29	96 cu m		v = 296	cu m	

Appendix 6.2 Sri Lanka - Kandy Water Supply Project
Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Item	Total System	First Stage
(7) Clear Water Reservoir		
Criteria	Retention Time T > 1.0 hours	Retention Time T > 1.0 hours
Required Volume	V = 4,580 cu m	V ≈ 1,530 cu m
Dimension	No. 6 units L m x W m x D m m x N units 21.0 13.8 3.0 6	No. 2 units Lm xWm xDm mxN units 21.0 13.8 3.0 2
Total Volume	V = 5,216 cu m	V = 1,739 cu m
Retention Time	T = 1.14 hours	T = 1.14 hours
(8) Alum Dissolving Tank		
Coagulant	Solid Aluminum Sulphate (Al2(SO4)3) containing 15 % Al2-O3	Solid Aluminum Sulphate (Al2(SO4)3) containing 15 % Al2-O3
Criteria	Dosage Rate : 10-60 mg-solid alum/l Average 30 mg/l	Dosage Rate : 10-60 mg-solid alum/l Average 30 mg/l Coagulant Solution : 10 % sg = 1.0525 Retention Time 24 hours Dissolving Time 2 hours
Dosage Amount Coagulant Solution	Wt = 3,465 kg-Alum/day (Max dosage) V = 32.9 cu m/day	Wt = 1,155 kg-Ahum/day (Max dosage) V = 11.0 cu m/day
Solution Tank Dimension	Square 4 units L m x W mx D m x units 2.0 2.0 2.5 4	Square 2 units Lm x W m x Dm x units 2.0 2.0 2.5 2
Total Volume Retention Time	V = 40.0 cu m T = 29.2 hours	V = 20.0 cu m T = 43.7 hours
Storage	Period 30 days Bulk s. g. 0.60	Period 30 days Bulk s. g. 0.60
Storage Area	A = 87 m2 at 2.0 m height	A = 29 m2 at 2.0 m height
(9) Lime Dissolving Tank		
pH Control	Hydrated Lime (Ca(OH)2) containing 72 % CaO	Hydrated Lime (Ca(OH)2) containing 72 % CaO
Criteria	Dosage Rate :	Dosage Rate : 5-30 mg-solid Lime/l Requirement 10.4 mg/l (PreS-30, PostS-20 mg/l)
Dosage Amount Coagulant Solution	Wt = 1,733 kg-Alum/day (Max dosage) V = 16.3 cu m/day	Wt = 578 kg-Alum/day (Max dosage) V = 5.4 cu m/day
Solution Tank Dimension	Square 4 units L m x W m x D m x units 2.0 2.5 4	Square 2 units L m x W m x D m x units 2.0 2.0 2.5 2
Total Volume Retention Time	V = 40.0 cu m T = 58.8 hours	V = 20.0 cu m T = 88.2 hours
Storage	Period 30 days Bulk s. g. 0.40	Period 30 days Bulk s. g. 0.40
Storage Area	A = 65 m2 at 2.0 m height	A = 22 m2 at 2.0 m height

Appendix 6.2 Sri Lanka - Kandy Water Supply Project
Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Ta	Y-4-1 G	First Characteristics
Item To The Total Control of t	Total System	First Stage
(10) Chlorination Equipme		
Injection Point	at the Inlet of Clear Water Reservoir	at the Inlet of Clear Water Reservoir
	and outlet of Sedimentation Basin	and outlet of Sedimentation Basin
Туре	Liquid Chlorine (900 kg-cylinder)	Liquid Chlorine (900 kg-cylinder)
1,700	Enquire Chieffite (700 kg 0) hilder)	Diquid Orbot the (200 Mg o) miles)
Criteria	Dosage Rate: 7.0 mg-Cl/l	Dosage Rate: 7.0 mg-Cl/l
1	(Prel.0-5.0	0, Post1.0-5.0) (Pre1.0-5.0, Post1.0-5.0)
ì	Average 3.0 mg/l (Pre2.	2.0, Post1.0 mg/l) Average 3.0 mg/l (Pre2.0, Post1.0 mg/l)
Dosage Amount	Wt = 347 kg- Cl gas/day	Wt = 116 kg- Cl gas/day
Dosage Amount	, , ,	0 0 2
	or 14 kg- Cl gas/hour	or 5 kg- Cl gas/hour
1		
Chlorinator	Vacuum Type	Vacuum Type
No. of unit	3 units	1 units
	(excl. 1 unit stand-by)	(excl. 1 unit stand-by)
Rate	4.81 kg/hour/unit	4.81 kg/hour/unit
1		ě .
Operation Rate	60 percent	60 percent
Capacity	8 kg/hour/unit	8 kg/hour/unit
Storage	Period 30 days	Period 30 days
Storage Area	A = 24 m2 as	2.0 m2/container $A = 9 m2$ as 2.0 m2/container
(11) Backwash Wastewate	r Storage Tank	·
Retention Time	. ~	1 hours
Tablematin Amic	1 110000	
Deal-set Water	3/0 - 1 1/5 - 3/61/	$\nabla u u v v v v v v v v v v v v v v v v v $
Backwash Water	Vs + Vb = 249 cu.m/filter	rumit
l		
Required Volume	1 filters 249 cu.m	l filters 249 cu.m
1		
No.	N = 2 units	N = 2 units
Dimension	Lm xWm xDm mxN	units Lm xWm xDm mxN units
	14.0 6.0 3.00	2 14.0 6.0 3.00 2
	14.0 0.0 3.00	2 14.0 0.0 5.00 2
Total Volume	v = 504 cu m	v = 504 cu m
Frequency of Wash	Once a day = 12 filters/day	Once a day = 4 filters/day
(12) Sludge Lagoon	So = 5.81 ton-DS/day	So = 1.94 ton-DS/day
' ' '	1	, and the second
	Water Contents in Sludge Lagoon	Water Contents of Drained Sludge
	The Coments in Single Lagons	(with wash-out water)
1		
1	w = 70.0 %	w = 70.0 %
1		
Sludge Amount	Total $v = 7.074$ cu.m/year	Total v = 2,358 cu.m/year
1	So = 2,122 ton-DS/yea	ear So = 707 ton-DS/year
1	j	
Required Volume	v = 7,074 cum	v = 2,358 cu m
Required volume	7,074 62111	7 2,550 Cu III
n		
Dimension	, ~	unit for stand-by Rectangular 1 units + 1 unit for stand-by
1	Lm xW mxDm xunits	Lm x W mx Dm x units
1	70.0 35.0 1.0	4 70.0 35.0 1.0 2
1		
1	7 250	0.450
Total Volume	v = 7,350 cu m	v = 2.450 cu m

02	Intake and Water Treatment Plant Hydraulic Calculations

Intake Facilities Water Level (0.5m settling soil at 1nlet channel)

Quantity	Duty	R.W.L.(m)		G.W.L. P.C.W.L.		Remark	
Q=1.0	1 unit	LLWL	437.60	436.87	436.59	Bottom Level is 434.06m(no soil)	
		LLWL	437.60	436.78	436.40	Sedimentation Level is 435.06m(h=1.0m)	
		LLWL	437.60	436.47	435.94	Sedimentation Level is 436.00m(h=1.94m)	
		LWL	438.30	437.54	437.36	Sedimentation Level is 436.00m(h=1.94m)	
		HWL	440.74	440.18	440.12	Sedimentation Level is 436.00m(h=1.94m)	
Q=1.0	2 units	LLWL	437.60	437.11	437.03	Bottom Level is 434.06m(no soil)	
		LLWL	437.60	437.09	437.01	Sedimentation Level is 435.06m(h=1.0m)	
	}	LLWL	437.60	437.01	436.93	Sedimentation Level is 436.00m(h=1.94m)	
	1	LWL	438.30	437.80	437.75	Sedimentation Level is 436.00m(h=1.94m)	
		HWL	440.74	440.29	440.27	Sedimentation Level is 436.00m(h=1.94m)	

Note: R.W.L.: River Water Level

G.W.L.: Grit Chamber Water Level P.C.W.L.: Pump Chamber Water Level

Intake fac	ilities	water	loss	(River	water le	evel +43	87.6m)		2 unit duty	
1 River Wate L.L	er Level W.L.			437.600	m					
2 Intake Flo	w & Ver	ositv								
Q1=				38500	m3/day=	0.44	6	m3/sec		
Q2=					m3/day=	0.89	1	m3/sec		
Q3=					m3/day=	1.33	7	m3/sec		
3 Bar Screen	n Loss		B= H= b= t=	12.5	m mm mm	(37 (Bottom	.5 *44= Level	1.650 m) 436.500 m)	Including Sed. Depth	h=0.50m
			θ=	70		(0 1 1	3.7 IO	0.779402.3		
			V= **	0.368		(Q= 1.3	57 72=	0.668403)		
			H=	0.003				OUT :	427 200 1	0.800 -7
Thr	rerfore		hl=	0.300	m			(WL+ (Bottom Level	437.300 m, depth 436.500 m) settlin	0.800 m)
4 Head loss	of Intake	e gate						(Bottom Ecver	450.500 M) scians	g 30H 0.5H
Din	nension (of gate; 1 =v2/(2*g		500						
who	ere	A=1.5m	ı*Hm*	2=	2.4	4 m2 : Sec	tional area	(H=0.80 m)		
		Q= v=Q/A= g= C=	:	0.557	m3/sec m/sec m/sec2					
		h4=		0.0440		= 0.0	50 m	(WL+	437.250 m, depth	0.750 m)
		**		0.0110		- 0.0.	20 III	(Bottom Level	436.500 m)	0.750 24,
5 Rubbish R	Remover		B= H= b= t=	3	m mm mm	(Bottom	20 *44= Levei	0.880 m) 436.500 m)		
			θ = V=	70		(0- 12	27 12-	0.449403.)		
			V= H=	2.025 0.028		(Q= 1.3)	0.668403)		
Thr	rerfore		h2=	0.028				(WL+	437.150 m, depth	0.650 m)
								(Bottom Level		ŕ
6 Head loss	in the ch	annel								
QI:	=	0.668	m 3/se	ec	: Water fl	low of 1 tro	ough	(Q= 1.337 /2=	0.668)	
Infl	low secti	onal area								
	D.+***			• • •						
	B*H=		D-	1.30						
who	еге		B= H≃	2.00 0.65						
			11-	0.03	ш					
	locity a-b)=Q1/	'A=		0.51	m/sec					
•	draulic ra A/(B+H*			0.394	m					
Ro	ughness	coefficier	nt n=	0.015						
Hea	ad losses	are calcu	ılated ı	using Man	ning Form	ula.				
h=r	n^2*L*v	^2/R^(4/3 where		L=	26.0	0 m				
		h3=		0.00536	= 0.010	0 т		(WL+ (Bottom Level	437.140 m, depth 436.500 m)	0.640 m)

Diameter of holes and number of holes; $\phi 100@300\times300$

Head loss h=v2/(2	*g*C^2)				
where A=3.14/4*I	D^2*(a*b)=	1.554 m2	: Sectional area		
	D=	100 mmdia.			
	a=	18 pieces			
	b=	Il pieces	(Bottom Level	434.060 m=	434.06 + 0.00)
	Q==	0.668 m3/sec		(Q= 1.337 /2=	0.668)
	v=Q/A=	0.43 m/sec			
	g=	9.8 m/sec2			
	C=	0.6			
	h5=	0.026 m =	0.030 m		

8 Grit chamber water level

437.110 m

(Bottom Level

(WL+

0.668)

434.060 m)

437.040 m, depth

2.980 m)

9 Head loss of diffusion wall

Diameter of holes and number of holes; \$\phi\$ 100@300×300

Head loss h=v2/(2*	*g*C^2)			
where A=3.14/4*[)^2*(a*b)=	0.989 m2	: Sectional area	
	D=	100 mmdia.		
	a=	18 pieces		
	b=	7 pieces	(Bottom Level	434.06 m)
	Q=	0.668 m3/sec		(Q=1.337 /2=
	v=Q/A=	0.68 m/sec		
	g==	9.8 m/sec2		
	Č=	0.6		

0.070 m

10 Head loss of Intake gate

h5=

Dimension of gate; 1500×1500
Head loss $h=v^2/(2*\sigma*C^2)$

 $0.065 \ m$

	Head loss b	=v2/(2*g	*C^2)					
	where	А=1.5п	n*Hm*2=	4	.8 m2 : Sectional area	(H=1.60 m)		
		Q≕		0.668 m3/sec		(Q= 1.337 /2=	0.668)	
		v=Q/A=	=	0.139 m/sec				
		g≖		9.8 m/sec2				
		C=		0.6				
h6=	0.0027	5 m	=	0.010 m		(WL+	437.030 m, depth	3.870 m)
						(Bottom Level	433.160 m)	

¹¹ Conveyance Pump chamber water level

437.030 m

Intake fa	cilities w	vater loss (R	liver water lev	vel +437.6m)		2 unit duty	
	Vater Level L.L.W.L.		437.600 m				
2 Intake l	Flow & Vere	osity					
	Q1=	-	38500 m3/day=	0.446	m3/sec		
	Q2=		77000 m3/day=	0.891	m3/sec		
(Q3=		115500 m3/day=	1.337	m3/sec		
3 Bar Scr	een Loss	B=	2.00 m	(37.5 *44=	1.650 m)		
J Dai Sci	CCH LOSS	H=	1.10 m	(Bottom Level	436.500 m)	Including Sed. Depth h	n=0.50m
		b=	37.5 mm	(,		
		t=	12.5 mm				
		$\theta =$	70 °				
		V=	0.368 m/s	(Q= 1.337 /2=	0.668403)		
		H=	0.003 m				
	Threrfore	h1=	0.300 m		(WL+ (Bottom Level	437.300 m, depth 436.500 m) settling	0.800 m) soil 0.5m
4 Head Id	oss of Intake	gate					
		of gate; 1500×15 =v2/(2*g*C^2)	500				
	where	A=1.5m*Hm*2	?= 2.4	m2 : Sectional area	(H=0.80 m)		
		Q=	1.337 m3/sec				
		v=Q/A=	0.557 m/sec				
		g=	9.8 m/sec2				
		C= h4=	0.6 0.0440 m	= 0.050 m	(WL+	437.250 m, depth	0.750 m)
		114-	0.0440 щ	- 0.000 m	(WLT (Bottom Level		0.750 m)
5 Rubbis	h Remover	B≔	2.00 m	(20 *44=	0.880 m)	450.500 III)	
5 1(45016)		H=	0.75 m	(Bottom Level	436.500 m)		
		b=	20.0 mm	(======================================	,		
		t=	3 mm				
		$\theta =$	70 °				
		V=	2.025 m/s	(Q= 1.337 /2=	0.668403)		
		H=	0.028 m				
	Threrfore	h2=	0.100 m		(WL+	437.150 m, depth	0.650 m)
6 Head lo	oss in the ch	annel			(Bottom Level	436.500 m)	
(Q1=	0.668 m3/sec	: Water fl	low of 1 trough	(Q= 1.337 /2=	0.668)	
1	Inflow section	onal area					
	A=B*H=		1.30 m2				
	where	B=	2.00 m				
	n nero	H=	0.65 m				
7	Velocity						
7	V(a-b)=Q1/2	4 =	0.51 m/sec				
1	Hydraulic ra	dine					
	R=A/(B+H*		0.394 m				
	(-,					
1	Roughness o	oefficient					
		n=	0.015				
Ī	Head losses	are calculated u	sing Manning Forn	nula.			
1	h=n^2*L*v^	2/R^(4/3)					
•	,		= 26.0) m			
							_
		h3=	0.00536 = 0.010) m	(WL+ (Bottom Level	437.140 m, depth 436.500 m)	0.640 m)

Diameter of holes and number of holes; ϕ 100@300×300

Head loss $h=v2/(2*g*C^2)$

11000 1000 11 12 (2 8 0 2)		
where A=3.14/4*D^2*(a*b)=	1.130 m2	: Sectional area
D=	100 mmdia.	
a=	18 pieces	
b=	8 pieces	(Sedimentation Level 435.060 m= 434.06 + 1.0)
Q=	0.668 m3/sec	(Q= 1.337 /2= 0.668)
v=Q/A=	0.59 m/sec	
g=	9.8 m/sec2	
C=	0.6	
h5=	0.050 m =	0.050 m

8 Grit chamber water level

437.090 m

9 Head loss of diffusion wall

Diameter of holes and number of holes; $\phi 100@300\times300$

Head loss $h=v2/(2*g*C^2)$

where A=	=3.14/4*D^2*(a*b)=	0.989 m2	: Sectional area			
	D≕	100 mmdia.				
	a=	18 pieces				
	b≕	7 pieces	(Bottom Level	434.06 m)		
	Q≕	0.668 m3/sec		(Q= 1.337 /2=	0.668)	
	v=Q/A=	0.68 m/sec				
	g=	9.8 m/sec2				
	C=	0.6				
h5=	0.065 m =	0.070 m		(WL+	437.020 m, depth	2.960 m)
				(Bottom Level	434.060 m)	

10 Head loss of Intake gate

h6=

Dimension of gate; 1500×1500 Head loss h=v2/(2*\alpha*C^2)

Head loss r	ı=v <i>z/(z</i> ≖g	(TU12)				
where	A=1.5m	*Hm*2=	4.8 m2 : Sectional area	(H=1.60 m)		
	Q=		0.668 m3/sec	(Q= 1.337 /2=	0.668)	
	v=Q/A=		0.139 m/sec			
	g==		9.8 m/sec2			
	C=		0.6			
0.00275	ī m.	=	0.010 m	(WL+	437.010 m, depth	3.850 m)
				(Bottom Level	433.160 m)	

11 Conveyance Pump chamber water level

437.010 m

Intake facilities	water loss	(River water l	evel +437.6m)		2 unit duty	
1 River Water Level L.L.W.L.		437.600 m				
2 Intake Flow & Ver Q1= Q2= Q3=	rosity	38500 m3/day= 77000 m3/day= 115500 m3/day=	0.446 0.891 1.337	m3/sec m3/sec m3/sec		
3 Bar Screen Loss	B= H= b= t= θ=	2.00 m 1.10 m 37.5 mm 12.5 mm 70 °	(37.5 *44= (Bottom Level	1.650 m) 436.500 m)	Including Sed. Depth h=	0.50m
	V= H=	0.368 m/s 0.003 m	(Q= 1.337 /2=	0.668403)		
Threrfore	h1=	0.300 m		(WL+ (Bottom Level	437.300 m, depth 436.500 m) settling s	0.800 m) oil 0.5m
4 Head loss of Intak						
	of gate; 1500× =v2/(2*g*C^2) A=1.5m*Hm)	4 m2 : Sectional area	(H= 0.80 m)		
***************************************	Q= v=Q/A= g= C=	1.337 m3/sec 0.557 m/sec 9.8 m/sec2 0.6		(22 0.00 2.0)		
	h4=	0.0440 m	= 0.050 m	(WL+ (Bottom Level	437.250 m, depth 436.500 m)	0.750 m)
5 Rubbish Remover	B= H= b= t= θ=	2.00 m 0.75 m 20.0 mm 3 mm 70 °	(20 *44= (Bottom Level	0.880 m) 436.500 m)	·	
Threrfore	V= H= h2=	2.025 m/s 0.028 m 0.100 m	(Q= 1.337 /2=	0.668403) (WL+	437.150 m, depth	0.650 m)
6 Head loss in the cl	hannel			(Bottom Level		·
Q1=	0.668 m3/s	sec : Water f	low of 1 trough	(Q= 1.337 /2=	0.668)	
Inflow sect	ional area					
A=B*H= where	B= H=	1.30 m2 2.00 m 0.65 m				
Velocity V(a-b)=Q1	/A=	0.51 m/sec				
Hydraulic r R=A/(B+H		0.394 m				
Roughness	coefficient n=	0.015				
Head losse	s are calculated	using Manning For	mula.			
h=n^2*L*v	^2/R^(4/3) where	L= 26.	0 m			
	h3=	0.00536 = 0.01	0 m	(WL+ (Bottom Level	437.140 m, depth 436.500 m)	0.640 m)

```
Diameter of holes and number of holes; $\phi$ 100@300×300
  Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                    0.707 m2
                                                    : Sectional area
                    D=
                                      100 mmdia.
                    a=
                                       18 pieces
                                                                                           434.06 + 1.94)
                    b=
                                        5 pieces
                                                    (Sedimentation Level
                                                                           436.000 m=
                    Q=
                                    0.668 m3/sec
                                                                         (Q=1.337 /2=
                                                                                            0.668)
                                     0.95 m/sec
                    v=Q/A=
                    g≕
C=
                                       9.8 m/sec2
                                       0.6
                    h5≃
                                    0.127 m
                                                         0.130 m
8 Grit chamber water level
                                                                437.010 m
9 Head loss of diffusion wall
  Diameter of holes and number of holes; \phi 100@300×300
  Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                    0.989 m2
                                                    : Sectional area
                    D=
                                      100 mmdia.
                                       18 pieces
                    a=
                                        7 pieces
                    b=
                                                                            434.06 m)
                                                    (Bottom Level
                    Q=
                                     0.668 m3/sec
                                                                         (Q=1.337 /2=
                                                                                            0.668)
                    v=Q/A=
                                     0.68 m/sec
                                       9.8 m/sec2
                                       0.6
  h5=
              0.065 m
                                    0.070 m
                                                                         (WL+
                                                                                          436.940 m, depth
                                                                                                                  2.880 m)
                                                                                          434.060 m)
                                                                         (Bottom Level
10 Head loss of Intake gate
         Dimension of gate; 1500×1500
         Head loss h=v2/(2*g*C^2)
         where
                    A=1.5m*Hm*2=
                                                4.8 m2 : Sectional area
                                                                         (H=1.60 m)
                    Q=
                                    0.668 m3/sec
                                                                         (Q= 1.337 /2=
                                                                                            0.668)
                    v=Q/A=
                                    0.139 m/sec
                                       9.8 m/sec2
                                       0.6
                                    0.010 m
  h6=
            0.00275 m
                                                                         (WL+
                                                                                          436.930 m, depth
                                                                                                                  3.770 m)
```

(Bottom Level

433.160 m)

Intake facilities	water loss	(River water l	evel +438.3m)		2 unit duty	
1 River Water Level H.W.L.		438.300 m				
2 Intake Flow & Ver Q!= Q2= Q3=	rosity	38500 m3/day= 77000 m3/day= 115500 m3/day=	0.891	m3/sec m3/sec m3/sec		
3 Bar Screen Loss	B= H= b= t= θ=	2.00 m 1.80 m 37.5 mm 12.5 mm 70 °	(37.5 *44= (Bottom Level	1.650 m) 436.500 m)	Including Sed. Depth h=	0.50m
	V= H=	0.225 m/s 0.001 m	(Q= 1.337 /2=	0.668403)		
Threrfore	hl=	0.300 m		(WL+ (Bottom Level	438.000 m, depth 436.500 m) settling s	1.500 m) soil 0.5m
4 Head loss of Intak	of gate; 1500×	1500				
	=v2/(2*g*C^2 A=1.5m*Hm Q=) *2= 3.3 1.337 m3/sec	3 m2 : Sectional area	(H= 1.10 m)		
	v=Q/A= g= C=	0.405 m/sec 9.8 m/sec2 0.6	0.020	ANT .	427.070 Joseph	1.470 \
5 Rubbish Remover	h4= B=	0.0233 m 2.00 m	= 0.030 m (20 *44=	(WL+ (Bottom Level 0.880 m)	437.970 m, depth 436.500 m)	1.470 m)
J Russian Romover	H= b= t= θ=	1.47 m 20.0 mm 3 mm 70 °	(Bottom Level	436.500 m)		
Threrfore	V= H= h2=	1.033 m/s 0.007 m 0.100 m	(Q= 1.337 /2=	0.668403) (WL+	437.870 m, depth	1.370 m)
6 Head loss in the cl	annel			(Bottom Level	436.500 m)	
Q1=	0.668 m3/s	sec : Water f	low of 1 trough	(Q= 1.337 /2=	0.668)	
Inflow sect	ional area					
A=B*H= where	H=	2.74 m2 2.00 m 1.37 m				
Velocity V(a-b)=Q1/	'A=	0.24 m/sec				
Hydraulic r R=A/(B+H		0.578 m				
Roughness	coefficient n=	0.015				
Head losses	are calculated	using Manning For	mula.			
h=n^2*L*v	^2/R^(4/3) where	L= 26.	0 m			
	h3=	0.00072 = 0.00	0 m	(WL+ (Bottom Level	437.870 m, depth 436.500 m)	1.370 m)

Diameter of holes and number of holes; ϕ 100@300×300

Head loss $h=v2/(2*g*C^2)$

11044 1055 11 12 (2	. 5 🔾 -/					
where $A=3.14/4*$	D^2*(a*b)=	0.989 m2		: Sectional area		
	D==	100 mmdia.				
	a=	18 pieces				
	b=	7 pieces		(Bottom Level	436.000 m=	434.06 + 1.94)
Q=	0.668 m3/sec			(Q= 1.337 /2=	0.668)	
	v=Q/A=	0.68 m/sec				
	g=	9.8 m/sec2				
	C==	0.6				
	h5=	0.065 m	=	0.070 m		

8 Grit chamber water level

437.800 m

9 Head loss of diffusion wall

Diameter of holes and number of holes; \$\phi\$ 100@300×300

Head loss h=v2/(2*g*C^2)

where A=	=3.14/4*D^2*(a*b)=	1.413 m2	: Sectional area			
	D=	100 mmdia.				
	a=	18 pieces				•
	b=	10 pieces	(Bottom Level	434.06 m)		
	Q =	0.668 m3/sec		(Q= 1.337 /2=	0.668)	
	v=Q/A=	0.47 m/sec				
	g=	9.8 m/sec2				
	C=	0.6				
h5=	0.032 m =	0.040 m		(WL+	437.760 m, depth	1.760 m)
				(Bottom Level	436.000 m)	

10 Head loss of Intake gate

Dimension of gate; 1500×1500 Head loss h=v2/(2*g*C^2)

	nead loss.	п-лт/(т. Б	(2)					
	where	A=1.5n	1*Hm*2=	=	4.8 m2 : Sectional area	(H= 1.60 m)		
		Q=		0.668 m3/se	С	(Q= 1.337 /2=	0.668)	
		v=Q/A=	=	0.139 m/sec				
		g≔		9.8 m/sec	2			
		C=		0.6				
h6=	0.0027	5 m	=	0.010 m		(WL+	437.750 m, depth	4.590 m)
						(Bottom Level	433.160 m)	

11 Conveyance Pump chamber water level

437.750 m

Intake facilities	water loss	(River water l	evel +440.74m)		2 unit duty	
1 River Water Level H.W.L.		440.740 m				
2 Intake Flow & Ver	rosity					
Q1=		38500 m3/day=	0.446	m3/sec		
Q2=		77000 m3/day=	0.891	m3/sec		
Q3=		115500 m3/day=	1.337	m3/sec		
3 Head loss of Inlet	Orifice					
where	A=a*b= a=	11 m2 6 m	: Sectional area			
	a- b=	1.9 m	(Sedimentation Level	436.500 m=	436.000 + 0.5)	
	Q=	0.668 m3/sec	(Q= 1.337 /2=	0.668403)	450.000 1 0.5)	
	v=Q/A=	0.06 m/sec	(Q= 1.551 12=	0.000105)		
	g=	9.8 m/sec2				
	Č=	0.6				
	h5=	0.0005 m =	0.000 m	(WL+ (Bottom Level	440.740 m, depth 436.500 m) settling s	4.240 oil 0.5m
4 Bar Screen Loss	B=	2.00 m	(37.5 *44=	1.650 m)	430.500 M) bening 0	on visin
	H=	4.24 m	(Sedimentation Level			
	b=	37.5 mm	•	·		
	t=	12.5 mm				
	$\theta =$	70 °				
	V=	0.096 m/s	(Q= 1.337 /2=	0.668403)		
	H=	0.000 m				
Threrfore	h1=	0.300 m		(WL+ (Bottom Level	440.440 m, depth 436.500 m)	3.940 m)
5 Head loss of Intak	e gate			(Dottoin Level	430.300 m)	
Head loss b	of gate; 1500×1 =v2/(2*g*C^2))				
where	A=1.5m*Hm*		3 m2 : Sectional area	(H=1.10 m)		
	Q=	1.337 m3/sec				
	v=Q/A=	0.405 m/sec				
	g=	9.8 m/sec2				
	C= h4=	0.6 0.0233 m	= 0.030 m	OIT I	440 410 345	3.910 m)
	114—	0.0233 m		(WL+ (Bottom Level	440.410 m, depth 436.500 m)	3.910 m)
6 Rubbish Remover	B=	2.00 m	(20 *44=	0.880 m)		
	H=	3.91 m	(Bottom Level	436.500 m)		
	b=	20.0 mm				
	t=	3 mm				
	θ =	70 °	(0- 1 227 /2-	0.660402.)		
	V= H=	0.389 m/s 0.001 m	(Q= 1.337 /2=	0.668403)		
Threrfore	h2=	0.100 m		(WL+	440.310 m, depth	3.810 m)
7 Head loss in the cl		0.100 m		(Bottom Level	436.500 m)	3.810 m)
Q1=	0.668 m3/s	ec : Water fl	ow of 1 trough	(Q= 1.337 /2=	0.668)	
Inflow secti	ional area					
A=B*H=		7.62 m2				
where	B=	2.00 m				
	H=	3.81 m				
Velocity						
V(a-b)=Q1/	'A=	0.09 m/sec				
Hydraulic r	adius					
R=A/(B+H		0.792 m				

12 Conveyance Pump chamber water level

```
Roughness coefficient
                                     0.015
         Head losses are calculated using Manning Formula.
         h=n^2*L*v^2/R^4(4/3)
                                  L=
                                                26.0 m
                     where
                                                                                                                    3.810 m)
                     h3=
                                   0.00006 = 0.000 \text{ m}
                                                                           (WL+
                                                                                           440.310 m, depth
                                                                                            436.500 m)
                                                                           (Bottom Level
 8 Head loss of diffusion wall
  Diameter of holes and number of holes; $\phi$ 100@300×300
  Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                                     : Sectional area
                                     2.120 m2
                     D=
                                       100 mmdia.
                     a=
                                        18 pieces
                                                                             436.000 m=
                                                                                             434.06 + 1.94)
                     b=
                                        15 pieces
                                                     (Bottom Level
                     Q=
                                     0.668 m3/sec
                                                                           (Q= 1.337 /2=
                                                                                              0.668)
                     v=Q/A=
                                      0.32 m/sec
                     g==
                                       9.8 m/sec2
                     C=
                                       0.6
                     h5=
                                     0.014 m
                                                          0.020 m
 9 Grit chamber water level
                                                                  440.290 m
10 Head loss of diffusion wall
  Diameter of holes and number of holes; \phi 100@300×300
  Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                     2.543 m2
                                                     : Sectional area
                     D=
                                       100 mmdia.
                                        18 pieces
                     a=
                     b=
                                        18 pieces
                                                     (Bottom Level
                                                                              434.06 m)
                                     0.668 m3/sec
                                                                           (Q= 1.337 /2=
                                                                                               0.668)
                     Q=
                                      0.26 m/sec
                     v=Q/A=
                                        9.8 m/sec2
                     g==
                                       0.6
                     C=
  h5=
               0.010 m
                                     0.010 \ m
                                                                           (WL+
                                                                                            440.280 m, depth
                                                                                                                    6.220 m)
                                                                           (Bottom Level
                                                                                            434.060 m)
11 Head loss of Intake gate
         Dimension of gate; 1500×1500
         Head loss h=v2/(2*g*C^2)
                     A=1.5m*Hm*2=
         where
                                                  4.8 m2 : Sectional area
                                                                           (H=1.60 \text{ m})
                                                                           (Q= 1.337 /2=
                                                                                               0.668)
                     Q=
                                     0.668 m3/sec
                                     0.139 m/sec
                                       9.8 m/sec2
                     C=
                                       0.6
                                                                                                                     7.110 m)
  h6≔
             0.00275 \ m
                                     0.010 m
                                                                           (WL+
                                                                                            440.270 m, depth
```

433.160 m)

(Bottom Level

440.270 m

Intake facilities	water loss	(River water	level +437.6m)		1 unit duty	
1 River Water Level L.L.W.L.		437.60 m				
2 Intake Flow & Ver Q1= Q2=	osity	38500 m3/day= 77000 m3/day=	= 0.891	m3/sec m3/sec		
Q3=		115500 m3/day=	= 1.337	m3/sec		
3 Bar Screen Loss	B= H= b= t= θ= V= H=	2.00 m 1.10 m 37.5 mm 12.5 mm 70 ° 0.737 m/s 0.011 m	(37.5 *44= (Bottom Level	1.650 m) 436.500 m)		=0.50m
Threrfore	hl=	0.300 m		(WL+	437.300 m, depth	0.800 m)
4 Head loss of Intake	e gate			(Bottom Level	436.500 m) settling	sou v.sm
	of gate; 1500×					
Head loss h where	=v2/(2*g*C^2 A=1.5m*Hm		.2 m2 : Sectional area	(H=0.80 m)		
	Q= v=Q/A= g=	1.337 m3/sec 1.114 m/sec 9.8 m/sec2		(== 0.00 ==)		
	C= h4=	0.6 0.1759 m	= 0.180 m	(WL+ (Bottom Level	437.120 m, depth 436.500 m)	0.620 m)
5 Rubbish Remover	B= H= b= t= θ = V=	2.00 m 0.62 m 20.0 mm 3 mm 70 ° 2.450 m/s	(20 *44= (Bottom Level	0.880 m) 436.500 m)	·	
Threrfore	H= h2=	0.041 m 0.100 m		(WL+ (Bottom Level	437.020 m, depth 436.500 m)	0.520 m)
6 Head loss in the ch	nannel			(BORDIN ECVE)	430.300 M)	
Q1=	1.337 m3/s	sec : Water	flow of 1 trough			
Inflow secti	onal area					
A=B*H=		1.04 m2				
where	B= H=	2.00 m 0.52 m				
Velocity V(a-b)=Q1/	'A=	1.29 m/sec				
Hydraulic r. R=A/(B+H*		0.342 m				
Roughness	coefficient n=	0.015				
Head losses	are calculated	using Manning Fo	rmula.			
h=n^2*L*v	^2/R^(4/3) where	L= 26	5.0 m			
	h3=	0.04040 = 0.0	40 m	(WL+ (Bottom Level	436.980 m, depth 436.500 m)	0.480 m)

```
Diameter of holes and number of holes; \phi 100@300×300
 Head loss h=v2/(2*g*C^2)
 where A=3.14/4*D^2*(a*b)=
                                    1.554 m2
                                                    : Sectional area
                                      100 mmdia.
                    D=
                                       18 pieces
                    a=
                                                                           434.060 m=
                                                                                            434.06 + 0.00)
                    b=
                                       11 pieces
                                                    (Bottom Level
                    Q=
                                     1.337 m3/sec
                                     0.86 m/sec
                                      9.8 m/sec2
                                      0.6
                    h5=
                                    0.105 m
                                                         0.110 m
8 Grit chamber water level
                                                                436.870 m
9 Head loss of diffusion wall
  Diameter of holes and number of holes; $\phi$ 100@300×300
 Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                    0.989 m2
                                                    : Sectional area
                    D=
                                      100 mmdia.
                    a=
                                       18 pieces
                                        7 pieces
                                                                            434.060 m)
                    h=
                                                    (Bottom Level
                                     1.337 m3/sec
                    Q=
                    v=Q/A=
                                      1.35 m/sec
```

10 Head loss of Intake gate

h5=

Dimension of gate; 1500×1500 Head loss h=v2/(2*g*C^2) where A=1.5m*Hm*2=

g= C=

0.259 m

4.8 m2 : Sectional area (H=1.60 m)Q= 1.337 m3/sec v=Q/A= 0.279 m/sec 9.8 m/sec2 Ċ= 0.6 3.430 m) 0.01099 m 0.020 m (WL+ 436.590 m, depth h6= 433.160 m) (Bottom Level

9.8 m/sec2

0.6

0.260 m

11 Conveyance Pump chamber water level

436.590 m

(WL+

(Bottom Level

2.550 m)

436.610 m, depth

434.060 m)

Intake facilities	water loss	(River water	level +437.6m)		1 unit duty	
1 River Water Level L.L.W.L.		437.600 m				
2 Intake Flow & Ver Q1= Q2= Q3=	rosity	38500 m3/day= 77000 m3/day= 115500 m3/day=	0.891	m3/sec m3/sec m3/sec		
3 Bar Screen Loss	B= H= b= t= θ= V=	2.00 m 1.10 m 37.5 mm 12.5 mm 70 ° 0.737 m/s	(37.5 *44= (Bottom Level	1.650 m) 436.500 m)	Including Sed. Depth h=	=0.50m
Threrfore	H= h1=	0.011 m 0.300 m		(WL+ (Bottom Level	437.300 m, depth 436.500 m) settling	0.800 m) soil 0.5m
4 Head loss of Intak	e gate					
Head loss h	of gate; 1500× =v2/(2*g*C^2) A=1.5m*Hm)	2	(II- 0 00)		
where	Q= v=Q/A= g= C=	1.337 m3/sec 1.114 m/sec 9.8 m/sec2 0.6	2 m2 : Sectional area	(H= 0.80 m)		
	h4=	0.1759 m	= 0.180 m	(WL+ (Bottom Level	437.120 m, depth 436.500 m)	0.620 m)
5 Rubbish Remover	B= H= b= t= θ= V=	2.00 m 0.62 m 20.0 mm 3 mm 70 ° 2.450 m/s	(20 *44 = (Bottom Level	0.880 m) 436.500 m)	150.550 III)	
Threrfore	H= h2=	0.041 m 0.100 m		(WL+	437.020 m, depth	0.520 m)
6 Head loss in the ch	nannel			(Bottom Level	436.500 m)	
Q1=	1.337 m3/s	sec : Water 1	flow of 1 trough			
Inflow secti	ional area					
A=B*H= where	B= H=	1.04 m2 2.00 m 0.52 m				
Velocity V(a-b)=Q1/	'A=	1.29 m/sec				
Hydraulic r. R=A/(B+H*		0.342 m				
Roughness	coefficient n=	0.015				
Head losses	are calculated	using Manning Fo	rmula.			
h=n^2*L*v	^2/R^(4/3) where	L= 26	.0 m			
	h3=	0.04040 = 0.04	90 m	(WL+ (Bottom Level	436.980 m, depth 436.000 m)	0.980 m)

```
Diameter of holes and number of holes; $\phi$ 100@300×300
   Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                     1.130 m2
                                                     : Sectional area
                    D=
                                      100 mmdia.
                     a=
                                        18 pieces
                                         8 pieces
                     b=
                                                     (Sedimentation Level
                                                                            435.060 m=
                                                                                            434.06 + 1.0)
                                     1.337 m3/sec
                     Q=
                                      1.18 m/sec
                     v=Q/A=
                     g=
C=
                                       9.8 m/sec2
                                       0.6
                    h5=
                                     0.198 m
                                                          0.200 \ m
 8 Grit chamber water level
                                                                436.780 m
 9 Head loss of diffusion wall
   Diameter of holes and number of holes; $\phi$ 100@300×300
  Head loss h=v2/(2*g*C^2)
   where A=3.14/4*D^2*(a*b)=
                                    0.848 m2
                                                     : Sectional area
                    D=
                                      100 mmdia.
                     a==
                                        18 pieces
                                        6 pieces
                     b=
                                                    (Bottom Level
                                                                            434.060 m)
                     Q=
                                     1.337 m3/sec
                                      1.58 m/sec
                     v=Q/A=
                                       9.8 m/sec2
                                       0.6
               0.352 m
  h5=
                                     0.360 m
                                                                          (WL+
                                                                                          436.420 m, depth
                                                                                                                  2.360 m)
                                                                          (Bottom Level
                                                                                           434.060 m)
10 Head loss of Intake gate
         Dimension of gate; 1500×1500
         Head loss h=v2/(2*g*C^2)
         where
                     A=1.5m*Hm*2=
                                                 4.8 m2 : Sectional area
                                                                        (H=1.60 m)
                     Q=
                                    1.337 m3/sec
                     v=Q/A=
                                    0.279 m/sec
                                       9.8 m/sec2
                                       0.6
  h6=
            0.01099 m
                                    0.020 m
                                                                          (WL+
                                                                                          436.400 m, depth
                                                                                                                  3.240 m)
                                                                                           433.160 m)
                                                                         (Bottom Level
```

11 Conveyance Pump chamber water level

436.400 m

Intake facilities	water loss	(River water	level +437.6m)		I unit duty	
1 River Water Level L.L.W.L.	l	437.60 m				
2 Intake Flow & Ver Q1= Q2= Q3=	rosity	38500 m3/day= 77000 m3/day= 115500 m3/day=	0.891	m3/sec m3/sec m3/sec		
3 Bar Screen Loss	B= H= b= t=	2.00 m 1.10 m 37.5 mm 12.5 mm	(37.5 *44= (Bottom Level	1.650 m) 436.500 m)	Including Sed. Depth ha	=0.50m
Threrfore	θ = V= H= h1=	70 ° 0.737 m/s 0.011 m 0.300 m		(WL+ (Bottom Level	437.300 m, depth 436.500 m) settling	0.800 m) soil 0.5m
4 Head loss of Intak	e gate					
	of gate; 1500×1 =v2/(2*g*C^2) A=1.5m*Hm=)	2 m2 : Sectional area	(H=0.80 m)		
·· ····	Q= v=Q/A= g=	1.337 m3/sec 1.114 m/sec 9.8 m/sec2		(2 333 2)		
	C= h4=	0.6 0.1759 m	= 0.180 m	(WL+ (Bottom Level	437.120 m, depth 436.500 m)	0.620 m)
5 Rubbish Remover	H= b= t= θ =	2.00 m 0.62 m 20.0 mm 3 mm 70 °	(20 *44= (Bottom Level	0.880 m) 436.500 m)		
Threrfore	V= H= h2=	2.450 m/s 0.041 m 0.100 m		(WL+ (Bottom Level	437.020 m, depth 436.500 m)	0.520 m)
6 Head loss in the cl	hannel			(DORUM LEVER	430.300 My	
Q1=	1.337 m3/s	ec : Water f	llow of 1 trough			
Inflow sect	ional area					
A=B*H= where	B= H=	1.04 m2 2.00 m 0.52 m				
Velocity V(a-b)=Q1	/A=	1.29 m/sec				
Hydraulic r R=A/(B+H		0.342 m				
Roughness	coefficient n=	0.015				
Head losses	s are calculated	using Manning For	rmula.			
h=n^2*L*v	^2/R^(4/3) where	L= 26.	0 m			
	h3=	0.04040 = 0.04	-0 m	(WL+ (Bottom Level	436.980 m, depth 436.500 m)	0.480 m)

```
Diameter of holes and number of holes; $\phi$ 100@300×300
  Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                     0.707 m2
                                                     : Sectional area
                     D=
                                      100 mmdia.
                     a=
                                        18 pieces
                                                                                            434.06 + 1.94)
                                         5 pieces
                                                     (Sedimentation Level
                                                                            436.000 m=
                     b=
                     Q=
                                     1.337 m3/sec
                     v=Q/A=
                                      1.89 m/sec
                     g=
C≔
                                       9.8 m/sec2
                                       0.6
                     h5=
                                     0.507 m
                                                          0.510 m
8 Grit chamber water level
                                                                 436.470 m
9 Head loss of diffusion wall
  Diameter of holes and number of holes; $\phi$ 100@300×300
  Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                     0.707 m2
                                                     : Sectional area
                    D=
                                       100 mmdia.
                                        18 pieces
                     a≕
                                         5 pieces
                     b=
                                                     (Bottom Level
                                                                            434.060 m)
                                     1.337 m3/sec
                     Q=
                                      1.89 m/sec
                     v=Q/A=
                                       9.8 m/sec2
                     g≕
                                       0.6
                                                                          (WL+
                                                                                           435.960 m, depth
                                                                                                                    1.900 m)
  h5=
               0.507 m
                                     0.510 m
                                                                                           434.060 m)
                                                                          (Bottom Level
10 Head loss of Intake gate
         Dimension of gate; 1500×1500
         Head loss h=v2/(2*g*C^2)
```

4.8 m2 : Sectional area

11 Conveyance Pump chamber water level

0.01099 m

Q= v=Q/A=

A=1.5m*Hm*2=

1.337 m3/sec

0.279 m/sec 9.8 m/sec2 0.6

0.020 m

where

h6=

435.940 m

(H=1.60 m)

(Bottom Level

435.940 m, depth

433.160 m)

2.780 m)

(WL+

Intake fac	ilities w	ater los	ss (River	water 1	eve.	l +438.3m)			1 unit duty	
1 River Wat L.V	er Level V.L.		438.300	m						
2 Intake Flo Q1: Q2: Q3:	=	ity	77000	m3/day= m3/day= m3/day=		0.446 0.891 1.337	m3/sec m3/sec m3/sec			
3 Bar Screen	n Loss	B= H= b= t= θ V= H=	= 1.80 = 37.5 12.5 = 70 = 0.450	m mm mm ° m/s	((Bo	37.5 *44= ttom Level .	1.650 i 436.500 i		Including Sed. Depth h	=0.50m
	rerfore	h I	= 0.300	m			(WL+ (Bottom Le	vel	438.000 m, depth 436.500 m) settling	1.500 m) soil 0.5m
4 Head loss	of intake g		0×1500							
	ad loss h≏v ere A C v		^2) m= 1.337 0.810	1.65 m3/sec m/sec m/sec2	5 m2	: Sectional area	a (H= 1.10 s	m)		
	Ċ	:= 4=	0.6 0.0930		=	0.100 m	(WL+		437.900 m, depth	1.400 m)
5 Rubbish R	lemover .	B= H- b= t= θ V-	= 1.40 = 20.0 3 = 70	mm mm	((Bo	20 *44= ttom Level	(Bottom Le 0.880 1 436.500 1	m)	436.500 m)	
Thr	rerfore	H= h2					(WL+ (Bottom Le	evel	437.800 m, depth 436.500 m)	1.300 m)
6 Head loss	in the char	mel					(Bettom Be	.,	150.500 му	
QI	=	1.337 m	3/sec	: Water f	low o	f 1 trough				
Inf	low section	al area								
A= wh	B*H≔ ere	B= H=	= 2.00							
	locity a-b)=Q1/A=	=	0.51	m/sec						
	draulic radi A/(B+H*2)		0.565	m						
Rot	ughness co	efficient n=	= 0.015							
Hea	ad losses aı	re calculat	ed using Ma	nning For	mula.					
h=r	n^2*L*v^2 v	/R^(4/3) where	L=	26.	0 m					
	Ь	3=	0.00331	= 0.00	0 m		(WL+ (Bottom Le	evel	437.800 m, depth 436.500 m)	1.300 m)

```
Diameter of holes and number of holes; $\phi$ 100@300×300
 Head loss h=v2/(2*g*C^2)
                                    0.989 m2
 where A=3.14/4*D^2*(a*b)=
                                                    : Sectional area
                    D=
                                      100 mmdia.
                    a=
                                       18 pieces
                                        7 pieces
                                                                           436.000 m=
                                                                                            434.06 + 1.94)
                    b=
                                                    (Sedimentation Level
                                    1.337 m3/sec
                    Q=
                    v=Q/A=
                                     1.35 m/sec
                    g=
C=
                                      9.8 m/sec2
                                      0.6
                    h5=
                                    0.259 m
                                                         0.260 \ m
8 Grit chamber water level
                                                                437.540 m
9 Head loss of diffusion wall
 Diameter of holes and number of holes; \phi 100@300×300
 Head loss h=v2/(2*g*C^2)
  where A=3.14/4*D^2*(a*b)=
                                    1.272 m2
                                                    : Sectional area
                    D=
                                      100 mmdia.
                                       18 pieces
                    a=
                                        9 pieces
                    b=
                                                                           434.060 m)
                                                    (Bottom Level
                    Q=
                                    1.337 m3/sec
                    v=Q/A=
                                     1.05 m/sec
                                      9.8 m/sec2
                    g=
                    C=
                                      0.6
  h5=
              0.157 m
                                    0.160 m
                                                                         (WL+
                                                                                          437.380 m, depth
                                                                                                                   3.320 m)
                                                                                           434.060 m)
                                                                         (Bottom Level
```

10 Head loss of Intake gate

Dimension of gate; 1500×1500 Head loss $h=v2/(2*g*C^2)$ A=1.5m*Hm*2= 4.8 m2 : Sectional area (H= 1.60 m) where 1.337 m3/sec v=Q/A=0.279 m/sec 9.8 m/sec2 0.6 437.360 m, depth 0.01099 m (WL+ 4.200 m) h6= 0.020 m (Bottom Level 433.160 m)

11 Conveyance Pump chamber water level

437.360 m

Intake facilities	water loss	(River water l	evel +440.74m)		1 unit duty	
1 River Water Level H.W.L.		440.740 m				
2 Intake Flow & Ver Q1= Q2= Q3=	rosity	38500 m3/day= 77000 m3/day= 115500 m3/day=	0.446 0.891 1.337	m3/sec m3/sec m3/sec		
3 Head loss of Inlet	Orifice	110000 m3/day-	1.331	morsec		
where	A=a*b=	11 m2	: Sectional area			
	a= b== Q= v=Q/A=	6 m 1.9 m 1.337 m3/sec 0.12 m/sec	(Sedimentation Level	436.500 m=	436.000 #######	
	g= C= h5=	9.8 m/sec2 0.6 0.0019 m =	0.000 m	(WL+ (Bottom Level	440.740 m, depth 436.500 m)	4.240 m)
4 Bar Screen Loss	B= H= b= t= V= V= H=	2.00 m 4.24 m 37.5 mm 12.5 mm 70 ° 0.191 m/s 0.001 m	(37.5 *44= (Bottom Level	1.650 m) 436.50 m)		
Threrfore	hl=	0.300 m		(WL+ (Bottom Level	440.440 m, depth 436.500 m) settling s	3.940 m) soil 0.5m
5 Head loss of Intak	e gate			(2011)		
	of gate; 1500×: =v2/(2*g*C^2) A=1.5m*Hm= Q= v=Q/A= g==)	5 m2 : Sectional area	(H=1.10 m)		
	C= h4=	0.6 0.0930 m	= 0.100 m	(WL+ (Bottom Level	440.340 m, depth 436.500 m)	3.840 m)
6 Rubbish Remover	B= H= b= t= θ= V=	2.00 m 3.84 m 20.0 mm 3 mm 70 ° 0.396 m/s	(20 *44= (Bottom Level	0.880 m) 436.500 m)		
Threrfore	H= h2=	0.001 m 0.100 m		(WL+ (Bottom Level	440.240 m, depth 436.500 m)	3.740 m)
7 Head loss in the ch	nannel			•	·	
Q1=	1.337 m3/s	ec : Water fl	ow of 1 trough			
Inflow secti	ional area					
A=B*H= where	B= H=	7.48 m2 2.00 m 3.74 m				
Velocity V(a-b)=Q1/	'A=	0.18 m/sec				
Hydraulic r R=A/(B+H		0.789 m				

12 Conveyance Pump chamber water level

```
Roughness coefficient
                                     0.015
         Head losses are calculated using Manning Formula.
         h=n^2*L*v^2/R^4(4/3)
                     where
                                  L=
                                                 26.0 m
                     h3 =
                                   0.00026
                                             = 0.000 \text{ m}
                                                                            (WL+
                                                                                            440.240 m, depth
                                                                                                                     3.740 m)
                                                                            (Bottom Level
                                                                                             436.500 m)
 8 Head loss of diffusion wall
   Diameter of holes and number of holes; \phi 100@300×300
   Head loss h=v2/(2*g*C^2)
   where A=3.14/4*D^2*(a*b)=
                                      2.120 m2
                                                      : Sectional area
                     D=
                                        100 mmdia.
                                         18 pieces
                     a=
                                         15 pieces
                                                      (Sedimentation Level
                                                                              436.000 m=
                                                                                              434.06 + 1.94)
                                      1.337 m3/sec
                                       0.63 m/sec
                     g=
C=
                                        9.8 m/sec2
                                        0.6
                     h5=
                                      0.056 m
                                                           0.060 m
 9 Grit chamber water level
                                                                  440.180 m
10 Head loss of diffusion wall
   Diameter of holes and number of holes; $\phi$ 100@300×300
   Head loss h=v2/(2*g*C^2)
   where A=3.14/4*D^2*(a*b)=
                                      2.543 m2
                                                      : Sectional area
                     \mathbf{D} =
                                        100 mmdia.
                     a=
                                         18 pieces
                                         18 pieces
                                                                              434.060 m)
                     b=
                                                      (Bottom Level
                                      1.337 m3/sec
                                       0.53 m/sec
                                        9.8 m/sec2
                                        0.6
                                                                                             440.140 m, depth
                                      0.040 m
                                                                            (WL+
                                                                                                                      6.080 m)
   h5=
               0.039 m
                                                                            (Bottom Level
                                                                                             434.060 m)
11 Head loss of Intake gate
         Dimension of gate; 1500×1500
         Head loss h=v2/(2*g*C^2)
         where
                     A=1.5m*Hm*2=
                                                  4.8 m2 : Sectional area (H= 1.60 m)
                                      1.337 m3/sec
                     Q=
                     v=O/A=
                                      0.279 m/sec
                                        9.8 m/sec2
                     g==
                                        0.6
                     C=
             0.01099 m
                                      0.020 m
                                                                            (WL+
                                                                                             440.120 m, depth
                                                                                                                      6.960 m)
   h6=
```

(Bottom Level

440.120 m

433.160 m)

|--|

St.No.	S.D.	A.D.	G.L.	Pipe Dia.	H.G.	W.L.L.	W.L.	Min.soil Coverage	A.D. of L.S.	Remark	
	(m)	(m)	(m)	(mm)		(m)	(m)	of Pipe (m)	(m)	<u> </u>	
Balancing Tank			(HWL+476.00)							Balancing Tank	
28-22.00	0.00	0.00	475.00	1000	0.00048	0.000	475.99	-0.99	537.14	Loss etc. 0.008 m	
28+0.00	22.00	22.00	472.69	0001	0.00048	0.011	475.98	-3.29	559.14		
30+0.00	41.67	63.67	472.60	1000	0.00048	0.020	475.96	-3.36	600.81		
41+0.00	179.50	243.17	475.42	1000	0.00048	0.086	475.88	-0.46	780.31		
50+0.00	118.52	361.69	477.60	1000	0.00048	0.057	475.82	1.78	898.83	l	
51+0.00	41.00	402.69	477.48	1000	0.00048	0.020	475.80	20 00 00 00 00 00 00 1.68	939.83	[
53+7.00	45.80	448.49	475.26	1000	0.00048	0.022	475.78	-0.52	985.63		
67+0.00	273.32	721.81	468.09	800	0.00141	0.385	475.39	-7.30	1258.95	l	
76+0.00	67.50	789.31	455.62	800	0.00141	0.095	475.30	-19.68	1326.45	Valve Loss etc. 11.07067 m	
86+0.00	95.40	884.71	461.15	800	0.00141	0.135	475.16	+14.01	1421.85		
105+0.00	186.60	1071.31	446.50	800	0.00141	0.263	474.90	-28.40	1608.45		
105+85.00	91.00	1162.31	(HWL+451.82)	800	0.00141	0.128	463.70	-11.88	1696.45	Distribution Chamber	
			446.50			ĺĺ				Horizontal Pipe distance	3 τ
ļ						i				Valve Loss etc. 11.07067 m	
								23.371			

2.Phase 2

St.No.	S.D.	A.D.	G.L.	Pipe Dia.	H.G.	W.L.L.	W.L.	Min.soil Coverage	A.D. of L.S.	Remark	
	(m)	(m)	(m)	(mm)		(zz)	(m)	of Pipe (m)	(m)		
Balancing Tank			(HWL+476.00)							Balancing Tank	
28-22.00	0.00	0.00	475.00	1000	0.00172	0.000	476.00	-1.00	537.14	Loss etc. 0.033 tn	
28+0.00	22.00	22.00	472.69	1000	0.00172	0.638	475.96	-3.27	559.14		
30+0.00	41.67	63.67	472.60	1000	0.00172	0.072	475.89	-3.29	600.81		
41+0.00	179.50	243.17	475.42	1000	0.00172	0.309	475.58	-0.16	780.31		
50+0.00	118,52	361.69	477,60	1000	0.00172	0.204	475.38	2.22	898.83		
51+0.00	41.00	402.69	477.48	1000	0.00172	0.071	475.31	2.17	939.83		
53+7.00	45,80	448.49	475.26	1000	0.00172	0.079	475.23	0.03	985.63		
67+0.00	273.32	721.81	468.09	800	0.00510	1.394	473.83	-5.74	1258.95		
76+0.00	67.50	789.31	455.62	800	0.00510	0.344	466.22	-10.60	1326.45	Valve Loss etc. 7.274753 m	
86+0.00	95.40	884.71	461.15	800	0.00510	0.487	465.73	-4.58	1421.85		
105+0.00	186.60	1071.31	446.50	800	0.00510	0.952	464.78	-18.28	1608.45		
105+85.00	91.00	1162.31	(HWL+451.82)	800	0.00510	0.464	451.72	0.10	1696.45	Distribution Chamber	
		i	446.50				i			Horizontal Pipe distance	3 :
		[Valve Loss etc. 12.59775 m	
						•		24.317		· · · · · · · · · · · · · · · · · · ·	

St.No.	S.D.	A.D.	G.L.	Pipe Dia.	H.G.	W.L.L.	W.L.	Min.soil Coverage	A.D. of L.S.	Remark
	(m)	(m)	(m)	(mm)		(m)	(m)	of Pipe (m)	(m)	
Balancing Tani	4		(HWL+476.00)	1						Balancing Tank
28-22.00	0.00	0.00	475.00	1000	0.00364	0.000	475.93	-0.93	537.14	Loss etc. 0.074 m
28+0.00	22.00	22.00	472.69	1000	0.00364	0.080	475.85	-3.16	559.14	
30+0.00	41.67	63.67	472.60	1000	0.00364	0.152	475.69	-3.09	600.81	
41+0.00	179.50	243.17	475.42	1000	0.00364	0.653	475.04	0.38	780.31	
50+0.00	118.52	361.69	477.60	1000	0.00364	0.431	474,61	2.99	898.83	
51+0.00	41.00	402.69	477.48	1000	0.00364	0.149	474.46	3.02	939.83	
53+7.00	45.80	448.49	475.26	1000	0.00364	0.167	474.29	0.97	985.63	
67+0.00	273.32	721.81	468.09	800	0.01079	2.949	471.34	-3.25	1258.95	
76+0.00	67.50	789.31	455.62	800	0.01079	0.728	467.48	-11.86	1326.45	Valve Loss etc. 3.132 m
86+0.00	95.40	884.71	461.15	800	0.01079	1.029	466.45	-5.30	1421.85	
105+0.00	186.60	1071.31	446.50	800	0.01079	2.013	464.44	-17.94	1608.45	
105+85.00	91.00	1162,31	(HWL+451.82)	800	0.01079	0.982	451.68	0.14	1696.45	Distribution Chamber
			446.50			I				Horizontal Pipe distance
	1							23.497		Valve Loss etc. 11.77611 m

(110000*1.05*(1/3)) (110000*1.05*(2/3)) (110000*1.05)

0.446 m3/s 0.891 m3/s 1.337 m3/s

Phasel Phase2 Phase3 Q1= Q2= Q3= Pipe Friction Factor c=

38500 m3/d = 77000 m3/d = 115500 m3/d =

Note

St.No.: Station Number
S.D.: Single Distance
A.D.: Accumulated Distance
G.L.: Ground Level
H.G.: Hydraulic Gradient
W.L.L.: Water Level Loss
H.W.L.: Hydraulic Water Level
H.P.: Hydrodynamic Pressure
A.D. of L.S.: Accumulate Distance of Longitudinal Section

2-22

Water Treatment Inlet valve cavitation Incase of using butterfly valve)

1.Total flow

Phase1 Q1= 38500 m3/d = 1604 m3/h (110000*1.05*(1/3)) Phase2 Q2= 77000 m3/d = 3208 m3/h (110000*1.05*(2/3)) Phase3 Q3= 115500 m3/d = 4813 m3/h (110000*1.05)

2. Water level

 Balancing tank HWL
 476.000 m

 Balancing tank LWL
 474.980 m

 Inlet water level of Distribution Chamber
 451.680 m

 Valve No.2 center level
 454.199 m
 (455.62-1.0-0.842/2)

 Valve No.3 level
 445.079 m
 (446.5-1.0-0.842/2)

3. Valve Diameter and flow velocity

Valve Diameter (mm)	Flow	velosity (m/	sec)
	Phase 1	Phase2	Phase3
300	6.31	12.61	18.92
350	4.63	9.27	13.90
400	3.55	7.10	10.64
500	2.27	4,54	6.81
600	1.58	3.15	4.73
700	1.16	2.32	3.48
800	0.89	1.77	2.66

4.Phase3

Inlet Loss	(Diameter	1000 mm). f=	0.5	V(Q3)=	1.70 m/s	h=	0.074 m	Subtotal 0.074 m
Reducer Loss	(Diameter	800 600 n	ım), f=	0	V(Q3)= 2.66 m	/s h=	0.000 m	Subtotal
Valve 1 Loss	(Diameter	600 mm), f=	2.58 (60°)	V(Q3)=	4.73 m/s	h=	2.945 m	3.132 m
Orifice 1 Loss	(Diameter	600 mm), f=	0	a/A=1	V(Q3)= 4.73 m.	/sh≔	0.000 m	i i
Reducer Loss	(Diameter	800 600 n	ım), f=	0.5	V(Q3)= 2.66 m	/s h=	0.187 m	
Reducer Loss	(Diameter	800 600 п	un). f=	0	V(Q3)= 2.66 m	/s h=	0.000 m	Subtotal
Valve 2 Loss	(Diameter	600 mm), f=	5.6 (53°)	V(Q3)=	4.73 m/s	h=	6.392 m	11.776 m
Orifice 2 Loss	(Diameter	600 mm), f≕	4.24	a/A=0.70	V(Q3)= 4.73 m	/s h=	4.836 m	
Reducer Loss	(Diameter	800 600 п	ım)⊾f≔	0.5	V(Q3)= 2.66 m	/sh≕	0.187 m	i I
Outlet Loss	(Diameter	800 mm), f≕	1.0	V(Q3)≃	2.66 m/s	h=	0.361 m	
Pipe Friction Loss	(Diameter	1000 mm), I=	0.00364	L=	448.49 m	h=	1.633 m	Subtotal
Pipe Friction Loss	(Diameter	800 mm), I=	0.01079	L=	340.82 m	h=	3.677 m	9.334 m
Pipe Friction Loss	(Diameter	800 mm), I=	0.01079	L=	313.00 m	h=	3.377 m	
Pipe Friction Loss	(Diameter	800 mm), I=	0.01079	L=	60.00 m	h=	0.647 m	ļ j

Q=1.0

Total h= 24.316 m where c= 100 Q3= 115500 m3/d= 1.337 m3/sec

1 Cavitation coefficient and opening degree of valve No.1

Cavitation coefficient

ρ =(H2+10)/(H1-H2) H1= 16

where H1= 16.417 m :Hydrostatic head of upstream of valve H2= 13.471 m :Hydrostatic head of downstream of valve

 Δ H=H1-H2= 2.95 m :Head loss of valve

ρ=(H2+10)/(H1-H2)= 7.97 (>2.5-3.0) No Cavitation OK

Capacity coefficient (Cv)

Cv=1.167*Q3*(G/\(\Delta\)P)^0.5

where Q3= 4813 m3/h (110000*1.05/24)

G= 10.0 m3/m2 (1kg/cm2)

 $\Delta P = 3 \text{ m}^3/\text{m}^2 : \text{H1-H2} = 2.95 \text{ m}$

Cv=1.167*Q3*(G/\Delta P)^0.5= 10347

Opening degree of valve

. θ = 60°

2-23

2 Orifice No.1 (No need Orifice)

where $\rho = (H2+10)/(H1-H2+(V^2)/2/g))$ V = H1 = 13.472 m :Hydrostatic head of upstream of valve H2 = 13.471 m :Hydrostatic head of downstream of valve

 Δ H=H1-H2= 0.001 m :Head loss of valve

3 Cavitation coefficient and opening degree of valve No.2 (600mm)

Cavitation coefficient

 $\rho = (H2+10)/(H1-H2)$

where H1= 19.028 m :Hydrostatic head of upstream of valve H2= 12.635 m :Hydrostatic head of downstream of valve

 Δ H=H1-H2= 6.39 m :Head loss of valve

 $\rho = (H2+10)/(H1-H2)=$ 3.54 (>2.5-3.0) No Cavitation OK

Capacity coefficient (Cv)

Cv=1.167*Q3*(G/ΔP)^0.5

where Q3= 4813 m3/h (110000*1.05/24)

G= 10.0 m3/m2 (1kg/cm2) Δ P= 6.39 m3/m2 :H1-H2= 6.39 m

Cv=1.167*Q3*(G/ΔP)^0.5= 7024

Opening degree of valve

5

4 Orifice No.2

 $\rho = (H2+10)/(H1-H2+(V^2/2/g))$

where HI= 12.636 m :Hydrostatic head of upstream of valve H2= 7.799 m :Hydrostatic head of downstream of valve

 Δ H=H1-H2= 4.84 m :Head loss of valve

Distribution Chamber water level 451.683 m (476.000 - 24.317) >451.680 m

5.Phase2

Inlet Loss	(Diameter	1000 mm), f=	0.5	V(Q3)=	1.14 m/s	h=	0.033 m	Subtotal
İ								0.033 m
Reducer Loss	(Diameter	800 600	mm), f=	0	V(Q3)= 1.77 m	/s h=	0.000 m	Subtotal
Valve 1 Loss	(Diameter	600 mm), f=	2.8 (59°)	V(Q3)=	3.15 m/s	h=	1.418 m	7.275 m
Orifice I Loss	(Diameter	600 mm), f=	11.40	a/A=0.6	V(Q3)= 3.15 m	/s h≕	5.774 m	
Reducer Loss	(Diameter	800 600	mm). f=	0.5	V(Q3)= 1.77 m	/s h=	0.083 m	Į l
Reducer Loss	(Diameter	800 600	mm)、f≔	0	V(Q3)= 1.77 m	/sh≕	0.000 m	Subtotal
Valve 2 Loss	(Diameter	600 mm), f=	13 (31°)	V(Q3)=	3.15 m/s	h=	6.581 m	12.598 m
Orifice 2 Loss	(Diameter	600 mm), f=	11.40	a/A=0.6	V(Q3)= 3.15 m	/s h=	5.774 m	; t
Reducer Loss	(Diameter	800 600	mm)、f=	0.5	V(Q3) = 1.77 m	/s h=	0.083 m	}
Outlet Loss	(Diameter	800 mm), f=	1.0	V(Q3)=	1.77 m/s	h=	0.160 m	J
Pipe Friction Loss	(Diameter	1000 mm), I=	0.00172	L=	448.49 m	h≕	0.771 m	Subtotal
Pipe Friction Loss	(Diameter	800 mm), I=	0.0051	L=	340.82 m	h=	1.738 m	4.411 m
Pipe Friction Loss	(Diameter	800 mm), I=	0.0051	L≒	313.00 m	h=	1.596 m	1
Pipe Friction Loss	(Diameter	800 mm), I=	0.0051	L=	60.00 m	h≕	0.306 ш	<u> </u>
- Tr. 1		1 24217						

Total h= 24.317 m
where c= 100
Q2= 77000 m3/d= 0.891 m3/sec

1 Cavitation coefficient and opening degree of valveNo.1

Cavitation coefficient

 $\rho = (H2+10)/(H1-H2)$

where H1= 19.259 m :Hydrostatic head of upstream of valve
H2= 17.841 m :Hydrostatic head of downstream of valve
Δ H=H1-H2= 1.42 m :Head loss of valve

ρ=(H2+10)/(H1-H2)= 19.63 (>2.5-3.0) No Cavitation OK

Capacity coefficient (Cv)

Cv=1.167*Q3*(G/ \(\Delta \) P)^0.5

here Q2= 3208 m3/h (110000*1.05*(2/3)/24)

G= 10.0 m3/m2 (1kg/cm2)

 $\Delta P = 1 \text{ m}^3/\text{m}^2$:H1-H2= 1.42 m

Cv=1.167*Q3*(G/\Delta P)^0.5= 9941

Opening degree of valve

θ = 59°

2 Orifice No.1 $\rho = (H2+10)/(H1-H2+(V^2/2/g))$

where H1= 17.841 m :Hydrostatic head of upstream of valve H2= 12.067 m :Hydrostatic head of downstream of valve Δ H=H1-H2= 5.77 m :Head loss of valve

3 Cavitation coefficient and opening degree of valveNo.2 (600mm)

Cavitation coefficient

 $\rho = (H2+10)/(H1-H2)$

where H1= 19.508 m :Hydrostatic head of upstream of valve
H2= 12.927 m :Hydrostatic head of downstream of valve

 Δ H=H1-H2= 6.58 m :Head loss of valve

 $\rho = (H2+10)/(H1-H2)=$ 3.48 (>2.5-3.0) No Cavitation OK

Capacity coefficient (Cv)

Cv=1.167*Q3*(G/ΔP)^0.5

where Q2= 3208 m3/h (110000*1.05*(2/3)/24)

G= 10.0 m3/m2 (1kg/cm2) Δ P= 6.58 m3/m2 :H1-H2= 6.58 m

 $Cv=1.167*Q3*(G/\Delta P)^0.5=$ 4615

Opening degree of valve

θ= 31°

0∸ 5.

4 Orifice No.2

 $\rho = (H2+10)/(H1-H2+(V^2/2/g))$

where H1= 12.927 m :Hydrostatic head of upstream of valve H2= 7.153 m :Hydrostatic head of downstream of valve Δ H=H1-H2= 5.77 m :Head loss of valve

Distribution Chamber water level 451.683 m (476.000 - 24.317) >451.680 m

6.Phase1

Inlet Loss	(Diameter	1000 mm), f=	0.5	V(Q3)=	0.57 m/s	h=	0.008 m	Subtotal 0.008 m
Reducer Loss	(Diameter	800 600	mm)、f=	0	V(Q3)= 0.89 n	o/s h=	0.000 m	Subtotal
Valve 1 Loss	(Diameter	600 mm), f=	7 (49°)	V(Q3)==	1.58 m/s	h=	0.892 m	12.009 m
Orifice 1 Loss	(Diameter	600 mm), f=	87.12	a/A=0.4	V(Q3) = 1.58 m	ı/s h=	11.096 m	l l
Reducer Loss	(Diameter	800 600	mm)、f=	0.5	V(Q3) = 0.89 m	ı/sh≕	0.021 m	l i
Reducer Loss	(Diameter	800 600	mm)、f=	0	V(Q3)= 0.89 n	1/s h=	0.000 m	Subtotal
Valve 2 Loss	(Diameter	600 mm), f=	8.6 (47°)	V(Q3)=	1.58 m/s	h ≕	1.095 m	11.071 m
Orifice 2 Loss	(Diameter	600 mm), f=	77.84	a/A=0.41	V(Q3)≈ 1.58 n	1/s h=	9.915 m	l - {
Reducer Loss	(Diameter	800 600	mm)、f≔	0.5	V(Q3)= 0.89 n	1/s h=	0.021 m	1
Outlet Loss	(Diameter	800 mam), f≔	1.0	V(Q3)=	0.89 m/s	h=	0.040 m	إ
Pipe Friction Loss	(Diameter	1000 mm), I=	0.00048	L=	448.49 m	h=	0.215 m	Subtotal
Pipe Friction Loss	(Diameter	800 mm), I=	0.00141	L=	340.82 m	h=	0.481 m	1.222 m
Pipe Friction Loss	(Diameter	800 mm), I≕	0.00141	L=	313.00 m	h=	0.441 m	1 1
Pipe Friction Loss	(Diameter	800 mm), I=	0.00141	L =	60.00 m	h≃	0.085 m]
Total		h= 24.309	m	-				

where c= 100 Q2= 38500 m3/d= 0.446 m3/sec

1 Cavitation coefficient and opening degree of valve No.1 (600mm)

Cavitation coefficient

where

 $\rho = (H2+10)/(H1-H2)$

H1= 21.097 m :Hydrostatic head of upstream of valve H2= 20.204 m :Hydrostatic head of downstream of valve

 Δ H=H1-H2= 0.89 m :Head loss of valve

 ρ =(H2+10)/(H1-H2)= 33.84 (>2.5-3.0) No Cavitation OK

Capacity coefficient (Cv)

Cv=1.167*Q3*(G/\Delta P)^0.5

where QI = 1604 m3/h (110000*1.05*(1/3)/24)

G= 10.0 m3/m2 (1kg/cm2)

 $\Delta P = 0.89 \text{ m}^3/\text{m}^2 : \text{H}^3 - \text{H}^2 = 0.89 \text{ m}^3$

 $Cv=1.167*Q3*(G/\Delta P)^0.5=$ 6266

Opening degree of valve

θ = 49°

2 Orifice No.1

 $\rho = (H2+10)/(H1-H2+(V^2/2/g))$

where H1= 20.205 m :Hydrostatic head of upstream of valve H2= 9.109 m :Hydrostatic head of downstream of valve

Δ H=H1-H2= 11.10 m :Head loss of valve

3 Cavitation coefficient and opening degree of valve No.2 (600mm)

Cavitation coefficient

ρ =(H2+10)/(H1-H2) H1= 17. H2= 16. :Hydrostatic head of upstream of valve :Hydrostatic head of downstream of valve where 17.767 m 16.672 m

 Δ H=H1-H2= 1.10 m :Head loss of valve

 $\rho = (H2+10)/(H1-H2)=$ 24.34 (>2.5-3.0) No Cavitation OK

Capacity coefficient (Cv)

where (110000*1.05*(1/3)/24)

Cv=1.167*Q3*(G/ΔP)^0.5 Q1= 1604 m3/h (11000 G= 9.102 m3/m2 (1kg/cm2)

Δ P= 1.10 m3/m2 :H1-H2=

Cv=1.167*Q3*(G/\Delta P)^0.5= 5396

Opening degree of valve

47° θ—

4 Orifice No.2

ρ =(H2+10)/(H1-H2+(V^2/2/g)) H1= 16.672 --16.672 m :Hydrostatic head of upstream of valve where H2= 6.757 m :Hydrostatic head of downstream of valve

Δ H=H1-H2= 9.92 m :Head loss of valve

Distribution Chamber water level 451.690 m (476.000 -24.310) >451.680 m Pressure Dissipation with orifice and cavitations coefficient Cavitations

Phase 3

Q3= 115500

m3/d=

1.337 m3/s

Proposed Orifice No.2 Diameter

Orifice Dia.	Pipe Dia.	Coefficient	Flow velocity	Flow velocity								
d (mm)	D (mm)	d/D	in Pipe V (m/s)	in Orifice V (m/s)	β =(d/D) 2		a	Δħσ	k	Δω≃Δh _o *k	. ₹。	σc
420	600	0.7	4.73	9.65	0.4900	0.6953	0.13847	9.83	0.4917	4.836	4.24	2.31

ſ				Ca	Cavitation Coefficient					
ı	Hl	H2	V^2/(2*g)	K0	K0 (without V^2/(2*g))	1				
	12.636	7.799	1.142	2.98	3.68	σc<=K ₀	OK			

Phase 2

Q2=

77000

m3/d=

0.891 m3/s

Proposed Orifice No.1 & No.2 Diameter

1	Orifice Dia.	Pipe Dia.	Coefficient	Flow velocity	Flow velocity								1
	d (mm)	D (mm)	d/D	in Pipe V (m/s)	in Orifice V (m/s)	$\beta = (d/D)^2$	α	a	Δh _o	k	Δω=Δh ₀ *k	ξ.	σο
ı	360	600	0.6	3.15	8.76	0.3600	0.6490	0.10174	9.29		5.774	11.38	1.98
1	360	600	0.6	3.15	8.76	0.3600	0.6490	0.10174	9.29	0.6212	5.774	11.38	1.98

1			Ca	Ì		
Hl	H2	V^2/(2*g)	K0	K0 (without V^2/(2*g))	1	
17.841	12.067	0.507	3.51	3.82	1	
12.927	7.153	0.507	2.73	2.97	σc<=K₀	QK.

Phase 1

Qt=

38500

m3/d=

0.446 m3/s

Proposed Orifice No.1 & No.2 Diameter

Orifice Dia.	Pipe Dia.	Coefficient	Flow velocity	Flow velocity								
d (mm)	D (mm)	d/D	in Pipe V (m/s)	in Orifice V (m/s)	β =(d/D) 2	α	a	Δh _o	k	Δω=Δh _o *k	ξņ	σc
240	600	0.4	1.58	9.85	0.1600	0.6063	0.04522	13.48	0.8231	11.096	87.47	1.32
246	600	0.41	1.58	9.38	0.1681	0.6074	0.04751	12.17	0.8147	9.915	78.16	1.35

木理条件キャビテーション係数

H!	H2	V^2/(2*g)	K _o	V^2/(2*g) 含まず		
20.205	9.109	0.127	1.70	1.72	σc<=K ₀	OK
16.672	6.757	0.127	1.67	1.69	σc<=K ₀	OK

14.Balancing Tank Inlet Weir

1 Inlet weir loss

h=(Q/(1.84*b))^(2/3)

here Q= b= 1.337 m3/sec 6.10 m (110000*1.05/86400)

h=(Q/(1.84*b))^(2/3)=

0.242 m

4 Water loss

The water level of inlet channel is

476.540 m (0.242)

The height of the inlet weir is

476.300 m

The water level at the Balancing tank is

476.000 m (Weir top level - 0.30 m)

```
Overflow water level is
                                                     476.980 m
                                                                       (
                                                                                 476.7000
                                                                                              +0.276)
 Overflow weir top level is
                                                     476.7000
 Overflow weir loss is
                                                        0.276
 Overflow Pipe Center Level at Blowoff Point
                                                      458.000 m
1 Overflow weir loss
            h=(Q/(1.84*b))^(2/3)
            where
                        Q=
                                            1.337 m3/sec
                                                              (110000*1.05/86400)
                        b=
                                                              (2.5*2)
                                               5 m
            h=(Q/(1.84*b))^(2/3)=
                                            0.276 m
  The water level at the downstream of the weir is
                                                                    476.400 m in consideration of an allowance of
      0.300 m.
1 Overflow pipe loss
                        (Diameter
                                              600 mm), f=
                                                                         0.5
                                                                                                   4.73 m/s
                                                                                                                         0.571 m
  Inlet Loss
                                                                                                                  h=
                                              600 mm).f=
  22.5°Bend Loss
                                                                                                                         0.171 m
                        (Diameter
                                                                        0.15
                                                                                                   4.73 m/s
                                                                                                                  ħ=
                                              600 mm). f=
                        (Diameter
  22.5°Bend Loss
                                                                                                   4.73 m/s
                                                                                                                         0.171 m
                                                                        0.15
                                                                                                                  h=
  45°Bend Loss
                        (Diameter
                                              600 mm), f=
                                                                        0.21
                                                                                                   4.73 m/s
                                                                                                                  b=
                                                                                                                         0.242 m
  22.5°Bend Loss
                        (Diameter
                                              600 mm), f=
                                                                        0.15
                                                                                                   4.73 m/s
                                                                                                                         0.171 m
  22.5°Bend Loss
                        (Diameter
                                              600 mm), f=
                                                                                                   4.73 m/s
                                                                        0.15
                                                                                                                  h=
                                                                                                                         0.171 m
  45°Bend Loss
                        (Diameter
                                              600 mm), f=
                                                                                                                         0.242 m
                                                                        0.21
                                                                                                   4.73 m/s
                                                                                                                  h=
                                                                                                                         0.228 m
  90°Bend Loss
                        (Diameter
                                              600 mm), f=
                                                                                                                  h=
                                                                        0.20
                                                                                                   4.73 m/s
  Outlet Loss
                        (Diameter
                                              600 mm), f=
                                                                         1.0
                                                                                                   4.73 m/s
                                                                                                                  \mathbf{h} =
                                                                                                                         1.142 m
  Pipe Friction Loss
                        (Diameter
                                              600 mm). I=
                                                                    0.03673
                                                                                                  59.20 m
                                                                                                                         2.174 m
            Total
                                                        5.283 m
                                      h≕
                                1.337 m3/sec
            Q=
C≖
                                                  (110000*1.05/86400)
  where
                                  110
                                                                    471.110
  The water level at the Blow off site is
                                                                               m(476.400
                                                                                                - 5.290)
```

Phase3

> 458.0000

17. Hydraulic Calculation of Overflow from Balancing Tank

Outside Stream Bottom Level

No.	Distance	Accumulate	Bottom	Bottom Level	Proposed Channel	Ground	Existing Bottom	Existing Bottom	I	Average
	(m)	Distance (m)	Gradient (%)	Diferance (m)	Bottom Level (m)	Level (m)	Level (m)	Gradient (%)	Depth (m)	Depth (m)
1					457.600	458.50	458.00	,	0.90	
2	20		3.65	0.073	457.527	459.00	457.75	12.5	1.47	23.7
3	20		****	0.073	457.100	458.00	457.50	12.5	0.90	23.7
4	20		3.65	0.073	455.100	456.00	455.50	100.0	0.90	18.0
5	20		3.65	0.073	453.600	454.50	454.00	75.0	0.90	18.0
6	20		3.65	0.073	452.100	453.00	452.50	75.0	0.90	18.0
7	20		3.65	0.073	452,027	453.00	452.50	0.0	0.97	18.7
. 8	20		3.65	0.073	449.100	450.00	449.50	150.0	0.90	18.7
9	20		3.65	0.073	449,400	450.30	449.40	5.0	0.90	18.0
01	20	180	3.65	0.073	448.900	449.80	449.30	5.0	0.90	18.0
11	20	200	3.65	0.073	448.400	449.30	448.80	25.0	0.90	18.0
12	20	220	3.65	0.073	448.100	449.00	448.50	15.0	0.90	18.0
13	20	240	3.65	0.073	446.100	447.00	446,25	112.5	0.90	18.0
14	20	260	3.65	0.073	446.100	447,00	446.23	1.0	0.90	18,0
15	20	280	3.65	0.073	445.800	446.70	446.20	1.5	0.90	18.0
16	20	300	3.65	0.073	444,700	445.60	445.10	55.0	0.90	18.0
17	20	320		0.073	444,300	445.20	444.70	20.0	0.90	18.0
17+5000	5	325	3.65	0.01825	441.500	444.50	444.00	140.0	3.00	9.7
18	15	340		0.05475	441.445	446.00	443.90	6.7	4,55	\$6.7
19	20	360	3.65	0.073	441.372	446.00	443.70	10.0	4.63	91.8
20	20	380	3.65	0.073	441.299	444.00	443.50	10.0	2.70	73.3
21	20	400	3.65	0.073	441.226	444.00	443.50	0.0	2.77	\$4.7
22	20	420	3.65	0.073	441.153	443.00	442.50	50.0	1.85	46.2
23	20	440	3.65	0.073	441.080	443.00	442.50	0.0	1.92	37.7
24	22	462	3.65	0.0803	441.000	442.00	441.50	45.5	1.00	32. i
verage									\	1.522

Note:

1.Existing Bottom Level are assumed above mentioned formula.

Existing Bottom Level = Existing Ground Level - 0.5m

Proposed Channel Bottom Level = (Existing Ground Level - 0.9m) >= Bottom Level Diference (No.1 - 17+5000)

1.Receiving well

1 Receiving well inlet channel water level (6 units) 451.680 m I Baffle wall loss Q= 1.375 m3/sec= 118800 m3/day (110000*(1.05+0.03)) h=v^2/(2*g*c^2) 1.88 m2 : Opening area 3.14/4*0.1^2*(15*16) where 0.73 m/sec v= 9.8 m/sec2 g≖ c= 0.6 Baffle wall loss h=v^2/(2*g*c^2)= 0.075 m 2 Receiving well water level 451.600 m 1 Overflow weir loss (6 line duty) $h=(Q/(1.84*B))^{2/3}$ 0.229 m3/sec= 19800 m3/day (110000*(1.05+0.03)/6) where Q= B= 2.0 m Overflow weir loss $h=(Q/(1.84*B))^{2/3}$ 0.157 The height of the overflow weir is accordingly 451.440 m(451.600 -0.160).

1

```
2.Mixing Well
    1 Design G Value
      a) Canp's Proposition
           GT Value
                  GT Value=
                                     23,000 ~
                                                           25,000
                  G=(23,000\sim25,000)/(40\sim100) =
                                                                                                       625 sec-1
                                                                             230 ~
      b) Dr. Tanpo
                  G=(1000/verg)^0.5
           where
                                    0.00898 cm2/sec at 25°C
                  verg=
                                        334 sec-1
                  G=
      c) Japanese Standard
                  G=(g*h/(v*T))^0.5
                  where
                                                 0.50~
                                                             0.60 m
                                                                                  : Head loss at cone
                               h=
                                                    9.8 m/s2
                               g=
                                                0.00898 cm2/sec
                               Τ=
                                                     60 sec
                  G=(g*h/(v*T))^0.5=
                                                  302~
                                                             330 sec-1
      Therefore, design G Value is 330 sec-1.
    2 Required Head loss for mixing chamber
                  h = G^2 + \mu *V/(\rho *Q*g)
                               G=
                                                                 : Design G value
                                                    330 sec-1
                                              0.000898 kg/m/sec : Coefficient of viscosity of water at 25°C
                               \mu =
                                \rho =
                                                 0.9971 g/cm2 at 25℃
                               g=
                                                    980 cm/sec2
                                              25500000 cm3
                                                                          =26m3: Volume of mixing chamber
                                                (2.50m* 3.00m*
                                                                          3.40m) Retention time
                                                                                                            2 minute
                                                 459000 cm3/sec
                                                                     =39655m3/d: Design flow rate
                  h= G^2 * \mu *V/(\rho *Q*g)=
                                                  55.60 cm =
                                                                               60 cm
    3 Overflow weir loss (6 line duty)
                  h=(Q/(1.84*b))^(2/3)
                  where
                               Q=
                                                  0.229 m3/sec (110000*(1.05+0.03)/6/86400)
                               b=-
                                                   2.00 m
                  h=(Q/(1.84*b))^(2/3)=
                                                  0.157 m
    4 Water loss
          The water level of Receiving well is
                                                          451.600 m
                                                            0.160 m (0.157)
          The water loss of upstream of the weir is
          The water loss of downstream of the weir is
                                                            0.940 m.
          Therefore the water loss (total) is
                                                            1.100 m
          The height of the overflow weir is accordingly
                                                                         451.440 m
                                                                                                 (451.600-
                                                                                                                0.160)
```

450.500 m

The water level at the downstream of the weir (mixing chamber) is

3. Connection Pipe between Mixing chamber and Flocculation basin 1. Connection Pipe between Mixing chamber and Flocculation basin No.1

	water	level					450.470 m		
Outlet pipe loss									
Inlet Loss		(Diameter	700) mm), f≔	0.5	V≔	0.60 m/s	h=	0.0
Valve Loss		(Diameter	700	mm), f=	0.1	V=	0.60 m/s	h=	0.0
45°Bend Loss		(Diameter	700) mm), f=	0.25	V≕	0.60 m/s	h=	0.0
45°Bend Loss		(Diameter	700	mm), f=	0.25	V=	0.60 m/s	h=	0.0
90°Bend Loss		(Diameter	700) mm), f=	0.23	V=	0.60 m/s	h=	0.0
90°Bend Loss		(Diameter	700	mm), f=	0.23	V=	0.60 m/s	h=	0.0
90°Bend Loss		(Diameter	700) mm), f=	0.23	V=	0.60 m/s	h=	0.0
45°Bend Loss		(Diameter	700	mm), f=	0.25	V=	0.60 m/s	h=	0.0
45°Bend Loss		(Diameter	700	mm), f=	0.25	V=	0.60 m/s	<u>h</u> =	0.0
45°Bend Loss		(Diameter	700	mm), f=	0.25	V=	0.60 m/s	h=	0.0
45°Bend Loss		(Diameter	. 700) mm), f=	0.25		0.60 m/s	h=	0.0
90°Bend Loss		(Diameter		mm), f=	0.23		0.60 m/s	h=	0.0
90°Bend Loss		(Diameter		mm), f=	0.23		0.60 m/s	h=	0.0
Outlet Loss		(Diameter		mm), f=	1.0		0.60 m/s	h=	0.0
Pipe Friction Los	SS	(Diameter) mm), I=	0.00066		64.96 m	h=	0.0
-	Total		h=	0.122	m,				
where	C=	110							
	Q=	19800	m3/d=	0.229	m3/sec	(110000*(1.6	05+0.03)/6)		
nnection Pipe bet	tween l	Mixing cham	iber and I	Flocculation	n basin NO.	3			
nnection Pipe bet Mixing chamber			iber and I	Flocculation	n basin N0.	3	450.480 m		
Mixing chamber			aber and }	Flocculation	n basin N0.	3	450.480 m		
Mixing chamber Outlet pipe loss		level						h=	0.0
Mixing chamber Outlet pipe loss Inlet Loss		level (Diameter	700	mm), f=	0.5	V=	0.60 m/s	h= h=	
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss		(Diameter (Diameter	700 700	mm), f= mm), f=	0.5 0.1	V= V=	0.60 m/s 0.60 m/s	h=	0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss		(Diameter (Diameter (Diameter	700 700 700	mm), f= mm), f= mm), f=	0.5 0.1 0.25	V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s	h= h=	0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss		(Diameter (Diameter (Diameter (Diameter	700 700 700 700	mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23	V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h=	0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23	V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h=	0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.23	V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h=	0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.23	V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.23 0.25 0.25	V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.23 0.25 0.25	V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25	V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25	V= V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss		(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700 700 700 700	mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25 0.25	V= V= V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss Outlet Loss Outlet Loss	water	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	700 700 700 700 700 700 700 700 700 700	mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.23	V= V= V= V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss	water	(Diameter (Diame	700 700 700 700 700 700 700 700 700 700	mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.00066	V= V= V= V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss	water	(Diameter (Diame	700 700 700 700 700 700 700 700 700 700	mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.00066	V= V= V= V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss where	water ss Total C=	(Diameter (Diame	700 700 700 700 700 700 700 700 700 700	mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= mm), f= 0.136	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25 0.23 0.23 1.0 0.00066 m	V= V= V= V= V= V= V= V= V= V= L=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing chamber Outlet pipe loss Inlet Loss Valve Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 45°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss 90°Bend Loss where	water	(Diameter (Diame	700 700 700 700 700 700 700 700 700 700	mm), f= mm), f=	0.5 0.1 0.25 0.23 0.23 0.25 0.25 0.25 0.25 0.23 0.23 1.0 0.00066 m	V= V= V= V= V= V= V= V= V= V= V=	0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s 0.60 m/s	h= h= h= h= h= h= h= h= h=	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3

3. Connection Pipe between Mixing chamber and Flocculation basin N0.6

The Inlet chamber water level of Flocculation basin is

Mixing chamber	r water	level				450.500 m	,	
Outlet pipe loss								
Inlet Loss		(Diameter	700 mm), f≕	0.5	V=	0.60 m/s	h=	$0.009 \ m$
Valve Loss		(Diameter	700 mm), f=	0.1	V=	0.60 m/s	h=	0.002 m
45°Bend Loss		(Diameter	700 mm), f≠	0.25	V=	0.60 m/s	h=	0.005 m
45°Bend Loss		(Diameter	700 mm), f=	0.25	V=	0.60 m/s	h=	0.005 m
90°Bend Loss		(Diameter	700 mm), f=	0.23	V=	0.60 m/s	h≓	0.004 m
45°Bend Loss		(Diameter	700 mm), f=	0.25	V=	0.60 m/s	h =	0.005 m
45°Bend Loss		(Diameter	700 mm), f=	0.25	V=	0.60 m/s	h=	0.005 m
45°Bend Loss		(Diameter	700 mm), f=	0.25	V=	0.60 m/s	h=	0.005 m
45°Bend Loss		(Diameter	700 mm), f=	0.25	V=	0.60 m/s	h=	0.005 m
90°Bend Loss		(Diameter	700 mm), f=	0.23	V=	0.60 m/s	h=	0.004 m
90°Bend Loss		(Diameter	700 mm), f=	0.23	V=	0.60 m/s	h=	0.004 m
Outlet Loss		(Diameter	700 mm), f=	1.0	V=	0.60 m/s	h=	0.018 m
Pipe Friction Lo	SS	(Diameter	700 mm), I=	0.00066	L=	122.86 m	h≕	0.081 m
	Total	h=	0.152	m				
where	C=	110						
	Q=	19800 m	3/d= 0.229	m3/sec (110000*(1.0	5+0.03)/6)		

450.340 m (450.500 -0.160) 4

4.Flocculation Basin

Flocculation basin inlet channel water level

450.340 m

1 Head loss of Intake gate

Dimension of gate; 600×600 Head loss h=v2/(2*g*C^2)

Head loss h=v2/(2*g*C^2)
where A=0.6m*0.6m= 0.36 m2 : Sectional area
Q= 0.229 m3/sec
v=Q/A= 0.637 m/sec
g= 9.8 m/sec2
C= 0.6
h= 0.05743 m = 0.060 m

Flocculation basin inlet water level

450.280 m

2 Required head loss for flocculation basin

h= 0.290 m (Confer Capacity calculation)

Flocculation basin outlet water level 449.990 m

3 Outlet Submerged weir loss

L=Q/(1.8*(h1+1.4*h2)*h1^0.5) h2=Q/(2.52*I.*h1^0.5\h1/1.4

h2=Q/(2.52*L*h1^0.5)-h1/1.4

where Q= 0.229 m3/sec= 19800 m3/day (110000*(1.05+0.03)/3/2)h1= 0.028 m

L= 11.0 m h2=Q/(2.52*L*h1^0.5)-h1/1.4= 0.029 m

The height of the overflow weir is accordingly 449.930 m (449.990 -0.030 -0.030).

The water level at the downstream of the weir (sedimentation basin) is 449.960 m

in consideration of an weir loss of 0.03 m (h1)

Treatment Capacity(m3/d/Unit)

39,600
Hydraulic Flocculation (Baffle Walls, Up and Down)

Item		Unit	Symbol	Nos. of Raws						Between Raws				
No.	Descriptions			No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No.1&2	No.2&3	No.3&4	No.4&5	No.5&6
i, Ger	ieral Descriptions			5 6 B										
l)	Design capacity	m3/d	(Q)	19,800	19,800	19,800	19,800	19,800	19,800	19,800	19,800	19,800	19,800	19,800
2)	Width of wall	m	(Ww)	1.100	1,100	1.500	1,500	2,300	2.300	0.965	0.965	0.965	0.965	0.965
3)	No. of wall in one raw	-	(Nw)	9.	9	9	9	9	9	1	1	1		ī
4)	Depth	137		3.80	3.80	3,60	3.60	3.50	3.50	3.80	3.80	3.60	3.60	3.50
5)	Length of raws	m		11.00	11.00	11.00	11,00	11.00	11.00					
2. Los	s of down flow	a A Vag	te eller ig	40000000	7.7			1						
1)	Downflow depth	m	(Hb)	0.75	0.80	0.90	0.95	1.00	1.05	0.75	0.80	0,90	1.00	1.00
2)	Downflow velocity	m/s	(vb)_	0.278	0.260	0,170	0.161	0.100	0.095	0,317	0.297	0.264	0.237	0,237
3)	Downflow coefficent of friction loss	•	(fb)	3,5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
4)	No. of down flow in one raw			4	4	4	. 4	4	4	1	1	1		1
5)_	hb + 15/2/9.8*vb *no. of walls/2	m		0.055	0.048	0.021	* - 20.018	0.007	0,006	0.018	H. 0016	0.012	0.010	0.010
3. Los	s of over flow													
1)	Overflow depth	m	(Ho)	0,75	0.80	0.90	0.95	1,00	1.05					
2)	Oveflow velocity	m/s	(vo)	0,278	0.260	0.170	0.161	0,100	0.095					
3)	Downflow coefficent of friction loss		(fb)	1.0	1,0	1,0	1.0	1.0	1.0					
4)	No. of down flow in one raw			5	. 5	. 5	5	5	5					
	no = vo/2/9.8*no. of walls/2	m		0.020	0.017	0,007	0.007	0.003	0.002					
4. Los	s of friction	\$4.5.54D	ricke in A											
I)	$R = W_{\mathbf{v}} * Lc_{i} 2/(W_{\mathbf{v}*Le})$	m	(R)	0.257	0.257	0.294	0.294	0.340	0.340					
2)	n = roughness coefficient		_ (n)	0.015	0.015	0.015	0,015	0,015	0.015		Width of wa	11		
3)	vc≃velocity	m/s	(vc)	0.216	0.216	0.158	0.158	0,103	0.103		(11-0.15*9)/	10=	0.965	m
4)	$C^2 = 1/n^2 * R^{1/3}$		(C ²)	2,826	2,826	2,954	2,954	3,102	3,102					
5)	Length of ditch	m	(L _D	10,0	10.0	10,0	10.0	10.0	10.0					
6)	Length of wall	m	(L _{v)}	30.500	30.000	27.000	26,500	25.000	24.500					
7)	L = 1.1 + Lw	m	(L)	40.535	40.035	37.035	36,535	35.035	34.535					
8)	hf ⇒ L n^2vc^2/R^(4/3)	m		0.603	0.603	0.001	. 0.001	e + 0.000	0.000					
5. Tot	al Loss of Head					10.00	4.0			tan ara		10 E		AND BY
	$H = h_1 + h_2 + h_3$	m	0.286	0.077	0.088	0.029	0.026	10.010	0.009	0.016	0.016	0.012.	0.010	0.010
6, G-v	alue									Total		4		
1)	Volume of raw	m3	(V)	45,98	45.98	59.40	59,40	88.55	88.55	387.860	m3	(TTL Volum	e of Fllocula	tion Basin)
2)	Detention time	mín	(T)	3.34	3.34	4.32	4,32	6.44	6.44	28.2	ուհո	(TTL Detent	ion Time)	
3)	Density of Water (at 25 degree)	kg/m3	(م)	997,100										
4)	Viscosity of Water (x 10-3)	kg/m/s	(μ)	0.898								Ave. Turbid	ity=	37.0
5)	Acceleration of Gravity	m/s2	(g)	9.8						Ave G		GCS ⁴		2,685,805
6)	G=(H·ρ·Q·g/(V·μ)) ^{0,5}	s-l	(G)	71.9	67.5	41,7	39,0	23.8	16.0	42.9				
7)	Gt value			14,425	13,546	10,811	10,104	9,181	6,178	72,589	(23,000 to 2	10,00)		

Item	Descriptions	1,,,	Symbol	Nos. of Raws							
No.	Descriptions	Unit		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No.1&	
. Wa	er level of each baffle wall				14.	. ,				1.1.1	
1)	Inlet water level (No.1 section)	m		450.280	450.185	450.102	450.060	450.024	450.004		
2)	No.2 section			450.276	450.182	450.100	450.059	450.024	450.004		
3)	No.3 section		1	450.262	450.169	450.095	450.054	450.022	450.002	Ì	
4)	No.4 section		T	450.258	450.166	450.093	450.053	450.022	450.002		
5)	No.5 section			450.244	450.153	450.088	450.048	450.020	450.000	i	
6)	No.6 section			450.240	450.150	450.087	450.047	450.019	450.000		
7)	No.7 section			450.225	450.137	450.081	450.042	450.017	449,998		
8)	No.8 section		!	450.221	450.134	450.080	450.041	450.017	449.998		
9)	No.9 section	-		450.207	450.121	450.074	450.036	450.015	449.996	Total	
10)	No.10 section	 	<u> </u>	450.203	450.117	450.073	450.035	450.015	449.995		
10)	1		 -	0.0769	0.0678	0.0288	0.0259	0.0099	0.0090	0.2	
ÚW.	t r Top-level of each baffle wall.	l Vitable de la				ki i i i i i i i i i i i i i i i i i i					
	Weir top level (No.1 section)	i .	64909	449.526	449.382	449.200	449.109	449.024	448.954	 	
1)	No.2 section	 	1	777.320	777.304	T+7.200	7+7.107	717.UZ7	770.734	ļ	
2)				440.500	440.266	440 103	440 102	440.022	448.952		
3)	No.3 section			449.508	449.366	449.193	449.103	449.022	446.932	 	
4)	No.4 section		-	440 400	440.250	440 107	440.007	440.010	110.050		
5)	No.5 section	 	!	449.490	449.350	449.187	449.097	449.019	448.950	 	
6)	No.6 section		<u> </u>	440 471	440.224	440.100	440.001	440.017	140.040		
7)	No.7 section			449.471	449.334	449.180	449.091	449.017	448.948	ļ	
8)	No.8 section	ļ]	110 150	440.015	110 170	142 225	110.015	110.015		
9)	No.9 section	 	}	449.453	449.317	449.173	449.085	449.015	448.945		
10)	No.10 section										
200-100			naal Seliminise sektorise se				ANTONIO MONTO ANTAGAMBAN	De Sta fonklindere forkeritere	surround and the Deput Continue		
1 1000	ance between Wall Top Level (451-100)	n) and V	veir Top I	April 19 Control of the Control of t						ļ	
1)	Depth of weir top level (No.1 section)	<u> </u>		1.574	1.718	1.900	1.991	2.076	2.146		
2)	No.2 section	ļ	<u> </u>								
[3)	No.3 section	<u> </u>		1.592	1.734	1.907	1.997	2.078	2.148	<u> </u>	
4)	No.4 section									<u> </u>	
5)	No.5 section		·	1.610	1.750	1.913	2.003	2.081	2.150		
6)	No.6 section										
7)	No.7 section			1.629	1.766	1.920	2.009	2.083	2.152		
8)	No.8 section										
9)	No.9 section	<u> </u>		1.647	1.783	1.927	2.015	2.085	2.155		
10)	No.10 section										
Ove	rflow Depth		110						der east		
1)	Overflow depth (No.1 section)			0.754	0.803	0.901	0.951	1.001	1.050		
2)	No.2 section										
3)	No.3 section	<u> </u>		0.754	0.803	0.901	0.951	1.001	1.050		
4)	No.4 section										
5)	No.5 section			0.754	0.803	0.901	0.951	1.001	1.050		
	No.6 section	 									
6)	No.7 section		 	0.754	0.803	0.901	0.951	1.001	1.050	 	
6) 7)		L								 	
7)				ļ	i	[ł.	
'	No.8 section No.9 section			0.754	0.803	0.901	0.951	1.001	1.050		

5. Sedimentation Basin

```
1 Sedimentation basin inlet water level
                                                                                      449.960 m
  Head loss of diffusion wall (No.1)
  Diameter of holes and number of holes; \phi100@300\times300
  Head loss h=v2/(2*g*C^2)
  where
                A1=3.14/4*D^2*(a*b)=
                                                            3.6738 m2
                                                                                : Sectional area
                 D=
                                       100 mmdia.
                a=
                                        13 pieces
                h=
                                        36 pieces
                 Q=
                                     0.229 m3/sec
                                                      (110000*(1.05+0.03)/86400/6)
                 v=Q/A=
                                    0.0624 m/sec
                                       9.8 m/sec2
                 g=
                 C=
                                       0.6
  h1=
                      0.00055 m
  Head loss of diffusion wall (No.2-4)
  Diameter of holes and number of holes; \phi100@300\times300
  Head loss h=v2/(2*g*C^2)
                A=3.14/4*D^2*(a*b)=
  where
                                               3.3912 m2
                                                                   : Sectional area
                D=
                                       100 mmdia.
                                        12 pieces
                a==
                b=
                                        36 pieces
                                     0.229 m3/sec
                                                      (110000*(1.05+0.03)/86400/6)
                 Q=
                v=Q/A=
                                    0.0676 m/sec
                                       9.8 m/sec2
                                       0.6
                      0.00065
                                               0.0019 m
  h2-4=
                                 *3units =
  Head loss of diffusion wall (No.5)
  Diameter of holes and number of holes; \phi100@300\times300
  Head loss h=v2/(2*g*C^2)
                A=3.14/4*D^2*(a*b)=
                                               3.6738 m2
                                                                   : Sectional area
  where
                D=
                                       100 mmdia.
                                        13 pieces
                b=
                                        36 pieces
                                     0.229 m3/sec
                                                      (110000*(1.05+0.03)/86400/6)
                0=
                v=Q/A=
                                    0.0624 m/sec
                                       9.8 m/sec2
                g==
                                       0.6
                      0.00055 m
 h5=
  Total head loss
                h=h1~h5=
                                   0.00304 =
                                                             0.000 m
  Sedimentation Basin Downstream Water Level
                                                                                      449.960 m
2 End Trough Bottom Level
                                                                                      449.700 m
                Water Level above Trough Orifice
                                                                          0.060 m
                Depth between orifice and Trough Bottom
                                                                          0.200 m
                                                                          0.260 m
                Trough Loss (Total)
 The water level at the downstream of the end trough is
                                                                                     449.450 m in consideration of an
      allowance of 0.25 m.
3 Intermediate trough bottom level
                                                                        449.700 m same as End Trough Bottom Level
4 Intermediate trough channel (Intermediate trough - End channel)
  Water Level at upstream of Intermediate Trough Channel
                                                                       449.700 m same as End Trough Bottom Level
 Head loss in the intermediated channel is calculated
  Q1=
                         0.023 m3/sec
                                                                                                      (20.4\%)
                                           : Water flow of I trough
 Q2=2Q1=
                        0.047 m3/sec
                                           : Water flow of 2 trough
                                                                                                      (40.7%)
 Inflow sectional area
 A(a-d)=B*H=
                                      0.15 m2
                                                      (Watrer Flow Area A= 0.060 m2)
  where
                B=
                                      0.50 m
```

8

H= 0.30 m (Watrer Depth h= 0.120 m)

Velocity

V(a-b)=Q1/A= V(b-c)=Q2/A= 0.39 m/sec

0.78 m/sec

Hydraulic radius

 $R(a-c)=A/(B+H^*2)=$ 0.136 m

Roughness coefficient

0.015

Head losses are calculated using Manning Formula.

 $h=n^2L^*v^2/R^4(4/3)$

10.0 m where L(a-b)= L(b-c)= 12.6 m

0.00485 = 0.005 m h(a-b)=

h(b-c)= 0.02445 = 0.025 m

I=n^2*v^2/R^(4/3)

0.00049 I(a-b)= I(b-c)= 0.00194

Total head loss

0.030 m (0.030) h(a-c)=

Critical Water Depth at the end of Intermediated Channel

hc=(\alpha *Qt^2/(g*B^2))^(1/3)

速度エネルギーの補正係数 1.1 where $\alpha =$

B= 0.4 m g= 9.8 m/s2

(0.099 m) at downstream $hc=(\alpha *Qt^2/(g*B^2))^(1/3)=$ 0.100 m

0.130 m (0.130 m) at upstream ho=hc+h(a-c)

Bottom level at the end of the intermediated channel is 449.500

449,500 +0.100)449.600 m Accordingly, water level at the end of the intermediated channel is

(Water Depth is 0.130 m) Water level at the upstream of the intermediated channel is 449.630 m

449.450 m in consideration of an allowance of 0.15 m. The water level at the end channel is

```
Outflow Troough of Sedimentation Basin
1.End trough (Inlet from both side)
1.1.Load factor of end trough weir design criteria
                  Q=
                                       11733 m3/d
                                                         : Flow Rate (
                                                                                        59.3%)
                  n=
                                            8 pieces
                                                          : Number of trough
                  L=
                                            2 m
                                                          : Length of trough
                  Lf=
                                                         : Load factor (=<500m3/m/d)
                                         367 m3/m/d
1.2. Number of orifice holes per trough
        N=Qt/(C'*\pi/4*d^2*(2gh)^0.5)
                                       0.0170 m3/sec
                                                         : Collecting water amount per trough
                  Qt=
                  C'=
                                          0.6
                  d=
                                         0.03 \text{ mm}(\varphi 30\text{mm})
                                                                       : Orifice diameter
                                          9.8 m/sec2
                  g-
                                         0.06 m(60mm)
                                                                       : Overflow depth of oridice
                  h=
        N=Qt/(C'*\pi/4*d^2*(2gh)^0.5)=
                                                                    36 holes per each trough
                                                                    18 holes per each side of trough
        Interval between holes
                  In=L/(N/2)
                                          100 mm
                                                                (0.108 m)
1.3. Water level in the trough
        hc=(\alpha*Qt^2/(g*B^2))^(1/3)
        where
                                          1.1
                                                         : Suplementary factor of velocity energy
                  <u>α=</u>
                                          0.4 m
                                                         : Weir width
                                                                             (0.059 m) at downstream
        hc = (\alpha * Qt^2/(g*B^2))^(1/3) =
                                                   0.060 m
        ho=hc*3^{(1/2)}
                                                   0.100 m
                                                                             (0.104 m) at upstream
1.4.Load factor of trough weir
        O=
                   11733.33333 m3/d
                                              : Flow Rate (
                                                                             59.3%)
        n=
                              8 pieces
                                              : Number of trough per unit
        Le=
                             2.0 m
                                              : length of trough
                                              : Load factor (=<500m3/m/d)
                            367 m3/m/day
        Lf=
2.Intermediate trough (Inlet from one side )
2.1.Load factor of trough weir design criteria
                                        8067 m3/d
                                                                                        40.7%)
                  0=
                                                         : Flow Rate (
                  n=
                                            2 pieces
                                                         : Number of trough in one basin
                  L=
                                         11.0 m
                                                         : Length of trough
                  Lf=
                                                         : Load factor (=<500m3/m/d)
                                         500 m3/m/d
2.2. Number of orifice holes per 1/2trough
        N=Qt/(C'*\pi/4*d^2*(2gh)^0.5)
                                       0.0467 m3/sec
                  Qt=
                                                         : Collecting water amount per 1/2trough
                  C'=
                                          0.6
                                         0.03 mm(\phi30mm)
                                                                       : Orifice diameter
                  d≔
                                          9.8 m/sec2
                  g=
                                         0.06 m(60mm)
                                                                       : Overflow depth of oridice
        N=Qt/(C'*\pi/4*d^2*(2gh)^0.5)=
                                                                  102 holes per each trough
        Interval between holes
                  In=L/(N/2)
                                          100 mm
                                                               (0.108 m)
2.3. Water level in the trough
        hc=(\alpha*(1/2*Qt)^2/(g*B^2))^(1/3)
                                                         速度エネルギーの補正係数
        where
                                          1.1
                  B=
                                          0.4 m
                                                   0.070 m
                                                                             (0.073 m) at downstream
        hc=(\alpha*(1/2*Qt)^2/(g*B^2))^(1/3)=
        ho=hc*3^(1/2)
                                                   0.120 m
                                                                             (0.121 m) at upstream
2.4.Load factor of trough weir (one side inflow)
                                                                             40.7%)
        Q=
                   8066.666667 m3/d
                                              : Flow Rate (
                              2 pieces
                                              : Number of trough per unit
        n=
                                              : length of trough
        Le=
                             11 m
                            367 m3/m/day
```

: Load factor (=<500m3/m/d)

Lf=

```
6. Rapid Sand Filter (in case of four units duty)
                                                                               Phasel
     1 Water level at the upstream of the inflow channel of the filter
                                                                                              449.450 m
               Head loss in the channel is calculated under the conditions that four units are operated
               Q1 =
                                  0.458 m3/sec
                                                    : Total flow rate for 4 units of 1 system
                                                    : flow rate for 1 units during 4 units duty in 1 system
               Q2=Q1/4=
                                  0.115 m3/sec
               Inflow sectional area
                A(a-d)=B*H=
                                               2.17 m2
                            B=
                                               1.50 m
               where
                            H=
                                               1.45 m
                Velocity
                V(a-b)=3*Q2/A=
                                               0.11 m/sec
                V(b-c)=2*Q2/A=
                                               0.05 m/sec
                Hydraulic radius
                R(a-d)=A/(B+H*2)=
                                              0.494 m
                Roughness coefficient
                                  0.015
               n=
               Head losses are calculated using Manning Formula.
                h=n^2*L*v^2/R^(4/3)
                where
                            L(a-b)=
                                              33.95 m
                            L(b-c)=
                                                 9.3 m
                h(a-b)=
                                0.00022
                                                 = 0 \text{ m}
                                10000.0
                                                 =0 \text{ m}
               h(b-c)=
                Total head loss
               h(a-d)=
                                      0 m
                                                                                                          (449.450 - 0.000)
       Accordingly, water level at the downstream of inflow channel is
                                                                                   449.450 m
       Inlet channel bottom level is
                                           448.000 m
                                                                      449.450
                                                                                   - 1.450)
     2 Weir and inlet gate loss
              I Overflow weir loss
               h=(Q2/(1.84*b))^(2/3)
                                               0.80 m
                where
                            h=
               h=(Q2/(1.84*b))^{2/3}=
                                              0.182 m
                                                                       (0.190 m)
               The height of the overflow weir is accordingly
                                                                     449.260m
                                                                                 (449.450-
                                                                                                0.1901
       The water level at the downstream of the weir is
                                                                      448.960 m in consideration of an allowance
                      0.30 m.
       of
              2 Inlet gate loss
               h=v^2/(2*g*c^2)
                                               0.16 m2
                                                                  : Gate Area
                                                                                  (400mm×
                                                                                             400mm)
                where
                            A=
                                              0.115 m3/sec
                            Q2=
                            v=Q2/A=
                                               0.72 m/sec
                                                 9.8 m/sec2
                            g=
                            ç=
                                                 0.6
                                              0.073 m
                                                                        (0.080 m)
               h=v^2/(2*g*c^2)=
                Total loss h=
                                              0.255 m
       The water level at the downstream of the weir is
                                                                     448.880m
                                                                                  (448.960-
                                                                                                0.080)
     3 Inlet pipe loss
                            (Diameter
                                                                                                  0.91 m/s
       Inlet Loss
                                                400 mm), f=
                                                                           0.5
                                                                                    V(Q1)=
                                                                                                                           h=
                                                                                                                                   0.021 m
       Outlet Loss
                            (Diameter
                                                400 mm), f=
                                                                           1.0
                                                                                                  0.91 m/s
                                                                                                                           h=
                                                                                                                                   0.042 m
                                                                                    V(Q2)=
                                                                                                                                   0.002 m
       Pipe Friction Loss
                            (Diameter
                                                400 mm), I=
                                                                      0.00281
                                                                                                  0.70 \ m
                                                            0.065 m
                Total
                                                           (0.070 \text{ m})
       where
               Q2=
                                  0.115 m3/sec
                                    110
       The high water level of filter is
                                            448.810
                                                      m(448.880
                                                                       -0.070)
```

449.450 m

Head loss in the channel is calculated under the conditions that one unit is stopped its operation

```
and one unit is washed.
```

Q1= 0.458 m3/sec

: Total flow rate for 6 units of 1 system

Q2=Q1/4= : flow rate for 1 units during 4 units duty in 1 system 0.115 m3/sec

Inflow sectional area

A(a-d)=B	*H=	2.17 m2
where	B=	1.50 m
	H=	1.45 m

Velocity

V(a-b)=2*Q2/A=	0.16 m/sec
V(b-c)=Q2/A=	0.05 m/sec
V(c-d)=3*Q2/A=	0.16 m/sec
V(d-e)=2*Q2/A=	0.11 m/sec
V(e-f)=4*Q2/A=	0.21 m/sec
V(f-g)=3*Q2/A=	0.16 m/sec
V(g-h)=2*Q2/A=	0.11 m/sec
V(h-i)=4*Q2/A=	0.21 m/sec
V(I-j)=3*Q2/A=	0.16 m/sec
V(j-k)=2*Q2/A=	0.11 m/sec
V(k-l)=Q2/A=	0.05 m/sec

Hydraulic radius

R(a-d)=A/(B+H*2)=0.494 m

Roughness coefficient

0.015

Head losses are calculated using Manning Formula.

12.85 m

```
b=n^2*L*v^2/R^(4/3)
where
          L(a-b)=
```

	L(b-c)=	8.25 m
	L(c-d)=	6.15 m
	L(d-e)=	6.55 m
	L(e-f)=	6.15 m
	L(f-g)=	9.3 m
	L(g-h)=	5.65 m
	L(h-i)=	33.95 m
	L(i-j)=	9.3 m
	L(j-k)=	17.8 m
	L(k-l)=	9.3 m
h(a-b)=	0.00018	= 0 m

0.00018	= 0 m
0.00001	= 0 m
0.00009	= 0 m
0.00004	=0 m
0.00016	=0 m
0.00013	=0 m
0.00004	= 0 m
0.00087	=0 m
0.00013	=0 m.
11000.0	= 0 m
0.00001	=0 m
	0.00001 0.00009 0.00004 0.00016 0.00013 0.00004 0.00087 0.00013 0.00011

Total head loss

h(a-d)= 0.00179 = 0.000 m

Accordingly, water level at the inflow channel is ,449.450 m (449.450 - 0.000)

Inlet channel bottom level is 448.000 m 449.450 - 1.450)

```
2 Weir and inlet gate loss
        I Overflow weir loss
          h=(Q2/(1.84*b))^(2/3)
          where
                   b=
                                           0.80 \ m
          h=(Q2/(1.84*b))^(2/3)=
                                                                  (0.190 m)
                                          0.182 m
          The height of the overflow weir is accordingly
                                                               449.260m (449.450-
                                                                                         0.190)
          The water level at the downstream of the weir is
                                                                             448.960 m in consideration of an allowance
          of
                              0.30 m.
        2 Inlet gate loss
          h=v^2/(2*g*c^2)
                                           0.16 m2
                                                                            (400mm×
          where
                      A≃
                                                             : Gate Area
                                                                                        400mm)
                      Q2=
                                          0.115 m3/sec
                      v=Q2/A=
                                           0.72 m/sec
                                            9.8 m/sec2
                      g=
                      c=
                                            0.6
          h=v^2/(2*g*c^2)=
                                          0.073 m
                                                                  (0.080 m)
 The water level at the downstream of the gate is
                                                               448.880m
                                                                            (448.960-
                                                                                          0.080)
3 Inlet pipe loss
 Inlet Loss
                      (Diameter
                                           400 mm), f=
                                                                     0.5
                                                                              V(QI)=
                                                                                           0.91 m/s
                                                                                                                  h=
                                                                                                                          0.021 m
 Outlet Loss
                                           400 mm), f=
                                                                                           0.91 m/s
                                                                                                                          0.042 m
                      (Diameter
                                                                     1.0
                                                                              V(Q2)=
                                                                                                                  h=
 Pipe Friction Loss
                      (Diameter
                                           400 mm), I=
                                                                 0.00281
                                                                                            0.70 m
                                                                                                                          0.002 m
          Total
                                                      0.065 m
                                    h≕
                              0.115 m3/sec
 where
         Q2=
          C=
                                110
 The high water level of filter is
                                       448.810
                                                 m(448.880
                                                                 -0.070)
```

7.Rapid Sand Filter Outflow Water Level (in case of four units duty)

Phasel

Filtered water level (Outlet box) is

447.060 m.

1	Filtered	outlet	pipe	1055

Inlet Lo	SS	(Diameter	350 mm), f=	0.5	$\mathbf{V}=$	1.19 m/s	h≔	0.036 m
Valve		(Diameter	350 mm), f=	0.1	V=	1.19 m/s	h=	0.007 m
Outlet I	_oss	(Diameter	350 mm), f=	1.0	V=	1.19 m/s	h=	0.072 m
Pipe Fri	iction Loss	(Diameter	350 mm), I=	0.00539	L=	2.50 m	h=	$0.013 \mathrm{m}$
•	Total	h=	0.128 a	m				
where	0=	0.115 m3/sec	(110000*(1.05	5+003)/3/86400/4)				

c= 0.115 m.5/sec

.05+0.0400/4)

The water level at upstream of weir (b=1.6m) is

446.930 m(447.060 - 0.

-0.130)

2 Overflow weir loss (in case of four units duty)

h=(Q/(1.84*b))^(2/3)

where Q= 0.115 m3/sec (110000*(1.05+0.03)/3/86400/4) b= 1.60 m h=(Q/(1.84*b))^(2/3)= 0.115 m

The height of the overflow weir is

446.810 m same as surface level of filter media.

The water level at the downstream of the weir is

446.600 m in consideration of an allowance of

0.21 m.

3 Overflow weir loss (b=8.0m)

 $h=(Q/(1.84*b))^{2/3}$

where Q= 0.458 m3/sec (110000*(1.05+0.03)/3/86400) b= 8.00 m h=(Q/(1.84*b))^(2/3)= 0.099 m

The height of the overflow weir is

446.500 m(446.600 -0.100)

The water level at the downstream of the weir (filtered water effluent channel) is

446.030 m in consideration

of an allowance of

0.470 m.

Rapid Sand Filter Outflow Water Level (in case of eight units duty)

Phase2

Filtered water level (Outlet box) is

447.060 m.

1 Filtered outlet pipe loss

(Diameter	350 mm), f=	0.5	V=	1.19 m/s	h=	0.036 m
(Diameter	350 mm), f=	0.1	V=	1.19 m/s	h=	0.007 m
(Diameter	350 mm), f=	1.0	V=	1.19 m/s	h≕	0.072 m
ss (Diameter	350 mm), l=	0.00539	L=	2.50 m	h=	0.013 m
h≕	0.128 n	n				
0.115 m3/sec	(110000*(1.05	+003)/3/86400/4)				
	(Diameter (Diameter ss (Diameter	(Diameter 350 mm), f= (Diameter 350 mm), f= ss (Diameter 350 mm), l= l h= 0.128 m	(Diameter 350 mm), f= 0.1 (Diameter 350 mm), f= 1.0 ss (Diameter 350 mm), I= 0.00539 h= 0.128 m	(Diameter 350 mm), f= 0.1 V= (Diameter 350 mm), f= 1.0 V= ss (Diameter 350 mm), l= 0.00539 L= 1 h= 0.128 m	(Diameter 350 mm), f= 0.1 V= 1.19 m/s (Diameter 350 mm), f= 1.0 V= 1.19 m/s ss (Diameter 350 mm), l= 0.00539 L= 2.50 m h= 0.128 m	(Diameter 350 mm), f= 0.1 V= 1.19 m/s h= (Diameter 350 mm), f= 1.0 V= 1.19 m/s h= ss (Diameter 350 mm), l= 0.00539 L= 2.50 m h= 0.128 m

Q= 0.115 m3/sec (110000*(1.05+0..03)/3/86400/4) C= 110

The water level at upstream of weir (b=1.6m) is

446.930 m(447.060 -0.130)

2 Overflow weir loss (in case of eight units duty)

h=(Q/(1.84*b))^(2/3)

where Q= 0.115 m3/sec (110000*(1.05+0.03)/3/86400/4) b= 1.60 m h=(Q/(1.84*b))^(2/3)= 0.115 m

The height of the overflow weir is

446.810 m same as surface level of filter media.

The water level at the downstream of the weir is

446.660 m in consideration of an allowance of

0.15 m.

3 Overflow weir loss (b=8.0m)

 $h=(Q/(1.84*b))^{2/3}$

where Q= 0.917 m3/sec (110000*(1.05+0.03)/3*2/86400) b= 8.00 m h=(Q/(1.84*b))^(2/3)= 0.157 m

The height of the overflow weir is

446.500 m(446.660 - 0.160)

The water level at the downstream of the weir (filtered water effluent channel) is

446.020 m in consideration

of an allowance of

 $0.480 \ m.$

Rapid Sand Filter Outflow Water Level (in case of four units duty)

The water level at the downstream of the weir (filtered water effluent channel) is

0.430 m.

of an allowance of

Phase3

446.070 m in consideration

447.060 m. Filtered water level (Outlet box) is I Filtered outlet pipe loss 1.19 m/s $0.036 \ m$ Inlet Loss (Diameter 350 mm), f= 0.5 0.007 m V= 1.19 m/s Valve (Diameter 350 mm), f= 0.1h= 0.072 m 1.19 m/s Outlet Loss (Diameter 350 mm), f= 1.0 V= h≃ 0.00539 2.50 m 0.013 m Pipe Friction Loss (Diameter 350 mm), I= 0.128 m Total h= 0.115 m3/sec (110000*(1.05+0..03)/3/86400/4) where Q= Č= 110 The water level at upstream of weir (b=1.6m) is 446.930 m(447.060 -0.130) 2 Overflow weir loss (in case of four units duty) h=(Q/(1.84*b))^(2/3) 0.115 m3/sec (110000*(1.05+0.03)/3/86400/4) Q =where b= 1.60 m h=(Q/(1.84*b))^(2/3)= 0.115 m 446.810 m same as surface level of filter media. The height of the overflow weir is 446.600 m in consideration of an allowance of The water level at the downstream of the weir is 0.21 m. 3 Overflow weir loss (b=8.0m) $h=(Q/(1.84*b))^{2/3}$ Q== 0.458 m3/sec (110000*(1.05+0.03)/3/86400) where 8.00 m b= $h=(Q/(1.84*b))^{2/3}=$ 0.099 m The height of the overflow weir is 446.500 m(446.600 -0.100)

8.Connection Pipe between Filter and Clear Water Reservoir 1.Connection Pipe between Filter(No.1+No.2) and Clear Water Reservoir(No.1-1)

Filter Outlet	t water level						446.030 m	~			
Outlet pîpe	loss										
Inlet Loss		(Diameter	1000	mm)、f=	0.5	V=	1.17 m/s			h=	(
Tee Branch		(Diameter	1000	1000	mm), f=	0.99	V=	1.17	m/s	h=	(
Reducer		(Diameter	1000	800	mm), f=	0.00	V=	0.58	m/s	h≃	(
Tee Branch		(Diameter	800	600	mm), f=	0.05	V=	0.91	m/s	h=	(
Reducer		(Diameter	800	600	mm), f=	0.00	V=	0.46	m/s	h=	(
90°Bend Lo	oss	(Diameter	600	mm), f=	0.23	V≃	0.81 m/s			h=	(
Valve Loss		(Diameter	600	mm), f=	0.30	V=	0.81 m/s			h=	(
Outlet Loss		(Diameter	600	mm), f=	1.0		0.81 m/s			h=	(
Pipe Friction	n Loss	(Diameter	1000	mm), I=	0.00152	L=	8.75 m			h=	(
Pipe Friction		(Diameter		mm), I=	0.00125		7.60 m			h=	(
Pipe Frictio		(Diameter		mm), I=	0.00141	L=	17.71 m			h=	(
	Total	•	h=	0.205							
where	C=	110	•	-							
	Ql=		m3/d=	0.229	m3/sec	(110000*(1	.05+0.03)/6)				
	Q2=		m3/d=				.05+0.03)/6*2)				
	Q3=		m3/d=		m3/sec		.05+0.03)/6*3)				
	Q4=		m3/d=		m3/sec		.05+0.03)/6*4)				
	Q5=		m3/d=		m3/sec		.05+0.03)/6*5)				
	Q6=	118800			m3/sec	(110000*(1					
		Clear Water R on Filter(No			lear Wate	er Reservo	445.820 m (ir(No.1-2)		446. Phase		-0
nnection P					lear Wate	er Reservo	`				-0
nnection P	ripe betwee				lear Wate	er Reservo	ir(No.1-2)				-0
nnection P Filter Outlet Outlet pipe	ripe betwee	en Filter(No	o.1+No.:	2) and C			ir(No.1-2) 446.030 m			el	
nnection P Filter Outlet Outlet pipe Inlet Loss	ripe between t water level	en Filter(No	0.1+No.	2) and C mm), f=	0.5	V=	ir(No.1-2) 446.030 m 1.17 m/s		Phase	el h=	(
nnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch	ripe between t water level	en Filter(No (Diameter (Diameter	1000 1000	2) and C mm), f= 1000	0.5 mm), f=	V= 0.99	ir(No.1-2) 446.030 m 1.17 m/s V=	1.17	Phase	el h= h=	÷
nnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer	ipe between twater level	en Filter(No (Diameter (Diameter (Diameter (Diameter	1000 1000 1000	mm), f= 1000 800	0.5 mm), f= mm), f=	V= 0.99 0.00	ir(No.1-2) 446.030 m 1.17 m/s V= V=	1.17 0.58	Phase m/s m/s	h= h= h=	(
nnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch	ipe between twater level	(Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 800	mm), f= 1000 800 600	0.5 mm), f= mm), f= mm), f=	V= 0.99 0.00 0.90	ir(No.1-2) 446.030 m 1.17 m/s V= V= V=	1.17	Phase m/s m/s	h= h= h= h=	((
nnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss	ipe between twater level	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 800 600	mm), f= 1000 800 600 mm), f=	0.5 mm), f= mm), f= mm), f= 0.30	V= 0.99 0.00 0.90 V=	ir(No.1-2) 446.030 m 1.17 m/s V= V= V= 0.81 m/s	1.17 0.58	Phase m/s m/s	h= h= h= h= h=	(((
nnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss	ipe betwee t water level loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600	mm), f= 1000 800 600 mm), f= mm), f=	0.5 mm), f= mm), f= mm), f= 0.30 1.0	V= 0.99 0.00 0.90 V= V=	ir(No.1-2) 446.030 m 1.17 m/s V= V= 0.81 m/s 0.81 m/s	1.17 0.58	Phase m/s m/s	h= h= h= h= h=	; ; ; ;
nnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction	ipe between twater level closs	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 600	mm), f= 1000 800 600 mm), f= mm), f= mm), I=	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152	V= 0.99 0.00 0.90 V= V= L=	ir(No.1-2) 446.030 m 1.17 m/s V= V= V= 0.81 m/s 0.81 m/s 5.75 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h=	() () () ()
rnnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction	ripe between t water level loss n Loss n Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 600 1000	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I=	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042	V= 0.99 0.00 0.90 V= V= L= L=	1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h=	() () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction	ripe between t water level loss n Loss n Loss n Loss n Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 1000 1000 800	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I= mm), I=	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125	V= 0.99 0.00 0.90 V= V= L= L= L=	1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () ()
rnnection P Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction	ripe between t water level loss n Loss n Loss n Loss n Loss n Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 1000 1000 800 600	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I= mm), I= mm), I= mm), I=	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141	V= 0.99 0.00 0.90 V= V= L= L=	1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h=	() () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction	t water level loss n Loss n Loss n Loss n Loss n Loss n Loss n Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 1000 1000 800	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I= mm), I=	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141	V= 0.99 0.00 0.90 V= V= L= L= L=	1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction	n Loss n Loss n Loss n Loss n Loss n Loss n Loss Total C=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 1000 1000 800 600	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.209	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141	V= 0.99 0.00 0.90 V= V= L= L= L= L=	1.17 m/s V= V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m 6.01 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction	n Loss n Loss n Loss n Loss n Loss n Loss C= Q1=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 800 600 1000 1000 800 600 h=	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.209	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141 m	V= 0.99 0.00 0.90 V= V= L= L= L= (110000*(1	ir(No.1-2) 446.030 m 1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m 6.01 m	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction	n Loss n Loss n Loss n Loss n Loss n Loss C= Q1= Q2=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter) (Diameter)	1000 1000 1000 800 600 1000 1000 800 600 h=	mm), f= 1000 800 600 mm), f= mm), I= mm), I= mm), I= 0.209 0.229 0.458	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141 m	V= 0.99 0.00 0.90 V= V= L= L= (110000*(1) (110000*(1)	ir(No.1-2) 446.030 m 1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m 6.01 m .05+0.03)/6) .05+0.03)/6*2)	1.17 0.58	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction	n Loss n Loss n Loss n Loss n Loss n Loss C= Q1= Q2= Q3=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter) (Diameter) (Diameter) (Diameter)	1000 1000 1000 800 600 1000 1000 800 600 b= m3/d= m3/d=	mm), f= 1000 800 600 mm), f= mm), f= mm), I= mm), I= 0.209 0.458 0.688	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141 m m3/sec m3/sec m3/sec	V= 0.99 0.00 0.90 V= V= L= L= (110000*(1 (110000*(1 (110000*(1 (110000*(1	1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m 6.01 m 0.05+0.03)/6) 0.05+0.03)/6*2) 0.05+0.03)/6*3)	1.17 0.58 0.91	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction	n Loss n Loss n Loss n Loss n Loss n Loss C= Q1= Q2= Q3= Q4=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter) (D	1000 1000 1000 800 600 1000 1000 800 600 h= m3/d= m3/d= m3/d=	mm), f= 1000 800 600 mm), f= mm), I= mm), I= mm), I= 0.209 0.458 0.688 0.917	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141 m m3/sec m3/sec m3/sec m3/sec	V= 0.99 0.00 0.90 V= V= L= L= (110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(100000*(1000000*(1000000*(1000000*(100000*(100000*(100000*(100000*(1000000*(1000000*(10000*(100000*(100000*(100000*(100000*(100000*(100000*(10000*(10000*(100000*(100000*(100000*(100000*(100000*(100000*(100000*(10000*(100000*(100000*(100000*(10000*(10000*(10000*(100000*(10000*(10000*(10000*(10000*(10000*(10000*(10000*(10000*(1000	ir(No.1-2) 446.030 m 1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m 6.01 m .05+0.03)/6) .05+0.03/6*2) .05+0.03/6*3) .05+0.03/6*4)	1.17 0.58 0.91	Phase m/s m/s	h= h= h= h= h= h= h=	-0 () () () () ()
Filter Outlet Outlet pipe Inlet Loss Tee Branch Reducer Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction	n Loss n Loss n Loss n Loss n Loss n Loss C= Q1= Q2= Q3=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter) (D	1000 1000 1000 800 600 1000 1000 800 600 h= m3/d= m3/d= m3/d= m3/d= m3/d=	mm), f= 1000 800 600 mm), f= mm), I= mm), I= mm), I= 0.209 0.229 0.458 0.688 0.917 1.146	0.5 mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00125 0.00141 m m3/sec m3/sec m3/sec	V= 0.99 0.00 0.90 V= V= L= L= (110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(1(110000*(100000*(1000000*(1000000*(1000000*(100000*(100000*(100000*(100000*(1000000*(1000000*(10000*(100000*(100000*(100000*(100000*(100000*(100000*(10000*(10000*(100000*(100000*(100000*(100000*(100000*(100000*(100000*(10000*(100000*(100000*(100000*(10000*(10000*(10000*(100000*(10000*(10000*(10000*(10000*(10000*(10000*(10000*(10000*(1000	ir(No.1-2) 446.030 m 1.17 m/s V= V= 0.81 m/s 0.81 m/s 5.75 m 3.00 m 5.10 m 6.01 m 0.05+0.03)/6) 0.05+0.03/6*2) 0.05+0.03/6*3) 0.05+0.03/6*4)	1.17 0.58 0.91	Phase m/s m/s	h= h= h= h= h= h= h=	() () () () ()

Phase1

	pe betwee	n Filter(N	o.1+No.	2) and C	lear Wate	er Reservo	ir(No2-1)	Pha	se2	
Filter Outlet	water level						446.020 m	Ý.		
Outlet pipe le	os s									
Inlet Loss		(Diameter	1000	mm), f=	0.5	V=	1.17 m/s		h=	0.035 m
Tee Branch		(Diameter	1000	1000	mm), f=	0.99	V=	1.17 m/s	h=	0.069 m
Tee Branch		(Diameter	1000	600	mm), f=	1.20	V=	0.58 m/s	h=	0.021 m
Valve Loss		(Diameter	600	mm), f=	0.30	V=	0.81 m/s		h=	0.010 m
Outlet Loss		(Diameter	600	mm), f=	1.0	V=	0.81 m/s		h≃	0.033 m
Pipe Friction	Loss	(Diameter	1000	mm), I=	0.00152	L=	5.75 m		h≂	0.009 m
Pipe Friction	Loss	(Diameter	1000	mm), I=	0.00042	L=	20.90 m		h=	0.009 m
Pipe Friction	Loss	(Diameter	600	mm), I=	0.00141	L=	6.01 m		<u>h</u> =	0.008 m
-	Total	•	h⇒	0.194	m					
where	C=	110								
	Q1=		m3/d=	0.229	m3/sec	(110000*(1	.05+0.03)/6)			
	Q2=		m3/d=		m3/sec		.05+0.03)/6*2)			
	Q3=		m3/d=		m3/sec		.05+0.03)/6*3)			
	Q4=		m3/d=		m3/sec		.05+0.03)/6*4)			
	Q5=		m3/d=		m3/sec		.05+0.03)/6*5)			
	Q6=	118890			m3/sec	(110000*(1.				
	Qu-	110000	DL5/U	1.575	1113/300	(1100011)	.03.0.03))			
The Inlet was	ter level of C	lear Water R	eservoir i	· c			445.820 m (44	6.020	-0.200)
Filter Outlet	water level						446.060 ш			
Outlet pipe k										
	OSS									
Inlet Loss	OSS	(Diameter	1000	mm), f=	0.5	V=	1.17 m/s		<u>h</u> =	0.035 m
Inlet Loss Tee Branch	oss	(Diameter (Diameter	1000 1000	-	0.5 mm), f=	V= 0.99	1.17 m/s V=	1.17 m/s		
	oss	•		1000				1.17 m/s 0.58 m/s	h=	0.069 m
Tee Branch		(Diameter	1000	1000 600	mm), f=	0.99	V=		h= h=	0.069 m 0.001 m
Tee Branch Tee Branch		(Diameter (Diameter	1000 1000	1000 600 1000	mm), f= mm), f=	0.99 0.05	V= V=	0.58 m/s	h= h= h=	0.069 m 0.001 m 0.014 m
Tee Branch Tee Branch Tee Combine		(Diameter (Diameter (Diameter	1000 1000 1000 1000	1000 600 1000	mm), f= mm), f= mm), f=	0.99 0.05 0.36	V= V= V=	0.58 m/s	h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m
Tee Branch Tee Branch Tee Combine Tee Branch		(Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600	1000 600 1000 600	mm), f= mm), f= mm), f= mm), f=	0.99 0.05 0.36 1.20	V= V= V=	0.58 m/s	h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m
Tee Branch Tee Combine Tee Branch Valve Loss	e	(Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600	1000 600 1000 600 mm), f=	mm), f= mm), f= mm), f= mm), f= 0.30	0.99 0.05 0.36 1.20 V=	V= V= V= V= 0.81 m/s	0.58 m/s	h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m
Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss	e Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000	1000 600 1000 600 mm), f= mm), f= mm), I=	mm), f= mm), f= mm), f= mm), f= 0.30 1.0	0.99 0.05 0.36 1.20 V= V=	V= V= V= V= 0.81 m/s 0.81 m/s	0.58 m/s	h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m
Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction	e Loss Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I=	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042	0.99 0.05 0.36 1.20 V= V= L=	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m	0.58 m/s	h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction	Loss Loss Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000 1000	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I=	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152	0.99 0.05 0.36 1.20 V= V= L= L=	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m	0.58 m/s	h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.009 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000 1000	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= mm), I=	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012	0.99 0.05 0.36 1.20 V= V= L= L= L=	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000 1000	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I=	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141	0.99 0.05 0.36 1.20 V= V= L= L= L= L=	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Loss	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000 1000 1	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= mm), I=	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141	0.99 0.05 0.36 1.20 V= V= L= L= L= L=	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Loss Total	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter	1000 1000 1000 1000 600 600 1000 1000 1	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= mm), I= 0.237	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141	0.99 0.05 0.36 1.20 V= L= L= L= L=	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m 6.01 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Loss Total C=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter)	1000 1000 1000 1000 600 600 1000 1000 1	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.237	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.00011 m	0.99 0.05 0.36 1.20 V= V= L= L= L= L= (110000*(1.	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Loss Total C= Q1=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter 110 19800 39600	1000 1000 1000 1000 600 600 1000 1000 1	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.237 0.229 0.458	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141 m m3/sec	0.99 0.05 0.36 1.20 V= V= L= L= L= (110000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.01000*(1.010000*(1.01000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000*(1.010000	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m 6.01 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Loss Coss Total C= Q1= Q2=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter 110 19800 39600 59400	1000 1000 1000 1000 600 600 1000 1000 1	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.237 0.229 0.458 0.688	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141 m m3/sec m3/sec	0.99 0.05 0.36 1.20 V= V= L= L= L= (110000*(1. (110000*(1. (110000*(1.	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m 6.01 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Loss Ce Q1= Q2= Q3=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter 110 19800 39600 59400 79200	1000 1000 1000 1000 600 600 1000 1000 1	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.237 0.229 0.458 0.688 0.917	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141 m m3/sec m3/sec m3/sec	0.99 0.05 0.36 1.20 V= V= L= L= L= (110000*(1. (110000*(1. (110000*(1. (110000*(1.	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m 6.01 m	0.58 m/s	h= h= h= h= h= h= h= h=	0.035 m 0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.009 m 0.001 m 0.001 m
Tee Branch Tee Branch Tee Combine Tee Branch Valve Loss Outlet Loss Pipe Friction Pipe Friction Pipe Friction Pipe Friction	Loss Loss Loss Loss Loss Total C= Q1= Q2= Q3= Q4=	(Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter (Diameter 110 19800 39600 59400 79200	1000 1000 1000 1000 600 1000 1000 1000	1000 600 1000 600 mm), f= mm), f= mm), I= mm), I= mm), I= 0.237 0.229 0.458 0.688 0.917 1.146	mm), f= mm), f= mm), f= mm), f= 0.30 1.0 0.00152 0.00042 0.00012 0.000141 m m3/sec m3/sec m3/sec m3/sec	0.99 0.05 0.36 1.20 V= V= L= L= L= (110000*(1. (110000*(1. (110000*(1. (110000*(1.	V= V= V= V= 0.81 m/s 0.81 m/s 5.75 m 20.90 m 6.20 m 8.00 m 6.01 m 0.05+0.03)/6) 0.05+0.03)/6*2) 0.05+0.03)/6*3) 0.05+0.03)/6*5)	0.58 m/s	h= h= h= h= h= h= h= h=	0.069 m 0.001 m 0.014 m 0.047 m 0.010 m 0.033 m 0.009 m 0.001 m 0.001 m

5. Connection Pipe between Filter(No.1+No.2+No.3) and Clear Water Reservoir(No.3-1) Phase3

Filter Outlet	water level						446.080 m			
Outlet pipe l	oss									
Inlet Loss		(Diameter	1000	mm), f≕	0.5	V=	1.17 m/s		h=	0.035 m
Tee Branch		(Diameter	1000	1000	mm), f=	0.99	V=	1.17 m/s	h≃	0.069 m
Tee Branch		(Diameter	1000	600	mm), f=	0.05	V=	0.58 m/s	h=	0.001 m
Tee Combin	e	(Diameter	1000	1000	mm), f=	0.36	V=	0.88 m/s	h=	0.014 m
Tee Branch		(Diameter	1000	600	mm), f=	0.05	V=	0.88 m/s	h=	0.002 m
Reducer		(Diameter	1000	800	mm), f=	0.00	V=	0.58 m/s	h≕	0.000 m
Tee Branch		(Diameter	800	600	mm), f=	0.90	V=	0.91 m/s	h=	0.038 m
Valve Loss		(Diameter	600	mm), f=	0.30	V=	0.81 m/s		h=	0.010 m
Outlet Loss		(Diameter	600	mm), f=	1.0	V=	0.81 m/s		h=	0.033 m
Pipe Friction	ı Loss	(Diameter	1000	mm), I=	0.00152	L=	5.75 m		h=	0.009 m
Pipe Friction	1 Loss	(Diameter	1000	mm), I=	0.00042	L=	20.90 m		h=	0.009 m
Pipe Friction	a Loss	(Diameter	1000	mm), I=	0.00012	L=	6.20 m		h≕	0.001 m
Pipe Friction	ı Loss	(Diameter	1000	mm), I=	0.00089	L=	8.00 m		h=	0.007 m
Pipe Friction	a Loss	(Diameter	1000	mm), I=	0.00042	L=	3.00 m		h=	0.001 m
Pipe Friction	a Loss	(Diameter	800	mm), I=	0.00125	L=	16.60 m		h≔	0.021 m
Pipe Friction	ı Loss	(Diameter	600	mm), I=	0.00141	L=	6.01 m		h≕	0.008 m
	Total	h	=	0.258	m					
where	C=	110								
	Ql=	19800 п	13/d=	0.229	m3/sec	(110000*(1.0	5+0.03)/6)			
	Q2=	39600 п	13/d=	0.458	m3/sec	(110000*(1.0	5+0.03)/6*2)			
	Q3=	59400 п	13/d=	0.688	m3/sec	(110000*(1.0	5+0.03)/6*3)			
	Q4=	79200 п	13/d=	0.917	m3/sec	(110000*(1.0	5+0.03)/6*4)			
	Q5=	99000 п	13/d=	1.146	m3/sec	(110000*(1.0	5+0.03)/6*5)			
	Q6=	118800 п	13/d=	1.375	m3/sec	(110000*(1.0	5+0.03))			
The Inlet wa	ter level of C	lear Water Re	servoir i	s			445.820 m (446.	.080	-0.260)
							•			•

6. Connection Pipe between Filter(No.1+No.2+No.3) and Clear Water Reservoir(No.3-2) Phase3

Filter Outlet	water level						446.070 m ^v	,		
Outlet pipe le	oss									
Inlet Loss		(Diameter	1000	mm), f=	0.5	V =	1.17 m/s		h =	0.035 m
Tee Branch		(Diameter	1000	1000	mm), f=	0.99	V=	1.17 m/s	h=	0.069 m
Tee Branch		(Diameter	1000	600	mm), f=	0.05	V=	0.58 m/s	h=	m 100.0
Tee Combine	•	(Diameter	1000	1000	mm), f=	0.36	V=	0.88 m/s	h=	0.014 m
Tee Branch		(Diameter	1000	600	mm), f=	0.05	V=	0.88 m/s	h =	0.002 m
Reducer		(Diameter	1000	800	mm), f=	0.00	V=	0.58 m/s	h≕	0.000 m
Tee Branch		(Diameter	800	600	mm), f=	0.05	V=	0.91 m/s	h=	0.002 m
Reducer		(Diameter	800	600	mm), f=	0.00	V=	0.91 m/s	<u>h</u> =	0.000 m
90°Bend Los	s	(Diameter	600	mm), 듣	0.23	V=	0.81 m/s		h=	0.008 m
Valve Loss		(Diameter	600	mm), f=	0.30	V =	0.81 m/s		h≔	0.010 m
Outlet Loss		(Diameter	600	mm), f=	1.0	V=	0.81 m/s		h=	0.033 m
Pipe Friction	Loss	(Diameter	1000	mm), I=	0.00159	L=	5.75 m		h=	0.009 m
Pipe Friction	Loss	(Diameter	1000	mm), I=	0.00042	L=	20.90 m		h=	0.009 m
Pipe Friction	Loss	(Diameter	1000	mm), I≂	0.00012	L=	6.20 m		h=	0.001 m
Pipe Friction	Loss	(Diameter	1000	mm), I=	0.00089	L=	8.00 m		h=	0.007 m
Pipe Friction	Loss	(Diameter	1000	mm), I=	0.00042	L=	3.00 m		<u>h</u> =	0.001 m
Pipe Friction	Loss	(Diameter	800	mm), I=	0.00125	L=	19.10 m		h=	0.024 m
Pipe Friction	Loss	(Diameter	600	mm), I=	0.00141	L=	17.71 m		h=	0.025 m
	Total	h	=	0.250	m					
where	C=	110								
	Q1=	19800 n	13/d=	0.229	m3/sec	(110000*(1.	.05+0.03)/6)			
	Q2=	39600 п	13/d=	0.458	m3/sec	(110000*(1.	.05+0.03)/6*2)			
	Q3=	59400 n	13/d=	0.688	m3/sec	(110000*(1.	.05+0.03)/6*3)			
	Q4=	79200 n	13/d=	0.917	m3/sec	(110000*(1.	.05+0.03)/6*4)			
	Q5=	99000 п	13/d=	1.146	m3/sec	(110000*(1.	.05+0.03)/6*5)			
	Q6=	118800 п	13/d≕	1.375	m3/sec	(110000*(1.	.05+0.03))			
The Inlet wat	ter level of (Clear Water Re	servoir i	s			445.820 m (440	5.070	-0.250)

l Clear water reservor Water Level

445.820 m

```
I Head loss in the channel (under the conditions that two reservoirs are duty)
```

0=

0.219 m3/sec=

18883 m3/day (110000*1.03/3/2)

Inflow sectional area

A=B*H=

12.30 m2 4.10 m

R≃ where H=

3.00 m

Velocity

V=Q/A=

0.02 m/sec

Hydraulic radius

R=A/(B+H*2)=

1.218 m

Roughness coefficient 0.015

Head losses are calculated using Manning Formula.

h=n^2*L*v^2/R^(4/3)

where Ľ=

57.2 m

0.00000= 0.000 m

2 Head loss in the channel (under the conditions that one reservoir is duty)

0.437 m3/sec=

37767 m3/day (110000*1.03/3)

Inflow sectional area

A=B*H=

12.30 m2

where H= 4.10 m

3.00 m

Velocity V=Q/A=

Hydraulic radius R=A/(B+H*2)=

1.218 m

0.04 m/sec

Roughness coefficient 0.015

Head losses are calculated using Manning Formula.

h=n^2*L*v^2/R^(4/3)

where

L=

57.2 m

0.00001 = 0.000 m

3 Bend loss

h=(V1-V2)^2/(2*g)*n

V1= where

0.018 m/sec V2= 0 m/sec 9.8 m/sec2 g= n=

 $h=(V1-V2)^2/(2*g)*n=$

0.0001 =

0.000 m

 $0.000 \ m$ 4 Total head loss

Therefore High water level in clear water reservoir is

445.820

(

-0.000)

Effective Depth is

3.000 m.

Low Water Level in Clear Water Level is

442.820 m

445.820 m

445.820

- 3.000)

20

10. Connection Pipe between Clear Water Reservoir (No.3) and Transmission Pump Station

1 Clear Wa	ter Reservoir Ou	tlet water le	evel (LWL)			442.820	m		
utlet pipe	loss									
Inlet Los		(Diameter	600	mm), f=	0.5	V=	0.77	m/s	h=	0.015 m
Valve Lo		(Diameter		mm), f=	0.1		0.77	m/s	h=	0.003 m
90°Bend		(Diameter		mm), f=	0.1	V =	0.77	m/s	h=	0.003 m
Gradually	y Expanded Pipe	•	800	•	mm), f≈	0.494	θ==		h=	0.003 m
Tee Com		(Diameter	800		mm), f=	0.47	V=	0.44 m/	s h≕	0.005 m
	Expanded Pipe	(Diameter	900		mm), f=	0.416	θ=	19.7°	h=	0.001 m
Tee Com	bine	(Diameter	900		mm), f=	0.05	V=	0.69 m/	s h=	0.001 m
	Expanded Pipe	(Diameter	1000		mm), f=	0.416	θ=	19.7°	h=	0.001 m
Tee Com		(Diameter	1000		mm), f=	0.05	V≃	0.84 m/	s h=	0.002 m
Gradualh	Expanded Pipe	(Diameter	1100		mm), f=	0.416	6=	19.7°	h≔	0.001 m
Tee Com	_	(Diameter	1100		mm), f=	0.05	V=	0.92 m/	s h=	0.002 m
Gradually	Expanded Pipe	(Diameter	1200		mm), f=	0.416	θ==	19.7°	h=	0.001 m
Tee Loss		(Diameter	1200	1200	mm), f=	1.0	V=	1.16 m/	s h=	0.069 m
Pipe Fric		(Diameter	1200	mm), I=	0.00121	L=	9.54	m	h=	0.012 m
Pipe Fric		(Diameter		mm), I=	0.00132	L=	8.43	m	h=	0.011 m
Pipe Fric	tion Loss	(Diameter		mm), I=	0.00139	L≖	10.33	m	b=	0.014 m
Pipe Fric	tion Loss	(Diameter	900	mm), I=	0.00137	L=	14.14	m	h=	0.019 m
Pipe Fric	tion Loss	(Diameter	800	mm), I=	0.00114	L=	19.64	m	h=	0.022 m
Pipe Fric	tion Loss	(Diameter	600	mm), I=	0.00129	L=	17.55	m	h=	0.023 m
	Total		h=	0.207	m					
where	C=	110								
	Q1=	18883	m3/d=	0.219	m3/sec	(110000*1.	03/3/2)			
	Q2=	37767	m3/d=	0.437	m3/sec	(110000*1.	03/3/2*2)			
	Q3=	56650	m3/d=	0.656	m3/sec	(110000*1.	03/3/2*3)			
	Q4=	75533	m3/d=	0.874	m3/sec	(110000*1.	03/3/2*4)			
	Q5=	94417	m3/d=	1.093	m3/sec	(110000*1.	03/3/2*5)			
	Q6=	113300	m3/d=	1.311	m3/sec	(110000*1.	03/3/2*6)			
The Inlet	water level of Tr	ansmission	Pump Sta	tion is			442.610	m (4	142.820	-0.210)
(Pipe cen	ter Level in the C	lear Water	Reservoir	is			441.320	m (4	42.820	-0.6*2.5)
(Pipe cen	ter Level in the T		440.860	m)						

11 Hydraulic Calculation of Sedimentation Basin - Sludge Lagoon In case of drainage from 4 hoppers (for the purpose of empty of sedimentation basin)

Sedimentation Basin Sludge Pipe - Manhole (DIP Pipe 150mm -250mm) Manhole - Sludge Lagoon (RC Pipe 700mm)

	- Sludge Lagoor										
1.Sedim	entation Basin W	ater Leve	el .								
	H.W.L.		449.960	m							
	L.L.W.L.		445.160	m	(Drain Pit	Top Leve	el in Sedime	entatio	on Basin)		
2.Drain I	Pipe Center Leve	1									
	W.L+		443.700	m	(DIP 150 -	- 250 Drai	in Pipe Cen	ter Le	evel)		
3.First M	lanhole Water Le	evel									
	W.L+		442.800	m	(Drain Pit	Top Leve	l in Drain l	Pipe (Gallery +443.0	0 - 00	.20m)
4.Sludge	Lagoon High W	ater Leve	I			-					
•	•		442.000	m							
4.Actual	Head Loss										
			6.260	m (449.960	- 443.700	•)				
5 Intake	Flow & Verosity	v	0.200	(,				
J 2334110	Q1=	,	0.0414	m3/sec=	3577 t	n3/day					
	Q2=			m3/sec=		n3/day					
	Q3=			m3/sec=		•					
	Q4=			m3/sec=							
	Q4-		0.1050	шэ/зес-	14300 1	шиау					
6 Water	Level Loss										
6.1.		ss C≕	100								
	Suction Pipe Lo Inlet Loss	iss C-		150			0.5	17_	2.24/-	L_	0.140 m
*			(Diameter	150		nm)、f=		V=	2.34 m/s	h=	
	Valve Loss		(Diameter	150		nm)、f=	,	V=	2.34 m/s	h=	0.000 m
•	Valve Loss		(Diameter	150		nm)、f=	10	V=	2.34 m/s	h=	2.794 m
	Tee Combine L		(Diameter	250		nm)、f=	7.00		0.84 m/s	h=	0.252 m
	Tee Combine Lo		(Diameter	250		nm), f=	2.00		1.69 m/s	h≕	0.291 m
	Tee Combine Le		(Diameter	250	150 r	nm)、f=	0.60		2.53 m/s	h≕	0.196 m
6.1.7.	Tee Combine L	oss	(Diameter	250	150 r	nm), f=	0.20	V≕	3.38 m/s	h=	0.117 m
6.1.8.	Tee Combine L	oss	(Diameter	250	150 r	nm). f≕	0.00	V≕	1.69 m/s	h=	0.000 m
6.1.9.	Tee Combine L	OSS	(Diameter	250	150 r	nm)、f=	0.00	V=	2.53 m/s	h=	0.000 m
6.1.10	Tee Combine L	oss	(Diameter	250	150 r	nm)、f=	0.00	V =	3.38 m/s	h=	0.000 m
6.1.11	. Tee Combine L	oss	(Diameter	250	150 r	nm)、f=	0.00	V=	3.38 m/s	h≕	0.000 m
6.1.12	Outlet Loss		(Diameter	250	r	nm). f=	1.0	V =	3.38 m/s	<u>h</u> =	0.583 m
	Pipe Friction Lo	oss	(Diameter	150		nm), I=	0.061	L=	2.6 m	h=	0.157 m
	Pipe Friction Lo		(Diameter	250		nm), I=	0.065		26.1 m	h=	1.704 m
0.2.2	. p - 2 - 2 - 2 - 2 - 2		(2 11121111			, • -	*****	_			
	Sub Total									H=	6.234 m
	240 1000										<6.260 m
6.2.	RC Pipe Loss (S	Sedimenta	tion Rasin -	→ Sludge	(agonn)						0.200
	- '	100%	(Diameter	600		nm), I=	0.00080	Ŧ =	127.45 m	h=	0.102 m
			<u> </u>				0.00080	_	154.10 m		0.102 m
	Pipe Loss Manhole Loss	100%	(Diameter	600		nm), l≕		L=		h=	
		1000/	(Diameter	600		nm)	2.0	cm	8 ps	h=	0.160 m
	-	100%	(Diameter	450		nm). I=	0.00340		3.64 m	h=	0.012 m
6.2.5.	Outlet Loss		(Diameter	450	r	nm).f=	1.0	V=	1.04 m/s	h=	0.055 m
											2.452
	Sub Total									H=	0.452 m
_											
7.	Total Pipe Loss									H=	6.686 m
	_	_			, ,,,						
8 Sludge	e Lagoon Inlet W	ater Leve	442.348	m (442.800	- 0.452	.)	>	442.000 m	OK	

RC600mmPipe Loss Calculation (Sedimentation Basin - Sludge Lagoon)

[Length(ctc)		<u> </u>	Loss(m)		Inlet	Pipe	Outlet	Pipe		Elevation	Soil Cover	Manhole
Manhole No.	Dia.	Gradient(‰)	7 3 1	Length(m)	Pipe	Manhole	Total	Bottom Level	Top Level	Bottom Level	Top Level	Water Level	Level(m)	Depth(m)	Depth(m)
1									· · · · · · · · · · · · · · · · · · ·	442.020	442.660	442.620	446,500	3.84	4.45
2	600	1.0	47.16	46.66	0.047	0.020	0.067	441.973	442.463	441.900	442.540	442.500	446.500	4.04	4.57
3	600	1.0	16.60	15.40	0.015	0.020	0.035	441.885	442.525	441.865	442.505	442.465	446.500	3.98	4.60
6	600	1.0	33.80	32.60	0.033	0.020	0.053	441.832	442.472	441.812	442.452	442.412	446.500	4.03	4.65
9	600	1.0	33.80	32.60	0.033	0.020	0.053	441.779	442.419	441.759	442.399	442.359	446.500	4.08	4.71
10	600	1.0	49.26	48.06	0.048	0.020	0.068	441.711	442.351	441.691	442.331	442.291	444.000	1.65	2.27
11	600	1.0	31.88	30.68	0.031	0.020	0.051	441.661	442,301	441,641	442.281	442.241	443.000	0.70	1.51
12	600	1.0	41.90	40.70	0.041	0.020	0.061	441.600	442.240	441.580	442.220	442.180	443,000	0.76	1.51
13	600	1.0	41.90	40.70	0.041	0.020	0.061	441,539	442.179	441.519	442,159	442.119	443.000	0.82	1.51
14	600	1.0	41.90	40.70	0.041	0.020	0.061	441.479	442.119	441.459	442,099	442.059	443.000	0.88	1.51
Inlet Mouth	450	4.5	2.5	1.65	0.007	0.000	0.007	441.451	442.091			442.051			
Total			338,19	329.74	0.289	0.160	0.449								

Note:

No.1 Manhole Water level

No.1 Manhole Outlet Pipe Bottom level

No.2 Manhole Water level

No.2 Manhole Outlet Pipe Bottom level

Total loss

442.620 m (Filter Outlet Gallery Floor drain pipe center level +442.92-0.3m)

442.020 m (No.1Manhole Water level +443.27 - Pipe diameter 0.60m)

442.500 m (Sedimentation Drain Pit Floor Level +443.30-0.80m)

441.900 m (No.2 Manhole Water level +442.50 - Pipe diameter 0.60m)

0.449 m

() RC 450mm Outlet Pipe Top Level

RC Pipe Top Level (Bottom Level + Innerdiameter 450mm + Thickness 40mm) = RC Pipe Top Level (Bottom Level + Innerdiameter 600mm + Thickness 40mm) =

0.49 m 0.64 m

Table of Flow Rate (Manning Formula)

0=

4.10

4.20

4.30

4.40

4.50

4.60

4.70

4.80 4.90

5.00

1.162 0.185

1.176 0.187

1.189 0.189

1.203 0.191

1.216 0.193

1.229 0.195

1.242 0.198 1.255 0.200

1.268 0.202

 $v = (1/n) R^{(2/3)} I^{(1/2)}$

 $14308 \text{ m}^{3/d} =$

 $q = (1/n) (\pi * D^2) / 4 R^2 (2/3) I^2 (1/2) = (\pi/4n) D^2 (2/3) I^2 (1/2)$

0.166 m3/s

n = 0.013

900 900 450 750 Dia 450 600 600 750 v Hydraulic Gradieni V Q V Q O 0 0.252 0.285 0.111 0.181 0.10 0.179 0.029 0.217 0.061 0.402 0.256 0.20 0.254 0.040 0.307 0.087 0.356 0.157 0.314 0.30 0.310 0.049 0.376 0.106 0.436 0.193 0.493 0.569 0.362 0.40 0.359 0.057 0.123 0.504 0.223 0.434 0.50 0.401 0.137 0.563 0.249 0.636 0.405 0.0640.486 0.60 0.439 0.617 0.273 0.697 0.443 0.070 0.532 0.150 0.70 0.474 0.075 0.575 0.162 0.667 0.295 0.753 - 0.479 0.805 0.507 0.174 0.713 0.315 0.800.081 0.614 0.184 0.90 0.538 0.756 0.334 0.854 0.543 0.086 0.651 1.00 0.797 0.352 0.900 0.572 0.567 0.090 0.687 2.194 0.944 0.600 1.10 0.595 0.095 0.720 0.204 0.836 1.20 0.621 0.099 0.752 0.213 0.873 0.386 0.986 0.627 0.909 + 0.401 1.30 0.646 0.103 0.783 0.221 1.026 0.653 1.40 0.813 0.230 0.943 0.417 1.065 ... 0.677 0.671 0.107 1.50 0.976 - 0.431 1.102 0.701 0.694 0.110 0.841 0.238 1.60 0.717 0.114 0.869 0.246 1.008 . 0.445 1.138 0.724 1.70 0.739 0.895 0.253 1.039 0.459 1.173 0:746 0.118 1.207 0.768 1.069 0.472 1.80 0.761 0.121 0.921 0.261 1.90 0.781 0.124 0.947 0.268 1.098 0.485 1.240 0.789 1.127 0.498 2.00 0.802 0.128 0.971 0.275 1.273 0.810 2.10 0.821 0.131 0.995 0.281 1.155 0.510 1.304 0.830 1.335 0.849 2.20 0.841 0.134 1.019 ... 0.288 1.182 0.522 1.365 0.868 2.30 0.860 0.137 1.041 0.294 1.209 0.534 2.40 0.878 1.064 0.301 1.235 0.545 1.394 0.887 0.140 2.50 0.896 0.143 1.086 0.307 1.260 0.557 1.423 0.905 0.914 1.107 0.313 1.285 0.568 1.451 0.923 2.60 0.145 1.479 0.941 1.506 0.958 1.532 0.975 0.931 2.70 1.309 0.578 1.128 0.319 0.148 1.333 0.589 2.80 0.949 0.151 1.149 0.325 1.357 0.600 2.90 0.965 0.154 1.169 0.331 3.00 0.982 1.380 0.610 1.559 - 0.992 0.156 1.189 0.336 1.584 1.008 3.10 0.998 0.159 1.209 0.342 1.403 0.620 3.20 1.014 0.161 1.228 0.347 1.425 0.630 1.610 1.024 1.248 0.353 1.448 0,640 1.635 1.040 3.30 1.030 0.164 1.469 **0.649** 1.491 **0.659** 1.659 1.056 3.40 1.045 0.166 1.266 0.358 1.683 . 1.074
 1.285
 0.363

 1.303
 0.368
 3.50 1.061 0.169 1.512 0.668 1.533 0.677 0,171 3.60 1.076 1.090 0.173 3.70 1.321 0.373 1.731 1.101 1.105 0.176 3.80 1.339 0.379 1.553 0.686 1.754 1.116 3.90 1.119 0.178 1.356 0.383 1.574 0.695 1.777
 1.134
 0.180

 1.148
 0.183
 1.373 0.388 1.594 . : 0.704 1.800 1.145 4.00

1.391 0.393

1.407 0.398

1.424 0.403

1.440 0.467

1.457 0.412

1.473 0.416

1.489 0.421 1.505 0.425

1.520 0.430

1.536 0.434

1.614 0.713 1.633 0.721

1.652 30.730

1.672 0.738

1.690 0.747

1.709 0.755

1.728 - 0.763

1.746 0.771

1.764 0.779

1.782 0.787

1.822 L159

1.844 - 1.173

1.866 1.187

1.888 - 71.201

1.909 -1.214

1.930 1.228 1.951 1.241 1.972 1.254

1.992 1.267 2.012 1.280

12. Hydraulic Calculation of Filter - Backwash Recycle Pump House

Filter - Backwash Recycle Pump House

Manhole - Backwash Recycle Pump House (RC Pipe 600mm, DIP 600mm)

٦.	Filter	Backwash	waste	water	Level

444.750 m (444.410 m Washwater channel bottom level) 2.Backwash Recycle Pump House Water Level H.W.L..+ 444.010 m (Effective Depth3.0 m) L.W.L.+ 441.010 m 5 Inllow Flow Rate Qi= 0.346 m3/sec =20.74 m3/min (7.2m*9.6m*0.3m3/m2/min)

6.2. RC Pipe Loss (Filter → Backwash Recycle Pump House)

	• •									
(5.2.1. Pipe Loss	100%	(Diameter	600	mm), I=	0.0032	L=	6.73 m	h=	0.022 m
(5.2.4. Manhole Loss		(Diameter	600	mm)	2.0	cm	l ps	h=	0.020 m
	Sub Total		·						H=	0.042 m

6. Water Level Loss

o. w ater	Level LOSS								
6.1.	DIP Pipe Loss (Filter →	Backwash Recyc	ile Pump H	(ouse)					
6.1.1.	Inlet Loss	(Diameter	600	mm). f =	0.5	V=	1.22 m/s	h=	0.038 m
6.1.2.	Tee Branch	(Diameter	600	600 mm), f=	0.05	V=	1.22 m/s	h=	0.004 m
6.1.3.	90°Bend Loss	(Diameter	600	mm), f=	0.23	V=	1.22 m/s	h=	0.017 m
6.1.4.	Valve Loss	(Diameter	600	mm), f=	1.0	V=	1.22 m/s	h=	0.076 m
6.1.5.	Outlet Loss	(Diameter	600	mm), f=	1.0	V=	1.22 m/s	h=	0.076 m
6.1.6.	Pipe Friction Loss	(Diameter	600	mm), I=	0.004	L=	17.82 m	h=	0.064 m
	Sub Total	-						H=	0.275 m

(0.400 m)

where C= 100

Total

H=

0.317 m)

Table of Flow Rate (Manning Formula)

 $v = (1/n) R^{(2/3)} I^{(1/2)}$

 $q = (1/n) (\pi * D^2) / 4) R^2 (2/3) I^1(1/2) = (\pi/4n) D^2(2) R^2(2/3) I^1(1/2)$

n = 0.013

Q= 29851 m3/d = 0.346 m3/s

	Q=	29851	m3/d =	0.346	m3/s			
Dia	450	450	600	600	750	750	900	900
Hydraulic Gradient	V	Q	V	Q	V	Q	V	Q
0.10	0.179	0.029	0.217	0.061	0.252	0.111	0.285	0.181
0.20	0.254	0.040	0.307	0.087	0.356	0.157	0.402	0.256
0.30	0.310	0.049	0.376	0.106	0.436	0.193	0.493	0.314
0.40	0.359	0.057	0.434	0.123	0.504	0.223	0.569	0.362
0.50	0.401	0.064	0.486	0.137	0.563	0.249	0.636	0,405
0.60	0.439	0.070	0.532	0.150	0.617	0.273	0.697	0.443
0.70	0.474	0.075	0.575	0.162	0.667	0.295	0.753	0.479
0.80	0.507	0.081	0.614	0.174	0.713	0.315	0.805	0.512
0.90	0.538	0.086	0.651	0.184	0.756	0.334	0.854	0.543
1.00	0.567	0.090	0.687	0.194	0.797	0.352	0.900	0.572
1.10	0.595	0.095	0.720	0.204	0.836	0.369	0.944	0.600
1.20	0.621	0.099	0.752	0.213	0.873	0.386	0.986	0.627
1.30	0.646	0.103	0.783	0.221	0.909	0.401	1.026	0.653
1.40	0.671	0.107	0.813	0.230	0.943	0.417	1.065	0.677
1.50	0.694	0.110	0.841	0.238	0.976	0.431	1.102	.0.701
1.60	0.717	0.114	0.869	0.246	1.008	0.445	1.138	0.724
1.70	0.739	0.118	0.895	0.253	1.039	: 0.459	1.173	0.746
1.80	0.761	0.121	0.921	0.261	1.069	0:472	1.207	0.768
1.90	0.781	0.124	0.947	0.268	1.098	0.485	1.240	0.789
2.00	0.802	0.128	0.971	0.275	1.127	. 0.498	1.273	.0.810
2.10	0.821	0.131	0.995	0.281	1.155	0.510	1.304	0.830
2.20	0.841	0.134	1.019	0.288	1.182	0.522	1.335	. 0.849
2.30	0.860	0.137	1.041	0.294	1.209	- 0.534	1.365	0.868
2.40	0.878	0.140	1.064	0.301	1.235	0.545	1.394	0.887
2.50	0.896	0.143	1.086	0.307	1.260	0.557	1.423	0.905
2.60	0.914	0.145	1.107	0.313	1.285	. 0.568	1.451	0,923
2.70	0.931	0.148	1.128	0.319	1.309	0.578	1.479	0.941
2.80	0.949	0.151	1.149	0.325	1.333	are VIII A Valenciar & controls and cole after refer-	1.506	
2.90	0.965	0.154	1.169	0.331	1.357	0.600	1.532	0.975
3.00	0.982	0.156	1.189	0.336	1.380	0.610	1.559	0,992
3.10	0.998	0.159	1.209	0.342	1.403	9,620	1.584	1.008
3.20	1.014	0.161	1.228	Control September 1 and 1 April 1 April 1 April 1 and 1 April	1.425	0.630	1.610	1:024
3.30	1.030	0.164	1.248	0.353	1.448	0.640	1.635	1.040
3.40	1.045	0.166	1.266	0.358	1.469	0.649	1.659	1.056 1.071
3.50	1.061	0.169		0.363				
3.60	1.076	0.171	1.303 1.321	0.368 0.373	1.512 1.533	The second of the second		1.086 1.101
3.80	1.105	0.176	1.321	0.379	1.553	0.686	. 1	1.101
3.90	1.119	0.178	1.356	20,4 - 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	1.574	0.695		1.131
4.00	1.1134	0.178	1.373	0.388	1.594	THE PARTY OF THE P		1,131
4.10	1.148	0.180	1.391	0.393	1.614	0.713		1.159
4.20	1.148	0.185	1.407	0.398	1.633	THE STATE OF THE S		1.173
4.20	1.102	0.183	1.407	0,403	1.652	0.730		1.187
4.40	1.170	0.189	1.440	0.407	1.672	0.738		1.201
4.50	1.203	0.189	1.440	0.412	1.690	A LY CORANDONE SAVAGOTANA HOS		1.214
4.60	1.216	0.191	1.473	0.412	1.709	*** Ob X 109 (CANDA / CANDA /		1,228
4.70	1.229	0.195	1.473	0.421	1.728	V X X 93000 00000 000		1,241
4.70	1.242	0.198	1.505	0.425	1.746	12 Process supplies cont.		1.254
4.90	1.255	0.200	1.520	0.430	1.764	0.779	·	1.267
5.00	1.268	0.202		0.434	1.782	0.787		1.280
	1.200	0.202	1.000	and with the	1.,02	******	2.012	A CONTRACTOR

13. Hydraulic Calculation of Connection Pipe between Backwash Recycle Pump - Receiving Well Backwash Recycle Pump - Receiving Well

1. Filter Backwash waste water Level

L.W.L. 440.130 m (444.13 m Washwater channel bottom level)

2.Receiving Well Water level

W.L..+ 451.200 m

3.Actual Pump Head

11.070 m

5 Recycle Flow

Q1= 0.104 m3/sec = 6.22 m3/min

6.Water Level Loss

6.1.	RC Pipe Loss (Sedimen	tation Basin → Sl	ludge Lagoon)						
6.1.1.	45°Bend Loss	(Diameter	250	mm), $f=$	0.16	V=	2.11 m/s	h=	0.037 m
6.1.2.	45°Bend Loss	(Diameter	250	mm), f=	0.16	V=	2.11 m/s	h=	0.037 m
6.1.3.	45°Bend Loss	(Diameter	250	mm), f=	0.16	V=	2.11 m/s	h=	0.037 m
6.1.4.	45°Bend Loss	(Diameter	250	mm), f=	0.16	V≃	2.11 m/s	h=	0.037 m
6.1.5.	90°Bend Loss	(Diameter	250	mm), f=	0.23	V=	2.11 m/s	h=	0.052 m
6.1.6.	Outlet Loss	(Diameter	250	mm)、f=	1.0	V=	2.11 m/s	<u>h</u> =	0.227 m
6.1.7.	Pipe Friction Loss	(Diameter	250	mm), I=	0.027	L=	103.48 m	h=	2.844 m
	Sub Total							H=	3 271 m

where C= 100

14.Receiving Well Overflow Weir

1 Overflow weir loss (2 line duty)

h=(Q/(1.84*b))^(2/3)

where Q= 1.375 m3/sec (110000*(1.05+0.03)/86400)

b= 4.00 m h=(Q/(1.84*b))^(2/3)= 0.327 m

4 Water loss

The water level of Receiving well is 451.680 m

The height of the overflsow weir is 451.900 m

The water level of upstream of the weir is 452.230 m (0.327)

The water loss of downstream of the weir is 4.570 m.

Therefore the water loss (total) is 4.897 m

The water level at the downstream of the weir (overflow chamber) is 447.330 m

15. Hydraulic Calculation of Overflow from Receiving Well

1.Water Level at Inlet Chamber of Distribution Chamber Overflow Water Level 452.330 m (452.00 +0.33) 2.Top Level of Overflow Weir H.W.L. 452.000 m 3. Water Level at Downstream of Overflow Weir 451.800 m (452.00 m Top Level of Overflow Weir. Allowance is 0.20 m)H.W.L. 4. Overflow Pipe Center Level at Blowoff Point W.L..+ 442.930 m (446.50 m WTP site Elevation Level, Soil Cover 2.2m) 5. Water Loss 8.870 m (451.800 - 442.930 =8.870 m > 3.933 m 6 Intake Flow & Verosity $1.375 \text{ m}^{3/\text{sec}} = 118800.00 \text{ m}^{3/\text{day}} (110000*(1.05+0.03))$ Q1 =7.Water Level Loss 7.1.1. Inlet Loss (Diameter 600 mm), f= 0.5 V= 4.87 m/s 0.605 m θ=5° 7.1.2. Valve Loss (Diameter 0.363 m 600 mm), f= 0.3 V= 4.87 m/s h=0.16 V= 0.197 m 7.1.3. 45°Bend Loss (Diameter 600 4.87 m/s mm), f= h=0.197 m 7.1.4. 45°Bend Loss (Diameter 600 mm), f= 0.16 V= 4.87 m/s h≖ 7.1.5. 90°Bend Loss (Diameter 600 0.23 V= 4.87 m/s 0.278 m mm), f= h=7.1.6. Outlet Loss (Diameter 600 mm), f= 1.0 V= 4.87 m/s 1.210 m 7.1.7. Pipe Friction Loss (Diameter 600 mm)、I= 0.046 L= 23.47 m h=1.083 m Sub Total H= 3.933 m where C=100

16. Hydraulic Calculation of Overflow from Clear Water Reservoir

Overflow from Clear Water Reservoir

Clear Water Reservoir - Drainage Point

1.Water Level at Clear Water Reservoir

H.W.L. 445.820 m

2.Small Stream

W.L..+ 441.820 m Stream Bed Level 441.320 m

3.Pipe Bottom Level at Drainage Point

442.090 m

(RC Pipe Bottom Level at starting point + 444.525)

(Small Stream Bottom Level + 441.323)

5 Overflow Flow Rate

Q1=	0.212 m3/sec =	18333 m3/day	(110000/6)
Q2=	0.424 m3/sec =	36667 m3/day	(110000/6*2)
Q3=	0.637 m3/sec =	55000 m3/day	(110000/6*3)
Q4=	0.849 m3/sec =	73333 m3/day	(110000/6*4)
Q5=	1.061 m3/sec =	91667 m3/day	(110000/6*5)
06=	1.273 m3/sec =	110000 m3/day	(110000/6*6)

6.1. DIP Pipe Loss (Sedimentation Basin → Sludge Lagoon)

6.1.1.	Inlet Loss	(Diameter	350	mm), 1=	0.5	γ=	2.21 m/s	<u>n</u> =	U.125 m
6.1.2.	90°Bend Loss	(Diameter	350	mm)、f=	0.20	V≃	2.21 m/s	<u>h</u> =	0.050 m
6.1.3.	Outlet Loss	(Diameter	350	mm), f=	1.0	V≔	2.21 m/s	h=	0.249 m
6.1.4.	Pipe Friction Loss	(Diameter	350	mm), I=	0.020	L=	2.82 m	h=	0.057 m
	Sub Total							H=	0.481 m

6.2. RC Pipe Loss (Sedimentation Basin → Sludge Lagoon)

6.2.1. Pipe Loss	100%	(Diameter	450	mm), l=	0.013	L=	13./U m	n=	U.1/8 m
6.2.2. Pipe Loss	100%	(Diameter	600	mm)、I=	0.011	L=	18.60 m	h≔	0.205 m
6.2.3. Pipe Loss	100%	(Diameter	750	mm), I=	0.008	L=	13.20 m	h=	0.106 m
6.2.4. Pipe Loss	100%	(Diameter	750	mm), I≖	0.014	L=	6.80 m	h=	0.095 m
6.2.5. Pipe Loss	100%	(Diameter	750	mm), I=	0.010	L=	13.20 m	h=	0.132 m
6.2.6. Pipe Loss	100%	(Diameter	750	mm)、I=	0.030	L=	5.00 m	h=	0.150 m
6.2.7. Pipe Loss	100%	(Diameter	750	mm), I=	0.030	L=	22.95 m	h=	0.689 m
6.2.8. Pipe Loss	100%	(Diameter	1050	mm), I=	0.005	L=	132.80 m	h=	0.664 m
6.2.9 Manhole	Loss	(Diameter	450 - 1050	mm)	2.0	cm	11 ps	h=	0.220 m

Sub Total H= 2.439 m

7. Total Pipe Loss H= 2.920 m

where C=100

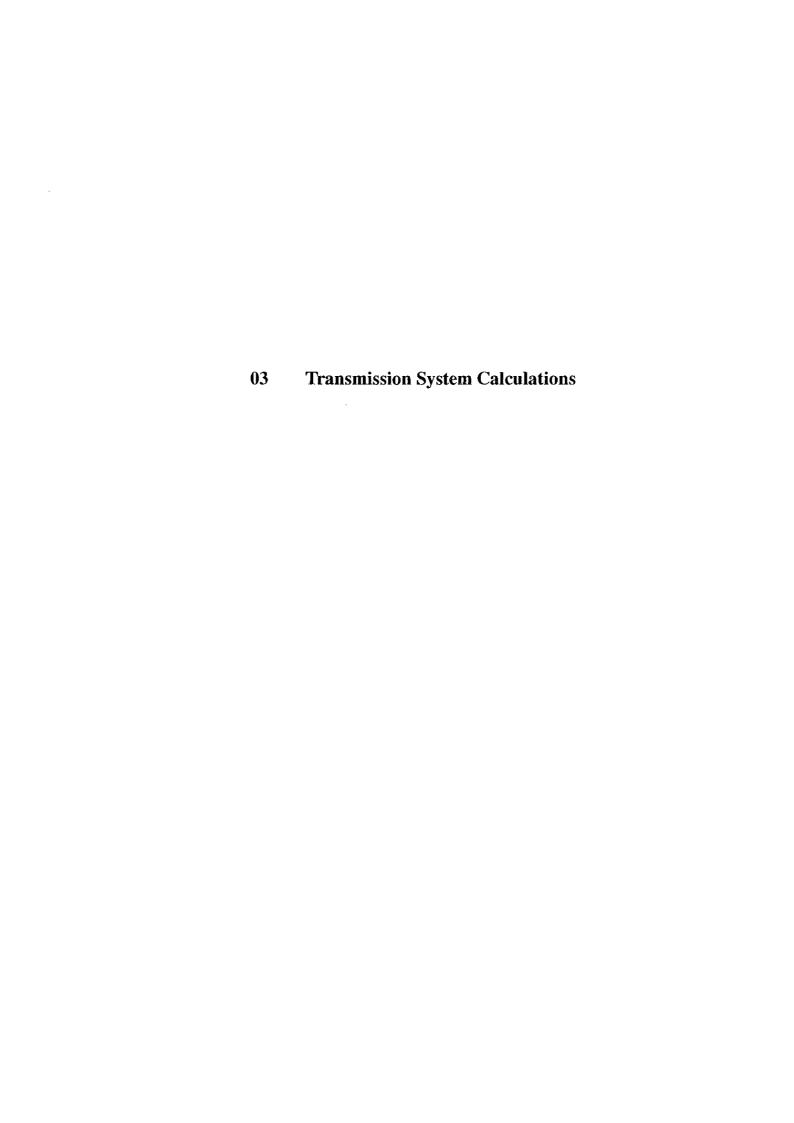
Pipe Loss Calculation for Clear Water Reservoir Overflow Pipe (RCP450 - 1050mm)

		Pipe	Gradient			Loss(m)		Inlet	Pipe	Outle	t Pipe	Manhole	Water	Elevation	Soil Cover	Manhole
Manhole No.	Dia.	Thickness	(%)	Length(m)	Pipe	Manhole	Total	Bottom Level	Top Level	Bottom Level	Top Level	Depth (m)	Level (m)	Level (m)	Depth (m)	Distance (ctc)
1										444.500	444.990	1.96	444.950	446.500	1.51	
2	450	40	13	[3,10]	0.170	0.020	0.190	444.330	444.820	444.310	444.800	2.16	444.760	446.500	1.68	14.20
3	600	40	. 11	18.50	0.204	0,020	0.224	444.106	444.746	444.086	444.726	2.37	444,536	446.500	1.75	19.70
4	750	50	8	13.00	0.104	0.020	0.124	443.982	444.782	443.962	444.762	2.49	444.412	446.500	1.72	14.20
5	750	50	14	6.70	0.094	0.020	0.114	443.868	444.668	443.848	444.648	2.61	444.298	446.500	1.83	7.90
6	750	50	21	13.00	0.273	0.020	0.293	443.575	444.375	443.555	444.355	2,90	444.005	446,500	2.12	14.20
7	750	50	30	5.55	0.167	0.020	0.187	443.389	444.189	443.369	444.169	3.09	443.819	446.500	2.31	6.75
8	750	50	30	22.84	0.685	0.020	0.705	442.684	443,484	442,664	443.464	3.78	443.114	446.500	3.02	24.19
9	1050	60	4.9	47.85	0.234	0.020	0.254	442,429	443.539	442.409	443.519	4.04	442.859	446.500	2.96	49.35
10	1050	60	4.9	18.75	0.092	0.020	0.112	442.317	443.427	442.297	443,407	4.15	442,747	446.500	3.07	20.25
Small Steam	1050	60	4.9	40.49	0.198		0.198	442.099	443.209				442.549	446.500	3,29	41.24
Total				199.78	2.221	0.180	2,401									211.98

Note:

No.1Manhole Water level

No.1 Manhole Outlet Pipe Bottom level


Manhole Depth (m)

Total loss

444.950 m (Overflow pipe bottom Level +444.975m)
444.500 m (No.1Manhole Water level +444.950 - Pipe diameter 0.45m)

446.50-(Outlet Pipe Bottom Level)-(Pipe Thickness)

2.401 m

Transmission System Calculation

1. Basic Conditions

The following data/ conclusions/ information was also incorporated in the hydraulic calculation of the pipelines.

Pipeline Data:

The data such as the length, elevation of the existing and new pipelines, together with the type and diameter of the existing ones were collected during the topographical surveys.

High and Low Water Levels of Service Reservoirs (existing and new):

This information was tabulated in Table TM-1.

The Quantity of Flow to each Service Reservoir:

Maximum day demand (m³/d) was assessed and tabulated in Figure TM-1 for each of the three Phases separately.

Peak Factors:

The peak factor (maximum daily demand to the daily average demand) is assumed to be 1.2.

2. Pipe Materials

For diameters 250mm and larger Ductile Cast Iron (DI) pipes, and for diameters less than 250mm, Unplasticized Polyvinyl Chloride (U-PVC) pipes were basically applied.

DI Pipes:

Straight Pipe -----K=9
Tees -----K=14
Other fittings -----K=12

U-PVC Pipes:

The pipes shall have a minimum working pressure of 10kgf/sq.m or 10 bars for type 1000 pipes, at a temperature of 29°C.

3. Hydraulic Design

Pipelines will be sized using the exponential equation developed by Hazen and Williams shown below in metric units.

 $H = 10.666 \quad x \quad C^{-1.85} \quad x D^{-4.87} x \quad Q^{1.85} x \quad L$

Where, H: friction loss (m)

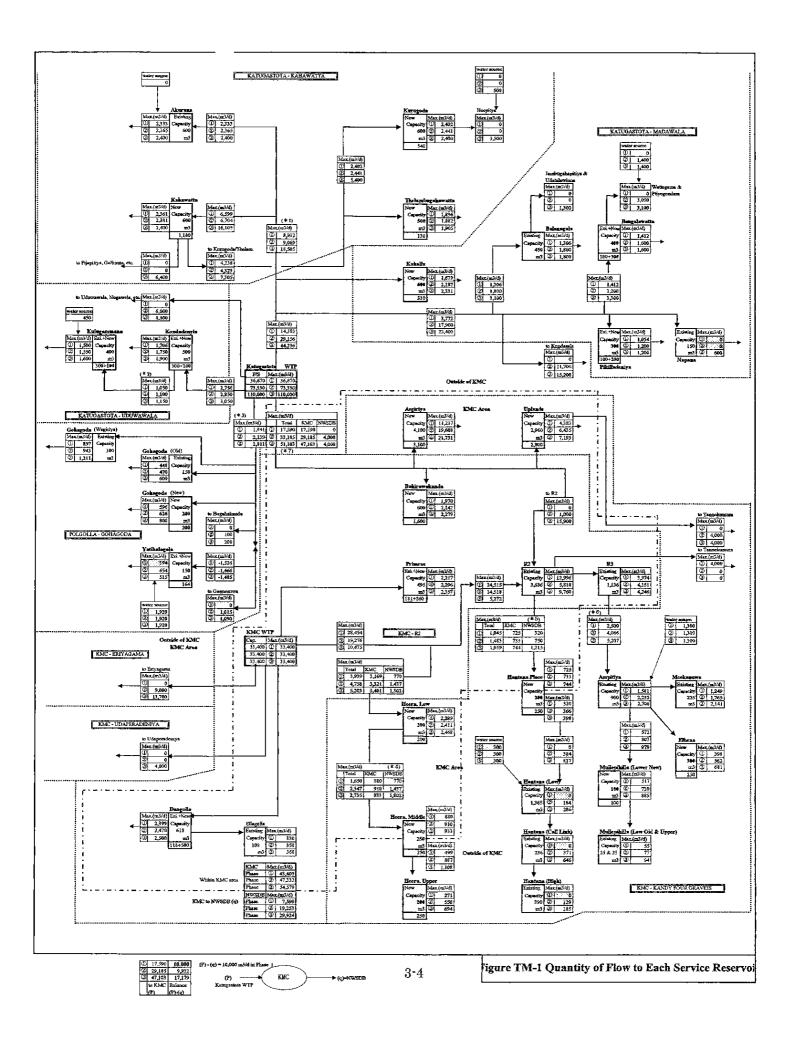
C: friction coefficient

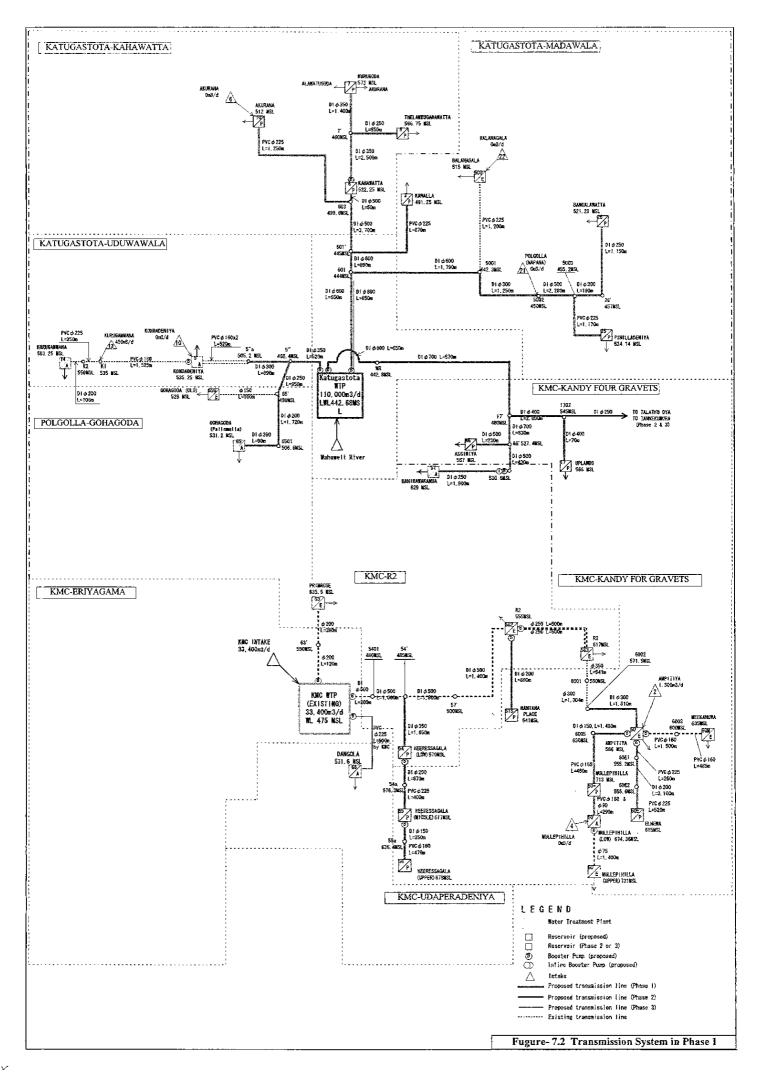
D: diameter of pipe (m)

Q: rate of flow (m³/sec)

L: Pipe length (m)

Pipelines will be sized using the same Hazen Williams friction coefficient (C) as indicated in Table TM-3.


Table TM-3 Pipe Friction Coefficients


Pipe Material	Existing or New	Friction Coefficient (C)
Cast Iron	Existing	90
u-PVC, ACP	Existing	120
Ductile Iron	New	140
u-PVC	New	140

The appropriate flow velocity shall be taken as economical and reasonable velocity (approximately 1.0 m/sec). Residual pressure of hydraulic grade line at inlet to the Service Reservoir shall be more than 5m.

Table TM-1 Water Level of Service Reserrooir

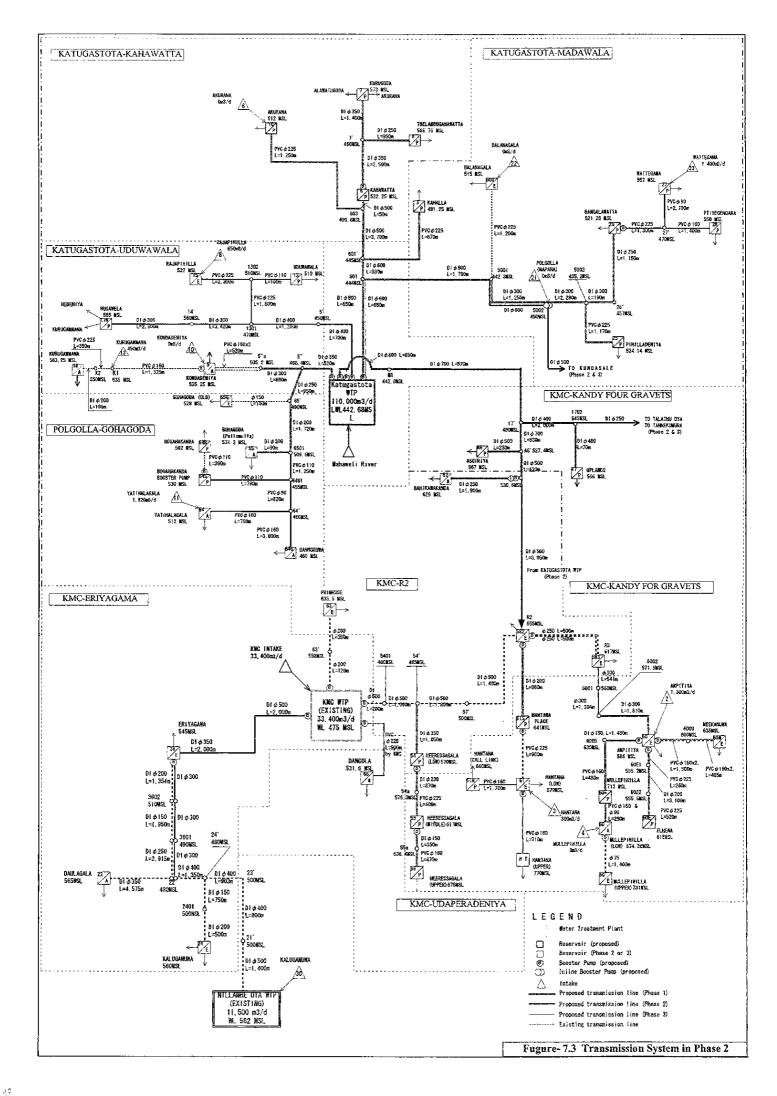
Mada			Water I	Capacity (m3)			
Node No.	Name of the site	Exis	ting	Prop	osed	Existing	Proposed
110.		LWL	HWL	LWL	HWL	Existing	Troposcu
10	Akurana	508.00	512.00			600	
60	Ampitiya	582.50	586.00			900	
AG	Asgiriya			561.50	567.00		4,100
ΙΒ	Asgiriya P.S						
57	Bahirawakanda	619.10	620.90	625.00	629.00	204	600
500	Balanagala	513.00	515.00			450	
26	Bangalawatta	519.28	521.28	518.28	521.28		300
66	Dangolla	529.90	531.60	527.60	531.60	118	500
60E	Elhena			611.00	615.00		300
65	Gohagoda (Pallemulla New)			527.20	531.20		200
65	Gohagoda (Pallemulla Old)	521.90	524.10			150	
65G	Gohagoda (Wegiriya)	524.00	528.00			150	
61S	Hantana Place			637.00	641.00		200
54	Heerassagala Low			566.00	570.00		200
55	Heerassagala Middle			613.00	617.00		250
56	Heerassagala Upper			674.00	678.00		200
3	Kahalla			485.00	491.25		600
6	Kahawatta	1		516.00	522.25		600
5	Kondadeniya	531.25	535.25	531.25	535.25	300	200
-	Kondadeniya Sump.	1					
14	Kulugammana	579.25	583.25	579.25	583.25	300	100
7	Kurugoda			569.00	573.00		600
60'	Mullepihilla Low Old	672.50	674.36			25	
60+	Mullepihilla Low New			709.00	713.00		100
25	Pihilladeniya	522.14	524.14	522.14	524.14	100	200
582	R2 (KMC)	549.49	555.00		- 11	3,636	
8	Thelambugahawatta			561.50	566.75		500
17	Uplands	556.51	558.34	560.09	566.00	27	2,960

Hydraulic Calculation for Transmission Pipeline

(Phase 1)

	Node		R/C	Flow Rate	Dia	Winad Dia	P	Length	С	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	D	Required	Remark
Node	>	Node	<i>D</i> / 0	Q (m3/d)			EXIST.	Length L(m)		v(m/sec)	I (%)	h(m)	Pressure	HWL	Pressure		Pump Head	
House		House	1-		2,005	D10 (11111)		L (III)		V (III/ Sec)	1 (700)	11 (111)	Hd (MSL)	(MSL)	He (m)	Туре	H(m)	
181 J. Co. 10	KMC WT	pragass	Prim	rose SR	2,000 3 45 KM	00000			S 1 18.01	55576875888364	Maria de Indesta	E PHEN LAND	III (MSL)	· · · · · · · · · · · · · · · · · · ·	iie (iii)	J	17 (111)	totale messari, in the control
-	KMC	1	3. J. E III.	OSC SOLE	24 25.8500	Later (Lamber	2.12.2	34	341.000.000	871.C-277E-1574.57		<u> </u>	642, 700	471.000	171, 700	12		13003-17
KMC	- 1180	63	В	2, 220	201	201	к -	500	120	0, 810	4, 297	2, 148	042.100	411.000	111.100	В	171 7	Exist Pipe & 200
23,720	63	= Prim		<u> </u>	201	201		500	120	0.010	3. 201	2, 140	640, 552	635. 500	5. 052	-		Laist Tipe \$200
		٠, ــــــــــــــــــــــــــــــــــــ		* " / T			3, 525,	्या स्टब्स्	F (4.55%).	CLARWING G	17. J. J. J. (5.7)	San San San San San San San San San San	275 982930	77.5		N - 142	gram en left in s	Control of the second
<u> </u>	KMC		1 2	· · · · · · · · · · · · · · · · · · ·				X	· Constant			<u>ye a ye ay 15,700 a 16</u>	580, 300	471,000	109.300			
KMC	-	5401	В	28, 460	502	502	K	200	120	1.664	5. 583	1.117		111111	100.000	В	109.3	Exist Pipe &500
	5401		1										579. 183	480,000	99, 183	 -		Zizza i zpr y rez
5401	-	54'	(B)	28, 460	502	502	К	1.000	120	1.664	6. 583	5, 583				<u> </u>		Exist Pipe $\phi 500$
	54		1					_,					573, 600	485, 000	88, 600	T -		
54'	-	57'	(B)	24, 520	502	502	K	1, 800	120	1. 434	4, 238	7, 628						Exist Pipe ø 500
	57'												565, 972	500,000	65, 972	†—		
57		582	(B)	24, 520	502	502	K	1,400	120	1.434	4. 238	5, 933				1		Exist Pipe $\phi 500$
	582	(= R2											560, 039	555, 000	5. 039	\vdash		
	- 9		75.5	\$	Seath Live	To the second second		100		oriens h	Str. and an arrange of the	da a mante da da					**************************************	A 25 C 18 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C
	KMC		1.7.7.00.1		4000000								579. 183	471.000	108, 183	-	1	
KMC	-	66	В	2, 730	199	199		900	130	1, 016	5, 704	5. 133		21.27.5.5		В	70. 8	
	66	(= Dan											574.050	531.600	42, 450	<u> </u>		
111,011,05	8.5			300 14 V 64	No. 1	gasaran tu tu	(cs. 15,08)	Ar line have	2000 CONTRACTOR	คือเดียนที่สิบดยากข้า	E COM THE STREET	Her Amaroleti	ile kadala etakeri		ALLES FREEZES	1000	a Carollian i	1.00
	54'		WELL 1 CO 7 S		******	-11. JAMES 102		11.00.00.00	ex7474 museum	*** 33, C 3, S 3, S 3, S 3, S 3, S 3, S 3,	20.02 3848350256	7. T. 2. 1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	573, 600	485, 000	88, 600	147, 117	12. CC 10.5 . F1.0	C22.550
54'	-	54	(B)	3, 940	350	350		1,050	130	0.474	0.719	0.755	<u></u>					
	54	= Heer	essag	ala (Low)									572, 845	570,000	2, 845			
3.47	0.7	15.5		Section 1			,	2	يداؤن كاوليا	: Skinkin Anduban.	£1.354 143.53	Tana a				100		
	54		**	· 421-421-1-1-1-1-1					S-18-11 11-81		20 2149-26 200-0039	Processor Service Comment	624, 800	566, 000	58, 800			
54	_	54a	В	1,650	201	201		870	130	0.602	2. 140	1.862				B	58.8	DIP
	54a												622, 938	576, 330	46, 608	┌╴		
64a	1	55	В	1,650	199	199		400	130	0, 614	2. 247	0, 899				<u> </u>		PVC
	55	= Heer	essag	ala (Middl	e)								622, 039	617, 000	5, 039	<u> </u>		
7.77	200 000			1 - 13 7 - 1	7.5	37.212.22	27:24:5	Service .	Carlo San		Salar Salar	1,000	Maria de Albridadas de	raperint (Symmax) is	Color water the	2000	St. Prestituti	ETTE JAMES LETTER LETTER
	55							***************************************	************				683, 400	613.000	70.400			
55	-	55a	В	280	149	149		350	130	0, 186	0.346	0, 121				В	70, 4	DIP
	55a												683, 279	636, 350	46, 929			
55a		56	В	280	141	141		470	130	0. 208	0.452	0. 212						PYC
	56	= Heer	essag	ala (Upper)								683, 067	678,000	5, 067			
	KMC. R2			- 15 to a		4. 32. 6.34.			J. S			EALLY EALLY		Kanene (1,275		Santi Print National Assets
		(= R2)								or state of the first			623, 490	549, 490	74.000	Г		
582		583	В	6, 480	328	328	K	500	120	0, 888	2. 872	1.436				В	74. 0	Exist Pipe φ250×2
***	583	(= R3)	-	· · · · · · · · · · · · · · · · · · ·									622, 054	617.000	5, 054			
	, , , ,	7		1 1 1 1 1 1		100	3.32	\$ 1 Total			Carles Santa	A PRINCIPAL	The said see seems pages	Target Marie 1921				
	582											متنا اول بر دو و بن و سند د د	646, 890	549, 490	97, 400			
582	-	618	В	1,050	201	201		860	130	0. 383	0. 927	0.798				B	97. 4	
	61S	(= Han		Place)						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····	646, 092	641,000	5, 092			
,		2::::::::::::::::::::::::::::::::::::::		3 2 23				21.00	ters/over	Patrick Locked	1041, 2010, 02 1807			Department of the	A STATE OF THE STA	1.00		
	583												613,000	613.000	0,000			
583	-	6001	G	9, 140	350	350	K	541	120	1, 100	3, 955	2. 139						Exist Pipe φ350
	6001												610. 861	560.000	50.861	L		3, 980x1, 67=6, 640
6001	-	6002	(G)	9, 140	299	299	K	1,304	120	1, 507	8, 515	11.104				L		Exist Pipe φ300
	6002												599, 757	571, 450	28, 307			3, 980x1. 67=6, 640
6002	_	60	(G)	2,500	299	299		1,810	130	0.412	0, 667	1.208						Exist Pipe ϕ 160
	60	(= Amp											598, 549	586, 000	12. 549			
					·								···			•—	-	

(Phase 1)


	Node		B/G	Flow Rate	Dia.	Mixed Dia	Exist.	Length	С	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	Pump	Required	Remark
Node	>	Node		Q (m3/d)	D (mm)	Dm(mm)		L(m)	İ	v(m/sec)	I (%a)	h(m)	Pressure	HWL	Pressure		Pump Head	
		0- 1-					33				5-13-11-2014	74 250		i sa sassifi	gora e e e e e e e e e e e e e e e e e e e	,		
	60					•							620. 700	582, 500	38, 200			
60	-	60E-1	В	400	199	199		260	130	0. 149	0, 163	0.042				В	38. 2	PVC
L	60E-1												620, 658	555. 170	65, 488			
60E-1		60E-2		400	201	201		3, 100	130	0.146	0. 156	0.482						DIP
L	60E−2												620.175	555. 620	64, 555			
60E-2		60E	I, J	400	199	199		520	130	0.149	0.163	0.085				L.,	<u>-</u>	PVC
	60E	(= E1h	ena)			- 		T 0.05 578 12 38 8 8 4				10 to 10 to	620.090	615.000	5. 090			
أنستت		<u> </u>				Paritara			geye traditi			Mary State of Asset		reda Nigir				
	60	4005	<u> </u>	¥55									720. 900	582. 500	138, 400			
60	- 1	6005	В	580_	149	149		1,480	130	0.385	1, 329	1. 967				В	138. 4	DIP
2005	6005			500									718. 933	648. 760	70. 173			
6005		60+	В	580	141	141		480	130	0. 430	1. 739	0.835					-	PVC
ļ	11 Proceedings	(= Mul			74 7 11 11 11	California (Marcon)	N. P. T. T. T.	10 KM 121 CH 125 A	20 40 40 40	Sarvacioni, barcino	O		718. 098	713,000	5, 098			
			X2.12.	48			No. 1 Sec. 10			(\$4,650)	Section and the section of the secti	A veal and a				200	toma (Andria)	
	60+											2 205	709. 000	709,000	0,000			
60+	2011	60+1	G	60	141	141		100	130	0.044	0, 026	0, 003	700 007	004 000	11 207			PVC
	60+1	60'			79	79		100	100	0.140	0.400	0.000	708, 997	664, 330	44. 667			DUO
60+1	60,		1 - 2 1 - 2	60	79		<u>-</u>	190	130	0.142	0.439	0.083	700 014	C74 000	24 554			PVC
	- 00			lla (Low))		75, 75, 75, 75, 75, 75, 75, 75, 75, 75,	og moon to				100 C C C C C C C C C C C C C C C C C C	and the second second	708. 914	674, 360	34, 554	·		Six comp hints are paint
	60'	مَنْ كُوْمُ فَأَمْنِهُ	<u> </u>		ننيت تارا	4	ericust s	فقاتا المستخف	8.72			المنشتسخة	GO AVECUA DAMA VICENTA PROVINCE A PART	270 500			<u> </u>	
60'		60"	B	60	66		1/	1 400	100		1 000	1 710	737. 800	672.500	65. 300		CF 0	D. 1 . D1 . 17C
00		= 0V = 10.11	L P	la (Upper)	00	66	K	1,400	120	0, 203	1, 223	1, 712	706 000	701 000	F 000	B	65.3	Exist Pipe ϕ 75
<u>-</u>		<u> - matt</u>	pinit	ra (opper)	Ti Actual	57. E.M.			11.28.4			L. Zalajinija	736. 088	731, 000	5, 088	\$E.	Bart- di Santi	. <u> </u>
	60	A STATE OF THE STA		2-120-12-12-12-12-12-12-12-12-12-12-12-12-12-			Links		100.000	as card artic	L Million News	Manager Control	656, 600	582, 500	74, 100	érastria.	25-1-22-1-22-2	<u> </u>
60		6003	В	1, 250	141	141	K	1,500	120	0. 927	8. 347	12, 521	656, 600	562, 500	74. 100	В	7/ 1	Exist Pipe ϕ 160
- 00	6003	0000		1,200	141	171		1,000	1,20	0, 321	0.041	12. 521	644. 079	600,000	44. 079	_Б_	(4, 1	CXISC Fibe \$ 100
6003	-	60M	(B)	1, 250	141	141	K	485	120	0, 927	8. 347	4, 048	044.013		44.018			Exist Pipe φ160
1000		= Meek				171		700	120	0, 321	0.041	4. 040	640, 030	635. 000	5. 030		·············	Exist Tipe \$100
 				. 760.110		10050000000	Grand M	18 1 1 S	Brelevic of us	4431 IP 31, 115	F1.11-12/19/19		Frozpailaria			\$.7°.2°.8	Anatha Albara	
	1				· · · · · · · · · · · · · · · · · · ·	ALTE TANK CARACT		133	F1 3 37 - A2 - LAS	STEAN AND AND A 201		A	A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	the state of the s	11,2	****	##! **A., :: p., \$1;-\$1;- 1	lament d'al mandinat d'anna anna
	Katngas	stota -	usvea.	adawala	Harage of the con-		19.10 19.30 19.30	1.1. J. A.S.	150 C 100	CO BIARD	i on a single		CONSTRUCTOR	Side and	1.00		1.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	PG			3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Samula made	LUSYSKI A	v sinih nie maseniki	Marian Salah	Santana di Andrea d	- To be a second and the	· Children Consideration and all to	532, 580	442, 680	89, 900			Contract Con
PG		601	В	14, 390	603	603		650	130	0. 583	0. 558	0. 363	******			В	89. 9	
	601		 										532, 217	444. 020	88. 197		······································	
601		5001	(B)	3,780	603	603		1,790	130	0. 153	0.047	0.084		<u> </u>				-
	5001	-,,,											532, 133	442. 250	89. 883			
5001		5002	(B)	2, 480	299	299		1, 250	130	0, 409	0.657	0.822						
	5002						******						531. 311	450,000	81. 311			
5002		5003	(B)	2, 480	299	299		2, 280	130	0, 409	0.657	1, 499						
	5003												529.812	455. 220	74, 592			
5003_		26-1	(B)	1,060	201	201		410	130	0.387	0. 944	0.387					DI	
	25-1												529, 425	455, 200	74, 225			
25-1		25		1,060	199	199		220	130	0.394	0. 991	0, 218					PVC	
	25	= Pihi	llade	niya									529, 207	524. 140	5, 067			
					Start a	TATE OF THE STREET	·* · · · · · · · · · · · · · · · · · ·	XX XX Links	1304	Control of the contro	Transmiss Sec. in	Company of Alex	rates of British Colors	200000000000000000000000000000000000000		Z(
	601												532, 217	444. 020	88, 197			
601		601	(B)	10,620	603	603		890	130	0.430	0, 318	0. 283						
	601'												531. 934	443, 000	88, 934			
601,		_3	(B)	1,680	199	199		870	130	0.625	2, 323	2. 021						
	3	= Kaha								I		×	530, 196	491. 250	38, 946]		
			A 11 T	25 4 5 7 7 7 7 7 7	7. 1. 71	0 . 5				A		7.02 2.02 7.744.73c 8-		C. C. C. C. C. C. C. C. C. C. C. C. C. C	data karan			January Control of the Control of th

(Phase 1)

	Node		R/C	Flow Rate	Dia	Mixed Dia	Sviat	Length	Ċ	Velocity	Hvd. Grd	Loss	Dynamic	LWL	Dynamic	Derman	Required	Remark
Node	>	Node	D/ G	Q (m3/d)			Exist.	L (m)		v(m/sec)	I (%)	h (m)	Pressure	HWL			Pump Head	Kemark
Houe	5001	110dc	 	Q (115) G)	15 (IIII)	Din (maa)		L (III)		* (iii/ 36C)	1 (7007	17 (1117	532, 133	442. 250	89, 883	Type	1 diip Head	
5001	-	500	(B)	1,310	199	199	K	1,200	120	0.487	1.700	2.040	*****					Exist Pipe φ225
	500	= Bala	nagal	a									530, 093	514. 350	15. 743			, , , , , , , , , , , , , , , , , , , ,
			11 4/4				-y- + y-2+j		新文物艺		2		as Sentin					with the state of
	5003		ļ., <u> </u>										529. 812	455. 220	74. 592			
5003	-	26'	(B)	1,420	299	299	ļ	190	130	0. 234	0, 234	0.045			ļ .			
00'	26'	0.0	75/-		050	250			100	0.000	0.500	A 400	529. 767	456, 990	72, 777	\vdash		
26'	26	26 = Bang	(B)	1,420	252	252		1,150	130	0.330	0.539	0.620	529, 148	521, 280	7, 868			
17.5				aliawatta		in i dice	- y> 1-a	again an a taol (an	1 2			2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		521.200	1.000			
-	601	0.50.00		anawa cta	(Ka	1-7-1 (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	13.471.94	St. 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	310	79.00		<u> </u>	531. 934	443, 000	88, 934		<u> </u>	
601'	-501	603	(B)	8, 940	502	502		3,700	130	0. 523	0, 565	2, 091	001.501	110.000	00.551			
372	603		107.	914.5				27,700	-100	01.520	0.000	21.001	529, 843	499, 600	30, 243			
603		6	(B)	6,600	502	502		50	130	0. 386	0. 322	0.016						
	6	= Kaha	watta										529. 826	522. 250	7. 576			
1 1	and the same		73 a.			n to fores		44 65	CRA TET					Developed			tasa at a	anger the later of the first
	603												529. 826	499.600	30. 226			
603		10	(B)	2, 340	199	199		1,250	130	0.871	4. 288	5. 360				Ш		
	10	= Akur]								524. 466	512.000	12. 466	ļ		
	فتنينت		11.36		20.00		32	(m. 1472)	a Armita			Between transcr	THE POST AND ADDRESS OF THE PARTY.	تتواناك ليطيانان		إستنتا		
	6	7,			0.50			- F00	100		0 001		580, 550	518, 250	62, 300		40.0	
6	- 7		В	4, 240	350	350		2, 500	130	0, 510	0.824	2, 059	578. 491	455, 030	123, 461	В	62. 3	
7,		7	(B)	2, 410	350	350		1, 400	130	0, 290	0, 290	0, 405	576.491	455, 030	123, 461	╁╾╾╅		
		= Kuru		2,410	300	350		1, 100	130	0. 250	0.290	0.400	578, 086	573.000	5,086			-
		- NGIQ	goua	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Allekaria er	1141708		1	\$58.53(SP)	915 - 1980	1.551770	32 C	310.000	13.000	2.000			schrunge in Palamena in d
	7'	<u> </u>		1440-1-1-1-1-1-1-1	-7780a (c	10 <u>8 12.614</u> 4	133 <u>1 3</u>	7.05(3380.9%	(12-1,	63 / "475 <u> 1896</u> 5)	the Capture Copy and Mary Copy	Section and the section is	578, 491	455, 030	123, 461		100 100 100 100 100 100 100 100 100 100	(************************************
7,	-	- 8	(B)	1,840	252	252		950	120	0, 427	1, 009	0. 959	<u></u>	220, 70,2.		\vdash		
	8	= Thel	ambuga	watta									577, 532	566, 750	10. 782		-	
	Katuga	stora ?	***> K	ondadeniya	. Kuruga	amana 🚌	di wali	354H-c17K	$A \subseteq \mathbb{R}^{d_{1}}$	1010, 111, 124		jęjak v		19496 (1975)		300	88° (11. 1. 1	
	PG	·											546, 780	442.680	104.100			
PG	-	5″	В	4, 710	350	350		520	130	0. 567	1,000	0, 520				В	104.1	
	5"		- ,_ ,										546, 260	468, 410	77. 850	-		
5"		5″a	(B)	2, 760	299	299		890	130	0.455	0.801	0.713	5 (F F (F	505 130	40.007			
5″a	5 a		(D)	0.700	107	48530			100	1 000	10.010	F 900	545, 547	505, 180	40. 367	\vdash		Police Disc. 4 160 V 2
_5 a		5	(B)	2, 760	184	184	<u>K</u>	520	120	1. 208	10, 012	5, 206	545, 547	535, 250	10, 297	 		Exist Pipe φ160×2
	5	= Kond	adeni			e Zyra háğuk	9757 J.C	,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,			25 129 1313	TAL 1995	040.041	000.200	10. 291			
	5	32×16 (·2`	r / 31-5 336/46	<u> </u>	هٔ د محمد المحمد ا	37,325,73	<u></u>	S'1,12, Nation 1981	(11.40)2.50 (11.50 CE	598, 550	531. 250	67, 300	11.77	<u>>:</u>	<u> </u>
5		<u>K1</u>	B	1,050	141	141	К	1, 525	120	0, 778	6, 046	9, 220	555, 550	001.200	01,000	В	67. 3	Exist Pipe ø 160 PVC
- -	K1	114		1,000	***	***				· · · · · · · · · · · · · · · · · · ·	2. 4.0	V. 400	589, 330	535, 000	54, 330	┌╌┤		
<u>K1</u>	-	K2	(B)	1,500	199	199	K	350	120	0, 558	2. 184	0.765			1			Exist Pipe \$225 PVC
	K2			,TI, T T Y									588, 565	550.000	38. 565	T		
K2	_	14	(B)	1,500	201	201	K	106	120	0.547	2. 081	0. 221						Exist Pipe φ200 DI
	14	= Kuru	gammai	18									588. 345	583. 250	5. 095			

(Phase 1)

	Node		B/G	Flow Rate		Mixed Dia	Exist.	Length	C	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	Pump		Remark
Node	>			Q (m3/d)	D (mm)	D m (mm)		L(m)		v(mu/sec)	I (‰)	h(m)	Pressure	HWL	Pressure	Type	Pump Head	
11.2		stota 🤊	·	KEG, R2				in ejeden in			20 00 1 00 0					13.3		
	PG												572. 780	442.680	130, 100			·
PG	-	MR	В	17,600	802	802		650	130	0.403	0. 202	0. 131				В	130.1	
L	MR												572, 649	442.770	129, 879			
MR		17'	(B)	17,600	700	700		570	130	0.529	0.392	0. 223						
	17'												572. 425	453. 6 50	118, 775	L		
17'	-	AG'	(B)	13, 210	700	700		830	130	0, 397	0. 231	0. 191]
	AG'												572. 234	527.400	44. 834			
AG'	-	AG	(B)	11, 240	502	502		230	130	0.657	0.863	0. 199						
	AG	= Asgi											572. 035	567, 000	5, 035			
*				a dine in	47112	ະ ທີ່ ໄດ້ໄດ້ເຂົ້າ ການ ເຂົ້າຂອນ ກ່ຽວກັນໄດ້	\$ 10 mg	344 314 243	didirection				251 (140 H 21 H 21 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H					
L	AG'												572. 234	527.400	44. 834	l		
AG'		(IB)	(B)	1, 970	502	502		430	130	0.115	0. 034	0.015						
	(IB)												572. 219	530, 630	41. 589			
(IB)		57	_B	1,970	252	252		1,900	130	0.457	0.988	1.877				В	63.7	
	57	= Bahi	rawak	and						i			6 <u>34. 04</u> 3	629,000	5, 043			
		Non Alice	94 527						ami ny w									
	17'												572. 425	453, 650	118. 775			<u> </u>
17'		1702	(B)	4, 390	395	_ 395		2,000	130	0.415	0.487	0. 975						
	1702					. —							571.451	545, 000	26, 451			·
1702	-	$_{17}$	(B)	4, 390	395	395		70_	130	0, 415	0. 487	0,034						
	17	= Upla											571, 417	566,000	5.417			
	Katuga	stota.	;> (Johagoda (I	allemu	Lla)	100		26.32			dus etisk med 1 is 5 miles	Jan Alakaka	adorenda California	or the state with the late of the state of		104 004 4	San Array Care
	5"												546. 260	468, 410	77, 850			
5"	1	65'	(B)	1,950	252	252		950	130	0. 453	0. 969	0.921						
	65'												545, 339	490, 310	55.029			
65'	_	6501	(B)	1,050	201	201		1,720	130	0.383	0. 927	1.595						
	6501												543. 744	506.600	37. 144			
6501	_	65	(B)	1,050	201	201	K	90	130	0, 383	0, 927	0.083						
	65	= Goha	goda										543, 660	531. 200	12.460			
1.0	L, Fig.	1.36	16		100			L. T. Babil. Repolicities	THE PARTY	ATTICLE OF THE STATE OF THE STA	zaan			ior utal			บันท์ กลาบลับเ	
	65												545, 339	490. 310	55.029			
65'	-	65G	(B)	900	149	149	ĸ	100	120	0. 597	3. 475	0.347						Exist Pipe ø 200
	65G	= Goh	goda	(old)									544, 992	528, 000	16, 992			
	7.76	ever 'j	2024		5.50		9.713	4	10.00	1 8 89 8 144	95884 12 Y					1.4		2 T + 44 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

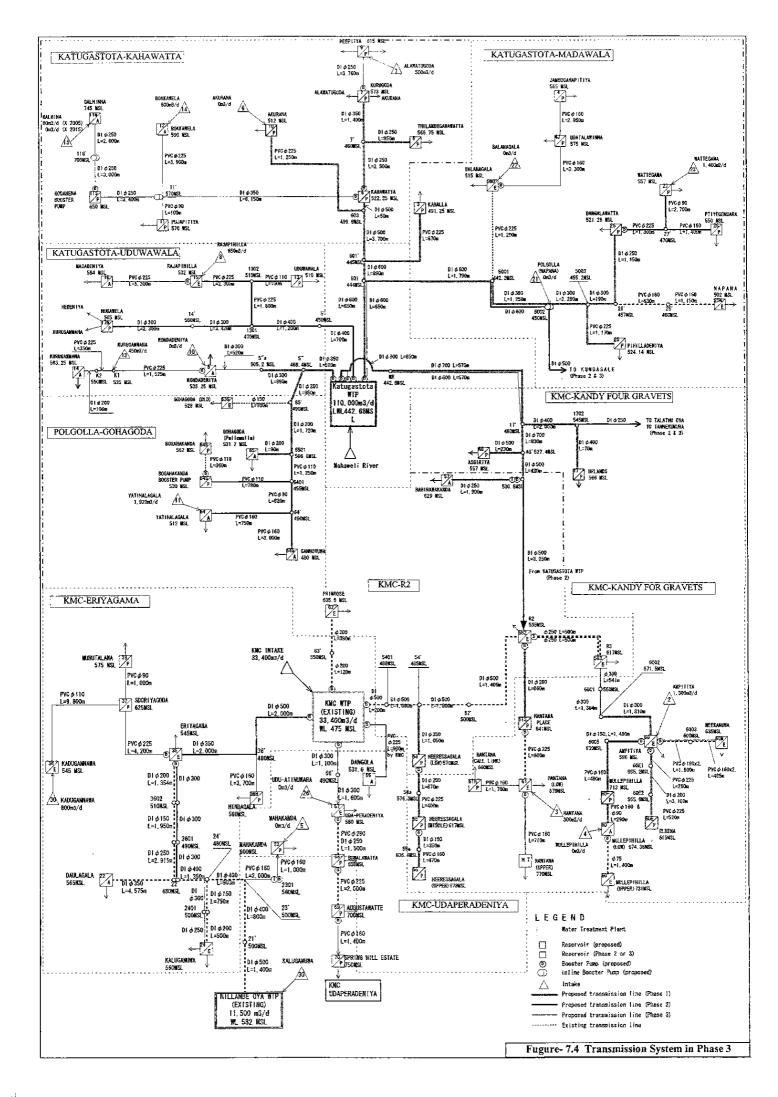
(Phase 2)

	Node		B/G	Flow Rate	Dia.	Dia.	Mixed Dia	Exist.	Length	С	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	Pump	Required	Remark
Node	 ->	Node		Q (m3/d)		D (mm)	Dma (mma)		L (m)		ν(m/sec)	I (‰)	h (m)	Pressure	HWL	Pressure	Турс	Pump Head	
		.,,				2,010				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****		***	Hd (MSL)	(MSL)	He (m)	1	H (m)	
		imrose	(-) ::#	(* 1 개 원) (* 1 개 88 - 기계 (* 1 개 개 개 개 개 개 개 개 개 개 개 개 개 개 개 개 개 개	£ 30 t		िन पुरस्ति । जन्म	30 K. K.		s Marsile		and the second of the second o	Material and and and and and and and and and and		K 1554	454, 254, 254,	Terior		<u> </u>
WARC	KMC_		-			001	-001	.,,	500	1.00		4 500	0.004	642, 800	471,000	171.800_		171 0	B : . B: 000
KMC	63	63	_В	2, 300	0	201_	201	_K	<u>50</u> 0	120	0.839	4, 588	2. 294	640, 506	635, 500	5, 006	В	171.8	Exist Pipe ϕ 200
		iyagama	8 + j'.	-10-12-7		F 281 FE 1 FE 3	mate / 995119273	83	i at iil	Cartha	la a razz estible			040.000	030.000	5.000		1 2	
	KMC	1-Yagama					F - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	233,111-5,111-2	NAME OF THE PARTY	**************************************		a. i.i. Arrillianii	Note of Carlo Long	557, 800	471,000	86, 800		; .	Strain Strain
KMC	-	36	В	9,000	0	502	502		2,000	130	0, 526	0, 572	1. 144	- 001.000	1717.000	- 00. 000	В	86.8	
	36'													556. 656	480.000	76.656			
36'	-	36	(B)	9,000	0	350	350		2,000	130	1.083	3. 314	6. 629						Exist Pipe φ450
	36													550. 027	545, 000	5. 027			
	KMC-KF							fiki keti	4 89			1.0464.55				ilidi ye dise.			
	KMC													575. 800	471.000	104. 800			
KMC	-	5401	В	19, 280	0	502	502	K	200	120	1. 127	2. 716	0. 543		100 000	05.055	В	104.8	Exist Pipe φ500
F107	5401			10.000			500	12	1 000	100	1. 127	0.710	2, 716	575, 257	480.000	95, 257			Exist Pipe ø 500
5401	- 54'	54'	В	19, 280	0	502	502	_V	1,000	120	1. 12(2, 716	2, 716	572, 540	485, 000	87, 540	-		EXIST Pipe Ø 500
54'	- 54	57,	(B)	14, 520	0	502	502	- v	1,800	120	0. 849	1.608	2, 894	572, 540	465.000	61.040	 	• • • • • • • • • • • • • • • • • • • •	Exist Pipe ø 500
- 34	57'	-2!	(1)	14,020		302	302	- 1/	1,000	120	0.043	1.000	2.034	569, 647	500, 000	69, 647			Exist Tipe & coo
57'		582	(B)	14,520	0	502	502	К	1,400	120	0.849	1.608	2. 251	000,01.	340.000	00.01.			Exist Pipe $\phi 500$
	582		3.27											567, 396	555, 000	12, 396	1		
		and are	t also	ig fut - Niës		r erve	Sedeserii	12/11/20	dalotti voto	138446	offere en	45.	YO WASHINGTON	nariotar		and Intile			
	KMC													542.100	471,000	71, 100		_	
KMC		66	В	2, 830	199	0	199		900	130	1.053	6, 096	5. 486				В	71. 1	·
	66						· · · · · · · · · · · · · · · · · · ·	~~~~~						536.614	531, 600	5.014	 		
	54'		الأمقامنعكا	5.	<u> </u>	<u> </u>		WAR.	1 24.11.2	0.1000	04 9 K C S		, 17, 121 6 0-0010-2011	570 540	405 000	97.640	4		
54,	04	54	(B)	4, 760	350	0	350		1,050	130	0, 573	1,020	1.071	572, 540	485, 000	87, 540	 		
34	54	- 54	<u>(D)</u>	4, 700	300	V	350		1,000	130	0.013	1,040	1.071	571.469	570, 000	1. 469		-	
	- 04	,	*********	 				7 35 5	55800 Co	15. 54.4	in and the state of	312 × 2	E. S.	J11.409	nancieni i dilitina	1.403 Uz	हारसङ्ग		7.712
	54		نصند			Sec. 9 Sec. 423			<u> </u>	a jan Maranga	and the second s	**************************************	19.9 - Xr at) 1/13/2019	627, 400	566.000	61. 400	Steen of Landson	<u> </u>	.3
54		54a	B	2, 350	201	0	201		870	130	0, 857	4, 117	3, 582				В	61.4	DIP
	54a													623, 818	576. 330	47. 488			
54a		55	В	2,350	199	0	199		400	130	0.874	4. 322	1.729						PVC
	55	≃ Heero	ssag	ala (Middl										622, 089	617,000	5. 089			
	1		2				and a disc	81.436.2	10.000				ii ya ka ka ka ka ka ka ka ka ka ka ka ka ka	Si Bi si da sirin.		n zlácni	9 .32	71 Z 1	
	65										7			684. 200	613. 000	71. 200			DID
55		55a	В	550	149	0	149		350	130	0. 365	1.205	0.422	600 770	COC OFF	47 400	В	71. 2	NTL
55a	55a	56	В	550	141	0	141		470	130	0.408	1, 576	0, 741	683, 778	636. 350	47, 428	 		PVC
acc	56			ala (Upper			141		470	190	0.408	1,510	0.741	683, 037	678,000	5, 037			1 10
	KMC-R2	KEG	Suga	ara (obber	4			U 6255	Assistant C	1/20 Nic.xe	PARAMETER :		ENGRES PROTECTS	1	110.000	0. 001			
	582	THE O		e 4 : 144 - 1 - 4 - 13				Carti	THE MALE SHAPE	house March 18 and 18 and	To a Council To by California Co.	APTEN MIRRIES .: MY AP.	ENAMA CELL SATE LAN	624, 290	549, 490	74, 800	** ** * * * * * * * * * * * * * * * *	<u> </u>	Parameter of the state of the s
582	-	583	В	8, 230	0	328	328	K	500	120	1. 127	4, 469	2, 235		· · - · · · · · · · · · · · · · · · · ·		В	74.8	Exist Pipe $\phi 250 \times 2$
	583													622, 055	617.000	5, 065			
				Mary Trade			100		S	, p. 1		de Gara			2.552.241.8				

(Phase 2)

Node	Node >		B/G	Flow Rate Q(m3/d)	D (mm)	Dia. D(mm)	Mixed Dia Dm(mm)	Exist.	Length L (m)	С	Velocity v(m/sec)	Hyd. Grd I (‰)	Loss h(m)	Dynamic Pressure	LWL	Dynamic Pressure	Pump Type		R	lemark
	582	-	-		2,005	2,010								Hd (MSL)	(MSL)	He (m)	<u> </u>	H (m)		
582	- 362	615	В	1, 490	201	0	201	ļ <u> </u>	860	130	0, 543	1, 772	1, 524	647.590	549. 490	98. 100	В	00.1		
302	615	013	_ <u>D</u>	1, 450	201		201		600	150	0. 543	1.114	1.524	646, 066	641, 000	5, 066	_ <u>B</u>	98. 1		
	013	13.12.74	3000			7		752				€0.12 Z Z Z Z	r - papagran	040, 000	041.000	a. 000				
	61S		F4	-				2 57 5 13				<u> Jaggar Bartaska</u>	<u> </u>	684, 200	637, 000	47. 200		<u>. </u>		
615		61	В	390	0	199	199	К	900	120	0.145	0. 181	0. 163	301.200	001.000	11.250	B	47. 2	Exist Pipe	6.225
	61		T-									*****		684, 037	679, 000	5.037	-~~·		DATE TIPE	
2.72	7 80 10			11220		511 11 11 11 11 11			- market		Salabak		States St.			si ukiyata	Service across			
	61								A					679.000	675,000	4, 000	1 —	-		
61		61H	G	380	0	141	141		1,700	130	0. 282	0. 795	1, 352					,,,,		
	61H													677. 648	660.000	17. 648				
		5. 34 . 20			is lar	100	A Canada Ser Local Series	4 7 0 C 1 0 C 1 2 C 1 2 C 1 2 C 1 C 1 C 1 C 1 C 1 C	4.7.3	Section .	an Section ;		anir mor. I	o kalanja (kada)	tori, ke kara	(A. 1947, 1944)	3.77.5		union and a second	
	61		ļ										_	775. 100	675.000	100.100				
61	-	HT	В	130	0	141	141		710	130	0.096	0. 109	0,078				В	100.1	<u>-</u>	
	HT				- rimm-min-m rightiya					code war in the			Sandaharan Sandaharan Sandaharan Sandaharan Sandaharan Sandaharan Sandaharan Sandaharan Sandaharan Sandaharan S	775, 022	770.000	5. 022				
	5 (5) (6)	1		32 <u>2</u> - 11 15 17 17 17 17 17 17 17 17 17 17 17 17 17	1000		<u> </u>	Chill d		iåi€ide:	Sulfix Earl (Sec.)			45 9kg 20 35		callaine me	100	58 <u> </u>	<u> </u>	<u> </u>
F00	583	2001	<u> </u>	4 050		200					0.004		2 255	617, 000	613.000	4,000	1			
583	6001	6001	G	4,070	0	299	299		541	130	0.671	1.644	0.889	C1C 111	FC0 000	50 111				
6001	6001	6002	(G)	4, 070	- 0	299	299		1 004	100	0. 671	1 644	0.144	616, 111	560,000	56. 111				
0001	6002	0002	(6)	4,070		299	299		1,304	130	0.671	1.644	2.144	613, 967	571, 450	42.517				
6002	-	60	(G)	4,070	299	0	299		1,810	130	0, 671	1, 644	2, 976	013, 997	571,400	42.517				
0002	60	-00	(6)	4,070	233	<u>V</u>	255		1,010	100	0.071	1.044	2.910	610. 991	586, 000	24, 991		· · · ·		
		170 YE	2000	## 35-7E-450	g.::-449¥		C. Serieski	40.42		63091745c	ෙස් මේදැන්න්		PARTICION OF THE	bratis asserted	A CONTROL OF THE PARTY NAMED IN COLUMN	5. 331	5747.19	SF (1. ****	3	7
	60	<u></u>	SE WILLIAM SERVICE	Error of the San State	Maria K. Calentin	*CressingsC 6-3	\$1500 A 199 \$100 92 KI 30	nitroj tragla	ar all color agreement agreement	<u> </u>	A LUNGS - TO LEVEN NAME OF	K. Salara salah kerasa salah	Carlo co. Obstradinació	621, 200	582, 500	38, 700	7 . Y C. J. W	<u>** 1.334**</u>	. Xansa	
60		60E-1	В	570	199	0	199		260	130	0, 212	0.314	0, 082	0211200	002, 000	00. 100	В	38. 7	PVC	
	60E-1											V 1.		621. 118	555, 170	65, 948				
60E-1		60E-2	\vdash	570	201	0	201		3, 100	130	0,208	0.300	0.929			<u> </u>			DIP	
	60E-2									<u> </u>				620. 190	555, 620	64, 570	1			
60E-2		60E		570	199	0	199		520	130	0, 212	0, 314	0.164						PVC	
	60E	(= E1h	ena)											620, 026	615.000	5. 026			· ·	
	A Mission	مند مورد	1 1 1 1	in and a second of the second	O HAMAN TO THE				Talliano. Campharail	igil All A	4000			Land and Supplied to	ALCONOMICS OF THE PROPERTY OF		3-16-1		S. 1989	
	60													723. 200	582, 500	140, 700				
60	-	6005	В	810	149	0	149		1, 480	130	0, 538	2. 466	3.649				_B	140. 7	DIP	5 150
	6005													719, 551	648, 760	70, 791				
6005	- !	60+	(B)	810	141	0	141		480	130	0.600	3. 226	1.548				\sqcup		PVC g	160
	60+		E 1, 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		gr					1 2 2 2 2 2	NOST DE PRACEITO DE	S (F we) (AND	X (00.00 - 0.00	718,002	713.000	5,002	ļ			
			11.21		S 1934	V - 1 17 (5) (5)	tida (sel solution) Maria Republica	2.50.000	gariotic () and Paradelic () and	3.64.35.			Service A	700 000	700 000	0.000		ic is		
60+	60+ -	6011			1.47		141		100	100	0.050	0.045	0.004	709, 000	709, 000	0.000				
0V+		60+1	G	80	141	0	141		100	130	0.059	0.045	0.004	708. 996	664. 330	AA 000	 -			
60+1	60+1	60,		80	79		79		190	130	0. 189	0, 748	0. 142	(08.996	004. 330	44.666	\vdash			<u> </u>
00+1	60'		Lailei	lla (Low))	(9	V.	19		190	130	0. 189	0, (48	0, 142	708, 853	674, 360	34, 493			-	
**************************************	UV	\-\ Mul	Thruit	ila (LOW))	-382×.>+.2 . 100	กระบาร		South of S		325 Falls.	territoria, complete	Section Control	irisiwa waka		014, 300	34, 493		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
12.17.11.	60		2000	NR. 2. 0 9-4 - 2-5	<u>- 1,51,11,1134</u>	2151.751-160	philosyddyddi	egweyalî ê.	C.41. C. 12 12 12 12 12 12 12 12 12 12 12 12 12	125 . Sec. 35	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONTRACTOR STATE	ant 2018/99.090100	739,000	672, 500	66, 500	72.3	<u> </u>	<u> </u>	<u> </u>
60'		60"	В	80	0	66	66	К	1,400	120	0. 271	2.082	2, 915	199,000	012,000	00.000	В	66.5	Exist Pipe of	5.75
-00	60"		<u> </u>	- 30				_ n	1, 100	120	V. 211	4.002	2.010	736, 085	731.000	5. 085	- "-		OVIDE THE	,,,,
LI	60"	L	L	L									L	736.085	731, 000	5.085				

~


	Node	<u> </u>	B/G	Flow Rate		Dia.	Mixed Dia	Exist.	Length	С	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	Pump	Required	İ	Remark
Node	_ >	Node		Q(m3/d)			Dm (mm)		L (m)		v(m/sec)	I (‰)	h(m)	Pressure	HWL	Pressure	Туре	Pump Head		
		ļ				2,010								Hd(MSL)	(MSL)	He(m)		H (m)		
	. 7.37.	SHEET HE	den.			J 32 345	of the the sine	my rank the fu		1.323%		(MM) 1 (M) (M)		ter Shingur (1961)		***********	1.4		Mary John Committee	1111 304
	60										1			648. 800	582. 500	66, 300				
60	-	6003	_B	1,770	0	141	184	L K	1,500	120	0.774	4. 401	6. 602				В	66.3	Exist Pipe	φ 160
L	6003													642. 198	600.000	42. 198				
6003		60M	(B)	1,770	0	141	184	K	485	120	0.774	4. 401	2. 135						Exist Pipe	φ 160
	60M													640.063	635, 000	5.063			•	
	Katuga	stota-l	ladaya	la			la i i i se e ci	14.14		(Forestia	£leveni.		Editor de la Colo	President?	100000000000000000000000000000000000000					=
	PG							1						537, 180	442, 680	94, 500		Na		
PG	-	601	В	29, 160	603	0	603		650	130	1. 182	2, 062	1.341				В	94. 5		
	601								•					535, 839	444.020	91, 819			1	
601		5001	(B)	17, 900	603	0	603	i	1, 790	130	0.725	0, 836	1. 497			· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	-	
	5001													534, 343	442, 250	92.093	 			
5001		5002	(B)	16, 100	299	603	638		1, 250	130	0, 584	0, 524	0.655	001.010	115. 200	32.000	-			
1111	5002	-					000		1,200			0.021	0.000	533, 688	450,000	83, 688	 			
5002	-	5003	(B)	4, 400	299	0	299		2, 280	130	0, 725	1, 899	4, 330	.000.000	400,000	00.000	 			
3000	5003	1000	12/			<u>×</u>			2, 200	100	0.120	1,000	4, 000	529, 358	455, 220	74, 138	 	· · · · · · · · · · · · · · · · · · ·	 	
5003	-	26'	(B)	3, 200	299	0	299	 	190	130	0. 527	1.054	0, 200	043. 300	700. 220	19, 196	 		· · · · · ·	
0000	26'	-20	(D)	9,200	200		233	 	150	130	0.521	1.004	0. 200	529. 158	456, 990	72. 168	 	····		· · · · · · · · · · · · · · · · · · ·
26'	40	26		3, 200	252	0	252	<u> </u>	1, 150	130	0. 743	2, 423	2, 787	029. 100	400.990	12.100				
20	26	= Bang	a lama		494	· · · · · · · · · · · · · · · · · · ·			1, 100	130	0.143	2,423	4. (01	526, 372	521, 280	5, 092	 			
-	-40	- Dank	alawa	ıta		Property III.	6.3.6.896	S 25 - 77		Constant in the	re return to the second		6.25.25.21						1 11 11 11 12	
	601	×	5 40.0			1774	15. a. 12 "19"5	5. TOR. 2					L1111111111111111111111111111111111111		******			<u> Yan di Ladaha</u>	2 11:17 3	1,500 10 10 10
601	001	201,	(B)	11 000	600		603	 	200	100	0.450	0.055		<u>53</u> 5, 839	444, 020	91.819				
601	CO1'	601'	(B)	11, 260	603	0	603		890	130	0.456	0. 355	0.316	F05 50 (ļ			
(01)	601'		751		100	<u> </u>	100	<u> </u>	250		0.015			535. 524	443.000	92. 524	 			
601'		3	(B)	2, 190	199	0	199		870	130	0.815	3. 794	3, 301						r	
<u> </u>	3	(= Kah	alla)		· · · · · ·					- 	5 - 5 x - 1 x - 2			532. 223	491. 250	40.973	 ↓			
		<u> </u>				<u> </u>	<u> </u>	فستعد			\$ 4.50000 p.			and a second	التبنين أنتيا					
	5001		-,				ļ							534. 343	440,000	94. 343	 			
5001		500	(B)	1,800	199	0	199	K	1, 200	120	0.670	3, 061	3. 673							
L	500													530.670	514. 350	16, 320				
أنظشفتنا	4 3 4 3 5	مرتقين جيدنگ			1. T. 1.			1225 C				ે. 74છ ઉદ્દેશકા	(4) (500 E		25 1000 0 1000	Signal Control		rija para		
	26													575, 780	517, 280	58, 500				
26		27'	В	1,600	0	199	199		1,300	130	0. 595	2. 123	2. 759				В	58, 5		
	27'													573, 021	456, 990	116. 031				
27'	_	27	(B)	200	0	79	79		2,700	130	0.472	4.075	11.002							
	27													562, 018	557.000	5, 018				
		2 23 25 3			, 2 KNO	S			4	10 N H 116 M	. Loring of the Control		Land September	E II. SE III.	Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de	is in the second		vi vitti i i	Legitor Charles Con	
	27'													573. 021	470.000	103. 021	T			
27'		28	(B)	1,400	0	141	141		1,400	130	1, 038	8, 878	12. 429							
	28													560, 592	550,000	10.592				
										A	Carlotte Carlotte Carlotte	\$	2011 T. 1		-		1	7 1 7 7 7 7	1 7	
	5003									- 1 1 2 C F 1 2 P 1	4.2135.6	*		529. 358	455, 220	74. 138	1			
5003	-	25-1	(B)	1,200	201	0	201		410	130	0, 438	1, 187	0.487	320,000		, ,, ,, ,, ,	 			
13333	25-1		-\ <u>-\-\</u>			· · · · · · · · · · · · · · · · · · ·	. 271				31.100	1.491		528, 871	455, 200	73, 671	 			
25-1		25		1,200	199	0	199		220	130	0. 447	1. 247	0. 274	3001011	100, 200	13.011	 		 	
1 20 1	25	= Pihi	Hede		100		133		44.	100	0. 31		V. 917	528, 597	524, 140	4, 457	 			
I		1 1 111 1	LAGUE	11.4.19			J	l- -			L	i	I	260.001	J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	4. 301	I		·	

(Phase 2)

Ratiographic 2,005 2,010	Node e> No		B/G	Flow Rate Q(m3/d)	Dia. D (mm)	Dia. D (mm)	Mixed Dia Dm(nm)	Exist.	Length L (m)	С	Velocity v(m/sec)	Hyd. Grd I (‰)	Loss h(m)	Dynamic Pressure	LWL HWL	Dynamic Pressure	Pump Type	Required Pump Head	Remark
601		0100 1775E													(MSL)			H (m)	
601 - 603 (b) 9,070 502 0 502 3,700 150 0,581 2,145 533,692 499,000 34,092 603 - 6 (b) 6,700 502 0 502 50 130 0,592 0,331 0,017 533,692 499,000 34,092 603 - 10 0 0 2,370 199 0 199 1,280 130 0,882 4,391 6,488 533,692 999,000 34,092 603 - 10 0 0 2,370 199 0 199 1,280 130 0,882 4,391 6,488 533,692 999,000 34,092 62 63 6 - 77 B 4,330 350 0 350 2,500 130 0,521 0,885 2,140 880,680 158,260 62,000 16,200 62 77 7 7 7 8 4,330 350 0 350 0 350 1,400 130 0,521 0,885 2,140 880,680 158,260 62,000 B 6 7 7 7 7 8 8 (B) 1,890 252 0 252 950 130 0,499 0,915 0,869 78,510 455,030 123,480 7 7 7 8 8 (B) 1,890 252 0 252 950 130 0,439 0,915 0,869 78,510 455,030 123,480 7 7 7 8 8 (B) 1,890 252 0 252 950 130 0,553 0,817 0,572 880,680 442,800 138,000 B 133 1301 - 14 14 (B) 4,000 0 259 259 259 3,420 130 0,553 0,817 0,572 880,680 442,800 138,000 B 130 130 14 7 17 17 18 (B) 4,000 0 259 259 259 3,420 130 0,659 1,592 8,662 570,021 565,000 130 188 11 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1		tota-k	(ahaw	átta –			116.9143	ERTERNATA	120 120 10.10							4 40 40		en fan	
603 -6 (B) 6,700 502 0 502 50 130 0.592 0.331 0.017 533,692 499,600 34,092 0 1 1 1 1 1 1 1 1 1		809	(b)	0.070	502	0	Eng		2 700	120	0 520	A F01	0.149	535, 839	443,000	92. 839			
603		000	(D)	3,010	302		302	1	3, 700	130	0, 530	0, 561	2, 140	533 692	499 600	34 092		- -	
6		6	(B)	6, 700	502	0	502	† · · · · · · ·	50	130	0.392	0.331	0.017	000.002	405.000	54. 05 <u>L</u>			
603	6													533, 675	522. 250	11. 425			
10 G 2,370 199 O 199 1,250 130 0.882 4.391 5.488 528.203 512.000 16.203 6			- 637	a entr					474.05			1.00							
10		10		2 272				ļ	1	100				533. 692	499.600	34, 092			
6		10	- 6	2,370	199	0	199	-	1,250	_130	0, 882	4. 391	5.488	E00 0A9	E10 000	16 202			
6	-	- , :::		ar en	. TIE Her H	F 4 (#1) 1	1000	* Y' - U - T		200		30				10, 203	Y		\$7. 37. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
6 - 7' B 4,330 350 0 350 2,500 130 0.521 0.856 2.140	6			<u> </u>			e	.45		A. A. K. K. K. K. K. K. K. K. K. K. K. K. K.	Name of the State	Carrier Section 11 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -				62, 400	-		· · · · · · · · · · · · · · · · · · ·
7' 7		7'	В	4, 330	350	. 0	350		2,500	130	0. 521	0, 856	2. 140				В	62. 4	
7														578, 510	455.030	123, 480			
7 - 8 (B) 1.890 252 0 252 950 130 0.439 0.915 0.869 578.510 455.030 123.480 7		7	(B)	2, 450	350	0	350		1,400	130	0, 295	0. 299	0, 418	F. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	F#A Ac-		ļ	·	ļ
7' - 8 (B) 1.890 252 0 252 950 130 0.439 0.915 0.869			(*************************************		No. 1 . 1 . 1	. 3 . 3 . 5 . 5 . 5 . 5 . 5 . 5	ا المام (الأراب المعربية)	Serioriae Se	8390323	ja jūjošeniš	Rite in Manageria			578.092		***************************************	-	.,	
T	7'	ئىقىنى رەزانى	كنستنا	<u> </u>	<u> </u>	1 1.0.00		JD - (1996)	unisasii ilulii	S. LMCHA	(14 (6) W/8 61°C	Carl Court of A Sector	MARCH 2011 (CO - 2011	578 510			ř		Part at Great years
S	-	8	(B)	1.890	252	0	252	+	950	130	0. 439	0.915	0.869	010, 010	300,000	120, 400			
PG	8													577. 641	566. 750	10.891			
PC		tota-U	doway	vala	7.553.					900000	Ku juktu						teri i		
5' - 1301 (B) 6,000 0 400 400 1,200 130 0,553 0,817 0,980 580,108 450,000 130,108 1301 - 14' (B) 4,000 0 299 299 3,420 130 0,659 1,592 5,445 573,683 560,000 13,683 14' - 17N 670,021 565,000 5,001 1,583 - 1,592 3,662 573,683 560,000 13,683 - 17N 570,021 565,000 5,021 565,000 5,021 570,021 565,000 5,021 567,001 565,000 5,021 567,001 565,000 5,021 567,001 567,001 567,001 567,001 567,001 560,000 500,000 500,000 8 10 547,180 442,680 194,500 8 10 547,180 442,680 194,500 8 10 547,180 442,680 194,500 8 10 547,180 442,680 194,500<													L	580, 680	442,680	138.000			
5' - 1301 (B) 6,000 0 400 400 1,200 130 0.553 0.817 0.980 579.128 470.000 109.128 1301 - 14' (B) 4,000 0 299 299 3,420 130 0.659 1.592 5.445		<u> </u>	R	6, 000	0	400	400	 	700	130	0.553	0, 817	0.572	500 100	450.000		В	138.0	
1301		1301	(B)	6 000		400	400	+	1 200	120	0.563	0.917	0.000	580, 108	450.000	130, 108		- · · · · · · · · · · · · · · · · · · ·	
1301		1001	\D/.	0,000	-	400	400	 	1,200	100	0, 555	0.017	0.500	579 128	470 000	109 128			
14'		14'	(B)	4,000	0	299	299	1	3, 420	130	0.659	1.592	5, 445	010,120	110.000	100.120			
17N														573, 683	560, 000	13. 683			
Katugastota Kondadentya Kuringaniana		17N	(B)	4,000	0	299	299		2,300	130	0.659	1.592	3. 662						
PG - 5" B 4,990 350 0 350 520 130 0.600 1.113 0.579 B 10.500 B 10 5" - 5"a (B) 2,850 299 0 299 890 130 0.470 0.850 0.757 5 a - 5 (B) 2,850 184 0 184 K 520 120 1.247 10.625 5.526 5 = Kondadeniya 59.350 531.250 68.100 5 - K1 B 1,100 0 141 141 K 1,525 120 0.815 6.589 10.049 K1 - K2 (B) 1,550 0 199 199 K 350 120 0.577 2.321 0.812 K2 - 14 (B) 1,550 0 201 201 K 106 120 0.565 2.211 0.234 Katugastota-KFG, R2 576.680 442.680 134.000			1 <u>9</u> 77	Kakhakas er s				L ,	V 1 25 - 1 5 1		do processor and control	akiri di ari relah satis		570, 021	565, 000				· · · · · · · · · · · · · · · · · · ·
PG - 5" B 4,990 350 0 350 520 130 0.600 1.113 0.579 546.601 468.410 78.191 5" - 5"a (B) 2,850 299 0 299 890 130 0.470 0.850 0.757		cota-n	опда	ieniya, kuri	gamana				1,22,49,75	(YESKE) #				547 100	440 600				<u> </u>
5" - 5"a (B) 2,850 299 0 299 890 130 0.470 0.850 0.757 5 a		5"	B	4.990	350	0	350	†	520	130	0.600	1 113	0.579	347, 180	442.000	104. 500	R	104.5	·
5" - 5"a (B) 2,850 299 0 299 890 130 0,470 0,850 0,757 545,844 505,180 40,664 55"a 5 545,844 505,180 40,664 564,844 535,250 10,594 564,844 535,250 10,594 568,100 564,844 535,250 10,594 564,844 535,250 10,594 564,844 535,250 10,594 564,844 535,250 10,594 568,100 569,350 531,250 68,100 68,100 699,350 531,250 68,100 86,1	5"			2,000					- 020	-100				546, 601	468, 410	78, 191		101.0	
5"a - 5 (B) 2,850 184 0 4184 K 520 120 1.247 10.625 5.526 545.844 535.250 10.594 545.845 5	- 5	5″a	(B)	2,850	299	0	299		890	130	0.470	0.850	0.757						
5 = Kondadeniya														545, 844	505, 180	40.664			
5					184	0	.184	<u>K</u>	520	120	1. 247	10.625	5. 526						Exist Pipe ∲160×2
5 - K1 B 1,100 0 141 141 K 1,525 120 0.815 6.589 10.049 - 8 6 100 B 6 6 10.049 - 8 6 6 589, 301 535, 000 54, 301 58, 301 535, 000 54, 301 58, 301					17 7 828	4 4 T	क्षा प्रमुख स्टब्स्	<u>। विकास रा</u>	- 127 E (\$285 SX)	A 55 354	•	v rougeweerste						ST COLOR	Exit years to the first
5 - K1 B 1,100 0 141 141 K 1,525 120 0,815 6,589 10,049 B 6 K1 - K2 (B) 1,550 0 199 199 K 350 120 0,577 2,321 0,812 588,489 550,000 38,489	5		1.2005	Part of Part of St.	roled Los	***********		Market Joseph		.s. 532.527.12	1219 32 3 150)	ALCO STORES	THE PERSON NAMED IN			MALLO CALLES IN CA	<u> </u>	34 /57 - 1 35 A 5	N. Makana Jana
K1 - K2 (B) 1,550 0 199 199 K 350 120 0.577 2.321 0.812 588.489 550.000 38.489 K2 - 14 (B) 1,550 0 201 201 K 106 120 0.565 2.211 0.234 588.255 583.250 5.005 K1 Katugastota-KFG, R2 576.680 442.680 134.000	~	-K1	B	1, 100	0	141	141	К.	1, 525	120	0, 815	6, 589	10, 049	000.000	001.200	00.100	B	68. 1	Exist Pipe & 160 PVC
K1 - K2 (B) 1,550 0 199 199 K 350 120 0.577 2.321 0.812 588.489 550.000 38.489 K2 - 14 (B) 1,550 0 201 201 K 106 120 0.565 2.211 0.234 588.255 583.250 6.006 Katugastota KFG R2 576.680 442.680 134.000			_=_					 						589, 301	535, 000	54. 301			
K2		K2	(B)	1,550	0	199	199	K	350	120	0.577	2. 321	0, 812						Exist Pipe \$225 PVC
K1								L						588. 489	550, 000	38. 489			
Katugastota-KFG, R2 PG 576, 680 442, 680 134, 000		14	(B)	1,550	0	201	201	K_	106	120	0.565	2, 211	0. 234	FOO OFF	E00 050	C 005	 	·	Exist Pipe φ200 DI
PG 576, 680 442, 680 134, 000		to for t	DO DO	j	id vv .				Alterday .		31 11 11 11 11 11		FAGE 15 18 18 18 18 18 18 18 18 18 18 18 18 18					1. 3. Y	rittar (N.S. 1911) (S.
		no en Cir	17.11.11.	<u> </u>		التند	فمنت المالية المالية	فتتنج دنيتناه	H5.34 . 27 (1977)	إقلنا فسننتنا		. 1 . 1111 a 1808 (B)	<u> </u>		the fall of the control of the contr	7		<u></u>	
το 1 004,10 600 0.100 0.100 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420		MR	В	33, 190	802	0	802	 	650	130	0.760	0.653	0.425	3,0,000	1111.000	1011 000	В	134.0	· · · · · · · · · · · · · · · · · · ·
MR 576, 255 442, 770 133, 486	MR													576, 255	442.770	133. 485		,	
MR - 17' (B) 33,190 700 0 700 570 130 0,998 1.267 0.722		17'	(B)	33, 190	700	0	700	ļ <u> </u>	570	130	0, 998	1. 267	0.722						
17' 575, 533 453, 650 121, 883		,	/EX	00 750	700		700	ļ	- 660		0.004	0.000	0.500	575, 533	453.650	121, 883	<u> </u>		
17' - AG' (B) 22,750 700 0 700 830 130 0.684 0.630 0.523 575.010 527.400 47.610		AU	(B)	22, 750	700	. 0	700	 	830	130	U. 684	0. 630	0.523	575 010	527 400	47 610			ļ
AG' - AG (B) 19,610 502 0 502 230 130 1.147 2.417 0.556		AG	(B)	19 610	502		502	 	230	130	1 147	2 417	0.556	919,010	341.400	40,010			
AG 13, 510 502 0 502 130 1.141 2.411 0.550 574.454 567.000 7.454		110	(1)	10,010	502		002		100	100		<u> </u>	V. 000	574, 454	567, 000	7, 454			

(Phase 2)

Node	Node		B/G	Flow Rate Q(m3/d)		Dia. D (mm)	Mixed Dia Dm (mm)	Exist.	Length L(m)	С	Velocity v(m/sec)	Hyd. Grd I (%)	Loss h(m)	Dynamic Pressure	LWL HWL	Dynamic	Pump	Required	Remark
node		nodo		eg (mo) d)	2,005	2,010	Dia (ma)		L (III/		v (m/sec/	1 (700)	11 (01)	Hd (MSL)	(MSL)	Pressure He (m)	Туре	Pump Head H(m)	
# 14. E 1 F		72.43° () <u>6</u>	PUNA WAR		e, a a giray.	of a think	A FOR THOSE DECIMEN	altat ve			regardan çxi			100000000000000000000000000000000000000			75. T		e jako e i jereta.
10'	AG'	(TD)	(7)	0.150	-500			ļ						575, 010	527, 400	47.610			
AG'	(IB)	(IB)	(B)	3, 150	502	.0	502		<u>4</u> 30	130	0.184	0.082	0.035	F	F00 000		(B)		
(IB)	(1D)	57	В	2, 150	252	0	252		1, 900	130	0. 499	1, 161	2, 206	574. 975	530, 630	44. 345	В	61.3	
(10)	57	01	+ "	2, 100	202	Ų.	202	· · · · - ·	1, 900	130	0.499	1, 161	2.200	634, 069	629. 000	5. 069	В	61.3	
						1 1 1 1			81	u. i iyesa	ari degatira	laksaakii.	es india	004.005	02,3,000	3,005			
	(IB)					<u> </u>			************			H	<u> </u>	574. 975	530, 630	44. 345	-		· · · · · · · · · · · · · · · · · · ·
(IB)		582	(B)	1,000	. 0	502	502		3, 050	130	0.058	0.010	0.030						
	582				3 "		1 124.75		***** ** C. ***					574, 945	555, 000	19.945			
	17'		المناب					فسنسف	2 2 2	L. S. 1922					150 050	200			
17'	- 17	1702	(B)	10, 440	400	0	400		2,000	130	0. 962	2, 276	4, 552	575. 533	453, 650	121. 883			<u> </u>
	1702	1102	(D)	10, 770	-400	•	400		2,000	130	0. 902	2.270	4, 552	570, 980	545, 000	25. 980			
1702	-	17	(B)	6, 440	400	0	400		70	130	0.593	0, 931	0.065	010, 500	040.000	20. 500	\vdash		
	17										21.000	3, 7,52	******	570. 915	566,000	4. 915	\Box		
		3	5.X12.32					S 0.3	de cusa a		AR CARREST	นาน เป็นสียน	ni châlet	Y 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ya daga da la	365 Charles (1820)			
	1072													570, 980	545, 000	25. 980			
1072		18'	(B)	4,000	0	252	252		1,500	120	0. 928	4. 246	6.369		ļ			-	
18'	18,	10	1/5	1 000			050		4 250	150				564, 612	480, 000	84.612			
18	18	18	(B)	4,000	0	252	252		1,350	120	0. 928	4. 246	5. 732	558. 880	F40 000	10.000			
		etara-6	in his ov	da	25003513190	A. Cran	A) 11 - 32 & 4	523(VA)U, L.	Lew Mari	at 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ar and a fall	TWENTS:	558.880	540.000	18, 880	, <u>.</u>	FT 1513 - 1413 - 14	, 15,51
	5″	a: 612:954 ; 5	o trags	23.44	28 (10 au 1	**.c	er supplication of the	N. S. S. S.	SET GARAGETY	<u> 1960 (1889)</u>	20.00	<u> </u>	11-71 Table 6969A	546, 601	456, 990	89, 611		<u> </u>	<u> </u>
5″	-	65'	(B)	2, 140	252	0	252		950	130	0.497	1, 151	1.094	040.001	400.330	03, 011			
	65',													545, 508	490, 310	55. 198			
65'	_	6501	(B)	1, 200	201	0	201		1,720	130	0. 438	1. 187	2.042						
dros	6501	0.404	(5)											543, 465	506, 600	36. 865			
6501	6401	6401	(B)	100	0	97	97		1, 250	130	0. 157	0.416	0.520						
6401	- 0401	64S	(B)	100	0	97	97		780	130	0, 157	0, 416	0.324	542, 945	455. 000	87. 945			
0401	64S	045	(1)	100	Ÿ ·-	- 31	31		100	130	0, 197	0.410	0.324	542. 621	530, 000	12. 621			
***************************************	T P		200		21.7533	i de l'accepto			ST SPECT		eran erang			042.041	030.000	12.021	5.2	7.17.00 C	
	65'						N 107 1131 300, 2901, 27	×-30000000	1,070.000			ana saya na an an an an an an		545. 508	490, 310	55, 198		2.7.2.2.2.	SSE 4 - 54 No. 1 April 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
65'	-	65G	(B)	950	0	149	201	K	100	120	0. 347	0.894	0,089						Exist Pipe ϕ 150
	65G								Q-11 11.00 07 - 11.00 07	· · · · · · · · · · · · · · · · · · ·		PAGE 18 100 VIII.		545, 418	528,000	17. 418			
	CFOI	مقتنين أوكا	- 20 X - 15 - 1		\$200.000			124 G. 35			275 7 3 1 2 1 5 1 5 6 5 7 3 1 4 5 4 5 1 5 1 3	Cas in the			FOR COO	22.025			
6501	650 <u>1</u>	65	(B)	1, 100	201		963	_v -	- nó	120	0.401	7 011	0.001	543, 465	506, 600	36, 865			
0001	65	00	(D)	1, 100	201	- 0	201	К	90	130	0, 401	1.011	0.091	543, 374	531. 200	12. 174		· · · · · · · · · · · · · · · · · · ·	
		ja de vo		Sa	and a			3	F5. Jellenin		11.500000			543.314	531. 200	12.114	 		
	64	<u> </u>	A4450 IRK	<u> </u>	**************************************	13. ac	· · · · · · · · · · · · · · · · · · ·	25-21-22-2-23	2 - 3 - X 5KB (2-K-X)2	<u>28</u> 28	r : //24/19 Janua 94 Ga	OL ' No Medical Add C	Participation of the Property of Ship	512.000	512,000	0,000		<u> </u>	
64	-	64	G	1,020	. 0	141	141		750	130	0, 756	4. 942	3. 706			2,000			
	64'													508. 294	460.000	48. 294			
64'		64G	(B)	1,020	0	141	141		3,000	130	0.756	4. 942	14. 825						
 	64G	**************************************						2F-254-15	51 Jay 21 July 2 July 2		Grand and Statement	8, 3******* K.J. 7.**	50 88 tex	493, 469	480,000	13. 469			
<u> </u>		ng san till	ê(L)jerî		1348 (44-149		y y Kall Abad of	instric	an mark	Marin Cold	TECTES	Arigidas s	in said un	FOT DOO	For Ann	2 3 3 2 2		3, 4	
64S	64S	64B	В	100	0	97	97	· · · · · ·	360	120	0, 157	0.482	0.174	567, 200	526, 000	41, 200	В	41 9	Exist Pipe ø110
040	64B	0.40		100	· 	91	71		300	140	ν, τοι	U. 40Z	U. 174	567. 026	562, 000	5. 026	D	41.2	Exist ripe wito
	7 T T T	897.Da	Sa. 151	1,33	En Adjub			0.503		e Principali	Period Confra	38. j. 1714. liji		207.020				The street	
		فأحض بهدائد	<u>التنافية الاعتبارا</u>	e e e e e e e e e e e e e e e e e e e		التناعة متم من	الانتيانية والمعاومة والمعاودة			<u>گا_ دلامتین به م</u>	الكة عندات الاطمال ومعدوسا	A 44-1 W. 1186-1 418	en renewater is a state and the	makardarana		متأعاتك تعددك كستفعاته	المنتقس محسد		

(Phase 3)

	Node		B/G	Flow Rate		Dia.		Mixed Dia	Exist.	Length	С			Loss	Dynamic	LWL	Dynamic		Required	Remark
Node	>	Node		Q (m3/d)				Dm(mm)		L (m)		v(m/sec)	I (‰)	h (m)	Pressure	HWL	Pressure	Type	Pump Head	
		an violent in a	k: ^ :- 1		2,005		2,015	11 2 1888 ST	12/25/12/22	. 1098)	THE RESERVE		Marian III y	N. E.N. NOW HEAD.	Hd(MSL)	(MSL)	He (m)	1,111	H (m)	y
	KMC-P± KMC	imrose					ET III.					- 1-4,			643, 000	471.000	172, 000	·	CS - 25 /2	
KMC	- KMC	63	В	2, 360	0	0	201	201	v	500	120	0, 861	4.812	2, 406	043,000	471.000	172,000	В	172 0	Exist Pipe φ200
Nate		(= Pri					201	201		- 300	120	0.001	4,012	2, 400	640, 594	635.500	5. 094		112.0	DAID TIPE WEST
1 1 1 1	KMC-Pt	ivaxam	i A M	indagala	7 - 2 7 - 3	A. 10.		# 15 to 16 (24)	1443034	£ 375 4. 7 5	u silve i Dia		1944 F 20		010.001	300.000	0.001	\$ 4 E		
	KMC	1.7 048 004110	1	Tring Grant .			plid 'Sai India'd	Ballio IVV III Cove		2	a demand	ALTO LOCALITE SECURIO	11	2.30.4851433	582. 000	471.000	111.000			
KMC	-	36'	В	13, 700	0	502	0	502	· · · · ·	2,000	130	0.801	1. 245	2. 490				В	111.0	
	36'						·								579, 510	480.000	99. 510			
36'	_	36	В	900	0	0	141	141		3, 700	130	0.667	3.920	14. 505				<u> </u>	ļ <u>. </u>	
	36														565. 005	560, 000	5. 005			
	KMC-Uda	aperder	ıiya∗							<u> </u>	>				·			ļ		
	KMC							- 1- 1-					1 500		589. 30 <u>0</u>	471.000	118. 300	-	110.0	
KMC		66'	В	4, 000	0	0	299	299		1, 100	130	0. 659	1, 592	1. 751	607 C40	490,000	97, 549	В	118.3	
66'	66'	67	(B)	4, 000	0	0	299	299		1,600	130	0, 659	1, 592	2. 547	587. 549	490.000	91. 049		 	
- 66		(= Uda			0		299	299		1,000	130	0.009	1, 592	2. 347	585, 002	580.000	5, 002			
	01	(- uaa	perae	auran/	٠.								·		500.002	300.000	3,002	<u> </u>	· -	
-	67		-									1			636, 100	576, 000	60. 100			
67	-	68	B	3, 000	0	0	325	325	K	1,500	120	0.418	0.718	1, 077		0.0.00	00.100	В	60. 1	Exist Pipe φ280 &
	68	(= Uda					- 020		<u> </u>	1,000	124				635, 023	630, 000	5. 023			φ 250
		1 044	70, 41	,,,,,,,							- 1									
	68														712, 500	626.000	86. 500			
68	-	69	В	2,000	0	0	199	199	K	2,000	120	0.744	3.719	7. 439				В	86. 5	Exist Pipe φ225
	69	(= Bow	alawa	atta)					_						705, 061	700.000	5, 061			
																		<u></u>		
	69								<u> </u>						761.700	696, 000	65. 700			
69		70	В	1,000	0	0	141	141	1	1,400	130	0.741	4.764	6, 669				В	65. 7	
			ing	nill estate	<u>e)</u>										755. 031	750, 000	5. 031			
ļ	KMC-KFC	j	ļ <u> —</u>					<u> </u>							576, 100	471.000	105. 100		 -	
KMC	KMC	6401		10, 480	0	Ö	502	502	K	200	120	0, 613	0, 879	0, 176	910, 100	471.000	105. 100	В	105.1	Exist Pipe φ500
VMC	5401	5401	В	10, 480		<u> </u>	502	502	_ v		120	0.613	0.819	0.170	575, 924	480.000	95, 924	ь	100.1	Exist Tipe \$ 000
5401	- 5401	54'	В	10, 480	0	0	502	502	K	1,000	120	0, 613	0, 879	0. 879	010. 524	480.000	JO. J.L.			Exist Pipe φ500
10201	54'	<i>□</i> -1;	- '' -	10, 100	υ		502	- 502	1	1,000	140		0.017	0.010	575, 045	485, 000	90. 045			
54'	-	57'	(B)	5, 280	0	0	502	502	K	1,800	120	0, 309	0, 247	0. 445					1	Exist Pipe φ500
<u> </u>	57'		, <u>/</u>		<u> </u>	<u>~</u> -									574. 599	500.000	74, 599			
57'	- *! -	582	(B)	5, 280	0	0	502	502	K	1,400	120	0.309	0. 247	0.346						Exist Pipe φ500
	582	= R2	1												574, 253	555, 000	19, 253			
																			<u> </u>	
	KMC														542, 300	471.000	71. 300		ļ	
KMC		66	В	2, 870	199	0	0	199	L	900	130	1,068	6. 256	5, 631				В	71.3	
	66	= Dang	ola						ļ						536, 669	531, 600	5, 069	<u> </u>	<u> </u>	
					ļ	L	ļ <u>.</u>		ļ		ļ	ļ			545 D.5	105 000	00.045	ļ		
<u> </u>	54'		<u> </u>			ļ <u>.</u> -			ļ	1 050	100	0.005	1 500	1 000	575. 045	485.000	90, 045		 	
54'		54	(B)	5, 210	350	0	0	350		1, 050	130	0.627	1.206	1. 266	573. 779	570.000	3. 779		ļ	
	54	= Heer	essa	gala low					 						ərə, 119	910.000	3,119_	 	 	
L	L					l <u> </u>	L.—.—	l	J		l	L	l			 				

(Phase 3)

	Node		B/G	Flow Rate				Mixed Dia	Exist.		С			Loss	Dynamic	LWL	Dynamic		Required	Remark
Node	>	Node		Q(m3/d)				Dm (mm)		L(m)		v(m/sec)	I (‰)	h (m)	Pressure	HWL	Pressure	Type	Pump Head	
					2,005	2,010	2,015								Hd (MSL)	(MSL)	He(m)		H (m)	
_	<u>5</u> 4														629. 100	566,000	63. 100			
54		54a	B	2, 740	201	0	0	201		870	130	0.999	5. 469	4. 758				В	63. 1	
	54a														624. 342	576. 330	48. 012			
54a		55	В	2,740	199	0	0	199		400	130	1,020	5.742	2, 297						
	55			ala (Midd											622, 045	617,000	5.045			
				,	Ť	F	4		MGC 4-4	4.5.3 Res 18	a Name of		eren er		n ki z kiji jili jili i ne					
	55	N		<u> </u>					. <u> </u>	the constitution of	3x 4,73 50	1,8			684, 900	613.000	71.900			
65	-	55a	В	700	149	0	0	149		350	130	0.465	1.882	0, 669	001,000	010, 000	71.000	В	71.9	DIP
00	55a	UUA	n	100	173	··· ·		143		, 000	100	0, 400	1,002	0,005	684. 241	636, 350	47. 891			D11
55a	- 554	56	B	700	141	0	0	141	_	470	130	0, 519	2, 463	1. 157	004, 241	000,000	11.031		 	PYC
ออุน						<u> </u>	- -	141		410	150	0.019	2.403	3. 101	683.084	678, 000	5, 084	_	-	110
			essar	ala (Uppe		W/11 - 2 - 3 - 1	5 5 5 5 5	OTTO STROMRORY	SIRM HANDON	14 13,-13 - W - W - 10	: X1.05(0.0)	A STATE OF S		97569 (114581) × 11		254	5.004	-		
	KMC-R2			h diam	#1	84-304	GY TOWARD C		مقطعتم				51, 10 TO	259 (546) X (606 100	** ** ** ** ** ** ** ** ** ** ** ** **	76 700		<u> </u>	Carlo Carlo
	 	= R2				11	T. C. Lawrence					1 501	2 100	1 202	626, 190	549, 490	76, 700			D 1 . D1
582		583	В	11, 420	0	0	328	328	K	500	120	1.564	8. 192	4, 096	0.00	7.7 00-		В	76, 7	Exist Pipe φ250×2
	583	= R3	LI						ļ						622, 094	617.000	5. 094	ļ		
			100					and Company	35000	No. 10 I test	Moral Local	nor vir similaridade estas.		Section of the section in the				L.,.		\$15
	582														648, 590	549, 490	99. 100			
582		61S	В	1, 960	201	0	0	201		860	130	0, 715	2. 943	2. 531				В	99.1	
	61S	= Hant	ana r	lace											646.059	641.000	5.059			
1.75	ing May 1993							a was a last the		tura natificación	de inici	1 2 4 114	and and a					4		
	61S			<u> </u>	1						1 12 . 12 . 12 . 12	A STATE OF THE STA			684, 700	637,000	47, 700			
61S		61	R	820	-0	0	199	199	К	900	120	0, 305	0,715	0, 643				В	47. 7	Exist Pipe ϕ 225
015		= Hant			 ~	<u>'</u>	100	Ca. 3 CT 17 SH-MAN(EX		500	1,50	.01000		0.010	684. 057	679,000	5. 057			
	- 91	- Hant	ana i	.ur	a contract	1	Jan Baran	VICENS AND A	(Q2 a) .		e esie	**************************************		[[]* 12]-(22]-1-1	1001, 001 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5.000		 .	†	
	<u> </u>	33 (Se 11 Se 11)			0.300	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATA - WE TIME. The	2002 C	F . 33		Signification	Letter 1.	2 2 37 20 .04 .5	S. Chalens and		675.000	4.000	. s. <u>. 7 5</u>		
	61		 		ļ. —,-	7.47		1.11		1.700			0.147	0.050	679.000	010.000	4.000		_	
61		61H		650	0	141	0	141		1, 700	130	0. 482	2. 147	3, 650	055 050	000 000	15.050			
	6111	= Hant	ana c	all link	ļ			<u> </u>			ar Jane		2	3723.2	675. 350	660.000	15, 350			
1			امحنت	تغفيت والمراجع والمراجع		8		201	Zeil Con		\$101,000.2	A CONTRACTOR	Sod N			***************************************	أح والمنطقة المنطقة الم			
	61									ļ					775, 200	675, 000	100, 200			
61		HT	В	190	0	141	0	141		710	130	0. 141	0, 221	0.157				В	100. 2	
	HT	= Hant	ana i	pper		Γ	l								775. 043	770,000	5. 043			
	- 3				1 .:				f. a.		2					1 14.0	estant Bress F			
	583	= R3													617.000	613, 000	4, 000			
583		6001	G	5, 210	0	299	0	299		541	130	0, 859	2. 596	1.404	-					
	6001		 - +		 	†			 						615, 596	560,000	55, 596			
6001	-	6002	(G)	5, 210	0	299	0	299	 	1, 304	130	0.859	2, 596	3. 385					_	
5001	6002	3002	 	0, 410	 		<u>`</u>		 	-,,,,,,,,	****	0.000	2.000	5.,000	612. 211	571, 450	40. 761	 		
6002	0002	60	(G)	5, 210	299	0	0	299	 	1,810	130	0,859	2. 596	4, 699	VID: 011	0111300				
0002					433	 	U	499	 	1,010	100	0,009	2. 000	4,000	607. 512	586, 000	21, 512	<u> </u>		
	60	=Amp	10178	·	ļ										007.012	360.000	21. 712			
		<u> </u>			ļ	<u> </u>	ļ	<u> </u>		Z			1		604.700	E00 E00	40 800		 	
	60	L	<u> </u>		ļ				ļ	<u></u>		0	ļ		624, 700	582, 500	42. 200			
60		60E-1	B_	1,200	199	0	0	199	L	260	130	0.447	1. 247	0.324		\ <u></u>		В	42. 2	
	60E-1						L			<u></u>					624. 376	555. 170	69. 206		L	
60E-1		60E-2		1,200	201	0	0	201	L	3, 100	130	0. 438	1. 187	3. 681		L	L <u></u>	l	<u> </u>	
	60E-2				1				L						620, 695	555. 620	65, 075		ļ	
60E-2		60E		1,200	199	0	0	199		520	130	0. 447	1.247	0.648			,			
	60E	(= Elh	ena)	<u></u>	T										620, 047	615,000	5. 047			
		2111				·····										\				
	60				 	 	 			 -					725, 400	582, 500	142, 900		1	
60		6005	В	980	149	0	0	149	 	1, 480	130	0.651	3. 508	5, 191	. 201 100		1.2,000	В	142. 9	DIP φ 150
-00		0000	- D	900	149	<u> </u>	· ·	143		1, 1200	100	0.001	0.000	3, 151	720, 209	630, 000	90. 209			- ¥ 100
2005	6005	<u> </u>	1		141	 		141		400	120	0.700	4. 589	9 202	120.209	000.000	30, 203			PVC φ 160
6005	_	60+	В	980	141	0	0	141		480	130	0.726	4. 589	2, 203	710 000	710 000	C 000	<u> </u>	1	φ100
	60+	= Mull	epihi	IIIa	I	l	l		L					l	718, 006	713, 000	5.006	L		

(Phase 3)

	Node		D/ U:	Flow Rate	Dia.	Dia.	Dia.	Mixed Dia	Exist.	Length	С	Velocity	Hvd. Grd	Loss	Dynamic	LWL	Dynamic	Pump	Required	Remark
	>			Q (m3/d)						L (m)		v(m/sec)	I (%)	h (m)	Pressure	HWL	Pressure		Pump Head	
					2,005										Hd (MSL)	(MSL)	He(m)		H (m)	
										Control of the contro								N. B. Mari		
	60+											· · · · · · · · · · · · · · · · · · ·			709. 000	709,000	0.000			
	-	60+1	G	100	141	0	0	141		100	130	0.074	0.067	0, 007	7.0 000	704 000				
	60+1	201		7.00				70		100	100	0 505	7 100	0.015	708. 993	664, 330	44, 663	<u> </u>		
60+1	60'	60'	1 21 2	100	79	0	0	79		190	130	0. 236	1, 130	0. 215	708. 993	674, 360	34, 633			
	60'	***************************************	ipin:	illa (Low))					rijeto tellini		Se ser Silveria			Johanna (j		674.300	34, 633			
	60'	أتت في نيس		k i de e i j	15 4 5 4			1.4 mg/2.4		100 Sept 2 1881	i wildbydig	and the second second	Every leader of the	** ***********************************	740, 500	672.500	68. 000			
· · · · · · · · · · · · · · · · · · ·	- 00	60″	В	100	· · ·	ō	66	66	К	1, 400	120	0, 338	3, 146	4. 405	140, 500	012.000	00.000	B	68.0	Exist Pipe ø75
				lla upper)			- 00	- 00	11	1, 100	120	0,000	0, 140	4, 400	736, 095	731.000	5. 095	 -	- 00.0	DAISO LIPO W TO
		1 1102		dill dppci		7.24		4 M. Jag	WALE IN		6.20.30	7.875 TEST		1 (4) (5)						· · · · · · · · · · · · · · · · · · ·
	60							27 27 242 25	. 5.22	g 11 ng gleigte we's					652, 600	582, 500	70. 100			
		6003	В	2, 150	0	141	141	184	К	1, 500	120	0.941	6, 308	9.461				В	70. 1	Exist Pipe ø 160
6	5003												1		643. 139	600.000	43. 139			
6003	- 1	60M	(B)	2, 150	. 0	141	141	184	К	485	120	0. 941	6. 308	3. 059						Exist Pipe ø160
	60M	(≃ Meel	kanuv	va)											640.080	635.000	5. 080			
	11.00	milkelid		55.00 (St.00.2)	100		a i lake vi	ar Single	101 TO 10		On H	<u>Edboata</u>	Transaction in	Maria i		Service of the Artist	a a and	, i e ji ii		
	.,								200 TO TO TO	action read to		7°785 :: 28 #		v		Sala Saran Tari			2	
		tota-M	adaw	ala 😓 💮		St. Christ	i sulfat			ting the Salatin	D. Alexander		20-N.17-16			algot-life		2.115	<u> </u>	<u> </u>
	PG		_								120			4 0 70	540. 780	442.680	98. 100	<u> </u>		
	-	601	В	44, 240	592	0	592	771		650	130	1.098	1. 351	0.878	500 000	444 000	05.000	В	98, 1	
	601	5001	(D)	99 400	500					1 700 :	100	0.004	1 501	0.600	539, 902	444. 020	95, 882		-	
001	5001	5001	(B)	23, 400	592	0	0	592		1, 790	130	0.984	1, 501	2. 688	537. 214	442, 250	94. 964			
		5002	7p)	20, 300	299	592	0	628		1, 250	130	0.760	0, 869	1,086	557.214	442, 250	94, 904			
	5002	0VV2	\D/	20, 300	299	994	U	040		1, 230	130	0.700	0.809	1,000	536, 128	450.000	86, 128	 		
		5003	(B)	5, 100	299		0	299		2,280	130	0, 841	2, 495	5, 690	550. 125	300.000	00, 120			
	5003	0000	\D _Z	3, 100		<u>v</u>		200		2,200	100	0,011	2, 100	0.000	530, 439	455, 220	75. 219			
	-	26'	(B)	3,900	299	0	0	299		190	130	0.643	1, 519	0. 289	000, 100					
	26'		127												530, 150	456, 990	73. 160			
	-	26	(B)	3, 300	252	0	0	252		1, 150	130	0.766	2. 565	2, 950						
	26	(= Ban													527, 200	521. 280	5, 920			_
	7.			, 4 D. 13 Jen 4	si, 5	JA 1	(4)				035, 435							L.		<u> </u>
ϵ	601														539, 902	444.020	95, 882			
301		601'	(B)	20, 850	592	0	0	592		890	130	0.877	1, 213	1.079				ļ <u> </u>		
	601							L							538, 822	443.000	95. 822			<u></u>
			(B)	2, 340	199	0	0	199		870	130	0.871	4. 288	3, 731			45.6:-			
	3	(= Kah	alla)												535, 091	491. 250	43. 841	ļ		
															507 014	440 000	04 064	 -		
	5001	500	(D)	0.100			100	100	1/	1 000	100	1 154	8. 367	10, 040	537, 214	442. 250	94, 964	\vdash		Exist Pipe φ225
4441		500		3, 100	0	0	199	199	K	1, 200	120	1. 154	8.307	10.040	527, 174	514. 350	12. 824			Extat Fibe @220
	500	(= Bala	anga.	ıa)				 	 	,		<u> </u>	 		341,114	014.000	12.024	 	 	
 	500						ļ	 					<u> </u>	 	605, 550	510.350	95, 200		1	
h	-	4.1	В	1,300	0	0	141	141		3,300	130	0.964	7, 740	25. 543	330, 500	0101000	50, 200	B	95. 2	
	4 J	*1,1	, <u>u</u>	1, 500			171	1.11		0,000	-100	0.004	1, 1, 20	20.010	580.007	575.000	5, 007			
	- J.							 	-								2. 251	ļ		
	4J	· · · · ·						 							575.000	571.000	4,000			
		4	G	700	- 5	0	141	141	-	2,950	130	0. 519	2. 463	7. 265						
								 			· ·				567, 735	565, 000	2, 735			

(Phase 3)

	Node		B/G	Flow Rate		Dia.		Mixed Dia	Exist.		С	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	Pump	Required	Remark
Node	>	Node		Q (m3/d)				Dm(mm)		L(m)		v(m/sec)	I (%)	h (m)	Pressure	HWL	Pressure	Туре	Pump Head	
	EE/Left Lef	F12. 7. 13 No.	22078	Sala and Sala		2,010		22 72 EE2 EE2	#125107D	Est. Caraca Caraca Caraca Caraca Caraca SPECIAL SEC			TO BE 379 - 35.50	Hd (MSL)	(MSL)	He(m)	- 11 n	H (m)		
7, 7,449	26	<u> </u>			J Car day	(B): 12-3	æ.4711	S. Harris	det itte	_oranielticki	ele.Ske		40 W. G PTM	ALOREST CHICAN	573, 680	517. 280	56, 400	<u>.</u>		111 . J. 111 . 14
26		27'	В	1, 700	0	199	0	199		1, 300	130	0, 633	2. 374	3, 087	973,080	317. 200	30. 400	В	56. 4	
	27'	21	υ	1, 100	· ·	199	v	133		1, 500	130	0.000	2.014	3.001	570, 593	456, 990	113. 603		50. 4	
27'		27	(B)	300	0	97	0	97		2, 700	130	0.470	3, 175	8, 573	510,033	450, 550	110.000			
	27	21	(0)		<u>v</u> .		· · · ·	31	-	2,100	100	0.410	0, 110	0,010	562, 020	557.000	5, 020			
	7.9	10.53.75.0	E - 1	a. 2 - 1965. j	J 2007		STORE STARTS		2.37 5.30	41/41/14/15	862.813S	a samanar.	354M6R.1			001.000	2.020	7.		
	27'	sour manyages		(' لِيَقَالُهُ <u>هِي هِ حِا</u> مِ ' ح		(%)()	81 I - 2 - 200 K	98500031 ftgr., g0- n i	P.R. 113111	200 J. d. 27 (200 to 101)	Carries same			1500 - 510 1 1 - 2500 - 110	570, 593	470,000	100, 593			
27	-	28	(B)	1, 400	0	141	0	141		1, 400	130	1.038	8. 878	12, 429	0.000		200,000			- · · · · -
	28		(2)				·			-,					558, 165	550, 000	8. 165			
	7 T T T T	127 7 7 7	1000	1.5	33, 37, 77	8 T. T. T. T.	7,13,13,13		931511 gr	16. 20.000 1 100 2 10 10 10 10 10 10 10 10 10 10 10 10 10		4, 16, 11, 17, 13,	Mark to built	12.55 EVE			,			
	5003	·							-		37.1.55				530, 439	450, 000	80, 439			
5003		25	(B)	1, 200	199	0	0	199		1, 170	130	0.447	1.247	1.459						
	25	(= Pih	illac	leniya)											528. 980	524. 140	4.840			
								. 7.00	a de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela c		£	2.5.5.5								
	26'											_			530, 150	456. 990	73. 160	L		
26'	-	25'	(B)	600	0	0	141	141	K	630	120	0.445	2. 147	1. 353						Exist Pipe φ160
	25												Ì	_	528, 797	460.000	68, 797		-	
25'	-	25N	(B)	600	0	Ö	141	141	K	1, 150	120	0,445	2. 147	2. 469						Exist Pipe φ160
	25N	(= Nap											Ĭ	-	526. 328	502.000	24. 328		•	
	Katuga	stota K	ahaw	atta				100		for Alfred	Mail 67	La Jakara								
	601'														538. 822	443, 000	95, 822			
601		603	(B)	18, 510	502	0	0	502		3, 700	130	1,082	2. 172	8, 038						
	603														530. 784	499. 600	31. 184			
603		6	(B)	16, 110	502	0	0	502		50	130	0.942	1.680	0.084						
	6	(= Kah	awatt	:a)											530. 700	522, 250	8. 450	<u></u>		
		20.1							2.2.						1.2					
	6														585, 500	516. 000	69, 500			
6		7'	В	7, 310	350	0	0	350		2,500	130	0.879	2. 256	5. 639				В	69. 5	
	7,											<u>_</u>			579. 861	455.030	124. 831			
7'	~		(B)	5, 400	350	0	0	350		1,400	130	0,650	1. 288	1. 803						
	7	(= Kur	ugoda	1)											578, 057	573.000	5, 057	ļ		
			<u> </u>											<u> </u>						
	603						-				15-				530, 700	499.600	31. 100		ļ -	
603	-	10	В	2, 400	199	0	0	199		1, 250	130	0, 893	4. 494	5. 617	FOE 053	F15 000	10.000	 		
	10	(= Aku	rana)								<u> </u>				525, 083	512.000	13.083	ļ <u>-</u> -		
					L				ļ		ļ				20. 22.	F10 222	100.000			
<u></u> _	6							····			155-		L	10.010	624, 800	516, 000	108,800		100-0	
_6		11'	В	6, 400	0	_0	350	350	<u> </u>	6, 150	130	0,770	1.764	10, 848			10 050	В.	108.8	
	11	<u> </u>	<u> , </u>						ļ					10.000	613, 952	570,000	43, 952		-	
11'			(B)	2, 500	0	0	199	199	<u> </u>	3, 900	130	0.930	4. 847	18.901	F05 050	500 000	F 000			
	12	(= Bol	lawel	.a)	i					ļ	ļ				595, 050	590.000	5. 050	 -		
ļ			\vdash						<u> </u>		ļ	ļ			610.050	F70 00	40.050	<u> </u>		
· ,·.,-	11'		- 	4 100		<u> </u>			ļ. <u>-</u>	100	100	0 505	05 450	0 545	613, 952	570.00	43. 952	-		
11'	-	11	(B)	1,100	0	0	79	79		100	130	2.597	95, 453	9. 545	604, 407	570.00	34. 407			
	11			·	ļ	<u></u>			ļ						004, 407	570.00	34.407	<u> </u>		
· · · · -	ļ. . .,.		├ -			<u> </u>									660, 652	566, 00	94. 652			
1.7	11'	110	122	0.000			0.50	050		2 400	120	0, 603	1,650	5, 611	00V. 03Z	300,00	94.002	İB	46. 7	
11'	- 110	115	IB	2, 600	0	0	252	252	ļ <u>.</u>	3, 400	130	0, 603	1, 000	5, 011	655, 041	650.00	5. 041	_ <u>ID</u> -	40. /	
	115	L	LL		l					L	1	L	Ll		055.041	000.00	3.041	1	· · ·	1

(Phase 3)

	N . J .		D/C	El D-4	Di-	D/-	D:-		r	1 7 - 11 - 12 1		V-1	Hard Card	Laav		LWL		D	Required	Remark
Node	Node_	Node	B/ G	Flow Rate Q(m3/d)					Exist.	Length L(m)	С	Velocity v(m/sec)	Hyd. Grd I (‰)	Loss h(m)	Dynamic Pressure	HWL	Dynamic Pressure		Pump Head	кенагк
Hode	r	Noue		eg (mo/ u)	2,005			Dir (mir)		1. (III)		V (III/ Sec)	1. (700)	11 (11)	Hd (MSL)	(MSL)	He (m)	Турс	H(m)	
719 F.S.	AAN KAA	18 EV 5	15 D.		2,000	2,010	2,010	50183.2	1954LE-45		Marra			Marian - 13			TIO VIII)	Salah :		1 Mar 1 Mar 1 M
· · · · · · · · · · · · · · · · · · ·	115		, ac.c	1) 1 ₁ 1 ₁ 1 ₁ 1 ₁ 1 ₁ 1 ₁ 1 ₁ 1		to te Almino obstitution	1.15.1.5.27	. ST. ATALIN, KARRANERS.	A.A.C. MC4177	VT / / EDD // 4.X	X / 10/ (12/0)	100,000,000,000	P. M. C. C. C. C. C. C. C. C. C. C. C. C. C.	. 1523 1. 5 mg-13 -	710.000	646.00	64, 000			
11S		11G	В	2,600	0	0	252	252		3,000	130	0,603	1,650	4.951				В	64.0	
	11G'														705, 049	700, 00	5.049			
		10000	200 c	1		11.00			The realist			geriğ telliği.			الله الله الله الله الله الله الله الله		N			
	11G'														754. 349	700.00	54. 349		<u> </u>	
11G'	-	11G	IB	2,600	0	0	252	252		2, 600	130	0.603	1.650	4. 291	222 222			IB	49.3	
	11G		ļ.,ļ	-, -, -, - ,	,					10-10- 2 00-0		v v.hegisze			750, 059	745. 00	5. 059			<u> </u>
	7'	-					(11.135)				<u> </u>	The Mark Waller Committee of the Committ			579.861	455, 030	124. 831	ļ	 	·
7,***		8	(B)	1, 910	252	0	0	252		950	130	0.443	0.933	0, 886	219.001	455, 050	144. 031	-		
	8			ıgahawatta)	232	U	\ \ \ \ \ \	404		930	130	0.443	0.933	0.800	578, 975	566, 750	12. 225		 	
	0	(- 1116	Tallin	iganawatta,	/ 	(14-23	Control (ex)		T. T. F.		្នាលក្នុងរប				7 4 4 7 7 7 7 7	000. 100	12. 220			
	7	<u>`</u>	N. 49.			<u> </u>		A Warran Mr.	<u> </u>	1124024000	10.000 11003	85.5 55. 45.453.6	t . n. jarrainler. markr	<u> </u>	628, 100	569.000	59. 100		i	
7	<u> </u>	9	В	3,000	0	0	252	252	<u> </u>	3, 760	130	0. 696	2.150	8, 085	0,000,100			В	59.1	
	9	<u> </u>	-	.,	-										620, 015	615, 000	5, 015			
	Katuga	stota-l	duwa	wala				SENS COLE	2000	6 - 2 3354				an Louis and A		94		<u> </u>		
	PG						1								584.980	442, 680	142. 300			
PG	_	5'	В	8, 800	0	400	0	400		700	130	0,811	1.659	1. 161				В	142.3	
	5'														583, 819	450.000	133, 819			
5'		1301	(B)	8, 800	0	400	0	400		1,200	130	0,811	1.659	1. 991					ļ <u>-</u>	<u> </u>
	1301		(0)				ļ					0 77-0		7 071	581, 827	470.000	111. 827		ļ	
1301		14'	(B)	4, 600	0	299	0	299		3, 420	130	0, 758	2, 062	7, 051	554 550	500 000	1 / 650	_	ļ	
	14'	153	(D)			200	<u> </u>	000		0.000	100	0, 758	2, 062	1 710	574. 776	560,000	14, 776			
14'	17N	17N	(1)	4, 600	0	299	0	299		2, 300	130	0, 158	2,002	4.742	570.034	565, 000	5, 034			
		ctotori	ondo	deniya, Kur	Hannana		 						!	,,,	310.034	303.000	3, 034			
	PG	30000	Ollur	deni ya, Kuz	renum		<u> </u>				M	· · · · · · · · · · · · · · · · · · ·			544. 580	442, 680	101. 900			
PG		5″	В	5, 870	350	0	0	350		520	130	0.706	1.503	0, 782	011.000	112, 000	101,000	В	101.9	
	5"	 <u>~</u>		2,0.0	500	<u>-</u> -	<u>-</u>						11,000		543. 798	468, 410	75. 388			
5"	-	5″a	(B)	3,050	299	0	0	299		890	130	0,503	0,964	0.858						
	5 a						1								542, 940	505, 180	37, 760			
5″a	-	5	(B)	3,050	. 0	0	299	299		520	130	0,503	0.964	0. 501						
	5	= Kond	aden	í ya											542. 940	535, 250	7. 690			
									- :											
	5													4 655	591. 150	531. 250	59, 900			
5	-	K1	В	1, 150	0	0	199	199		1,525	130	0.428	1. 152	1. 757	500 000	505 000	C4 B00	В	59.9	
	K1	1.0	(0)	1 000			100	100		350	120	0, 595	2. 461	0, 861	589, 393	535, 000	54. 393	<u> </u>	 	Exist Pipe φ225 PVC
К1	- k2	k2	(B)	1,600	0	0	199	199	<u> </u>	350	120	0,595	4.401	0, 861	588. 531	550, 000	38. 531		 	EXIST TIPE # 225 FYC
k2	- KZ	14	/p)	1,600	0	0	201	201	K	106	120	0. 584	2. 344	0, 249	380. 331	330,000	30, 331		 	Exist Pipe φ200 DI
K2	14	(= Kur				<u> </u>	401	201	- 1\	100	140	0.004	2.011	0. 413	588, 283	583, 250	5. 033			LATER TIPE WHOU DI
		stota-l					 			 						300, 200	2, 200			
	PG	20001	<u>; </u>				<u> </u>		<u> </u>						576, 880	442, 680	134, 200		· · · · · ·	
PG		MR	В	51, 110	802	0	0	802	l	650	130	1.171	1, 452	0. 944			_	В	134. 2	
	MR						Ī								575, 936	442.770	133, 166			
MR		17'	(B)	51, 110	700	0	592	846		570	130	1.053	1. 122	0, 640				ļ	1	
	17'												ļ		575. 296	453.650	121, 646	L	<u> </u>	
17'		AG'	(B)	3 <u>9, 92</u> 0	700	0	0	700		830	130	1. 201	1. 783	1, 480		F05 :00	10 12 1	<u> </u>		
	AG'	,	ļ.,		<u>-</u>						100		<u></u> -	0.000	573, 816	527. 400	46. 416	ļ	1	
AG'	(+=)	(IB)	(B)	18, 180	502	0	0	502	 	430	130	1.063	2. 101	0. 904	670 019	E20 620	42, 282		 	
/775	(IB)	F.00		15 000			<u> </u>	FÀO		2 050	130	0.930	1.640	5, 002	572. 912	530. 630	44, 484	<u> </u>		
(IB)	500	582	_G	15, 900	502	0	0	502		3, 050	130	0.930	1.040	5,002	567 911	555.000	12. 911		 	
	582	(= R2)	L			L	J	L	1		└──	l 			001.911	300.000	12. 511		·	

(Phase 3)

	Node		B/G	Flow Rate	Dia.	Dia.	Dia.	Mixed Dia	Exist.	Length	С	Velocity	Hyd. Grd	Loss	Dynamic	LWL	Dynamic	Pump	Required	Remark
Node	>	Node	Πİ	Q (m3/d)	D (mm)	D (mm)	D (mm)			L (m)		v(m/sec)	1 (%)	h (m)	Pressure	HWL	Pressure	Туре	Pump Head	
			П			2,010					i				Hd (MSL)	(MSL)	He (m)		H (m)	
			3:51		2 3 3 3				200 E 75							\$ 3.00				
	AG'								-						573, 816	527.400	46. 416			
AG'	-	AG			502	0	0	502		230	130	1. 271	2.925	0.673				Г		
	AG	(= Asg	iriy	a)											573. 143	567.000	6. 143			
	4.46			200	1, 201			a a she a mili na ma sa	s Ze ku		O. A. H. MARIA	4 1			and the markets	Karana.				
	(IB)											_			572. 912	530.630	42. 282			
(IB)	_	57	В	2, 280	252	0	0	252		1,900	130	0, 529	1. 294	2. 459				В	63.6	
	57	(⇒ Bah	iraw	akand)											634. 053	629,000	5. 053			
5 5 5	44.0	1.56M	111	l Arangada d	Padent	4.75 <u>.</u>),	75 1 30		872	Commence of the commence of th	rg-n-re			Gazi Printe						
	17'														575, 296	453, 650	121.646			
17'		1702	(B)	11, 200	400	0	0	400		2,000	130	1. 032	2, 592	5. 185						
	1702													,	570. 112	545.000	25. 112			
1702	-	17	(B)	7, 200	400	0	0	400		70	130	0.663	1.145	0, 080						
		(= Up1										·			570.032	566.000	4.032			
	Katuga	stota 1	alat	hu Oya			nagrati (Jana	The state of the s	¥ 3.5				a village	3.61		Ellar.				
	1702									1					570, 112	545.000	25. 112			
1702	-	18'	(B)	4,000	0	252	0	252		1,500	130	0.928	3.661	5. 492						
	18'		<u> </u>							- · · · · · · · · · · · · · · · · · · ·			1		564, 620	480, 000	84, 620			
18'		18	(B)	4,000	0	252	0	252		1, 350	130	0. 928	3, 661	4, 943						
	18	(Talaw												-,	559, 677	540.000	19.677			···
rend. 4				oda 🐇	47 Januari	18372876G	1	roduktere ia	ga wat	Zarek Küğle (K			in ohtessi	Surgice Sec	Sagarage Sagar	AS THE WISE BUT		. 4	6	
ب نیک شنانک به محمد	5″		r - 1	2.00		100000000000000000000000000000000000000	3.28.252.252.20		lecientalica.	**************************************	SEAST MERCHANIS	Militario desirate a series	Secretary States		543.798	456. 990	86. 808	السنانات	<u> </u>	200 - 200 -
5″	_	65'	(B)	2, 820	252	0	- 0	252		950	130	0.654	1.918	1. 822						
	65'		``~	W, 024		<u> </u>			· · · -				2. 3.25		541. 976	490, 310	51, 666			
65'		6501	(B)	1,600	201	0	0	201		1,720	130	0, 584	2. 022	3, 477						
70	6501	0001	12,	1,000		Ť	Ť			2, . 2,	100	0,001	1,022		538, 499	506, 600	31. 899			
6501		6401	(B)	200	0	97	0	97		1, 250	130	0. 313	1, 500	1.875					-	
3001	6401	0101	12/	244						1, 200	100	0.020	2,000		536, 625	455. 000	81, 625	-		
6401		648	(B)	200	0	97	0	97		780	130	0.313	1.500	1. 170		1,00,000	31.020			
0.101	64S		(3)		<u>_</u> _		-		<u> </u>		100	0.010	1.000	1.1.0	535, 465	530, 000	5. 455			
							in the stage of	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	35 77		, è	i isa - isawei	F. 9.48 00 1	4-1-3940	ja v Agy 11	. (7.	2.8 **		4	
	65'				<u> </u>	F 1 1 1 1		A Country of the Coun	G 1. A 1. 3A 2	Sept. 1, 138 to 71	<u>, , , , , , , , , , , , , , , , , , , </u>	. 10 Kg 12 (985-191)	1 - 1 - 1 - 2 - 12 - 13 - 13 - 13 - 13 -	<u>a ara a suatarna d</u>	541, 976	490. 310	51.666			· · · · · · · · · · · · · · · · · · ·
65'	-	65G	(R)	1, 220	0	0	149	149	К	100	120	0.810	6, 100	0.610	311.010	100.010	51.555			Exist Pipe φ200
	65G	- 555	(4)	1,000		<u> </u>	1.13	110					<u> </u>	<u> </u>	541, 366	528. 410	12, 956			
 	000	7	200	,	- '	v (tus inclárd	(35,70		6-18-19-es		20 July 18 18 18	n independe	541.656	320. 110	12,500		- :	
	6501				اند به فتما			<u>ئىنىڭ ئىزىنى ئىرىن</u>	مدموسفاسيم	A CONTRACTOR	N 20 M. 3897	<u> namalika, ili Tabbisi</u>	a de la Carlo de l	S. 22115-1-1-188-25	538, 499	506, 600	31.899			x × · · ·
6501	-	65	(B)	1, 400	201	0	0	201	K	90	130	0.511	1.579	0, 142	0001 100	300,000				
0001	65			Pallemulla		<u>-</u>	- V	201	, -		100	0.011	1,010	0, 1,2	538, 357	531, 200	7. 157			
		COHAR	Oua (INTIEMOTIA	,			41 - 25 - 27 - 43	10 150	\$0,800,000,000.000.000.000.000.000.000.00	10000		Jak Bis	1	330, 331	301.200	1.101			
	64	251		2.35801 03.55, No. 1	70		11.1.1781	50.5.70 prom			<u> </u>	F A + 18 T (120 SQR (13 T	- A10150 - G-02010		512,000	512, 000	0,000			
64		64'	G	1, 100	0	141	0	141		750	130	0. 815	5. 682	4, 262	012,000	014.000	0.000			
04	64'	04	4	1, 100	<u> </u>	141	·	1.11		100	130	V. 010	0.002	4. 204	507, 738	460, 000	47. 738	-		
64'	<u> </u>	64G	G	1, 100	0	141	0	141	 	3,000	130	0, 815	5. 682	17. 047	5011100	100.000	21.100			
04	64G	040	- 4	1, 100	- -	121	·	141		3,000	100	0,010	0,002	11.041	490, 691	480.000	10.691	<u> </u>		
	040					ļ ——	 	ļ		 					100,001	300.000	10.031		-	
	64S					 	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>	1 8 2 81		ļ	567, 700	526, 000	41.700	 	 	
64S	045	64B	В	200	0	0	97	97	- _K	360	120	0, 313	1.739	0. 626	301,100	020.000	41.100	В	41 7	Exist Pipe ϕ 110
045	64B	Q4D	₽┼	200	— <u>"</u>	- ·	- 31	- 31	<u>v</u>	200	120	0, 010	1.103	V. 040	567, 074	562.000	5, 074	<u></u> .	71.1	DYTO LYPE ATTO
L	OAD	L			L	L	L		<u> </u>	l	I				001,014	1 000.000	1 0.014			

04	Distribution System Calculations

Distribution System Calculation

1. General

This working paper as a report presents the methodology, basic conditions and design criteria, applied for the pipe network analysis for present study.

The network analysis is carried out using US software, which is a user-friendly program based on Kypipes and operated on MS-dos.

And the results of pipe network analysis are described in the following section.

Outline of work procedure for network analysis is presented in Figure 1-1.

2. Condition of Analysis

2.1 Methodology

In the JICA F/S Report on Greater Kandy Water Supply Augmentation Project, prepared in 1999, twenty (20) Service Reservoirs (S.R.) which are shown in Table 2.1-1, were proposed to be constructed newly or expanded for storing the water for distribution. This water is distributed to the consumers in the Phase 1 served area, through the new distribution feeder main, which is planned be installed from S.R. to the existing pipe and/or existing pipe network. To determine the proper pipe diameter of feeder main and pipelines in the distribution network for water supply scheme, the hydraulic network analysis is carried out to meet the design criteria.

The outline of methodology on distribution network analysis for Greater Kandy Water Supply Augmentation Project is presented in the following. Figure 1-1 shows the flow diagram for present pipe network analysis.

2.1.1 Existing Distribution Network of Each Water Scheme

The existing pipeline data is essential matter for analyzing the future pipeline network. For that purpose, the following data are required.

- Drawings of existing distribution pipe network for each water supply scheme together with list of pipe length for each diameter and each material were collected.
- 2) Location of present reservoirs were put on the map of 1:10,000 scale..
- 3) High water, Low water and Ground elevation of existing reservoir were obtained.

2.1.2 Water Demand

The future water demand that was predicted by the F/S is reviewed by taking into account of the latest water consumption data. The water demand required in the new development area, which are not expected in the F/S, will be taken into consideration for the pipe network analysis. However, in principle, the predicted total water demand for Phase 1 project is not changed. Based on the projected and fixed future demand of each water supply scheme, in the years 2005, 2010 and 2015, water demand is distributed in the served area considering the population density, commercial demand, large size consumers and other water demand factors.

2.1.3 Future Distribution Pipeline

The NWSDB's water supply planning for the pipeline expansion for each Water Supply Scheme by the project's target year is indicated on the available map. Distribution pipeline routes from the new Service Reservoirs (SR) to pipe connection points are investigated and used as present data for the pipe network analysis.

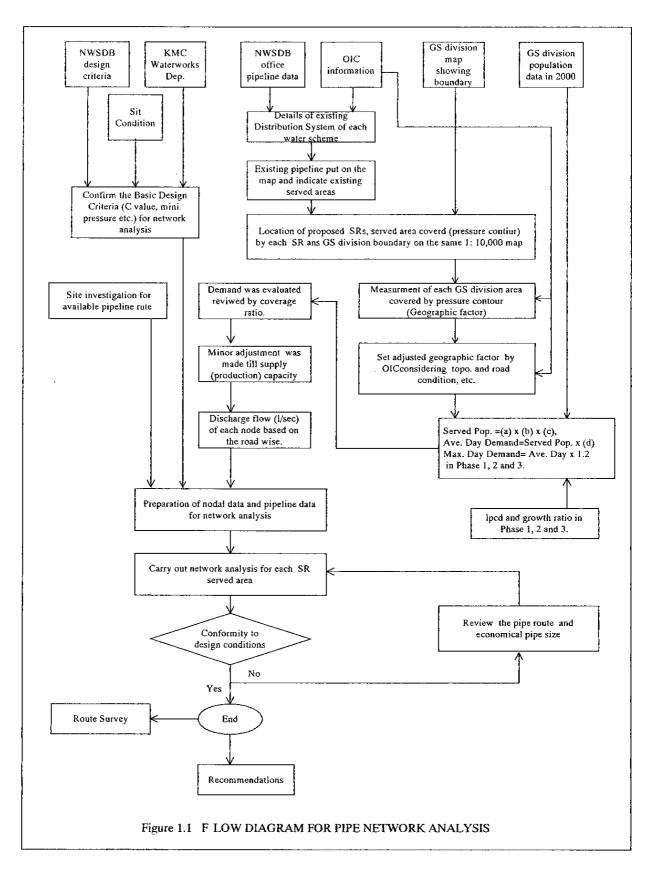


Table 2.1-1 Capacities and Elevations of Proposed Service Reservoirs in Phase 1

SR	Name of Service Resevoir	Water L	evel (m)	Capacity	Туре
No.		LWL	HWL	(m3)	
SR-1	Asgiriya	561.50	567.00	4,100	Ground
SR-2	Bahirawakanda	625.00	629.00	600	Elevated
SR-3	Bangalawatta	518.28	521.28	300	Ground
SR-4	Dangolla	527.60	531.60	500	Ground
SR-5	Elhena	611.00	615.00	300	Ground
SR-6	Gohagoda (Paliemulla New)	527.20	531.20	200	Ground
SR-7	Hantana Place	637.00	641.00	200	Ground
SR-8	Heerassagala Low	566.00	570.00	200	Ground
SR-9	Heerassagala Middle	613.00	617.00	250	Ground
SR-10	Heerassagala Upper	674.00	678.00	200	Ground
SR-11	Kahalla	485.00	491.25	600	Elevated
SR-12	Kahawatta	516.00	522.25	600	Elevated
SR-13	Kondadeniya	531.25	535.25	200	Ground
SR-14	Kulugammana	579.25	583.25	100	Ground
SR-15	Kurugoda	569.00	573.00	600	Ground
SR-16	Mullepihilla Low New	709.00	713.00	100	Ground
SR-17	Pihilladeniya	522.14	524.14	200	Ground
SR-18	Thelambugahawatta	561.50	566.75	500	Elevated
SR-19	Uplands	560.09	566.00	2,960	Ground

2.1.4 Network Analysis

Such design criteria as C value, minimum pressure at the end of network and others, were studied for the present pipe network analysis. Nodal data and pipeline data were also prepared, based on the available information, as shown below.

The network analyses for each water scheme for Full Target Year 2015 (Phase 3) were carried out.

To design the proper diameter of new distribution feeder main/s, pipe route condition and economical pipe size are taken into consideration for the most economical and technically acceptable design.

Distribution of water demands to each node in pipe network is conducted as shown below. The Greater Kandy varies its population, in general, by the class of alongside roads in the district/area. Therefore, the projection of served population by the water system is considered to follow and depend on this characteristic.

The water demand distribution for pipe network analysis was made taking into account the above specialty, and the water demand density per 100m length of main road or pipeline was estimated with the method presented below, for demand distribution to the pipe network.

- 1. Classify the roads in the respective network, into the three classes, (1) Main road, (2) General road, and (3) Foot-pass.
- 2. Estimate the population per above classes as unit population per 100m pipelines.
- Calculate the water demand, applying the length of pipeline, unit population density and the unit per capita water demand.
- 4. Each node's demand distribution was calculated basically as described in the above. And, the demand for such node, which has intersection of plural number of roads, was calculated by applying the proportional distribution.

2.1.5 KMC Network Analysis

Regarding the KMC distribution network, the Feasibility Study on Water Supply Augmentation and Distribution for Kandy (ADB LOAN NO.1632-SRI [SF]), prepared by Engineering

Consultants Limited in September 2000, has been reviewed. Distribution feeder mains to be implemented by the Phase 1 project were designed based on the result of discussion with KMC officials concerned.

2.2 Basic Conditions

2.2.1 Coverage of Distribution Pipe Design

Distribution feeder main pipe from the new Service Reservoirs (SR) to connected point of the nearby pipe network and the fundamental pipelines for strength or augmentation of network were selected and made detailed design.

2.2.2 Design Criteria for Distribution Network Analysis

The following design criteria for distribution network analysis are applied:

1) Peak Factor

- Maximum daily demand / average daily demand is 1.2
- Hourly demand / Maximum daily demand is 1.78
- Hourly demand / average daily demand is 2.0
- The required hourly peak demand for distribution network analysis of 10 WSS is presented in Table 2.1-2.

2) Node and Pipeline Data

- Discharge flow of each node is hourly demand (l/sec).
- In case of PVC, internal diameter is applied.

3) Software Program

The network analysis is carried out using US software, which is a user-friendly program based on Ky-pipes and operated on MS-dos.

4) C value of Hazen-Williams Formula

Material	DCIP	PVC	ACP	SS or GI
New Pipe	140	140		
Existing Pipe	(CI=) 90	120	120	120

5) Residual Pressure

Minimum pressure is at the end of network is 0.1 Mpa (= 1.0 kgf/cm²), ant any node. 0.6bar (6m water head) residual pressure at the house connection is designed.

6) Break Pressure Tank (BPT)

At the location where dynamic pressure is exceeding 0.7 Mpa (= 7.0 kgf/cm²) break pressure tank facilities are designed.

3. Existing Distribution Network

3.1 Alawathugoda WSS

The present situation of Alawatthugota Water Supply Scheme is briefly presented below. In this scheme, the existing two water reservoirs of Villana with 75 m³ water capacity and Owissa that with 50 m³ is covering the Alwathugoda Scheme distribution system. The far north and the southern part distribution areas are supplied water via break pressure tank/s (BPT) by reducing the pipe system pressure.

3.2 Akurana WSS

The existing Akurana water system has a water reservoir with capacity 600m³, which is receiving the water from two boreholes and supplying to this entire scheme.

3.3 Balanagala WSS

The existing Balanagala water system is located adjacent to the Polgolla Scheme and has a water reservoir with capacity 450m³, which is supplying to the pipe network of this entire scheme.

3.4 Polgolla WSS

In this Scheme, there exist two water reservoirs of Bagalawatta: 100 m³ and Pihilladeniya: 100 m³, located in the Madawale area in north. These two reservoirs cover the entire supply area and have almost the same water level.

Further, there is another water reservoir at Napana: 150 m³, in this Scheme, which is not used at present but, be re-used in the future. This reservoir has its water level/elevation 20m lower than that of the other two reservoirs.

And in the south area, there is an existing Polgolla reservoir, which is planned not be used in the future. As described in the above, this Scheme is adjacent to the Balanagala Scheme.

3.5 Kulugammana WSS

The Existing Kulugammana Service Reservoir (300m³) is covering this entire scheme's water system.

3.6 Kondadeniya WSS

In this Scheme, the existing Kondadeniya Service Reservoir (300m³) is covering the entire system water.

3.7 Gohagoda WSS

In this Scheme, the entire system is covered by the following two sub-systems, which are separated by the gate valve:

- (1) Gohagoda Wegiriya Service Reservoir (Old: 300m³) & Gohagoda Low Service Reservoir (Pallemulla: 150m³)
- (2) Yatihagala Service Reservoir: 150m³

3.8 Ampitiya WSS

This Scheme's entire system is covered by the following two sub-systems:

- (1) Existing Ampitiya Service Reservoir (900m³), which covers the southern part of this Scheme,
- (2) Existing Meekanuwa Service Reservoir (225 m³), which covers the northern part.

This Scheme has not sufficiently developed the pipe network system, compared to the other Scheme. Further, along the trunk main road (Ampitiya Road) in this area, there exists asbestos cement pipe (AC pipe) with 6.1km in length. It is necessary be replaced with the other pipe material for this AC pipe, which has disadvantages as high rate carcinogenic material and less durability for heavy traffic load.

3.9 Mullepihilla WSS

In this Scheme, the entire system is covered by the following two sub-systems:

- (1) Mullepihilla Low Service Reservoir (25 m³) for lower elevation service area, and
- (2) Mullepihilla High Service Reservoir (25 m³) for higher elevation service area.

This Scheme has the most simple service system, as one distribution pipeline. And, the pipeline in high service area is functioning both as transmission and distribution pipeline.

3.10 Hantana WSS

This Scheme's entire system is covered by the following two sub-systems:

Hantana Low/R4 Service Reservoir (1365m³), which covers the lower area this Scheme, and (2) Hantana High/R2 Service Reservoir (25m³), which covers the high area.

3.11 Heeresasagala WSS

This Scheme is the newly included scheme for the present Design Study, for which water supply system is entirely less developed compared to the other WSS. The present water system is composed of as follows:

- (1) Untreated spring water supply for Heeresasagala Low SR, which is diverted from KMC system.
- (2) Treated spring water supply for Heeresasagala Middle SR, which is diverted from KMC system.
- (3) Untreated spring water supply for Heeresasagala Upper SR, which is diverted from the Regional Council.

4. Future Improvement Plan for Distribution Networks

4.1 General

Based on the preceding development plan for distribution system and existing network analysis,

the future distribution network improvement has reviewed and studied for design as presented in the following.

4.2 Vilana & Owissa SR and Kurugoda SR Network (See Appendix- 5.1 Improvement of Distribution Network in 2015)

For this Scheme, a new Kurugoda Service Reservoir (SR) with the capacity 600 m³ is designed in the south. From the system pressure contour line, the distribution area/s covered by the existing and new SRs are identified as follows:

- (1) Area covered by Vilana & Owissa (SR):
 - Northern part of Alawathugoda,
- (2) Area covered by Kurugoda SR:
 - Southern part of Alawathugoda and
 - A part of northern part of Akurana.

By the above improvement, the coverage or lord for water distribution for two SRs Vilana and Owissa could be reduced or eased. And, in the northern part of Akurana, the higher elevation (GL above 510m) than that water elevation of Akurana SR, could be supplied from this improved system.

Through this pipe hydraulic analysis, a pipe system to connect the Kurugoda SR via A9 Road and to the east could be designed. That target is to improve the total system pressures, and to supply water not only the nearby SR but also to cover the higher elevation area.

4.3 Akurana SR, Thelambugahawatta SR and Kahawatta SR Network (See Appendix- 5.2 Improvement of Distribution Network in 2015)

For this Scheme following two new service reservoirs have been planned and designed:

- (1) Thelambugahawatta SR (500 m³) in the north-east of Akurana, and
- (2) Kahawatta SR (600 m³) in the south of Akurana.

In this Scheme, due above improvement, the existing Borehole system is considered as it could be used as the standby system in the future. From the system pressure contour line, the Thelambugahawatta SR is observed capable to supply water to the north-east of Akurana area.

The majority part of this Scheme has high potentiality of future water demand increase. Even though, this area has not covered by the existing pipe system from the Akurana SR.

Some part of this area has rather high ground elevation (GL540m above), compared to the proposed Service Reservoir. Due mainly this reason, it is observed hydraulically difficult to supply water from the proposed entire system. Considering this background, it is urgently required to improve the water system in this service area.

Under the present design/planning, the service reservoir in this area is proposed be elevated from the ground to meet the required system pressure for the Scheme. And, by forming the pipe mesh network, the total system could be analyzed hydraulically in flexible manner, which results for the optimum operation of the distribution network.

While, the system pressure contour line produced by the Akurana SR indicates that, the water supply boundary could be extended/covered to the southern part of this network. This is interpreted that, the present Borehole system, which supply water to almost all the existing system, could be substituted by the gravity/reservoir supply system. The gravity system supply system produces hydraulically more economical and stable water supply in the Scheme.

The network Nodes: 2080 – 2081 could be connected by pipeline, which objects the expanded water supply to the residents in/along this pipe line area. Further, the existing SR Akurana system pressure contour line indicated that, this SR could cover the northern part of Akurana.

As mentioned in the above section, the new construction of Thelambugahawatta and Kahawatta SRs could improve the water supply situation to the north of Akurana from Kurugoda SR. And the burden of the distribution load/coverage was eased or reduced from Akurana SR.

4.4 Balanagala SR and Kahalla SR Network (See Appendix- 5.3 Improvement of Distribution Network in 2015)

This Scheme is planned and designed to be constructed a new Kahalla Service Reservoir (600 m³) in the western part of this Scheme/service area.

The system pressure contour line for this network indicates that, the water distribution coverage areas are:

- (1) Kahalla SR could extend and serve to the Balanagala Scheme and the western part of service area where pipe network is not developed yet, and
- (3) The existing Balanagala SR is planned be connected to the existing pipe network which is covered by the Polgolla SR. These networks are planned/designed to be combined to form bigger size of pipe network, which create more rational and practical water use.
- 4.5 Bangalawatta SR and Pihilladeniya SR Network (See Appendix- 5.4 Improvement of Distribution Network in 2015)

For this Scheme, any new reservoir construction is not planned. However, the existing two reservoirs are to be expanded: Bangalawatta is planed to expand its capacity by 300m³ to 400 m³, and that of Pihilladeniya by 200 m³ to 300 m³, respectively.

From the system pressure contour line, the all area in this Scheme is observed capable for water supply from the existing/expanded SRs except for the southeastern part of the scheme. It is found that, in future, the Napana SR could be revived its use. Then, the nearby service area only is

capable for service from this SR. Since, the water elevation of this SR is not high enough to cover far/remote area from this reservoir. Therefore, two options for the future have been proposed. (See Appendix 5.4, Option 1 & Option 2).

The above plan would result that, the Balanagala SR could be eased from heavy burden/load to cover larger service area.

While the Polgolla SR is scheduled be abandoned in the future, the connected pipe network should be combined with the aforementioned Balanagala SR service network to form larger pipe network for optimum operation.

4.6 Kulugammana SR Network (See Appendix- 5.5 Improvement of Distribution Network in 2015)

For this Scheme, any new reservoir construction is not planned. However, the existing reservoir Kulugammana SR is planed be expanded its capacity by 300m³ to 400 m³.

From the system pressure contour line, the all area in this Scheme is observed capable for water supply from the existing/expanded SRs, except for the northeastern part of the scheme. This particular area has now been proposed to be isolated and served using an in-line booster station as an interim measure until the proposed SR at Nugawela (Phase 2) is in place. Many reinforcements for the other areas have been proposed to enhance the performance of the scheme.

4.7 Kondadeniya SR Network (See Appendix- 5.6 Improvement of Distribution Network in 2015)

For this Scheme network, any new reservoir construction is not planned. However, the existing reservoir Kondadeniya SR could be expanded its capacity by 200m³ to 500m³.

From the system pressure contour line, the all area in this Scheme is considered as capable for water supply from the existing/expanded SRs. The existing pipe system of this Scheme forms tree-blanch structure. Further, from the geographical location, it is rather difficult to structure

mesh type pipe network.

4.8 Gohagoda SR Network (See Appendix - 5.7 Improvement of Distribution Network in 2015)

For this Scheme network, a new service reservoir Gohagoda New SR (with capacity 200m³ and elevation GL= 524m) is designed next to the existing Gohagoda Low SR, and total capacity is expanded to 350 m³.

From the system pressure contour line, the all area in this Scheme is capable be supplied water from the existing/expanded SRs. However, the Yatihagala sub-system is not included but isolated with the boundary valve. With the pipe network analysis, the service areas of the respective SR were demarcated and the existing Gohagoda Low SR has been proposed to serve the low elevated areas in the southern part of the scheme. At the same time the New Gohagoda SR will contribute to reduce the service coverage burden for Gohagoda Wegiriya (Old) SR while serving the high elevated areas. Furthermore, in case of emergency, the service water could hydraulically be supplied to the Yatihagala Scheme.

4.9 Elhena SR Network (See Appendix- 5.8 Improvement of Distribution Network in 2015)

For this Scheme, a new service reservoir Elhena SR (with capacity 300m³ and elevation GL=611m) is designed in the eastern part.

From the system pressure contour line, the Elehena SR is capable to cover nearby this SR, which has comparatively higher elevation than that of western part of Ampitiya. With the pipe network analysis, it has been observed that certain areas in the vicinity of the SR would experience excessive pressures. Therefore, Elhena SR is proposed to serve only the high elevated areas in the northeastern and southwestern parts of the existing Ampitiya Scheme. The rest of the service area would continue to be served by the Ampitiya SR.

Further, The existing AC pipe augmenting pipeline (Node 8042 – 8045 line) could be improved, to increase the system pressure. At the same time, this will contribute to reduce the service coverage burden for Ampitiya SR. Furthermore, the aforementioned existing AC pipeline should replaced or improved to keep stable and safe water to the service.

4.10 Mullepihilla SR Network (See Appendix- 5.9 Improvement of Distribution Network in 2015)

For this Scheme, a new service reservoir Mullepihilla New SR (with capacity 100m³ and elevation GL= 710.5m) is designed next to the existing Mullepihilla Low SR(capacity 25 m³), and total capacity is expanded to 125 m³. From the system pressure contour line, it is observed that geographically capable service area is Mullepihilla Low area in this Scheme.

The existing Mullepihilla High SR could cover the Mullepihilla High area. Further, this could serve rationally to these area covered by Ampitiya SR which has the most highest elevation (GL = 586m).

4.11 Hantana Place SR Network (See Appendix- 5.10 Improvement of Distribution Network in 2015)

Under this Scheme network, a new service reservoir Hantana Place SR (with capacity 200m³) in the south-west.

From the system pressure contour line, it is observed that hydraulically capable service area by Hantana Place SR is the very limited area of south-western part of existing Hantana Scheme. This will contribute to the Hantana Low/R4 to ease and reduce its load of water service coverage.

On the other hand, the Hantana SR could cover the central part of this Scheme and the Hantana High/R2 could cover the higher elevation area with its elevation potential. Therefore, it has now been proposed to serve only the southwestern part of the existing scheme by this new SR. However, at the request of the KMC, some provision have been made to serve the Kandy

Hospital Quarters and the Nagastenna area which lie within the KMC limits.

4.12 Heeresasagala Middle and Upper SRs Network (See Appendix- 5.11 Improvement of Distribution Network in 2015)

For this Scheme, two new service reservoirs (1) Heeressagala Upper SR (200m³) and Heeresasagala Middle SR (250m³) are planned/designed.

From the system pressure contour line, it is geographically observed that the capable area covered by the two reservoirs is:

- (1) Heeressagala Middle SR: Northern part of this Scheme, and
- (2) Heeressagala Upper SR: Southern part of this Scheme.

The distribution networks are planned be supplied by the separate two systems.

One system: Heeresasagala Middle, will be constructed and operated by NWSDB.

From the pipe network analysis for the above, it could be expected the two separate systems will operate the stable and optimum water supply, from each SR respectively.

From the Heeressagala Upper SR, as requested by the KMC, supply to be extended to feed the existing Elagolla SR via a gravity distribution main.

5. Phase 1 Distribution Pipeline

The proposed pipelines in the outside of KMC service area and KMC area are presented in Table 5.1 shown below.

Distribution trunk feeder pipe from the new or expanded SR to the connection point to the distribution network shall be selected considering the economical size, and have some allowance taking consideration on unforeseen future water demand.

In addition, some new distribution pipes which are required to strengthen the existing distribution network and expanded service area, shall also be selected taking into account the opinions given by the OIC of present WSS, for such as future development area, area where ground well yield are poor, intermitted supply area, etc. Among such pipelines, high priority pipe that is quite effective for hydraulically might be selected and included in the detailed design.

The each service zone will be formed the independently of distribution network with existing and new pipelines, and as the result, the following improvement or betterment are predicted.

- (1) Many houses which has been waiting the connection to water supply, can be connected and get clean water.
- (2) Present intermittence water supply condition will be improved to supply continuously.
- (3) Low or negative pressure area will be dissolved and appropriate pressure will be kept.
- (4) Development and expanded area will get water anytime.

Table 5.1 Phase 1 Distribution Pipelines

(1/3)

Name of	Drawing	Route	Pipe	Material	Pipeline
Service Reservoir	Number	Number	Diameter	DI/PVC	Length
			(mm)		(m)
Kurugoda	40-C-01	1	250	DI	1,090
			225	PVC	760
			160	PVC	210
	40-C-02	2	225	PVC	220
			110	PVC	660
	40-C-03	3	90	PVC	1,030
	40-C-04	4	225	PVC	230
	40-C-05	5	160	PVC	560
	40-C-06	6	160	PVC	420
	40-C-07	7	90	PVC	440

17	12	١
(4	13	ı

	··· - · · · · · · · · · · · · · · · · ·		·		(2/3)
Name of	Drawing	Route	Pipe	Material	Pipeline
Service Reservoir	Number	Number	Diameter	DI/PVC	Length
	ļ		(mm)	ļ	(m)
Thelambugahawatta	40-C-08	8	225	PVC	200
			160	PVC	880
	40-C-09	9	110	PVC	890
	40-C-10	10	160	PVC	1,400
			90	PVC	750
	40-C-11	11	160	PVC	290
Kahawatta	40-C-12	12	110	PVC	560
			100	DI	30
	40-C-13	13	110	PVC	340
	40-C-14	14	225	PVC	800
	40-C-15	15	300	DI	220
			225	PVC	670
Kahalla	40-C-16	16	300	DI	580
			160	PVC	640
	40-C-17	17	250	DI	130
			225	PVC	720
]		160	PVC	470
	40-C-18	18	160	PVC	440
			110	PVC	250
			100	DI	100
			90	PVC	880
	40-C-19	19	90	PVC	300
Bangalawatta &	40-C-20	20	250	DI	240
			225	PVC	1,030
Pihilladeniya	40-C-21	21	225	PVC	1,090
Kurugammana	40-C-22	22	250	DI	170
-	40-C-23	23	100	DI	100
			90	PVC	430
Kondadeniya	40-C-24	24	250	DI	60
	•		225	PVC	170
Gohagoda New (Pallemulla)	40-C-25	25	300	DI	70
	40-C-26	26	225	PVC	340
Elhena	40-C-27	27	250	DI	140
			225	PVC	670
	40-C-28	28	160	PVC	430
	40-C-29	29	160	PVC	540
Mullepihilla Low New	40-C-29	30	160	PVC) J-0
Hantana Place	40-C-31	31	225	 	380
Hamalia Fiace	140-0-31	21	223	PVC	360

					(3/3)
Name of	Drawing	Route	Pipe	Material	Pipeline
Service Reservoir	Number	Number	Diameter	DI/PVC	Length
			(mm)		(m)
Heerassagala Upper	40-C-32	32	160	PVC	340
	40-C-33	33	225	PVC	140
			160	PVC	370
	40-C-34	34	110	PVC	590
Heerassagala Middle	40-C-35	35	250	DI	220
			200	DI	40
	40-C-36	36	110	PVC	160
Bahirawakanda	40-C-37	37	250	DI	120
Asgiriya	40-C-38	38	250	DI	190
	40-C-39	39	500	DI	680
			450	DI	1,210
	40-C-40	40	400	DI	330
Heerassagala Low	40-C-41	41	250	DI	280

Total 27,690

6 Recommendation/Comment

1) Thelambugahawatta and Kahalla Service Zones

These two service zones are installed less existing pipelines, hence new pipelines and house connections are required to meet the water demand in Phase 1.

When it is necessary, in addition to the pipes, which will be procured under the proposed Phase 1 Project, NWSDB is recommended to prepare the additionally required pipe materials and house-connection piping materials for future installation.

2) High Elevation Area

The Kandy District is geographically comprised of hilly terrain, with elevation varying from 300m to 2,000m above mean sea level (MSL). The major perennial river in this district is the Mahaweli Ganga (River), which has many tributaries in the district. In the service zones in Kandy, there exist some higher elevation areas where water cannot be supplied by gravity. Even in such

areas, water is acutely needed for the resident's daily life. In such case, booster pump/s is required for water distribution.

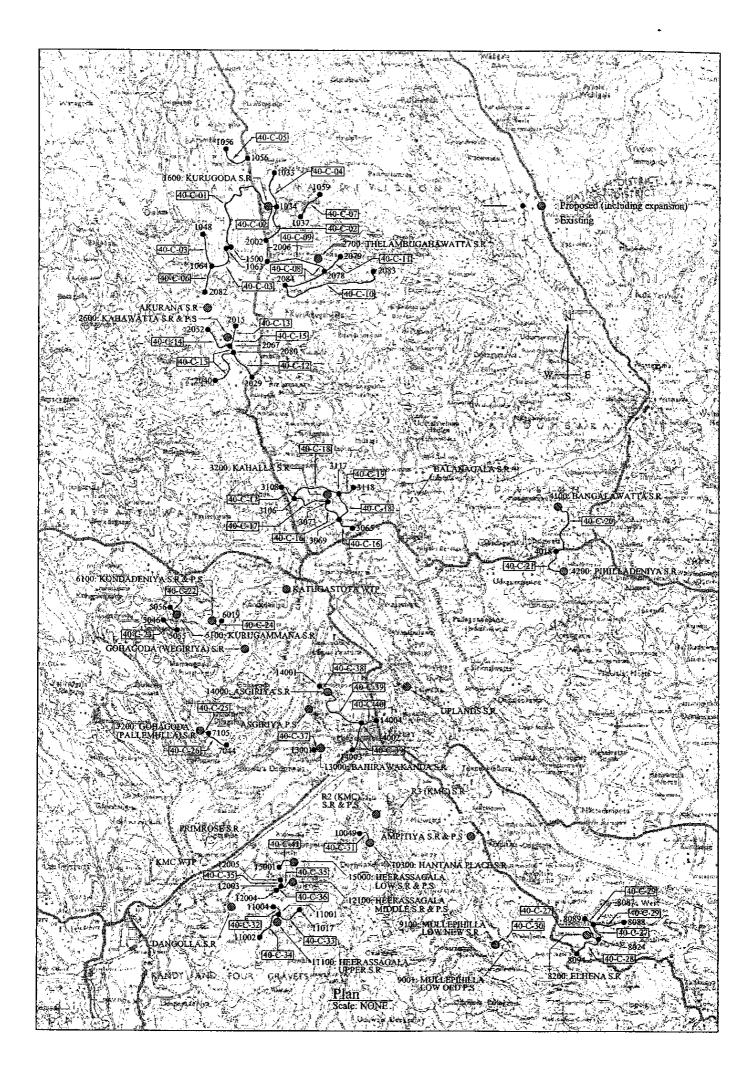
3) Isolation Valve

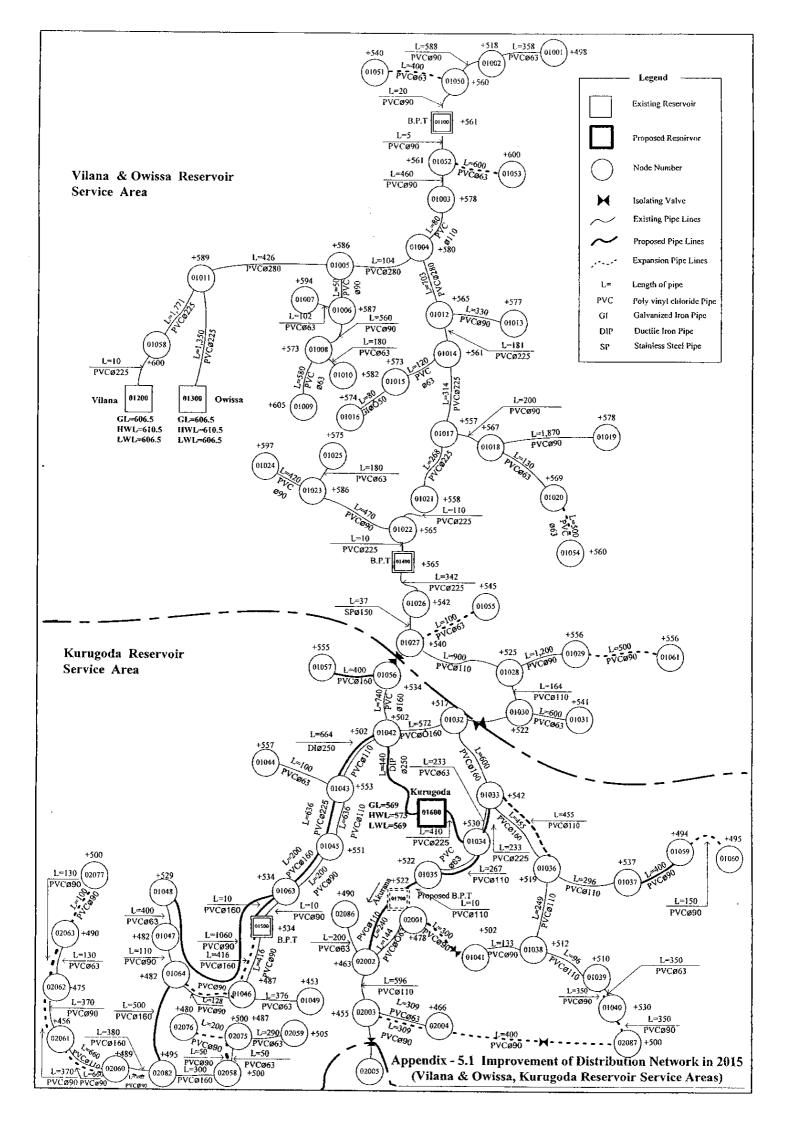
This valve is designed for functioning not only isolation of the service zones, but also interconnection of each service zone, in the case of emergency. Therefore, the installed valve location shall be recorded and valve conditions shall be maintained properly, for normal future operation.

4) Reformation of WSS

The present water supply scheme/s might be reformed on the basis of the new service area. If, any scheme has necessary been reformed, a new organization shall be considered.

5) Supply Amount Measurement


To monitor the total water amount supplied to the consumers and bulk supply to KMC area, flow meters shall be equipped, at the outlet pipe of service reservoirs.


Further, the water amount supplied to each service zone shall be recorded, and analyzed for the water demand situations, which could be reviewed for future water demand projections as well.

6) ACP in Ampitiya Service Area

In this Water Supply Scheme, many AC pipelines were installed and are existing in use, which are weak material compare with PVC or DCIP, thus it is deteriorated and broken easily affected by external load.

In the future, these AC pipes are recommended replaced with PVC pipes or DCIP, to avoid leakage from broken pipes and to reduce pipe repair works, under a plan for strengthening pipeline.

DATE: 3/ 7/2002 TIME: 10:29:32

INPUT DATA FILENAME ----- c:\D_nets\2015\KURU2015.DAT TABULATED OUTPUT FILENAME ---- c:\D_nets\2015\KURU2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\KURU2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

REGULATING VALVE DATA

VALVE	POSITION	CONTROLLED	VALVE
TYPE	JUNCTION	PIPE	SETTING
			(m or 1/s)
PRV-1	1500	14	534.00
PRV-1	1500	47	534.00
PRV-1	1700	59	525.30

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE	NODE	NOS.	LENGTH (m)	DIAMETER	ROUGHNESS	MINOR LOSS	FGN-H
NUMBER	#1	#2		(cm)	COEFF.	COEFF.	(m)
1	2077	2063	100 0	7 9	130 00	00	

569. 569.

2	2063	2062	130.0	5.5	120.00	.00
3	2062	2061	370.0	7.9	120.00	.00
4	2061	2060	660.0	9.7	120.00	.00
5	2060	2082	380.0	14.0	120.00	.00
6	2082	2058	300.0	14.0	120.00	.00
7	2058	2075	50.0	5.5	120.00	.00
8				5.5		
	1048	1047	400.0		120.00	.00
9	1064	1046	128.0	7.9	120.00	.00
10	1064	2082	500.0	14.0	130.00	.00
11	2076	2075	200.0	7.9	130.00	.00
12	1046	1049	376.0	5.5	120.00	.00
13	2075	2059	290.0	5.5	120.00	.00
14-RV	1500	1046	416.0	7.9	120.00	.00
15	1045	1063	200.0	7.9	120.00	.00
16	1045	1043	636.0	9.7	120.00	.00
17	1043	1044	100.0	5.5	120.00	.00
18	1043	1042	664.0	9.7	120.00	.00
19	1042	1056	740.0	14.0	120.00	.00
20	1056	1057	400.0	7.9	130.00	.00
21	1042	1032	572.0	14.0	120.00	.00
22-FG	0	1042	440.0	25.0	130.00	.00
23-FG	0	1042				
			410.0	19.8	130.00	.00
24	1034	1035	267.0	5.5	120.00	.00
25	1035	1700	10.0	9.7	130.00	.00
26	2001	2002	144.0	5.5	120.00	.00
27	2002	2003	396.0	9.7	120.00	.00
28	2003	2004	309.0	5.5	120.00	.00
29	1032	1033	600.0	14.0	120.00	.00
30	1033	1034	233.0	5.5	120.00	.00
31	1033	1036	455.0	14.0	120.00	.00
32	1036	1037	296.0	9.7	120.00	.00
33	1037	1059	400.0	7.9	130.00	.00
34	1059	1060	150.0	7.9	130.00	.00
35	1036	1038	249.0	9.7	120.00	.00
36	1038	1039	96.0	9.7	120.00	.00
37	1039	1040	350.0	5.5	120.00	.00
38	1038	1041	133.0	7.9	120.00	.00
39	1063	1041	1060.0			
				7.9	130.00	.00
40	1063	1500	10.0	7.9	120.00	.00
41	1034	1035	267.0	9.7	130.00	.00
42	1039	1040	350.0	5.5	120.00	.00
43	1043	1042	664.0	25.0	130.00	.00
44	2003	2004	309.0	7.9	130.00	.00
45	1045	1043	636.0	19.8	130.00	.00
46	1045	1063	200.0	14.0	130.00	.00
47-RV	1500	1046	416.0	14.0	130.00	.00
48	2058	2075	50.0	7.9	130.00	.00
49	2062	2061	370.0	7.9	130.00	.00
50	2063	2062	130.0	7.9	130.00	.00
51	1033	1034	233.0	19.8	130.00	.00
52	1063	1500	10.0	14.0	130.00	.00
53	1064	1047	110.0	7.9	120.00	.00
54	2002	2086	200.0	9.7	120.00	
JŦ	2002	2000	200.0	9.1	120.00	.00

JOB NAME = GKWSAP - JICA - Kurugoda SR

55-XX	2001	1041	300.0	7.9	130.00	.00
56-XX	2004	2087	400.0	7.9	130.00	.00
57	2087	1040	350.0	7.9	130.00	.00
58	1039	1040	350.0	9.7	130.00	.00
59-RV	1700	2002	240.0	9.7	130.00	.00
60	2060	2061	660.0	7.9	130.00	.00
61	2082	2060	380.0	7.9	130.00	.00
62	1046	1064	120.0	7.9	130.00	.00
63	1033	1036	455.0	9.7	130.00	.00

$\hbox{\tt J} \ \hbox{\tt U} \ \hbox{\tt N} \ \hbox{\tt C} \ \hbox{\tt T} \ \hbox{\tt I} \ \hbox{\tt O} \ \hbox{\tt N} \qquad \hbox{\tt N} \ \hbox{\tt O} \ \hbox{\tt D} \ \hbox{\tt E} \qquad \hbox{\tt D} \ \hbox{\tt A} \ \hbox{\tt T} \ \hbox{\tt A}$

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONN	ECTING	PIPI	s 	
1032		5.14	517.00	21	29			
1033		.78	542.00	29	30	31	51	63
1034		.81	530.00	23	24	30	41	51
1035		.57	522.00	24	25	41		
1036		.53	519.00	31	32	35	63	
1037		.65	537.00	32	33			
1038		.45	512.00	35	36	38		
1039		.36	510.00	36	37	42	58	
1040		.32	530.00	37	42	57	58	
1041		.19	502.00	38	55			
1042	3	2.74	502.00	18	19	21	22	43
1043		.90	553.00	16	17	18	43	45
1044		.05	557.00	17				
1045		.44	551.00	15	16	45	46	
1046		2.23	487.00	9	12	14	47	62
1047		.71	482.00	8	53			
1048		.44	529.00	8	39			
1049		.71	453.00	12				
1056		1.34	534.00	19	20			
1057		.14	555.00	20				
1059		.18	494.00	33	34			
1060		4.95	495.00	34				
1063		1.19	534.00	15	39	40	46	52
1064		.85	482.00	9	10	53	62	
1500		.00	.00	14	40	47	52	
1700		.00	.00	25	59			
2001		.21	478.00	26	55			
2002		. 93	463.00	26	27	54	59	
2003		2.20	455.00	27	28	44		
2004		3.25	466.00	28	44	56		
2058		.42	500.00	6	7	48		
2059		.31	505.00	13				
2060		.87	489.00	4	5	60	61	
2061		3.70	456.00	3	4	49	60	

DATE = 03-07-2002 PAGE NO. 4 JOB NAME = GKWSAP - JICA - Kurugoda SR

2062 1.41 475.00 2 3 49 50 2063 .65 490.00 2 50 1 2075 .84 7 11 13 500.00 48 .10 2076 480.00 11 500.00 2077 .44 1

61

 2076
 .10
 480.00
 11

 2077
 .44
 500.00
 1

 2082
 1.06
 495.00
 5
 6
 10

 2086
 .17
 490.00
 54
 50
 50
 50
 57

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

THE RESULTS ARE OBTAINED AFTER 8 TRIALS WITH AN ACCURACY = .00246

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1	2077	2063	44	.02	.00	.00	.09	.1
2	2063	2062	29	.07	.00	.00	.12	.5
3	2062	2061	-1.20	.51	.00	.00	.24	1.3
4	2061	2060	-3.80	2.82	.00	.00	.51	4.2
5	2060	2082	-5.70	.58	.00	.00	.37	1.5
6	2082	2058	1.67	.05	.00	.00	.11	.1
7	2058	2075	.33	.04	.00	.00	.14	. 7
8	1048	1047	3.46	22.82	.00	.00	1.46	57.0
9	1064	1046	-3.72	1.43	.00	.00	.76	11.1

10	1064	2082	9.80	1.78	.00	.00	.64	3.5
11	2076	2075	10	.00	.00	.00	.02	.0
12	1046	1049	.71	1.14	.00	.00	.30	3.0
13	2075	2059	.31	.19	.00	.00	.13	. 6
14-RV	1500	1046	1.84	1.26	.00	.00	.38	3.0
15	1045	1063	2.71	1.24	.00	.00	.55	6.2
16	1045	1043	-2.03	.85	.00	.00	.27	1.3
17	1043	1044	.05	.00	.00	.00	.02	.0
18	1043	1042	-1.26	.37	.00	.00	.17	.5
19	1042	1056	1.48	.09	.00	.00	.10	.1
20	1056	1057	.14	.01	.00	.00	.03	.0
21	1042	1032	4.81	.63	.00	.00	.31	1.1
22-FG	0	1042	26.35	. 58	.00	.00	.54	1.3
23-FG	0	1034	19.94	1.01	.00	.00	.65	2.4
24	1034	1035	1.26	2.34	.00	.00	.53	8.7
25	1035	1700	6.76	.11	.00	.00	.91	10.7
26	2001	2002	21	.05	.00	.00	.09	.3
27	2002	2002	5.45	3.30	.00	.00	.74	8.3
28	2002	2003	.85	1.32	.00	.00	.36	4.2
29	1032	1033	33	.00	.00	.00	.02	.0
30	1032	1033	36	.20	.00	.00	.15	.8
31	1033	1034	7.57	1.17	.00	.00	.13	. o 2. 5
32	1035	1030	5.78	2.75	.00	.00	.78	
33	1037	1057	5.13	6.98				9.2
34	1057	1060	4.95		.00	.00	1.05	17.4
35	1039	1038		2.45	.00	.00	1.01	16.3
36	1038	1038	4.38	1.38	.00	.00	.59	5.5
36 37	1038		3.74	.40	.00	.00	.51	4.1
38		1040	.50	.55	.00	.00	.21	1.5
	1038	1041	.19	.01	.00	.00	.04	.0
39	1063	1048	3.90	11.15	.00	.00	.80	10.5
40	1063	1500	1.84	.03	.00	.00	.38	3.0
41	1034	1035	6.07	2.34	.00	.00	.82	8.7
42	1039	1040	.50	.55	.00	.00	.21	1.5
43	1043	1042	-16.06	.35	.00	.00	.33	.5
44	2003	2004	2.40	1.32	.00	.00	.49	4.2
45	1045	1043	-14.34	.85	.00	.00	.47	1.3
46	1045	1063	13.22	1.24	.00	.00	.86	6.2
47-RV	1500	1046	8.99	1.26	.00	.00	.58	3.0
48	2058	2075	.92	.04	.00	.00	.19	.7
49	2062	2061	-1.30	.51	.00	.00	.27	1.3
50	2063	2062	80	.07	.00	.00	.16	.5
51	1033	1034	-11.43	.20	.00	.00	.37	.8
52	1063	1500	8.99	.03	.00	.00	.58	3.0
53	1064	1047	-2.75	.70	.00	.00	.56	6.3
54	2002	2086	.17	.00	.00	.00	.02	. 0
55-XX	2001	1041						
56-XX	2004	2087						
57	2087	1040	-3.06	2.34	.00	.00	.62	6.7
58	1039	1040	2.39	.55	.00	.00	.32	1.5
59-RV	1700	2002	6.76	2.57	.00	.00	.91	10.7
60	2060	2061	2.40	2.82	.00	.00	.49	4.2
61	2082	2060	1.37	.58	.00	.00	.28	1.5
62	1046	1064	4.17	1.43	.00	.00	.85	11.9

63 1033 1036 3.12 1.17 .00 .00 .42 2.5

JUNCTION NODE RESULTS

1032	JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	GRADE	JUNCTION ELEVATION (m)	HEAD	JUNCTIO PRESSUR (kpa)
1035 .57 565.65 522.00 43.65 428.09 1036 .53 566.62 519.00 47.62 467.03 1037 .65 563.87 537.00 26.87 263.55 1038 .45 565.24 512.00 53.24 522.11 1040 .32 564.30 530.00 34.30 336.34 1041 .19 565.23 502.00 63.23 620.12 1042 2.74 568.42 502.00 66.42 651.34 1043 .90 568.05 553.00 15.05 147.60 1044 .05 568.05 551.00 16.20 158.89 1045 .44 567.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 49.43 1047 .71 532.01 482.00 78.60 770.77	1032		5.14	567.78	517.00	50.78	498.03
1035 .57 565.65 522.00 43.65 428.09 1036 .53 566.62 519.00 47.62 467.03 1037 .65 563.87 537.00 26.87 263.55 1038 .45 565.24 512.00 53.24 522.11 1040 .32 564.30 530.00 34.30 336.34 1041 .19 565.23 502.00 63.23 620.12 1042 2.74 568.42 502.00 66.42 651.34 1043 .90 568.05 553.00 15.05 147.60 1044 .05 568.05 551.00 11.05 108.35 1045 .44 .67.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 49.043 1048 .44 554.82 529.00 25.82 253.26	1033		.78	567.79	542.00	25.79	252.90
1035 .57 565.65 522.00 43.65 428.09 1036 .53 566.62 519.00 47.62 467.03 1037 .65 563.87 537.00 26.87 263.55 1038 .45 565.24 512.00 53.24 522.11 1040 .32 564.30 530.00 34.30 336.34 1041 .19 565.23 502.00 63.23 620.12 1042 2.74 568.42 502.00 66.42 651.34 1043 .90 568.05 553.00 15.05 147.60 1044 .05 568.05 551.00 11.05 108.35 1045 .44 .67.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 49.043 1048 .44 554.82 529.00 25.82 253.26	1034		.81	567.99	530.00	37.99	372.59
1040	1035		.57	565.65	522.00	43.65	428.09
1040	1036		.53	566.62	519.00	47.62	467.03
1040	1037		.65	563.87	537.00	26.87	263.55
1040	1038		.45	565.24	512.00	53.24	522,11
1041 .19 565.23 502.00 63.23 620.12 1042 2.74 568.42 502.00 66.42 651.34 1043 .90 568.05 553.00 15.05 147.60 1044 .05 568.05 557.00 11.05 108.35 1045 .44 567.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53	1039		. 36	564.84	510.00	54.84	537.82
1042 2.74 568.42 502.00 66.42 651,34 1043 .90 568.05 553.00 15.05 147.60 1044 .05 568.05 557.00 11.05 108.35 1045 .44 567.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53			.32	564.30	530.00	34.30	336.34
1043 .90 568.05 553.00 15.05 147.60 1044 .05 568.05 557.00 11.05 108.35 1045 .44 567.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1500 .00 565.95 170 482.00 49.31 483.53 1500 .00 565.55 50 20 20				565.23	502.00	63.23	620.12
1044 .05 568.05 557.00 11.05 108.35 1045 .44 567.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 5 572.00 59.73 585.77 2001 .21 522.69 478.00 44.69 438.2				568.42	502.00	66.42	651.34
1045 .44 567.20 551.00 16.20 158.89 1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 1700 .00 565.95 2001 .21 522.69 478.00 44.69 438.22 2002 .93				568.05	553.00	15.05	147.60
1046 2.23 532.74 487.00 45.74 448.51 1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>16.05</td><td>100.33</td></tr<>						16.05	100.33
1047 .71 532.01 482.00 50.01 490.43 1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 57.00 44.69 438.22 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10			2 23	507.20	487 00	16.20	
1048 .44 554.82 529.00 25.82 253.26 1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 555.50 555.50 500 200.1 21 522.69 478.00 44.69 438.22 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2						50 01	
1049 .71 531.60 453.00 78.60 770.77 1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 1700 .00 565.55 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07							
1056 1.34 568.33 534.00 34.33 336.62 1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 1700 .00 565.55							
1057 .14 568.32 555.00 13.32 130.60 1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 1700 .00 565.55 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 <			1.34				
1059 .18 556.90 494.00 62.90 616.81 1060 4.95 554.45 495.00 59.45 582.99 1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 1700 .00 565.95 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41							
1063 1.19 565.98 534.00 31.98 313.59 1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 1700 .00 565.55 <td>1059</td> <td></td> <td></td> <td></td> <td></td> <td>62.90</td> <td></td>	1059					62.90	
1064 .85 531.31 482.00 49.31 483.53 1500 .00 565.95 <	1060		4.95	554.45	495.00	59.45	582.99
1500 .00 565.95 1700 .00 565.55 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57	1063		1.19	565.98	534.00	31.98	313.59
1700 .00 565.55 2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52					482.00	49.31	483.53
2001 .21 522.69 478.00 44.69 438.22 2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57							
2002 .93 522.73 463.00 59.73 585.77 2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2003 2.20 519.43 455.00 64.43 631.88 2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2004 3.25 518.12 466.00 52.12 511.10 2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2058 .42 529.48 500.00 29.48 289.07 2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2059 .31 529.25 505.00 24.25 237.83 2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2060 .87 528.95 489.00 39.95 391.76 2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2061 3.70 526.13 456.00 70.13 687.73 2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2062 1.41 525.62 475.00 50.62 496.43 2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2063 .65 525.55 490.00 35.55 348.61 2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2075 .84 529.44 500.00 29.44 288.72 2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2076 .10 529.44 480.00 49.44 484.83 2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2077 .44 525.53 500.00 25.53 250.36 2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2082 1.06 529.52 495.00 34.52 338.57 2086 .17 522.73 490.00 32.73 320.96							
2086 .17 522.73 490.00 32.73 320.96	2082						
2087 3.06 561.95 500.00 61.95 607.54	2086		.17	522.73	490.00	32.73	320.96
	2087		3.06	561.95	500.00	61.95	607.54

REGULATING VALVE REPORT

VALVE TYPE	POSITION NODE	CONTROLLED PIPE	VALVE SETTING (m or 1/s	VALVE STATUS)	UPSTREAM GRADE (m)	DOWNSTREAM GRADE (m)	THROUGH FLOW (1/s)
PRV-1	1500	14	534.00	THROTTLED THROTTLED THROTTLED	565.95	532.74	1.84
PRV-1	1500	47	534.00		565.95	532.74	8.99
PRV-1	1700	59	525.30		565.55	522.73	6.76

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		22 23		26.35 19.94
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	46.29 .00 46.29

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00424

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	
1	2077	2063		.00	.00	.00	02	
2	2063	2063	13			.00	.03 .04	.0
3	2063	2062	36			.00	.04	. 0
4	2062	2061	-1.14		.00	.00		.1
5	2061	2082	-1.71			.00	.15 .11	.4
6	2082	2052	.50	.01		.00	.03	.1
7	2052	2075	.10		.00	.00	.03	.0
8	1048	1047	3.54		.00	.00	1.49	
9	1048	1047	.06	.00	.00		.01	.0
10	1064	2082	2.94	.19	.00	.00	.19	.3
11	2076	2075	03				.01	.0
12	1046	1049	.21	.12		.00	.09	.3
13	2075	2059	.09	.02			.04	.0
14-RV	1500	1046	.13	.01			.03	.0
15	1045	1063	.81	.13			.17	.6
16	1045	1043	61				.08	.1
17	1043	1044	.02				.01	.0
18	1043	1042	37				.05	.0
19	1042	1056	.44				.03	.0
20	1056	1057	.04				.01	.0
21	1042	1032	1.44				.09	.1
22-FG	0	1042	7.91				.16	.1
23-FG	Ō	1034	5.98				.19	. 2
24	1034	1035	.38	.25			.16	
25	1035	1700	2.03				.27	1.1
26	2001	2002	06				.03	.0
27	2002	2003	1.63			.00	.22	.9
28	2003	2004	.26			.00	.11	. 4
29	1032	1033	10			.00	.01	.0
30	1033	1034	11	.02		.00	.05	.0
31	1033	1036	2.27			.00	.15	.2
32	1036	1037	1.73	.30		.00	.23	1.0
33	1037	1059	1.54	.75	.00	.00	.31	1.8
34	1059	1060	1.49	.26	.00	.00	.30	1.7
35	1036	1038	1.31	.15	.00	.00	.18	.6
36	1038	1039	1.12	.04	.00	.00	.15	. 4
37	1039	1040	.15	.06	.00	.00	.06	.1
38	1038	1041	.06	.00	.00	.00	.01	.0
39	1063	1048	3.67	9.95	.00	.00	.75	9.3
40	1063	1500	.13	.00	.00	.00	.03	.0
41	1034	1035	1.82	.25	.00	.00	.25	.9
42	1039	1040	.15	.06	.00	.00	.06	.1
43	1043	1042	-4.83	.04	.00	.00	.10	.0
44	2003	2004	.72	.14	.00	.00	.15	.4
45	1045	1043	-4.30	.09	.00	.00	.14	.1
46	1045	1063	3.97	.13	.00	.00	.26	.6
47-RV	1500	1046	.62	.01	.00	.00	.04	.0
48	2058	2075	.28	.00	.00	.00	.06	.0
49	2062	2061	39	.05	.00	.00	.08	.1

JOB NAME = GKWSAP - JICA - Kurugoda SR

50	2063	2062	24	.01	.00	.00	. 05	.0
51	1033	1034	-3.43	.02	.00	.00	.11	.0
52	1063	1500	.62	.00	.00	.00	.04	.0
53	1064	1047	-3.33	1.00	.00	.00	.68	9.0
54	2002	2086	.05	.00	.00	.00	.01	.0
55-XX	2001	1041						
56-XX	2004	2087						
57	2087	1040	92	.25	.00	.00	.19	.7
58	1039	1040	.72	.06	.00	.00	.10	. 1
59-RV	1700	2002	2.03	.28	.00	.00	.27	1.1
60	2060	2061	.72	.30	.00	.00	.15	. 4
61	2082	2060	.41	.06	.00	.00	.08	.1
62	1046	1064	07	.00	.00	.00	.01	. 0
63	1033	1036	.94	.13	.00	.00	.13	. 2

JUNCTION NODE RESULTS

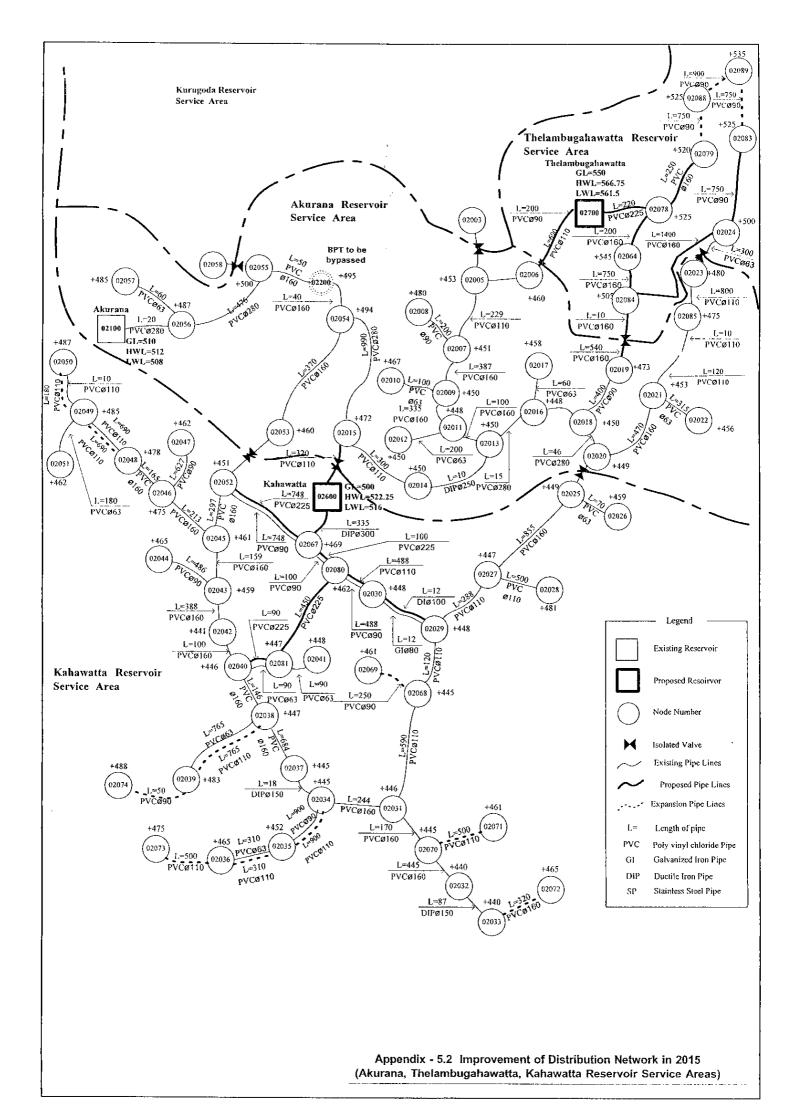
JUNCTION NUMBER	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	ELEVATION		JUNCTIO PRESSUR (kpa)
1032	1.54		517.00		508.67
1033	.23		542.00	26.87	263.50
1034	.24	568.89	530.00		
1035	.17	568.64	522.00		
1036	.16	568.74	519.00	49.74	487.83
1037	.20	568.45	537.00	31.45	308.41
1038	.14		512.00		
1039	.11	568.55		58.55	
1040	.10	568.49		38.49	377.50
1041	.06	568.59	502.00	66.59	653.08
1042	.82	568.94			
1043	.27	568.90		15.90	
1044	.02	568.90			
1045	.13	568.81			
1046	.67	533.99			
1047	.21	534.99		52.99	519.65
1048	.13	558.73			
1049	.21	533.87			
1056	.40	568.93			
1057	.04	568.93			
1059	.05	567.70			
1060	1.49	567.43			
1063	.36	568.67			
1064	.26	533.99	482.00	51.99	509.87
1500	.00	568.67			
1700	.00	568.63			
2001	.06	525.02		47.02	
2002	.28	525.02	463.00		608.25
2003	.66	524.67			
2004	.98	524.53	466.00	58.53	573.96

JOB NAME = GKWSAP - JICA - Kurugoda SR

2058	.13	533.79	500.00	33.79	331.42
2059	.09	533.77	505.00	28.77	282.15
2060	.26	533.74	489.00	44.74	438.73
2061	1.11	533.43	456.00	77.43	759.38
2062	.42	533.38	475.00	58.38	572.52
2063	.20	533.37	490.00	43.37	425.34
2075	.25	533.79	500.00	33.79	331.38
2076	.03	533.79	480.00	53.79	527.51
2077	.13	533.37	500.00	33.37	327.25
2082	.32	533.80	495.00	38.80	380.50
2086	.05	525.02	490.00	35.02	343.46
2087	.92	568.24	500.00	68.24	669.23

REGULATING VALVE REPORT

	POSITION		VALVE	VALVE	UPSTREAM	DOWNSTREAM	THROUGH
$ extbf{TYPE}$	NODE	PIPE	SETTING	STATUS	GRADE	GRADE	FLOW
			(m or 1/s))	(m)	(m)	(1/s)
							
PRV-1	1500	14	534.00	THROTTLED	568.67	533.99	.13
PRV-1	1500	47	534.00	THROTTLED	568.67	533.99	.62
PRV-1	1700	59	525.30	THROTTLED	568.63	525.02	2.03


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		22 23		7.91 5.98
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	13.89 .00 13.89

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 10:29:32

DATE: 3/ 7/2002 TIME: 10:30:33

INPUT DATA FILENAME ----- c:\D_nets\2015\THEL2015.DAT TABULATED OUTPUT FILENAME ---- c:\D_nets\2015\THEL2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\THEL2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters
PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG	0	2006	690.0	9.7	130.00	.00	561.
2-FG	0	2078	220.0	19.8	130.00	.00	561.
3	2078	2064	200.0	19.8	130.00	.00	
4	2064	2084	750.0	14.0	130.00	.00	
5	2078	2079	250.0	14.0	130.00	.00	
6	2084	2024	1400.0	14.0	130.00	.00	
7	2024	2083	750.0	7.9	130.00	.00	
8	2083	2089	750.0	7.9	130.00	.00	
9	2079	2088	750.0	7.9	130.00	.00	
10	2088	2089	900.0	7.9	130.00	.00	

PAGE NO. 2

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONNI	ECTING	PIPES	
2006		3.50	460.00	1			
2024		3.77	500.00	6	7		
2064		6.40	545.00	3	4		
2078		9.46	525.00	2	3	5	
2079		2.50	520.00	5	9		
2083		1.19	525.00	7	8		
2084		7.53	505.00	4	6		
2088		1.12	525.00	9	10		
2089		1.29	535.00	8	10		

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SUPPLY ZONE DATA

THIS SYSTEM HAS MULTIPLE SUPPLY ZONES

ZONE NO. 1 IS SUPPLIED THROUGH THESE PIPES:

2

SYSTEM CONFIGURATION

NUMBER	OF	PIPES(p)	=	10
NUMBER	OF	JUNCTION NODES(j)	=	9
NUMBER	OF	PRIMARY LOOPS(1)	=	1
NUMBER	OF	FIXED GRADE NODES(f)	=	2
NUMBER	OF	SUPPLY ZONES(z)	=	2

*********** SIMULATION RESULTS *********

THE RESULTS ARE OBTAINED AFTER 4 TRIALS WITH AN ACCURACY = .00134

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	2006	3.50	2.18	.00	.00	.47	3.1
2-FG	0	2078	33.26	1.39	.00	.00	1.08	6.3
3	2078	2064	18.58	.43	.00	.00	.60	2.1
4	2064	2084	12.18	4.00	.00	.00	.79	5.3
5	2078	2079	5.22	.28	.00	.00	.34	1.1
6	2084	2024	4.65	1.26	.00	.00	.30	.9
7	2024	2083	.88	.50	.00	.00	.18	.6
8	2083	2089	31	.07	.00	.00	.06	.1
9	2079	2088	2.72	4.03	.00	.00	.55	5.3
10	2088	2089	1.60	1.81	.00	.00	.33	2.0

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
2006		3.50	559.32	460.00	99.32	973.98
2024		3.77	554.42	500.00	54.42	533.66
2064		6.40	559.67	545.00	14.67	143.91
2078		9.46	560.11	525.00	35.11	344.28
2079		2.50	559.83	520.00	39.83	390.59
2083		1.19	553.92	525.00	28.92	283.57
2084		7.53	555.67	505.00	50.67	496.95
2088		1.12	555.80	525.00	30.80	302.00
2089		1.29	553.99	535.00	18.99	186.20

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1 2		3.50 33.26
	SYSTEM SYSTEM		=	36.76 .00
NET	SYSTEM	DEMAND	=	36.76

JOB NAME = GKWSAP - JICA - Thelembugahawatta SR

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

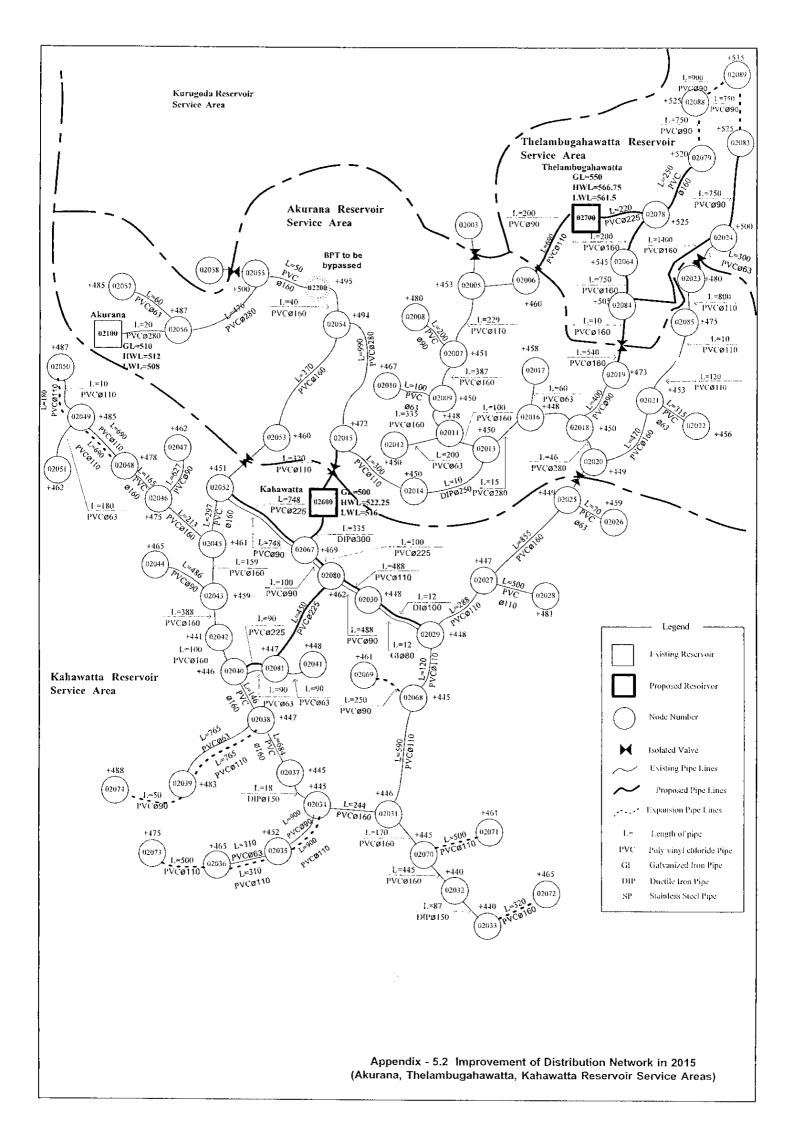
PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	2006	1.05	.23	.00	.00	.14	.3
2-FG	0	2078	9.98	.15	.00	.00	.32	. 6
3	2078	2064	5.57	.05	.00	.00	.18	. 2
4	2064	2084	3.65	.43	.00	.00	.24	.5
5	2078	2079	1.57	.03	.00	.00	.10	.1
6	2084	2024	1.40	.14	.00	.00	.09	.1
7	2024	2083	.26	.05	.00	.00	.05	.0
8	2083	2089	09	.01	.00	.00	.02	.0
9	2079	2088	.82	.43	.00	.00	.17	.5
10	2088	2089	.48	.19	.00	.00	.10	.2

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
2006		1.05	561.27	460.00	101.27	993.08
2024		1.13	560.74	500.00	60.74	595.64
2064		1.92	561.30	545.00	16.30	159.89
2078		2.84	561.35	525.00	36.35	356.47
2079		.75	561.32	520.00	41.32	405.22

JOB NAME = GKWSAP - JICA - Thelembugahawatta SR

2083	.36	560.68	525.00	35.68	349.95
2084	2.26	560.87	505.00	55.87	547.93
2088	.34	560.89	525.00	35.89	351.93
2089	.39	560.69	535.00	25.69	251.95


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES(-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATI (1/s)
		1 2		1.05 9.98
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	11.03 .00 11.03

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 10:30:33

JOB NAME = GKWSAP - JICA - Kahawatta SR

DATE: 3/ 7/2002 TIME: 10:33: 4

INPUT DATA FILENAME ------ c:\D_nets\2015\KAHW2015.DAT TABULATED OUTPUT FILENAME ----- c:\D_nets\2015\KAHW2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\KAHW2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER		E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG 2 3 4	0 2067 2067 2052	2067 2052 2080 2045	335.0 848.0 100.0 297.0	30.0 7.9 7.9 14.0	130.00 120.00 120.00 120.00	.00 .00 .00	516.
5 6 7	2045 2045 2043	2043 2046 2042	159.0 213.0 388.0	14.0 14.0 14.0	120.00 120.00 120.00	.00 .00 .00	
8 9 10 11 12	2043 2042 2040 2040 2081	2044 2040 2038 2081 2041	486.0 100.0 146.0 90.0 90.0	7.9 14.0 14.0 5.5 5.5	120.00 120.00 120.00 120.00 120.00	.00 .00 .00 .00	
13	2081	2080	450.0	19.8	130.00	.00	

14	2038	2039	765.0	5.5	120.00	.00
15	2038	2037	684.0	14.0	120.00	.00
16	2039	2074	50.0	7.9	130.00	.00
17	2037	2034	18.0	15.0	120.00	.00
18	2034	2035	900.0	7.9	120.00	.00
19	2034	2031	244.0	14.0	120.00	.00
20	2035	2036	310.0	5.5	120.00	.00
21	2036	2073	500.0	9.7	130.00	.00
22	2031	2070	170.0	14.0	120.00	.00
23	2031	2068	590.0	9.7	120.00	.00
24	2070	2032	445.0	14.0	120.00	.00
25	2070	2071	500.0	9.7	130.00	.00
26	2032	2033	87.0	15.0	120.00	.00
27	2033	2072	320.0	14.0	130.00	.00
28	2068	2029	120.0	9.7	120.00	.00
29	2068	2069	250.0	7.9	130.00	.00
30	2029	2030	12.0	8.0	120.00	.00
31	2029	2027	288.0	9.7	120.00	.00
32	2030	2080	488.0	7.9	120.00	.00
33	2027	2028	500.0	9.7	120.00	.00
34	2027	2025	855.0	14.0	120.00	.00
35	2025	2026	70.0	5.5	120.00	.00
36	2046	2047	627.0	7.9	120.00	.00
37	2046	2048	165.0	14.0	120.00	.00
38	2048	2049	690.0	9.7	120.00	.00
39	2049	2050	10.0	9.7	120.00	.00
40	2049	2051	180.0	5.5	120.00	.00
41	2067	2052	848.0	19.8	130.00	.00
42	2067	2080	100.0	19.8	130.00	.00
43	2040	2081	90.0	19.8	130.00	.00
44	2038	2039	765.0	9.7	130.00	.00
45	2035	2036	310.0	9.7	130.00	.00
46	2029	2030	12.0	10.0	130.00	.00
47	2030	2080	188.0	9.7	130.00	.00
48	2048	2049	690.0	9.7	130.00	.00
49	2049	2050	10.0	9.7	130.00	.00
50	2034	2035	900.0	9.7	130.00	.00

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONNI	ECTING	PIPE	:S	
2025		.49	449.00	34	35			
2026		.02	459.00	35				
2027		1.31	447.00	31	33	34		
2028		.14	481.00	33				
2029		.35	448.00	28	30	31	46	
2030		.18	448.00	30	32	46	47	

2031	.74	446.00	19	22	23		
2032	1.89	440.00	24	26			
2033	1.90	440.00	26	27			
2034	1.48	445.00	17	18	19	50	
2035	.98	452.00	18	20	45	50	
2036	1.10	465.00	20	21	45		
2037	1.90	445.00	15	17			
2038	4.39	447.00	10	14	15	44	
2039	1.36	483.00	14	16	44		
2040	.48	446.00	9	10	11	43	
2041	.05	448.00	12			-	
2042	.84	441.00	7	9			
2043	1.22	459.00	5	7	8		
2044	.28	465.00	8		~		
2045	.65	461.00	4	5	6		
2046	1.52	475.00	6	36	37		
2047	1.61	462.00	36				
2048	3.86	478.00	37	38	48		
2049	1.63	485.00	38	39	40	48	49
2050	.43	487.00	39	49			
2051	.39	462.00	40				
2052	.98	451.00	2	4	41		
2067	1.24	469.00	1	2	3	41	42
2068	.67	445.00	23	28	29		
2069	.23	461.00	29				
2070	1.97	445.00	22	24	25		
2071	.40	461.00	25				
2072	7.05	465.00	27				
2073	.41	475.00	21				
2074	.54	488.00	16				
2080	1.18	462.00	3	13	32	42	47
2081	.44	447.00	11	12	13	43	

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER OF	PIPES(p)	=	50
NUMBER OF	JUNCTION NODES (\bar{j})	=	38
NUMBER OF	PRIMARY LOOPS(1)	=	12
NUMBER OF	FIXED GRADE NODES(f)	=	1
NUMBER OF	SUPPLY ZONES(z)	=	1

SIMULATION RESULTS

THE RESULTS ARE OBTAINED AFTER 7 TRIALS WITH AN ACCURACY = .00213

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	2067	46.30	.52	.00	.00	.66	1.5
2	2067	2052	.91	.69	.00	.00	.18	.8
3	2067	2080	2.52	.54	.00	.00	.51	5.4
4	2052	2045	10.92	1.50	.00	.00	.71	5.0
5	2045	2043	.83	.01	.00	.00	.05	.0
6	2045	2046	9.44	.82	.00	.00	.61	3.8
7	2043	2042	67	.01			.04	. 0
8	2043	2044	.28	.05	.00	.00	.06	.0
9	2042	2040	-1.51	.01	.00	.00	.10	.1
10	2040	2038	20.03	2.27	.00	.00	1.30	15.5
11	2040	2081	70	.27	.00	.00	.30	2.9
12	2081	2041	.05	.00	.00	.00	.02	. 0
13	2081	2080	-22.50	1.38	.00	.00	.73	3.0
14	2038	2039	.33	.55	.00	.00	.14	. 7
15	2038	2037	13.74	5.29	.00	.00	.89	7.7
16	2039	2074	.54	.01	.00	.00	.11	.2
17	2037	2034	11.84	.08	.00	.00	.67	4.1
18	2034	2035	.87	.68	.00	.00	.18	. 7
19	2034	2031	7.87	.67	.00	.00	.51	2.7
20	2035	2036	.26	.15		.00	.11	. 4
21	2036	2073	.41	.03		.00	.06	.0
22	2031	2070	13.21	1.22	.00	.00	.86	7.1
23	2031	2068	-6.08	6.02		.00	.82	10.2
24	2070	2032	10.84	2.22	.00	.00	.70	4.9
25	2070	2071	.40	.03		.00	.05	. 0
26	2032	2033	8.95	.22	.00	.00	.51	2.5
27	2033	2072	7.05	.62	.00	.00	.46	1.9
28	2068	2029	-6.98	1.58	.00		.94	13.1
29	2068	2069	.23	.01	.00	.00	.05	.0
30	2029	2030	-3.15	.09		.00	.63	7.7
31	2029	2027	1.96	.36		.00	.27	1.2
32	2030	2080	-2.30	2.24	.00	.00	.47	4.6
33	2027	2028	.14	.00	.00	.00	.02	. 0
34	2027	2025	.51	.01	.00	.00	.03	. 0
35	2025	2026	.02	.00		.00	.01	.0
36	2046	2047	1.61	1.48	.00	.00	.33	2.3
37	2046	2048	6.31	.30		.00	.41	1.8
38	2048	2049	1.18	.34	.00	.00	.16	.4

JOB NAME = GKWSAP - JICA - Kahawatta SR

39	2049	2050	.21	.00	.00	.00	.03	.0
40	2049	2051	.39	.18	.00	.00	.16	1.0
41	2067	2052	11.00	.69	.00	.00	.36	.8
42	2067	2080	30.63	.54	.00	.00	.99	5.4
43	2040	2081	-21.31	.25	.00	.00	.69	2.7
44	2038	2039	1.57	.55	.00	.00	.21	.7
45	2035	2036	1.25	.15	.00	.00	.17	. 4
46	2029	2030	-6.14	.09	.00	.00	.78	7.7
47	2030	2080	-7.17	2.24	.00	.00	.97	11.9
48	2048	2049	1.27	.34	.00	.00	.17	. 4
49	2049	2050	.22	.00	.00	.00	.03	. 0
50	2034	2035	1.62	.68	.00	.00	.22	. 7

JUNCTION NODE RESULTS

JUNCTION NUMBER	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
2025	.49	512.23	449.00	63.23	620.05
2026	.02	512.23	459.00	53.23	521.98
2027	1.31	512.24	447.00	65.24	639.81
2028	.14	512.24	481.00		306.33
2029	.35	512.60	448.00	64.60	633.54
2030	.18		448.00		634.45
2031	.74		446.00		
2032	1.89			61.56	
2033	1.90	501.34		61.34	
2034	1.48			60.66	
2035	.98	504.97		52.97	519.50
2036	1.10	504.83		39.83	390.58
2037	1.90	505.73		60.73	
2038	4.39	511.02	447.00		627.81
2039	1.36	510.47		27.47	
2040	.48	513.29		67.29	659.87
2041	.05	513.55		65.55	
2042	.84	513.29	441.00	72.29	
2043	1.22	513.28	459.00		
2044	.28	513.24	465.00	48.24	473.04
2045	.65	513.29	461.00	52.29	512.78
2046	1.52	512.47	475.00	37.47	367.43
2047	1.61	510.98	462.00	48.98	480.37
2048	3.86	512.16	478.00	34.16	335.04
2049	1.63	511.83	485.00	26.83	263.11
2050	.43	511.83	487.00	24.83	243.49
2051	.39	511.65	462.00	49.65	486.90
2052	.98	514.79	451.00	63.79	625.57
2067	1.24	515.48	469.00		455.84
2068	.67	511.02	445.00		647.46
2069	.23	511.01		50.01	490.41
2070	1.97	503.78	445.00	58.78	576.44

DATE = 03-07-2002 JOB NAME = GKWSAP - JICA - Kahawatta SR

2071	.40	503.75	461.00	42.75	419.25
2072	7.05	500.72	465.00	35.72	350.34
2073	.41	504.80	475.00	29.80	292.22
2074	.54	510.46	488.00	22.46	220.21
2080	1.18	514.94	462.00	52.94	519. 1 5
2081	.44	513.56	447.00	66.56	652.69

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		46.30
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	=======================================	46.30 .00 46.30

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00036

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	2067	13.89	.06	.00	.00	.20	.1
2	2067	2052	.27	.07	.00	.00	.06	. 0

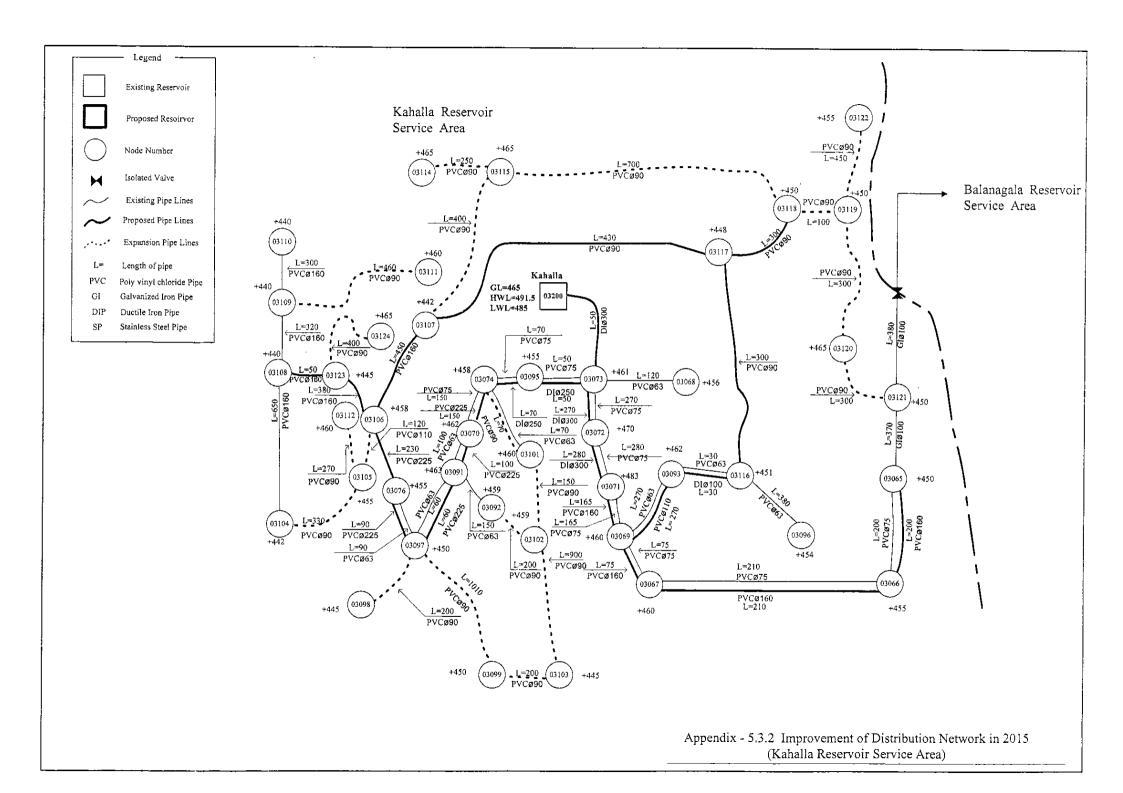
3	2067	2080	.76	.06	- 00	.00	.15	. 5
4	2052	2045	3.28	.16	.00	.00	.21	.5
5	2045	2043	.25	.00	.00	.00	.02	.0
6	2045	2046	2.83	.09	.00	.00	.18	. 4
7	2043	2042	20	.00	.00	.00	.01	.0
8	2043	2044	.08	.00	.00	.00	.02	.0
9	2042	2040	45	.00	.00	.00	.03	.0
10	2042	2038	6.01	.24	.00	.00	.39	1.6
11	2040	2030	20	.03	.00	.00	.09	.3
12	2040	2041						
13		2041	.02 -6.75	.00	.00	.00	.01	. 0
	2081			.15	.00	.00	.22	.3
14	2038	2039	.10	.06	.00	.00	.04	.0
15	2038	2037	4.12	.57	.00	.00	.27	.8
16	2039	2074	.16	.00	.00	.00	.03	. 0
17	2037	2034	3.55	.01	.00	.00	.20	. 4
18	2034	2035	.26	.07	.00	.00	.05	.0
19	2034	2031	2.36	.07	.00	.00	.15	.3
20	2035	2036	.08	.02	.00	.00	.03	.0
21	2036	2073	.12	.00	.00	.00	.02	. 0
22	2031	2070	3.96	.13	.00	.00	.26	. 7
23	2031	2068	-1.82	.65	.00	.00	.25	1.1
24	2070	2032	3.25	.24	.00	.00	.21	.5
25	2070	2071	.12	.00	.00	.00	.02	. 0
26	2032	2033	2.69	.02	.00	.00	.15	.2
27	2033	2072	2.12	.07	.00	.00	.14	.2
28	2068	2029	-2.09	.17	.00	.00	.28	1.4
29	2068	2069	.07	.00	.00	.00	.01	.0
30	2029	2030	95	.01	.00	.00	.19	.8
31	2029	2027	.59	.04	.00	.00	.08	.1
32	2030	2080	69	.24	.00	.00	.14	. 4
33	2027	2028	.04	.00	.00	.00	.01	.0
34	2027	2025	.15	.00	.00	.00	.01	.0
35	2025	2026	.01	.00	.00	.00	.00	. 0
36	2046	2047	.48	.16	.00	.00	.10	.2
37	2046	2048	1.89	.03	.00	.00	.12	.2
38	2048	2049	.35	.04	.00	.00	.05	.0
39	2049	2050	.06	.00	.00	.00	.01	.0
40	2049	2051	.12	.02	.00	.00	.05	.1
41	2047	2052	3.30	.07	.00	.00	.11	.0
42	2067	2080	9.19	.06	.00	.00	.30	.5
43	2040	2081	-6.40				.21	.3
44				.03	.00	.00		
	2038	2039	.47	.06	.00	.00	.06	.0
45	2035	2036	.38	.02	.00	.00	.05	.0
46	2029	2030	-1.84	.01	.00	.00	.23	.8
47	2030	2080	-2.15	.24	.00	.00	.29	1.2
48	2048	2049	.38	.04	.00	.00	.05	.0
49	2049	2050	.07	.00	.00	.00	.01	. 0
50	2034	2035	.49	.07	.00	.00	.07	.0

JUNCTION NUMBER	TITLE	EXTERNAL DEMAND (1/s)		ELEVATION		JUNCTIO PRESSUR (kpa)
2025		. 15	515.59	449.00	66.59	653.07
2026		.01	515.59	459.00	56.59	555.00
2027		.39	515.60	447.00	68.60 34.60	672.70
2028		.04	515.60	481.00	34.60	339.27
2029		.10	515.60 515.60 515.63	448.00	67.63	663.27
2030		.05	515.64	448.00	67.64	663.37
2031		.22	514.82 514.45	446.00	68.82 74.45	674.87
2032		.57	514.45	440.00	74.45	730.08
2033		.57	514.42		74.42	
2034		.44	514.89	445.00		685.38
2035		.29	514.82	452.00	62.82 49.80	616.02
2036		.33	514.80			
2037		.57	514.90	445.00	69.90	
2038		1.32	515.47	447.00 483.00 446.00	68.47 32.41	671.43
2039		.41	515.41	483.00	32.41	317.80
2040		.14			69.71	683.63
2041		.02	515.74	448.00	67.74	664.27
2042		.25	515.71 515.71	441.00 459.00	74.71 56.71	732.65
2043		.37	515.71	459.00	56.71	
2044		.08	515.70			
2045		.20	515.71	461.00	54.71	536.51
2046		.46	515.62 515.46	475.00	40.62 53.46	398.35
2047		.48	515.46			
2048		1.16	515.59			
2049		.49 .13	515.55 515.55	485.00	30.55 28.55	299.61 279.99
2050		.13	515.55	487.00	28.55 53.53	524.97
2051 2052		.12	515.87	452.00	64.87	
2052		.37				
2067		.20	515.94 515.46	469.00 445. 00	46.94 70.46	691.03
2069		.07	515.46	461.00	54.46	534.10
2070		.59	514.69		69.69	683.39
2070		.12	E11 C0	461 00	53 68	526 45
2072		2.12	514.36	465 NO	49.36	484.03
2072		.12	514.80	475.00		
2074		.16	515.41			
2080		.35	515.89	462.00	27.41 53.89	528.44
2081		.13	515.89 515.74	447.00	68.74	674.08
						- · - · ·

SUMMARY OF INFLOWS AND OUTFLOWS

(+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES

(-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES


PIPE FLOWRATE
NUMBER (1/s)

1 13.89

NETSYSTEMINFLOW=13.89NETSYSTEMOUTFLOW=.00NETSYSTEMDEMAND=13.89

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 10:33: 4

DATE: 3/ 7/2002 TIME: 10:40:37

INPUT DATA FILENAME ------ c:\D_nets\2015\KAHL2015.DAT TABULATED OUTPUT FILENAME ----- c:\D_nets\2015\KAHL2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\KAHL2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG	0	3073	50.0	30.0	130.00	.00	485.
2 3	3073 3095	3095 3074	50.0 70.0	6.5	120.00	.00	
3 4	3095	3074	70.0 150.0	6.5 6.5	120.00 120.00	.00	
5	3074	3101	70.0	5.5	120.00	.00	
6	3070	3091	100.0	5.5	120.00	.00	
7	3091	3092	150.0	5.5	120.00	.00	
8	3091	3097	60.0	5.5	120.00	.00	
9	3097	3076	90.0	5.5	120.00	.00	
10	3073	3068	120.0	5.5	120.00	.00	
11	3073	3072	270.0	6.5	120.00	.00	
12	3072	3071	280.0	6.5	120.00	.00	
13	3071	3069	165.0	6.5	120.00	.00	

14	3069	3067	75.0	6.5	120.00	.00
1 5	3069	3093	270.0	5.5	120.00	.00
16	3067	3066	210.0	6.5	120.00	.00
17	3066	3065	200.0	6.5	120.00	.00
18	3065	3121	370.0	10.0	120.00	.00
19	3093	3116	30.0	5.5	120.00	.00
20	3116	3096	380.0	5.5	120.00	.00
21	3073	3095	50.0	25.0	130.00	.00
22	3095	3074	70.0	25.0	130.00	.00
23	3074	3079				
			150.0	19.8	130.00	.00
24	3070	3091	100.0	19.8	130.00	.00
25	3091	3097	60.0	19.8	130.00	.00
26	3097	3076	90.0	19.8	130.00	.00
27	3073	3072	270.0	30.0	130.00	.00
28	3072	3071	280.0	30.0	130.00	.00
29	3069	3067	75.0	14.0	130.00	.00
30	3067	3066	210.0	14.0	130.00	
						.00
31	3066	3065	200.0	14.0	130.00	.00
32	3092	3102	200.0	7.9	130.00	.00
33	3101	3102	150.0	7.9	130.00	.00
34	3102	3103	900.0	7.9	130.00	.00
35	3103	3099	200.0	7.9	130.00	.00
36	3099	3097	1010.0	7.9	130.00	.00
37	3097	3098	200.0	7.9	130.00	.00
38	3076	3106	230.0	19.8	130.00	.00
39	3106	3107	450.0	14.0	130.00	.00
40	3106	3105	120.0	9.7	130.00	.00
41	3106	3123	380.0	14.0	130.00	.00
42	3105	3104	330.0	7.9	130.00	.00
43	3105	3112	270.0	7.9	130.00	.00
44	3104	3108	650.0	14.0	130.00	.00
45	3108	3123	50.0	14.0	130.00	
						.00
46	3108	3109	320.0	14.0	130.00	.00
47	3109	3110	300.0	14.0	130.00	.00
48	3109	3111	460.0	7.9	130.00	.00
49	3123	3124	400.0	7.9	130.00	.00
50	3107	3115	400.0	7.9	130.00	.00
51	3107	3117	430.0	7.9	130.00	.00
52	3115	3114	250.0	7.9	130.00	.00
53	3115	3118	700.0	7.9	130.00	
						.00
54	3117	3116	300.0	7.9	130.00	.00
55	3117	3118	300.0	7.9	130.00	.00
56	3118	3119	100.0	7.9	130.00	.00
57	3119	3120	300.0	7.9	130.00	.00
58	3119	3122	450.0	7.9	130.00	.00
59	3120	3121	300.0	7.9	130.00	.00
60	3071	3069	165.0	14.0	130.00	.00
61	3069	3093	270.0			
				9.7	130.00	.00
62	3093	3116	30.0	10.0	130.00	.00
63	3074	3101	70.0	7.9	130.00	.00

PAGE NO. 3

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	DEMAND	JUNCTION ELEVATION (m)	CONNE	ECTING	PIPI	ES	
3065		1.07	450.00	17	18	31		
3066		1.47	455.00	16	17	30	31	
3067		.43	460.00	14	16	29	30	
3068		.15	456.00	10				
3069		.69	460.00	13	14	15	29	60
			20000					
3070		.29	462.00	4	6	23	24	
3071		1.00	483.00	12	13	28	60	
3072		.45	470.00	11	12	27	28	
3073		.49	461.00	1	2	10	11	21
3074		.31	458.00	3	4	5	22	23
3076		.32	455.00	9	26	38		
3091		.32	463.00	6	7	8	24	25
3092		.42	459.00	7	32			
3093		.45	462.00	15	19	61	62	
3095		.16	455.00	2	3	21	22	
3096		.80	454.00	20				
3097		1.33	450.00	8	9	25	26	36
3098		.25	445.00	37				
3099		4.03	450.00	35	36			
3101		.28	460.00	5	33	63		
3102		1.52	459.00	32	33	34		
3103		2.11	445.00	34	35			
3104		2.44	442.00	42	44			
3105		. 55	455.00	40	42	43		
3106		.77	458.00	38	39	40	41	
3107		4.16	442.00	39	50	51		
3108		2.07	440.00	44	45	46		
3109		1.66	440.00	46	47	48		
3110		1.46	440.00	47				
3111		.30	460.00	48				
3112		.27	460.00	43				
3114		.38	465.00	52				
3115		1.95	465.00	50	52	53		
3116		1.06	451.00	19	20	54	62	
3117		1.01	448.00	51	54	55		
3118		1.59	450.00	53	55	56		
3119		1.46	450.00	56	57	58		
3120		1.03	465.00	57	5 <i>9</i>			
3121		2.64	450.00	18	59			
3122		1.21	455.00	58	J J			
3123		.30	445.00	41	45	49		
3124		.33	465.00	49	4 J	1)		
J + 4 +			±03.00	マシ				

PAGE NO. 4 JOB NAME = GKWSAP - JICA - Kahalla SR

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER OF	PIPES(p)	=	63
NUMBER OF	JUNCTION NODES(j)	=	42
NUMBER OF	PRIMARY LOOPS(1)	=	21
NUMBER OF	FIXED GRADE NODES(f)	=	1
NUMBER OF	SUPPLY ZONES(z)	=	1

********** SIMULATION RESULTS *********

THE RESULTS ARE OBTAINED AFTER 6 TRIALS WITH AN ACCURACY = .00090

PIPELINE RESULTS

STATUS CODE:	XX -CLOSED PIPE	FG -FIXED GRADE NODE	PU -PUMP LINE
	CV -CHECK VALVE	RV -REGULATING VALVE	TK -STORAGE TANK

PIPE NUMBER	NO: #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	
1-FG	0	3073	44.98	.07	.00	.00	.64	1.4
2	3073	3095	.77	.08	.00	.00	.23	1.5
3	3095	3074	.76	.11	.00	.00	.23	1.5
4	3074	3070	1.17	.51	.00	.00	.35	3.4
5	3074	3101	1.08	.46	.00	.00	.46	6.6
6	3070	3091	.76	.34	.00	.00	.32	3.4
7	3091	3092	1.12	1.06	.00	.00	.47	7.0
8	3091	3097	.72	.18	.00	.00	.30	3.0
9	3097	3076	.57	.18	.00	.00	.24	2.0
10	3073	3068	.15	.02	.00	.00	.06	.1
11	3073	3072	.25	.05	.00	.00	.07	.1
12	3072	3071	.24	.05	.00	.00	.07	.1
13	3071	3069	1.46	.84	.00	.00	.44	5.1
14	3069	3067	.86	.14	.00	.00	.26	1.9
15	3069	3093	.83	1.09	.00	.00	.35	4.0
16	3067	3066	.81	.36	.00	.00	. 24	1.7
17	3066	3065	. 65	.23	.00	.00	.20	1.1

18	3065	3121	4.87	2.16	.00	.00	.62	5.8
19	3093	3116	.70	.09	.00	.00	.30	2.9
20	3116	3096	.80	1.44	.00	.00	.34	3.7
21	3073	3095	28.76	.08	.00	.00	.59	1.5
22	3095	3074	28.61	.11	.00	.00	.58	1.5
23	3074	3070	23.76	.51	.00	.00	.77	3.4
24	3070	3091	23.89	.34	.00	.00	.78	3.4
25	3091	3097	22.49	.18	.00	.00	.73	3.0
26	3097	3076	17.94	.18	.00	.00	.58	2.0
27	3073	3072	14.56	.05	.00	.00	.21	.1
28	3072	3071	14.12	.05	.00	.00	.20	.1
29	3069	3067	6.99	.14	.00	.00	.45	1.9
30	3067	3066	6.60	.36	.00	.00	.43	1.7
31	3066	3065	5.29	.23	.00	.00	.34	1.1
32	3092	3102	.70	.09	.00	.00	.14	.4
33	3101	3102	3.84	1.53	.00	.00	.78	10.2
34	3102	31.03	3.02	5.90	.00	.00	.62	6.5
35	3103	3099	.91	.14	.00	.00	.19	.7
36	3099	3097	-3.12	7.00	.00	.00	.64	6.9
37	3097	3098	.25	.01	.00	.00	.05	.0
38	3076	3106	18.19	.48	.00	.00	.59	2.0
39	3106	3107	8.04	1.11	.00	.00	.52	2.4
40	3106	3105	2.39	.19	.00	.00	.32	1.5
41	3106	3123	6.99	.72	.00	.00	.45	1.9
42	3105	3104	1.57	.64	.00	.00	.32	1.9
43	3105	3112	.27	.02	.00	.00	.06	.0
44	3104	3108	87	.03	.00	.00	.06	.0
45	3108	3123	-6.36	.08	.00	.00	.41	1.6
46	3108	3109	3.42	.16	.00	.00	.22	.5
47	3109	3110	1.46	.03	.00	.00	.09	.1
48	3109	3111	.30	.04	.00	.00	.06	.0
49	3123	3124	.33	.04	.00	.00	.07	.1
50	3107	3115	2.66	2.07	.00	.00	.54	5.1
51	3107	3117	1.22	.52	.00	.00	.25	1.2
52	3115	3114	.38	.04	.00	.00	.08	.1
53	3115	3118	.33	.08	.00	.00	.07	.1
54	3117	3116	-2.52	1.40	.00	.00	.51	4.6
55	3117	3118	2.72	1.62	.00	.00	.56	5.4
56	3118	3119	1.47	.17	.00	.00	.30	1.7
57	3119	3120	-1.20	.36	.00	.00	.25	1.1
58	3119	3122	1.21	.54	.00	.00	.25	1.2
59	3120	3121	-2.23	1.12	.00	.00	.46	3.7
60	3071	3069	11.90	.84	.00	.00	.77	5.1
61	3069	3093	4.00	1.09	.00	.00	.54	4.0
62	3093	3116	3.67	.09	.00	.00	.47	2.9
63	3074	3110	3.04	.46	.00	.00	.62	6.6
0 5	3074	J + U +	J.U I	. 40	.00	.00	.02	0.0

JUNCTION	JUNCTION	EXTERNAL	HYDRAULIC	JUNCTION	PRESSURE	JUNCTIO
NUMBER	\mathtt{TITLE}	DEMAND	GRADE	ELEVATION	HEAD	PRESSUR

	(1/s)	(m)	(m)	(m)	(kpa)
3065	1.07	483.25	450.00	33.25	326.07
3066	1.47	483.48	455.00	28.48	279.27
3067	.43	483.84	460.00	23.84	233.77
3068	.15	484.91	456.00	28.91	283.48
3069	.69	483.98	460.00	23.98	235.17
3070	.29	484.23	462.00	22.23	218.02
3071	1.00	484.82	483.00	1.82	17.88
3072	.45	484.87	470.00	14.87	145.87
3073	.49	484.93	461.00	23.93	234.64
3074	.31	484.74	458.00	26.74	262.24
3076	.32	483.52	455.00	28.52	279.71
3091	.32	483.89	463.00	20.89	204.84
3092	.42	482.83	459.00	23.83	233.71
3093	.45	482.89	462.00	20.89	204.86
3095	.16	484.85	455.00	29.85	292.72
3096	.80	481.36	454.00	27.36	268.36
3097	1.33	483.70	450.00	33.70	330.52
3098	.25	483.69	445.00	38.69	379.43
3099	4.03	476.70	450.00	26.70	261.88
3101	.28	484.28	460.00	24.28	238.08
3102	1.52	482.74	459.00	23.74	232.86
3103	2.11	476.85	445.00	31.85	312.31
3104	2.44	482.22	442.00	40.22	394.38
3105	. 55	482.86	455.00	27.86	273.20
3106	.77	483.05	458.00	25.05	245.61
3107	4.16	481.93	442.00	39.93	391.55
3108	2.07	482.24	440.00	42.24	414.25
3109	1.66	482.08	440.00	42.08	412.65
3110	1.46	482.05	440.00	42.05	412.35
3111	.30	482.04	460.00	22.04	216.11
3112	.27	482.84	460.00	22.84	223.97
3114	.38	479.82	465.00	14.82	145.36
3115	1.95	479.86	465.00	14.86	145.71
3116	1.06	482.80	451.00	31.80	311.86
3117	1.01	481.40	448.00	33.40	327.57
3118	1.59	479.78	450.00	29.78	292.06
3119	1.46	479.61	450.00	29.61	290.38
3120	1.03	479.97	465.00	14.97	146.78
3121	2.64	481.09	450.00	31.09	304.89
3122	1.21	479.07	455.00	24.07	236.04
3123	.30	482.32	445.00	37.32	366.00
3124	.33	482.28	465.00	17.28	169.44

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

PIPE FLOWRATE

DATE = 03-07-2002JOB NAME = GKWSAP - JICA - Kahalla SR

	NUMBER		(1/s)
	1		44.98
 SYSTEM SYSTEM	INFLOW OUTFLOW	=	44.98

NET SYSTEM DEMAND = 44.98

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00017

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NO! #1	DE NOS. #2	FLOWRATE (1/s)	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	
1-FG	0	3073	13.49	.01	.00	.00	.19	.1
2	3073	3095	.23	.01	.00	.00	.07	.1
3	3095	3074	.23	.01	.00	.00	.07	.1
4	3074	3070	.35	.05	.00	.00	.11	. 3
5	3074	3101	.32	.05	.00	.00	.14	.7
6	3070	3091	.23	.04	.00	.00	.10	. 3
7	3091	3092	.34	.11	.00	.00	.14	.7
8	3091	3097	.21	.02	.00	.00	.09	.3
9	3097	3076	.17	.02	.00	.00	.07	.2
10	3073	3068	.05	.00	.00	.00	.02	. 0
11	3073	3072	.07	.01	.00	.00	.02	.0
12	3072	3071	.07	.01	.00	.00	.02	.0
13	3071	3069	.44	.09	.00	.00	.13	.5
14	3069	3067	.26	.02	.00	.00	.08	. 2
15	3069	3093	.25	.12	.00	.00	.10	. 4
16	3067	3066	.24	.04	.00	.00	.07	.1
17	3066	3065	.19	.02	.00	.00	.06	.1

18	3065	3121	1.46	.23	.00	.00	.19	.6
19	3093	3116	.21	.01	.00	.00	.09	.3
20	3116	3096	.24	.15	.00	.00	.10	. 4
21	3073	3095	8.63	.01	.00	.00	.18	. 1
22	3095	3074	8.58	.01	.00	.00	.17	.1
23	3074	3070	7.13	.05	.00	.00	.23	.3
24	3070	3091	7.17	.04	.00	.00	.23	. 3
25	3091	3097	6.75	.02	.00	.00	.22	.3
26	3097	3076	5.38	.02	.00	.00	.17	.2
27	3073	3072	4.37	.01	.00	.00	.06	.0
28	3072	3071	4.24	.01	.00	.00	.06	.0
29	3069	3067	2.10	.02	.00	.00	.14	.2
30	3067	3066	1.98	.04	.00	.00	.13	.1
31	3066	3065	1.59	.02	.00	.00	.10	.1
32	3092	3102	.21	.01	.00	.00	.04	.0
33	3101	3102	1.15	.16	.00	.00	.24	1.1
34	3102	3103	.91	.63	.00	.00	.19	.7
35	3103	3099	.27	.02	.00	.00	.06	. 0
36	3099	3097	93	.75	.00	.00	.19	.7
37	3097	3098	.08	.00	.00	.00	.02	. 0
38	3076	3106	5.46	.05	.00	.00	.18	.2
39	3106	3107	2.41	.12	.00	.00	.16	.2
40	3106	3105	.72	.02	.00	.00	.10	.1
41	3106	3123	2.10	.08	.00	.00	.14	.2
42	3105	3104	.47	.07	.00	.00	.10	.2
43	3105	3112	.08	.00	.00	.00	.02	.0
44	3104	3108	26	.00	.00	.00	.02	.0
45	3108	3123	-1.91	.01	.00	.00	.12	.1
46	3108	3109	1.03	.02	.00	.00	.07	.0
47	3109	3110	.44	.00	.00	.00	.03	.0
48	3109	3111	.09	.00	.00	.00	.02	.0
49	3123	3124	.10	.00	.00	.00	.02	.0
50	3107	3115	.80	.22	.00	.00	.16	.5
51	3107	3117	.37	.06	.00	.00	.07	.1
52	3115	3114	.11	.00	.00	.00	.02	.0
53	3115	3118	.10	.01	.00	.00	.02	.0
54	3117	3116	75	.15	.00	.00	.15	.5
55	3117	3118	.82	.17	.00	.00	.17	.5
56	3118	3119	.44	.02	.00	.00	.09	.1
57	3119	3120	36	.04	.00	.00	.07	.1
58	3119	3122	.36	.06	.00	.00	.07	.1
59	3120	3121	67	.12	.00	.00	.14	. 4
60	3071	3069	3.57	.09	.00	.00	.23	.5
61	3069	3093	1.20	.12	.00	.00	.16	.4
62	3093	3116	1.10	.01	.00	.00	.14	.3
63	3074	3101	.91	.05	.00	.00	.19	.7
-	-		- 		. • •			- •

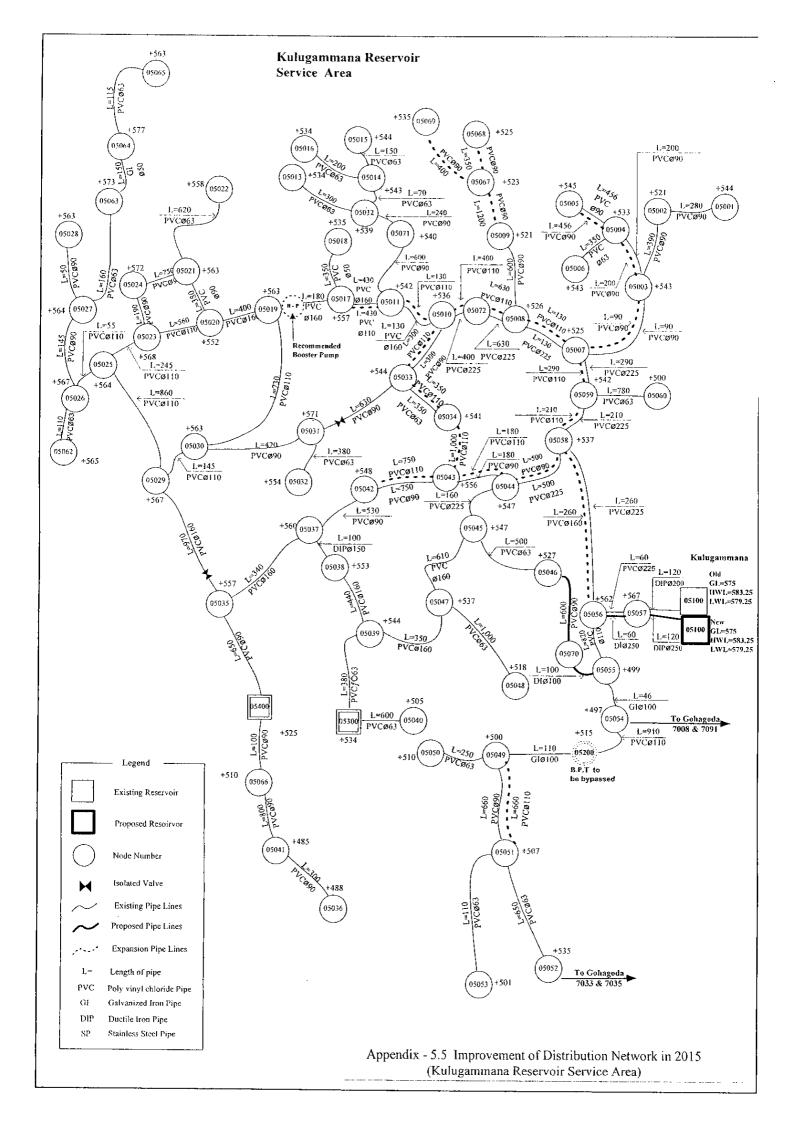
JUNCTION NODE RESULTS

JUNCTION	JUNCTION	EXTERNAL	HYDRAULIC	JUNCTION	PRESSURE	JUNCTIO
NUMBER	\mathtt{TITLE}	DEMAND	GRADE	ELEVATION	HEAD	PRESSUR

JOB NAME = GKWSAP - JICA - Kahalla SR

	(1/s)	(m)	(m)	(m)	(kpa)
3065	.32	484.81	450.00	34.81	341.39
3066	.44	484.84	455.00	29.84	292.60
3067	.13	484.88	460.00	24.88	243.95
3068	.05	484.99	456.00	28.99	284.30
3069	.21	484.89	460.00	24.89	244.10
3070	.09	484.92	462.00	22.92	224.74
3071	.30	484.98	483.00	1.98	19.43
3072	.14	484.99	470.00	14.99	146.97
3073	.15	484.99	461.00	23.99	235.28
3074	.09	484.97	458.00	26.97	264.51
3076	.10	484.84	455.00	29.84	292.64
3091	.10	484.88	463.00	21.88	214.57
3092	.13	484.77	459.00	25.77	252.69
3093	.14	484.77	462.00	22.77	223.33
3095	.05	484.98	455.00	29.98	294.04
3096	.24	484.61	454.00	30.61	300.18
3097	.40	484.86	450.00	34.86	341.87
3098	.08	484.86	445.00	39.86	390.89
3099	1.21	484.11	450.00	34.11	334.48
3101	.08	484.92	460.00	24.92	244.41
3102	.46	484.76	459.00	25.76	252.60
3103	.63	484.12	445.00	39.12	383.67
3104	.73	484.70	442.00	42.70	418.75
3105	.17	484.77	455.00	29.77	291.94
3106	.23	484.79	458.00	26.79	262. 72
3107	1.25	484.67	442.00	42.67	418.45
3108	.62	484.70	440.00	44.70	438.39
3109	.50	484.69	440.00	44.69	438.22
3110	.44	484.68	440.00	44.68	438.19
3111	.09	484.68	460.00	24.68	242.04
3112	.08	484.77	460.00	24.77	242.89
3114	.11	484.44	465.00	19.44	190.68
3115	. 59	484.45	465.00	19.45	190.72
3116	.32	484.76	451.00	33.76	331.11
3117	.30	484.61	448.00	36.61	359.06
3118	.48	484.44	450.00	34.44	337.74
3119	.44	484.42	450.00	34.42	337.56
3120	.31	484.46	465.00	19.46	190.83
3121	.79	484.58	450.00	34.58	339.12
3122	.36	484.36	455.00	29.36	287.95
3123	.09	484.71	445.00	39.71	389.44
3124	.10	484.71	465.00	19.71	193.26

SUMMARY OF INFLOWS AND OUTFLOWS


- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

PIPE FLOWRATE

		NUMBER		(1/s)
		1		13.49
NET	SYSTEM	INFLOW	=	13.49
NET	SYSTEM	OUTFLOW		.00
NET	SYSTEM	DEMAND	=	13.49

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 10:40:37

DATE: 3/ 7/2002 TIME: 13:53: 9

INPUT DATA FILENAME ----- C:\D_nets\2015\KULU2015.DAT TABULATED OUTPUT FILENAME ---- C:\D_nets\2015\KULU2015.OUT POSTPROCESSOR RESULTS FILENAME --- C:\D_nets\2015\KULU2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second HEAD (HGL) ... = meters PRESSURE ... = kpa

REGULATING VALVE DATA

VALVE TYPE	POSITION JUNCTION	CONTROLLED PIPE	VALVE SETTING (m or 1/s)
PRV-1	5300	77	534.00
PRV-1	5400	73	525.00

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE	NODE	NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS	FGN-H
NUMBER	#1	#2	(m)	(cm)	COEFF.	COEFF.	(m)
1-FG 2	-	5057 5056	120.0 60.0	20.0	120.00 120.00	.00	579.

3	5056	5055	820.0	9.7	120.00	.00
4	5055	5054	46.0	10.0	120.00	.00
5	5054	5200	910.0	9.7	120.00	.00
6	5200	5049	110.0	10.0	120.00	.00
7	5049	5050	250.0	5.5	120.00	.00
8	5049	5051	660.0	7.9	120.00	.00
9	5051	5053	110.0	5.5	120.00	.00
10	5051	5052	650.0	5.5	120.00	.00
11	5056	5058	260.0	19.8	120.00	.00
12	5058	5059	210.0	19.8	120.00	.00
				5.5		
13	5059	5060	780.0		120.00	.00
14	5059	5007	290.0	19.8	120.00	.00
15	5007	5003	90.0	7.9	120.00	.00
16	5003	5004	200.0	7.9	120.00	.00
17	5004	5005	456.0	7.9	120.00	.00
18	5004	5006	350.0	5.5	120.00	.00
19	5003	5002	390.0	7.9	120.00	.00
20	5001	5002	280.0	7.9	120.00	.00
21	5007	5008	130.0	19.8	120.00	.00
22	5007	5009	600.0	7.9	120.00	.00
23	5009	5067	1200.0	7.9	130.00	.00
24	5067	5069	400.0	7.9	130.00	.00
25	5058	5044	500.0	19.8	120.00	.00
26	5044	5045	160.0	19.8	120.00	.00
27	5045	5046	500.0	5.5	120.00	.00
28	5046	5055	600.0	7.9	130.00	.00
29	5008	5072	630.0	19.8	120.00	.00
30	5072	5010	400.0	19.8	120.00	.00
31	5010	5011	130.0	14.0	120.00	.00
32	5011	5071	600.0	7.9	120.00	.00
33	5071	5012	240.0	7.9	120.00	.00
34	5012	5013	300.0	5.5	120.00	.00
35	5012	5013	70.0	5.5	120.00	.00
36	5014	5015	150.0	5.5	120.00	.00
37	5014	5016	200.0	5.5	120.00	.00
38	5011	5017	430.0	14.0	120.00	.00
39	5017	5018	350.0	4.4	120.00	.00
40-XX	5017	5019	180.0	14.0	120.00	.00
41	5019	5020	400.0	14.0	120.00	.00
42	5020	5021	380.0	7.9	120.00	.00
43	5021	5022	620.0	5.5	120.00	.00
44	5020	5023	560.0	9.7	120.00	.00
4 5	5023	5024	190.0	7.9	120.00	.00
46	5024	5021	750.0	7.9	120.00	.00
47	5023	5025	245.0	9.7	120.00	.00
48	5025	5026	55.0	9.7	120.00	.00
49	5025	5020	110.0			
				5.5	120.00	.00
50	5026	5027	145.0	7.9	120.00	.00
51	5027	5028	50.0	7.9	120.00	.00
52	5027	5063	160.0	5.5	120.00	.00
53	5063	5064	150.0	5.5	120.00	.00
54	5064	5065	115.0	5.5	120.00	.00
55	5025	5029	860.0	9.7	120.00	.00

DATE =	03-07-2002	PAGE	NO.	3
				_

56	5029	5030	145.0	9.7	120.00	.00	
57	5030	5019	730.0	9.7	120.00	.00	
58	5030	5031	420.0	7.9	120.00	.00	
59	5031	5032	380.0	5.5	120.00	.00	
60-XX	5031	5033	630.0	7.9	120.00	.00	
61	5033	5034	350.0	5.5	120.00	.00	
62	5042	5043	750.0	7.9	120.00	.00	
63	5043	5044	180.0	7.9	120.00	.00	
64	5042	5037	530.0	7.9	120.00	.00	
65	5037	5038	100.0	15.0	120.00	.00	
66	5038	5039	440.0	14.0	120.00	.00	
67	5039	5047	350.0	14.0	120.00	.00	
68	5047	5045	610.0	14.0	120.00	.00	
69	5047	5048	1000.0	5.5	120.00	.00	
70-XX	5029	5035	970.0	14.0	120.00	.00	
71	5035	5037	340.0	14.0	120.00	.00	
72	5035	5400	650.0	7.9	120.00	.00	
73-RV	5400	5066	100.0	7.9	120.00	.00	
74	5066	5041	800.0	7.9	120.00	.00	
75	5041	5036	300.0	7.9	120.00	.00	
76	5039	5300	380.0	5.5	120.00	.00	
77-RV	5300	5040	600.0	5.5	120.00	.00	
78	5010	5033	300.0	7.9	120.00	.00	
79	5034	5043	1000.0	9.7	130.00	.00	
80	5067	5068	350.0	7.9	130.00	.00	
81-FG	0	5057	120.0	25.0	130.00	.00	579.
82	5057	5056	60.0	25.0	130.00	.00	
83	5033	5034	350.0	9.7	130.00	.00	
84	5042	5043	750.0	9.7	130.00	.00	
85	5043	5044	180.0	9.7	130.00	.00	
86	5058	5044	500.0	7.9	130.00	.00	
87	5010	5033	300.0	9.7	130.00	.00	
88	5007	5003	90.0	7.9	130.00	.00	
89	5003	5004	200.0	7.9	130.00	.00	
90	5004	5005	456.0	7.9	130.00	.00	
91	5056	5058	260.0	14.0	130.00	.00	
92	5058	5059	210.0	9.7	130.00	.00	
93	5059	5007	290.0	9.7	130.00	.00	
94	5007	5008	130.0	9.7	130.00	.00	
95	5008	5072	630.0	9.7	130.00	.00	
96	5010	5011	130.0	9.7	130.00	.00	
97	5011	5017	430.0	9.7	130.00	.00	
98-FG	0	5019	90.0	14.0	130.00	.00	590
99	5049	5051	660.0	9.7	130.00	.00	

JUNCTION NODE DATA

JUNCTION	JUNCTION	EXTERNAL	JUNCTION		
NUMBER	TITLE	DEMAND	ELEVATION	CONNECTING	PIPES
		(1/s)	(m)		

5001	.08	544.00	20	~ 			
5002	.19	521.00	19	20			
5003	.28	543.00	15	16	19	88	89
5004	.51	533.00	16	17	18	89	90
5005	3.40	545.00	17	90			.
5006	.21	543.00	18				
5007	.23	525.00	14	15	21	88	93
						•	, ,
5008	.54	526.00	21	22	29	94	95
5009	.75	521.00	22	23	-+		
5010	.50	536.00	30	31	78	87	96
5011	.70	542.00	31	32	38	96	97
5012	.48	539.00	33	34	35	50	,
5013	.09	534.00	34	J	33		
5014	.12	543.00	35	36	37		
5015	.05	544.00	36	50	<i>J</i> ,		
5016	.07	534.00	37				
5017	.66	557.00	38	39	40	97	
5018	.09	535.00	39	7,5	10	<i>J</i> ,	
5019	.70	563.00	40	41	57	98	
5020	.42	552.00	41	42	44	20	
5021	.39	563.00	42	43	46		
5022	.40	558.00	43	± 5			
5023	.07	568.00	44	45	47		
5024	.03	572.00	45	46	4 /		
5025	.53	564.00	47	48	55		
5026	.15	567.00	48	49	50		
5027	.19	564.00	50	51	52		
5028	.05	563.00	51	J.	24		
5029	.26	567.00	55	56	70		
5030	.16	563.00	56	57	58		
5031	.25	571.00	58	5 <i>7</i>	60		
5032	.33	554.00	59	33	00		
5033	.18	544.00	60	61	78	83	87
5034	1.18	541.00	61	79	83	03	0 /
5035	1.44	557.00	70	71	72		
5036	.29	488.00	75	, _	7 2		
5037	.48	560.00	64	65	71		
5038	.14	553.00	65	66	/		
5039	.58	544.00	66	67	76		
5040	.32	505.00	77	07	70		
5041	.82	485.00	74	75			
5042	.45	548.00	62	64	84		
5043	.44	556.00	62	63	79	84	85
5044	.28	547.00	25	26	63	85	86
5045	.34	547.00	25 26	26 27	68	ŲΞ	00
5046	.37	527.00	26 27	28	UO		
5047	.37	527.00	27 67	∠8 68	69		
5048				80	פס		
5049	.19	518.00	69	-7	0	00	
5050	.73	500.00	6	7	8	99	
5051	.12	510.00	7	<u></u>	10	0.0	
3031	.52	507.00	8	9	10	99	

DATE = 03-07-2002 JOB NAME = GKWSAP - JICA - Kulugammana SR

5052	.49	535.00	10				
5053	1.27	501.00	9				
5054	.92	497.00	4	5			
5055	.47	499.00	3	4	28		
5 056	.43	562.00	2	3	11	82	91
5057	.07	567.00	1	2	81	82	
5058	.45	537.00	11	12	25	86	91
5059	.37	542.00	12	13	14	92	93
5060	.22	500.00	13				
5062	.04	565.00	49				
5063	.06	573.00	52	53			
5064	.06	577.00	53	54			
5065	.03	563.00	54				
5066	1.04	510.00	73	74			
5067	1.04	523.00	23	24	80		
5068	.57	525.00	80				
5069	.19	535.00	24				
5071	.41	540.00	32	33			
5072	.60	532.00	29	30	95		
5200	.00	515.00	5	6			
5300	.00	534.00	76	77			
5400	.00	525.00	72	73			

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

THE RESULTS ARE OBTAINED AFTER 8 TRIALS WITH AN ACCURACY = .00016

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE

	CV	-CHECK	VALVE	RV	-REGULATING	VALVE	TK	-STORAGE	TANK
PIPE			FLOW	RATE			MINOR		HL/
NUMBER	#1	#2		, .	LOSS		LOSS		. 1000
			(1,	/s)	(m)	(m)	(m)	(m/s)) (m/m
1-FG	0	5057		9.07	.08	.00	.00	.29	.6
2	5057	5056		3.89		.00	.00	.29	
3	5056	5055	5	3.92	3.70	.00		.53	4.5
4	5055	5054	4	4.05	.19	.00		.52	4.1
5	5054	5200		3.13	2.71	.00			
6	5200	5049		3.13		.00			
7	5049	5050		.12		.00			
8	5049	5051		.80		.00			
9	5051	5053		1.27		.00			
10	5051	5052		.49		.00			
11	5056	5058		5.55		.00			
12	5058	5059		1.07		.00			
13	5059	5060		.22		.00			
14 15	5059	5007			.25	.00			
15 16	5007 5003	5003 5004		2.24		.00			4.3
17	5003	5004		1.98 1.63		.00			
18	5004	5005			1.11 .11	.00 .00			
19	5004	5002			.03				
20	5001	5002		08					
21	5007	5002			.04				
22	5008	5009		2.55					
23	5009	5067		1.80					
24	5067	5069		.19		.00			
25	5058	5044		3.18		.00			
26	5044	5045		5.81		.00		.19	
27	5045	5046		.97					5.4
28	5046	5055			.20			.12	
29	5008	5072			.08			.12	
30	5072	5010	3	3.73	.05			.12	
31	5010	5011	-	1.89	.03	.00	.00	.12	
32	5011	5071	-	1.22	.85	.00	.00	.25	1.4
33	5071	5012		.81		.00	.00	.17	.6
34	5012	5013		.09	.02	.00	.00	.04	.0
35	5012	5014		.24	.03	.00	.00	.10	. 4
36	5014	5015		.05	.00	.00	.00	.02	.0
37	5014	5016		.07		.00	.00	.03	.0
38	5011	5017		.53	.01	.00	.00	.03	. 0
39	5017	5018		.09	.07	.00	.00	.06	. 2
40-XX	5017	5019	_						_
41	5019	5020	2	2.22	.11	.00	.00	.14	. 2
42	5020	5021		.75	. 22	.00	.00	.15	.5
43 44	5021	5022	_	.40	.65	.00	.00	.17	1.0
44 45	5020 5023	5023 5024	ل	L.04	.22	.00	.00	.14	.3
45 46	5023	5024 5021		.07	.00	.00	.00	.01	.0
47	5024	5021		.04	.00 .07	.00	.00	.01	. 0
4 /	3023	J02J		. <i>9</i> 1	.07	.00	.00	.12	.3

48	5025	5026	.58	.01	.00	.00	.08	.1
49	5026	5062	.04	.00	.00	.00	.02	. 0
50	5026	5027	.39	.02	.00	.00	.08	.1
51	5027	5028	.05	.00	.00	.00	.01	. 0
52	5027	5063	.15	.03	.00	.00	.06	.1
53	5063	5064	.09	.01	.00	.00	.04	.0
54	5064	5065	.03	.00	.00	.00	.01	.0
55	5025	5029	20	.02	.00	.00	.03	.0
56	5029	5030	46	.01	.00	.00	.06	.0
57	5030	5019	-1.20	.37	.00	.00	.16	.5
57 58	5030	5019	.58	.15	.00	.00		.3
56 59	5030	5031					.12	
			.33	.28	.00	.00	. 14	.7
60-XX	5031	5033	0.5	0.1				•
61	5033	5034	.06	.01	.00	.00	.03	.0
62	5042	5043	57	.26	.00	.00	.12	.3
63	5043	5044	-1.01	.18	.00	.00	.21	. 9
64	5042	5037	1.18	.71	.00	.00	.24	1.3
65	5037	5038	-2.89	.03	.00	.00	.16	.3
66	5038	5039	-3.03	.21	.00	.00	.20	.4
67	5039	5047	-3.93	.27	.00	.00	.26	. 7
68	5047	5045	-4.50	.60	.00	.00	.29	.9
69	5047	5048	.19	.26	.00	.00	.08	.2
70-XX	5029	5035						
71	5035	5037	-3.59	.22	.00	.00	.23	.6
72	5035	5400	2.15	2.63	.00	.00	.44	4.0
73-RV	5400	5066	2.15	.40	.00	.00	.44	4.0
74	5066	5041	1.11	.95	.00	.00	.23	1.1
75	5041	5036	.29	.03	.00	.00	.06	.1
76	5039	5300	.32	.26	.00	.00	.13	.6
77-RV	5300	5040	.32	.42	.00	.00	.13	.6
78	5010	5033	.20	.01	.00	.00	.04	.0
79	5034	5043	80	.21	.00	.00	.11	.2
80	5067	5043	.57	.10	.00	.00	.12	.3
81-FG	0	5057	17.67					
82	5057	5057 5056		.08	.00	.00	.36	.6
83	5037	5034	17.78	.04	.00	.00	.36	.6
84	5042		.31	.01	.00	.00	.04	. 0
		5043	-1.06	.26	.00	.00	.14	.3
85	5043	5044	-1.87	.18	.00	.00	. 25	. 9
86	5058	5044	.79	.27	.00	.00	.16	.5
87	5010	5033	.36	.01	.00	.00	.05	.0
88	5007	5003	2.43	.39	.00	.00	.50	4.3
89	5003	5004	2.14	.69	.00	.00	.44	3.4
90	5004	5005	1.77	1.11	.00	.00	.36	2.4
91	5056	5058	6.77	.47	.00	.00	.44	1.8
92	5058	5059	1.84	.20	.00	.00	.25	.9
93	5059	5007	1. 75	.25	.00	.00	.24	.8
94	5007	5008	1.06	.04	.00	.00	.14	.3
95	5008	5072	.62	.08	.00	.00	.08	.1
96	5010	5011	.78	.03	.00	.00	.11	.2
97	5011	5017	.22	.01	.00	.00	.03	.0
98-FG	0	5019	4.12	.06	.00	.00	.27	.7
99	5049	5051	1.48	.43	.00	.00	.20	.6
			2.10		.00	.00	. 20	. 9

JUNCTION NUMBER	TITLE	EXTERNAL DEMAND (1/s)		ELEVATION	HEAD	JUNCTIO PRESSUR (kpa)
5001		.08	577.78	544.00	33.78	331.30
5002		.19	577.79	521.00	56.79	556.88
5003		.28	577.82	543.00	34.82	341.47
5004		.51	577.13	533.00	44.13	432.74
5005		3.40	576.02	545.00	31.02	304.21
5006		.21	577.02	543.00	34.02	333.59
5007		.23	578.21	525.00	53.21	521.84
5008		.54	578.17	526.00	52.17	511.60
5009		.75	574.84	521.00	53.84	528.01
5010		.50	578.04	536.00	42.04	412.25
5011		.70	578.01	542.00	36.01	353.16
5012		.48	577.00	539.00	38.00	372.69
5013		.09	576.98	534.00	42.98	421.53
5014		.12	576.98	543.00	33.98	333.18
5015		.05	576.97	544.00	32.97	323.34
5016		.07	576.97	534.00	42.97	421.36
5017		.66	578.00	557.00	21.00	205.98
5018		.09	577.94	535.00	42.94	421.05
5019		.70	589.94	563.00	26.94	264.15
5020		.42	589.83	552.00	37.83	370.99
5021		.39	589.61	563.00	26.61	260.95
5022 5023		.40	588.96	558.00	30.96	303.62
5023		.07	589.61	568.00	21.61 17.61	211.94
5024		.03	589.61	5/2.00	17.61	172.70
5025		.55	202.24 E00 E2	564.00	⊿5.54 22.54	250.44 220.95
5027		10	509.55 500 51	567.00	22.53 25 51	250.13
5028		05	509.51 589.51	563.00	25.51	259.93
5029		26	589 55	567.00	20.51	221.18
5030		.16	589 57	563 00	26.57	260.52
5031		. 25	589.42	571.00	18.42	180.60
5032		.33	589.14	554.00	35.14	344.58
5033		.18	578.02	544.00	34.02	333.65
5034		1.18	578.01	541.00	37.01	362.95
5035		1.44	577.03	557.00	20.03	196.43
5036		.29	523.62	488.00	35.62	349.27
5037		.48	577.25	560.00	17.25	169.16
5038		.14	577.28	553.00	24.28	238.11
5039		.58	577.49	544.00	33.49	328.39
5040		.32	533.58	505.00	28.58	280.32
5041		.82	523.65	485.00	38.65	378.98
5042		.45	577.96	548.00	29.96	293.78
5043		.44	578.22	556.00	22.22	217.88
5044		.28	578.40	547.00	31.40	307.88
5045		.34	578.35	547.00	31.35	307.43

5046	.37	575.63	527.00	48.63	476.91
5047	.38	577.75	537.00	40.75	399.65
5048	.19	577.49	518.00	59.49	583.39
5049	.73	572.25	500.00	72.25	708.49
5050	.12	572.22	510.00	62.22	610.15
5051	.52	571.82	507.00	64.82	635.67
5052	.49	570.83	535.00	35.83	351.37
5053	1.27	570.84	501.00	69.84	684.92
5054	.92	575.24	497.00	78.24	767.30
5055	.47	575.43	499.00	76.43	749.55
5056	.43	579.14	562.00	17.14	168.05
5057	.07	579.17	567.00	12.17	119.39
5058	.45	578.67	537.00	41.67	408.63
5059	.37	578.47	542.00	36.47	357.62
5060	.22	578.20	500.00	78.20	766.86
5062	.04	589.53	565.00	24.53	240.55
5063	.06	589.48	573.00	16.48	161.60
5064	.06	589.47	577.00	12.47	122.27
5065	.03	589.47	563.00	26.47	259.56
5066	1.04	524.60	510.00	14.60	143.14
5067	1.04	571.83	523.00	48.83	478.89
5068	.57	571.73	525.00	46.73	458.25
5069	.19	571.82	535.00	36.82	361.05
5071	.41	577.16	540.00	37.16	364.44
5072	.60	578.09	532.00	46.09	451.97
5200	.00	572.53	515.00	57.53	564.16
5300	.00	577.22	534.00	43.22	423.88
5400	.00	574.40	525.00	49.40	484.48

REGULATING VALVE REPORT

VALVE	POSITION	CONTROLLED	VALVE	VALVE	UPSTREAM	DOWNSTREAM	THROUGH	
$ ext{TYPE}$	NODE	PIPE	SETTING	STATUS	GRADE	GRADE	FLOW	
			(m or 1/s)	1)	(m)	(m)	(1/s)	
								
PRV-1	5300	77	534.00	THROTTLED	577.22	533.58	.32	
PRV-1	5400	73	525.00	THROTTLED	574.40	524.60	2.15	

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES(-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

PIPE	FLOWRATE
NUMBER	(1/s)
	_
1	9.07
81	17.67
98	4.12

JOB NAME = GKWSAP - JICA - Kulugammana SR

NET SYSTEM INFLOW = 30.86 NET SYSTEM OUTFLOW = .00 NET SYSTEM DEMAND = 30.86

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

PAGE NO. 10

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NO: #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	5057	2.72	.01	.00	.00	.09	.0
2	5057	5056	2.67	.00	.00	.00	.09	.0
3	5056	5055	1.17	.40	.00	.00	.16	.4
4	5055	5054	1.22	.02	.00	.00	.15	. 4
5	5054	5200	.94	.29	.00	.00	.13	.3
6	5200	5049	.94	.03	.00	.00	.12	.2
7	5049	5050	.04	.00	.00	.00	.02	.0
8	5049	5051	.24	.05	.00	.00	.05	.0
9	5051	5053	.38	.11	.00	.00	.16	.9
10	5051	5052	.15	.11	.00	.00	.06	.1
11	5056	5058	4.67	.05	.00	.00	.15	.1
12	5058	5059	3.32	.02	.00	.00	.11	.1
13	5059	5060	.07	.03	.00	.00	.03	.0
14	5059	5007	3.17	.03	.00	.00	.10	. 0
15	5007	5003	.67	.04	.00	.00	.14	. 4
16	5003	5004	.59	.07	.00	.00	.12	.3
17	5004	5005	.49	.12	.00	.00	.10	. 2
18	5004	5006	.06	.01	.00	.00	.03	.0
19	5003	5002	.08	.00	.00	.00	.02	.0
20	5001	5002	02	.00	.00	.00	.00	.0

21	5007	5008	1.91	.00	.00	.00	.06	. 0
22	5008	5009	.77	.36	.00	.00	.16	. 6
23	5009	5067	.54	.32	.00	.00	.11	. 2
24	5067	5069	.06	.00	.00	.00	.01	.0
25	5058	5044	2.45	.03	.00	.00	.08	.0
26	5044	5045						
			1.74	.00	.00	.00	.06	.0
27	5045	5046	.29	.29	.00	.00	.12	.5
28	5046	5055	.18	.02	.00	.00	.04	. 0
29	5008	5072	1.11	.01	.00	.00	.04	.0
30	5072	5010	1.12	.01	.00	.00	.04	.0
31	5010	5011	.57	.00	.00	.00	.04	.0
32	5011	5071	.37	.09	.00	.00	.07	.1
33	5071	5012	.24	.02	.00	.00	.05	. 0
34	5012	5013	.03	.00	.00	.00	.01	.0
35	5012	5014	.07	.00	.00	.00	.03	.0
36	5014	5015	.02	.00	.00	.00	.01	.0
37	5014	5016	.02	.00	.00	.00	.01	.0
38	5011	5017	.16	.00	.00	.00	.01	.0
39	5017	5018	.03	.01	.00	.00	.02	.0
40-XX	5017	5019						
41	5019	5020	.67	.01	.00	.00	.04	.0
42	5020	5021	.23	.02	.00	.00	.05	.0
43	5021	5022	.12	.07	.00	.00	.05	.1
44	5020	5023	.31	.02	.00	.00	.04	.0
45	5023	5024	.02	.00	.00	.00	.00	.0
46	5024	5021	.01	.00	.00	.00	.00	.0
47	5023	5025	.27	.01	.00	.00	.04	.0
48	5025	5026	.17	.00	.00	.00	.02	.0
49	5026	5062	.01	.00	.00	.00	.01	.0
50	5026	5027	.12	.00	.00	.00	.02	.0
51	5020	5027	.02	.00	.00	.00	.00	. 0
52	5027	5063	.05	.00		.00	.02	
53	5063	5064	.03		.00			.0
54	5064	5065		.00	.00	.00	.01	. 0
5 4 55		5029	.01	.00	.00	.00	.00	. 0
	5025	5029	06	.00	.00	.00	.01	. 0
56 57	5029		14	.00	.00	.00	.02	.0
5 7	5030	5019	36	.04	.00	.00	.05	.0
58	5030	5031	.17		.00	.00		. 0
59	5031	5032	.10	.03	.00	.00	.04	. 0
60-XX		5033	20	0.0	0.0	2.2	0.4	
61	5033	5034	.02	.00	.00	.00		. 0
62	5042	5043	17	.03	.00	.00		. 0
63	5043	5044	30	.02	.00	.00		.1
64	5042	5037	.35	.08	.00	.00		.1
65	5037	5038	87	.00	.00	.00	.05	.0
66	5038	5039	91	.02	.00	.00	.06	.0
67	5039	5047	-1.18	.03	.00	.00	.08	.0
68	5047	5045	-1.35	.06	.00	.00	.09	.1
69	5047	5048	.06	.03	.00	.00	.02	.0
70-XX	5029	5035						
71	5035	5037	-1.08	.02	.00	.00	.07	.0
72	5035	5400	.65	.28	.00	.00		. 4
73-RV	5400	5066	.65	.04	.00	.00		.4

JOB NAME = GKWSAP - JICA - Kulugammana SR

74	5066	5041	.33	.10	.00	.00	.07	.1
75	5041	5036	.09	.00	.00	.00	.02	.0
76	5039	5300	.10	.03	.00	.00	.04	. 0
77-RV	5300	5040	.10	.04	.00	.00	.04	.0
78	5010	5033	.06	.00	.00	.00	.01	.0
79	5034	5043	24	.02	.00	.00	.03	. 0
80	5067	5068	.17	.01	.00	.00	.03	.0
81-FG	0	5057	5.30	.01	.00	.00	.11	. 0
82	5057	5056	5.33	.00	.00	.00	.11	.0
83	5033	5034	.09	.00	.00	.00	.01	.0
84	5042	5043	32	.03	.00	.00	.04	. 0
85	5043	5044	56	.02	.00	.00	.08	.1
86	5058	5044	.24	.03	.00	.00	.05	.0
87	5010	5033	.11	.00	.00	.00	.01	.0
88	5007	5003	.73	.04	.00	.00	.15	. 4
89	5003	5004	.64	.07	.00	.00	.13	.3
90	5004	5005	.53	.12	.00	.00	.11	.2
91	5056	5058	2.03	.05	.00	.00	.13	.1
92	5058	5059	.55	.02	.00	.00	.07	.1
93	5059	5007	.53	.03	.00	.00	.07	.0
94	5007	5008	.32	.00	.00	.00	.04	.0
95	5008	5072	.18	.01	.00	.00	.02	.0
96	5010	5011	.23	.00	.00	.00	.03	. 0
97	5011	5017	.07	.00	.00	.00	.01	.0
98-FG	0	5019	1.24	.01	.00	.00	.08	.0
99	5049	5051	.44	.05	.00	.00	.06	.0

JUNCTION NODE RESULTS

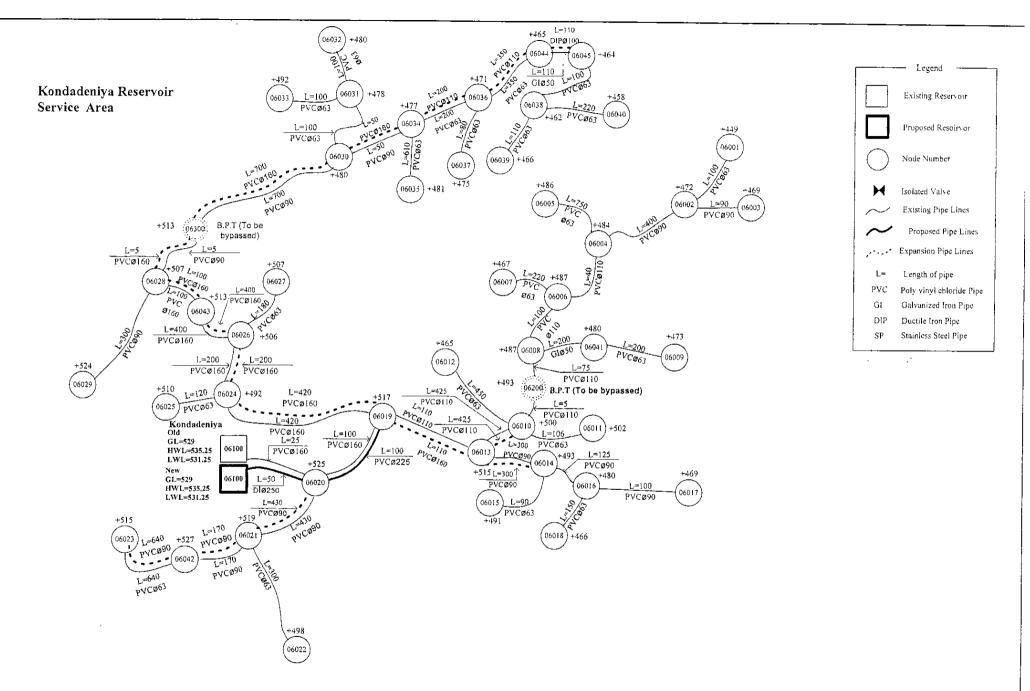
JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
5001	 	.02	579.09	544.00	35.09	344.14
5002		.06	579.09	521.00	58.09	569.70
5003		.08	579.10	543.00	36.10	353.98
5004		.15	579.02	533.00	46.02	451.32
5005		1.02	578.90	545.00	33.90	332.47
5006		.06	579.01	543.00	36.01	353.14
5007		.07	579.14	525.00	54.14	530.92
5008		.16	579.13	526.00	53.13	521.07
5009		.23	578.78	521.00	57.78	566.59
5010		.15	579.12	536.00	43.12	422.86
5011		.21	579.12	542.00	37.12	363.99
5012		.14	579.01	539.00	40.01	392.35
5013		.03	579.01	534.00	45.01	441.36
5014		.04	579.01	543.00	36.01	353.09
5015		.02	579.00	544.00	35.00	343.28
5016		.02	579.00	534.00	45.00	441.34
5017		.20	579.12	557.00	22.12	216.88
5018		.03	579.11	535.00	44.11	432.56

5019	.21	589.99	563.00	26.99	264.71
5020	.13	589.98	552.00	37.98	372.48
5021	.12	589.96	563.00	26.96	264.37
5022	.12	589.89	558.00	31.89	312.72
5023	.02	589.96	568.00	21.96	215.34
5024	.01	589.96	572.00	17.96	176.11
5025	.16	589.95	564.00	25.95	254.49
5026	. 05	589.95	567.00	22.95	225.06
5027	.06	589.95	564.00	25.95	254.45
5028	.02	589.95	563.00	26.95	264.26
5029	.08	589.95	567.00	22.95	225.08
5030	.05	589.95	563.00	26.95	264.32
5031	.08	589.94	571.00	18.94	185.71
5032	.10	589.91	554.00	35.91	352.13
5033	.05	579.12	544.00	35.12	344.39
5034	.35	579.12			
			541.00	38.12	373.80
5035	.43	579.01	557.00	22.01	215.86
5036	.09	524.85	488.00	36.85	361.39
5037	. 14	579.03	560.00	19.03	186.67
5038	.04	579.04	553.00	26.04	255.35
5039	.17	579.06	544.00	35.06	343.83
5040	.10	533.96	505.00	28.96	283.96
5041	.25	524.85	485.00	39.85	390.84
5042	.14	579.11	548.00	31.11	305.10
5043	.13	579.14	556.00	23.14	226.92
5044	.08	579.16	547.00	32.16	315.37
5045	.10	579.15	547.00	32.15	315.32
5046	.11	578.86	527.00	51.86	508.58
5047	.11	579.09	537.00	42.09	412.75
5048					
	.06	579.06	518.00	61.06	598.80
5049	.22	578.50	500.00	78.50	769.79
5050	.04	578.49	510.00	68.49	671.70
5051	.16	578.45	507.00	71.45	700.70
5052	.15	578.34	535.00	43.34	425.07
5053	.38	578.35	501.00	77.35	758.51
5054	.28	578.82	497.00	81.82	802.37
5055	.14	578.84	499.00	79.84	782.96
5056	.13	579.24	562.00	17.24	169.05
5057	.02	579.24	567.00	12.24	120.05
5058	.14	579.19	537.00	42.19	413.72
5059	.11	579.17	542.00	37.17	364.47
5060	.07	579.14	500.00	79.14	776.07
5062	.01	589.95	565.00	24.95	244.67
5063	.02	589.94	573.00	16.94	166.16
5064					
	.02	589.94	577.00	12.94	126.93
5065	.01	589.94	563.00	26.94	264.22
5066	.31	524.96	510.00	14.96	146.67
5067	.31	578.45	523.00	55.45	543.80
5068	.17	578.44	525.00	53.44	524.08
5069	.06	578.45	535.00	43.45	426.11
5071	.12	579.03	540.00	39.03	382.71
5072	.18	579.13	532.00	47.13	462.14
5200	.00	578.53	515.00	63.53	622.99

5300	.00	579.03	534.00	45.03	441.62
5400	.00	578.73	525.00	53.73	526.90

REGULATING VALVE REPORT

VALVE TYPE	POSITION NODE	CONTROLLED PIPE	VALVE SETTING (m or 1/s)	VALVE STATUS	UPSTREAM GRADE (m)	DOWNSTREAM GRADE (m)	THROUGH FLOW (1/s)
PRV-1	5300	77	534.00	THROTTLED	579.03	533.96	.10
PRV-1	5400	73	525.00	THROTTLED	578.73	524.96	


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1 81 98		2.72 5.30 1.24
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	9.26 .00 9.26

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 13:53: 9

DATE: 3/ 7/2002 TIME: 13:57:39

INPUT DATA FILENAME ----- c:\D_nets\2015\KOND2015.DAT TABULATED OUTPUT FILENAME ----- c:\D_nets\2015\KOND2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\KOND2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters
PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG 2	0 6020	6020 6021	25.0 430.0	14.0	120.00	.00	531.
3	6020	6019	100.0	$7.9 \\ 14.0$	120.00 120.00	.00 .00	
4	6021	6042	170.0	7.9	120.00	.00	
5	6021	6022	300.0	5.5	120.00	.00	
6	6042	6023	640.0	5.5	120.00	.00	
7	6019	6024	420.0	14.0	120.00	.00	
8	6019	6013	110.0	9.7	120.00	.00	
9	6024	6026	200.0	14.0	120.00	.00	
10	6024	6025	120.0	5.5	120.00	.00	
11	6026	6043	400.0	14.0	120.00	.00	
12	6026	6027	180.0	5.5	120.00	.00	
13	6043	6028	100.0	14.0	120.00	.00	

531.

14	6028	6029	300.0	7.9	120.00	.00
15	6028	6300	5.0	7.9	120.00	.00
16	6300	6030	700.0	7.9	120.00	.00
17	6030	6034	50.0	7.9	120.00	.00
18	6030	6031	100.0	5.5	120.00	.00
19	6031	6032	100.0	5.5	120.00	.00
20	6031	6033	100.0	5.5	120.00	.00
21	6034	6036	200.0	5.5	120.00	.00
22	6034	6035	610.0	5.5	120.00	.00
23	6034	6044	350.0	5.5	120.00	.00
24	6036	6037	80.0	5.5	120.00	.00
25	6044	6045	110.0	5.0	120.00	
26	6045	6038	100.0	5.5	120.00	.00
27	6038	6039	110.0	5.5	120.00	.00
28	6038	6040	220.0	5.5		.00
29	6013	6010	425.0		120.00	.00
30	6013	6014		9.7	120.00	.00
31	6013		300.0	7.9	120.00	.00
32		6016	125.0	7.9	120.00	.00
33	6014 6016	6015	90.0	5.5	120.00	.00
		6017	100.0	7.9	120.00	.00
34	6016	6018	150.0	5.5	120.00	.00
35	6010	6200	5.0	9.7	120.00	.00
36	6010	6011	106.0	5.5	120.00	.00
37	6200	6008	75.0	9.7	120.00	.00
38	6008	6006	100.0	9.7	120.00	.00
39	6008	6041	200.0	5.0	120.00	.00
40	6041	6009	200.0	5.5	120.00	.00
41	6006	6004	40.0	9.7	120.00	.00
42	6006	6007	220.0	5.5	120.00	.00
43	6004	6002	400.0	7.9	120.00	.00
44	6004	6005	750.0	5.5	120.00	.00
45	6002	6003	90.0	7.9	120.00	.00
46	6002	6001	100.0	5.5	120.00	.00
47	6010	6012	450.0	5.5	120.00	.00
48-FG	0	6020	25.0	25.0	130.00	.00
49	6020	6021	430.0	14.0	130.00	.00
50	6020	6019	100.0	19.8	130.00	.00
51	6021	6042	170.0	7.9	130.00	.00
52	6042	6023	640.0	7.9	130.00	.00
53	6019	6024	420.0	14.0	130.00	.00
54	6019	6013	110.0	14.0	130.00	.00
55	6024	6026	200.0	14.0	130.00	.00
56	6026	6043	400.0	14.0	130.00	.00
57	6043	6028	100.0	14.0	130.00	.00
58	6028	6300	5.0	14.0	130.00	.00
59	6300	6030	700.0	14.0	130.00	.00
60	6030	6034	50.0	14.0	130.00	.00
61	6034	6036	200.0	9.7	130.00	.00
62	6036	6044	350.0	9.7	130.00	.00
63	6044	6045	110.0	10.0	130.00	.00
64-XX	6045	6038	100.0	9.7	130.00	.00
65	6013	6010	425.0	9.7	130.00	.00
66	6013	6014	300.0	7.9	130.00	.00

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONNECTING		PIPE	3S	
6001		.28	449.00	46				
6002		1.41	472.00	43	45	46		
6003		.21	469.00	45		10		
6004		2.80	484.00	41	43	44		
6005		1.04	486.00	44	1-7			
6006		.86	487.00	38	41	42		
6007		.30	467.00	42				
6008		.86	487.00	37	38	39		
6009		.38	473.00	40				
6010		2.40	500.00	29	35	36	47	65
6011		.22	502.00	36			- /	0.5
6012		.68	465.00	47				
6013		1.70	515.00	8	29	30	5 4	65
			323.00	Ū				V.D
6014		1.22	493.00	30	31	32	66	
6015		.19	491.00	32	-		•	
6016		1.04	480.00	31	33	34		
6017		.32	469.00	33		-		
6018		.32	466.00	34				
6019		1.28	517.00	3	7	8	50	53
0023		1.20	517.00	J	,	Ü	50	55
6020		1.14	525.00	1	2	3	48	49
6021		1.76	519.00	2	4	5	49	51
6022		.40	498.00	5				
6023		1.09	515.00	6	52			
6024		1.22	492.00	7	9	10	53	55
6025		.16	510.00	10				
6026		.14	506.00	9	11	12	55	56
6027		.02	507.00	12				
6028		.10	507.00	13	14	15	57	58
6029		.09	524.00	14				
6030		.92	480.00	16	17	18	59	60
6031		.07	478.00	18	19	20		
6032		.02	480.00	19				
6033		.03	492.00	20				
6034		.39	477.00	17	21	22	60	61
6035		.24	481.00	22				
6036		.36	471.00	21	23	24	61	62
6037		.02	475.00	24			_	_
6038		3.45	462.00	26	27	28	64	
6039		.63	466.00	27				
6040		1.24	458.00	28				
				_				

1.02	480.00	39	40		
1.83	527.00	4	6	51	52
.10	513.00	11	13	56	57
.29	465.00	23	25	62	63
2.40	464.00	25	26	63	64
.00	493.00	35	37		
.00	513.00	15	16	58	59
	1.83 .10 .29 2.40 .00	1.83 527.00 .10 513.00 .29 465.00 2.40 464.00 .00 493.00	1.83 527.00 4 .10 513.00 11 .29 465.00 23 2.40 464.00 25 .00 493.00 35	1.83 527.00 4 6 .10 513.00 11 13 .29 465.00 23 25 2.40 464.00 25 26 .00 493.00 35 37	1.83 527.00 4 6 51 .10 513.00 11 13 56 .29 465.00 23 25 62 2.40 464.00 25 26 63 .00 493.00 35 37

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER OF	PIPES	(p)	=	66
NUMBER OF	JUNCTION NODES	(j)	=	47
NUMBER OF	PRIMARY LOOPS	$(\bar{1})$	=	18
NUMBER OF	FIXED GRADE NODES	(f)	=	2
NUMBER OF	SUPPLY ZONES	(7)	_	1

THE RESULTS ARE OBTAINED AFTER 5 TRIALS WITH AN ACCURACY = .00061

PIPELINE RESULTS

STATUS CODE:	XX -CLOSED PIPE	FG -FIXED GRADE NODE	PU -PUMP LINE
	CV -CHECK VALVE	RV -REGULATING VALVE	TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	6020	6.13	.04	.00	.00	.40	1.7
2	6020	6021	.86	.32	.00	.00	.18	. 7
3	6020	6019	8.23	.30	.00	.00	.53	2.9
4	6021	6042	1.40	.31	.00	.00	.29	1.8
5	6021	6022	.40	.31	.00	.00	.17	1.0
6	6042	6023	.29	.36	.00	.00	.12	.5
7	6019	6024	5.71	.64	.00	.00	.37	1.5
8	6019	6013	4.49	.64	.00	.00	.61	5.8
9	6024	6026	5.04	.24	.00	.00	.33	1.2
10	6024	6025	.16	.02	.00	.00	.07	.1

11	6026	6043	4.97	.47	.00	.00	.32	1.1
12	6026	6027	.02	.00	.00	.00	.01	.0
13	6043	6028	4.92	.12	.00	.00	.32	1.1
14	6028	6029						
			.09	.00	.00	.00	.02	. 0
15	6028	6300	1.71	.01	.00	.00	.35	2.6
16	6300	6030	1.71	1.85	.00	.00	.35	2.6
17	6030	6034	1.53	.11	.00	.00	.31	2.1
18	6030	6031	.12	.01	.00	.00	.05	.1
19	6031	6032	.02	.00	.00	.00	.01	. 0
20	6031	6033	.03	.00	.00	.00	.01	
21	6034	6036						.0
			1.44	2.25	.00	.00	.61	11.2
22	6034	6035	.24	.25	.00	.00	.10	. 4
23	6036	6044	1.38	3.62	.00	.00	.58	10.3
24	6036	6037	.02	.00	.00	.00	.01	.0
25	6044	6045	1.00	1.00	.00	.00	.51	9.1
26	6045	6038	5.32	12.62	.00	.00	2.24	126.2
27	6038	6039	.63	.27	.00	.00	.27	2.4
28	6038	6040	1.24	1.87	.00	.00	.52	8.5
29	6013	6010	5.98					
				4.20	.00	.00	.81	9.8
30	6013	6014	1.48	.61	.00	.00	.30	2.0
31	6014	6016	1.68	.32	.00	.00	.34	2.5
32	6014	6015	.19	.02	.00	.00	.08	. 2
33	6016	6017	.32	.01	.00	.00	.07	.1
34	6016	6018	.32	.10	.00	.00	.13	.6
35	6010	6200	9.16	.11	.00	.00	1.24	21.7
36	6010	6011	.22	.04	.00	.00	.09	.3
37	6200	6008	9.16	1.63	.00			
38	6008					.00	1.24	21.7
		6006	6.90	1.29	.00	.00	.93	12.8
39	6008	6041	1.40	3.39	.00	.00	.71	16.9
40	6041	6009	.38	.19	.00	.00	.16	.9
41	6006	6004	5.74	.37	.00	.00	.78	9.1
42	6006	6007	.30	.14	.00	.00	.13	. 6
43	6004	6002	1.90	1.29	.00	.00	.39	3.2
44	6004	6005	1.04	4.61	.00	.00	.44	6.1
45	6002	6003	.21	.00	.00	.00	.04	.0
46	6002	6001	.28	.05	.00	.00	.12	.5
47	6010	6012		1.26				
48-FG	0		.68		.00	.00	.29	2.8
		6020	30.51	.04	.00	.00	.62	1.7
49	6020	6021	4.22	.32	.00		.27	
50	6020	6019	22.19	.30	.00	.00	.72	
51	6021	6042	1.52	.31	.00	.00	.31	1.8
52	6042	6023	.80	.36	.00	.00	.16	.5
53	6019	6024	6.18	.64	.00	.00	.40	
54	6019	6013	12.76	.64	.00	.00	.83	
55	6024	6026	5.47	.24	.00	.00	.36	
56	6026	6043	5.38	.47	.00			
57	6043	6028				.00	.35	
			5.33	.12	.00	.00	.35	1.1
58	6028	6300	8.35	.01	.00	.00	.54	2.6
59	6300	6030	8.35	1.85	.00	.00	.54	2.6
60	6030	6034	7.49	.11	.00	.00	.49	
61	6034	6036	6.95	2.25	.00	.00	.94	11.2
62	6036	6044	6.63	3.62	.00	.00	.90	10.3
63	6044	6045	6.72	1.00	.00	.00	.86	9.1
			3.72					√. ±

64-XX	6045	6038						
65	6013	6010	6.48	4.20	.00	.00	.88	9.8
66	6013	6014	1.61	.61	.00	.00	.33	2.0

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
6001		.28	521.32	449.00	72.32	709.27
6002		1.41	521.38	472.00	49.38	484.24
6003		.21	521.37	469.00	52.37	513.62
6004		2.80	522.66	484.00	38.66	379.17
6005		1.04	518.06	486.00	32.06	314.38
6006		.86	523.03	487.00	36.03	353.35
6007		.30	522.90	467.00	55.90	548.16
6008		.86	524.32	487.00	37.32	365.99
6009		.38	520.74	473.00	47.74	468.19
6010		2.40	526.06	500.00	26.06	255.60
6011		.22	526.03	502.00	24.03	235.62
6012		.68	524.81	465.00	59.81	586.49
6013		1.70	530.27	515.00	15.27	149.73
6014		1.22	529.66	493.00	36.66	359.50
6015		.19	529.63	491.00	38.63	378.88
6016		1.04	529.34	480.00	49.34	483.85
6017		.32	529.33	469.00	60.33	591.60
6018		.32	529.23	466.00	63.23	620.12
6019		1.28	530.91	517.00	13.91	136.38
6020		1.14	531.21	525.00	6.21	60.87
6021		1.76	530.88	519.00	11.88	116.55
6022		.40	530.57	498.00	32.57	319.41
6023		1.09	530.21	515.00	15.21	149.19
6024		1.22	530.27	492.00	38.27	375.30
6025 6026		.16	530.25	510.00	20.25	198.55
6027		.14 .02	530.03 530.03	506.00	24.03	235.63 225.82
6028		.10	529.44	507.00 507.00	23.03 22.44	220.08
6029		.09	529.44	524.00	5.44	53.34
6030		.92	527.57	480.00		
6031		.07	527.56	478.00		
6032		.02	527.56	480.00	47.56	
6033		.03	527.56	492.00	35.56	348.75
6034		.39	527.47	477.00	50.47	494.91
6035		.24	527.22	481.00	46.22	453.25
6036		.36	525.21	471.00	54.21	531.67
6037		.02	525.21	475.00	50.21	492.44
6038		3.45	507.97	462.00	45.97	450.84
6039		.63	507.71	466.00	41.71	408.99
6040		1.24	506.10	458.00	48.10	471.71
6041		1.02	520.93	480.00	40.93	401.41
				-	•	

JOB NAME = GKWSAP - JICA - Kondadeniya SR

6042	1.83	530.57	527.00	3.57	35.05
6043	.10	529.56	513.00	16.56	162.37
6044	.29	521.60	465.00	56.60	555.05
6045	2.40	520.60	464.00	56.60	555.01
6200	.00	525.95	493.00	32.95	323.17
6300	.00	529.43	513.00	16.43	161.11

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1 48		6.13 30.51
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	36.64 .00 36.64

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00001

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

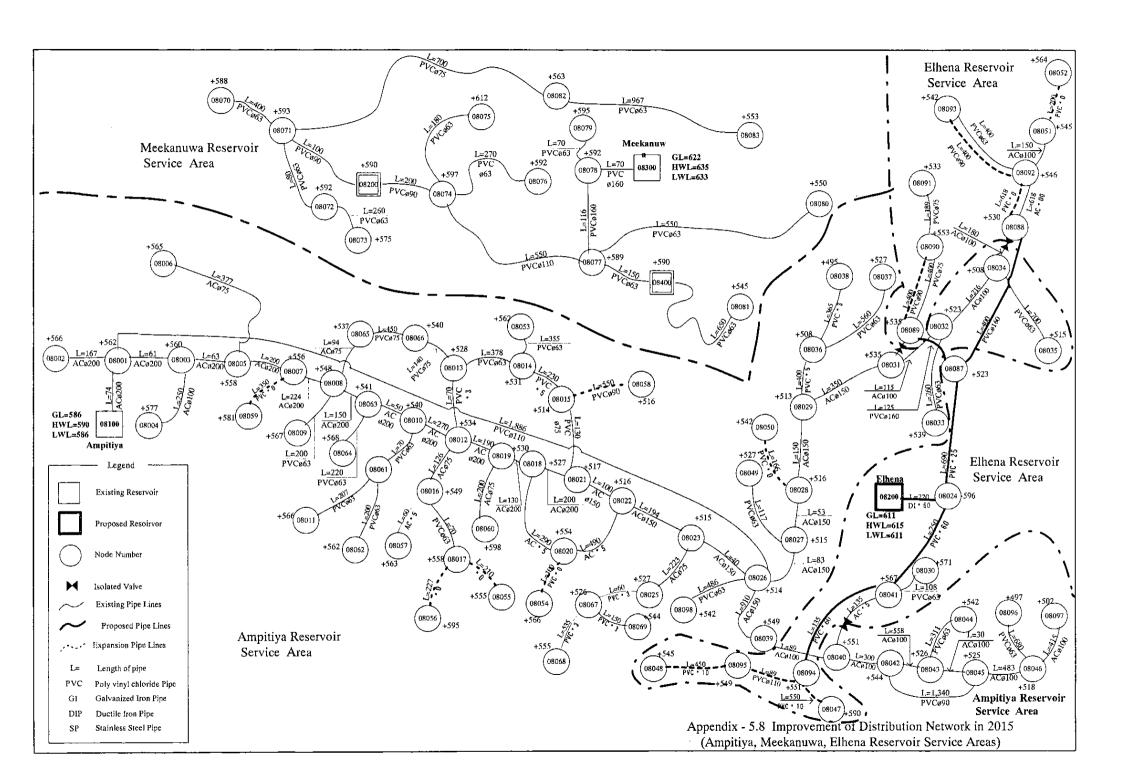
PIPE NUMBER	NODE #1	NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0 6	5020	1.84	.00	.00	.00	.12	.1

2	6020	6021	.26	.03	٥٥ ـ	.00	.05	. 0
3	6020	6019	2.47	.03	.00	.00	.16	.3
4	6021	6042	.42	. 03	.00	.00	.09	. 2
5	6021	6022	.12	.03	.00	.00	.05	.1
6	6042	6023	.09	.04	.00	.00	.04	.0
7	6019	6024	1.71	.07	.00	.00	.11	.1
8	6019	6013	1.35	.07	.00	.00	.18	.6
9	6024	6026	1.51	.03	.00	.00	.10	.1
10	6024	6025	.05	.00	.00	.00	.02	.0
11	6026	6043	1.49	.05	.00	.00	.10	.1
12	6026	6027	.01	.00	.00	.00	.00	
13	6043	6028	1.48	.01	.00	.00	.10	.0 .1
14	6028	6029	.03	.00	.00		.01	
15	6028	6300	.51			.00		.0
16	6300			.00	.00	.00	.10	.2
		6030	.51	.20	.00	.00	.10	.2
17	6030	6034	.46	.01	.00	.00	.09	.2
18	6030	6031	.04	.00	.00	.00	.02	. 0
19	6031	6032	.01	.00	.00	.00	.00	. 0
20	6031	6033	.01	.00	.00	.00	.00	. 0
21	6034	6036	.43	.24	.00	.00	.18	1.2
22	6034	6035	.07	.03	.00	.00	.03	. 0
23	6036	6044	.41	.39	.00	.00	.17	1.1
24	6036	6037	.01	.00	.00	.00	.00	. 0
25	6044	6045	.30	.11	.00	.00	.15	.9
26	6045	6038	1.60	1.36	.00	.00	.67	13.5
27	6038	6039	.19	.03	.00	.00	.08	. 2
28	6038	6040	.37	.20	.00	.00	.16	. 9
29	6013	6010	1.79	.45	.00	.00	.24	1.0
30	6013	6014	.44	.07	.00	.00	.09	.2
31	6014	6016	.50	.03	.00	.00	.10	. 2
32	6014	6015	.06	.00	.00	.00	.02	. 0
33	6016	6017	.10	.00	.00	.00	.02	.0
34	6016	6018	.10	.01	.00	.00	.04	. 0
35	6010	6200	2.75	.01	.00	.00	.37	2.3
36	6010	6011	.07	.00	.00	.00	.03	.0
37	6200	6008	2.75	.18	.00	.00	.37	2.3
38	6008	6006	2.07	.14	.00	.00	.28	1.3
39	6008	6041	.42	.36	.00	.00	.21	1.8
40	6041	6009	.11	.02	.00	.00	.05	.1
41	6006	6004	1.72	.04	.00	.00	.23	.9
42	6006	6007	.09	.01	.00	.00	.04	.0
43	6004	6002	.57	.14	.00	.00	.12	
44	6004	6002	.31					.3
45				.50	.00	.00	.13	.6
45 46	6002	6003	.06	.00	.00	.00	.01	.0
	6002	6001	.08	.01	.00	.00	.04	. 0
47	6010	6012	.20	.14	.00	.00	.09	.3
48-FG	0	6020	9.15	.00	.00	.00	.19	.1
49	6020	6021	1.26	.03	.00	.00	.08	.0
50	6020	6019	6.66	.03	.00	.00	.22	.3
51	6021	6042	.46	.03	.00	.00	.09	. 2
52	6042	6023	.24	.04	.00	.00	.05	. 0
53	6019	6024	1.85	.07	.00	.00	.12	.1
54	6019	6013	3.83	.07	.00	.00	.25	.6

55	6024	6026	1.64	.03	.00	.00	.11	.1
56	6026	6043	1.61	.05	.00	.00	.10	.1
57	6043	6028	1.60	.01	.00	.00	.10	. 1
58	6028	6300	2.50	.00	.00	.00	.16	.2
59	6300	6030	2.50	.20	.00	.00	.16	.2
60	6030	6034	2.25	.01	.00	.00	.15	.2
61	6034	6036	2.08	.24	.00	.00	.28	1.2
62	6036	6044	1.99	.39	.00	.00	.27	1.1
63	6044	6045	2.02	.11	.00	.00	.26	. 9
64-XX	6045	6038						
65	6013	6010	1.94	.45	.00	.00	.26	1.0
66	6013	6014	.48	.07	.00	.00	.10	. 2

6001 .08 530.18 449.00 81.18 796.13 6002 .42 530.19 472.00 58.19 570.64 6003 .06 530.19 469.00 61.19 600.05 6004 .84 530.33 484.00 46.33 454.31 6005 .31 529.83 486.00 43.83 429.84 6006 .26 530.37 487.00 43.37 425.28 6007 .09 530.35 467.00 63.35 621.27 6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32	JUNCTION NUMBER	DEMAND	HYDRAULIC GRADE (m)	ELEVATION	HEAD	JUNCTIO PRESSUR (kpa)
6003 .06 530.19 469.00 61.19 600.05 6004 .84 530.33 484.00 46.33 454.31 6005 .31 529.83 486.00 43.83 429.84 6006 .26 530.37 487.00 43.37 425.28 6007 .09 530.35 467.00 63.35 621.27 6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 500.00 30.69 300.99 6011 .07 530.69 500.00 30.69 300.99 6011 .07 530.69 500.00 30.69 300.99 6011 .07 531.69 465.00 65.56 642.90 6012 .20 530.56 465.00 65.56 642.90	6001	.08	530.18	449.00	81.18	796.13
6004 .84 530.33 484.00 46.33 454.31 6005 .31 529.83 486.00 43.83 429.84 6006 .26 530.37 487.00 43.37 425.28 6007 .09 530.35 467.00 63.35 621.27 6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 491.00 40.08 393.02 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.03 466.00 65.03 637.76	6002	.42	530.19	472.00	58.19	570.64
6005 .31 529.83 486.00 43.83 429.84 6006 .26 530.37 487.00 43.37 425.28 6007 .09 530.35 467.00 63.35 621.27 6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44	6003	.06	530.19	469.00	61.19	600.05
6006 .26 530.37 487.00 43.37 425.28 6007 .09 530.35 467.00 63.35 621.27 6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76	6004	.84	530.33	484.00	46.33	454.31
6007 .09 530.35 467.00 63.35 621.27 6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 491.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.03 466.00 65.03 637.76 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38			529.83	486.00	43.83	429.84
6008 .26 530.50 487.00 43.50 426.64 6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.14 519.00 12.21 119.75 <t< td=""><td>6006</td><td>.26</td><td>530.37</td><td>487.00</td><td>43.37</td><td>425.28</td></t<>	6006	.26	530.37	487.00	43.37	425.28
6009 .11 530.12 473.00 57.12 560.16 6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6010 .72 530.69 500.00 30.69 300.99 6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .37 531.14 492.00 39.14 383.88 <t< td=""><td></td><td>.26</td><td>530.50</td><td></td><td></td><td></td></t<>		.26	530.50			
6011 .07 530.69 502.00 28.69 281.34 6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 510.00 21.14 207.33 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6012 .20 530.56 465.00 65.56 642.90 6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 515.00 21.14 207.33 6025 .05 531.14 510.00 21.14 207.33 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6013 .51 531.14 515.00 16.14 158.32 6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 510.00 21.14 207.33 6025 .05 531.14 510.00 25.12 246.33 6026 .04 531.12 506.00 25.12 246.33 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6014 .37 531.08 493.00 38.08 373.43 6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 515.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6015 .06 531.08 491.00 40.08 393.02 6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 515.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 <t< td=""><td></td><td></td><td></td><td>515.00</td><td>16.14</td><td>158.32</td></t<>				515.00	16.14	158.32
6016 .31 531.04 480.00 51.04 500.58 6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 515.00 16.14 158.27 6024 .37 531.14 510.00 21.14 207.33 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6017 .10 531.04 469.00 62.04 608.44 6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 515.00 16.14 158.27 6024 .37 531.14 510.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19						
6018 .10 531.03 466.00 65.03 637.76 6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 515.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32 <td></td> <td></td> <td></td> <td>480.00</td> <td>51.04</td> <td></td>				480.00	51.04	
6019 .38 531.21 517.00 14.21 139.38 6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 492.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				469.00	62.04	608.44
6020 .34 531.25 525.00 6.25 61.25 6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 492.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32					65.03	637.76
6021 .53 531.21 519.00 12.21 119.75 6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 492.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				517.00	14.21	139.38
6022 .12 531.18 498.00 33.18 325.36 6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 492.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				525.00	6.25	61.25
6023 .33 531.14 515.00 16.14 158.27 6024 .37 531.14 492.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				519.00	12.21	119.75
6024 .37 531.14 492.00 39.14 383.88 6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32			531.18	498.00		325.36
6025 .05 531.14 510.00 21.14 207.33 6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				515.00		158.27
6026 .04 531.12 506.00 25.12 246.33 6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				492.00		383.88
6027 .01 531.12 507.00 24.12 236.52 6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				510.00		207.33
6028 .03 531.06 507.00 24.06 235.91 6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32		.04	531.12	506.00		246.33
6029 .03 531.06 524.00 7.06 69.19 6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				507.00	24.12	
6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32		.03	531.06		24.06	235.91
6030 .28 530.85 480.00 50.85 498.72 6031 .02 530.85 478.00 52.85 518.32				524.00	7.06	69.19
6031 .02 530.85 478.00 52.85 518.32				480.00	50.85	498.72
						518.32
	6032	.01	530.85	480.00	50.85	498.70

6033	.01	530.85	492.00	38.85	381.02
6034	.12	530.84	477.00	53.84	528.02
6035	.07	530.82	481.00	49.82	488.53
6036	.11	530.60	471.00	59.60	584.49
6037	.01	530.60	475.00	55.60	545.26
6038	1.04	528.75	462.00	66.75	654.56
6039	.19	528.72	466.00	62.72	615.05
6040	.37	528.55	458.00	70.55	691.81
6041	.31	530.14	480.00	50.14	491.71
6042	.55	531.18	527.00	4.18	40.97
6043	.03	531.07	513.00	18.07	177.19
6044	.09	530.21	465.00	65.21	639.51
6045	.72	530.10	464.00	66.10	648.26
6200	.00	530.68	493.00	37.68	369.52
6300	.00	531.05	513.00	18.05	177.05


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER	- 	FLOWRATE (1/s)
		1 48		1.84 9.15
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= =	10.99 .00 10.99

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 13:57:39

DATE: 3/ 7/2002 TIME: 13:58:47

INPUT DATA FILENAME ------ C:\D_nets\2015\ELHE2015.DAT TABULATED OUTPUT FILENAME ----- C:\D_nets\2015\ELHE2015.OUT POSTPROCESSOR RESULTS FILENAME --- C:\D_nets\2015\ELHE2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG	0	8024	220.0	20.0	130.00	.00	611.
2	8024	8041	250.0	14.0	130.00	.00	
3	8041	8094	135.0	14.0	130.00	.00	
4	8094	8047	550.0	9.7	130.00	.00	
5	8094	8095	89.0	9.7	130.00	.00	
6	8095	8048	450.0	9.7	130.00	.00	
7	8024	8087	690.0	19.8	130.00	.00	
8	8087	8089	125.0	14.0	130.00	.00	
9	8087	8088	400.0	14.0	130.00	.00	
10	8089	8090	390.0	6.5	120.00	.00	
11	8090	8091	189.0	6.5	120.00	.00	
12	8088	8092	618.0	10.0	120.00	.00	
13	8092	8093	400.0	5.5	120.00	.00	

14	8092	8051	150.0	10.0	120.00	.00
15	8051	8052	200.0	9.7	130.00	.00
16	8041	8030	108.0	5.5	130.00	. 00

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONN	ECTING	PIPES
8024		.75	596.00	1	2	7
8030		.75	571.00	16		
8041		.75	567.00	2	3	16
8047		.89	590.00	4		
8048		.89	545.00	6		
8051		.21	545.00	14	15	
8052		1.21	564.00	15		
8087		.00	523.00	7	8	9
8088		.00	520.00	9	12	
8089		.75	535.00	8	10	
8090		.75	553.00	10	11	
8091		2.89	533.00	11		
8092		1.21	546.00	12	13	14
8093		1.21	542.00	13		
8094		.00	551.00	3	4	5
8095		.89	549.00	5	6	

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

	PIPES(p)		16
NUMBER OF	JUNCTION NODES(j)	=	16
NUMBER OF	PRIMARY LOOPS(1)	=	0
NUMBER OF	FIXED GRADE NODES(f)	=	1
NUMBER OF	SUPPLY ZONES(z)	=	1

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

DATE = 03-07-2002 JOB NAME = GKWSAP - JICA - Elhena SR

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	N OI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG 2	0 8024	8024 8041	13.15 4.17	.24	.00	.00	.42 .27	1.0
3	8041	8041	2.67	.04	.00	.00	.17	.7
4	8094	8047	.89	.14	.00	.00	.12	.2
5	8094	8095	1.78	.08	.00	.00	.24	.9
6	8095	8048	.89	.11	.00	.00	.12	.2
7	8024	8087	8.23	.33	.00	.00	.27	.4
8	8087	8089	4.39	.10	.00	.00	.29	. 8
9	8087	8088	3.84	.25	.00	.00	.25	.6
10	8089	8090	3.64	10.81	.00	.00	1.10	27.7
11	8090	8091	2.89	3.42	.00	.00	.87	18.0
12	8088	8092	3.84	2.32	.00	.00	.49	3.7
13	8092	8093	1.21	3.25	.00	.00	.51	8.1
14	8092	8051	1.42	.09	.00	.00	.18	.5
15	8051	8052	1.21	.09	.00	.00	.16	. 4
16	8041	8030	.75	.31	.00	.00	.32	2.8

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
8024 8030 8041 8047 8048 8051 8052 8087 8088 8089 8090 8091 8092 8093		.75 .75 .75 .89 .89 .21 1.21 .00 .00 .75 .75 2.89 1.21	610.76 610.27 610.58 610.40 610.34 607.77 607.68 610.43 610.18 610.33 599.53 596.11 607.86 604.61	596.00 571.00 567.00 590.00 545.00 545.00 545.00 523.00 523.00 520.00 535.00 535.00 533.00 546.00 542.00	14.76 39.27 43.58 20.40 65.34 62.77 43.68 87.43 90.18 75.33 46.53 63.11 61.86 62.61	144.77 385.08 427.36 200.04 640.79 615.59 428.39 857.43 884.38 738.76 456.27 618.90 606.65 613.99
8094 8095		.00	610.54 610.46	551.00 549.00	59.54 61.46	583.85 602.67

JOB NAME = GKWSAP - JICA - Elhena SR

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		13.15
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	13.15 .00 13.15

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

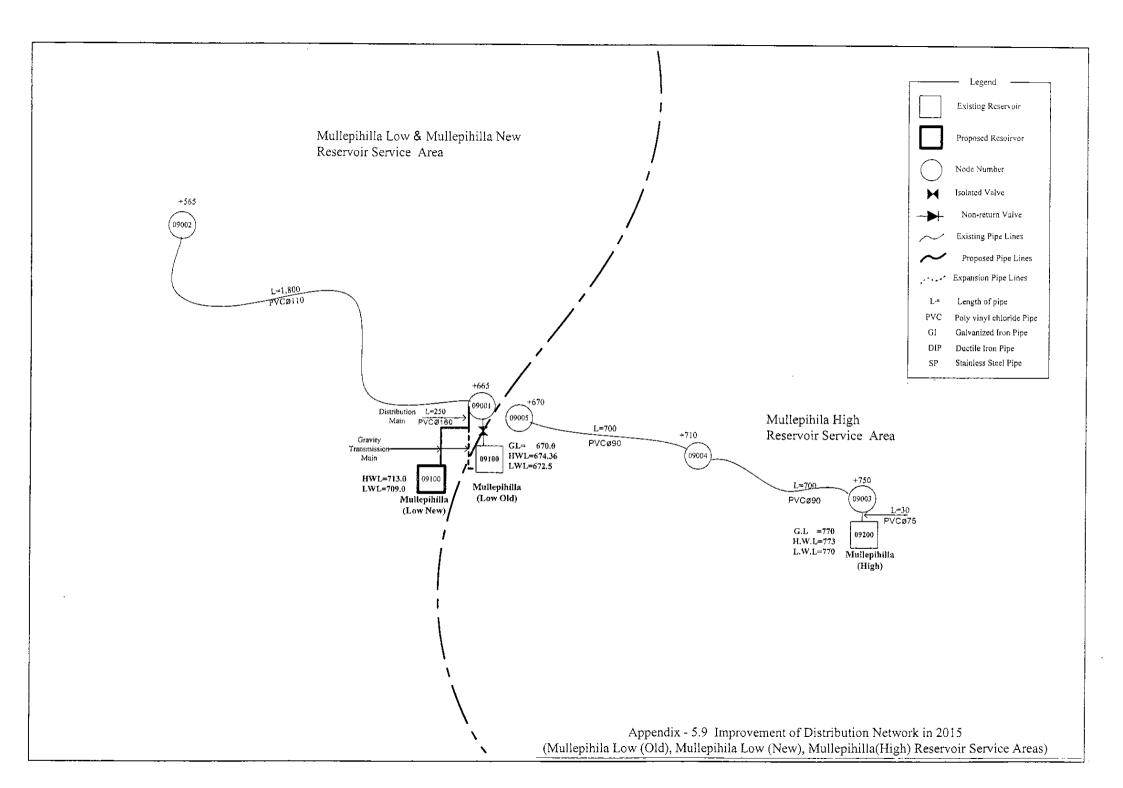
STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	8024	3.95	.03	.00	.00	.13	.1
2	8024	8041	1.25	.02	.00	.00	.08	.0
3	8041	8094	.80	.00	.00	.00	. 05	.0
4	8094	8047	.27	.01	.00	.00	.04	.0
5	8094	8095	.53	.01	.00	.00	.07	.1
6	8095	8048	.27	.01	.00	.00	.04	. 0
7	8024	8087	2.47	.04	.00	.00	.08	.0
8	8087	8089	1.32	.01	.00	.00	.09	.0

9	8087	8088	1.15	.03	.00	.00	.07	. 0
10	8089	8090	1.09	1.16	.00	.00	.33	2.9
11	8090	8091	.87	.37	.00	.00	.26	1.9
12	8088	8092	1.15	.25	.00	.00	. 15	. 4
13	8092	8093	.36	.35	.00	.00	.15	.8
14	8092	8051	.43	.01	.00	.00	.05	. 0
15	8051	8052	.36	.01	.00	.00	. 05	.0
16	8041	8030	.23	.03	.00	.00	.09	.3

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
8024		.23	610.97	596.00	14.97	146.85
8030		.23	610.92	571.00	39.92	391.49
8041		.23	610.95	567.00	43.95	431.05
8047		.27	610.94	590.00	20.94	205.31
8048		.27	610.93	545.00	65.93	646.55
8051		.06	610.65	545.00	65.65	643.84
8052		.36	610.64	564.00	46.64	457.42
8087		.00	610.94	523.00	87.94	862.39
8088		.00	610.91	520.00	90.91	891.55
8089		.23	610.93	535.00	75.93	744.61
8090		.23	609.77	553.00	56.77	556.69
8091		.87	609.40	533.00	76.40	749.22
8092		.36	610.66	546.00	64.66	634.13
8093		.36	610.31	542.00	68.31	669.92
8094		.00	610.95	551.00	59.95	587.91
8095		.27	610.94	549.00	61.94	607.44


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		3.95
NET	SYSTEM	INFLOW	=	3.95
NET	SYSTEM	OUTFLOW	=	.00
NET	SYSTEM	DEMAND	=	3.94

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 13:58:47

DATE: 3/ 7/2002 TIME: 14: 0: 6

INPUT DATA FILENAME ----- c:\D_nets\2015\MULL2015.DAT TABULATED OUTPUT FILENAME ---- c:\D_nets\2015\MULL2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\MULL2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters
PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-XXFG	0	9001	25.0	9.7	120.00	.00	672.
2-FG	0	9001	250.0	14.0	130.00	.00	709.
3	9001	9002	1800.0	9.7	120.00	.00	

JUNCTION NODE DATA

JUNCTION	JUNCTION	EXTERNAL	JUNCTION		
NUMBER	TITLE	DEMAND	ELEVATION	CONNECTING	PIPES
		(1/s)	(m)		
 					

2.43 665.00 1 2 3 14.65 565.00 3 9001 9002

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER OF	PIPES(p)	=	3
NUMBER OF	JUNCTION NODES(j)	=	2
NUMBER OF	PRIMARY LOOPS(1)	=	0
NUMBER OF	FIXED GRADE NODES(f)	=	2
NUMBER OF	SUPPLY ZONES(z)	=	1

********** SIMULATION RESULTS ***********

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

STATUS CODE:	XX -CLOSED PIPE	FG -FIXED GRADE NODE	PU -PUMP LINE
	CV -CHECK VALVE	RV -REGULATING VALVE	TK -STORAGE TANK

PIPE NUMBER	NODE #1	NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-XXFG	0	9001						
2 - FG	0	9001	17.08	2.49	.00	.00	1.11	9.9
3	9001	9002	14.65	93.57	.00	.00	1.98	51.9

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
9001		2.43	706.51	665.00	41.51	407.04
9002		14.65	612.93	565.00	47.93	470.05

JOB NAME = GKWSAP - JICA - Mullepihilla Low New SR

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		2		17.08
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	=======================================	17.08 .00 17.08

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

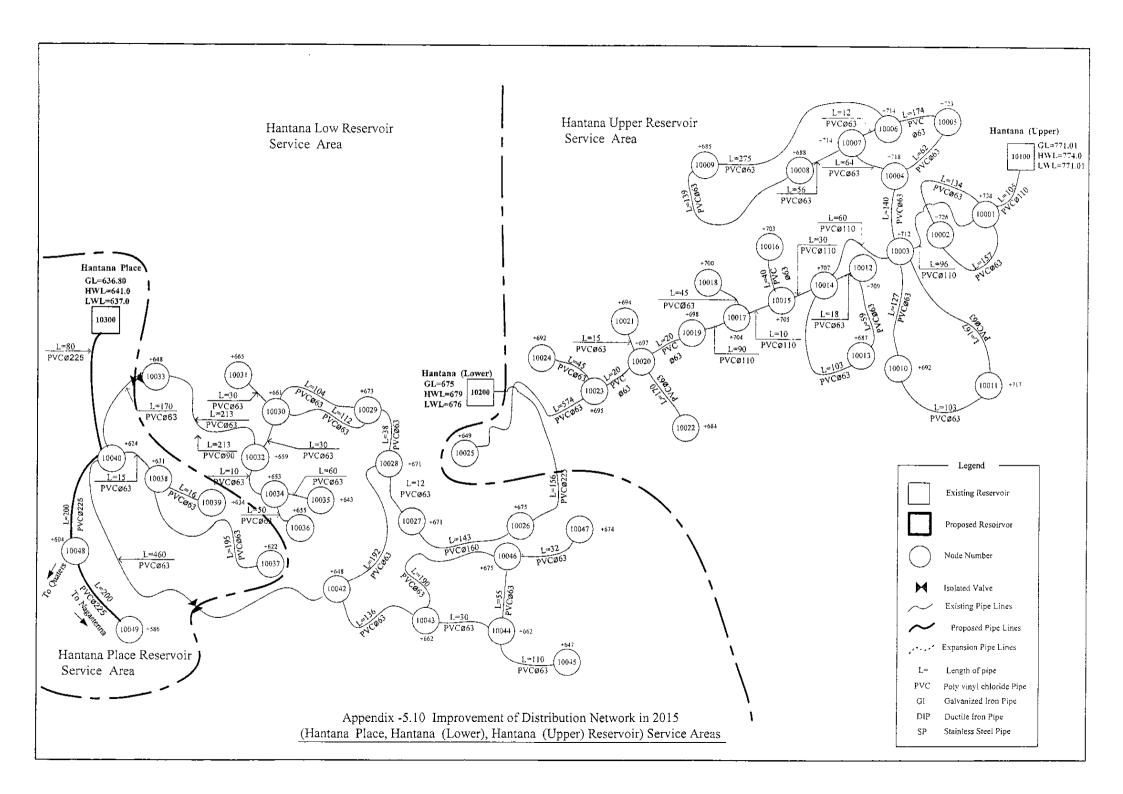
PIPE NUMBER	NODE #1	NOS. #2	FLOWRATE (1/s)	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-XXFG	0	9001						
2-FG	0	9001	5.12	.27	.00	.00	.33	1.0
3	9001	9002	4.39	10.06	.00	.00	.59	5.5

JUNCTION NODE RESULTS

JUNCTION JUNCTION EXTERNAL HYDRAULIC JUNCTION PRESSURE JUNCTIO

JOB NAME = GKWSAP - JICA - Mullepihilla Low New SR

NUMBER	TITLE	DEMAND (1/s)	GRADE (m)	ELEVATION (m)	HEAD (m)	PRESSUR (kpa)
9001		.73	708.73	665.00	43.73	428.86
9002		4.39	698.67	565.00	133.67	1310.84


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)		
		2		5.12		
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	5.12 .00 5.12		

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 14: 0: 6

DATE: 3/ 7/2002 TIME: 14: 0:49

INPUT DATA FILENAME ----- c:\D_nets\2015\HANP2015.DAT TABULATED OUTPUT FILENAME ---- c:\D_nets\2015\HANP2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\HANP2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters
PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG	0	1040	80.0	19.8	130.00	.00	637.
2	1040	1048	180.0	19.8	130.00	.00	
3	1048	1049	200.0	19.8	130.00	.00	
4	1040	1038	15.0	5.5	120.00	.00	
5	1038	1037	195.0	5.5	120.00	.00	
6	1038	1039	16.0	5.5	120.00	.00	

JUNCTION NODE DATA

JUNCTION JUNCTION EXTERNAL JUNCTION

DATE = 03-07-2002 JOB NAME = GKWSAP - JICA - Hantana Place SR

NUMBER	TITLE	DEMAND (1/s)	ELEVATION (m)	CONNE	CTING	G PIPES	
1037		1.92	622.00	5			
1038		1.92	631.00	4	5	6	
1039		1.92	634.00	6			
1040		1.92	624.00	1	2	4	
1048		6.10	600.00	2	3		
1049		8.26	575.00	3			

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER	OF	PIPES(p)	=	6
NUMBER	OF	JUNCTION NODES(j)	=	6
NUMBER	OF	PRIMARY LOOPS(1)	=	0
NUMBER	OF	FIXED GRADE NODES(f)	=	1
NUMBER	OF	SUPPLY ZONES(z)	=	1

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

PIPE NUMBER	NO! #1	DE NOS. #2	FLOWRATE (1/s)	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	1040	22.04	.24	.00	.00	.72	2.9
2	1040	1048	14.36	.24	.00	.00	.47	1.3
3	1048	1049	8.26	.10	.00	.00	.27	. 4
4	1040	1038	5.76	2.19	.00	.00	2.42	146.2
5	1038	1037	1.92	3.73	.00	.00	.81	19.1
6	1038	1039	1.92	.31	.00	.00	.81	19.1

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
1037		1.92	630.84	622.00	8.84	86.71
1038		1.92	634.57	631.00	3.57	35.01
1039		1.92	634.26	634.00	.26	2.59
1040		1.92	636.76	624.00	12.76	125.17
1048		6.10	636.52	600.00	36.52	358.17
1049		8.26	636.43	575.00	61.43	602.39

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATI (1/s)		
		1		22.04		
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	22.04 .00 22.04		

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

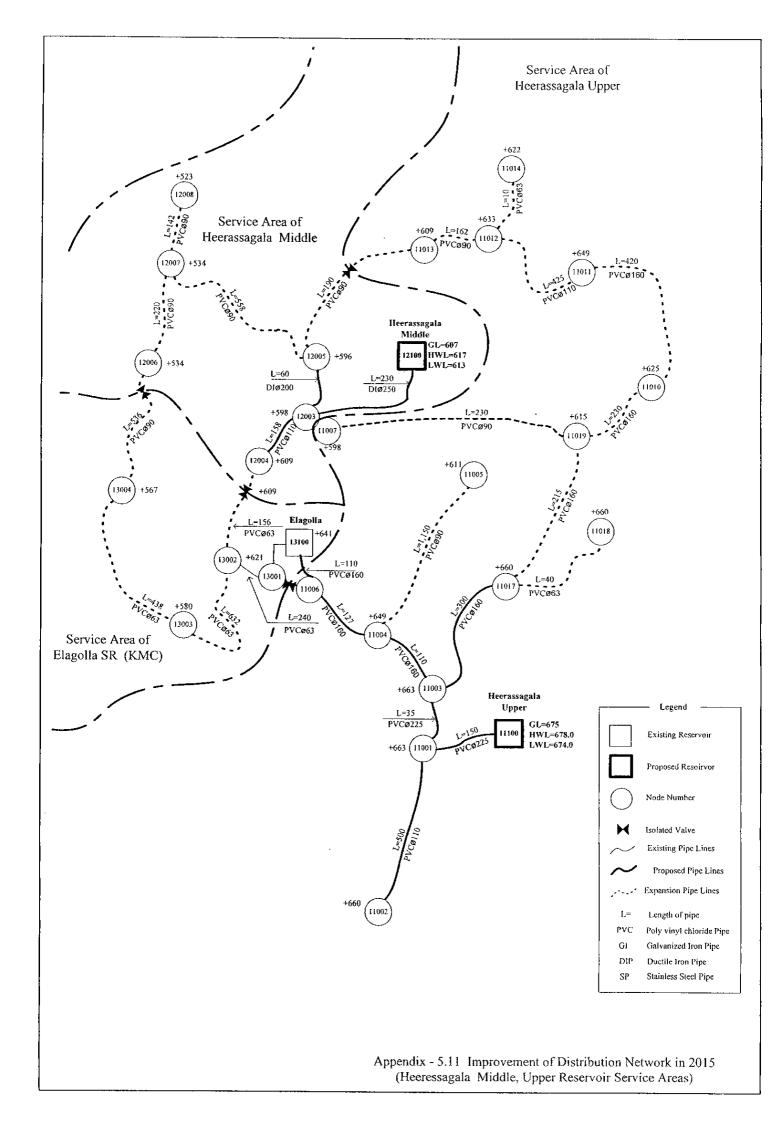
THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	1040	6.61	.03	.00	.00	.21	.3
2	1040	1048	4.31	.03	.00	.00	.14	. 1
3	1048	1049	2.48	.01	.00	.00	.08	. 0
4	1040	1038	1.73	.24	.00	.00	.73	15.7
5	1038	1037	.58	.40	.00	.00	.24	2.0
6	1038	1039	.58	.03	.00	.00	.24	2.0

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
1037		.58	636.34	622.00	14.34	140.60
1038		.58	636.74	631.00	5.74	56.28
1039		.58	636.71	634.00	2.71	26.53
1040		.58	636.97	624.00	12.97	127.24
1048		1.83	636.95	600.00	36.95	362.34
1049		2.48	636.94	575.00	61.94	607.41


SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)		
		1		6.61		
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	6.61 .00 6.61		

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 14: 0:49

DATE: 3/ 7/2002 TIME: 14:11:58

INPUT DATA FILENAME ------ C:\D_nets\2015\HEEU2015.DAT TABULATED OUTPUT FILENAME ----- C:\D_nets\2015\HEEU2015.OUT POSTPROCESSOR RESULTS FILENAME --- C:\D_nets\2015\HEEU2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

PIPE NUMBER		E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG	0	1101	150.0	19.8	130.00	.00	674.
2	1101	1102	500.0	9.7	130.00	.00	
3	1101	1103	1.0	19.8	130.00	.00	
4	1103	1104	110.0	14.0	130.00	.00	
5	1103	1117	300.0	14.0	130.00	.00	
6	1104	1105	1150.0	7.9	130.00	.00	
7	1117	1118	40.0	5.5	130.00	.00	
8	1117	1119	215.0	14.0	130.00	.00	
9	1119	1110	230.0	14.0	130.00	.00	
10	1110	1111	420.0	14.0	130.00	.00	
11	1111	1112	425.0	9.7	130.00	.00	
12	1112	1113	162.0	7.9	130.00	.00	
13	1112	1114	10.0	5.5	130.00	.00	

14	1119	1107	230.0	7.9	130.00	.00
15	1104	1106	127.0	14.0	130.00	.00
16	1106	1300	110.0	14.0	130.00	- 00

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONNI	ECTING	PIPES	
1101		.89	663.00	1	2	3	
1102		.89	660.00	2			
1103		.89	663.00	3	4	5	
1104		.89	647.00	4	6	15	
1105		.90	611.00	6			
1106		.89	659.00	15	16		
1107		.89	598.00	14			
1110		.89	625.00	9	10		
1111		.89	649.00	10	11		
1112		.90	633.00	11	12	13	
1113		.89	609.00	12			
1114		.89	622.00	13			
1117		.89	660.00	5	7	8	
1118		.89	660.00	7			
1119		.90	615.00	8	9	14	
1300		17.99	649.00	16			

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER	OF	PIPES(p)	=	16
NUMBER	OF	JUNCTION NODES $\dots (\bar{j})$	=	16
NUMBER	OF	PRIMARY LOOPS(1)	=	0
NUMBER	OF	FIXED GRADE NODES(f)	=	1
NUMBER	OF	SUPPLY ZONES(z)	=	1

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE TK -STORAGE TANK

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	
1-FG	0	1101	31.37	. 85	.00	.00	1.02	5.6
2	1101	1102	.89	.13	.00	.00	.12	.2
3	1101	1103	29.59	.01	.00	.00	.96	5.1
4	1103	1104	20.67	1.56	.00	.00	1.34	14.2
5	1103	1117	8.03	.74	.00	.00	.52	2.4
6	1104	1105	.90	.80	.00	.00	.18	.6
7	1117	1118	.89	.16	.00	.00	.37	3.9
8	1117	1119	6.25	.33	.00	.00	.41	1.5
9	1119	1110	4.46	.19	.00	.00	.29	.8
10	1110	1111	3.57	.23	.00	.00	.23	.5
11	1111	1112	2.68	.82	.00	.00	.36	1.9
12	1112	1113	.89	.11	.00	.00	.18	.6
13	1112	1114	.89	.04	.00	.00	.37	3.9
14	1119	1107	.89	.16	.00	.00	.18	.6
15	1104	1106	18.88	1.53	.00	.00	1.23	12.0
16	1106	1300	17.99	1.21	.00	.00	1.17	10.9

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
1101		.89	673.65	663.00	10.65	104.41
1102		.89	673.52	660.00	13.52	132.61
1103		.89	673.64	663.00	10.64	104.36
1104		.89	672.08	647.00	25.08	245.95
1105		.90	671.28	611.00	60.28	591.16
1106		.89	670.55	659.00	11.55	113.32
1107		.89	672.41	598.00	74.41	729.74
1110		.89	672.38	625.00	47.38	464.63
1111		.89	672.15	649.00	23.15	227.00
1112		.90	671.33	633.00	38.33	375.87
1113		.89	671.22	609.00	62.22	610.15
1114		.89	671.29	622.00	49.29	483.36
1117		.89	672.90	660.00	12.90	126.53
1118		.89	672.74	660.00	12.74	124.97
1119		.90	672.57	615.00	57.57	564.57
1300		17.99	669.35	649.00	20.35	199.54
				4		

JOB NAME = GKWSAP - JICA - Heeressagala Upper SR

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		31.37
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	31.37 .00 31.37

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	1101	9.41	.09	.00	.00	.31	.6
2	1101	1102	.27	.01	.00	.00	.04	. 0
3	1101	1103	8.88	.00	.00	.00	.29	.5
4	1103	1104	6.20	.17	.00	.00	.40	1.5
5	1103	1117	2.41	.08	.00	.00	.16	. 2
6	1104	1105	.27	.09	.00	.00	.06	.0
7	1117	1118	.27	.02	.00	.00	.11	.4
8	1117	1119	1.88	.04	.00	.00	.12	.1

9	1119	1110	1.34	.02	.00	.00	.09	.0
10	1110	1111	1.07	.02	.00	.00	.07	.0
11	1111	1112	.80	.09	.00	.00	.11	.2
12	1112	1113	.27	.01	.00	.00	. 05	.0
13	1112	1114	.27	.00	.00	.00	.11	.4
14	1119	1107	.27	.02	.00	.00	.05	.0
15	1104	1106	5.66	.16	.00	.00	.37	1.2
16	1106	1300	5.40	.13	. 00	.00	.35	1.1

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
1101		.27	674.41	663.00	11.41	111.88
1102		.27	674.39		14.39	
1103		.27	674.41	663.00	11.41	111.87
1104		.27	674.24	647.00	27.24	267.13
1105		.27	674.15	611.00	63.15	619.33
1106		.27	674.08	659.00	15.08	147.84
1107		.27	674.28	598.00	76.28	748.01
1110		.27	674.27	625.00	49.27	483.19
1111		.27	674.25	649.00	25.25	247.59
1112		.27	674.16	633.00	41.16	403.63
1113		.27	674.15	609.00	65.15	638.88
1114		.27	674.15	622.00	52.15	511.46
1117		.27	674.33	660.00	14.33	140.51
1118		.27	674.31	660.00	14.31	140.34
1119		.27	674.29	615.00	59.29	581.46
1300		5.40	673.95	649.00	24.95	244.64

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		9.41
NET	SYSTEM	INFLOW	=	9.41
NET	SYSTEM	OUTFLOW	=	.00
NET	SYSTEM	DEMAND	=	9.41

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 14:11:58 DATE: 3/ 7/2002 TIME: 14:20:22

INPUT DATA FILENAME ----- C:\D_nets\2015\HEEM2015.DAT TABULATED OUTPUT FILENAME ---- C:\D_nets\2015\HEEM2015.OUT POSTPROCESSOR RESULTS FILENAME --- C:\D_nets\2015\HEEM2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FG	0	1203	230.0	25.0	130.00	.00	613.
2	1203	1204	158.0	9.7	130.00	.00	020.
3	1203	1205	40.0	20.0	130.00	.00	
4	1205	1207	558.0	7.9	130.00	.00	
5	1207	1206	220.0	7.9	130.00	.00	
6	1207	1208	142.0	7.9	130.00	.00	

JUNCTION NODE DATA

JUNCTION JUNCTION EXTERNAL JUNCTION

DATE = 03-07-2002

PAGE NO. 2 JOB NAME = GKWSAP - JICA - Heeressagala Middle SR

NUMBER	TITLE	DEMAND (1/s)	ELEVATION (m)	CONNE	CTING	PIPES
1203		3.56	598.00	1	2	3
1204		3.56	609.00	2		
1205		3.57	596.00	3	4	
1206		3.56	534.00	5		
1207		3.56	534.00	4	5	6
1208		3.56	523.00	6		

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER	OF	PIPES(p)	=	6
NUMBER	OF	JUNCTION NODES(j)	=	6
NUMBER	OF	PRIMARY LOOPS(1)	=	0
NUMBER	OF	FIXED GRADE NODES(f)	=	1
NUMBER	OF	SUPPLY ZONES (2)	=	1

********** S I M U L A T I O N R E S U L T S **********

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

PIPELINE RESULTS

PIPE NUMBER	NO) #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	1203	21.37	.21	.00	.00	.44	.9
2	1203	1204	3 <i>.</i> 56	. 52	.00	.00	.48	3.2
3	1203	1205	14.25	.05	.00	.00	.45	1.2
4	1205	1207	10.68	37.85	.00	.00	2.18	67.8
5	1207	1206	3.56	1.95	.00	.00	.73	8.8
6	1207	1208	3.56	1.26	.00	.00	.73	8.8

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
1203		3.56	612.79	598.00	14.79	145.08
1204		3.56	612.28	609.00	3.28	32.15
1205		3.57	612.74	596.00	16.74	164,20
1206		3.56	572.94	534.00	38.94	381.91
1207		3.56	574.89	534.00	40.89	401.04
1208		3.56	573.63	523.00	50.63	496.56

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		21.37
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	= = =	21.37 .00 21.37

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 2 TRIALS WITH AN ACCURACY = .00000

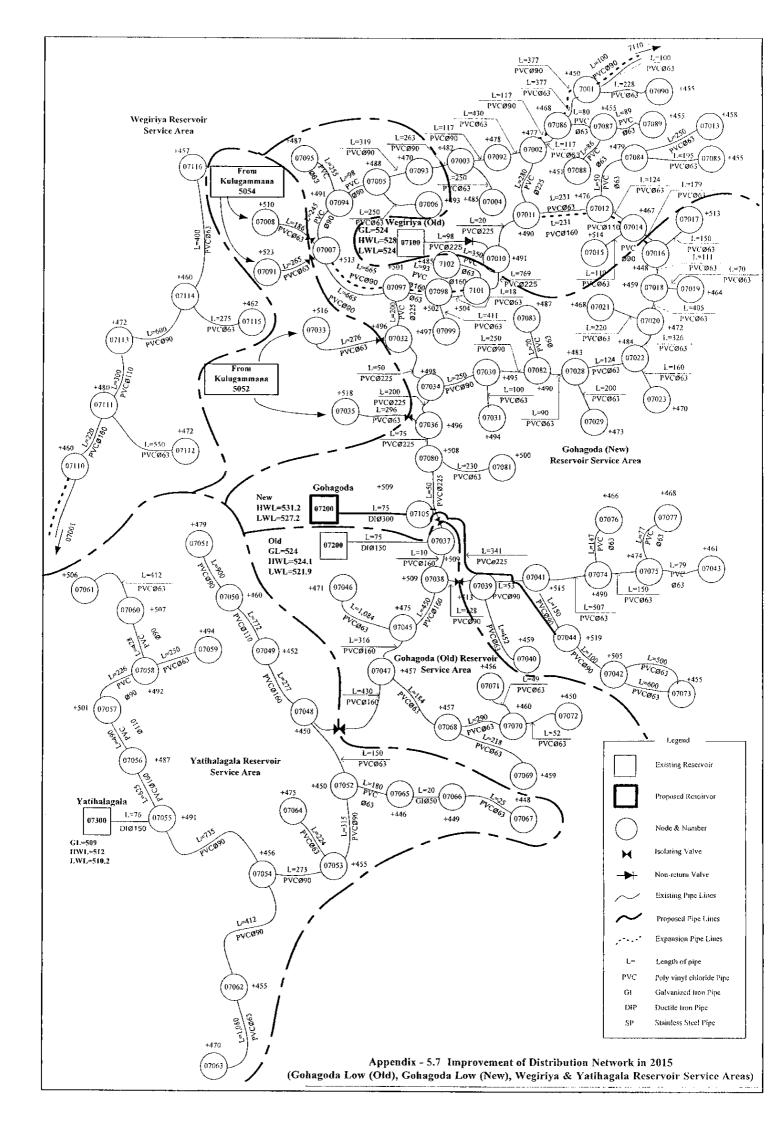
PIPELINE RESULTS

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FG	0	1203	6.41	.02	.00	.00	.13	.1
2	1203	1204	1.07	.06	.00	.00	.14	.3
3	1203	1205	4.27	.01	.00	.00	.14	.1
4	1205	1207	3.20	4.07	.00	.00	.65	7.3
5	1207	1206	1.07	.21	.00	.00	.22	.9
6	1207	1208	1.07	.14	.00	.00	.22	. 9

JUNCTION NODE RESULTS

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
1203		1.07	612.98	598.00	14.98	146.88
1204		1.07	612.92	609.00	3.92	38.46
1205		1.07	612.97	596.00	16.97	166.44
1206		1.07	608.69	534.00	74.69	732.48
1207		1.07	608.90	534.00	74.90	734.54
1208		1.07	608.77	523.00	85.77	841.08

SUMMARY OF INFLOWS AND OUTFLOWS


(+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES

(-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		6.41
NET	SYSTEM	INFLOW	=	6.41
NET	SYSTEM	OUTFLOW	=	.00
NET	SYSTEM	DEMAND	=	6.41

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/ 7/2002 TIME: 14:20:22

DATE: 3/12/2002 TIME: 8:50:25

INPUT DATA FILENAME ----- C:\D_nets\2015\GOHA2015.DAT TABULATED OUTPUT FILENAME ---- C:\D_nets\2015\GOHA2015.OUT POSTPROCESSOR RESULTS FILENAME --- C:\D_nets\2015\GOHA2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
0	7037	75.0	15.0	120.00	.00	521.
7037	7038	10.0	14.0	120.00		
7038	7045	450.0	14.0	120.00	.00	
7045	7047	316.0	14.0	120.00	.00	
7045	7046	1084.0	5.5	120.00	.00	•
7047	7068	184.0	5.5	120.00	.00	
7068	7069	218.0	5.5	120.00	.00	
7068	7070	290.0	5.5	120.00	.00	
7070	7072	52.0	5.5	120.00	.00	
7070	7071	49.0	5.5	120.00	.00	
7038	7039	128.0	7.9	120.00	.00	
7039	7041	53.0	7.9	120.00	.00	
7039	7040	452.0	5.5	120.00	.00	
	#1 0 7037 7038 7045 7045 7047 7068 7068 7070 7070 7038 7039	0 7037 7037 7038 7038 7045 7045 7047 7045 7046 7047 7068 7068 7069 7068 7070 7070 7072 7070 7071 7038 7039 7039 7041	#1 #2 (m) 7037 75.0 7037 7038 10.0 7038 7045 450.0 7045 7047 316.0 7045 7046 1084.0 7047 7068 184.0 7068 7069 218.0 7068 7070 290.0 7070 7072 52.0 7070 7071 49.0 7038 7039 128.0 7039 7041 53.0	#1 #2 (m) (cm) 0 7037 75.0 15.0 7037 7038 10.0 14.0 7038 7045 450.0 14.0 7045 7047 316.0 14.0 7045 7068 184.0 5.5 7068 7069 218.0 5.5 7068 7070 290.0 5.5 7070 7072 52.0 5.5 7070 7071 49.0 5.5 7038 7039 128.0 7.9 7039 7041 53.0 7.9	#1 #2 (m) (cm) COEFF. 0 7037 75.0 15.0 120.00 7037 7038 10.0 14.0 120.00 7038 7045 450.0 14.0 120.00 7045 7047 316.0 14.0 120.00 7045 7046 1084.0 5.5 120.00 7047 7068 184.0 5.5 120.00 7068 7069 218.0 5.5 120.00 7068 7070 290.0 5.5 120.00 7070 7072 52.0 5.5 120.00 7070 7071 49.0 5.5 120.00 7038 7039 128.0 7.9 120.00 7039 7041 53.0 7.9 120.00	#1 #2 (m) (cm) COEFF. COEFF. 0 7037 75.0 15.0 120.00 .00 7037 7038 10.0 14.0 120.00 .00 7038 7045 450.0 14.0 120.00 .00 7045 7047 316.0 14.0 120.00 .00 7045 7046 1084.0 5.5 120.00 .00 7047 7068 184.0 5.5 120.00 .00 7068 7069 218.0 5.5 120.00 .00 7068 7070 290.0 5.5 120.00 .00 7070 7072 52.0 5.5 120.00 .00 7070 7071 49.0 5.5 120.00 .00 7038 7039 128.0 7.9 120.00 .00 7039 7041 53.0 7.9 120.00 .00

14	7041	7074	507.0	5.5	120.00	.00
15	7041	7044	150.0	7.9	120.00	.00
16	7044	7042	100.0	7.9	120.00	.00
17	7074	7076	147.0	5.5	120.00	.00
18	7074	7075	150.0	5.5	120.00	.00
19	7075	7043	79.0	5.5	120.00	.00
20-XX	7037	7080	50.0	19.8	120.00	.00
21	7081	7080	230.0	5.5	120.00	.00
22	7036	7080	75.0	19.8	120.00	.00
23-XX	7035	7036	296.0	5.5	120.00	.00
24	7036	7034	200.0	19.8	120.00	.00
25	7034	7034	250.0	7.9	120.00	.00
26	7034	7030	50.0	19.8	120.00	.00
27	7034	7032	100.0	5.5	120.00	.00
28	7030	7082	250.0	7.9	120.00	.00
29	7030	7082	70.0	5.5	120.00	.00
30	7082	7028	90.0	5.5	120.00	.00
31	7028	7028	200.0	5.5 5.5	120.00	.00
32	7028	7023	124.0	5.5 5.5		
33	7028				120.00 120.00	.00
	7022	7023	160.0 326.0	5.5		.00
34		7020		5.5	120.00	.00
35	7021	7020	220.0	5.5	120.00	.00
36	7020	7018	405.0	5.5	120.00	.00
37	7018	7019	70.0	5.5	120.00	.00
38	7018	7016	111.0	5.5	120.00	.00
39	7016	7017	150.0	5.5	120.00	.00
40	7016	7014	179.0	5.5	120.00	.00
41	7014	7015	110.0	5.5	120.00	.00
42	7014	7012	124.0	5.5	120.00	.00
43	7012	7011	231.0	5.5	120.00	.00
44	7012	7084	50.0	5.5	120.00	.00
45	7084	7013	250.0	5.5	120.00	.00
46	7084	7085	195.0	5.5	120.00	.00
47	7011	7010	20.0	19.8	120.00	.00
48	7010	7101	769.0	19.8	120.00	.00
49-FGCV	0	7010	98.0	19.8	120.00	.00
50	7101	7102	350.0	5.5	120.00	.00
51	7101	7098	18.0	5.5	120.00	.00
52	7098	7099	411.0	5.5	120.00	.00
53	7098	7097	93.0	5.5	120.00	.00
54	7097	7032	200.0	19.8	120.00	.00
55 - XX	7032	7033	276.0	5.5	120.00	.00
56	7097	7007	665.0	7.9	120.00	.00
57	7007	7091	265.0	5.5	120.00	.00
58	7007	7008	186.0	5.5	120.00	.00
59	7007	7094	245.0	7.9	120.00	.00
60	7094	7095	255.0	5.5	120.00	.00
61	7094	7005	98.0	7.9	120.00	.00
62	7005	7006	250.0	5.5	120.00	.00
63	7005	7093	319.0	7.9	120.00	.00
64	7093	7003	263.0	7.9	120.00	.00
65	7003	7004	250.0	5.5	120.00	.00
66	7003	7092	117.0	7.9	120.00	.00

526.

67	7092 7011	7002	430.0		700 00		
	7011		400.0	5.5	120.00	.00	
68	/ U T T	7002	280.0	19.8	120.00	.00	
69	7002	7086	117.0	5.5	120.00	.00	
70	7086	7001	377.0	5.5	120.00	.00	
71	7086	7087	80.0	5.5	120.00	.00	
72	7087	7088	86.0	5.5	120.00	.00	
73	7087	7089	89.0	5.5	120.00	.00	
7 4	7001	7090	228.0	5.5	120.00	.00	
7 5	7001	7110	100.0	5.5	120.00	.00	
76	7110	7111	220.0	14.0	120.00	.00	
77	7112	7111	550.0	5.5	120.00	.00	
78	7111	7113	300.0	9.7	120.00	.00	
79	7113	7114	600.0	7.9	120.00	.00	
80	7114	7115	275.0	5.5	120.00	.00	
81	7114	7116	400.0	5.5	120.00	.00	
82	7075	7077	77.0	5.5	120.00	.00	
83-FG	0	7105	75.0	30.0	130.00	.00	527.
84	7105	7080	50.0	19.8	120.00	.00	
85	7012	7011	231.0	14.0	130.00	.00	
86	7101	7098	18.0	14.0	130.00	.00	
87	7098	7097	93.0	14.0	130.00	.00	
88	7002	7086	117.0	9.7	130.00	.00	
89	7086	7001	377.0	9.7	130.00	.00	
90	7001	7110	100.0	7.9	130.00	.00	
91	7012	7014	124.0	14.0	130.00	.00	
92	7014	7016	179.0	9.7	130.00	.00	
93	7097	7007	665.0	9.7	130.00	.00	
94	7105	7044	341.0	19.8	130.00	.00	
95	7042	7073	500.0	5.5	120.00	.00	
96	7042	7073	600.0	5.5	120.00	.00	
97	7034	7030	250.0	7.9	130.00	.00	
98	7030	7082	250.0	7.9	130.00	.00	
99-FGCV	0	7010	98.0	19.8	130.00	.00	526.

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONNI	ECTINO	; PIPI	ES		
7001		1.53	450.00	70	74	75	89	90	
7002		.89	477.00	67	68	69	88		
7003		.89	482.00	64	65	66			
7004		1.13	485.00	65					
7005		.20	488.00	61	62	63			
7006		.20	493.00	62					
7007		.20	513.00	56	57	58	59	93	
7008		.00	510.00	58					
7010		.89	491.00	47	48	49	99		
7011		.89	490.00	43	47	68	85		

7012	.71	476.00	42	43	44	85	91
7013	.89	458.00	45				
7014	.71	467.00	40	41	42	91	92
7015	.71	514.00	41				
7016	.89	448.00	38	39	40	92	
7017	.89	513.00	39		- •		
7018	.15	459.00	36	37	38		
7019	.18	464.00	37	J ,	30		
7020	.15	472.00	34	35	36		
7021	.15	468.00	35	22	20		
7022	.15	484.00	32	33	34		
7023	.15	470.00	33	55	24		
7028	.15	483.00	30	31	32		
7029	.15			31	32		
7029		473.00	31	27	20	07	0.0
	.12	495.00	25	27	28	97	98
7031	.18	494.00	27	- 4			
7032	. 65	496.00	26	54	55		
7033	.00	516.00	55		~ ~		
7034	.18	498.00	24	25	26	97	
7035	.00	518.00	23				
7036	.18	496.00	22	23	24		
7037	.72	509.00	1	2	20		
7038	. 72	509.00	2	3	11		
7039	.10	513.00	11	12	13		
7040	.10	459.00	13				
7041	.10	515.00	12	14	15		
7042	.10	512.00	16	95	96		
7043	.10	461.00	19				
7044	.10	519.00	15	16	94		
7045	.72	475.00	3	4	5		
7046	2.43	471.00	5				
7047	1.17	457.00	4	6			
7068	1.16	457.00	6	7	8		
7069	1.17	459.00	7				
7070	1.16	460.00	8	9	10		
7071	1.17	456.00	10				
7072	1.16	450.00	9				
7073	.10	455.00	95	96			
7074	.10	490.00	14	17	18		
7075	.10	474.00	18	19	82		
7076	.10	466.00	17		01		
7077	.10	468.00	82				
7080	.10	508.00	20	21	22	84	
7081	.10	500.00	21	24 1.	24	04	
7082	.10			20	20	98	
7083		490.00	28	29	30	90	
	.10	487.00	29	4 15	1.0		
7084	.71	479.00	44	45	46		
7085	.89	455.00	46			- -	<u> </u>
7086	.89	468.00	69	70	71	88	89
7087	.89	455.00	71	72	73		
7088	1.60	451.00	72				
7089	1.60	455.00	73				
7090	1.60	455.00	74				

.00	523.00	57				
.92	478.00	66	67			
.13	470.00	63	64			
.13	491.00	59	60	61		
.13	487.00	60				
.13	501.00	53	54	56	87	93
1.03	502.00	51	52	53	86	87
.13	497.00	52				
1.03	504.00	48	50	51	86	
.13	485.00	50				
.00	509.00	83	84	94		
1.60	460.00	75	76	90		
1.60	480.00	76	77	78		
1.60	472.00	77				
1.60	472.00	78	79			
1.60	460.00	79	80	81		
1.60	462.00	80				
1.60	457.00	81				
	.13 .13 .13 .13 1.03 .13 1.03 .13 .00 1.60 1.60 1.60 1.60	.92	.92 478.00 66 .13 470.00 63 .13 491.00 59 .13 487.00 60 .13 501.00 53 1.03 502.00 51 .13 497.00 52 1.03 504.00 48 .13 485.00 50 .00 509.00 83 1.60 460.00 75 1.60 472.00 77 1.60 472.00 78 1.60 460.00 79 1.60 462.00 80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER OF	PIPES(p)	=	99
NUMBER OF	JUNCTION NODES(j)	=	81
NUMBER OF	PRIMARY LOOPS(1)	=	15
NUMBER OF	FIXED GRADE NODES(f)	=	4
NUMBER OF	SUPPLY ZONES(z)	=	1

*** WARNING - A PORTION OF THE SYSTEM IS DISCONNECTED BY CLOSED LINES FROM A

**** A FIX WILL BE ATTEMPTED

*** WARNING - THE FOLLOWING JUNCTION NODES ARE DISCONNECTED FROM THE SYSTEM DEMANDS AT THESE JUNCTION NODES ARE SET TO ZERO: 7033 7035

PIPE NO. 23 HAS BEEN OPENED TO REMOVE DISCONNECTION

*** WARNING - A PORTION OF THE SYSTEM IS DISCONNECTED BY CLOSED LINES FROM A **** A FIX WILL BE ATTEMPTED

*** WARNING - THE FOLLOWING JUNCTION NODES ARE DISCONNECTED FROM THE SYSTEM DEMANDS AT THESE JUNCTION NODES ARE SET TO ZERO: 7033

PIPE NO. 55 HAS BEEN OPENED TO REMOVE DISCONNECTION

THE RESULTS ARE OBTAINED AFTER 7 TRIALS WITH AN ACCURACY = .00495

PIPELINE RESULTS

PIPE NUMBER	NOI #1	DE N OS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)			1000
1-FG	0	7037	11.58	.30	.00	.00	.66	4.0
2	7037	7038	10.86	.05	.00	.00	.71	5.0
3	7038	7045	10.14	1.98	.00	.00	.66	4.4
4	7045	7047	6.99	.70	.00	.00	.45	2.2
5	7045	7046	2.43	32.06	.00	.00	1.02	29.5
6	7047	7068	5.82	27.43	.00	.00	2.45	149.0
7	7068	7069	1.17	1.67	.00	.00	.49	7.6
8	7068	7070		16.77	.00	.00	1.47	57.8
9	7070	7072		.39		.00	.49	7.5
10	7070	7071	1.17	.37	.00	.00	.49	7.6
11-XX	7038	7039						
12	7039	7041	20				.04	.0
13	7039	7040	.10	.04	.00	.00	.04	. 0
14	7041	7074	.50	.80		.00	.21	1.5
15	7041	7044	80	.10	.00		.16	.6
16	7044	7042	.20	.00	.00	.00	.04	. 0
17	7074	7076	.10	.01		.00	.04	. 0
18	7074	7075	.30			.00	.13	.6
19	7075	7043	.10	.01	.00	.00	.04	. 0
20-XX	7037	7080						
21	7081	7080	10			.00	.04	.0
22	7036	7080	-14.15	.11	.00	.00	.46	1.5
23-XX	7035	7036	.00	.00	.00	.00	.00	. 0
24	7036	7034	13.97	.29	.00	.00	.45	1.4
25	7034	7030	.72	.13	.00	.00	. 1.5	.5
26	7034	7032	12.29	.06		.00	.40	1.1
27	7030	7031	.18			.00	.08	.2
28	7030	7082	.57	.09	.00	.00	.12	.3

20	7000	7002	1 ^	0.1	^^	0.0	0.4	^
29	7082	7083	.10	.01	.00	.00	.04	.0
30	7082	7028	1.00	.51	.00	.00	.42	5.6
31	7028	7029	.15	.03	.00	.00	.06	.1
32	7028	7022	.70	.36	.00	.00	.29	2.9
33	7022	7023	.15	.03	.00	.00	.06	.1
34	7022	7020	.40	.33	.00	.00	.17	1.0
35	7021	7020	15	.04	.00	.00	.06	.1
36	7020	7018	.10	.03	.00	.00	.04	.0
37	7018	7019	.18	.02	.00	.00	.08	. 2
38	7018	7016	23	.04	.00	.00	.10	.3
39	7016	7017	.89				.37	
				.69	.00	.00		4.6
40	7016	7014	54	.32	.00	.00	.23	1.8
41	7014	7015	.71	.33	.00	.00	.30	3.0
42	7014	7012	26	.06	.00	.00	.11	. 4
43	7012	7011	51	.38	.00	.00	.21	1.6
44	7012	7084	2.49	1.55	.00	.00	1.05	30.9
45	7084	7013	.89	1.15	.00	.00	.37	4.6
46	7084	7085	.89	.90	.00	.00	.37	4.6
47	7011	7010	-28.82	.11	.00	.00	.94	5.6
48	7010	7101	-6.36	.26	.00	.00	.21	. 3
49-FGCV		7010	11.21	.10	.00	.00	.36	.9
50	7101	7102	.13	.05	.00	.00	.05	.1
51	7101	7098	55	.03	.00	.00	.23	1.9
52	7098	7099	.13					
				.05	.00	.00	.05	.1
53	7098	7097	64	.23	.00	.00	.27	2.4
54	7097	7032	-11.64	.21	.00	.00	.38	1.0
55-XX	7032	7033	.00	.00	.00	.00	.00	.0
56	7097	7007	.99	.64	.00	.00	.20	. 9
57	7007	7091	.00	.00	.00	.00	.00	. 0
58	7007	7008	.00	.00	.00	.00	.00	.0
59	7007	7094	2.63	1.44	.00	.00	.54	5.8
60	7094	7095	.13	.03	.00	.00	.05	.1
61	7094	7005	2.37	.48	.00	.00	.48	4.8
62	7005	7006	.20	.07	.00	.00	.08	.2
63	7005	7093	1.97	1.10	.00	.00	.40	3.4
64	7093	7003	1.84	.80	.00	.00	.38	3.0
65	7003	7003	1.13	1.79			.48	7.1
		7092			.00	.00		
66 67	7003		18	.00	.00	.00	.04	.0
67	7092	7002	-1.10	2.91	.00	.00	.46	6.7
68	7011	7002	21.30	.90	.00	.00	.69	3.2
69	7002	7086	3.32	6.17	.00	.00	1.40	52.7
70	7086	7001	2.46	11.44	.00	.00	1.04	30.3
71	7086	7087	4.09	6.21	.00	.00	1.72	77.5
72	7087	7088	1.60	1.17	.00	.00	.67	13.6
73	7087	7089	1.60	1.21	.00	.00	.67	13.6
74	7001	7090	1.60	3.11	.00	.00	.67	13.6
75	7001	7110	2.94	4.21	.00	.00	1.24	42.1
76	7110	7111	9.60	.88	.00	.00	.62	3.9
77	7112	7111	-1.60	7.50	.00	.00	.67	13.6
78	7111	7113	6.40	3.36	.00	.00	.87	11.2
79	7113	7114	4.80	10.73	.00	.00	.98	17.8
80	7114	7115	1.60	3.75	.00	.00	.67	13.6
81	7114	7116	1.60	5.46	.00	.00	.67	13.6

82	7075	7077	.10	.01	.00	.00	.04	.0
83-FG	0	7105	15.44	.02	.00	.00	.22	. 2
84	7105	7080	14.35	.08	.00	.00	.47	1.5
85	7012	7011	-6.13	.34	.00	.00	.40	1.4
86	7101	7098	-6.96	.03	.00	.00	.45	1.8
87	7098	7097	-8.04	.23	.00	.00	.52	2.4
88	7002	7086	15.99	6.17	.00	.00	2.16	52.7
89	7086	7001	11.87	11.44	.00	.00	1.61	30.3
90	7001	7110	8.26	4.21	.00	.00	1.68	42.1
91	7012	7014	3.18	.05	.00	.00	.21	.4
92	7014	7016	1.48	.11	.00	.00	.20	.6
93	7097	7007	1.84	.64	.00	.00	.25	. 9
94	7105	7044	1.10	.00	.00	.00	.04	. 0
95	7042	7073	.05	.01	.00	.00	.02	.0
96	7042	7073	.05	.01	.00	.00	.02	.0
97	7034	7030	.78	.13	.00	.00	.16	.5
98	7030	7082	.62	.09	.00	.00	.13	.3
99-FGCV	0	7010	12.14	.10	.00	.00	.39	. 9

JUNCTION NODE RESULTS

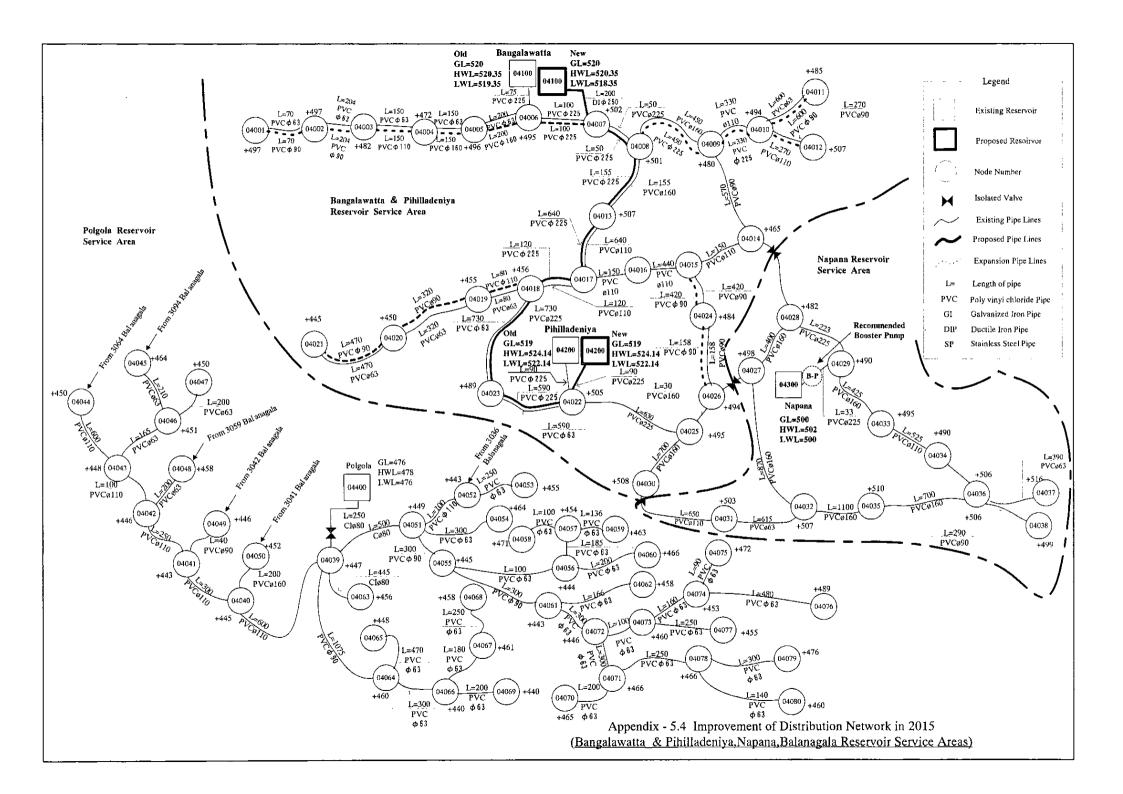
JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
7001		1.53	507.29	450.00	57.29	561.78
7002		.89	524.89	477.00	47.89	
7003		.89	521.97	482.00	39.97	392.01
7004		1.13	520.18	485.00	35.18	345.02
7005		.20	523.87	488.00	35.87	
7006		.20	523.80	493.00	30.80	302.05
7007		.20	525.79	513.00	12.79	125.44
7008		.00	525.79	510.00	15.79	154.86
7010		.89	525.90	491.00	34.90	342.29
7011		.89	525.79	490.00	35.79	350.99
7012		.71	525.41	476.00	49.41	484.59
7013		.89	522.72	458.00	64.72	634.65
7014		.71	525.36	467.00	58.36	572.29
7015		.71	525.02	514.00	11.02	108.11
7016		.89	525.04	448.00	77.04	755.46
7017		.89	524.34	513.00	11.34	111.25
7018		.15	524.99	459.00	65.99	647.16
7019		.18	524.98	464.00	60.98	597.97
7020		.15	525.02	472.00	53.02	519.97
7021		.15	524.98	468.00	56.98	558.83
7022		.15	525.61	484.00	41.61	408.03
7023		.15	525.58	470.00	55.58	545.06
7028		.15	525.97	483.00	42.97	421.39
7029		.15	525.94	473.00	52.94	519.12
7030		.12	526.57	495.00	31.57	309.57
7031		.18	526.54	494.00	32.54	319.14

7032	.65	526.64	496.00	30.64	300.49
7033	.00	526.64	516.00	10.64	104.36
7034	.18	526.70	498.00	28.70	281.45
7035	.00	526.99	518.00	8.99	88.20
7036	.18	526.99	496.00	30.99	303.95
7037	.72	521.60	509.00	12.60	123.55
7038	.72	521.55	509.00	12.55	123.06
7039	.10	527.08	513.00	14.08	138.09
7040	.10	527.08	459.00	68.04	667.29
7041	.10	527.04	515.00	12.08	118.50
7042		527.18	513.00	15.18	148.83
7043	.10				
7044	.10	526.18	461.00	65.18 8.18	639.23 80.23
	.10	527.18	519.00		
7045	.72	519.57		44.57	437.05
7046	2.43	487.51	471.00	16.51	161.89
7047	1.17	518.87		61.87	606.72
7068	1.16	491.44	457.00	34.44	337.72
7069	1.17	489.77	459.00	30.77	301.77
7070	1.16	474.67	460.00	14.67	143.86
7071	1.17	474.30	456.00	18.30	179.42
7072	1.16	474.28	450.00	24.28	238.09
7073	.10	527.16	455.00	72.16	707.69
7074	.10	526.28	490.00	36.28	355.80
7075	.10	526.19	474.00	52.19	511.81
7076	.10	526.27	466.00	60.27	591.05
7077	.10	526.18	468.00	58.18	570.59
7080	.10	527.11	508.00	19.11	187.38
7081	.10	527.09	500.00	27.09	265.65
7082	.10	526.48	490.00	36.48	357.74
7083	.10	526.47	487.00	39.47	387.11
7084	.71	523.87	479.00	44.87	440.00
7085	.89	522.97	455.00	67.97	666.56
7086	.89	518.72	468.00	50.72	497.42
7087	.89	512.52	455.00	57.52	564.06
7088	1.60	511.34	451.00	60.34	591.78
7089	1.60	511.30	455.00	56.30	552.15
7090	1.60	504.18	455.00	49.18	482.25
7091	.00	525.79	523.00	2.79	27.37
7092	.92	521.98	478.00	43.98	431.28
7093	.13	522.77	470.00	52.77	517.53
7094	.13	524.35	491.00	33.35	327.04
7095	.13	524.32	487.00	37.32	365.95
7097	.13	526.43	501.00	25.43	249.40
7098	1.03	526.20	502.00	24.20	237.34
7099	.13	526.15	497.00	29.15	285.85
7101	1.03	526.17	504.00	22.17	217.39
7102	.13	526.12	485.00	41.12	403.27
7105	.00	527.18	509.00	18.18	178.33
7110	1.60	503.07	460.00	43.07	422.39
7111	1.60	502.20	480.00	22.20	217.67
7112	1.60	494.69	472.00	22.69	222.56
7113	1.60	498.83	472.00	26.83	263.13
7114	1.60	488.10	460.00	28.10	275.56

 7115
 1.60
 484.35
 462.00
 22.35
 219.17

 7116
 1.60
 482.64
 457.00
 25.64
 251.48

SUMMARY OF INFLOWS AND OUTFLOWS


(+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES

(-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

		PIPE NUMBER		FLOWRATE (1/s)
		1		11.58
		49		11.21
		83		15.44
		99		12.14
NET	SYSTEM	INFLOW	=	50.38
NET	SYSTEM	OUTFLOW	==	.00
NET	SYSTEM	DEMAND	=	50.38

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/12/2002 TIME: 8:50:25

DATE: 3/12/2002 TIME: 8:47:44

INPUT DATA FILENAME ------ c:\D_nets\2015\B&P2015.DAT TABULATED OUTPUT FILENAME ---- c:\D_nets\2015\B&P2015.OUT POSTPROCESSOR RESULTS FILENAME --- c:\D_nets\2015\B&P2015.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters
PRESSURE ... = kpa

PIPELINE DATA

PIPE NUMBER	NOD #1	E NOS. #2	LENGTH (m)	DIAMETER (cm)	ROUGHNESS COEFF.	MINOR LOSS COEFF.	FGN-H (m)
1-FGCV	0	4006	75.0	19.8	120.00	.00	519.
2	4006	4005	200.0	5.5	120.00	.00	
3	4006	4007	100.0	19.8	120.00	.00	
4	4005	4004	150.0	5.5	120.00	.00	
5	4004	4003	150.0	5.5	120.00	.00	
6	4003	4002	204.0	5.5	120.00	.00	
7	4002	4001	70.0	5.5	120.00	.00	
8	4007	4008	50.0	19.8	120.00	.00	
9	4008	4013	155.0	14.0	120.00	.00	
10	4008	4009	450.0	14.0	120.00	.00	
11	4009	4010	330.0	9.7	120.00	.00	
12	4009	4014	570.0	7.9	120.00	.00	
13	4010	4011	600.0	5.5	120.00	.00	

14	4010	4012	270.0	7.9	120.00	.00	
15	4014	4015	150.0			.00	
16	4015	4016		9.7	120.00	.00	
17	4015	4024	420.0		120.00	.00	
18	4016	4017	150.0	9.7	120.00	.00	
19	4017	4013		9.7	120.00	.00	
20	4017	4018	120.0		120.00	.00	
21	4018	4019	80.0		120.00	.00	
22	4018	4023		5.5	120.00	.00	
23	4019	4020		5.5	120.00	.00	
24	4020	4021		5.5	120.00	.00	
25	4022	4023	590.0		120.00	.00	
26	4022	4025	640.0		120.00	.00	
27-FG	0	4022	90.0	19.8		.00	522.
28	4024	4026		7.9		.00	
29	4025	4026	30.0		120.00	.00	
30	4025	4030	700.0	14.0		.00	
31-XX	4030	4031		9.7		.00	
32	4031	4032	615.0		120.00	.00	
33	4032	4035	1100.0		120.00	.00	
34	4035	4036	700.0	14.0	120.00	.00	
35	4036	4037		5.5		.00	
36	4036	4038		7.9		_00	
37-FGCV	0	4007	200.0	25.0	130.00	.00	518.
38	4018	4019		9.7	130.00	.00	0_0
39	4007	4008	50.0	25.0	130.00	.00	
40	4008	4013	155.0	19.8	130.00	.00	
41	4013	4017	640.0	19.8	130.00	.00	
42	4017	4018	120.0	19.8	130.00	.00	
43-FG	0	4022	90.0	19.8	130.00	.00	522.
44	4022	4023	590.0	19.8	130.00	.00	
45	4023	4018	730.0	19.8	130.00	.00	
46	4008	4009	450.0	19.8	130.00	.00	
47	4009	4010	330.0	14.0	130.00	.00	
48	4010	4012	270.0	9.7	130.00	.00	
49-XX	4015	4024	420.0	7.9	130.00	.00	
50-XX	4024	4026	158.0	7.9	130.00	.00	
51	4031	4032	615.0	7.9	130.00	.00	
52	4006	4005	200.0	14.0	130.00	.00	
53	4005	4004	150.0	14.0	130.00	.00	
54	4004	4003	150.0	9.7	130.00	.00	
55	4003	4002	204.0	7.9	130.00	.00	
56	4002	4001	70.0	7.9	130.00	.00	
57	4010	4011	600.0	9.7	130.00	.00	
58	4019	4020	320.0	7.9	130.00	.00	
59	4020	4021	470.0	7.9	130.00	.00	
60	4006	4007	100.0	19.8	130.00	.00	
61-FG	0	4029	25.0	19.8	120.00	.00	540.
62-XXFG	0	4029	33.0	19.8	120.00	.00	500.
63	4029	4028	223.0	19.8	120.00	.00	
64	4029	4033	425.0	19.8	120.00	.00	
65	4028	4027	400.0	14.0	120.00	.00	
66	4033	4034	525.0	9.7	120.00	.00	

JOB NAME = GKWSAP - JICA - Bangalawatta SR & Pihilladeniya SR

67-XX	4014	4028	300.0	9.7	120.00	.00
.			7.7.7.7			
68-XX	4026	4027	100.0	9.7	120.00	.00
69	4027	4032	870.0	14.0	120.00	.00
70	4034	4036	490.0	5.5	120.00	.00

JUNCTION NODE DATA

NUMBER	JUNCTION TITLE	DEMAND (1/s)	JUNCTION ELEVATION CONN (m)		ECTING	PIPE	IS	
4001		.79	497.00	7	56			
4002		1.84	497.00	6		55	56	
4003		1.64	482.00	5	6	54	55	
4004		2.61	472.00	4	5	53	54	
4005		3.51	496.00	2	4	52	53	
4006		3.34	495.00	1		3	52	60
4007		4.59	502.00	3	8	37		60
4008		3.62	501.00	8	9	10	39	40
4009		4.66	480.00	10	11	12	46	47
4010		5.51	494.00	11	13	14	47	48
4011		3.92	485.00	13	57			
4012		2.49	507.00	14	48			
4013		2.22	507.00	9	19	40	41	
4014		6.96	465.00	12	15	67		
4015		1.05	463.00	15	16	17	49	
4016		.89	456.00	16	18			4.0
4017		.61	457.00	18	19	20	41	42
4018		.55	456.00	20	21	22	38	42
4019		.35	455.00	21	23	38	58	
4020		.56	450.00	23	24	58	59	
4021		.44	445.00	24	59			
4022		.71	505.00	25	26	27	43	44
4023		.34	489.00	22	25	44	45	
4024		.13	484.00	17	28	49	50	
4025		.15	495.00	26	29	30		
4026		.16	494.00	28	29	50	68	
4027		. 52	498.00	65	68	69		
4028		1.31	482.00	63	65	67		
4029		1.51	490.00	61	62	63	64	
4030		.37	503.00	30	31			
4031		1.61	493.00	31	32	51		
4032		3.01	507.00	32	33	51	69	
4033		1.13	495.00	64	66			
4034		1.13	490.00	66	70			
4035		1.32	510.00	33	34		E7.0	
4036		.02	506.00	34	35	36	70	

DATE = 03-12-2002 PAGE NO. 4 JOB NAME = GKWSAP - JICA - Bangalawatta SR & Pihilladeniya SR

 4037
 .01
 516.00
 35

 4038
 .01
 499.00
 36

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER	OF	PIPES(p)	=	70
NUMBER	OF	JUNCTION NODES(j)	=	38
NUMBER	OF	PRIMARY LOOPS(1)	=	27
NUMBER	OF	FIXED GRADE NODES(f)	=	6
NUMBER	OF	SUPPLY ZONES(z)	=	1

THE RESULTS ARE OBTAINED AFTER 7 TRIALS WITH AN ACCURACY = .00159

PIPELINE RESULTS

PIPE NUMBER	NO) #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-FGCV	0	4006	30.86	.48	.00	.00	1.00	6.3
2	4006	4005	.76	.69	.00	.00	.32	3.4
3	4006	4007	8.22	.06	.00	.00	.27	.5
4	4005	4004	.50	.24	.00	.00	.21	1.6
5	4004	4003	.73	.48	.00	.00	.31	3.2
6	4003	4002	.69	.59	.00	.00	.29	2.8
7	4002	4001	.21	.02	.00	.00	.09	.3
8	4007	4008	4.18	.01	.00	.00	.14	.1
9	4008	4013	-2.60	.05	.00	.00	.17	.3
10	4008	4009	5.01	.54	.00	.00	.33	1.1
11	4009	4010	3.10	.97	.00	.00	.42	2.9
12	4009	4014	1.94	1.91	.00	.00	.40	3.3
13	4010	4011	.67	1.65	.00	.00	.28	2.7
14	4010	4012	.87	.20	.00	.00	.18	. 7
15	4014	4015	-5.02	1.07	.00	.00	.68	7.1

16	4015	4016	-3.01	1.22	.00	.00	.41	2.7
17	4015	4024	-3.06	3.26	.00	.00	.62	7.7
18	4016	4017	-3.90	.67	.00	.00	.53	4.4
19	4017	4013	1.46	.47	.00	.00	.20	.7
20	4017	4018	-2.03	.16	.00	.00	.27	1.3
21	4018	4019	.23	.03	.00	.00	.10	.3
22	4018	4023	56	1.43	.00	.00	.24	1.9
23	4019	4020	.26	.15	.00	.00	.11	.4
24	4020	4021	.12	.05	.00	.00	.05	.1
25	4022	4023	.57	1.20	.00	.00	.24	2.0
26	4022	4025	3.87	.09	.00	.00	.13	.1
27-FG	0	4022	11.11	.09	.00	.00	.36	.9
28	4024	4026	-3.19	1.32	.00	.00	.65	8.3
29	4025	4026	3.35	.02	.00	.00	.22	.5
30	4025	4030	.37	.01	.00	.00	.02	.0
31-XX	4030	4031	.57	- 0 -	.00	.00	.02	. 0
32	4031	4032	42	.71	.00	.00	.18	1.1
33	4032	4035	.70	.03	.00	.00	.05	.0
34	4035	4036	62	.02	.00	.00	.04	.0
35	4036	4037	.01	.00	.00	.00	.00	.0
36	4036	4038	.01	.00	.00	.00	.00	.0
37-XXFG		4007	•01	.00		.00		
38	4018	4019	1.12	.03	.00	.00	.15	.3
39	4007	4008	8.36	.01	.00	.00	.17	.1
40	4008	4013	-7.01	.05	.00	.00	.23	.3
41	4013	4017	-10.36	.47	.00	.00	.34	.7
42	4017	4018	-14.31	.16	.00	.00	.46	1.3
43-FG	0	4022	12.04	.09	.00	.00	.39	.9
44	4022	4023	18.00	1.20	.00	.00	.58	2.0
45	4023	4018	17.68	1.43	.00	.00	.57	1.9
46	4008	4009	13.51	.54	.00	.00	.44	1.1
47	4009	4010	8.82	.97	.00	.00	.57	2.9
48	4010	4012	1.62	.20	.00	.00	.22	.7
49-XX	4015	4024	2.02		• • • •	• • • •		• /
50-XX	4024	4026						
51	4031	4032	-1.19	.71	.00	.00	.24	1.1
52	4006	4005	9.63	.69	.00	.00	.63	3.4
53	4005	4004	6.38	.24	.00	.00	.41	1.6
54	4004	4003	3.54	.48	.00	.00	.48	3.2
55	4003	4002	1.94	.59	.00	.00	.40	2.8
56	4002	4001	.58	.02	.00	.00	.12	.3
57	4010	4011	3.25	1.65	.00	.00	.44	2.7
58	4019	4020	.74	.15	.00	.00	.15	.4
59	4020	4021	.32	.05	.00	.00	.07	. 1
60	4006	4007	8.91	.06	.00	.00	.29	.5
61-FG	0	4029	11.58	.03	.00	.00	.38	1.0
62-XXFG		4029						
63	4029	4028	7.15	.09	.00	.00	.23	.4
64	4029	4033	2.92	.03	.00	.00	.09	.0
65	4028	4027	5.84	.63	.00	.00	.38	1.5
66	4033	4034	1.79	.56	.00	.00	.24	1.0
67-XX	4014	4028						
68-XX	4026	4027						

 69
 4027
 4032
 5.32
 1.16
 .00
 .00
 .35
 1.3

 70
 4034
 4036
 .66
 1.31
 .00
 .00
 .28
 2.6

JUNCTION NODE RESULTS

MILIMEED	ጥፐጥፒው	EXTERNAL DEMAND (1/s) .79 1.84 1.64 2.61 3.51 3.34 4.59 3.62 4.66 5.51 3.92 2.49 2.22 6.96 1.05 .89 .61 .55 .35 .44 .71 .34 .13 .15 .16 .52 1.31 1.51 .37 1.61 3.01 1.13 1.13 1.32 .02 .01	CDADE	JUNCTION ELEVATION (m)	HEAD	JUNCTIO PRESSUR (kpa)
4001		.79	516.78	497.00	19.78	193.94
4002		1.84	516.80	497.00	19.80	194.16
4003		1.64	517.39	482.00	35.39	347.02
4004		2.61	517.87	472.00	45.87	449.82
4005		3.51	518.11	496.00	22.11	216.83
4006		3.34	518.80	472.00 496.00 495.00	23.80	233.40
4007		4.59	518.75	502.00	16.75	164.22
4008		3.62	518.74	501.00 480.00	17.74	173.95
4009		4.66	518.20	480.00	38.20	374.62
4010		5.51	517.23	494.00	23.23	227.83
4011		3.92	515.58	485.00 507.00 507.00	30.58	299.91
4012		2.49	517.03	507.00	10.03 11.79	98.34
4013		2.22	518.79	507.00	11.79	115.64
4014		6.96	516.29		51.29	
4015		1.05	517.37		54.37	533.15
4016		.89	518.59	456.00 457.00	62.59	613.76
4017		.61	519.26	457.00	62.26	610.55
4018		.55	519.42	456.00	63.42	621.93
4019		.35	519.39	455.00 450.00 445.00	64.39	631.44
4020		.56	519.23	450.00	69.23	678.97
4021		.44	519.19	445.00	74.19	727.52
4022		.71	522.05	505.00	17.05	167.24
4023		.34	520.85	489.00	31.85	312.38
4024		.13	520.62	484.00 495.00	36.62	359.17
4025		.15	521.97	495.00	26.97	264.44
4026		.16	521.95	494.00	27.95	274.08
4027		.52	539.25	498.00 482.00 490.00	41.25	404.48
4028		1.31	539.88	482.00	57.88	567.60
4029		1.51	539.97	490.00	49.97	490.08
4030 4031		.3/	521.96	503.00	18.96	185.93
4031 4032		1.61	537.37	493.00	44.37 31.09	435.16
4032		3.UL	538.09	507.00	31.09 44.94	304.86
4033		1.13	539.94			
4034 4035		1.13	539.38	490.00	49.38	484.27
4035 4036		1.32	538.05 538.07	510.00	28.05 32.07	275.11
4036		.02 .01	538.07 538.07	506.00	32.07 22.07	314.51
4037 4038		. U.L	538.07			
4038		.01	538.07	499.00	39.07	383.15

SUMMARY OF INFLOWS AND OUTFLOWS

DATE = 03-12-2002 PAGE NO. 7 JOB NAME = GKWSAP - JICA - Bangalawatta SR & Pihilladeniya SR

(+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES

(-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

	PIPE NUMBER				
	1		30.86		
		11.11			
		12.04			
		11.58			
NET SYSTEM	INFLOW	==	65.59		
NET SYSTEM	OUTFLOW	=	.00		
NET SYSTEM	DEMAND	=	65.59		

DATA CHANGES FOR NEXT SIMULATION

DEMAND CHANGES

DEMAND TYPE = 1 - GDF = .300

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00408

PIPELINE RESULTS

PIPE NUMBER	NOI #1	DE NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m
1-XXFG	0	4006						
2	4006	4005	.23	.07	.00	.00	.10	.3
3	4006	4007	-1.98	.00	.00	.00	.06	. 0
4	4005	4004	.15	.03	.00	.00	.06	.1
5	4004	4003	.22	.05	.00	.00	.09	.3
6	4003	4002	.21	.06	.00	.00	.09	.3
7	4002	4001	.06	.00	.00	.00	.03	.0
8	4007	4008	-1.83	.00	.00	.00	.06	.0
9	4008	4013	-3.02	.07	.00	.00	.20	. 4

10	4008	4 009	1.24	.04	.00	.00	.08	.0
11	4009	4010	. 93	.10	.00	.00	.13	. 3
12	4009	4014	38	.09	.00	.00	.08	.1
13	4010	4011	.20	.18	.00	.00	.09	.3
14	4010	4012	.26	.02	.00	.00	.05	. 0
15	4014	4015	-2.47	.29	.00	.00	.33	1.9
16	4015	4016	91	.13	.00	.00	.12	. 3
17	4015	4024	-1.87	1.31	.00	.00	.38	3.1
18	4016	4017	-1.18	.07	.00	.00	.16	. 4
19	4017	4013	1.47	.47	.00	.00	.20	.7
20	4017	4018	-1.64	.11	.00	.00	.22	. 9
21	4018	4019	.07	.00	.00	.00	.03	.0
22	4018	4023	42	.85	.00	.00	.18	1.1
23	4019	4020	.08	.02	.00	.00	.03	. 0
24	4020	4021	.03	.01	.00	.00	.01	. 0
25	4022	4023	.43	.70	.00	.00	.18	1.1
26	4022	4025	2.12	.03	.00	.00	.07	.0
27-FG	0	4022	7.78	.04	.00	.00	.25	.5
28	4024	4026	-1.91	.51	.00	.00	.39	3.2
29	4025	4026	1.96	.01	.00	.00	.13	.2
30	4025	4030	.11	.00	.00	.00	.01	.0
31-XX	4030	4031	•	.00	. 0 0			. •
32	4031	4032	13	.08	.00	.00	.05	.1
33	4032	4035	.21	.00	.00	.00	.01	.0
34	4035	4036	19	.00	.00	.00	.01	.0
35	4035	4037	.00	.00	.00	.00	.00	. 0
36	4036	4037	.00	.00	.00	.00	.00	.0
37-XXFG		4007	.00	.00	.00	.00	.00	.0
37-AAFG 38	4018	4017	.34	0.0	0.0	0.0	.05	0
30 39	4018	4019	-3.66	.00	.00	.00 .00	.03	. 0
39 40	4007		-3.66 -8. 1 5	.00	.00		.07	.0
		4013		.07	.00	.00		. 4
41	4013	4017	-10.38	.47	.00	.00	.34	.7
42	4017	4018	-11.57	.11	.00	.00	.38	. 9
43-FG	0	4022	8.43	.04	.00	.00	.27	.5
44	4022	4023	13.45	.70	.00	.00	.44	1.1
45	4023	4018	13.35	.85	.00	.00	.43	1.1
46	4008	4009	3.35	.04	.00	.00	.11	. 0
47	4009	4010	2.65		.00	.00	.17	. 3
48	4010	4012	.49	.02	.00	.00	.07	. 0
49-XX		4024						
50-XX	4024	4026	2.5	0.0			0.51	-
51	4031	4032	36	.08	.00	.00		.1
52	4006	4005	2.89	.07	.00	.00		.3
53	4005	4004	1.91	. 03	.00	.00		.1
54	4004	4003	1.06	.05	.00	.00	. 14	.3
55	4003	4002	.58	.06	.00	.00	.12	. 3
56	4002	4001	.17	.00	.00	.00	.04	. 0
57	4010	4011	. 97	.18	.00	.00	.13	.3
58	4019	4020	.22	.02	.00	.00	.05	. 0
59	4020	4021	.10	.01	.00	.00		. 0
60	4006	4007	-2.14	.00	.00	.00		
	0	4029	3.47	.00	.00	.00	.11	. 1
62-XXFG	0	4029						

63	4029	4028	2.14	.01	.00	.00	.07	. 0
64	4029	4033	.88	.00	.00	.00	.03	. 0
65	4028	4027	1.75	.07	.00	.00	.11	.1
66	4033	4034	.54	.06	.00	.00	.07	. 1
67-XX	4014	4028						
68-XX	4026	4027						
69	4027	4032	1.59	.12	.00	.00	.10	.1
70	4034	4036	.20	. 14	.00	.00	.08	.2

JUNCTION NODE RESULTS

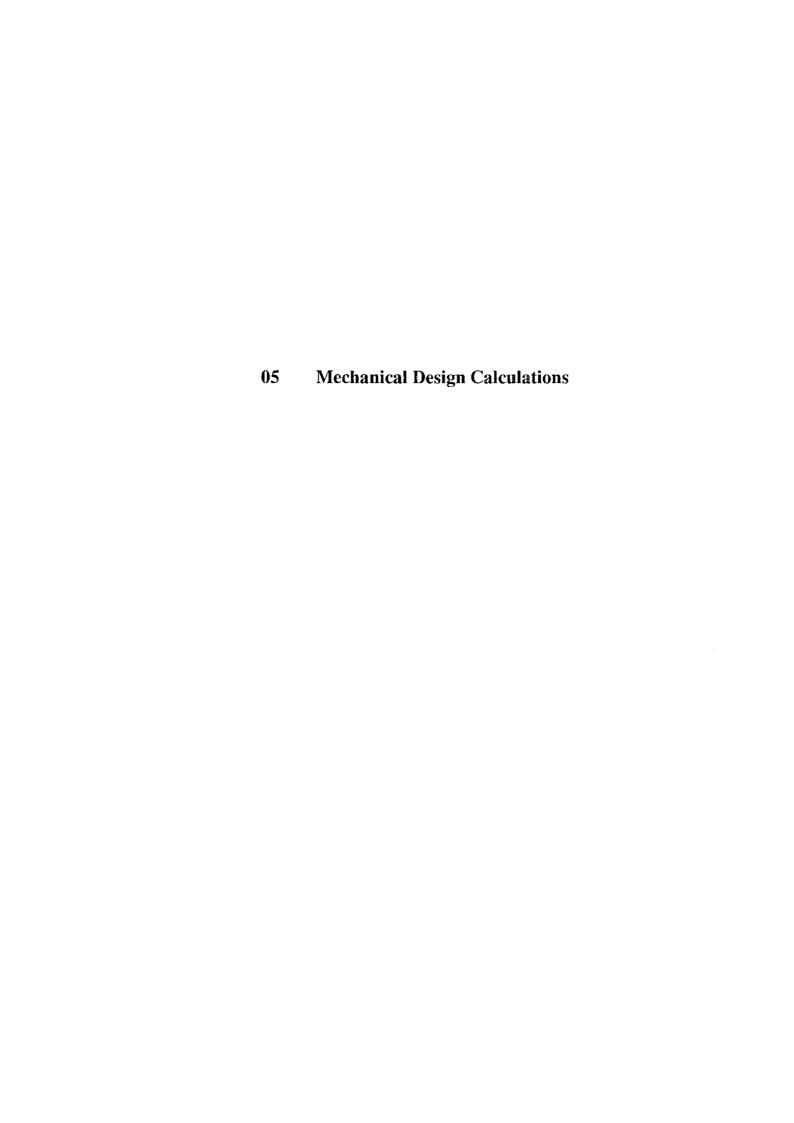
JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	HYDRAULIC GRADE (m)	JUNCTION ELEVATION (m)	PRESSURE HEAD (m)	JUNCTIO PRESSUR (kpa)
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014		.24 .55 .49 .78 1.05 1.00 1.38 1.09 1.40 1.65 1.18 .75 .67 2.09	519.67 519.67 519.74 519.79 519.82 519.89 519.89 519.85 519.75 519.75 519.75	497.00 497.00 482.00 472.00 496.00 495.00 502.00 501.00 480.00 494.00 485.00 507.00 507.00 465.00	22.67 22.67 37.74 47.79 23.82 24.89 17.89 18.89 39.85 25.75 34.57 12.73 12.97 54.94	222.33 222.36 370.08 468.65 233.55 244.08 175.47 185.30 390.84 252.52 339.04 124.82 127.17 538.82
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035		.31 .27 .18 .17 .10 .17 .13 .21 .10 .04 .05 .05 .16 .39 .45 .11 .48 .90 .34 .34	520.23 520.36 520.44 520.54 520.52 520.52 520.52 521.40 521.40 521.55 522.07 522.06 539.92 539.99 540.00 522.07 539.79 539.79 539.79	463.00 456.00 457.00 456.00 455.00 450.00 445.00 505.00 484.00 495.00 494.00 498.00 498.00 490.00 503.00 493.00 507.00 490.00 510.00	32.40 37.55 27.07 28.06 41.92 57.99 50.00 19.07 46.72 32.79	561.25 631.19 622.10 632.96 642.74 691.61 740.59 167.65 317.70 368.21 265.43 275.18 411.09 568.66 490.31 186.97 458.14 321.60 441.24 489.68 292.15

DATE = 03-12-2002 PAGE NO. 10 JOB NAME = GKWSAP - JICA - Bangalawatta SR & Pihilladeniya SR

 4037
 .00
 539.79
 516.00
 23.79
 233.33

 4038
 .00
 539.79
 499.00
 40.79
 400.04

SUMMARY OF INFLOWS AND OUTFLOWS


(+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES

((-)	OUTFLOWS	FROM	\mathtt{THE}	SYSTEM	INTO	FIXED	GRADE	NODES

		PIPE NUMBER		FLOWRATE (1/s)
		27 43 61		7.78 8.43 3.47
NET	SYSTEM SYSTEM SYSTEM	OUTFLOW	=======================================	19.68 .00 19.68

**** KYPIPE SIMULATION COMPLETED ****

DATE: 3/12/2002 TIME: 8:47:44

Pump List

Location	NO.	Direction	Phase		Capacity	Required Head	Total Head		r of Units	Pump	A B B
	ļ		(Year)		(m3/min)	(m)	(m)	Duty	Standby		ļ
Gohagoda Intake		To WTP	2005	38,500	26.74	40.5	44,0	" <u>1</u>			Ì
			2010	77,000	53.47	39.4	43.0	2	1	C	A
			2015	115,500	80.21	40.6	44.0	3	1		A B
Katugastota W.T.P.		To Upland, Asgiriya SR	2005	17,600	12.22	130.5	134.0	i	T.		1
	A-I		2010	33,190	23.05	135.2	136.0	2	1	C	В
			2015	51,110	35.49	135.6	137.0	3	1		}
		To Gphagoda SR	2005	4,710	3.27	103.9		1	1		
	A-2	To Kondadeniya SR	2010	4,990	3.47	104.3		1	1	В	В
			2015	5,870	4.08	101.7	104,0	1 2			B B B B B B B
		To Kahawatta SR &	2005	14,390	the course of the stricts and appropriately		93.0	i	14		
	A-3	other SRs	2010	29,160			1		1	С	B B B B B B B
			2015	44,240		 	102.0	3	1		
			2005	1,650		t	1	1	1		Ì
Heerasagala Low SR	В	To Heerasagala Middle SR		2,350		***************************************	***************************************	1	1	Α	В
		P. W. 1447. 1444.	2015	2,740	The state of the s	******************	1	21	1		
Heerasagala Middle			2005	280	0.19	33-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	600 000 1707 1700 0X	1	1		
SR	С		2010	550	0.38			<u>-</u> 1	ı	A	B
			2015	700	0.49		77.0	**************		••	
Ampitiya SR	 	To Elhena SR	2005	400	0.28		6.312:9999244 3	1	1		
=	D-1	TO EMONG SIX	2010	570	0.40	†····		1	1	A	R
(chieding)			2015	1,200	***************************************	MACHINES SERVICES	45.0		1	А	В
		To Mullepihilla SR	2005	580	A PRODUCTION AND CHARGO	20.00, 21 75.77 19.40	AND CONTRACTOR	ı	-200/00/2004-055 11:50/00/2		
	D-2	To Munephina SK	2010	<u> </u>	***************************************	†·····	 	1	1	В	D
	D-2		130 sc 5 march	810	0.56	forest contract to the contract to	TO THE REPORT OF THE STATE OF	SSEXT OF THE 22 PK		D	В
		T- Marian CD	2015	980	0.68		146.0	1 1	3.1		
	D-3	To Meekanuwa SR	2005	1250	0.87			1	1		
	D-3	***************************************	2010	1770	1.23			1	1	A.	В
77.1 CD			2015	2150	1.49	DATE OF THE RESIDENCE		-W-6- H1 - H1 - A - A - A - A - A - A - A - A - A -	21.3		ļ <u>.</u>
Kahawatta SR	_	To Kurugoda SR and	2005	4,240	***************************************				1		_
	E	Telambugahawatta SR	2010	4,330		62.5		2	1	A	В
	ļ		2015	7,310	5.08			2	1		
R2 SR		To Hantana Place SR	2005	1,050	***************************************		***************************************	1	1		
(existing)	F	***************************************	2010	1,490	777 93512997577259	digerrania in the section		1	l decode out	Α	В
	 		2015	1,960	4554.007-40.00.00.00.00	99.0	102.0				
Asgiriya SR		In-line pump to	to 2005	1,970		***************************************	***************************************	1	1		-
	G		2010	2,150	THE PERSON NAMED IN COLUMN	كالكائمة والمراكبة فللمناهم والمتالة والمارك وأمارك	*************	1	1	A	В
			2015	2,280	1.58	3 87.2	0.86	i	1		ļ
Kondadeniya		To Kulugamana SR	2005	1,050	0.73	67.2		1	1		
(existing)	Н		2010	1,100	0.76	68.1		I	1 1	A	В
			2015	1,600	1.11	59.9	64.0	1.	lai.		1

Pump Type: A End Suction Volute Pump

B Multi-Stage Volute Pump C Double Suction Volute Pump

Control Type: A Pump Speed Control Operation with Flowmeter/Pressure Sensor B Pump On-Off Operation with Flowmeter

1-1. Intake (Stage 1)

Total Capacity $38,500 \text{ m}^3/\text{day} =$ 26.74 m³/min 1 sets + 1 set for stand-by Quantity of pump 38,500 m³/day Pump Capacity

26.74 m³/min $1,604.2 \text{ m}^3/\text{hr}$ Q=

 $0.446 \text{ m}^3/\text{sec}$ $\mathbf{q}=$

Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter

616 mm to 436 mm 400 x 300 mm 3

1.5 where, v= to

Total Head Total Head $H = h_1 + h_2 + h_3 =$ 42.5

44.0 m

actual head:

 $h_1 = hd - hs =$ 38.33 m

suction level hs = 436.67 m delivery level hd = 475.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \ x \ c^{(\text{--}1.85)} \ x \ D^{(\text{--4.87})} \ x \ q^{(\text{1.85})} \ x \ L =$ 2.13 m

110 where, c= D== 800 mm dia /1000 L= 1.800 m

(v= 0.886 m/sec)

friction loss: fittings around pump

$$h_3 = f_1 x (v_1^2 / 2g) + f_2 x (v_2^2 / 2g)$$

0.05 m + 1.98 m 2.03 m

500 mm dia /1000 where, D=

 $(v_1 =$ 2.269 m/sec)

<u></u>	<u>Q'ty</u>	<u>t/pc</u>	<u>_t</u> _
bell mouth	1	0.06	0.06
sluice valve	1	0.10	0.10
deducer	1	0.04	0.04
		f ₁ total	0.20

where, D= 400 mm dia/1000

 $(v_2 =$ 3.546 m/sec)

f2 Q'ty f/pc f check valve 1 1.50 1.50 sluice valve 1 0.10 0.10 increase 1 0.15 0.15 90deg 1 0.18 0.18 tee 1 1.15 1.15 f2 total 3.08

Motor Output Motor Output = $(0.163 \times r \times Q \times H / e) \times (1 + a)$

265.7 280.0 kW 1.00 where, r= 0.83 e =

> 0.15 a =

Specification

Type Vertical Double-Suction Centrifugal Pump

Diameter 400 x 300 mm Capacity 26.74 m³/min Head 44.0 m Motor Outpr 280 kW

1-2. Intake (Stage 2)

 $77,000 \text{ m}^3/\text{day} =$ **Total Capacity** 53.47 m³/min 2 sets + 1 set for stand-by Quantity of pump

38,500 m³/day **Pump Capacity**

> 26.74 m³/min $1,604.2 \text{ m}^3/\text{hr}$ 0.446 m³/sec q=

Diameter = $146 \times (Q / v)^{(1/2)}$ Diameter

616 mm to 436 mm 400 x 300 mm 3

where, v= 1.5

Total Head Total Head $H = h_1 + h_2 + h_3 =$ 41.4 44.0 m

actual head: $h_1 = hd - hs =$ 38.33 m

> suction level hs = 436.67 m delivery level hd = 475.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \text{ x e}^{(-1.85)} \text{ x D}^{(-4.87)} \text{ x q}^{(1.85)} \text{ x L} =$ 1.05 m

where, c= D=1,204 mm dia /1000 L= 1,800 m (v= 0.783 m/sec)

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

0.05 m + 1.98 m 2.03 m where, D= 500 mm dia /1000

 $(v_1 =$ 2.269 m/sec)

Q'ty f/pc bell mouth 1 0.06 0.06 sluice valve 1 0.10 0.10 deducer 1 0.04 0.04 f_i total 0.20

where, D= 400 mm dia /1000

 $(v_2 =$ 3.546 m/sec)

Q'ty f/pc check valve 1 1.50 1.50 sluice valve 1 0.100.10 increase 0.15 0.15 90deg 1 0.18 0.18 tee 1.15 1.15 3.08 f2 total

Motor Output Motor Output = $(0.163 \times r \times Q \times H/e) \times (1 + a)$

> 265.7 280.0 kW where, r= 1.00 e= 0.83 0.15 a =

Specification

Type Vertical Double-Suction Centrifugal Pump

Diameter 400 x 300 mm Capacity 26.74 m³/min Head 44.0 m Motor Outpr 280 kW

1-3. Intake (Stage 3)

Total Capacity $115,500 \text{ m}^3/\text{day} =$ 80.21 m³/min 3 sets + 1 set for stand-by Quantity of pump

38,500 m³/day Pump Capacity

> 26.74 m³/min $1,604.2 \text{ m}^3/\text{hr}$ $0.446 \text{ m}^3/\text{sec}$ q=

Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter

616 mm to 436 mm 400 x 300 mm where, v= tο 3

1.5

Total Head Total Head $H = h_1 + h_2 + h_3 =$ 42.6

44.0 m

actual head:

 $h_1 = hd - hs =$ 38.33 m

suction level hs = 436.67 m delivery level hd = 475.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times e^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 2.22 m

where, c= 110 D≕ 1,204 mm dia /1000 L= 1,800 m (v= 1.174 m/sec)

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

f1

deducer

0.05m + 1.98 m 2.03 m

where, D= 500 mm dia /1000 $(v_1 =$ 2.269 m/sec)

Q'ty f/pc bell mouth 1 0.06 0.06 sluice valve 1 0.10 0.10 1

3.546 m/sec)

0.04 0.04 f₁ total 0.20

f2 total

3.08

where, D= 400 mm dia /1000

f2 Q'ty f/pc f check valve 1 1.50 1.50 sluice valve 1 0.10 0.10 increase 1 0.15 0.15 90deg 1 0.180.18 tee 1 1.15 1.15

Motor Output = (0.163 x r x Q x H/e) x (1+a)Motor Output

 $(\mathbf{v}_2 =$

265.7 280.0 kW 1.00 where, r =0.83 e = 0.15a =

Specification

Type Vertical Double-Suction Centrifugal Pump

Diameter 400 x 300 mm 26.74 m³/min Capacity Head 44.0 m Motor Outpt 280 kW

2-1. Clear Water Pump (A-1) - Phase 1

Total Capacity $20,360 \text{ m}^3/\text{day} =$ 14.14 m³/min 1 sets + 1 set for stand-by Quantity of pump **Pump Capacity** $20,360 \text{ m}^3/\text{day}$ 14.14 m³/min 848.3 m³/hr Q= 0.236 m³/sec q= Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter 448 mm to 317 mm 300 x 200 mm where, v= 1.5 3 to Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 132.0 134.0 m actual head: Asgiriya $h_1 = hd - hs =$ 124.39 m suction header pipe hs = 442.61 m delivery level hd = 567.00 m friction loss: pipeline (Hazen Williams) $h_2 = 10.666 \times c^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 0.91 m friction loss: fittings around pump $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$ 0.02 m +1.71 m 1.73 m where, D= 400 mm dia /1000 $(v_1 =$ 1.875 m/sec) fl Q'ty f/pc sluice valve 0.10 0.101 reducer 1 0.03 0.03 f₁ total 0.13 where, D= 300 mm dia /1000 3.334 m/sec) $(\mathbf{v}_2 =$ f2 Q'ty f/pc f increase 1 0.48 0.48 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 1 0.18 0.18

friction loss: float type butterfly valve

 $h_4 =$ 5.00 m

Motor Output Motor Output = $(0.163 \times r \times Q \times H/e) \times (1+a)$

tee

433.1 kW 450.0 kW

1

1.15

f₂ total

1.15

3.01

1.00 where, r=

0.82 e = 0.15 a =

Specification

Type Horizontal Double-Suction Centrifugal Pump

300 x 200 mm Diameter Capacity 14.14 m³/min Head 134.0 m Motor Outpr 450 kW

2-2. Clear Water Pump (A-1) - Phase 2

 $36,040 \text{ m}^3/\text{day} =$ 25.03 m³/min **Total Capacity** 2 sets + 1 set for stand-by Quantity of pump

18.020 m³/day **Pump Capacity**

> 12.51 m³/min 750.8 m³/hr

 $0.209 \text{ m}^3/\text{sec}$ q=

Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter

422 mm to 298 mm 300 x 200 mm

where, v= 1.5 to

Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 134.1

136.0 m

actual head: Asgiriya

 $h_t = hd - hs =$ 124.39 m

> suction header pipe hs = 442.61 m delivery level hd = 567.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times e^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 3.31 m

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

fl

m + 1.34 m 1.36 m

where, D= 400 mm dia /1000 $(\mathbf{v}_1 =$ 1.660 m/sec)

Q'ty f/pc f sluice valve 0.10 0.10 1 reducer 0.03 0.03

f₁ total 0.13

where, D= 300 mm dia /1000

2.951 m/sec) $(v_2 =$

ť2 Q'ty f/pc increase 0.48 0.48 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 0.18 0.18 tee 1.15 1.15 f₂ total 3.01

friction loss: float type butterfly valve

 $h_4 =$

Motor Output = (0.163 x r x Q x H / e) x (1 + a)Motor Output

389 kW =

400.0 kW

where, r = 1.00 0.82e ==

0.15

Specification

Horizontal Double-Suction Centrifugal Pump Type

Diameter 300 x 200 mm 12.51 m³/min Capacity Head 136.0 m Motor Outpt 400 kW

2-3 Clear Water Pump (A-1) - Phase 3

Total Capacity $54,160 \text{ m}^3/\text{day} = 37.61 \text{ m}^3/\text{min}$ Quantity of pump 3 sets + 1 set for stand-by

Pump Capacity 18,053 m³/day

Q= $12.54 \text{ m}^3/\text{min}$ $752.2 \text{ m}^3/\text{hr}$

 $q= 0.209 \text{ m}^3/\text{sec}$

Diameter = $146 \times (Q/v)^{(1/2)}$

= 422 mm to 298 mm = 300 x 200 mm

where, v= 1.5 to 3

Total Head H = $h_1 + h_2 + h_3 + h_4 = 135.2$

= 137.0 m

actual head: Asgiriya

 $h_1 = hd - hs =$ 124.39 m

suction header pipe hs = 442.61 m delivery level hd = 567.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times c^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 4.41 m

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

= 0.02 m + 1.34 m = 1.36 m

where, D= 400 mm dia/1000(v₁ = 1.663 m/sec)

where, D= 300 mm dia /1000

 $(v_2 = 2.956 \text{ m/sec})$

f2 Q'ty f/pc increase 0.48 1 0.48 check valve 1.00 1 1.00 butterfly valve 1 0.20 0.20 90 deg0.180.18 1 tee 1 1.15 1.15 f₂ total 3.01

friction loss: float type butterfly valve

 $h_4 = 5.00 \text{ m}$

Motor Output = $(0.163 \times x \times Q \times H/e) \times (1+a)$

= 392.6 kW = 400.0 kW where, r = 1.00

e = 0.82 a = 0.15

Specification

Type Horizontal Double-Suction Centrifugal Pump

Diameter $300 \times 200 \text{ mm}$ Capacity $12.54 \text{ m}^3/\text{min}$ Head 137.0 mMotor Outpt 400 kW

3-1. Clear Water Pump (A-2) - Phase 3

Total Capacity $2,820 \text{ m}^3/\text{day} =$ 1.96 m³/min Quantity of pump 1 sets + 1 set for stand-by **Pump Capacity** $2,820 \text{ m}^3/\text{day}$ 1.96 m³/min $117.5 \text{ m}^3/\text{hr}$ $0.033 \text{ m}^3/\text{sec}$ q=

Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter

> 167 mm to 118 mm 125 x 125 mm 1.5 where, v= 3

Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 102.4 m 104.0 m

actual head:

Asgiriya $h_1 = hd - hs =$

87.40 m

suction header pipe hs = 442.60 m delivery level hd = 530.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \text{ x } e^{(-1.85)} \text{ x } D^{(-4.87)} \text{ x } q^{(1.85)} \text{ x } L =$ 9.30 m

friction loss: fittings around pump $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

> 0.22 0.52 mm + 0.74 m

where, D= 150 mm dia /1000

1.847 m/sec) $(\mathbf{v}_1 =$ fl Q'ty f/pc sluice valve 0.10 0.10 1 1.15 tee 1.15 1 reducer 0.03 1 0.03

f₁ total 1.28 where, D= 150 mm dia /1000

1.847 m/sec) $(v_2 =$

f2 Q'ty f/pc increase 1 0.48 0.48 check valve 1.00 1.00 1 butterfly valve 0.20 0.20 1 90deg 0.18 0.18 1 tee 1 1.15 1.15 f2 total 3.01

friction loss: float type butterfly valve

5.00 m $h_4 =$

Motor Output Motor Output = (0.163 x r x Q x H/e) x (1 + a)

> 54.5 kW 55.0 kW where, r = 1.00 0.70 e =0.15 a =

Specification

Horizontal Multi-turbine Pump Type Diameter 125 x 125 mm 1.96 m³/min Capacity Head 104.0 m Motor Outpt 55 kW

Quantity 2 (1) sets including 1 set for stand-by

4-1. Clear Water Pump (A-3) - Phase 1

 $14,390 \text{ m}^3/\text{day} =$ **Total Capacity** 9.99 m³/min Quantity of pump 1 sets + 1 set for stand-by

 $14,390 \text{ m}^3/\text{day}$ Pump Capacity

> 9.99 m³/min Q= 599.6 m³/hr

 $0.167 \text{ m}^3/\text{sec}$ q=

Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter

377 mm to 266 mm 300 x 200 mm 3

1.5 where, v= to

Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 91.7

93.0 m

actual head: Asgiriya

 $h_1 = hd - hs =$ 78.67 m

> suction header pipe hs = 442.61 m delivery level hd = 521.28 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \text{ x c}^{(-1.85)} \text{ x D}^{(-4.87)} \text{ x q}^{(1.85)} \text{ x L} =$ 7.13 m

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

0.01 0.85 m 0.86 m where, D= 400 mm dia /1000 $(\mathbf{v}_1 =$ 1.325 m/sec)

fl Q'ty f/pc 0.10 sluice valve 0.10 1 reducer 1 0.03 0.03 f_1 total 0.13

where, D= 300 mm dia/1000

 $(v_2 =$ 2.356 m/sec)

f2 Q'ty _f/pc 0.48 increase 1 0.48check valve 1 1.00 1.00 0.20 butterfly valve 0.20 90deg 0.18 0.18 tee 1.15 1.15 f2 total 3.01

friction loss: float type butterfly valve

 $5.00\ \mathbf{m}$ $h_4 =$

Motor Output Motor Output = $(0.163 \times r \times Q \times H/e) \times (1+a)$

212.4 kW 250.0 kW where, r= 1.00 0.82 e = 0.15 a =

Specification

Type Horizontal Double-Suction Centrifugal Pump

Diameter 300 x 200 mm Capacity 9.99 m³/min Head 93.0 m Motor Outpu 250 kW

4-2. Clear Water Pump (A-3) - Phase 2

 $29,160 \text{ m}^3/\text{day} =$ **Total Capacity** $20.25 \text{ m}^3/\text{min}$ 2 sets + 1 set for stand-by Quantity of pump

Pump Capacity $14,580 \text{ m}^3/\text{day}$

> 10.13 m³/min 607.5 m³/hr Q=

 $0.169 \text{ m}^3/\text{sec}$

Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter

> 379 mm to 268 mm

300 x 200 mm 1.5

Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 97.2

99.0 m

3

actual head: Asgiriya

 $h_1 = hd - hs =$ 78.67 m

> suction header pipe hs = 442.61 m delivery level hd = 521.28 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \text{ x c}^{(-1.85)} \text{ x } D^{(-4.87)} \text{ x } q^{(1.85)} \text{ x } L =$ 12.63 m

friction loss: fittings around pump

 $h_3 = f_1 x (v_1^2 / 2g) + f_2 x (v_2^2 / 2g)$

0.88 m 0.89 m

where, D=

400 mm dia /1000 1.343 m/sec) $(\mathbf{v}_1 =$

Q'ty f/pc sluice valve 1 0.10 0.10 reducer 1 0.03 0.03 0.13

 f_1 total where, D= 300 mm dia /1000

> $(v_2 =$ 2.387 m/sec)

f2 Q'ty f/pc increase 1 0.48 0.48 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 1 0.18 0.18 tee 1 1.15 1.15 f₂ total 3.01

friction loss: float type butterfly valve

h4=

Motor Output Motor Output = $(0.163 \times r \times Q \times H/e) \times (1 + a)$

> 229.1 kW 250.0 kW

1.00 where, r= 0.82e =

> a = 0.15

Specification

Type Horizontal Double-Suction Centrifugal Pump

Diameter 300 x 200 mm Capacity $10.13 \text{ m}^3/\text{min}$ 99.0 m Head 250 kW Motor Outpu

4-3. Clear Water Pump (A-3) - Phase 3

Total Capacity $44,240 \text{ m}^3/\text{day} = 30.72 \text{ m}^3/\text{min}$ Quantity of pump 3 sets + 1 set for stand-by Pump Capacity $14,747 \text{ m}^3/\text{day}$ Q= $10.24 \text{ m}^3/\text{min} \qquad 614.4 \text{ m}^3/\text{hr}$ q= $0.171 \text{ m}^3/\text{sec}$

Diameter Diameter = $146 \times (Q/v)^{(1/2)}$

= 381 mm to 270 mm = 300 x 200 mm where, v= 1.5 to 3

Total Head H = $h_1 + h_2 + h_3 + h_4 = 100.2$

= 102.0 m

actual head: Asgiriya

 $h_1 = hd - hs = 78.67 \text{ m}$

suction header pipe hs = 442.61 m delivery level hd = 521.28 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times c^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L = 15.63 \text{ m}$

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

= 0.01 m + 0.9 m = 0.91 m where, D= 400 mm dia /1000 (v₁ = 1.358 m/sec)

 f_1 total 0.13

where, D= 300 mm dia /1000

 $(v_2 = 2.415 \text{ m/sec})$

f2 Q'ty f/pc f increase 0.48 0.48 1 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 1 0.180.18 tee 1 1.15 1.15 f2 total 3.01

friction loss: float type butterfly valve

 $h_4 = 5.00 \text{ m}$

Motor Output = $(0.163 \times r \times Q \times H/e) \times (1+a)$

= 238.8 kW = 250.0 kW where, r = 1.00 e = 0.82 a = 0.15

Specification

Type Horizontal Double-Suction Centrifugal Pump

 $\begin{array}{lll} \text{Diameter} & 300 \text{ x } 200 \text{ mm} \\ \text{Capacity} & 10.24 \text{ m}^3/\text{min} \\ \text{Head} & 102.0 \text{ m} \\ \text{Motor Outpt} & 250 \text{ kW} \end{array}$

5-1. Ampitiya Booster Pump (D-1) - Phase 3

Total Capacity $1,200 \text{ m}^3/\text{day} = 0.83 \text{ m}^3/\text{min}$ Quantity of pump 1 sets + 1 set for stand-by Pump Capacity $1,200 \text{ m}^3/\text{day}$ Q= $0.83 \text{ m}^3/\text{min} \qquad 50.0 \text{ m}^3/\text{hr}$

 $q = 0.014 \text{ m}^3/\text{sec}$

Diameter = $146 \times (Q/v)^{(1/2)}$

= 109 mm to 77 mm = 80 x 65 mm where, v= 1.5 to 3

Total Head H = $h_1 + h_2 + h_3 + h_4 =$ 43.6 m

= 45.0 m

actual head: Elhena

 $h_1 = hd - hs =$ 32.50 m

suction level hs = 582.50 m delivery level hd = 615.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times c^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 4.60 m

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

= 0.12 m + 1.37 m = 1.49 m

where, D= 80 mm dia /1000(v₁ = 2.763 m/sec)

fl Q'ty _f/pc bell mouth 1 0.20 0.20 sluice valve 1 0.10 0.10 reducer 0.02 0.02 f, total 0.32

where, D= 80 mm dia /1000

 $(v_2 = 2.763 \text{ m/sec})$

<u>f2</u>	<u>Q'ty</u>	_f/pc_	<u>f</u>
increase	2	0.20	0.40
check valve	1	1.00	1.00
butterfly valve	1	0.20	0.20
90deg	1	0.18	0.18
tee	1	1.50	1.50
sluice valve	2	0.10	0.20
reducer	1	0.03	0.03
		f_2 total	3.51

friction loss: float type butterfly valve

 $h_4 = 5.00 \text{ m}$

Motor Output = $(0.163 \times r \times Q \times H/e) \times (1 + a)$

= 10.3 kW = 11.0 kW where, r = 1.00 e = 0.68 a = 0.15

Specification

Type Horizontal End-Suction Centrifugal Pump

 $\begin{array}{lll} \text{Diameter} & 80 \text{ x } 65 \text{ mm} \\ \text{Capacity} & 0.83 \text{ m}^3 \text{/min} \\ \text{Head} & 45.0 \text{ m} \\ \text{Motor Outpt} & 11 \text{ kW} \end{array}$

```
5-2. Ampitiya Booster Pump (D-2) - Phase 3
```

Total Capacity

Quantity of pump

Pump Capacity Q=

Diameter = $146 \times (Q / v)^{(1/2)}$

= 98 mm to 70 mm = 65 x 50 mm where, v= 1.5 to 3

Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 = 144.7 \text{ m}$

= 146.0 m

actual head: Mullepihilla

 $h_1 = hd - hs =$ 130.50 m

suction level hs = 582.50 m delivery level hd = 713.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times c^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L = 8.20 \text{ m}$

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

= 0.08 m + 0.91 m = 0.99 m where, D= 80 mm dia /1000 (v₁ = 2.257 m/sec)

<u>fl</u>	<u>Q'ty</u>	_f/pc	<u>f</u>
bell mouth	1	0.20	0.20
sluice valve	1	0.10	0.10
reducer	1	0.02	0.02
		f. total	0.32

where, D= 80 mm dia /1000 $(v_2 = 2.257 \text{ m/sec})$

f2 Q'ty f/pc increase 0.20 0.40 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 0.18 0.18 tee 1.50 1.50 sluice valve 2 0.10 0.20 reducer 0.03 0.03 f₂ total 3.51

friction loss: float type butterfly valve

 $h_4 = 5.00 \text{ m}$

Motor Output = $(0.163 \times r \times Q \times H/e) \times (1+a)$

= 28.7 kW = 30.0 kW where, r = 1.00 e = 0.65 a = 0.15

Specification

Type Horizontal Multi-stage Pump
Diameter 65 x 50 mm
Capacity 0.68 m³/min
Head 146.0 m
Motor Outpr 30 kW

```
5-3. Ampitiya Booster Pump (D-3) - Phase 3
```

 $2,150 \text{ m}^3/\text{day} =$ **Total Capacity** 1.49 m³/min Quantity of pump 1 sets + 1 set for stand-by Pump Capacity $2,150 \text{ m}^3/\text{day}$ $1.49 \text{ m}^3/\text{min}$ Q= $89.6 \text{ m}^3/\text{hr}$ $0.025 \text{ m}^3/\text{sec}$ Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter 146 mm to 103 mm

100 x 80 mm 1.5 where, v= to 3

Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 72.0 m

73.0 m

actual head: Meekanuwa

 $h_1 = hd - hs =$ 52.50 m

> suction level hs = 582.50 m delivery level hd = 635.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \text{ x c}^{(-1.85)} \text{ x D}^{(-4.87)} \text{ x q}^{(1.85)} \text{ x L} =$ 12.50 m

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

0.16 1.8 m 1.96 m where, D= 100 mm dia /1000

3.168 m/sec)

fl Q'ty f/pc bell mouth 0.20 0.20 1 sluice valve 0.10 0.10 1 reducer 0.02 0.02

f₁ total where, D= 100 mm dia/1000

> 3.168 m/sec) $(\mathbf{v_2} =$

Q'ty _f/pc increase 2 0.20 0.40 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 1 0.18 0.18 tee 1.50 1.50 1 sluice valve 2 0.10 0.20 reducer 0.030.03 f2 total 3.51

friction loss: float type butterfly valve

5.00 m $h_4 =$

Motor Output = $(0.163 \times r \times Q \times H/e) \times (1 + a)$ Motor Output

> 28 kW 30.0 kW where, r= 1.00 e = 0.73 a =0.15

Specification

Type Horizontal End-Suction Centrifugal Pump

Diameter 100 x 80 mm Capacity 1.49 m³/min Head 73.0 m 30 kW Motor Outpu

6-1. Kahawatta Booster Pump (E) - Phase 1

 $4,240 \text{ m}^3/\text{day} =$ **Total Capacity** $2.94 \text{ m}^3/\text{min}$ Quantity of pump 1 sets + 1 set for stand-by $4,240 \text{ m}^3/\text{day}$ Pump Capacity 2.94 m³/min 176.7 m³/hr Q= $0.049 \text{ m}^3/\text{sec}$ q= Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter 205 mm to 145 mm 150 x 125 mm 1.5 where, v= 3 Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 63.9 m 68.0 m actual head: Kurugoda $h_1 = hd - hs =$ 57.00 m suction level hs = 516.00 m delivery level hd = 573.00 m friction loss: pipeline (Hazen Williams) $h_2 = 10.666 \times e^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 0.40 m friction loss: fittings around pump $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$ 1.38 m 1.51 m where, D= 150 mm dia /1000 2.777 m/sec) $(v_1 =$ Q'ty f/pc bell mouth 1 0.20 0.20 sluice valve 1 0.10 0.10 reducer 0.02 0.02 f_1 total 0.32 where, D= 150 mm dia /1000 2.777 m/sec) $(v_2 =$ Q'ty f/pc 0.20 0.40 increase 2 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 0.18 0.18 tee 1.50 1.50 sluice valve 2 0.10 0.20 reducer 0.03 0.03

friction loss: float type butterfly valve

 $h_4 =$

f2 total

3.51

Motor Output = (0.163 x r x Q x H/e) x (1 + a)Motor Output

> 49.4 kW 55.0 kW where, r =1.00 0.76 e = a = 0.15

Specification

Horizontal End-Suction Centrifugal Pump Type

Diameter 150 x 125 mm $2.94 \text{ m}^3/\text{min}$ Capacity Head 68.0 m 55 kW Motor Outpu

6-2. Kahawatta Booster Pump (E) - Phase 3

Total Capacity 7,310 m 3 /day = 5.08 m 3 /min Quantity of pump 2 sets + 1 set for stand-by Pump Capacity 3,655 m 3 /day Q= 2.54 m 3 /min 152.3 m 3 /hr

Q= $2.54 \text{ m}^3/\text{min}$ 152.3 m³/h q= $0.042 \text{ m}^3/\text{sec}$

Diameter = $146 \times (Q/v)^{(1/2)}$

= 190 mm to 134 mm = 150 x 125 mm where, v= 1.5 to 3

Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 71.1 m

= 72.0 m

actual head: Kurugoda

 $h_1 = hd - hs = 57.00 \text{ m}$

suction level hs = 516.00 mdelivery level hd = 573.00 m

friction loss: pipeline (Hazen Williams)

 $h_2 = 10.666 \times e^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L = 8.00 \text{ m}$

friction loss: fittings around pump

 $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$

reducer

= 0.09 m + 1.03 m = 1.12 m where, D= 150 mm dia/1000

 $\begin{array}{ccc}
1 & \underline{0.02} & \underline{0.02} \\
f_1 \text{ total} & 0.32
\end{array}$

where, D= 150 mm dia /1000

 $(v_2 = 2.394 \text{ m/sec})$

<u>f2</u>	<u>Q'ty</u>	_f/pc_	<u>f</u>
increase	2	0.20	0.40
check valve	1	1.00	1.00
butterfly valve	1	0.20	0.20
90deg	1	0.18	0.18
tee	1	1.50	1.50
sluice valve	2	0.10	0.20
reducer	1	0.03	0.03
		f ₂ total	3.51

friction loss: float type butterfly valve

 $h_4 = 5.00 \text{ m}$

Motor Output = $(0.163 \times r \times Q \times H/e) \times (1+a)$

= 45.1 kW = 55.0 kW where, r = 1.00 e = 0.76 a = 0.15

Specification

Type Horizontal End-Suction Centrifugal Pump

 $\begin{array}{lll} \text{Diameter} & 150 \text{ x } 125 \text{ mm} \\ \text{Capacity} & 2.54 \text{ m}^3/\text{min} \\ \text{Head} & 72.0 \text{ m} \\ \text{Motor Outpt} & 55 \text{ kW} \end{array}$

7-1. R2 Booster Pump (F) - Phase 3 **Total Capacity** $1,960 \text{ m}^3/\text{day} =$ $1.36 \text{ m}^3/\text{min}$ Quantity of pump 1 sets + 1 set for stand-by **Pump Capacity** $1,960 \text{ m}^3/\text{day}$ 1.36 m³/min $81.7 \text{ m}^3/\text{hr}$ O= $0.023 \text{ m}^3/\text{sec}$ q≔ Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter 139 mm to mm 100 x 80 mm where, v= 1.5 3 Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 100.6 m 102.0 m actual head: Hantana Place $h_1 = hd - hs =$ 91.51 m suction level hs = 549.49 m delivery level hd = 641.00 m friction loss: pipeline (Hazen Williams) $h_2 = 10.666 \text{ x c}^{(-1.85)} \text{ x D}^{(-4.87)} \text{ x q}^{(1.85)} \text{ x L} =$ 2.49 m friction loss: fittings around pump $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$ 0.14 1.49 m m + 1.63 m where, D= 100 mm dia /1000 $(v_1 =$ 2.888 m/sec) Q'ty f/pc bell mouth 0.20 1 0.20 sluice valve 1 0.10 0.10 reducer 1 0.020.02 f_1 total 0.32 where, D= 100 mm dia /1000 2.888 m/sec) $(v_2 =$ Q'ty f/pc increase 2 0.20 0.40 check valve 1 1.00 1.00 butterfly valve 1 0.20 0.20 90deg 0.18 0.18 1.50 1.50 tee 1 sluice valve 2 0.10 0.20 reducer 0.03 0.03 f₂ total 3.51 friction loss: float type butterfly valve $h_4 =$ 5.00 m Motor Output Motor Output = $(0.163 \times r \times Q \times H/e) \times (1+a)$ 36.7 kW 37.0 kW where, r= 1.00 0.71

Specification

Horizontal End-Suction Centrifugal Pump Type

a =

Diameter 100 x 80 mm $1.36 \text{ m}^3/\text{min}$ Capacity Head 102.0 m Motor Outpt 37 kW

Quantity 2 (1) sets including 1 set for future

0.15

```
8-1. Asgiriya In-Line Booster Pump (G) - Phase 3
```

 $2,280 \text{ m}^3/\text{day} =$ 1.58 m³/min **Total Capacity** Quantity of pump 1 sets + 1 set for stand-by Pump Capacity $2,280 \text{ m}^3/\text{day}$ 1.58 m³/min $95.0 \text{ m}^3/\text{hr}$ Q= $0.026 \text{ m}^3/\text{sec}$ Diameter = $146 \times (Q/v)^{(1/2)}$ Diameter 150 mm to 106 mm 100 x 80 mm where, v= 1.5 to 3 Total Head Total Head $H = h_1 + h_2 + h_3 + h_4 =$ 66.7 m68.0 m actual head: Bahirawakanda $h_1 = hd - hs =$ 56.3 m floor level hf = 532.50 m suction pressure hs = 40.25 m delivery level hd = 629.00 m friction loss: pipeline (Hazen Williams) $h_2 = 10.666 \times e^{(-1.85)} \times D^{(-4.87)} \times q^{(1.85)} \times L =$ 3.22 m friction loss: fittings around pump $h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)$ = 0.18 2.02 m m += 2.2 m where, D= 100 mm dia /1000 $(v_1 =$ 3.360 m/sec) fl Q'ty f/pc 0.20 bell mouth 0.20 1 0.10 sluice valve 1 0.10 reducer 0.02 0.02 1 f₁ total 0.32 100 mm dia /1000 where, D= $(v_2 =$ 3.360 m/sec) f/pc f2Q'ty 0.20 0.40 increase 2 check valve 1 1.00 1.00 0.20 0.20 butterfly valve 1 0.18 90deg 1 0.18 1.50 1 1.50 tee sluice valve 2 0.10 0.20reducer 1 0.03 0.03 f2 total 3.51 friction loss: float type butterfly valve

 $h_4 =$ 5.00 m

Motor Output = $(0.163 \times r \times Q \times H / e) \times (1 + a)$ Motor Output

28 kW 30.0 kW 1.00 where, r= 0.72 e = 0.15

Specification

Horizontal End-Suction Centrifugal Pump Type

Diameter 100 x 80 mm Capacity $1.58 \text{ m}^3/\text{min}$ Head 68.0 m Motor Outpt 30 kW

```
9-1. Kondadeniya Booster Pump (H) - Phase 3
   Total Capacity
                                                            1,600 \text{ m}^3/\text{day} =
                                                                                       1.11 m<sup>3</sup>/min
                                                                 1 sets + 1 set for stand-by
   Quantity of pump
   Pump Capacity
                                                            1,600 \text{ m}^3/\text{day}
                                                             1.11 m<sup>3</sup>/min
                                          Q=
                                                                                        66.7 m<sup>3</sup>/hr
                                                            0.019 \text{ m}^3/\text{sec}
                                          q=
                       Diameter = 146 \times (Q/v)^{(1/2)}
   Diameter
                                                              126 mm to
                                                                                              mm
                                                          80 x 65 mm
                                                               1.5
                                  where, v=
                                                                                 3
   Total Head
                       Total Head H = h_1 + h_2 + h_3 + h_4 =
                                                                           62.6 m
                                                                                        64.0 m
                       actual head:
                                              Kulugammana
                       h_1 = hd - hs =
                                                                                       52.00 m
                                               suction level hs =
                                                                        531.25 m
                                            delivery level hd =
                                                                        583.25 m
                       friction loss: pipeline (Hazen Williams)
                       h_2 = 10.666 \text{ x c}^{(-1.85)} \text{ x D}^{(-4.87)} \text{ x q}^{(1.85)} \text{ x L} =
                                                                                        2.90 m
                       friction loss: fittings around pump
                       h_3 = f_1 \times (v_1^2 / 2g) + f_2 \times (v_2^2 / 2g)
                                                             0.22
                                                                                        2.43 m
                                                                      m +
                                                             2.65 m
                                                               80 mm dia /1000
                                  where, D=
                                                           3.684 m/sec)
                                        (\mathbf{v_1} =
                                 fl
                                                             Q'ty
                                                                         f/pc
                            bell mouth
                                                                 1
                                                                          0.20
                                                                                        0.20
                            sluice valve
                                                                 1
                                                                          0.10
                                                                                        0.10
                              reducer
                                                                          0.02
                                                                                        0.02
                                                                                        0.32
                                                                         f<sub>1</sub> total
                                  where, D=
                                                               80 mm dia /1000
                                        (\mathbf{v}_2 =
                                                           3.684 m/sec)
                                                                          f/pc
                                                             Q'ty
                              increase
                                                                          0.20
                                                                 2
                            check valve
                                                                          1.00
                                                                                        1.00
                          butterfly valve
                                                                          0.20
                                                                                        0.20
                                                                 1
                               90deg
                                                                          0.18
                                                                                        0.18
                                                                          1.50
                                                                                        1.50
                                 tee
                            sluice valve
                                                                          0.10
                                                                                        0.20
                              reducer
                                                                          0.03
                                                                                        0.03
                                                                         f<sub>2</sub> total
                                                                                        3.51
                       friction loss: float type butterfly valve
                                                             5.00 m
                                         h_4 =
   Motor Output
                       Motor Output = (0.163 \times r \times Q \times H/e) \times (1 + a)
                                                               19 kW
                                                             30.0 kW
                                                             1.00
                                where, r=
                                                             0.70
                                          e =
                                                             0.15
                                          a =
   Specification
        Type
                       Horizontal End-Suction Centrifugal Pump
```

80 x 65 mm

64.0 m 30 kW

 $1.11 \, \text{m}^3/\text{min}$

2 (1) sets including 1 set for future

Diameter

Capacity

Motor Outpt Quantity

Head

Sri Lanka - Greater Kandy Water Supply Augumentation Project
Chemical Facility Capacity Calculation for Katugastota Treatment Plant Q=110,000 cu m/day

Item	Total System	First Stage
Plant Capacity	Q= 110,000 cu m/day	Q= 36,670 cu m/day
(Daily Max)	r 10,000 cu maay	50,070 cd ii)day
Planned Flow	Q= 115,500 cu m/day	Q= 38,500 cu m/day
I IAIMCG I IOW	= 4,813 cu m/hour	= 1,604 cu m/hour
	= 80.2 cu m/min	= 26.7 cu m/min
	= 1.337 cu m/sec	= 0.446 cu m/sec
(1) Alum Dissolving Tax		= 0.446 Cu m/sec
		G.114 A1 : G.1 1 (A12/GO4)2)
Coagulant	Solid Aluminum Sulphate (Al2(SO4)3)	Solid Aluminum Sulphate (Al2(SO4)3)
	containing 15 % Al2-O3	containing 15 % Al2-O3
Criteria	D B 10.60 17.1 1	D D 10.00 111.1 #
Cntena	Dosage Rate: 10-60 mg-solid alum/l	Dosage Rate: 10-60 mg-solid alum/i
	- Maximum 60 mg/l	- Maximum 60 mg/l
	- Average 30 mg/l	- Average 30 mg/l
	- Minimum 10 mg/l	- Minimum 10 mg/l
		Coagulant Solution: 10 % sg = 1.0525
	Retention Time 24 hours	Retention Time 24 hours
	Dissolving Time 2 hours	Dissolving Time 2 hours
Dosage Amount	Wt = 3,465 kg-Alum/day (Ave dosage)	Wt = 1,155 kg-Alum/day (Ave dosage)
Coagulant Solution	Vmax = 32.9 cu m/day (Max dosage)	Vmax = 11.0 cu m/day (Max dosage)
	Vave = 16.5 cu m/day (Ave dosage)	Vave = 5.5 cu m/day (Ave dosage)
Solution Tank	Square 4 units	Square 2 units
Dimension	Lm x W mx Dm x units	Lm x W mx Dm x units
	2.0 2.0 2.5 4	2.0 2.0 2.5 2
Total Volume	V = 40.0 cu m	V = 20.0 cu m
Retention Time	T = 29.2 hours for maximum dosing	T = 43.7 hours for maximum dosing
Alum Pump	2 units each (excl. 1 unit stand-by)	1 units (excl. 1 unit stand-by)
Capacity	Qmax = 11.4 liter/min 0.69 cu m/hr	Qmax = 7.6 liter/min 0.46 cu m/hr
	Qmin = 1.9 liter/min 0.11 cu m/hr	Omin = 1.13 liter/min 0.08 cu m/hr
	, The state of the	
Storage	Period 30 days	Period 30 days
	Bulk s. g. 0.60	Bulk s. g. 0.60
Storage Area	A = 87 m2 at 2.0 m height	A = 29 m2 at 2.0 m height
(2) Lime Dissolving Tar	1	25 m u. 210 m nu.gut
, , <u> </u>	Hydrated Lime (Ca(OH)2)	Hydrated Lime (Ca(OH)2)
F	containing 72 % CaO	containing 72 % CaO
	, , , , , , , , , , , , , , , , , , ,	
Criteria	Dosage Rate: 5-30 mg-solid Lime/I	Dosage Rate: 5-30 mg-solid Lime/l
Requirement		- Maximum 20.8 mg/l
by Alum Dosage		- Average 10.4 mg/l
oj man bosage	- Minimum 3.5 mg/l	- Minimum 3.5 mg/l
		Lime Solution 10 % sg = 1.0607
	Retention Time 24 hours	Retention Time 24 hours
	Dissolving Time 2 hours	Dissolving Time 24 hours
	Dissolving Time 2 hours	Dissolving Time 2 hours
Dosage Amount	Wt max : 2,401 kg-Lime/day (for Max Alum dosage)	Wt max = 800 kg-Lime/day (for Max Alum dosage)
Dosage Amount Alkali Solution	V max = 22.6 cu m/day (for Max Alum dosage)	Wt max · 800 kg-Lime/day (for Max Alum dosage) V max = 7.5 cu m/day (for Max Alum dosage)
Alkali Solution	v max = 22.0 cu m/day (101 Max Alum dosage)	V max = 7.5 cu m/day (101 wax Alum dosage)
Solution Tank	Square 4 units	Square 2 units
Dimension	L m x W mx D m x units	Square 2 units Lm x W mx Dm x units
Dimension	2.0 2.0 2.5 4	2.0 2.0 2.5 2
]	2.0 2.0 4	2.0 2.0 2.3 2
Total Volume	V = 40.0 cu m	30.0
		V = 20.0 cu m
Retention Time	T = 42.4 hours (for Max Alum dosage)	T = 63.6 hours (for Max Alum dosage)
,	Marin 1	
Dosage Rate	l.	Maximum Average Minimum
Ī	Pre (5-30 mg/l) 30 15 5	Pre (5-30 mg/l) 30 15 5
	Post (5-20 mg/l) 20 5 5	Post (5-20 mg/l) 20 5 5
		<u>.</u>
Pump Capacity	Pre- 2 units each (excl. 1 unit stand-by)	Pre- 1 units each (excl. I unit stand-by)
	Qmax = 113 liter/min 0.68 cu m/hr	$Q_{\text{max}} = \frac{7.6 \text{ liter/min}}{0.45 \text{ cu m/hr}}$
	Qmin = 1.9 liter/min 0.11 cu m/hr	Qmin = Q 13 liter/min 0.08 cu m/hr
	Post- 2 units each (excl. 1 unit stand-by)	Post- 1 units each (excl. 1 unit stand-by)
	Qmax = 7.6 liter/min 0.45 cu m/hr	Qmax = 5.0 liter/min 0.30 cu m/hr
	Qmin = 1.9 liter/min 0.11 cu m/hr	Qmin = 1/3 liter/min 0.08 cu m/hr
		-800,794-79 (494600)A0007-2-
Storage	Period 30 days	Period 30 days
5.0.050		<u> </u>
	(Bulk s. g	Bulk's g 1140
Storage Area	Bulk s. g. 0.40 A = 87 m2 at 2.0 m height	Bulk s. g. 0.40 A = 29 m2 at 2.0 m height

(3) Chlorination Equipm	nent]						
Injection Point	Pre-Chlorine Post-Chlorine		he Inlet o l outlet of	f Distribution (Filter	Chamber	Pre-Chl Post-Ch		at the Inlet of Distribution Chamber and outlet of Filter				
Туре	Liquid Chlor	ine (900 kg-c	ylinder)			Liquid (Chlorine (900 k	lorine (900 kg-cylinder)				
Dosage Rate	,	M	laximum	Average	Minimum			Maximum	Average	Minimum		
	Pre (1.	0-5.0 mg/.	5.0	2.0	1.0	Pre	(1.0-5.0 mg/.	5.0	2.0	1.0		
	Post (0.	5-1.0 mg/	2.0	1.0	0.5	Post	(0.5-1.0 mg/	2.0	1.0	0.5		
Dosage Amount	Wt =			ay (Average) our (Average)		Wt=		kg- Cl gas/da kg- Cl gas/ho	iy (Average) our (Average)			
Chlorinator	Vacuum Typ	e				Vacuum	ı Tvpe					
Capacity	Pre-		ts each	(excl. 1 unit s	tand-by)	Pre-		units each	ch (excl. 1 unit stand-by)			
- *	Qmax =	12.0 kg/	hr	288.75	kg/day	Qmax =	8.0	kg/hr	•	kg/day		
	Qmin =	2.4 kg/	'hr	57.75	kg/day	Qmin ==	1.6	kg/hr	38.50	kg/day		
	Post-	2 uni	ts each	(excl. 1 unit s	tand-by)	Post-	1	units each	(excl. 1 unit	stand-by)		
	Qmax =	4.8 kg/	br	115.50	kg/day	Qmax =	3.2	kg/hr	77.00	kg/day		
	Qmin =	1.2 kg/	hr	28.88	kg/day	Qmin =	- 0.8	kg/hr	19.25	kg/day		
Storage	Period		30) days		Period		30	days			
No. of Container		14 uni		•			6	units	•			
Storage Area	A =	28 m2	as	2.0	m2/container	A =	12	m2 as	2.0	m2/containe		

Alum - Spec	eific Gravity	Lime - Specific	Gravity
(% as Al2(S	O4)3-18H2O)	(% as Ca (OH)2))
5	1.0254	5	1.0308
10	1.0525	10	1.0607
15	1.0804	15	1.0923

Sri Lanka - Greater Kandy Water Supply Augumentation Project Chemical Facility Capacity Calculation for Kahawwatta Reservoir Q=7,310 cu m/day

Item		Total Syste	m			First	Stage	
Plant Capacity	Q=	7,310 cu m/day			Q=	4.240 eu m/day		
(Daily Max)					•	•		
Planned Flow	Q=	7,310 cu m/day			Q=	4.240 cu m/day		
	=	305 cu m/hour			=	177 cu m/hour		
	=	5.1 cu n√min			=	2.9 cu m/min		
	==	0.085 cu m/sec			=	0.049 cu m/sec		
Chlorine Dissolving Tan	k				·			
Chlorine	Calcium Hypochlo	orite (Ca(Ocl)2•4H2	O)		Calcium Hypocl	hlorite (Ca(OcI)2°	4H2O)	
	containi	ng 60	% cl2		contair	ning	60 % e12	
Criteria	Dosage Rate:	0.5 - 2	nıg-solid alum	/t	Dosage Rate :	0.5	- 2 mg-solid alur	n/i
	- Maximum	2	mg/l		- Maximum		2 mg/l	
	- Average	1	mg/l		- Average		l mg/l	
	- Minimum	0.5	mg/l		- Minimum	().5 mg/l	
	Solution:	5	% sg =	1.0247	Solution:		5 % sg =	1.0247
	Retention Time	24	hours		Retention Time		24 hours	
	Dissolving Time	2	hours		Dissolving Time	•	2 hours	
Dosage Amount	Wt =	12.18 kg-chlorine/d	laγ	(Ave dosage)	 Wt =	7.07 kg-Alum/d	av (Ave dosage)	
Chlorine Solution	Vmax =	0.48 cu m/day	(Max dosage)		Vmax =	0.28 cu m/day	(Max dosage))
	Vave =	0.24 cu m/day	(Ave dosage)		Vave =	0.14 cu m/day	(Ave dosage)	
Solution Tank	Square	1 units			Square	1 units		
Dimension	L'm x W	mx Dm	x units		Lm x W	mx Dm	x units	
	0.9	0.9 0.9	1		0.9).9 1	
Total Volume	\ V =	0.7 cu m			V =	0.7 cu m		
Retention Time	T =	36.8 hours for max	timum dosing		T =	63.4 hours for n	naximum dosing	
Chlorination Pump		1 units each	(excl. I unit st	and-by)		l units	(excl. 1 unit s	tand-hvì
* 1	Qmax =	0.33 liter/min	•	-,	Qmax =	0.19 liter/min	•	cu m/hr
Cupacity	Qmia =	0.08 liter/min		cum/hr	Qmin =	0.05 liter/min	-	cu n/hr
Storage	Period	30	davs		Period		30 days	
No. of Container		3 units	uu yo		LONG	3 units	Jo days	
	A =	0.375 m2 as	0.00	m2/container		0.375 m2 as	0.445	m2/container

Hypo-chlorite (% as Ca(Ocl)2*4H2O) 5 1.0247 SURGE ANALYSIS ウォーターハンマ計算条件

Calculation No.

計算番号 C2-1010IN

PAGE

Sample

Intake Pump

Standard Level 基準レベル Calculation Time Unit 計算時間単位

436.940 m .06140 sec

【 管路仕様 】 Pipeline Specifications

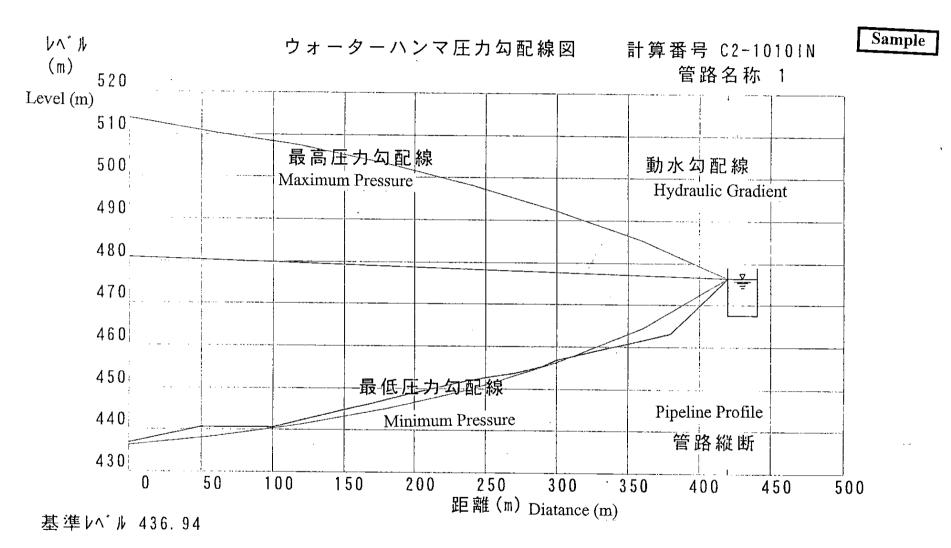
Valve No.

No,	Length	Material	Diame s	ter Thickness	Modulus of Elasticity	- F	Pump No.	Surge Tank No.		Flow Pipeline End	Pipe Loss	Valve Loss	Reciprocation Time	TO I	Division
管路 名称 1	管長 m 420.0	管種 SS 1	管径 mm 800	管厚 mm 7.0	ヤング 率 2.100	上流の管路	ポンプ 番号 1 0 0	サージ・ タンク 番号 0	弁番号 0	終点 管路流量 条件 m3/m 1 80.210	配管 損失 4.400	弁絞 損失 1,000	圧力波 往復時間 sec .8596	管路定数 1.6539	分割 14

【 ポンプ仕様 】 Pump Specifications

Initial Condition

Pu	mp N	o, Vai	ve Close			Motor					Inertial Efi	fect			
No.		Type	Valve No.	Total Head	Capacity	Output	Pole	Type Pump/Motor	Churchaal	, I	Efficiency	Head	Capacity	Speed T	orque
			弁 弁		1 ,	1	1 010	Type Tumpanotor	Flywheen	Speed	効 減衰		소	ek.	
番	台	形	閉番	全揚程	吐出量	出力	極	型 ポンプ・モータ	フライホイール	回転数	率 定数	揚程	- 初期状 吐出量		トルク
号	数	注	鎖号	m	m3/m	kw	数	式 kg-m2	kg-m2	min-1	- γ ~ × k	1901± [7]	m3/m	四 私 致	טעיו
ļ	3	I	i U	44.000	26.740	250.0	4	1 30.000	. 000	1480	87 1. 2263	44.000	26. 740	1.000	1.000


【 圧力線図仕様 】 Pressure Gradients

Pipeline No.

管路名称 1

【 縦断仕様 】 Pipeline Profile

Pipeline No	Cumulative Distance (m)	Level (m)	Cumulative Distance (m)	Level (m)	Cumulative Distance (m)	Level (m)	Cumulative Distance (m)	Level (m)
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	, m	m	m	m	m	m
1	. 0	436.94	50.0	440.83	100.0	440.83	120.0	442.43
	150.0	444.83	170.0	446.43	200, 0	448, 83	240.0	452.03
	270.0	453.63	290.0	455, 23	300.0	456, 83	340.0	460.03
	360.0	461, 63	380.0	463.23	410.0	472.83	420.0	476.54

INTAKE PUMP

ウォーターハンマ計算条件

計算番号 C2-10101N

PAGE 1

Intake Pump

基準レベル 計算時間単位 436.940 m .06140 sec

【 管路仕様 】

色加工水	4							4-2.*	4>			#3 6 5	+ %	压力油		
管路 名称	管長	管種	管径	管厚	ヤング	上流の管路	ポンプ	タンク	番	終点	管路流量	能官 損失	升权 損失	圧刀液 往復時間	管路定数	分割
名称	m															
1	420.0	SS 1	800	7.0	2. 100		1 0 0	0	0	1	80.210	4.400	. 000	. 8596	1.6539	14

【 ポンプ仕様 】

			弁	弁								効	減衰		7// 共の 1人 :	態	
番	台	形	閉	番	全揚程	吐出量	出力	極	型:	ポンプ・モ−タ	フライホイール	回転数 率	定数	揚程	吐出量	回転数	トルク
亭	数	土	閉 鎖	号	m	m3/m	kw	数	茳	kg-m2	kg−m2	min−1 %	k	m	m3/m		
1	3	1	1	0	44.000	26.740	250.0	4	1	30.000	. 000	1480 87	1.2263	44.000	26.740	1.000	1. 000

【 圧力線図仕様 】

管路名称 1

【 縦断仕様 】

縦断仕	禄】							
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	m	m
1	. 0	436.94	50.0	440.83	100.0	440.83	120.0	442, 43
	150.0	444.83	170.0	446.43	200.0	448.83	240.0	452.03
	270.0	453, 63	290,0	455. 23	300.0	456.83	340.0	460.03
	360 0	461 63	380 0	463 23	41N N	472 83	420 0	476 54

基準レベル 436.94

INTAKE PUMP

ウォーターハンマ計算条件

計算番号 C2-1010-A1

PAGE 1

Clear Water Pump (A1)

基準レベル 計算時間単位

442.610 m .01023 sec

	管	路	仕	様]
--	---	---	---	---	---

Ē	写的江惊	. 1									サージ	弁			配管	弁絞	圧力波		
	管路 名称	管長	管種	管径	管厚	ヤング	上流の管路		ンフ	o °	タンク	番号	終点	管路流量	配管 損失	損失	往復時間	管路定数	分割
	名称	m		mm	mm	<u> 34</u>		翟	号		番号	号	条件	m3/m	m	tn	sec		
	- i	10.0	SS 1	800	7. 0	2.100		1	0	0	0	0	0	12. 215	. 100	. 000	. 0205	1. 6539	2
	ż	1384. 0	FCD3	700	10.0	1.600	1	0	0	0	0	0	0	12. 215	. 800	. 000	2.6815	2. 2820	264
	3	2059. 0	FCD3	400	7. 0	1.600	ż	Õ	ñ	Ō	Ō	Ó	1	3.044	1.300	. 000	3.8112	7. 3153	372
	A	1308. 0	FCD3	700	10.0	1.600	2	ñ	ñ	ň	Ŏ	ň	Ó	9, 171	. 500	. 000	2. 5342	2. 2820	248
	5	237. 0	FCD3	500	8. 0	1. 600	1	ñ	ñ	ñ	ň	ก	ī	7. 803	. 300	. 000	. 4473	4.5912	44
	6	100.0	FCD3	200	6. 0	1. 600	1	ñ	ň	ň	ň	ň	ń	1. 368	. 100	000	. 1679	32, 2567	16
	0						4	0	0	۸	0	ň	1	1. 368	10.000	. 000	3.6906	32. 2567	360
	1	2198.0	FCD3	200	6.0	1.600	ь	2	U	U	U	U	I	1. 300	10.000	. 000	3. 0300	JZ. 2301	300

【ポンプ仕様】

小ノノ	/ 11 fs	F	台	华							効	減衰		- 初期状	態	
番	台	形	혦	番 全揚程	吐出量	出力	極	型	ポンプ・モータ	フライホイール	回転数 率	定数	揚程	吐出量		トルク
番号	数	÷Ψ	鎖	异	m3/m	kw	極 数	定	kg-m2	kg-m2	min-1 %	k	m	m3/m		
Í	î	ĩ	~î	0 130 300	12, 215	450.0	4	1	63.000	100.000	1475 80	. 3343	130.300	12, 215	1.000	1.000
ż	i	i	i	0 60.000	1.368	30.0	4	1	1.960	. 000	1470 77	1. 4996	60.000	1.368	1. 000	1. 000

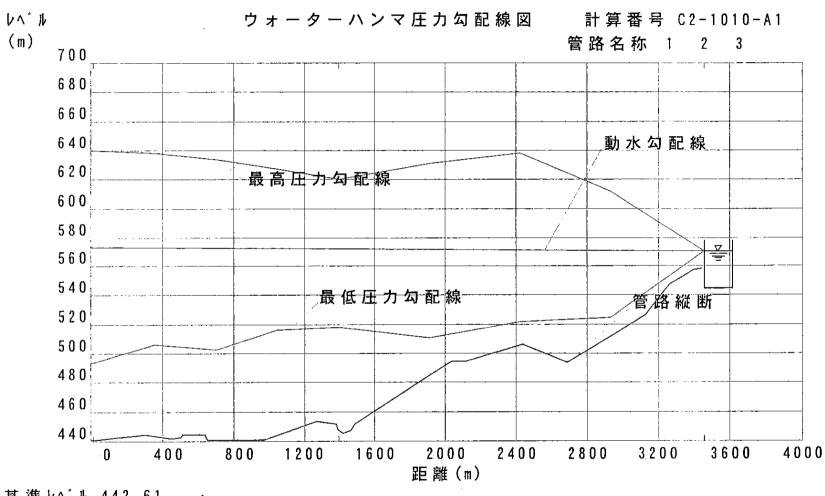
【 圧力線図仕様 】

管路名称 1 2 4 6 7

【 縦断什梯 】

を を を を を を を を を を を を を を を を を を を	では 追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル・
名称	m	m	m	m	m	m	m	m
1	. 0	440.86	10.0	440.86				
2	10.0	440.86	300.0	445.00	450.0	441.59	500. 0	442.50
	510.0	445.00	640.0	445.00	650.0	441.25	970.0	440.90
	1270.0	454.00	1384.0	451.63				
3	1384.0	451, 63	1391.0	448.09	1418.0	445. 29	1464.0	447. 75
_	1486.0	451.70	2035.0	494.90	2114.0	494, 90	2433.0	506.80
	2691.0	494.01	3129.0	526.80	3262.0	547. 92	3393.0	557.92
	3443.0	558.50						

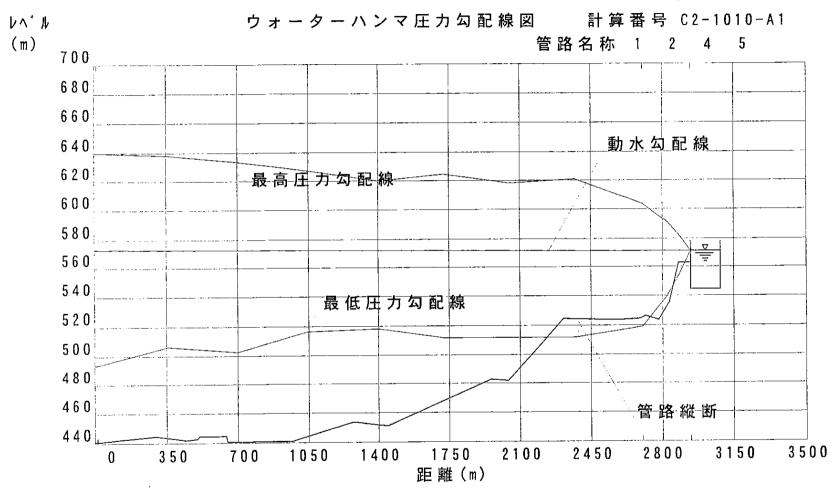
ウォーターハンマ計算条件


計算番号 C2-1010-A1

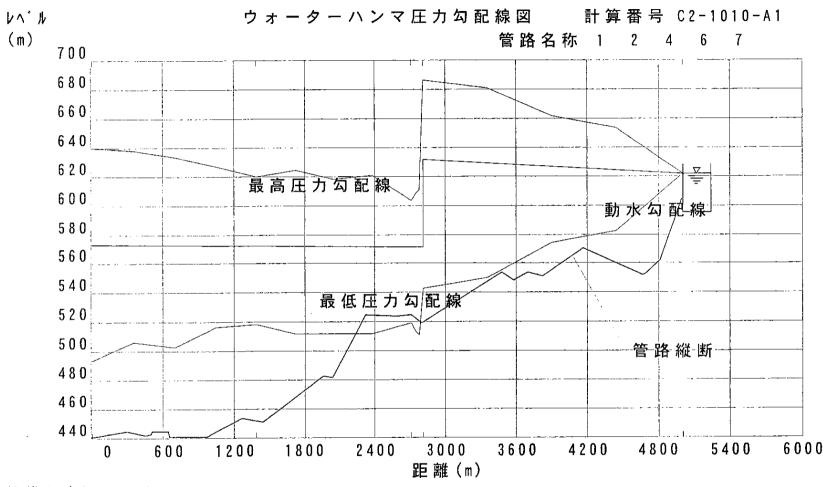
PAGE 2

1	世管名 4 5 6 7 6 7	追加距離 1384.0 2316.0 2692.0 2879.0 2692.0	レベル # 451. 63 524. 62 524. 40 562. 98 524. 40 524. 40	追加距離 1444.0 2586.0 2716.0 2929.0 2702.0 2711.0	レベル m 450.70 524.30 527.03 563.00 524.40 524.79	追加距離 1958.0 2692.0 2783.0	レベル 483. 25 524. 40 524. 38	追加距離 2039.0 2833.0 3480.0	レベル m 481.70 535.58 553.58	
	7	2702. 0 3580. 0 4665. 0 4990. 0	524. 40 548. 90 552. 25 604. 00	2711.0 3697.0 4693.0	524. 79 554. 22 553. 24	2793. 0 3822. 0 4809. 0	519.34 551.25 562.07	3480. U 4172. 0 4940. 0	553, 58 570, 03 590, 27	

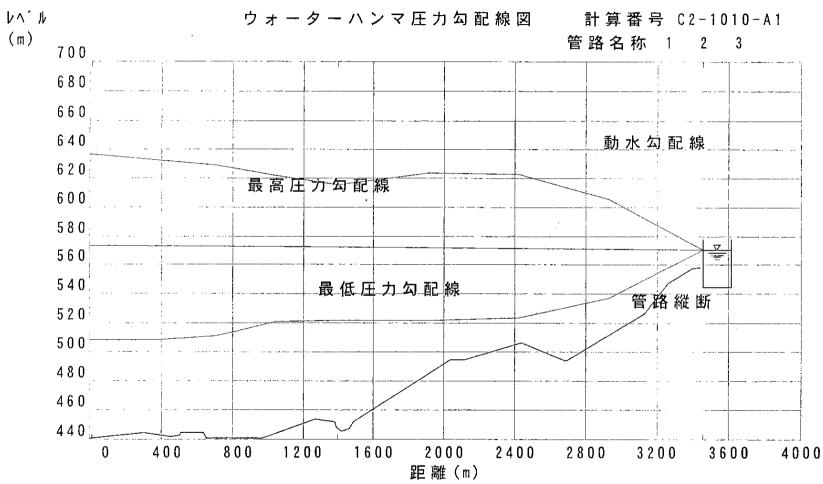
æ


.

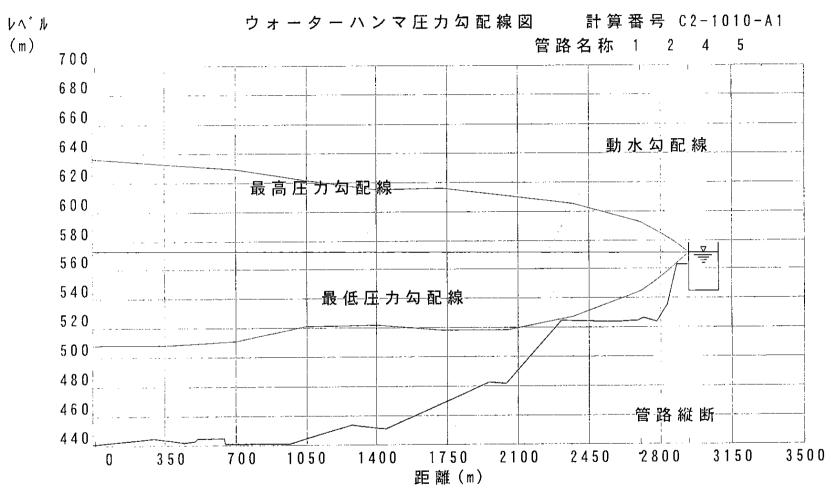
基準 レペル 442.61


Al Purp

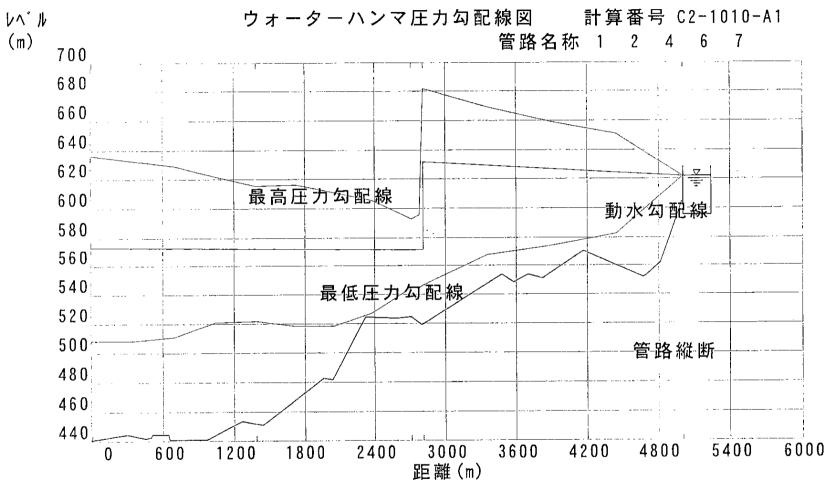
* To upland Reservoir


基準 レペル 442.61

Al Rompi To Asgirija ResorvaiR


基準 V^* N 442.61 A/ PM/>

艺科 To Bahira wakada Reservoir


基準 レベル 442.61

with Flyshal rosofti To upland Reservoir

基準 レベル 442.61

with Flywheel 10019 m² to Asfirita Reservoir

基準レベル 442.61

with Elywhal coogs and

To Bahivawakada Reservoja

計算番号 C2-1010-A1

PAGE 1

Clear Water Pump (A1)

基準レベル 計算時間単位

442.610 m .01023 sec

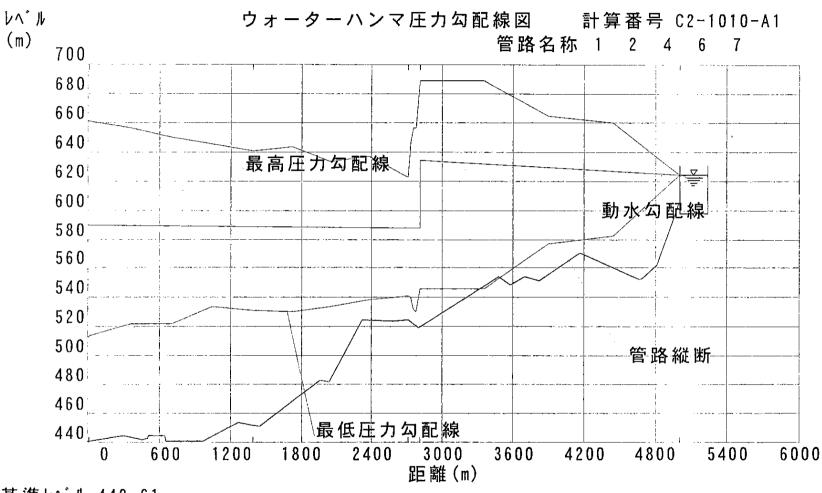
•	(1)	ᇡ	21	134	,
L	管	ĽΩ	1	1按	

管路 名称	管長	管種	管径 mm	管厚	ヤング 率	上流の管路		、 番号		ァーソ タンク 番号	开番号	終点 条件	管路流量 m3/m	配官 損失 m	开段 損失	上刀波 往復時間 sec	管路定数	分割
1	10.0	SS 1	800	7.0	2. 100		1	0	0	0	0	0	12. 215	. 100	. 000	. 0205	1.6539	2
2	1384.0	FCD3	700	10.0	1.600	1 .	0	0	0	0	0	0	12. 215	. 800	. 000	2.6815	2. 2820	264
3	2059.0	FCD3	400	7.0	1.600	2	0	0	0	0	0	1	3. 044	1.300	. 000	3.8112	7. 3153	372
4	1308.0	FCD3	700	10.0	1.600	2	0	0	0	0	0	0	9. 171	. 500	. 000	2.5342	2. 2820	248
5	237.0	FCD3	500	8. 0	1.600	4	0	0	0	0	0	1	7.803	. 300	. 000	. 4473	4. 5912	44
6	100.0	FCD3	200	6.0	1.600	4	0	0	0	0	0	0	1.368	. 100	. 000	. 1679	32. 2567	16
7	2198.0	FCD3	200	6.0	1.600	6	2	0	0	0	0	1	1.368	10.000	. 000	3.6906	32. 2567	360

【 ポンプ仕様 】

			弁	弁								効	減衰		T// #// 1/\ /&:	
番	台	形	閉	番	全揚程	吐出量	出力	極	型 /	キ゚ンプ・モータ	フライホイール	回転数 率	定数	揚程	吐出量 回転数	トルク
号	数	定	鎖	号	m	m3/m	kw	数	炷	kg−m2	kg-m2	min−1 %	k	m	m3/m	
1	1	1	1	0	147.000	2.400	450.0	4	1	63.000	100.000	1475 35	. 1694	147.000	2. 400 1, 000	1.000
2	1	1	1	0	46.000	2.400	30. O	4	1	1.960	. 000	1470 55	2.8239	46.000	2, 400 1, 000	1.000

【 圧力線図仕様 】


管路名称 1 2 4 6 7

【 縦断什梯 】

税 断 1 工 管路	像 』 追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	m	m
1	. 0	440.86	10.0	440, 86				
2	10.0	440, 86	300.0	445.00	450.0	441.59	500, 0	442, 50
	510.0	445.00	640.0	445.00	650.0	441.25	970.0	440.90
	1270.0	454.00	1384.0	451.63				
3	1384.0	451.63	1391.0	448, 09	1418.0	445. 29	1464.0	447, 75
	1486.0	451.70	2035.0	494.90	2114.0	494.90	2433.0	506, 80
	2691.0	494.01	3129.0	526.80	3262.0	547.92	3393.0	557.92
	3443.0	558.50						

計算番号 C2-1010-A1 PAGE 2

r	縦断仕	港 】							
	管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
	名称	m	मा	m	m	n	m	m	m
	4	1384.0	451,63	1444.0	450.70	1958.0	483. 25	2039. 0	481.70
		2316.0	524.62	2586.0	524.30	2692, 0	524.40		
	5	2692.0	524.40	2716.0	527.03	2783.0	524.38	2833.0	535. 58
		2879.0	562.98	2929.0	563. 0 0				
	6	2692.0	524.40	2702.0	524.40				
	7	2702.0	524.40	2711.0	524.79	2793.0	519.34	3480.0	553. 58
	'	3580.0	548. 90	3697.0	554. 22	3822.0	551.25	4172.0	570.03
		4665.0	552, 25	4693.0	553. 24	4809.0	562.07	4940.0	590. 27
		4990.0	604.00						

基準 L N° N 442.61 At Pomp:

Bahirandrada Reservoir int the vala

計算番号 1010A2PE

PAGE

ClearWaterPump(A2)Ph3

基準レベル 計算時間単位 442.610 m .00848 sec

r	管	収	4	t羊	
L.		比日	11	177	

管路 名称	管長 m	管種	管径 mm	管厚	ヤング 率	上流の管路		え 番号		サージ タンク 番号	弁番号	終点 条件	管路流量 m3/m	配管 損失	弁絞 損失 『	圧力波 往復時間 sec	管路定数	分割
1	612.0	FCD3	350	6.5	1,600		1	0	0	0	0	0	3.852	2.510	. 000	1. 1188	9.6740	132
2	890.0	FCD3	300	6. 5	1,600	1	0	0	0	0	0	0	2. 118	3.360	. 000	1. 5786	13. 5715	188
3	793.0	FCD3	250	6.0	1.600	1	0	0	0	0	0	0	1.734	. 990	. 000	1.3808	19.9081	164
4	100.0	FCD3	200	6. 0	1.600	3	0	0	0	0	0	1	. 841	. 180	. 000	. 1679	32. 2567	20
5	1785.8	FCD3	200	6.0	1.600	3	0	0	0	0	0	0	. 893	1. 210	.000	2.9985	32. 2567	352
6	50.0	FCD3	200	6.0	1.600	5	0	0	0	0	0	1	. 476	. 130	. 00đ	. 0840	32. 2567	10
7	10.0	FCD3	200	6.0	1.600	5	0	0	0	0	0	1	. 417	. 180	. 000	. 0168	32, 2567	2
10	520.0	FCD3	300	6.5	1.600	2	0	0	0	0	0	1	2. 118	1.740	.000	. 9223	13, 5715	108

【ポンプ仕様】

			弁	弁								効	減衰		- 初期状	態	
番	台	形	閉	番	全揚程	吐出量	出力	極	型。	ポンプ・モータ	フライホイール	回転数 率	定数	揚程	吐出量	回転数	トルク
목	娄攵	定	鍞	뮥	m	m3/m	kw	数	疘	kg-m2	kg-m2	min−1 %	k	m	m3/m		
1	1	1	1	0 1	04.000	3.852	90. 0	4	1	8.300	20.000	1470 74	. 5275	104.000	3.852	1.000	1.000

【 圧力線図仕様 】

管路名称	1	2	10	
管路名称	1	3	4	
管路名称	1	3	5	6
管路名称	1	3	5	7

【 縦断仕様 】

144 (A) (TT								
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	m	m
1	. 0	444.67	225.1	456.51	282.2	454. 34	349.7	466.71
	487.0	467.00	612.0	467.00				
2	612.0	467, 10	699.3	469.83	779. 1	474. 34	887.9	453.74
	1502.0	503.85						
વ	612 0	467 NO	833 7	476 33	1405 0	489 D6		

Flywheel: 20kgf-m2

A2. Phase 3

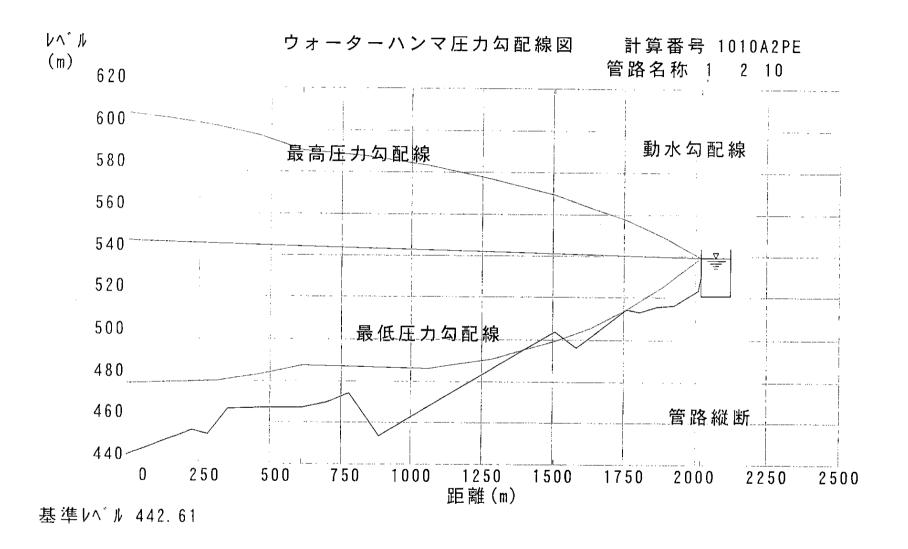
ウォーターハン	/マ計算条件
---------	--------

計算番号 1010A2PE PAGE 2

【縦断仕	-様 】							
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	П	m	m	m	m	m	m	m
4	1405.0	489.06	1505.0	524,00				
5	1405.0	489.06	1872.1	493.39	2230.7	502.73	2521.9	486. 26
	2672.4	497.54	2824.9	505.23	2979.8	507.98	3124.0	507.42
	3190.8	519.59			•			
6	3190.8	519.59	3240.8	529.00				
7	3190.8	519.59	3200.8	529,00				
10	1502.0	503.85	1510.0	503.85	1585.0	496.42	1759.0	514, 59
. •	1805.0	513.54	1865.0	515.98	1925.0	516.47	2012.0	523.27
	2022.0	529.75						

1. 計算インターバル 14

3. 管路の圧力変化


٠.	日的い	江刀支孔		最高/	平力			最低日	ドカ	
	管路 番号	追加 距離	経過時間	流量	上/ 圧力 (水頭)	圧力 (レベル表示)	経過時間	流量	上) 圧力 (水頭)	圧力 (レペル表示)
	ш,	m	sec	m3/m	m	m	sec	m3/m	m	m
	1	. 0	5. 187	. 000	164. 599	607. 209	2, 060	. 001	35.860	478. 470
	1	153, 0	5. 217	. 014	161.972	604. 582	2. 199	030	36.443	479.053
	1	306.0	5.399	, 228	158.777	601.387	2.339	073	37. 288	479.898
	1	459.0	5, 268	. 021	154. 513	597. 123	2. 259	. 060	40. 388	482. 998
	2	. 0	5. 136	. 452	147. 790	590. 400	2. 288	. 072	44. 953	487. 563
	2	222.5	5. 717	, 886	145. 263	587.873	2.352	. 082	44.041	486.651
	2 2 2	445. 0	5.670	. 859	140.758	583.368	2. 517	. 094	43.619	486. 229
	2	667.5	5. 734	. 933	134. 256	576, 866	2. 471	. 254	47. 751	490.361
	3	. 0	5, 136	761	147, 790	590. 400	2. 288	070	44, 953	487. 563
	3	198.3	5. 573	155	139. 278	581.888	1.945	. 453	52.614	495. 224
	3	396.5	11.536	541	129.901	572, 511	1, 771	. 663	60.891	503, 501
	3	594.8	11.523	578	120. 307	562.917	8.802	956	72. 216	514.826
	4	. 0	11.697	-1.092	111. 239	553, 849	1. 593	. 311	87. 121	529.731
	4	25.0	4.420	-2.491	108, 717	551, 327	1. 572	. 359	90. 190	532.800
	À	50.0	4, 399	-2.535	106, 269	548.879	1. 551	. 409	93, 411	536.021
	4	75. 0	4. 403	-2.524	103.471	546.081	1.530	. 462	96. 788	539, 398
	5	. 0	11, 697	. 741	111. 239	553.849	1, 593	. 686	87. 121	529, 731
	5	446.5	4, 577	. 806	115.680	558.290	8. 272	. 742	87. 315	529.925
	5	892.9	4. 984	. 875	111, 474	554. 084	9, 578	. 652	89.532	532, 142
	5	1339. 4	5. 221	. 792	113.798	556. 408	6. 001	. 809	87. 386	529, 996
	6	. 0	5, 425	. 406	99, 915	542, 525	2, 831	. 459	98. 187	540. 797
	6	10. 0	5. 331	. 385	99.874	542. 484	2.822	. 459	98. 176	540.786
	6	20. 0	5. 323	. 385	99. 828	542, 438	2.814	. 460	98. 182	540.792
	6	30.0	5. 314	. 384	99. 753	542.363	2.806	. 461	98. 239	540.849
	6	40. 0	5, 306	. 382	99. 596	542, 206	2.797	. 465	98, 453	541.063
	~	, •								

ウォーターハンマ計算結果

計算番号 1010A2PE PAGE 4

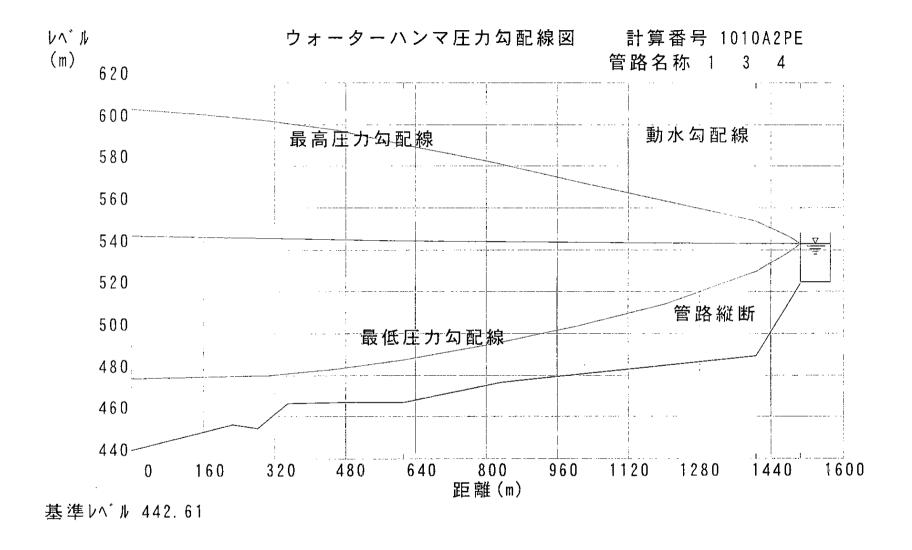
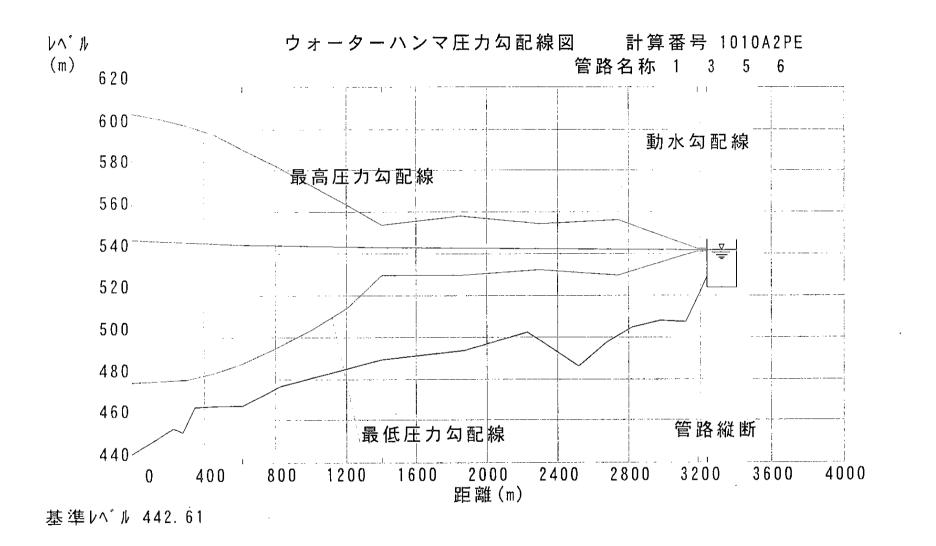
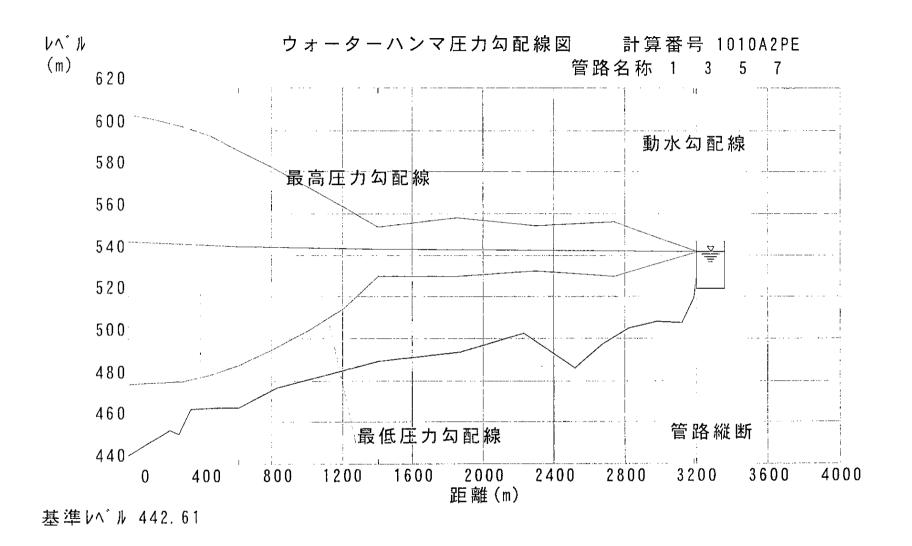

3. 管路の圧力変化	3.	管	路	の	圧	カ	変	(۲
------------	----	---	---	---	---	---	---	---	---

			图 吉 1	¬¬• +			最低月	L - 	
管路 番号	追加 距離	経過時間	最高/ 流量	ェハ 圧力 (水頭)	 圧力 (レベル表示)	経過時間	流量	エカ 圧力 (水頭)	圧力 (レベル表示)
田ワ	M M	s e c	m3/m	m	m	sec	m3/m	m	m
7 7	. 0 5. 0	5, 425 5, 344	. 464 . 390	99. 915 99. 514	542, 525 542, 124	2.831 2.835	. 287 . 279	98. 187 98. 648	540. 797 541. 258
10 10 10	. 0 130. 0 260. 0 390. 0	5, 899 5, 785 5, 670 5, 556	1. 140 . 911 . 710 415	126. 555 120. 243 114. 780 106. 801	569, 165 562, 852 557, 390 549, 411	2. 272 2. 157 2. 043 1. 928	. 593 . 836 1. 152 1. 572	56. 737 63. 262 71. 660 82. 596	499. 347 505. 872 514. 270 525. 206



to Kondadeniya


Phase 3 Flywheel: 20 kgf-m²

to Gohagoda (Wegiriya) Phase 3 Flywheel: 20 kgf-m²

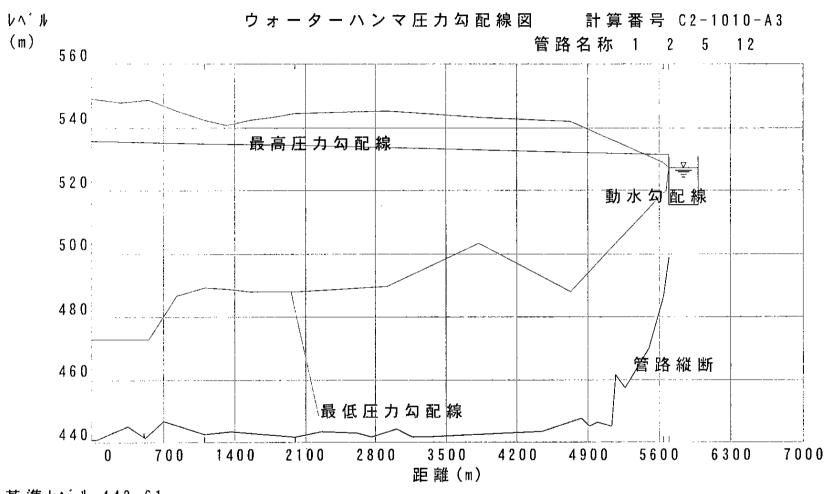
to Gohagoda (New) Phase 3. Flywheel: 20 kgf-m²

to Gohagoda (Old) Phase 3. Flywheel: 20kgf-m²

計算番号 C2-1010-A3

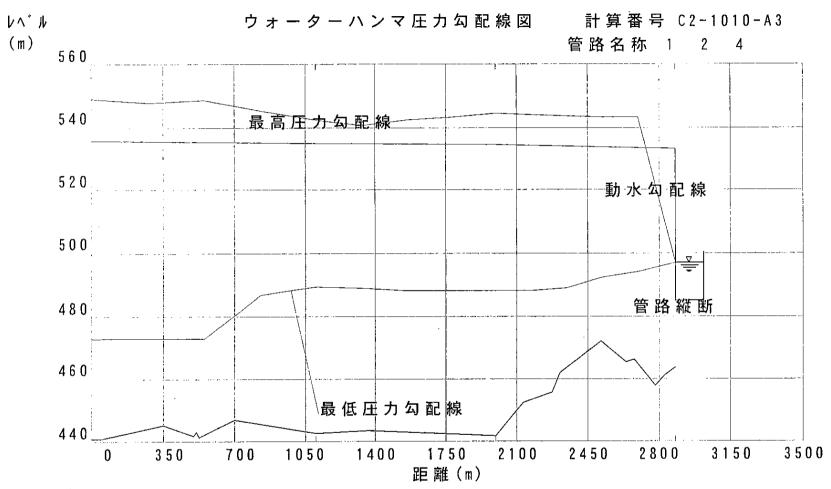
PAGE 1

Clear Water Pump (A3)


ウォーターハンマ計算条件

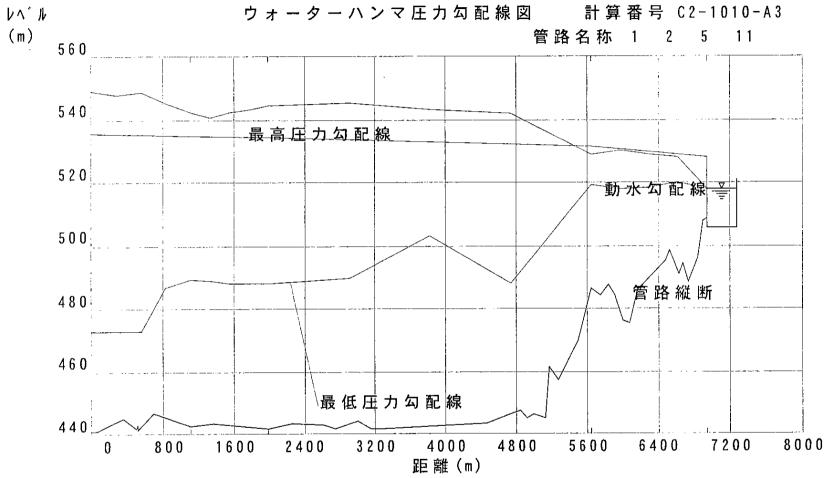
基準レベル 計算時間単位 442.610 m .04819 sec

	計算時間単位	.04819 sec			
【 管路仕様 】			_ サージ 弁	· · · · · · · · · · · · · · · · · · ·	弁絞 圧力波
管路 管長 管種 名称 m	管径 管厚 ヤング	上流の管路 ポン 番	サージ 弁 ンプ タンク 番 等号 番号 号 O O O (:	損失 往復時間 管路定数 分割 sec
1 1107.0 FCD3	600 9.0 1.600		0 0 0 0	9. 989 . 900 0 7. 369 . 400	. 000 2. 1204 3. 1419 44 . 000 1. 7009 3. 1419 36
2 888.0 FCD3 3 1783.0 FCD3	600 9.0 1.600 600 9.0 1.600	1 0	0 0 0 0	0 2.620 .200	. 000 3. 4152 3. 1419 70
4 882.0 FCD3	200 6. 0 1. 600	2 0	0 0 0 0	1 1.166 1.400	36, 000 1, 4810 32, 2567 30
5 3653. 0 FCD3 6 3541. 0 FCD3	500 8, 0 1, 600 300 6, 5 1, 600			0 6. 203 2. 900 0 1. 713 3. 200	. 000 6. 8950 4. 5912 144 . 000 6. 2807 13. 5715 132
7 904.0 VP 1	225 12.7 .027	3 0	0 0 0) 1 .907 .900	7. 000 4. 8451 7. 9846 100
8 921.0 FCD3	200 6.0 1.600		0 0 0 0	0 .732 .600	. 000 1. 5464 32. 2567 32
10 1305, 0 FCD3 9 252, 0 VP 1	250 6.0 1.600 225 12.7 .027		0 0 0 0	0 1 .981 1.000 0 1 .732 .200	2, 000 2, 2722 19, 9081 48 1, 000 1, 3506 7, 9846 28 10, 000 2, 1727 32, 2567 44
11 1294.0 FCD3	200 6.0 1.600	5 0	0 0 0 0) 1 1.620 3.600	10.000 2.1727 32.2567 44
12 50.0 FCD3	500 8.0 1.600	5 0	0 0 0 0	1 4. 583 . 100	4. 000 . 0944 4. 5912 2
【ポンプ仕様】	45			첫 试 事	初期状態
# # # # # # # # # # # # # # # # # # #	弁 番 全揚程 吐出 号 m m3/1	出力 極 型 ホ	ポンプ・モータ フライホ	効 減衰 が はイール 回転数 率 定数	場程 吐出量 回転数 トルク
番 台 形 閉 号 数 式 鎖	号 - 17 m - m3/1	n kw 数 式	kg-m2 kg	g−m2 min−1 % k	m m3/m
1 1 1 1	0 93,000 9,99) 250.0 4 1	29.000 .	000 1475 78 1.1249	93.000 9.990 1.000 1.000
【 圧力線図仕様 】					
管路名称 1 3	6 10				

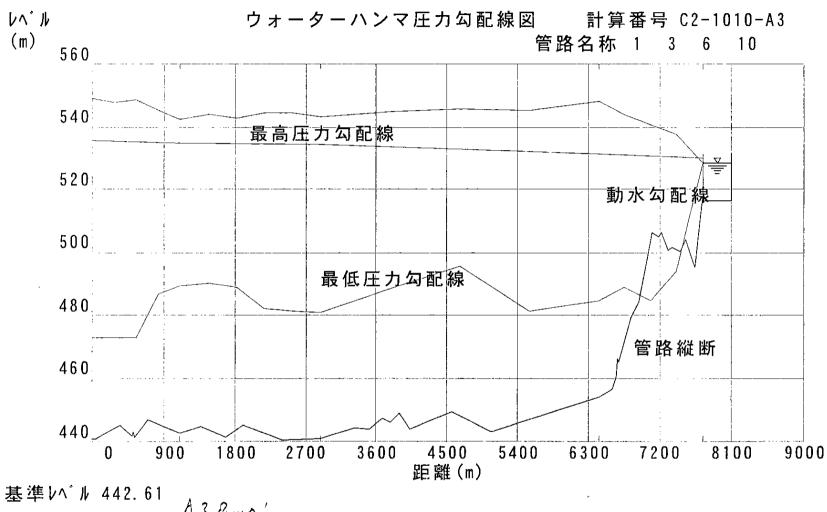

(縦断仕 管路	様 】 追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
	名称		m .,,	M W	m	m	m	m	ır
	1211	m	111						
	1	. 0	440.86	50. 0	440, 86	350.0	445.00	500.0	441. 59
	,	509.0	442.85	522.0	441.23	701.0	446.85	1107.0	442. 52
	2	1107.0	442. 52	1366.0	443.49	1995. 0	441. 50		,
	3	1107.0	442, 52	1367.0	444. 57	1687.0	441.08	1906. 0	445. 22

ľ	縦断仕	様 】					•		
-	管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
	名称	m	m	m	m	m	m	m	m
		2404.0	440.54	2890.0	440.74				
	4	1995.0	441.50	2135.0	452.30	2276.0	455.76	2315.0	461.79
		2518.0	471.90	2639.0	465.30	2676.0	466.13	2785.0	457.89
		2827.0	460.88	2877.0	463.50				
	5	1995.0	441.50	2254.0	443.33	2614.0	442, 85	2750.0	441.67
		2997.0	444.30	3153.0	441.82	3293.0	441.63	4451.0	443. 21
		4837.0	447.52	4912.0	445.08	4993.0	446. 47	5131.0	445.05
		5171.0	461.28	5269.0	457.12	5494.0	469.87	5648.0	486. 14
	6	2890.0	440.74	3330.0	444. 28	3509.0	443.59	3669.0	447.10
	•	3770.0	445.99	3890.0	448.68	4027.0	443.86	4570.0	449.46
		5064.0	442.95	6431.0	453.72				
	7	2890.0	440.74	2895.0	441. 42	2987.0	448, 14	3053.0	449. 40
	•	3078.0	452.65	3231.0	460.39	3261.0	461.12	3444.0	482.80
		3525.0	486.70	3548.0	490, 70	3574.0	490.83	3696.0	505, 07
		3722.0	510.68	3744.0	511.70	3794.0	511.50	•	
	8	6431.0	453.72	6485.0	454. 37	6700.0	476, 21	6781.0	463.97
	•	6836.0	464.56	6918.0	480. 58	7097.0	490.81	7135.0	486, 09
		7176.0	486.09	7321.0	500. 53	,,,,,,	, , , , , , ,		
	9	7321.0	500, 53	7352.0	503.62	7420.0	499, 19	7479.0	504.30
		7504.0	510, 79	7604.0	517, 50				
	10	6431, 0	453, 72	6602.0	456.24	6652.0	460.17	6672.0	466. 20
	• •	6691.0	465.15	6832.0	479.26	6931.0	484.09	7109.0	506. 15
		7180.0	504.74	7230.0	506.01	7300.0	500. 53	7350.0	501.53
		7459.0	500.05	7516.0	503.96	7636.0	494.99	7736.0	518.50
	11	5648.0	486.14	5745.0	484.10	5833.0	487. 52	5921.0	484. 14
	, ,	6008.0	476.10	6084.0	475.32	6162.0	485.85	6484.0	495. 12
		6524.0	498, 43	6627.0	490.87	6665.0	494. 40	6739.0	488. 58
		6832.0	496.09	6892.0	507, 61	6942.0	508, 50	- · · -	
	12	5648.0	486. 14	5698.0	498.50				

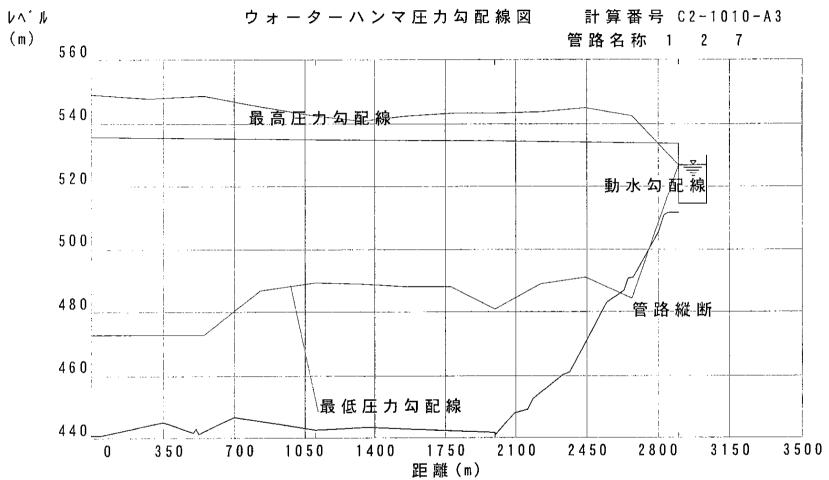
基準 V^* N 442.61 A3 Pumpi


To Kahawatta Reservoir

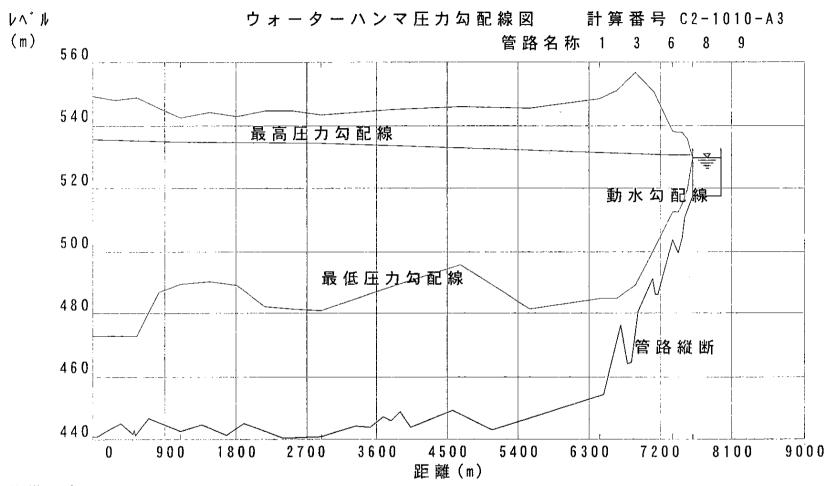
基準 レペル 442.61


A3 Romp:

To Kahalla Roservoir


基準 V^ N 442.61 A3 Pomp:

To Akurana Reservoir


A3 Pumpi

To Banfalanatta Reservir

基準 レヘ・ル 442.61 A3 Purpi

to Balangla la Reservoir

基準 レベル 442.61

As Pump:

To Philadoniya Rosevoik

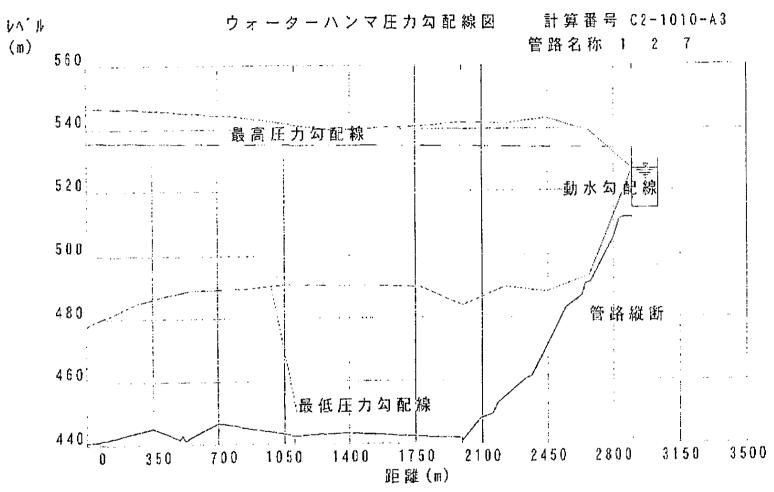
計算番号 C2-1010-A3

PAGE 1

Clear Water Pump (A3)

基準レベル 計算時間単位 442.610 m .04819 sec

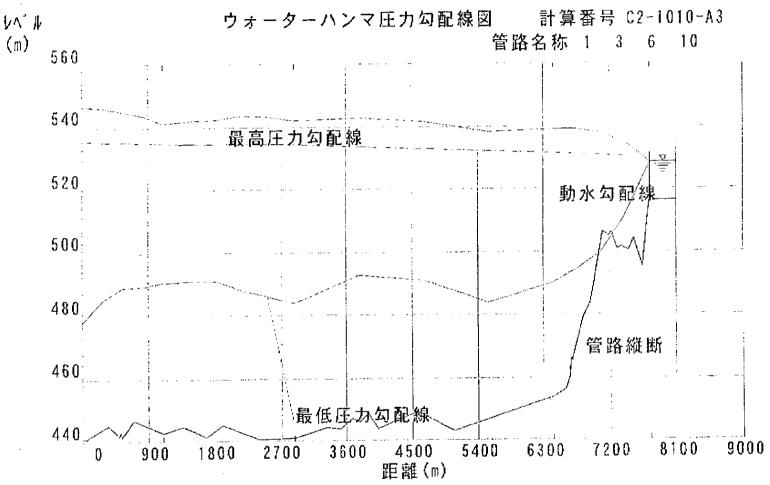
			DI AFE	of let - let let												
【管路仕	様】							リ - ジ	44			配管	弁絞	圧力波		
管路	管長	管種	管径	管厚	ヤング	上流の管路	ポンプ	タンク	弁番号	終点質	路流量	損失	損失	往復時間	管路定数	分割
名称	m 1107. 0	FCD3	mm 600	им 9. С	<u>率</u> 1. 600		番号 1 0 0	番号 0	7-7 ()	条件 0	nt3/m 9. 989	m . 900	m 000	sec 2. 1 204	3. 1419	44
,	888. IJ	FCD3	600	9. 0	1.600	1	0 0 0	Õ	ō	Ď	7.369	. 400	. 000	1, 7009	3. 1419	36
3	1783. 0	FCD3	600	9. 8	1. 600	Ì	0 0 0	0	0	Û	2, 620	. 200	. 000	3. 4152	3. 1419	70
4	882.0	FCD3	200	6, 0	1, 600	2	0 0 0	0	Û	1	1, 166	1.400	36, 000	1. 4 81 0	32, 2567	30
5	3653.0	FCD3	500	8. 0	1. 600	2	0 0 0	0	Û	0	6, 203	2, 900	. 000	6, 89 50	4, 5912	144
6	3541.0	FCD3	300	6, 5	1. 6DO	3	0 0 0	0	0	0	1. 713	3. 200	. 000	6. 2 80 7	13. 5715	132
7	904.0	VP 1	225	12. 7	. 027	3	0 0 0	0	Q.	1	, 907	. 900	7. 000	4. 8451	7. 9846	100
8	921. 0	FCD3	200	6. 0	1.600	6	0 0 0	0	₹Į	Ų	. 732	. 600	. 000	1. 5464	32, 2567 19, 9081	32 48
19	1305. 0	FCD3	250	6. 0	1. 600	6	0 0 0	U	Ü		. 981	1.000	2. 000	2. 2 72 2 1. 3 506	7. 9846	28
9	252. 0	ΥΡ 1	225	12. 7	. 027	8	0 0 0	0	U	3	. 732 1. 629	. 200 3. 600	1, 000 10, 000	2, 1727	32, 2567	44
11	1294. 0	FCD3	200	6. 0	1, 600	ģ.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1) O	1	4. 583	3. 600 100	4. 080	. 0944	4. 5912	2
12	5 0. 0	FCD3	500	8. D	1.600	3	Ų Ų U	v	U	1	4, 505	. 100	4. 000	. 0344	4. 0516	•
【 ポンプ(什様 】															
		弁	弁								効	咸衰		初期状的	<u> </u>	
番 :	台 形	弁別	弁番号	全揚程	吐出量	出力 極 kw 数	型 ギンプ・			♪ 回転		定数	揚程		回転数 トル	9
番号	台 形数 式	鎖	号	(fi	m3/a			g~m2	kg−a	n2 min		k	m an an	m3/m	. 000 1 0	n a
1	1 1	3	0	93.000	9. 990	250. 0 4	1 29.	000	50.00	10 14	75 78	. 4129	93.000	9. 990	1.000 1.0	uv


【 圧力線図仕様 】

管路名称 1 3 6 10

ľ	擬断仕	様. 】		od I – ne dell		· 스 스 - 이트 소비	1 -8 11	"在 本在DC" 会 基	ال غمال
	管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
	名称	Ci.	m	ונו	m	m	III	m	m
	1	Ď.	440, 86	50.0	440.86	350.0	445. 00	500.0	441. 59
	'	509. Ď	442, 85	522.0	441, 23	701.0	446.85	1107.0	442, 52
	2	1107. 0	442, 52	1366.0	443. 49	1995.0	441.50		
	3	1107. 0	442, 52	1367.0	444. 57	1687. 0	441.08	1906. D	445, 22

4
- 2


ľ	拟断仕	議 】 .							
_	管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
	名称	m	m	EN	m	m	វា	m	m
		2404. 0	440, 54	2890. 0	440. 74				
	4	1995. 0	441.50	2135.0	452, 30	2276.0	455. 7 6	2315.0	461.79
		2518.0	471.90	2639. O	465.30	2676.0	466. 13	2785. O	457.89
		2827. 0	460.88	2877. 0	463, 50				
	5	1995.0	441.50	2254. 0	443.33	2614, 0	442.85	2750.0	441, 67
		2997. 0	444.30	3153.0	441, 82	3293, 0	441.63	4451.0	443. 21
		4837.0	447. 52	4912. O	445.08	4993. 0	446. 47	5131.0	445, 05
		5171.0	461.28	5269. O	457, 12	5494. 0	469.87	5648. 0	486, 14
	6	289 0. 0	440.74	3 330 . 0	444. 28	3509. 0	443, 59	3669.0	447. 10
		3770. 0	445, 99	3890. O	448.68	402 <i>T</i> . 0	443.86	4570. B	449, 46
		5064. 0	442. 95	6431.0	453, 72				
	7	2890. 0	440.74	2895.0	441.42	2987. O	448, 14	3053.0	449, 40
		3078. O	452.65	323 1. 0	460.39	3261.0	461. 12	3444. 0	482, 80
		352 5. 0	486, 70	3548.0	490, 70	3574.0	490.83	3696.0	505, 07
		3722, 0	510.68	3744.0	511, 70	3794. O	511, 50		
	8	6431.0	453.72	6485. O	454, 37	87 00. 0	476.21	6781.0	463. 97
		6836.0	464, 56	6918. C	480.58	7097. 0	490.81	7135.0	486.09
		7176. 0	486. D9	7321.0	500. 53				
	9	7321.0	500 , 53	7352.0	503.62	7420. 8	499. I 9	7479.0	504. 30
		7504.0	510, 79	7604. 0	517.50				_
	10	6431.0	453. 72	6602. 0	456. 24	6652. 9	460.17	6672.0	466. 20
		6691. 0	465, 15	6832. 0	479.26	6931. 0	484. 09	7109.0	506. 15
		7180.0	504.74	7230. 0	508.01	7300. 0	500. 53	7350.0	501, 53
		7459. 0	500.05	7516.0	503.96	76 36. 0	494. 99	7736.0	518. 50
	11	5648. 0	486.14	57 45. 0	484.10	583 3. 0	487. 52	5921.0	484, 14
		6008.0	476, 10	6084. 0	475.32	6162.0	485. 85	6484. 0	495. 12
		6524.0	498, 43	6627. D	490.87	6665. Q	494, 40	6739.0	488, 58
		6832.0	496.09	6892. 0	507.61	6942. O	508.50		
	12	564 8. 0	486.14	5 6 98. 0	498, 50				

基準 by A 442.61 A3 Pomp:

To Balanajala Reservoire

277: Flywheel 509-n² 4218

基準 LA * N 442.61 A 3 Pamp:

To Banfalawatta Reservoir

77 F. Flywheel 50 Bin 1817.

計算番号 C2-1010-B

PAGE 1

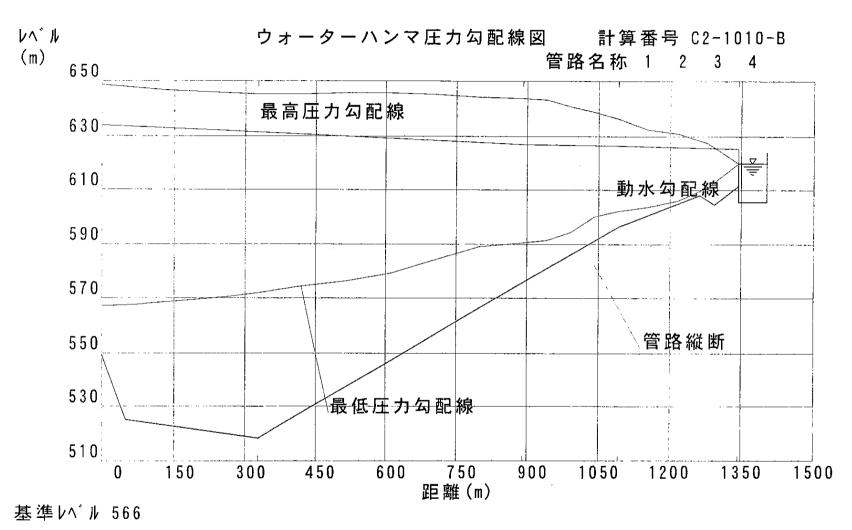
Transmission Pump (B)

基準レベル 計算時間単位 566.000 m .05491 sec

【 管路仕様 】

管路 名称	管長	管種	管径 mm	管厚	ヤング 率	上流の管路	ポン 番号		サージ タンク 番号	弁番号	終点 条件	管路流量 m3/m	配管 損失	弁絞 損失 。	圧力波 往復時間 sec	管路定数	分割
1	327.0	FCD3	200	6.0	1.600		1 0	0	0	0	0	1.900	2.600	. 000	. 5491	32. 2567	10
2	564.0	FCD3	200	6.0	1.600	1	0 0	0	0	0	0	1.900	4.400	. 000	. 9470	32. 2567	18
3	201.0	VP 1	225	12.7	. 027	2	0 0	0	0	0	0	1.900	. 800	. 000	1. 0773	7.9846	20
4	250.0	VP 1	225	12.7	. 027	3	0 0	0	0	0	1	1.900	1.000	5. 200	1. 3399	7.9846	24

【ポンプ仕様】


			弁	弁								効	減衰		一 初期状	態	
番	台	形	閉	番	全揚程	吐出量	出力	極	型相	ポンプ・モー タ	フライホイール	回転数 率	定数	揚程	吐出量	回転数	トルク
뮥	数	定	鎖	号	m	m3/m	kw	数	式	kg-m2	kg-m2	min−1 %	k	m	m3/m		
1	1	1	1	0	68.000	1, 900	37.0	2	1	. 850	. 000	2900 69	1.5607	68.000	1.900	1.000	1.000

【 圧力線図仕様 】

管路名称 1 2 3 4

【 縦断仕様 】

管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	m	m
1	, 0	549.50	50.0	525.32	327.0	518.49		
2	327.0	518.49	891.0	575.88				
3	891.0	575.88	1092.0	596.33				
4	1092.0	596.33	1261.0	608.33	1292.0	604.62	1342.0	611, 50

TRANSMISSION PLAMP (B):

Heerosofala Lowsk - Heavosofala Middle SR.

計算番号 C2-1010-C

PAGE

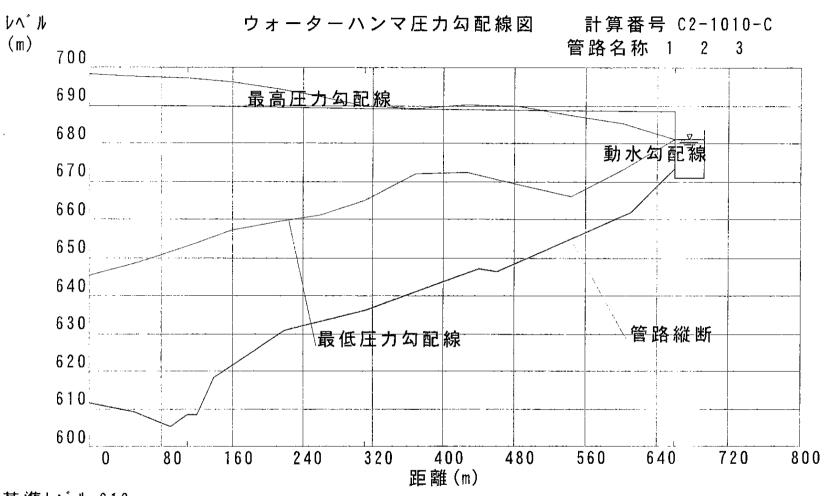
Transmission Pump (C)

基準レベル 計算時間単位 613.000 m .08880 sec

【 管路仕様 】

管路 名称	管長	管種	管径 mm	管厚	ヤング 率	上流の管路	ポン 番		サージ タンク 番号	弁番号	終点 条件	管路流量 m3/m	配管 損失	弁絞 損失 『	圧力波 往復時間 sec	管路定数	分割
1	110.0	FCD3	150	6.0	1.600		1 1	0	0 0	0	Ô	. 490	. 300	. 000	. 1776	59, 6353	2
2	200.0	FCD3	150	6. 0	1.600	1	0	0	0 0	0	Ō	. 490	. 600	. 000	. 3229	59.6353	4
3	350.0	VP 1	160	12.7	. 027	2	0	0	0 0	0	1	. 490	. 600	7.500	1.6038	18.4690	18

【 ポンプ仕様 】


		_	弁	弁									边	減衰		- 初期状	:態		
番	台	形	閉	番	全揚程	吐出量	出力	極	型	ポンプ・モ ータ	フライホイール	回転数	枢	定数	揚程	吐出量	回転数	トルク	
号	数	尤	鎖	号	m	m3/m	kw	数	迮	kg-m2	kg-m2	min-1	%	k	m	m3/m			
1	1	1	1	0	77.000	. 490	18.5	2	1	460	. 000	2900 4	17	1.2364	77 000	490	1 000	1 000	

【 圧力線図仕様 】

管路名称 1 2 3

【 縦断仕様 】

和此為任工								
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	វា	m	m	m	m	m
1	. 0	611.50	50 . 0	609.00	90.0	605.28	110.0	608.47
2	110.0	608.47	120.0	608.37	140.0	618.19	220.0	630.85
	310.0	636, 10						
3	310.0	636.10	44 0 .0	646.97	460.0	646.20	610.0	661.64
	660.0	673.50						

基準レベル 613

TRANSMISSion Pump (C):

Heerasafola Middle SR - Heerasafola High sR.

計算番号 C2-1010-D1

PAGE

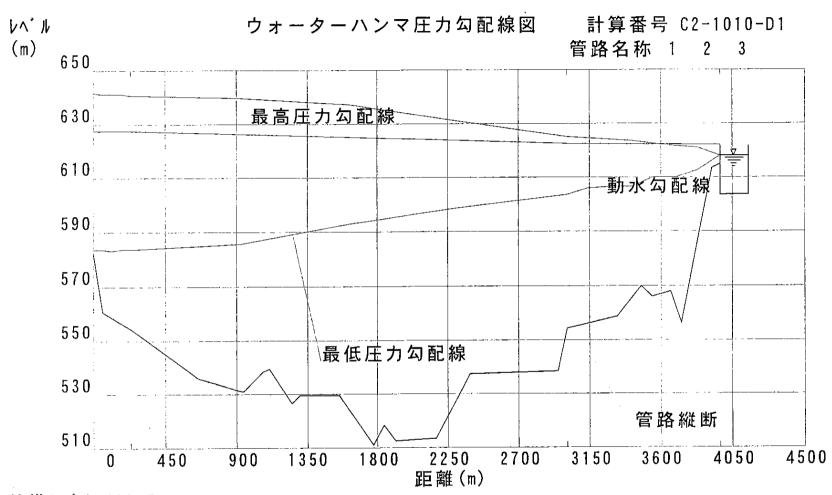
Transmission Pump (D1)

基準レベル 計算時間単位 582, 500 m . 05248 sec

•	<u>^</u>	0.45	44	1*	•
L		此	11	様	

自此江海	F .							サージ	弁			配管	弁絞	圧力波		
管路 名称	管長	管種	管径	管厚	ヤング	上流の管路	ポンプ	タンク	番	終点	管路流量	配管 損失	損失	往復時間	管路定数	分割
名称	m		mm	mm	率		番号	番号	号	条件	m3/m	m	វា	sec		
1	235.0	VP 1	225	12.7	027		1 0 0	0	0	0	830	. 200	. 000	1. 2595	7. 9846	24
ż	2774. 0	FCD3	200	6.0	1.600	1	0 0 0	0	0	0	. 830	4.700	. 000	4. 6578	32. 2567	88
3	958. 0	VP 1	225	12.7	. 027	2	0 0 0	0	0	1	. 830	. 800	3.800	5. 1345	7. 9846	98

【 ポンプ仕様 】


-		-	弁	弁							•	効	減衰			
番	A	形	혦	番	全揚程	吐出量	出力	極	型。	ポンプ・モータ	フライネイール		定数	揚程	吐出量 回転	数 トルク
昙	数	Ť	鎖	号	m	m3/m	kw	数	式	kg-m2	kg-m2	min−1 %	k	m	m 3 / m	
í	1	i	- î	Ō	45.000	830	11.0	2	1	. 270	. 000	2900 66	1.4850	45.000	. 830 1. 0	00 1.000

【 圧力線図仕様 】

管路名称 1 2 3

【 縦断仕様 】

豵断性								
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m ·	m	m	m	m	m	m	m
1	. 0	582.08	58.0	560.55	235.0	554.00		
2	235.0	554,00	662.0	536, 23	940.0	531.00	1068.0	538. 59
_	1108.0	539, 48	1250.0	526.64	1306.0	529.73	1551.0	529.79
	1767. 0	510.75	1840.0	518, 40	1915.0	512.30	2169.0	513. 27
	2389.0	537.46	2949.0	538.39	3009.0	554.00		
3	3009.0	554.00	3330.0	558. 58	3479.0	569.84	3547.0	565.77
Ü	3657.0	568.00	3727. 0	556. 25	3917.0	613.50	3967.0	615.00

基準レベル 582.5

TRANSMISSION Pump (-D-1):

Ampstiga SR - othera SR,

計算番号 1010D2PC

PAGE

1

Trans. P(D2) Mulle Ph3

基準レベル 計算時間単位 582.500 m . 18784 sec

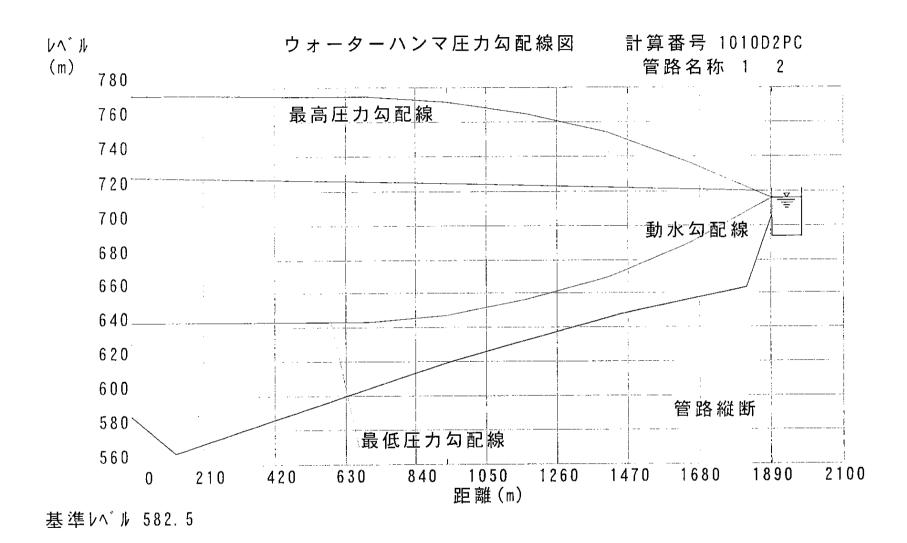
【 管路仕様 】

管路 名称	管長	管種	管径	管厚		上流の管路	ポンプ	サーン タンク_	番	終点	管路流量 m3/m	配官 損失	开叙 損失	注力液 往復時間	管路定数	分割
名称	m		mm	mm	率		番号	番号	号	条件		m		sec		
1	930.7	FCD3	150	6.0	1.600		1 0 0	0	0	0	. 680	4. 415	. 000	1.5027	59.6353	8
2	961.8	FCD3	150	6.0	1.600	1	0 0 0	0	0	1	. 680	4. 563	3, 922	1.5529	59.6353	8

【ポンプ仕様】

カフライホイール 回転数 率 kg-m2 min-1 % 弁 番 全揚程 号 m 0 146.000 減衰 定数 ----- 初期状態 ------弁閉鎖 型式 極数2 木°ンプ・モータ 吐出量 回転数 トルク 番号 形式 吐出量 kg-m2 m3/m k m3/m kw 2.000 . 541 2900 60 . 680 1. 000 1. 000 . 4614 146.000 . 680 30.0 1

【 圧力線図仕様 】


管路名称 1 2

【 縦断仕様 】 管路 追加距離 追加距離 追加距離 レベル 追加距離 レベル レベル レベル m m m m m m 127. 0 930, 7 619.30 1108.9 629.14 . 0 588.83 567.07 1818. 2 663.13 1892.5 705.80 1892.5 713.00 1450.0 647.84

1. 計算インターバル

3. 管路の圧力変化

			最高/	工力		~	最低1	平力 -	
管路 番号	追加 距離	経過時間	流量	エノ) 圧力 (水頭)	圧力 (レベル表示)	経過時間	最低/ 流量	上/, 圧力 (水頭)	圧力 (レベル表示)
ш,	m	s e c	m3/m	m	m	s e c	m3/m	m	M
1	. 0	5. 447	. 000	192.627	775. 127	3.005	. 000	60.492	642.992
1	232.7	5. 447	. 000	192. 578	775. 078	2.818	. 000	60.549	643.049
1	465.4	5.635	. 001	192. 452	774, 952	2.630	. 002	60.733	643.233
i	698.0	5. 447	002	192. 026	774, 526	2. 442	. 006	61. 243	643.743
2	. 0	5. 260	028	188. 973	771. 473	2. 254	. 035	64.608	647. 108
2	240.4	5.072	086	182.057	764. 557	2.066	. 114	74.038	656. 538
2	480.9	4.884	179	171. 169	753, 669	1.878	. 227	87. 313	669.813
2	721. 3	4. 884	- 166	153.400	735. 900	1.691	. 398	106. 798	689. 298

D2 Phase 3 Flywheel : 2kgf-m2

計算番号 1010D3PA

PAGE 1

Trans. P(D3) to Meeka. R

基準レベル 計算時間単位 582.500 m .00807 sec

ľ	笞	炂	什	様	1
- Ł	=	шп	11	Tak	- 4

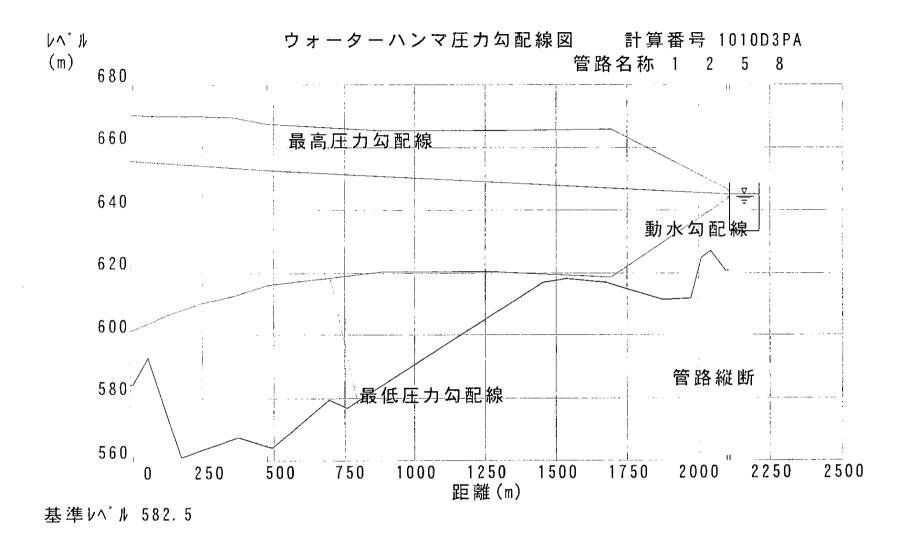
管路 名称	管長	管種	管径 mm	管厚 mm	ヤング 率	上流の管路	ポンプ 番号	サーン タンク 番号	开番号	終点 条件	管路流量 m3/m	配官 損失 「	开殺 損失 m	注刀波 往復時間 sec	管路定数	分割
1	10.0	FCD3	150	6. 0	1,600		1 0 0	_ 0_	Ó	0	. 868	. 062	. 000	. 0161	59.6353	2
ż	465.0	FCD3	150	6. 0	1,600	1	0 0 0	Ō	0	0	868	2.865	. 000	. 7508	59.6353	92
5	1625.0	VP 1	160	12. 7	. 027	2	0 0 0	0	0	0	. 868	7.312	. 000	7. 4460	18.4690	924
Š	10.0	VP 1	160	12, 7	. 027	5	0 0 0	0	0	1	. 868	. 045	. 000	. 0458	18.4690	6

【ポンプ仕様】

-		=	弁	#								効	減衰		アノノ ナ・ハ フヘン・	怎	
番	씀	HS.	锦	番	全揚程	叶出量	出力	極	型:	ポンプ・モータ	フライホイール	回転数 率	定数	揚程	吐出量「	回転数	トルク
畧	数	$\frac{2}{17}$	絈	兽	m	m3/m	kw	数	迁	kg-m2	kg-m2	min-1 %	k	m	m3/m		
1	- 1	1	1	ń	73 000	868	37 B	2	_ i	860	_000	2900 67	. 7791	73.000	. 868	1.000	1.000

【 圧力線図仕様 】

管路名称 1 2 5


【 縦断仕様 】

管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	its.	m	m
1	. 0	584, 26	10.0	584.26	60.0	592.69	175.0	561, 12
	375.0	567.73	475.0	564.70	495.0	564.12	695.0	579.34
	762.0	576.85	1455.0	616.85	1535.0	618,03	1675.0	616.86
	1875.0	611.23	1975.0	611.70	2010.0	624, 69	2045.0	626.86
	2095.0	620.50	2105.0	620.50				

1. 計算インターバル 1638

3. 管路の圧力変化

			最高月	□+h							
管路 番号	追加 距離	経過時間	流量	圧力	圧力 (レペル表示)	経過時間	流量	上) 圧力 (水頭)	圧力 (レベル表示)		
	m	s e c	m3/m	m	m	sec	m3/m	m	m		
1	. 0	9.550	. 000	87.700	670. 200	1.631	. 004	18.855	601.355		
1	5. 0	9. 546	. 000	87. 700	670. 200	1.643	002	19.095	601. 595		
2	. 0	9.550	. 000	87, 699	670.199	1.647	-, 004	19.330	601.830		
ž	116. 3	9, 570	. 000	87. 529	670.029	1.740	043	23.972	606.472		
2	232, 5	9, 712	, 002	87. 449	669.949	1,833	072	27, 469	609.969		
2	348.8	9.619	003	86.903	669. 403	1.925	095	30. 217	612. 717		
5	. 0	9.526	021	84. 741	667. 241	2.018	122	33. 495	615.995		
5	406.3	10.604	. 054	82.754	665. 254	6.955	. 013	37.684	620.184		
5	812.5	11.609	. 055	82.756	665. 256	6.022	. 019	37. 911	620.411		
5	1218.8	12.598	. 046	82. 992	665. 492	5.042	0 51	36. 162	618.662		
8	. 0	12.424	264	64. 209	646, 709	4. 158	. 818	60.920	643.420		
8	1.7	12.420	- . 271	63, 967	646.467	4. 154	. 826	61.208	643.708		
8	3.3	12.416	- . 277	63.723	646. 223	4. 150	. 834	61.501	644.001		
8	5. 0	12. 412	284	63.475	645.975	4. 146	. 842	61.797	644. 297		
8	6.7	12.408	-, 291	63. 225	645.725	4. 141	. 851	62.099	644. 599		
8	8.3	12.404	298	62.972	645, 472	4. 137	. 859	62.404	644.904		

D3 Phase 1.

計算番号 C2-1010-D2

PAGE 1

Transmission Pump (D2)

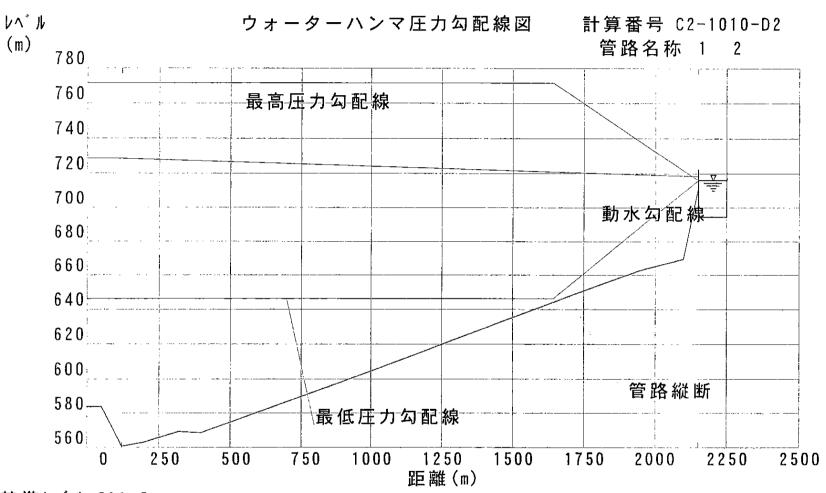
基準レベル 計算時間単位

582.500 m .03202 sec

【 管路仕様 】

管路 名称	管長	管種	管径	管厚	ヤング	上流の管路	ポンプ	サージ タンク 番号	番	終点的	管路流量 m3/m	配官 損失	开叙 損失	注刀波 往復時間	管路定数	分割
名称	m		m m	mm	率		番号	番号	号	条件	m3/m		m	sec		_
- i	119.0	FCD3	150	6.0	1.600		1 0 0	0	0	0	. 680	. 600	. 000	. 1921	59.6353	6
ż	2031.0			6. 0	1.600	1	0 0 0	0	0	1	. 680	9,600	2.300	3. 2793	59.6353	104

【 ポンプ仕様 】


	,,		弁	#								効	減衰		初期状態	鳫	
悉	÷	形	舗	番	全揚程	叶出量	出力	極	퓆	す゜ンフ゜・モータ	フライホイール		定数	揚程	吐出量		トルク
불	数	莊	鎖	导	m		kw	数	亢	kg-m2	kg-m2	min-1 %	k	m	m3/m		
í	î	Ĩ	Ĩ	Ó	146,000	. 680	30.0	2	1	. 541	. 000	2900 60	2. 1669	146.000	. 680	1,000	1.000

【 圧力線図仕様 】

管路名称 1 2

【縦断什様】

レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	管路
m	m	m	m	m	m	m	m	名称
		561.12	119.0	584.26	50.0	584. 26	. 0	- i
568.25	398.0	568.88	320.0	562.97	200.0	561.12	119.0	2
669.41	2100.0	662.83	1940.0	632.78	1450.0	614.37	1150.0	-
						711 50	2150 0	

基準レベル 582.5

Transmission Rup (D-2):
Ampstija SR — Mullopikalla SR

計算番号 C2-1010-D3

PAGE 1

Transmission Pump (D3)

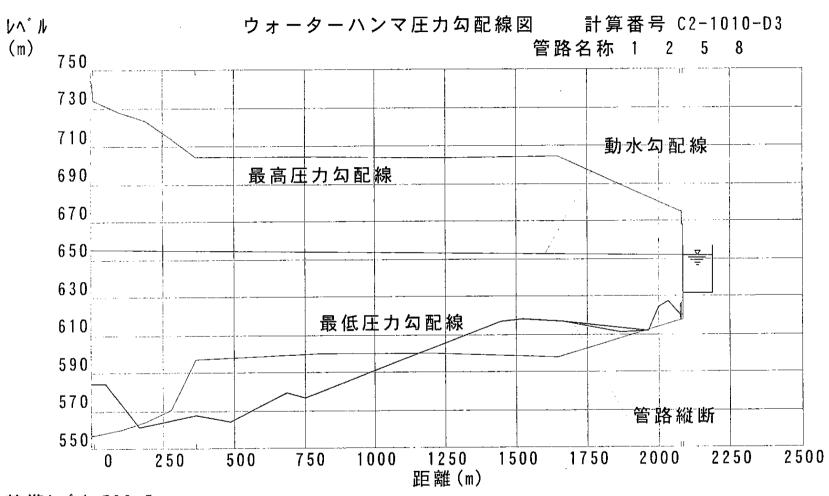
基準レベル 計算時間単位

582, 500 m . 00807 sec

【 管路仕様 】

官	路住禄	1											サージ	弁			配管	弁絞	圧力波			
쇝	多路	管長	管種	管径	管厚	ヤング	上流	の管	路	ポ	ンフ	ř	タンク	番号	終点	管路流量	配管 損失	損失	往復時間	管路定数	分割	
4	管路 ろ称	m	1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	mm	mm	<u> 38.</u>				社	号		番号	븍	条件	m3/m	m	m	sec			
7	コ 1/3* 1	100	FCD3	150	6. 0	1.600				1 -	'n	0		Ō	Ö	1, 490	. 100	. 000	. 0161	59. 6353	2	
	1	355.0	FCD3	150	6.0	1.600	1			Ò	ñ	Ŏ	Õ	ñ	Ō	1.490	. 900	. 000	. 5732	59.6353	72	
	2	355.0	FCD3	150	6. 0	1. 600	í			ň	ň	ň	ň	Ō	Ō	1.490	. 900	. 000	. 5732	59.6353	72	
	3			150		1. 600	ί.			ň	ň	ň	ň	ň	ň	1. 490	. 900	. 000	. 5732	59.6353	72	
	4	355.0	FCD3		6.0		'n			n	ň	ň	ñ	ň	ň	1. 490	2. 900	. 000	7. 8355	18.4690	972	
	5	1710.0	VP 1	160	12. 7	. 027	2			U	Ü	0	U	V	0			. 000	7. 8355	18. 4690	972	
	6	1710.0	VP 1	160	12. 7	. 027	. 3			V	U	U	U	Ū	U	1. 490	2. 900					
	7	1710.0	VP 1	160	12. 7	. 027	4			0	0	0	0	0	0	1.490	2.900	. 000	7. 8355	18. 4690	972	
	Ŕ	10.0	VP 1	160	12.7	. 027	5	6	7	0	0	0	0	0	1	1. 490	. 100	. 000	. 0458	18, 4690	6	

【 ポンプ仕様 】


ホン	7 住私	表】	44	44								効	減衰		- 初期状	態	
₩.	4	形	関	本	全揚程	叶出量	出力	極	型 /	ポンプ・モ−タ	フライホイール		定数	揚程	吐出量		トルク
番号	数	式	閉鎖	号	m	m3/m	kw	数	定	kg-m2	kg−m2	min−1 %	k	m	m3/m		
1	î	ĩ	Ĩ	Ö	73.000	1.490	37. 0	2	1	. 860	, 000	2900 67	1. 3374	73.000	1.490	1.000	1. 000

【 圧力線図仕様 】

管路名称 1 2 5 8

【縦断仕様】

レベル
ពា
567. 73
579, 34
616.86
611.70

基準レベル 582.5

Transmission Pamp (日-3):
Amputige sk - Makanuwe sk.

計算番号 C2-1010-D3

PAGE

Transmission Pump (D3)

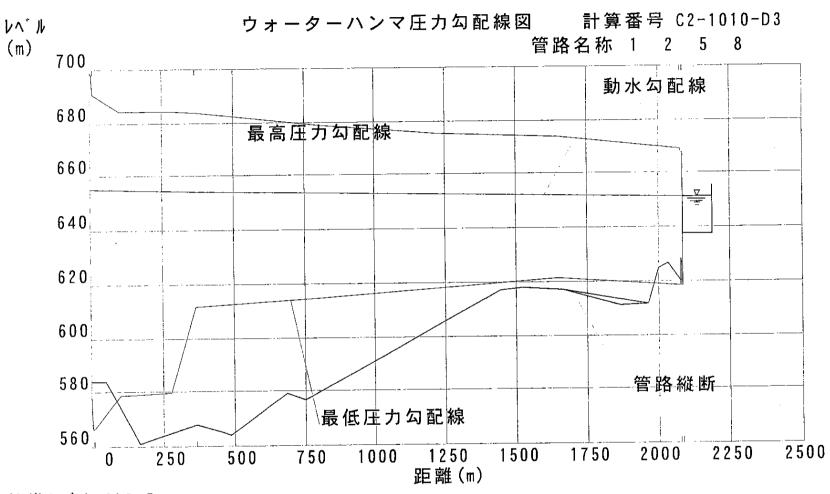
基準レベル 計算時間単位

582. 500 m .00807 sec Ely ashar (: 1570) - 12.

管	路	仕	様]

、官龄证例	₹ .]											サージ	弁			配管	弁絞	圧力波		
管路	管長	管種	管径	管厚	ヤング	上流	の管路	<u> </u>	ボ	ンフ	j'	タンク	番号	終点	管路流量	配管 損失	損失	往復時間	管路定数	分割
名称	m		m m	mm	埊			-	₹	号		番号	号	条件	m3/m	m	m	sec		
1	10.0	FCD3	150	6. 0	1,600				1	0	0	0	Ó	0	1. 490	. 100	. 000	. 0161	59.6353	2
ż	355.0	FCD3	150	6. 0	1.600	1			Ó	0	Ó	0	0	0	1, 490	. 900	. 000	. 5732	59. 6353	72
3	355.0	FCD3	150	6. 0	1. 600	i			Ō	Ō	Ō	Ò	0	0	1.490	. 900	. 000	. 5732	59.6353	72
J A	355. O	FCD3	150	6. 0	1. 600	i			ň	ň	ñ	ň	Ŏ	Õ	1. 490	. 900	. 000	. 5732	59.6353	72
4	1710.0	VP 1	160	12.7	. 027	ģ			ň	ň	ň	ň	ň	ñ	1. 490	2.900	. 000	7.8355	18.4690	972
2		VP 1			. 027	2			ñ	ň	ň	ň	ñ	ň	1. 490	2, 900	. 000	7. 8355	18, 4690	972
b	1710.0	VP 1	160	12.7		J A			n	ň	ñ	n	ň	ň	1. 490	2. 900	. 000	7. 8355	18. 4690	972
<u>f</u>	1710.0	4.1	160	12. 7	. 027	4	c	7	0	-	0	0	٨	1	1. 490	. 100	. 000	. 0458	18. 4690	
8	10.0	VP 1	160	12. 7	. 027	5	D	í	Ų	0	U	U	U	,	1. 490	. 100	. 000	. 0430	10. 4030	U

【 ポンプ仕様 】


ホンフ	111移	ŧ]	45	43								効	減衰		- 初期状態	能	
悉	<u> </u>	形	閉	番	全揚程	吐出量	出力	極	型	末。ンフ゜・モータ	フライホイール	回転数 率	定数	揚程	吐出量(回転数	トルク
兽	数	#	閉鎖	号	m	m3/m	kw	数	左	kg-m2	kg-m2	min−1 %	k	m	m3/m		
í	î	i	~ì	Ó	73,000	1.490	37, 0	2	1	. 860	15.000	2900 67	. 0725	73.000	1.490	1.000	1. 000

【 圧力線図仕様 】

管路名称 1

[縦	断	仕	様	1
---	---	---	---	---	---

縦断仕	∶様 】	1					5-4- (- mm -bit	
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	M	m
1	. 0	584. 26	10.0	584. 26				
ż	10.0	584, 26	50.0	584. 26	165.0	561.12	365.0	567.73
5	365.0	567.73	465.0	564.70	485.0	564.12	685.0	579.34
·	752.0	576, 85	1445.0	616.85	1525.0	618.03	1665.0	616.86
	1865.0	611, 23	1965.0	611.70	1665.0	616.86	1965.0	611.70
	2000.0	624.69	2035.0	626.86	2075.0	620.50		
8	2075.0	620.50	2085. O	620.50				

計算番号 C2-1010-E

PAGE

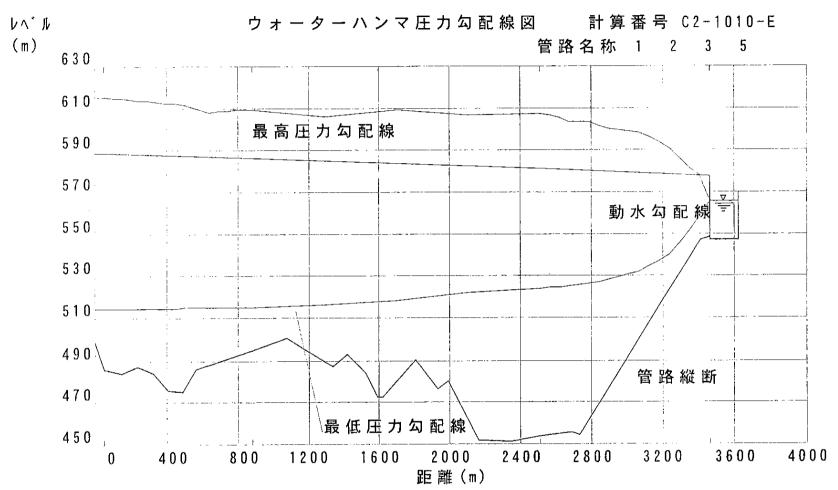
Transmission Pump (E)

基準レベル 計算時間単位

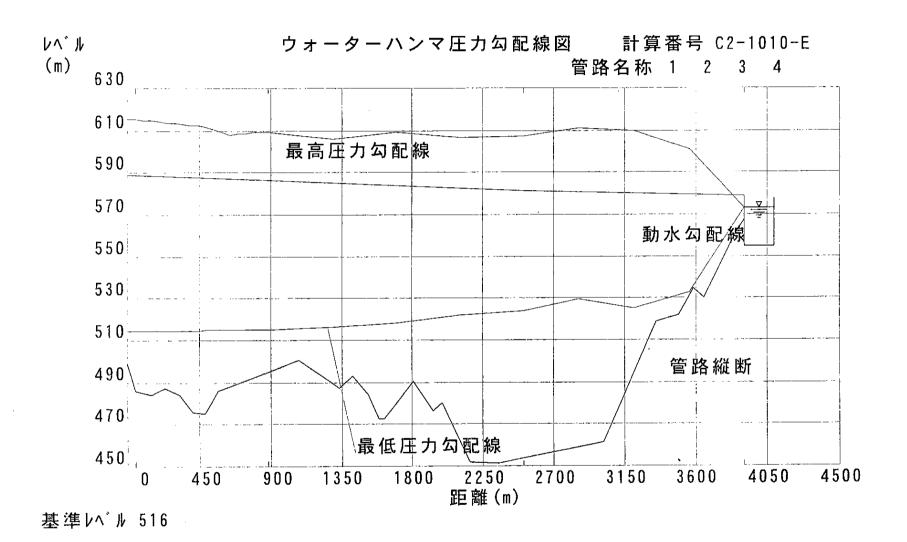
516.000 m .04570 sec

7	44.	ᇡ	4	ł 苯	7
	管.	田	11	17X]

管路 名称	管長	管種	管径 mm	管厚	ヤング 率	上流の管路	ボる	ンフ B号	ブ	ザーソ タンク 番号	开番号	終点 条件	管路流量 m3/m	配管 損失 m	开殺 損失 m	注刀波 往復時間 sec	管路定数	分割
1	50.0	FCD3	350	6. 5	1.600		1	0	0	0	0	0	5.080	. 100	. 000	. 0914	9.6740	2
2	836.0	FCD3	350	6, 5	1,600	1	0	0	0	0	0	0	5.080	2.600	. 000	1. 5283	9.6740	34
3	1624.0	FCD3	350	6.5	1.600	2	0	0	0	0	0	0	5. 080	5.100	. 000	2. 9689	9.6740	64
4	1396.0	FCD3	350	6. 5	1.600	3	0	0	0	0	0	1	3.750	2. 500	5.700	2. 5521	9.6740	56
5	949.0	FCD3	200	6.0	1.600	3	0	0	0	0	0	1	1.330	3.900	11, 800	1. 5935	32. 2567	34


【 ポンプ仕様 】

			弁	弁								効	减衰		7// 共// 1人 ///::	
番	台	形	閉	番	全揚程	吐出量	出力	極	型	ポンプ・モ ータ	フライホイール	回転数 率	定数	揚程	吐出量 回転	と トルク
号	娄女	走	鎖	号	m	m3/m	kw	数	炷	kg−m2	kg-m2	min-1 %	k	m	m3/m	
1	2	1	1	Λ	73 000	2 540	55 0	2	1	960	000	2900 68	2 0124	73 000	2 540 1 00	0 1.000


【 圧力線図仕様 】

管路名称 1 2 3 4

涎断 仕	禄】							
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	Ш	m	m	m	m	m
1	. 0	498.50	50, 0	486, 14				
2	50.0	486.14	147.0	484.10	235.0	487. 52	323.0	484, 14
	410.0	476.10	486.0	475, 32	564.0	485.85	886. 0	495.12
3	886.0	495.12	1078.0	500.46	1333.0	487. 24	1418.0	493.21
	1523.0	483.87	1586.0	473.01	1622.0	472.93	1807. 0	490, 55
	1932.0	476.41	1990.0	480.34	2160.0	451.89	2349.0	451.01
	2510.0	453.53						
4	2510.0	453.53	3013.0	461.30	3354.0	518.97	3492.0	522.09
	3586.0	534.91	3650.0	530, 52	3856.0	561.75	3906.0	567. 50
5	2510.0	453, 53	2690.0	455.90	2732.0	454.58	3409.0	547.02
_	3459 0	548.50						

基準 レベル 516

FOR Kurufoda Reservoir

計算番号 C2-1010-E1

PAGE 1

Transmission Pump (E)

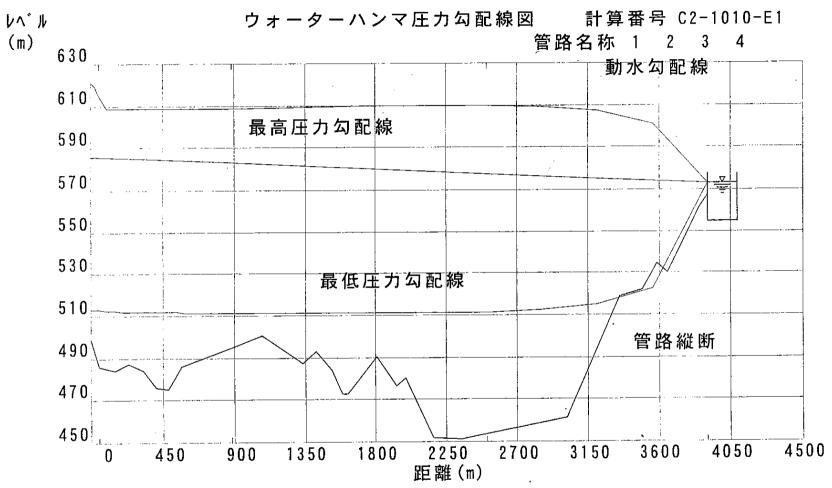
基準レベル 計算時間単位

516.000 m .04570 sec

管	路	仕	様	3

管路 名称	管長	管種	管径 mm	管厚 mm	ヤング 率	上流の管路	ポン 番	ンフ 号	f	ァーソ 番号	番号	終点 条件	管路流量 m3/m	損失	損失	注り版 往復時間 sec	管路定数	分割
1	50.0	FCD3	350	6.5	1.600		1	0	0	0	0	0	5. 250	. 100	. 000	. 0914	9.6740	2
2	836.0	FCD3	350	6. 5	1.600	1	0	0	0	0	0	0	5. 250	2.800	. 000	1. 5283	9.6740	34
3	1624.0	FCD3	350	6. 5	1,600	2	0	0	0	0	0	0	5.250	5.400	. 000	2.9689	9.6740	64
4	1396.0	FCD3	350	6.5	1.600	3	0	0	0	0	0	1	5. 250	4.700	. 000	2. 5521	9.6740	5 6

【ポンプ仕様】


			弁	弁								効	減衰		70 升1人 15	
番	台	形	閉	番	全揚程	吐出量	出力	極	型	ポンプ・モータ	フライホイール	回転数 率	定数	揚程	吐出量 回転数	トルク
号	数	定	鎖	号	m	m3/m	kw	数	左	kg-m2	kg-m2	min-1 %	k	m	m3/m	
1	2	1	1	0	70.000	2.625	55.0	2	1	. 960	. 000	2900 67	2.0240	70.000	2. 625 1. 000	1. 000

【 圧力線図仕様 】

管路名称 1 2 3 4

【絲

縦断仕	様】							
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	m	m
1	. 0	498.50	50.0	486. 14				
2	50.0	486.14	147.0	484.10	235.0	487. 52	323.0	484. 14
	410.0	476.10	486.0	475.32	564.0	485.85	886.0	495.12
3	886.0	495, 12	1078.0	500.46	1333.0	487. 24	1418.0	493.21
	1523.0	483.87	1586, 0	473.01	1622, 0	472.93	1807. 0	490.55
	1932, 0	476.41	1990.0	480.34	2160.0	451.89	2349.0	451.01
	2510.0	453.53						
4	2510.0	453.53	3013.0	461.30	3354.0	518.97	3492.0	522.09
	3586.0	534, 91	3650.0	530, 52	3856.0	561.75	3906.0	567.50
5	2510.0	453, 53	2690.0	455, 90	2732.0	454.58	3409.0	547.02
_	3459, 0	548.50						

基準レベル 516

For Kutyfoda Reservoir adjactific

計算番号 C2-1010-F

PAGE

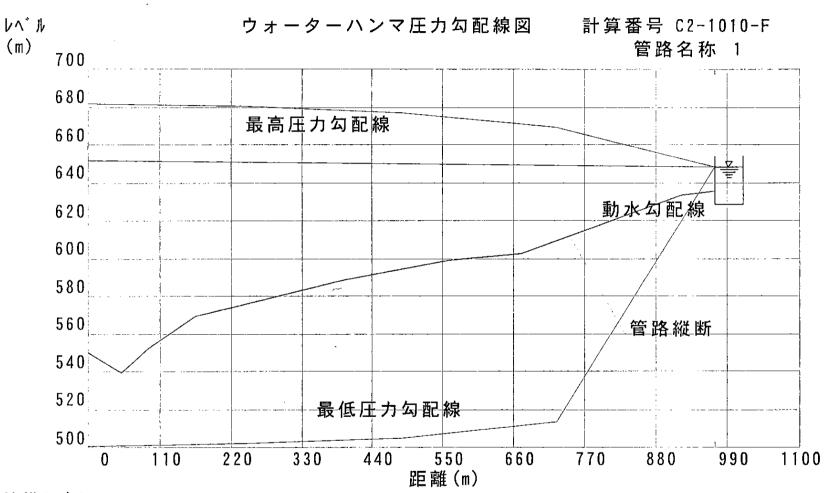
1

Transmission Pump (F)

基準レベル 計算時間単位 549, 490 m .06786 sec

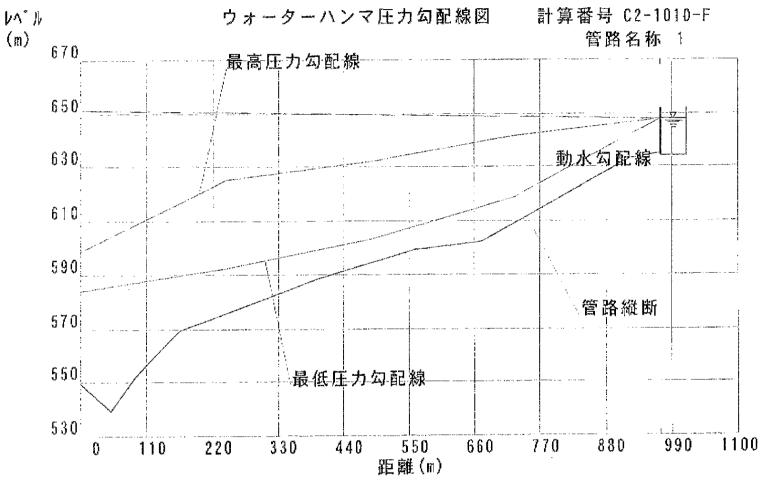
【管路仕様】

弁番号 0 配管 損失 サージ 圧力波 管路定数 タンク 終点 管路流量 損失 往復時間 分割 ヤング 上流の管路 管路 管長 番号 坙 番号 条件 m3/m sec 名称 mm m m .000 32. 2567 24 1.600 1 0 0 0 4. 100 3.400 1.6287 FCD3 200 6.0 1 970.0


【ポンプ仕様】

効 減衰 ----- 初期状態 -----弁番号 型 ポンプ・モータ 式 kg-m2 定数 吐出量 回転数 トルク 極数 フライホイール 回転数 率 番号 形式 全揚程 吐出量 出力 台数 kg-m2 min-1 % 鎖 m3/m kw k m m3/m 1. 440 2900 58 1.1767 102.000 1. 360 1.000 1.000 0 102..000 1.360 55.0 2 . 000

【 圧力線図仕様 】


管路名称 「

【 縦断仕様 】 管路 追加距離 名称 追加距離 追加距離 追加距離 レベル レベル レベル レベル m m m 552. 24 91.0 164.0 569, 40 50.0 539.49 . 0 549.50 599.15 672.0 602.37 920.0 633.36 397.0 588. 57 559.0 635.30 970.0

基準Vn' N 549.49 Travamission Pump(F):
R2. SR -> Hantana place SR.

芝江菜: 龙葵兰

基準VA'N 549.49 Transmission Purp (F):

Re SR - Hartena Mace SR

STRITED FOR (Inn Pit) - BARIA

計算番号 C2-1010-F

PAGE 1

Transmission Pump (F)

基準レベル 計算時間単位 549, 490 m . 06786 sec

【 管路仕様 】

弁綾 圧力波 #--> 損失 往復時間 管路定数 番号 終点 管路流量 管厚 ヤング mm 率 979 管路 名称 上流の管路 管長 番号 m3/mE) m sec Ш 000 1.6287 24 970.0 FCD3 200 6.0 1.600 1 0 0 4. 100 3.400

【ポンプ仕様】

----- 初期状態 -----弁番号 型 ポンプ・モータ 吐出量 回転数 トルク 出力 極 kw 数 75/4/-/ 国転数 率 定数 全揚程 吐出屋 kg-m2 min-1 % 数式 īţ kg-m2 k П m3/mm J/mm 1.440 .000 2900 58 1.1767 102.000 1.360 1.000 1.000 0 102,000 1.360 55.0 2

【サージタンク仕様】

初期 戻り管 連絡管 損失 管路 定数 ヤング 圧力波 水位 空気弁 連絡管 塞 空気量 損失 形式3 断面積 個数 長さ 管種 管径 管厚 往復時間 高さ mЗ sec ar 2 Ø m 5, 000 . 1 . 000 .0000 . 000 0 . 100 Û . 0 . 0 . 000 7. 347

【 圧力線図仕様 】

管路名称 1

【 擬断仕様 】

被断位 管路	禄」 追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	(II	Т	13	M	M:	Ø	m	U
]	. 0	549, 50	50. Ü	539.49	91. 0	552, 24	184. D	569. 40
	397.0	588. 57	559, 0	599. 15	672.0	602.37	92 0. 0	633. 36
	970.0	635, 30						

計算番号 C2-1010-H

PAGE

1

Transmission Pump (H)

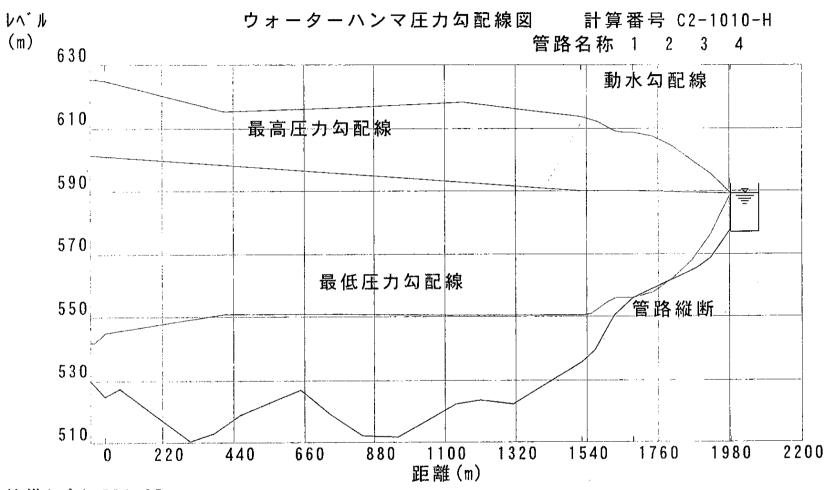
基準レベル 計算時間単位

531.250 m .04811 sec

管	路	仕	様	3

管路 名称	管長	管種	管径	管厚	ヤング 率	上流の管路		ンフ 8号	Í	サージ タンク 番号	弁 番 号	終点 条件	管路流量 m3/m	配管 損失 m	弁級 損失	上力波 往復時間 sec	管路定数	分割
1	42.0	VP 1	160	12. 7	. 027		1	0	0	0	0	0	1. 110	. 310	. 000	. 1925	18.4690	4
2	1483.0	VP 1	160	12, 7	. 027	1	0	0	0	0	0	0	1. 110	10.900	. 000	6. 7953	18.4690	140
3	160.0	VP 1	225	12.7	. 027	2	0	0	0	0	0	0	1. 110	. 220	. 000	. 8575	7. 9846	18
4	296.0	FCD3	200	6. 0	1.600	3	0	0	0	0	0	1	1. 110	. 850	. 000	. 4970	32. 2567	10

【ポンプ仕様】


,	1== 1	-	弁	弁								効	減衰		- 初期状態	焦	
番	台	形	閉鎖	番	全揚程	吐出量	出力	極	型 ;	キ゚ンプ・モータ	フライホイール	回転数 率	定数	揚程	吐出量	可転数	トルク
号	数	定	鎖	号	m	m3/m	kw	数	定	kg-m2	kg-m2	min−1 %	k	m	m3/m		
1	1	1	1	n	70 NNN	1 110	30.0	2	1	555	000	2900 53	1.8715	70, 000	1. 110	1.000	1.000

【 圧力線図仕様 】

管路名称 1 2 3 4

【 縦断仕様 】

柳面江,	恢 /	1 .3 .1	↑☆ .Le. ロビ ☆#	1 -2 11	*产 土n 四广 赤丝	1 48 11	`스 뉴스 NE 호셔	1 . 65 .1
管路	追加距離	レベル	追加距離	レベル	追加距離	レベル	追加距離	レベル
名称	m	m	m	m	m	m	m	m
İ	. 0	529.75	42.0	524.66				
2	42.0	524.66	90.0	527.14	304.0	510.40	380.0	512.86
	460.0	518.88	650, 0	526.76	738.0	519.25	840.0	512.14
	950.0	511.53	1130. 0	522.13	1210.0	523.54	1310.0	522.40
	1525.0	535, 84						
3	1525.0	535, 84	1563.0	539.32	1625.0	550.31	1685.0	555.94
4	1685.0	555.94	1875.0	565.00	1921.0	568. 42	1981.0	577. 94

基準レベル 531.25

Transmission Pup (H):

Kondadenija SR. — Kulyfamana SR.

A. INTAKE [Phase 1] 1. LOAD LIST FOR ELECTRICAL WORKS SUMMARY SHEET

Facility name	Equipment name		Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Nummbers)	Generator (kW)	Remarks
HAGODA Intake									
	1. Intake		7	4	11	298.30	6	297.10	NO.1Tr
									
									
						•			
			ļ. <u></u>						
	2.Architectural and others		 						
	Architectural (1) Architectural (1)	kW kVA	1 2		- 1	35.00	1		NO.1Tr
	Areintecturar (1)	KVA			2	4.70		4./0	NO.1Tr
•			 -						
			 						
			 						
	Total (NO.1 Transformer)	kVA				333.30		332.10	Σ1, Three Phase
	Total (NO.1 Transformer)	kVA	-			4.70	<u> </u>	4.70	Σ2, Three Phase Σ3, Single Phase
		A.Y.A.							AJ, Bligie Fliase
			 "-					· · · · · · · · · · · · · · · · · · ·	
								····	
	Total					337.53		336.33	

Total(kW)= $\Sigma 1+\Sigma 2\times 0.9+\Sigma 3\times 0.8$

A. INTAKE [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS

1. Intake													
Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer, Power (kW)	Generator (Numbers)		Remarks				
01 MH 01	Screening Hoist	1.20	J		1	1.20							
01 FS 11/21	Fine Screen	2.20	2		2	4.40	2	4.40					
01 SW 01/02	Screen Wash Pump	11.00	1	1	2	11.00	1	11.00					
01 RW 11to41	Raw Water Pump	280.00	i	1	2	280.00	1	280.00	SC is to be installed at each load.				
01 MV 11to 41	Discharge Valve	0,20	1	1	2	0.20	1	0.20					
01 DP 01/02	Sump Drainage Pump	1.50	1	1	2	1.50	1	1.50	:				
								 					
									Duty load for SC (1) 16.80				
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	7	4	11	298.30	6	297,10					

A. INTAKE [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS

2.Architectural and others

↓ Not including stand-by

tremiteetal al al	ural and others ↓ Not including stand-by								 	
Load tag No.	Load name		Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
	Architectural Power		25.00	1		1	25.00	1	25.00	
	DC Power (kVA)		1.70	1		1	1.70	1	1.70	
	UPS Power (kVA)		3.00				3.00	1	3.00	
	lors rower (kVA)		3.00		-	1	3.00	1	3.00	
	Generator Panel		10.00	1		1	10.00	1	10.00	
. <u> </u>										
										
		•		_ 					· · · ·	
	TOTAL	kW		2		2		2		Three Phase
	(Architectural Facility)	kVA kVA		2		2	4.70	2		Three Phase Single Phase

A. INTAKE [Phase 1]

3-1. Capacity Calculation Sheet for Transformer

	Duty Transformer Name	Three Phase Load Ca	apacity (Σ	P1) kVA	Load Equip	ment (ΣP2	Si	ingle Phase l	Load E	quipmen	t (ΣP3)
ndition	Duty Transformer tvame	(kW))		(kVA	.)			(kVA	.)	•
၂ ပို	NO.1 Power Transformer	333.30)		4.70						
Calculation Condition	NO.2 Power Transformer										
ථ	Calculation Formula for Power	Transformer 1									
nula	$TR = (\frac{\sum P1}{\eta \times \phi} + \sum P2 + \sqrt{R} + \sqrt{R} + \sum P2 + \sqrt{R} + \sqrt{R} + \sum P2 + \sqrt{R} $		Calculation Result	Transformer NO.1-1 Power Tra NO.1-2 Power Tra	insformer	Required		sformer Capacity i 466.01		Ren	marks
For	ΣP1~3: Total Capacity for eac	h facility in kW/kVA	ర								
tion	η : General Efficiency	0.85		ed capacity of tran	sformer	10 15	20 30				200 300
ula	φ : General Power Factor	——	in k		- i-	500	750	1000	1.5	500	2000
Capacity Calculation Formula	lpha: Surplus Factor eta : Demand Factor	1	Prop	osed Transformer	kVA		Number			Voltage	
paci			170	1 m . 6				Prima	ary	Seco	ondary
్ర				1 Transformer 2 Transformer		500					
	The upper rated transformer capacity is to	be proposed through the	capacity c	alculation.							

A. INTAKE [Phase 1]

3-2. Calculation for Transformer Voltage Regulation (Motor-starting)

Calculation Formula		Calculation Result	•
[Calculation Formula for Power Transfomer Voltage Regulation]	Item	500kVA	· -
	Max. Load Capacity (kW)	280	
① Base Load Capacity (kVA)	1. Base Load Capacity (kVA)	112,46	
K1 = Load Capacity - Max. Motor Capacity (kVA)	2. Starting Load Capacity	697.58	
	3. Active Power (kW)	374.62	
② Starting Load Capacity (kVA)	4. Reactive Power	698.58	
K2 = Max. Motor Capacity (kVA) × Starting Factor	5. Total Starting Capacity (kVA)	792.69	
	6. Voltage Regulation (%)	8.40	
③ Active Power (kW)	Result	10% > 8.40%	
$P = P1 + P2 = K1\cos\theta \ 1 + K2\cos\theta \ 2$		O.K.	
 ⑤ Total Starting Capacity (kVA) K = √(P² + Q²) ⑥ Voltage Regulation (%) ε = Total Starting Capacity			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

A. INTAKE [Phase 1]
4. Calculation Sheet for Static Capacitor (SC)

		Du	ity Load fo	r SC												
Equipment Name	For SC (1) (kW)	For SC (2) (kW)							Calculation Form	ıula						
Distribution Tank and Grit chamber	16.80	-				[Formula]										
	ļ	•			-	<u></u>	ſ	/ 					٠,			
						$Q = \frac{P \times \beta}{\eta}$	· × {	$\sqrt{\frac{1}{(\cos\theta 1)}}$)2 - 1 -	√(cos	$\frac{1}{\theta} 2)^2$	1	} +	ΣTi	ХγТ	•
			 		<u> </u>	O · Required	Static C	Capacitor Capacity in	kVar							
						P : Duty Load	d Outpu		K v di	ΣΤ: Ο	apacity	of Trans	sformer	(kVA)	F	0
						η : Efficiency			0.85						=	
						β : Demand F COS θ 1: Power Fac		hout SC at Bus Bar	0.7~ 0.8 0.85						L	
	-					COS θ 2 : Power Fac			0.95	γT:T	ransforn	ner Exci	ting Fac	etor [0.01~	0.03
					ļ			SC (1) (For NO.1 7			4.03		~		4.60	
					 	_	Result	SC (2) (For NO.2 1	ransformer)		0.00		~		0.00	
							ಷ									
					-				NO.1 SC				5		kV	'a#
								SC (1)	NO.2 SC	-					kV kV	
				_											kV	
<u> </u>	 						city	SC (2)	NO.1 SC NO.2 SC						kV kV	
				·			Zapa		NO.3 SC						kV	
							sed (_							
	 -				-		Proposed Capacity									
					ļ <u>.</u>		1									
					 								 .			
					-								*** • •	,		,
					 			Rated Capacity		10 150	15 200	20 250	25 300	30 400	50 500	75 750
								(JIS - C - 4902)		1000	200	230	300	700	500	,50
			-		<u> </u>											
Total	16.80	0.00														

A. INTAKE [Phase 1]

5. Capacity Calculation of Alternator

	Descri	ption	Value				Value	Remarks		Rated A1	ternator Ca	nacity	
e o	ΣP0 Load Capacity Cover		raido	336.33		PG 1	494.60	Romans	20	37.5	50	62.5	75
Calculation Condition		Load Name	Raw Water Pump	000100	Calculation Result	PG 2	378.00		100	150	200	250	300
Į	Pm Max. Motor	Starting Method	SOFT STERTER		Re	PG 3	368.58		375	500	625	750	875
1 2		kW	JOH T BILLIER	280.00	ou	PG 4	13.33		1000	1250	1500	2000	2500
l ifi	R Harmonic wave gener	1		0.00	lati				3125	1230	1300	2000	2500
l g	Transfer wave gener	A (kW)		0.00	lcu	PG max	494.60		3123		EM-1354		———
Ę	Unbalanced load capacity	B (kW)		0.00	Ca	Selected	750			J.	12101-1224		
	embaranced road capacity	$\frac{B}{C}$ $\frac{(kW)}{(kW)}$		0.00		(kVA)		Diesel-engin	 e Radiato	r type			ľ
	The rated alternator capacity is		f the maximum value a		follow	, ,		Dieser-engin	ic , Radiato	ттурс			
	a. Required for all load operation		t the maximum value at	mong me	IUIIOW.	ing carculatio	,111,						
	a. Required for an load operation	n idikvaj			β	. Starting	kVA for max, n			_	7.20		
	Σ. ΡΩ				C	_	tarter factor	iotot pet kw					
	$PG1 = \frac{\Sigma PO}{\eta L \times \phi L} \times \alpha \times$	Sf			_						0.25		
	// LX VL						ue to allowable				0.15		
1	h Dania d C 11 11 1	DOS TIL			R		rmonic wave ge	_			~ ^ ^]		
	b. Required from allowable vol	tage drop PGZ[KVA]			Δ]		igle phase unbal		y in kW		0.00		
		1 4 5				Where A	$A \ge B \ge C, \Delta P$	= A+B-2C					1
	$PG2 = Pm \times \beta \times C \times Xd'$	<u>1-ΔΕ</u>			U	: Single p	hase unbalance	factor U	$J = \frac{A - C}{A P}$		0.00		
		ΔΕ			_				ΔΡ				
	7	. 1 .1			fv	l : Decreas	e factor of load s	tarting			0.95		Ī
ļ	c. Required for starting the max	. motor lastly PG3 [kVA]			37		C						
E]							se factor of load						
I	$PG3 = \frac{fv1}{vG} \{ (\Sigma PO - Pm) \}$	$\times \frac{\alpha}{1 \times 1} + Pm \times \beta \times C$	<u>;</u> }		Nu	mber of Pole	,		Remarl	cs			
F _O	γG	$\eta \perp \times \phi m$			_		0~ 0.8	0.9 1					
e e					<u> </u>	2P	1 0.9		PG3, fv1				
lati	d. Required from allowable neg	ative phase current PG4 [kV	Aj		<u> </u>	Over 4P	1 0.95		PE2-2, fv				
Calculation Formula	1 /	······································	 · · ··		<u> </u>	2P	0.9 0.85		PE2-1 ,fv2				
్రి	$PG4 = \frac{1}{KG4} \sqrt{\{(0.432F)\}}$	$(1.23 \Delta P)^2 \times (1.3U + 1.23 \Delta P)^2 \times (1.3U + 1.3U$	-3U ²)}			Over 4P	0.9 0.9	0.9 0.9					
	KG4 V ·		//										
1													ľ
ŀ													
	Where												
	η L : General Effici	-											
ł	φ L : General Powe	<u> </u>											
	α : Demand Facto												
	Xd': Alternator Fac												
		acity covered by generator in			1								
		sing factor due to unbalanced	load (= $1+0.6\times(\Delta P)$	÷ Σ P0)		1.00							J
	ΔE : Allowable vol	tage drop factor		0.25									İ
		city for momentary overload o	of Alternator	1.5									- 1
L	φ m :Max. motor po	wer factor		0.85									Į

Notel: To exchange kVA load into kW, single phase load to be multiplied by 0.8, rectifier to be calculated as multiplying of rated Dc voltage and DC current, UPS to be calculated as multiplying of rated output in kVA and 0.9, and these exchanged value to be added to three phase load capacity in kW.

A. INTAKE [Phase 1]

6. Capacity Calculation of Engine

۱ ـ	Description		Value			Value	Remarks	Ge	nerator eff	iciency
Į į	PG Generator Output in kV	<u> </u>	750	It	PE 1	887.92		Rate	ηG	effi. (%)
ğ		Load name	Raw Water Pump	esn	PE 2-1	175.59		kVA	2~8P	10~18P
Ö	Pm Maximum Motor	Starting Method	SOFT STERTER	ı R	PE 2-2	132.35		20	79.0	-
E		kW	280	tion				37.5	82.5	-
Calculation Condition	ΣP0 Load Capacity Covered	by Alt. (kW)	168.165	Calculation Result	PE max	887.92		50	84.3	-
<u> </u>				alc	FEIIIAX	007.94		62.5	85.2	-
್ದ)	Selected			75	85.7	-
					(PS)	900	Diesel-engine generator, Radiator type	100	86.7	-
	Maximum value or over amon			engin	e capacity.	- -		125	87.6	-
1	a. PE1 in PS is to be derived fr	om requirement for full loa	ad running					150	88.1	-
								200	88.9	
ı	$PE1 = \frac{PG \times \phi G}{\eta G} \times 1.36$	×ЛН						250	89.5	-
	η G							300	90.0	
								375	90,6	
	b. PE2 in PS is to be derived fr							500	91.3	
1	① PE2-1 is to be derived from	based on allowable load s	tarting factor					625	91.9	-
1								750	92.3	91.7
	$PE2-1 = \text{fv2} \left\{ 0.75 \times \frac{1}{\eta'C} \right\}$	$-\times (\Sigma P0-Pm)\times \frac{\alpha}{-}$	- + - 1	xPmx	B×C× ds	x136x A H		875	92.5	92.0
	η'ο	ηL	$\varepsilon \times \eta$ 'G	. 1111.	ρ · · Ο · · ψ 3	J		1000	92.8	92.3
								1250	93.2	92.8
	② PE2-2 is to be derived from	tolerant capacity for mom-	entary overload					1500	93.4	93.1
<u>-6</u>				`				2000	93.8	93.5
1 8	$PE2-2 = \frac{\text{fv3}}{n'G \times \nu E} \times \left\{ \right.$	$(\Sigma P0-Pm)\times \frac{\alpha}{1-\alpha} +$	Pm× β×C× φs	} ×	<1.36× Δ H			2500	93.9	93.7
For	η 'G× γ Ε	ηL	p 0 po	J	1.50 –11			3125	94.0	93.8
l e										
Calculation Formula	***						a			
<u> </u>	Where						Starting method			i
్రొ		pacity covered by generato	r in kW				β×C Starter Name			
	η L : General Effic	•				0.85	7.2×1 Direct on-line			ŀ
	φL : General Powe					0.8	7.2×2 / 3 Star - delta			Ī
j	α : Demand Fact					0.8	7.2×1/3 Star - delta with resist	or		ŀ
1	φG: Generator Po					0.8	1.2 VVVF			
1		city for momentary overlo	ad of Engine			1.1	1.2 Wound - rotor type			
	_	for max. motor of per kW				7.2	7.2×0.5 Reactor 50%			
1	C: Motor starter				_	0.25	7.2×0.65 Reactor 65%			ł
1		g Power Factor for max. m	otor starting kVA,	Squirre	el cage	0.4	7.2×0.8 Reactor 80%			1
	η G : Generator eff					0.919	7.2×0.25 Auto - transformer 50			
	η 'G : Generator over					0.855	7.2×0.42 Auto - transformer 65			ľ
		ctor due to motor starting				0.9	7.2×0.64 Auto - transformer 80	% 0		
ĺ		ctor due to motor starting				1.0				
		city due to non-motor start	ing of Engine			1.0				1
<u> </u>	ΔH : Altitude com	pensauon	· · · · · ·			1.0				

A. INTAKE [Phase 1] 7. Fuel Calculation

Calculation Formula

п	Description	Value, Type		Description	Value	Remarks
iţi	PG Generator output in kVA	750	Ħ	Fuel tank	5677.6 → 6000 L × 1 set	
Б	P Engineoutput in PS	900	esı			· · · · · ·
ပိ	Engine Type	Diesel-engine, Radiator type	n R	-		
ПO	Fuel Type	Light oil	ioi			·-··
atić			ilai			·
cal			alc.			
Ę			ပိ			
0						
	Fuel Tank Volume is to be derived from	the following calculation				

a. Q [m3] Fuel Tank Volume

$$Q = \frac{P \times be \times H}{d} \times \alpha$$

be: Fuel consum	ption factor	[unit : kg/PS+h]
Output (PS)	Diesel	Gas turbine

	1	
Output (PS)	Diesel	Gas turbine
30 or less	0.23	-
over 30 and	0.22	0.5
250 or less	0.22	0.5
over 250 and	0.2	0.48
450 or less	0.2	0.48
over 450 and	0.10	0.42
750 or less	0.18	0.43
over 750	0.17	0.38

: Fuel consumption factor 0.17 kg/PS·h

: Running hour 28 hours H

830 kg/m3 : Fuel density

(A heavy oil 850kg/m3) (Light oil 830kg/m3) (Kerosine 790kg/m3)

: Surplus Factor 1.1

B. INTAKE [Phase 3] 1. LOAD LIST FOR ELECTRICAL WORKS SUMMARY SHEET

Facility name	Equipment name		Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Nummbers)	Generator (kW)	Remarks
GOHAGODA Intake				:					
 , , <u>, </u>	1. Intake		11	4	15	858.70	10	857.50	NO.1Tr
	 		 		-				
			<u> </u>					<u> </u>	
	2.Architectural and others								
	Architectural (1)	kW	1		1	45.00	1		NO.1Tr
	Architectural (1)	kVA	2		2	4.70		4.70	NO.1Tr
									
							<u> </u>	·	
						.			
	Trail (NO.1 Trains for many)	kW kVA				903.70 4.70	-		Σ1, Three Phase Σ2, Three Phase
	Total (NO.1 Transformer)	kVA				4.70		4.70	Σ3, Single Phase
		kW							Σ1, Three Phase
	Total (NO.2 Transformer)	kVA					<u> </u>		Σ2, Three Phase
		kVA							Σ3, Single Phase
				-			<u> </u>		
						0.0# 0.4		007.50	
	Total					907.93		906.73	<u>[</u>

Total(kW)= $\Sigma 1+\Sigma 2\times 0.9+\Sigma 3\times 0.8$

B. INTAKE [Phase 3] 2. LOAD LIST FOR ELECTRICAL WORKS

1. Intake

↓ Not including stand-by

1. Intake		. ,					uding stand-o	· y	
Load tag No.	Load name	Powe (kW	I	Numbers (Stand-by)		Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
01 MH 01	Screening Hoist	1	.20		1	1.20			
01 FS 11/21	Fine Screen	2	,20	2	2	4.40	. 2	4.40	
01 SW 01/02	Screen Wash Pump	11	.00	1	2	11.00	1	11.00	
01 RW 11to41	Raw Water Pump	280	.00.	1	4	840.00	3	840.00	SC is to be installed at each load.
01 MV 11to 41	Discharge Valve	C	.20	1	4	0.60	3	0.60	
01 DP 01/02	Sump Drainage Pump	1	.50	1	2	1.50	1	1.50	
		· 							
							<u> </u>		
· · · · · · · · · · · · · · · · · · ·									
- · · - · · · · · · · · · · · · · · · ·									
							 		Duty load for SC (1)
			i	1					16.80
	TOTAL (Distribution Touls and Cait Chambon Facility)	kW	1:	4	15	858.70	10	857.50	
	(Distribution Tank and Grit Chamber Facility)	kVA							
							<u> </u>		<u></u>

2. LOAD LIST FOR ELECTRICAL WORKS

2.Architectural and others

Not including stand-by

Architectural a				у						
Load tag No.	Load name		Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
	Architectural Power		25.00	1		1		1	25.00	
	DC Power (kVA)		1.70	I			1.70	l †	1.70	
	UPS Power (kVA)	· · · · · · · · · · · · · · · · · · ·	3.00	1		1	3.00	1	3.00	
· ·								<u> </u>		
	Generator Panel		10.00	2		2	20.00	2	20.00	
										
				-			· ··- ··- · ·		 	
			:	·						
						<u> </u>				
				 	<u> </u>					
	TOTAL	kW		2		2	45.00	2	45.00	Three Phase
	(Architectural Facility)	kVA		2		2	4.70	2		Three Phase
j		kVA								Single Phase
	L									L

3-1. Capacity Calculation Sheet for Transformer

ndition	Duty Transformer Name	Three Phase Load Cap	oacity (ΣP	1) kVA I	Load Equip	ment (Σ P2) Sin	Single Phase Load Equipment ($\Sigma P3$)				
	Duty Transformer Name	(kW)	(kW)			(kVA)				(kVA)		
သို	NO.1 Power Transformer			4.70								
Calculation Condition	NO.2 Power Transformer											
ŭ	[Calculation Formula for Power	Transforman										
Capacity Calculation Formula	$TR = (\frac{\sum P1}{\eta \times \phi} + \sum P2 + \sqrt{\frac{1}{\eta} \times \phi} + \sum P2 + \sqrt{\frac{1}{\eta} \times \phi}$ $R : Required Transformer$ $\sum P1 \sim 3 : Total Capacity for each$	Capacity in kVA	I 124 ⊦	Transformer NO.1-1 Power Tra NO.1-2 Power Tra	nsformer	Required	Transformer 1255.5		kVA	Res	marks	
on F	η : General Efficiency	0.85	Rated	capacity of trans	sformer	10 15	20 30	50 75	100	150 2	200 300	
ılati	φ : General Power Factor	0.85	in kVA	A		500	750	1000	150	00	2000	
alcı	α : Surplus Factor	1	Propos	sed Transformer								
ζC	β: Demand Factor	1			kVA		Number	I	Rated V	Voltage		
paci			<u> </u>					Primar	•	Seco	ondary	
C_{aj}				Transformer		1500	<u>×1</u>	33000		41		
			NO.2	Transformer								

3-2. Calculation for Transformer Voltage Regulation (Motor-starting)

Calculation Formula		Calculation Result	
[Calculation Formula for Power Transfomer Voltage Regulation]	Item	1500kVA	-
	Max. Load Capacity (kW)	280	
① Base Load Capacity (kVA)	1. Base Load Capacity (kVA)	1112.46	
K1 = Load Capacity - Max. Motor Capacity (kVA)	2. Starting Load Capacity	697.58	
	3. Active Power (kW)	1224.62	
② Starting Load Capacity (kVA)	4. Reactive Power	1225.36	
K2 =Max. Motor Capacity (kVA) × Starting Factor	5. Total Starting Capacity (kVA)	1732.40	
	6. Voltage Regulation (%)	6.12	
③ Active Power (kW)	Result	10% > 6.12%	
$P = P1 + P2 = K1\cos\theta \ 1 + K2\cos\theta \ 2$		O.K.	
 ⑤ Total Starting Capacity (kVA) K = √(P² + Q²) ⑥ Voltage Regulation (%) ε = Total Starting Capacity Transformer Z (%) 			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		

B. INTAKE [Phase 3]
4. Calculation Sheet for Static Capacitor (SC)

	L	D	uty Load for	r SC												
Equipment Name	For SC (1) (kW)	For SC (2) (kW)							Calculation Form	nula						
Distribution Tank and Grit chamber						[Formula]										
						$Q = \frac{P \times \beta}{\eta}$	- × {	(COS θ 1) ² · 1 · \	$\sqrt{\frac{1}{\left(\cos\theta\ 2\right)^2}}$	1	+	ΣTi >	〈γT		
						P: Duty Loa η: Efficienc β: Demand	d Out p t y Factor		0.85 0.7~ 0.8	ΣT: Capacity	of Trans	former	(kVA)	15		
						COS θ 1 : Power Fa COS θ 2 : Power Fa			0.85 0.95	γ T : Transfor	ner Exci	ting Fac	etor 0.	.01~ (
		-		 	1	1		SC (1) (For NO.1	(ransformer)	19.03		~	49	.60		
					<u> </u>		불	SC (2) (For NO.2		0.00	-	~		00		
							Result									
	-					!			NO.1 SC			5		kVa		
								SC (1)	NO.2 SC			30		kVa		
							l		- 170 : 44					kVa		
	 			ļ		-	Æ	SC (2)	NO.1 SC NO.2 SC				<u> </u>	kVa:		
				<u> </u>			Proposed Capacity	50 (2)	NO.3 SC					kVa		
) 100 100 100 100 100 100 100 100 100 10	1								
							sodo		ļ				· -			
							P.				· · · · · · · · ·					
																
	 -									10 15	20	25	30	50		
	ļ							Rated Capacity		150 200	250	300		500		
			-					(JIS - C - 4902)	 	1000						
	ļ															
Total	16.80	0.00														

5. Capacity Calculation of Alternator

	The second	to at a se	77-1				17-1	D 1		D.4. 1.41		· · · · · ·	
Ę	Descr.		Value	006.55		DG 1	Value	Remarks		Rated Alto			
Calculation Condition	Σ P0 Load Capacity Cover	T	777	906.73	昔	PG I	1333.43		20	37.5	50	62.5	75
μú	n	Load Name	Raw Water Pump		Calculation Result	PG 2	378.00		100	150	200	250	300
ပိ	Pm Max. Motor	Starting Method	SOFT STERTER		L E	PG 3	868.58		375	500	625	750	875
.5		kW		280.00	atio	PG 4	13.33		1000	1250	1500	2000	2500
lat	R Harmonic wave gene	-		0.00) jij	PG max	1333.43		3125				
1 3		A (kW)			ja l					JE	M-1354		
ပိ	Unbalanced load capacity	B (kW)				Selected	750						
L	<u>_</u>	C (kW)				(kVA)		Diesel-engin	e, Radiato	r type			
	The rated alternator capacity is	to be proposed on the basis of	f the maximum value a	mong the	follow	ing calculatio	n.						
1	a. Required for all load operation	on PG1 [kVA]											
1					β	: Starting	kVA for max. n	notor per kW		7	.20		
	$PG! = \frac{\sum PO}{\eta L \times \phi L} \times \alpha \times$. DE			C	: Motor s	tarter factor			0	.25		
	$\eta L \times \phi L \wedge \alpha \wedge$. 31			K	34 : Factor d	lue to allowable	negative pha	se current	0	.15		
					R	: Total ha	irmonic wave ge	nerating load	l in kW				
	b. Required from allowable vol	tage drop PG2 [kVA]			Δ		ngle phase unbal			0	.00		
	•						A≧B≧C,ΔP		,				
1		1-ΔE							. A-C				
	$PG2 = Pm \times \beta \times C \times Xd^{\dagger}$	ΔE			U	: Single p	hase unbalance	factor U	$J = \frac{A-C}{\Delta P}$	0	.00		
					fv	1 · Decreas	e factor of load	starting	_	0	.95		
	c. Required for starting the max	c motor lastly PG3 [kVA]			-,	. Doctors	c accor of four	, and the first of		ــــــ	.,,		
	or resignation for balancing the man	. motor moto, 105 [k+11]			Value of decrease factor of load starting (fv)								
ula	fv1 .	α.				mber of Pole		ΣΡΟ					
Ę	$PG3 = \frac{\text{fv1}}{\gamma G} \{ (\Sigma P0 - Pm) \}$	$p \times \frac{\alpha}{n \times \beta} + Pm \times \beta \times C$;}		ı vu	moer or role	0~ 0.8	0.9 1	Remar	ks			
F_0	/ 3	η 2. · ψ III			\vdash	2P			PG3, fv1				
Calculation Formula	d. Required from allowable neg	rative phase overent DGA (IsV	'A1		\vdash	Over 4P			PE2-2, fv	2			
l ta	d. Required from anowable neg	gative phase current 104 [xv	A.J		\vdash	2P	0.9 0.85		PE2-1, fv2				
<u>ੂ</u>	1 /					Over 4P	0.9 0.83	0.9 0.9	FEZ-1,1V	'			
Ü	$PG4 = \frac{1}{KG4} \sqrt{\{(0.4321)\}}$	R) 2 + (1.23 Δ P) 2 × (1-3U+	-3U²)}		<u> </u>	O V C1 +1	0.5	0.5 0.5	·····				
	Κ04 γ												
	Where												
1	η L : General Effic	· —											
1	φ L : General Powe												
	α : Demand Fact												
I	Xd': Alternator Fa												
	-	pacity covered by generator in	•	* *	1								
1	Sf : Current incre	asing factor due to unbalanced	$1 \log d (= 1+0.6 \times (\Delta P)$	÷ΣP0)		1.00							
I	ΔE: Allowable vo	ltage drop factor		0.25		· · · · · · · · · · · · · · · · · · ·							
	γG: Tolerant capa	city for momentary overload	of Alternator	1.5									
	φm :Max. motor po	wer factor		0.85									

Note1: To exchange kVA load into kW, single phase load to be multiplied by 0.8, rectifier to be calculated as multiplying of rated Dc voltage and DC current,

UPS to be calculated as multiplying of rated output in kVA and 0.9, and these exchanged value to be added to three phase load capacity in kW.

6. Capacity Calculation of Engine

	Desc	ription		Value			Value	Remarks	Ger	nerator eff	iciency
]. [].	PG	Generator Output in kV	Ą	750	=	PE 1	887.92		Rate		effi. (%)
Į į			Load name	Raw Water Pump	nsa	PE 2-1	463.80		kVA	2~8P	10∼18P
Ŗ	Pm	Maximum Motor	Starting Method	SOFT STERTER	8	PE 2-2	501.09		20	79.0	-
Ĕ			kW	280	ŢŌ.				37.5	82.5	-
Calculation Condition	ΣΡΟ	Load Capacity Covered	by Alt. (kW)	453.365	Calculation Result		207.00		50	84.3	-
<u>E</u>				 	alc	PE max	887.92		62.5	85.2	-
ਫ਼ੌ					0	Selected			75	85.7	
-						(PS)	900	Diesel-engine generator, Radiator type	100	86.7	
	Max	imum value or over amon	g the following calculation	n is to be proposed	as eng	ine capacity.		<u> </u>	125	87.6	-
	a. PE	El in PS is to be derived fr	om requirement for full lo	ad running	Ü				150	88.1	
			•						200	88.9	
		PG× φ G							250	89.5	-
	PEI	$1 = \frac{PG \times \phi G}{\eta G} \times 1.36$	×ΔH						300	90.0	_
									375	90.6	
1	b. PE	E2 in PS is to be derived fr	om requirement of max. n	notor starting lastly					500	91.3	
1		E2-1 is to be derived from							625	91.9	
				-					750	92.3	91.7
	l		α	1)		875	92.5	92.0
1	PE2	$-1 = \text{fv2} \left\{ 0.75 \times \frac{1}{\eta' \text{G}} \right.$	$\times (\Sigma P0-Pm) \times \frac{\pi}{n} L$	$\epsilon + \frac{1}{\epsilon \times n} G$	×Pm×	β×C×φs	×1.36×ΔH		1000	92.8	92.3
	į	, -	., –	, -		•	,		1250	93.2	92.8
	(2) PI	E2-2 is to be derived from	tolerant capacity for mon	nentary overload					1500	93.4	93.1
			totormic oupmoney for mon						2000	93.8	93.5
ula		. fv3)				2500	93.9	93.7
Ē	PE2-	$-2 = \frac{\text{fv3}}{n \text{G} \times \nu \text{E}} \times \left\{ \right. $	$(\Sigma P0-Pm) \times \frac{1}{n L} +$	$Pm \times \beta \times C \times \phi s$,	<1.36×ΔH			3125	94.0	93.8
Ä		, - , - (–		,				3.20		
Calculation Formula											
<u> </u>		Where						Starting method			
arc		ΣP0 : Total load car	pacity covered by generate	or in kW				β×C Starter Name			
		η L : General Effic	, ,				0.85	7.2×1 Direct on-line			
		φ L : General Powe	•				0.8	7.2×2 / 3 Star - delta			
		α : Demand Fact					0.8	7.2×1/3 Star - delta with resis	tor		
1		φG : Generator Po					0.8	1.2 VVVF			
ı			city for momentary overlo	and of Engine			1.1	1.2 Wound - rotor type			
			for max, motor of per kW				7.2	7.2×0.5 Reactor 50%			
l l		C : Motor starter	-				0.25	7.2×0.65 Reactor 65%			i
			g Power Factor for max. m	notor starting kVA	Sanir	rel core	0.4	7,2×0.8 Reactor 80%			1
		η G : Generator eff		lotor starting x v A ,	, эquu.	ici cage	0.919	7.2×0.25 Auto - transformer 50	10%		1
		η 'G : Generator en					0.855	7.2×0.42 Auto - transformer 65			!
			tor due to motor starting				0.833	7.2×0.42 Auto - transformer 80			l
			-				1.0	7.2.0,07 Auto - transformer 60	~~		1
			tor due to motor starting	al CTl-							
			city due to non-motor star	ring of Engine			1.0				
Ц.		ΔH : Altitude comp	ensation	_			1.0				

B. INTAKE [Phase 3] 7. Fuel Calculation

	Description	Value, Type		Description	Value	Remarks
Calculation Condition	PG Generator output in kVA	750	##	Fuel tank	5677.6 → 6000 L × 2 sets	
ğ	P Engineoutput in PS	900	Calculation Result		or 12000 L × 1 set	
1 8	Engine Type	Diesel-engine, Radiator type	Ä.			
Ιğ	Fuel Type	Light oil	jo			· · · · · · · · · · · · · · · · · · ·
Etic			<u> </u>			
Ιä			걸			
ğ			ű			
L						
	Fuel Tank Volume is to be derived from	the following calculation.			·-	
1						ļ
1	a. Q [m3] Fuel Tank Volume					
	$Q = \frac{P \times be \times H}{d} \times \alpha$					
	$Q = \frac{1}{d} \wedge \alpha$					
1						
	be: Fuel consumption factor [unit:		be	: Fuel consumption factor	0.17 kg/PS·h	
	Output (PS) Diesel Gas tu					
	30 or less 0.23	<u> </u>	H	: Running hour	28 hours	
1	over 30 and 0.22	0.5				
탐	250 of less		d	: Fuel density	830 kg/m3	l l
ΙĒ	over 250 and 0.2	0.48		(A heavy oil 850kg/m3)		
F	450 or less			(Light oil 830kg/m3)		
E E	over 450 and 0.18	0.43		(Kerosine 790kg/m3)		
Calculation Formula	750 Of less			. Complete Paratau		
<u> </u>	over 750 0.17	0.38	α	: Surplus Factor	1.1	
్రొ						
1						
						ļ
1						
						

C. WTP [Phase 1]
1. LOAD LIST FOR ELECTRICAL WORKS
SUMMARY SHEET

Facility name	Equipment name		Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Nummbers)	Generator (kW)	Remarks
	1. Flocculation & Sedimentation Basins		13	0	13	5.00	13	5.00	
					-	5.00			NO.1Tr
						0.00			NO.2Tr
	2.Filter Units		26	4	30	99.90	27	154.90	
						154.90			NO.1Tr
						0.00			NO.2Tr
	3.Clear Water Pump Station		9	8	17	805.10	9	805.10	
						805.10			NO.1Tr
						0.00			NO.2Tr
	4.Chemical Building		10	3	13	17.45	10	17.45	
						17.45			NO.1Tr
					<u>-</u>				NO.2Tr
	5.Backwash Recovery Facility		1	1	2		1	30.00	,-
						30.00			NO.1Tr
									NO.2Tr
	8. Architectural and others	1							
	Architectural (1)	kW	1		1	80.00	1		NO.1Tr
	Architectural (2)	kW	1		1	30.00	1	30.00	NO.1Tr
	Architectural (3)	kW							NO.2Tr
	Generator-1	kW	1		1	20.00	1	20.00	NO.1Tr
	Generator-1	kW							NO.2Tr
	UPS	kVA	1		1	33.00	1	'	NO.1Tr
		kW				1142,45			Σ1, Three Phase
	Total (NO.1 Transformer)	kVA	ļ <u>.</u>			33.00		33.00	Σ2, Three Phase
		kVA							Σ3, Single Phase
		kW	ļ						Σ1, Three Phase
	Total (NO.2 Transformer)	kVA							Σ2, Three Phase
		kVA			- · ·				Σ3, Single Phase
	Total			[i	1172.15		1172.15	

Total(kW)= $\Sigma 1+\Sigma 2\times 0.9+\Sigma 3\times 0.8$

C. WTP [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS 1. Flocculation & Sedimentation Basins

Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)		Commer, Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
06 SC 11/21	Sludge Collector	0.75	4		4	3.00	4	3.00	
06 MV 11to24	De-sludge Valve	0.20	8		8	1.60	8	1.60	
06 SP 01	Sampling Pump	0.40	1		1	0.40	1	0.40	
					· ·-				
									· · · · · · · · · · · · · · · · · · ·
					<u> </u> 				
									Duty load for SC (I)
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	13		13	5.00	13	5.00	5.00 Duty load for SC (2)

C. WTP [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS 2.Filter Units

Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
07 MG 11to41	Inflow Gate	0.40	4		4	1.60	4	1.60	
07 MG 12 to 42	Backwash Drainage Gate	0.40	4		4	1.60	4	1.60	
07 MV 11to41	Effluent Valve	0.20	4		4	0.80	4	0.80	
07 MV 12to42	Backwash Valve	0.20	4		4	0.80	4	0.80	
07 MV 13to43	Air Scour Valve	0.20	4		4	0.80	4	0.80	
07 BP 11to31	Backwash Pump	18.50	2	1	3	37.00	2	37.00	
07 AB 11to21	Air Blower	55.00	1	1	2	55.00	2	110.00	
07 DP 01/02	Sump Drainage Pump	1.50	1	1	2	1.50	1	1.50	
07 MM 11	Lime Mixer	0.40	1		1	0.40	1	0.40	
07 LP 11/21	Lime Feed Pump	0,40	1	1	2	0.40	1	0.40	
									
						· - -			
					· · · · -				
				,					Duty load for SC (1) 154.90
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	26	4	30	99.90	27	154.90	Duty load for SC (2)

C. WTP [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS 3.Clear Water Pump Station

Load name	Power	١., ,	1 :	ł	Commer.	1		1
Arven MEMIV	(kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Power (kW)	Generator (Numbers)		Remarks
ransmission Pump (A-1)	450.00	1	1	2	450.00	1	450.00	
			<u> </u>					SC is to be installed at each load.
ransmission Pump (A-2)	90.00	1	1	2	90.00	1	90.00	SC is to be installed at each load.
ransmission Pump (A-3)	250.00	1	1	2	250.00	1	250.00	SC is to be installed at each load.
ansmission Pump (A-4)	250.00							SC is to be installed at each load.
ischarge Valve (A-1)	0.20	1	1	2	0.20	1	0.20	SO IS to CO Instance in Cash loud.
ischarge Valve (A-2)	0.20	1	1	2	0.20	1	0.20	<u></u>
ischarge Valve (A-3)	0.20	1	1	2	0.20	1	0.20	
ischarge Valve (A-4)	0.20							
unp Drainage Pump	1.50	1	1	2	1.50	1	1.50	
ant Water Supply Unit	7.50	. 1		1	7.50	1	7.50	
alorination Booster Pump	5.50	1	1	2	5.50	1	5,50	
								D . 1 . 10 . 00 (1)
								Duty load for SC (1) 15.10
TOTAL	kW	9	8	17	805.10	9	805.10	Duty load for SC (1)
(Distribution Tank and Grit Chamber Facility)	kVA	- · · · · · · · · · · · · · · · · · · ·						
a	Insmission Pump (A-2) Insmission Pump (A-3) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insharge Valve (A-1) Insharge Valve (A-2) Insharge Valve (A-3) Insharge Valve (A-4) Inp Drainage Pump Int Water Supply Unit Instinct Booster Pump TOTAL	Insmission Pump (A-1) Insmission Pump (A-2) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-4) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-2) Insmission Pump (A-2) Insmission Pump (A-2) Insmission Pump (A-2) Insmission Pump (A-2) Insmission Pump (A-2) Insmission Pump (A-3) Insmission Pump (A-2) Insmission Pump (A-2) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-3) Insmission Pump (A-4)	Insmission Pump (A-1) 450.00 1 Insmission Pump (A-2) 90.00 1 Insmission Pump (A-3) 250.00 1 Insmission Pump (A-4) 250.00 1 Insmission Pump (A-4) 0.20 1 Incharge Valve (A-1) 0.20 1 Incharge Valve (A-2) 0.20 1 Incharge Valve (A-3) 0.20 1 Incharge Valve (A-4) 0.20 1 Insmission Pump Institute Instit	Insmission Pump (A-1)	Insmission Pump (A-1)	Insmission Pump (A-1)	Insmission Pump (A-1)	Insmission Pump (A-1)

C. WTP [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS 4. Chemical Building

4. Chemical Dunc	···· <u>B</u>						uding stand-o	,	·		
Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks		
10 MM 11/21	Alum Mixer	1.50	2		2	3.00	2	3.00			
10 AP 11/21	Alum Pump	0.40	1	1	2	0.40	1	0.40			
10 MM 11/21	Lime Mixer	2.20	2		2	4.40	2	4.40			
10 LP 11/12	Lime Pump	5.50	1	1	2	5.50	1	5.50			
10 LP 21/22	Lime Feed Pump	0.40	1	1	2	0,40	1	0.40			
10 EF 11	Exhaust Fan	0.75	1		1	0.75	1	0.75			
10 MC 01	Chemical Crane	1.50	1		1	1.50	1	1.50			
10 MC 02	Chemical Crane	1.50	1		1	1.50	1	1.50			
				:							
				:							
									Duty load for SC (1) 17.45		
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	10	3	13	17.45	10	17.45	2210		

C. WTP [Phase 1]
2. LOAD LIST FOR ELECTRICAL WORKS
5.Backwash Recovery Facility

Generator (kW) 1 30.00	Remarks
1 30.00	
	1
	
	
	ļ
-	
	Duty load for SC (1)
1 30.00	30.00
	1 30.00

C. WTP [Phase 1] 2. LOAD LIST FOR ELECTRICAL WORKS 6. Architectural and others

					,			iding stand-c		,
Load tag No.	Load name		Power (kW)	Numbers (Duty)	Numbers (Stand-by)		Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
A7-001	Architectural Power-1	1	80.00	1		1	80.00	I	80.00	
A7-001	Architectural Power-2		30.00	1		I	30.00	ï	30.00	
A7-001	Architectural Power-3									
A7-004	Generator Panel		20.00	1		1	20.00	1	20.00	
A7-005	UPS Power (kVA)		33.00	I		1	33.00	1	33.00	
A7-006	DC Power for Generator-starter (kVA)					<u>-</u>				
· · · · · · · · · · · · · · · · · · ·		·····								
		· · · · · · · · · · · · · · · · · · ·								
										
								· · · · · · · · · · · · · · · · · · ·		
		• •	· · · · · · · · · · · · · · · · · · ·							<u> </u>
				-			<u> </u>	<u> </u>		
	TOTAL	kW	·	5		5	130.00	5		Three Phase
	(Architectural Facility)	kVA		1		1	33.00	1		Three Phase
		kVA								Single Phase

C. WTP [Phase 1]

3-1. Capacity Calculation Sheet for Transformer

[Duty Transformer Name	Three Phase Load Capa	city (Σ	P1) kVA	Load Equip	ment (Σ	P2)	Single	Phase L	Single Phase Load Equipment (Σ P3					
ndition	Buty Transformer Name	(kW)			(kVA	.)		(kVA)							
၂ပို	NO.1 Power Transformer	1142.45			33.00				0.00						
Calculation Condition	NO.2 Power Transformer	0.00	 .		0.00					0.00					
	[Calculation Formula for Power	Transformer]		Transformer	Name	Require	ed Transfor	mer Ca	pacity in	kVA	Re	marks			
ormula	$\mathbf{TR} = (\frac{\sum \mathbf{P1}}{\eta \times \phi} + \sum \mathbf{P2} + \sqrt{\mathbf{P2} + \sqrt{\mathbf{P2} + \sqrt{\mathbf{P2} + \mathbf{P2} +$	Calculation Result	NO.1-1 Power Tra	nsformer	Require	16	14.25 0.00	pacity in		KC	marks				
lation F	η : General Efficiency ϕ : General Power Factor	0.85 0.85	Rate in k	d capacity of tran A	sformer	10 1	5 20 750		50 75 1000	100		200 300			
Capacity Calculation Formula	lpha: Surplus Factor eta : Demand Factor	1	NO.	osed Transformer Transformer	kVA	2000	Number	×1	Prima	Rated V		ondary 415			
	The upper rated transformer capacity is to	he moneyed through the co		2 Transformer											

C. WTP [Phase 1]

3-2. Calculation for Transformer Voltage Regulation (Motor-starting)

Calculation Fo	rmula		Calculation Result	
[Calculation Formula for Power Transfome	r Voltage Regulation]	Item	2000kVA	
		Max. Load Capacity (kW)	280	
① Base Load Capacity (kVA)		1. Base Load Capacity (kVA)	1612.46	
K1 =Max. Load Capacity - Motor Cap	pacity (kVA)	2. Starting Load Capacity	697.58	
		3. Active Power (kW)	1649.62	
② Starting Load Capacity (kVA)		4. Reactive Power	1488.75	<u> </u>
K2 =Max. Motor Capacity (kVA) × 3	Starting Factor	5. Total Starting Capacity (kVA)	2222.08	
		6. Voltage Regulation (%)	5.89	
Active Power (kW)		Result	10% > 5.89%	
$P = P1 + P2 = K1\cos\theta \ 1 + K2\cos\theta \ 2$			O.K.	
$Q = Q1 + Q2 = K1\sin\theta \ 1 + K2\sin\theta \ 2$ $\boxed{5} \text{ Total Starting Capacity (kVA)}$ $K = \sqrt{(P^2 + Q^2)}$ $\boxed{6} \text{ Voltage Regulation (\%)}$ $\epsilon = \frac{\text{Total Starting Capacity}}{\text{Transformer Capacity}} \times$	Transformer Z (%)			
2000kVA	·· - ····			
η : General Efficien 0.85				
$\cos \theta$ 1 :Power Factor 0.85	(at steady)			
$\cos \theta$ 2 :Power Factor 0.40	(at motor starting)			
Starting Factor 1.80				
Transfomer Z (%) 5.30				
Voltage Ragulation 10%≧				

C. WTP [Phase 1]
4. Calculation Sheet for Static Capacitor (SC)

			ity Load for	SC								•			
Equipment Name	For SC (1) (kW)	For SC (2) (kW)						Calculation Form	ula						
1. Flocculation & Sedimentation Bas	5.00	0.00			 [Formula]		·								
2.Filter Units	154.90	0.00			$Q = \frac{P \times \beta}{n}$	\times	$\sqrt{\frac{1}{(\cos \theta)}}$		1 (000 0)		· - 1	+	ΣΤ	ï×γΤ	Γ.
3.Clear Water Pump Station	15.10	0.00							(COST.	۷)		j			
4.Chemical Building	17.45				P: Duty Load η: Efficiency	l Outpi	Capacitor Capacity in it in kW	0.85	ΣT: Cap	acity (of Trans	sformer	(kVA)		2000
5.Backwash Recovery Facility	30.00				β : Demand F COS θ 1: Power Fac COS θ 2: Power Fac	tor wit		0.7~ 0.8 0.85 0.95	γT: Tra	nsform	ier Exci	iting Fa	etor	0.01~	0.0
						Result	SC (1) (For NO.1 SC (2) (For NO.2		7	3.32		~		120.94	
							SC (1)	NO.1 SC NO.2 SC NO.3 SC				50 25 15		kV kV	
						Capacity	SC (2)	NO.1 SC NO.2 SC NO.3 SC					·	kV kV kV	ar
						Proposed									
							Rated Capacity (JIS - C - 4902)		10 150 1000	15 200	20 250	25 300	30 400	50 500	75
Total	222.45	0.00			 Note: 1. SC is to be installed 2. SC(5) is to be install										

C. WTP [Phase 1]

5. Capacity Calculation of Alternator

		Descrip	ption	Value				Value	Remarks		Rated A	lternator Ca	apacity	
Calculation Condition	ΣΡΟ	Load Capacity Covere	ed by Alt. (kW)		1172.15	<u>+</u>	PG 1	1551.38		20	37.5	50	62.5	75
Į į			Load Name	Raw Water Pump		[ns	PG 2	607.50		100	150	200	250	300
<u>5</u>	Pm	Max. Motor	Starting Method	SOFT STERTER	•	٦.	PG 3	1082.72		375	500	625	750	875
l g			kW		450.00	tior	PG 4	13.33		1000	1250	1500	2000	2500
lati	R	Harmonic wave gener	ating load		0.00	ırıla	PG max	1551.38		3125	ĺ			
lon l			A (kW)		4.00	Calculation Result	го шах	1331.36			J	EM-1354		
రొ	Unbalan	ced load capacity	B_ (kW)		4.00	~	Selected	2000						
			C (kW)		4.00		(kVA)	×1set	Diesel-engin	ne , Radiato	r type			
	a. Requi PG1 = b. Requi PG2 = c. Requi PG3 = d. Requi	red for all load operation $\frac{\Sigma P0}{\eta L \times \phi L} \times \alpha \times \frac{\Sigma P0}{\eta L \times \phi L} \times \alpha \times \frac{\Sigma P0}{\eta L \times \phi L} \times \alpha \times \frac{\Sigma P0}{\eta L \times \phi L} \times \frac{\Sigma P0}{\eta L} \times \frac$	Sf Eage drop PG2 [kVA] $ \frac{1-\Delta E}{\Delta E} $. motor lastly PG3 [kVA] $ \times \frac{\alpha}{\eta L \times \phi m} + Pm \times \beta \times C $ active phase current PG4 [kV $ \frac{(2)^2 + (1.23 \Delta P)^2 \times (1-3U+4)}{(1-3U+4)^2} \times (1-3U+4) $ ency or $ \frac{(0.85)}{(0.90)} \times (0.90) $ otor $\frac{(0.90)}{(0.25)} \times (0.25)$ active covered by generator in	A]	d-by) Note	β C K R A Δ U fv	ing calculation: Starting: Motor's G4: Factor of Total ha P: Total si Where A Single p 1: Decrease alue of decrease alue of Pole 2P Over 4P 2P Over 4P	kVA for max. n starter factor due to allowable armonic wave ge ngle phase unbal A≥ B≥ C, Δ P shase unbalance se factor of load s ase factor of load	notor per kW megative pha- merating load ance capacity = A+B-2C factor U starting $\Sigma P0$ 0.9 0.9 1 0.85 0.85 0.95 0.95	se current i in kW y in kW $J = \frac{A-C}{\Delta P}$ Remar $PG3, fvI$ $PE2-2, fv$ $PE2-1, fvZ$	ks 3	7.20 0.25 0.15 0.00 0.00 0.95		
		ΔE : Allowable vol	city for momentary overload o	,	$ \begin{array}{c c} $		00.1			·				

Note1: To exchange kVA load into kW, single phase load to be multiplied by 0.8, rectifier to be calculated as multiplying of rated Dc voltage and DC current, UPS to be calculated as multiplying of rated output in kVA and 0.9, and these exchanged value to be added to three phase load capacity in kW.

C. WTP [Phase 1] 6. Capacity Calculation of Engine

	Description		Value			Value	Remarks	Ger	nerator eff	iciency
ion	PG Generator Output in 1	:VA	2000	<u>+</u>	PE 1	2367.79		Rate	ηG	effi. (%)
Calculation Condition		Load name	Raw Water Pump	Calculation Result	PE 2-1	601.34		kVA	2~8P	10∼18P
į	Pm Maximum Motor	Starting Method	SOFT STERTER	R.	PE 2-2	621.03		20	79.0	-
ğ		kW	450	tioi				37.5	82.5	-
latic	ΣP0 Load Capacity Cove	red by Alt. (kW)	586.075	Πa.	PE max	2367.79		50	84.3	-
lcu.)alc	FE max	2307.79		62.5	85.2	-
రో				0	Selected			75	85.7	-
					(PS)		Diesel-engine generator, Radiator type	100	86.7	
	Maximum value or over am			as eng	ine capacity.			125	87.6	-
1	a. PE1 in PS is to be derived	I from requirement for ful	load running					150	88.1	-
								200	88.9	-
	$PE1 = \frac{PG \times \phi G}{\pi G} \times 1.$	26× 1/11						250	89.5	
	ηG	50~#11						300	90.0	-
								375	90.6	-
	b. PE2 in PS is to be derived							500	91.3	
	D PE2-1 is to be derived fr	om based on allowable loa	nd starting factor					625	91.9	-
	_							750	92.3	91.7
	$PE2-1 = fv2 \begin{cases} 0.75 \times \frac{1}{\eta} \end{cases}$	$\frac{1}{1}$ x $(\Sigma P0-Pm)$ x $\frac{C}{1}$	<u> </u>	xPmx	RxCxAs	×1 36×Λ H		875	92.5	92.0
	η	'G η	L ε×η G	111	.р.челфа	J		1000	92.8	92.3
								1250	93.2	92.8
	PE2-2 is to be derived fr	om tolerant capacity for m	omentary overload					1500	93.4	93.1
αş								2000	93.8	93.5
Ē	$PE2-2 = \frac{\text{fv3}}{n \text{ 'G} \times v \text{ E}} \times \left\{$	$(\Sigma P0-Pm)x = \frac{\alpha}{} +$	Pm× 8 ×C× d s	ļ,	×1 36× Л Н			2500	93.9	93.7
Ö	$\eta G \times \gamma E$	ηL	1111 p Q q b	J	1,50 =11			3125	94.0	93.8
l g										
Calculation Formula	****									
<u> </u>	Where						Starting method			
Ca		capacity covered by gener	rator in kW				β×C Starter Name	e		
	η L : General E					0.85	7.2×1 Direct on-line			
	φL: General Po					0.8	7.2×2 / 3 Star - delta			
	α : Demand F					0.8	7.2×1 / 3 Star - delta with resi	stor		
	φG : Generator					0.8	1.2 VVVF			
		apacity for momentary over				1.1	1.2 Wound - rotor type			
		/A for max. motor of per l	cW			7.2	7.2×0.5 Reactor 50%			
	C : Motor star					0.25	7.2×0.65 Reactor 65%			
		ting Power Factor for max	. motor starting kVA	, Squii	rel cage	0.4	7.2×0.8 Reactor 80%	*60.4		
	η G : Generator					0.919	7.2×0.25 Auto - transformer 5			
		overload efficiency	_			0.855	7.2×0.42 Auto - transformer 6 7.2×0.64 Auto - transformer 8			
1		factor due to motor starting	•			0.9	7.2×0.04 Auto - transformer 8	U70		
		factor due to motor startir				1.0				
		apacity due to non-motor s	tarting of Engine			1.0				
L	ΔH : Altitude co	inpensation				1.0				

C. WTP [Phase 1] 7. Fuel Calculation

_	· · · · · · · · · · · · · · · · · · ·					
덜	Description	Value, Type		Description	Value	Remarks
Calculation Condition	PG Generator output in kVA	2000	Calculation Result	Fuel tank	15140.2 → 16000 L × 1 sets	
l d	P Engineoutput in PS	2400	[es			
ి	Engine Type	Diesel-engine, Radiator type	n R			
l ĕ	Fuel Type	Light oil	ioi			
ਜ਼ੁੱ			lai			-
] #			ಶ	•		
ਰ		•	చొ			
10					 	
Calculation Formula	a. Q [m3] Fuel Tank Volume Q = P × be × H d be : Fuel consumption factor [Output (PS) Diesel (C) 30 or less 0.23 over 30 and 250 or less over 250 and 450 or less over 450 and 750 or less over 750 0.17	unit: kg/PS·h] Gas turbine	be H d	: Fuel consumption factor : Running hour : Fuel density (A heavy oil 850kg/m3) (Light oil 830kg/m3) (Kerosine 790kg/m3) : Surplus Factor	0.17 kg/PS·h 28 hours 830 kg/m3	,

D. WTP [Phase 3]

1. LOAD LIST FOR ELECTRICAL WORKS

SUMMARY SHEET

Facility name	Equipment name		Numbers (Duty)	Numbers (Stand-by)		Commer. Power (kW)	Generator (Nummbers)	Generator (kW)	Remark
					·				
	1. Flocculation & Sedimentation Basins		37	0	37	14.20	40	14.20	
						5.00	<u></u>		NO.1Tr
			<u> </u>			9.20			NO.2Tr
	2.Filter Units		67	5	72	112.60	68	167.60	
						154.90			NO.1Tr
					_	12.70			NO.2Tr
	3.Clear Water Pump Station		19	10	29	2456.10	19	2456.10	
						1055.30			NO.1Tr
						1400.80			NO.2Tr
	4.Chemical Building		20	3	23	37.45	20	37.45	
						37.45			NO.1Tr
									NO.2Tr
	5.Backwash Recovery Facility		1	1	2	30.00	1	30.00	
						30.00			NO ITr
		_							NO.2Tr
	8. Architectural and others							-	
	Architectural (1)	kW	1		1	80.00	1	80.00	NO.1Tr
	Architectural (2)	kW	1		i	30.00	1		NO.1Tr
	Architectural (3)	kW	1		1	30.00	1		NO.2Tr
	Generator-1	kW	1		1	20.00	1		NO.1Tr
	Generator-1	kW	1		1	20.00	1		NO.2Tr
	UPS	kVA	1		i	33.00	1		NO.1Tr
		kW	i i			1412.65			Σ1, Three Phase
	Total (NO.1 Transformer)	kVA			•	33.00			Σ2, Three Phase
		kVA							Σ3, Single Phase
		kW				1472.70			Σ1, Three Phase
	Total (NO.2 Transformer)	kVA	<u> </u>						Σ2, Three Phase
		kVA							Σ3, Single Phase
									,
			<u> </u>			-			
	Total		 			2915.05		2915.05	

Total(kW)= Σ 1+ Σ 2×0.9+ Σ 3×0.8

2. LOAD LIST FOR ELECTRICAL WORKS

1. Flocculation & Sedimentation Basins

↓ Not including stand-by

	Scamentation Dasius						uding stand-o	,	
Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
06 SC 11/21	Sludge Collector	0.75	12		12	9.00	12	9.00	
06 MV 11to24	De-sludge Valve	0.20	24		24	4.80	24	4.80	
							3		
06 SP 01	Sampling Pump	0.40	1		1	0.40	İ	0.40	
							_		
								·	
								· · · <u>- · · · · · · · · · · · · · · · ·</u>	
									Duty load for SC (1) 5.00
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	37		37	14.20	40	14.20	Duty load for SC (2) 9.20

. * *

2.Filter Units

2.Filter Units				,	,		uding stand-b	у	
Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
07 MG 11to41	Inflow Gate	0.40	12		12	4.80	12	4.80	<u> </u>
07 MG 12 to 42	Backwash Drainage Gate	0.40	12		12	4.80	12	4.80	
07 MV 11to41	Effluent Valve	0.20	12		12	2.40	12	2.40	
07 MV 12to42	Backwash Valve	0.20	12		12	2.40	12	2.40	
07 MV 13to43	Air Scour Valve	0.20	12		12	2.40	12	2.40	
07 BP 11to31	Backwash Pump	18.50	2	1	3	37.00	2	37.00	
07 AB 11to21	Air Blower	55.00	1	1	2	55.00	2	110.00	
07 DP 01/02	Sump Drainage Pump	1.50	2	2	4	3.00	2	3.00	
07 MM 11	Lime Mixer	0.40	1		1	0.40	1	0.40	·
07 LP 11/21	Lime Feed Pump	0.40	1	1	2	0.40	1	0.40	
· • • • · · · · · · · · · · · · · · · ·									
									Duty load for SC (1) 154.90
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	67	5	72	112.60	68	167.60	Duty load for SC (2) 12.70

3.Clear Water Pump Station

3.Clear water Fi							uding stand-b	7	,
Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
09 CP 11to14	Transmission Pump (A-1)	450.00	3	ī	4	1350.00	3	1350.00	
									SC is to be installed at each load.
09 CP 21/22	Transmission Pump (A-2)	90.00	1	1	2	90.00	1	90.00	
				_					SC is to be installed at each load.
09 CP 31to31	Transmission Pump (A-3)	250.00	3		4	750.00	3	750.00	
09 CP 41/42	Transmission Pump (A-4)	250.00	1		2	250.00	1	250.00	SC is to be installed at each load.
09 CF 41/42	Transmission Fump (A-4)	230.00	,	1		230.00	,	230.00	SC is to be installed at each load.
09 MV 11to14	Discharge Valve (A-1)	0.20	3	1	4	0.60	3	0.60	Se is to be instance at each road.
09 MV 21/22	Discharge Valve (A-2)	0.20	1	1	2	0.20	1	0.20	
09 MV 31to31	Discharge Valve (A-3)	0.20	3	1	4	0.60	3	0.60	
09 MV 41/42	Discharge Valve (A-4)		1	1		0.00		0.70	
U9 MIV 41/42	Discharge varve (A-4)	0.20	1	1	2	0.20	1	0.20	
09 DP 01/02	Sump Drainage Pump	1.50	1	1	2	1,50	1	1.50	
09 PU 01	Plant Water Supply Unit	7.50	1		1	7.50	1	7.50	
09 PP 11/21	Chlorination Booster Pump	5,50	1	1	2	5.50	1	5.50	
							-		
			 	· · · · · · ·					
			 						
									Duty load for SC (1)
<u>.</u>									15.30
	TOTAL	kW	19	10	29	2456.10	19	2456.10	Duty load for SC (1)
	(Distribution Tank and Grit Chamber Facility)	kVA	ļ	ļ				<u> </u>	0.80
	<u> </u>		<u> </u>	l			<u> </u>		<u> </u>

4.Chemical Building

4.Chemical Build							uding Stand-b	<i>J</i>	,
Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)		Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
10 MM 11/21	Alum Mixer	1.50	4		4	6.00	4	6.00	
10 AP 11/21	Alum Pump	0.40	3	1	4	1.20	3	1.20	
10 MM 11/21	Lime Mixer	2.20	4		4	8.80	4	8.80	
0 LP 11/12	Lime Pump	5.50	3	1	4	16.50	3	16.50	
0 LP 21/22	Lime Feed Pump	0.40	3	1	4	1.20	3	1.20	
0 EF 11	Exhaust Fan	0.75	1		1	0.75	1	0,75	
0 MC 01	Chemical Crane	1.50	1		1	1.50	1	1.50	
10 MC 02	Chemical Crane	1.50	1		1	1.50	1	1.50	
·····									
					<u> </u>				
**************************************									Duty load for SC (1)
									37.45
	TOTAL (Distribution Tank and Grit Chamber Facility)	kW kVA	20	3	23	37.45	20	37.45	37.70
	, , , , , , , , , , , , , , , , , , , ,								

2. LOAD LIST FOR ELECTRICAL WORKS

5.Backwash Recovery Facility

Load tag No.	Load name	Power (kW)	Numbers (Duty)	Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	Generator (kW)	Remarks
WP 11/21	Backwash Recovery Pump	30.00	1	1	2	30.00	1	30.00	
							_		
						<u> </u>			
			<u> </u>						
· · · · · · · · · · · · · · · · · · ·									
·									
								:	
· , · ,,				<u> </u>					
					- · · · · - · ·		<u> </u>		
									
									-
							:		
			-						Duty load for SC (1)
									30.00
	TOTAL	kW	1	1	2	30.00	1	30.00	
	(Distribution Tank and Grit Chamber Facility)	kVA	 						

6.Architectural and others

Load tag No.	Load name	Power (kW)	Numbers Numbers (Stand-by)	Numbers (Total)	Commer. Power (kW)	Generator (Numbers)	<u> </u>	Remarks
A7-001	Architectural Power-1	80.00	1	1	80.00	1	80.00	
A7-001	Architectural Power-2	30.00	1	1	30.00	1	30.00	
A7-001	Architectural Power-3	30.00	1	1	30.00	1	30.00	
A7-004	Generator Panel	20.00	2	2	40.00	2	40.00	
A7-005	UPS Power (kVA)	33.00	1	1	33.00	1	33.00	
A7-006	DC Power for Generator-starter (kVA)	···-			· <u>·</u>			
 								
					·— ·—·			
			<u> </u>					
		 						
						<u> </u>		
	TOTAL	kW	5	5	180.00	5		Three Phase
	(Architectural Facility)	kVA kVA	1	1	33.00	1	33.00	Three Phase Single Phase

3-1. Capacity Calculation Sheet for Transformer

_	Duty Transformer Name	Three Phase Load Capa	acity (Σ	P1) kVA I	Load Equipm	ent (Σ P	2) Sing	gle Phase Loa	ad Equ	ipmen	t (ΣP3)	
Condition	Duty Transformer Name	(kW)			(kVA)			(kVA)				
ညီ	NO.1 Power Transformer	1412.65			33.00							
Calculation	NO.2 Power Transformer	1472.70			0.00				0.00			
C_3												
Capacity Calculation Formula	[Calculation Formula for Power $\mathbf{TR} = (\frac{\Sigma \mathbf{P1}}{\eta \times \phi} + \Sigma \mathbf{P2} + \sqrt{2})$ $\mathbf{R} : \text{Required Transformer}$ $\Sigma \mathbf{P1} \sim 3 : \text{Total Capacity for each}$ $\eta : \text{General Efficiency}$	$3 \times \Sigma P3$) $\times \alpha \times \beta$ Capacity in kVA th facility in kW/kVA 0.85		Transformer NO.1-1 Power Tra NO.1-2 Power Tra	ansformer ansformer	10 15		50 75	100	150 2	marks 200 300	
ulat	φ : General Power Factor		in k			500	750	1000	150	00	2000	
acity Calo	lpha: Surplus Factor eta : Demand Factor	0.9	Prop	oosed Transformer	kVA		Number	R Primary		oltage Sec	ondary	
Cap			NO.	1 Transformer	2	2000	1 set	3.	3000		415	
			NÖ.	2 Transformer		2000	1 set					
	The upper rated transformer capacity is to	o be proposed through the ca	L apacity o	alculation.								

3-2. Calculation for Transformer Voltage Regulation (Motor-starting)

Calculation Formula		Calculation Result	
[Calculation Formula for Power Transfomer Voltage Regulation]	Item	2000kVA	
	Max. Load Capacity (kW)	280	
① Base Load Capacity (kVA)	Base Load Capacity (kVA)	1612.46	
K1 =Max. Load Capacity - Motor Capacity (kVA)	2. Starting Load Capacity	697.58	
	3. Active Power (kW)	1649.62	
② Starting Load Capacity (kVA)	4. Reactive Power	1488.75	
K2 =Max. Motor Capacity (kVA) × Starting Factor	5. Total Starting Capacity (kVA)	2222.08	
	6. Voltage Regulation (%)	5.89	
③ Active Power (kW)	Result	10% > 5.89%	
$P = P1 + P2 = K1\cos\theta \ 1 + K2\cos\theta \ 2$		O.K.	
$Q = Q1 + Q2 = K1\sin\theta \ 1 + K2\sin\theta \ 2$ $(5) Total Starting Capacity (kVA)$ $K = \sqrt{(P^2 + Q^2)}$ $(6) Voltage Regulation (%)$ $\varepsilon = \frac{Total Starting Capacity}{Transformer Capacity} \times Transformer Z (%)$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

4. Calculation Sheet for Static Capacitor (SC)

		Du	ty Load for S	SC T												
Equipment Name	For SC (1) (kW)	For SC (2) (kW)							Calculation Form	mula						
1. Flocculation & Sedimentation Bas		9.20				[Formula]		•								
2.Filter Units	154.90	12.70				$\mathbf{Q} = \frac{\mathbf{P} \times \boldsymbol{\beta}}{n}$	- × {	$\sqrt{\frac{1}{(\cos\theta 1)}}$	- 1 -	\(\int_{\(\cos\)}\)	1 2 2 2	1	-} +	Σ	Γi×γ	Т
3.Clear Water Pump Station	15.30	0.80								V (COS	<i>2</i>))			
4.Chemical Building	37.45					Q: Required P: Duty Loa η: Efficience	d Outpi	Capacitor Capacity in ut in kW	0.85	ΣΤ: C	apacity	of Tran	sformer	(kVA)		2000
5.Backwash Recovery Facility	30.00					β: Demand I COS θ 1: Power Fa	ctor wit		0.7~ 0.8 0.85							
					<u>.</u>	COS θ 2 : Power Fa	ctor wit	h SC at Bus Bar	0.95	γ T : T	ransforr	пет Ехс	iting Fa	ctor	0.01	~ 0.03
								SC (1) (For NO.1	Transformer)		78.16		~		126.47	
		·					Result	SC (2) (For NO.2			25.44		~		66.22	
							Re									
									NO.1 SC				50	• •	k	Var
								SC (1)	NO.2 SC				25 15			Var Var
		-					Ę	SC (2)	NO.1 SC NO.2 SC				25 20		k	Var Var
				-			Zapac	SC (2)	NO.3 SC				10			Var Var
							Proposed Capacity									
							Prop									
	-															
																
								Rated Capacity		10 150	15 200	20 250	25 300	30 400	50 500	75 750
								(JIS - C - 4902)	· · · · · · · · · · · · · · · · · · ·	1000		<u></u>		<u> </u>		
	 -		-		,	Note:										
Total	242.65	22.70				SC is to be installed SC(5) is to be installed										

5. Capacity Calculation of Alternator

	Descri	ption	Value				Value	Remarks		Rated A	Iternator C	apacity	
.6	ΣP0 Load Capacity Cover	ed by Alt. (kW)		2915.05	<u> </u>	PG I	3858.15		20	37.5	50	62.5	75
Į ij		Load Name	Raw Water Pump		SSIT	PG 2	607.50		100	150	200	250	300
Calculation Condition	1	Starting Method	SOFT STERTER		3.	PG 3	2457.75		375	500	625	750	875
		kW		450.00	tior	PG 4	13.33		1000	1250	1500	2000	2500
	R Harmonic wave generating load 0.00				Calculation Result	DC	2050 15		3125				
<u>[</u>		A (kW)			्रह्	PG max	3858.15			j	IEM-1354		
రో	Unbalanced load capacity	B (kW)			0	Selected	2000						
		C (kW)				(kVA)	$\times 2set$	Diesel-engin	e, Radiato	r type			
Calculation Formula	Sf : Current increa ΔE : Allowable vol	to be proposed on the basis on PG1 [kVA] Sf Itage drop PG2 [kVA] $\frac{1-\Delta E}{\Delta E}$ x. motor lastly PG3 [kVA] $\times \frac{\alpha}{\eta L \times \phi m} + Pm \times \beta \times C$ gative phase current PG4 [k R) $^2 + (1.23 \Delta P)^2 \times (1-3U-1)$ iency 0.85 or 1.25 or 0.90 ct	vA] r3U ²)} n kW (Excluding Stad load (= 1+0.6×(4) of Alternator	and-by) Not $\Delta P \div \Sigma P0$ 0.25 1.5 0.85	β C K R A Δ V V V V V V V V V V V V V V V V V V	: Starting : Motor's G4: Factor'd : Total ha P: Total sin Where : Single p 1: Decreas alue of decrea mber of Pole 2P Over 4P 2P Over 4P	kVA for max, itarter factor lue to allowable armonic wave gangle phase unbalance of factor of load as factor of load as factor of load as $\frac{Pm}{0}$ 0.8 1 0.95 0.9 0.85 0.9 0.9	motor per kV negative phase nerating loa lance capacities $A+B-2C$ factor C starting C star	Remarl PG3, fv1 PE2-1, fv2	ks 3	7.20 0.25 0.15 0.00 0.00 0.95		

Note1: To exchange kVA load into kW, single phase load to be multiplied by 0.8, rectifier to be calculated as multiplying of rated Dc voltage and DC current, UPS to be calculated as multiplying of rated output in kVA and 0.9, and these exchanged value to be added to three phase load capacity in kW.

6. Capacity Calculation of Engine

$\overline{}$	Description		Value	•		Value	Remarks	Ger	nerator eff	iciency
등	PG Generator Output in kVA		2000		PE 1	2367.79		Rate	ηG	effi. (%)
Calculation Condition	- 1	Load name	Raw Water Pump	Calculation Result	PE 2-1	1481.96		kVA	2~8P	10~18P
Ę	Pm Maximum Motor	Starting Method	SOFT STERTER	첫	PE 2-2	1747.75		20	79.0	•
G		kW	450	tjor		_		37.5	82.5	•
at;	Σ PO Load Capacity Covered	by Alt. (kW)	1457.525	uļa	DE	2267.70		50	84.3	
T T T					PE max	2367.79		62.5	85.2	-
ਤੌ				O	Selected			75	85.7	•
1					(PS)	2400	Diesel-engine generator, Radiator type	100	86.7	-
\vdash	Maximum value or over among	the following calculation	on is to be proposed a	s engi	ne capacity.			125	87.6	-
1	a. PE1 in PS is to be derived from			_				150	88.1	-
1	[200	88.9	-					
	PG× ø G									-
1	$PE1 = \frac{PG \times \phi G}{n G} \times 1.36 \times \Delta H$								90.0	•
1										
1	b. PE2 in PS is to be derived from requirement of max. motor starting lastly									-
1	(I) PE2-1 is to be derived from							625	91.9	-
1										91.7
ł	α 1 α 1									92.0
	$ PE2-1 = fv2 \left\{ 0.75 \times \frac{1}{\eta'G} \times (\Sigma P0-Pm) \times \frac{\alpha}{\eta L} + \frac{1}{\varepsilon \times \eta'G} \times Pm \times \beta \times C \times \phi s \right\} \times 1.36 \times \Delta H $								92.8	92.3
										92.8
	② PE2-2 is to be derived from tolerant capacity for momentary overload									93.1
۱ "										93.5
Calculation Formula	$PE2-2 = \frac{fv3}{n'G \times vE} \times \left\{ (\Sigma P0-Pm) \times \frac{\alpha}{nL} + Pm \times \beta \times C \times \phi \text{ s} \right\} \times 1.36 \times \Delta H$									93.7
l E	$PEZ-Z = \frac{1}{\eta'G \times \gamma E} \times \left\{ (2PO-Pm) \times \frac{1}{\eta L} + Pm \times \beta \times C \times \phi \right\} \times 1.36 \times \Delta H$									93.8
Ä										
Ęį.										
l la	Where						Starting method			
हि	Σ P0 : Total load can	acity covered by genera	tor in kW				β×C Starter Name			
ာ	η L : General Effici					0.85	7.2×1 Direct on-line			
	φ L : General Powe	•				0.8	7.2×2 / 3 Star - delta			
	α : Demand Facto					0.8	7.2×1/3 Star - delta with resis	tor		
	φ G : Generator Pov	-				0.8	1.2 VVVF			
	γ E : Tolerant capa	doed of Engine			1.1	1.2 Wound - rotor type				
1	β Starting kVA	_			7.2	7.2×0.5 Reactor 50%				
1	C Motor starter	**			0.25	7.2×0.65 Reactor 65%				
1	φ s : Motor starting Power Factor for max. motor starting kVA, Squirrel cage 0.4 7.2×0.8 Reactor 80%									
1	η G : Generator efficiency 0.919 7.2×0.25 Auto - transformer 50									
1	η G : Generator em	•				0.855	7.2×0.42 Auto - transformer 6.			
1		erioad erriciency for due to motor starting	•			0.833	7.2×0.64 Auto - transformer 80			
	1		•			1.0				
	10									
1	ε : Tolerant capacity due to non-motor starting of Engine 1.0 Δ H: Altitude compensation 1.0									
	An Annuae comp	CHARLON				1.0		· · · · · · ·		

5 10

7. Fuel Calculation

Calculation Formula

ū		Description	Value, Type		Description	Value	Remarks
tio	PG	Generator output in kVA	2000	Ħ	Fuel tank	15140.2 → 16000 L × 2 sets	
ndi	P	Engineoutput in PS	2400	es			
Ő		Engine Type	Diesel-engine, Radiator type	n R			
go		Fuel Type	Light oil	Ę			
atic				ıla			
l i				딜			
ā				Ű			
1 0							

Fuel Tank Volume is to be derived from the following calculation.

a. Q [m3] Fuel Tank Volume

$$\mathbf{Q} = \frac{\mathbf{P} \times \mathbf{be} \times \mathbf{H}}{\mathbf{d}} \times \alpha$$

Output (PS)	Diesel	Gas turbine		
30 or less	0.23	-		
over 30 and	0.22	0.5		
250 or less	0.22	0.5		
over 250 and	0.2	0.48		
450 or less	0.2	0.40		
over 450 and	0.18	0.43		
750 or less	0.18			
over 750	0.17	0.38		

be : Fuel consumption factor 0.17 kg/PS·h

H : Running hour 28 hours

d: Fuel density 830 kg/m3

(A heavy oil 850kg/m3) (Light oil 830kg/m3) (Kerosine 790kg/m3)

 α : Surplus Factor 1.