| No. Name of Scheme       | Location   |                      | Irrigation   | 1 Area (May    | / 2000) | Beneficie    | es (May 200    | 0)  | Irrigation   | Area (Oct 2    | 001) | Beneficie    | es (Oct. 20    | 01) | Construe      | tion Perio    | 1     | Construct              | tion Cost                |                   |               |                  | Headworks         |                                    |                           |                          |                          |
|--------------------------|------------|----------------------|--------------|----------------|---------|--------------|----------------|-----|--------------|----------------|------|--------------|----------------|-----|---------------|---------------|-------|------------------------|--------------------------|-------------------|---------------|------------------|-------------------|------------------------------------|---------------------------|--------------------------|--------------------------|
|                          | Zone       | District<br>(Wareda) | Plan<br>(ha) | Actual<br>(ha) | %       | Plan<br>(HH) | Actual<br>(HH) | %   | Plan<br>(ha) | Actual<br>(ha) | %    | Plan<br>(HH) | Actual<br>(HH) | %   | commne<br>ced | Complet<br>ed | Years | Plan<br>(Birr<br>1000) | Actual<br>(Birr<br>1000) | Unit<br>(Birr/ha) | Water Sources | Intake Structure | Туре              | Length of<br>weir/dam<br>crest (m) | Height of<br>weir/dam (m) | Intake size<br>(dia, mm) | Water Duty<br>(l/sec/ha) |
| 1. Kawa                  | Arsi       | Gedeb                | 200          | 20             | 10      | 500          | 80             | 16  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Pump&HW          |                   |                                    |                           |                          |                          |
| 2. Meti Metana           | Arsi       | Nunesa               | 40           | 30             | 76      | 160          | 140            | 88  | 40           | 14             | 35   | 180          | 90             | 50  | 1994          | 1996          | 3     | 396                    |                          | 9,900             | River         | Headworks        | Broad crest weir  | 7.0                                | 1.5                       | 400                      | 2.0                      |
| 3. Sadi Sadi             | Arsi       | Nunesa               | 60           | 50             | 83      | 221          | 221            | 100 | 65           |                | 0    | 221          | 221            | 100 | 1995          | 1996          | 2     | 351                    |                          | 5,397             | Spring        | Headworks        | Broad crest weir  | 13.0                               | 1.0                       |                          |                          |
| 4. Arata Chufa           | Arsi       | Ziway Dugda          | 100          | 100            | 100     | 317          | 317            | 100 | 100          | 100            | 100  |              |                |     |               |               |       | 587                    | 587                      | 5,870             | River         | Headworks        | Broad crest weir  | 42.0                               | 2.2                       |                          | 2.4                      |
| 5. Shalad-01             | Arsi       | Tiyo                 | 50           | 47             | 94      | 196          | 184            | 94  | 50           | 47             | 94   | 197          | 185            | 94  | 1989          | 1990          | 2     | 220                    |                          | 4,400             | Spring        | Headworks        | Intake            |                                    |                           | 600                      | 2.5                      |
| 6. Shalad-02             | Arsi       | Tiyo                 | 25           | 0              | 0       | 100          | 0              | 0   | 25           |                | 0    | 100          |                | 0   | 1995          | 1996          | 2     | 656                    |                          | 26,256            | Spring        | Headworks        |                   |                                    |                           |                          |                          |
| 7. Bosha-01              | Arsi       | Tiyo                 | 100          | 80             | 80      | 233          | 320            | 137 | 100          | 50             | 50   | 233          | 320            | 137 | 1991          | 1993          | 3     | 455                    |                          | 4,554             | Spring        | Headworks        |                   |                                    |                           |                          |                          |
| 8. Bosha-02              | Arsi       | Tiyo                 | 60           | 35             | 58      | 220          | 140            | 64  | 60           | 40             | 67   | 44           |                | 0   | 1993          | 1993          | 1     | 580                    | 580                      | 9,667             | Spring        | Headworks        | Broad crest weir  | 14.0                               | 1.0                       | 150                      | 1.0                      |
| 9. Shoba                 | Arsi       | Munesa               | 100          | 60             | 60      | 279          | 270            | 97  | 100          | 60             | 60   | 279          | 270            | 97  | 1994          | 1994          | 1     | 636                    |                          | 6,360             | Spring        | Headworks        | Broad crest weir  | 11.0                               | 2.0                       | 600                      | 2.2                      |
| 10. Gedamso-01           | Arsi       | Munesa               | 80           | 58             | 72      | 250          | 73             | 29  | 80           | 79             | 99   | 245          | 65             | 27  |               |               |       | 707                    |                          | 8,838             |               | Headworks        | Ogee weir         | 12.0                               | 2.5                       | 600                      | 2.3                      |
| 11. Gedamso-02           | Arsi       | Munesa               | 90           | 10             | 11      | 320          | 20             | 6   | 80           | 5              | 6    | 300          |                | 0   |               |               |       | 1,367                  |                          | 17,093            | River         | Headworks        |                   |                                    |                           |                          |                          |
| 12. Lafa                 | Arsi       | Munesa               | 80           | 64             | 79      | 150          | 140            | 93  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 13. Sole Bakekisa        | Arsi       | Tena                 | 100          | 40             | 40      | 300          | 150            | 50  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 14. Delali Sambaru       | Arsi       | Munesa               | 60           | 40             | 67      | 160          | 164            | 103 | 40           | 22             | 55   | 162          | 124            | 77  | 1994          | 1996          | 3     | 429                    |                          | 10,725            | River         | Headworks        | Broad crest weir  | 19.0                               | 1.2                       | 400                      | 2.0                      |
| 15. Dagaga Sambaro       | Arsi       | Munesa               | 40           | 20             | 50      | 60           | 40             | 67  | 40           | 22             | 55   | 270          |                | 0   | 1996          | 1996          | 1     | 315                    |                          | 7,863             | River         | Headworks        | Broad crest weir  | 13.0                               | 1.0                       | 400                      | 2.0                      |
| 16. Katar-01             | Arsi       | Tiyo                 | 100          | 100            | 100     | 400          | 120            | 30  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 17. Katar-02             | Arsi       | Tiyo                 | 130          | 43             | 33      | 200          | 200            | 100 |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 18. Katar-03             | Arsi       | Tiyo                 | 90           | 0              | 0       | 360          | 0              | 0   |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 19. Hasen Usman          | Arsi       | Tena                 | 230          | 280            | 122     | 527          | 1,000          | 190 |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 20. Homba                | Arsi       | Merti                | 100          | 10             | 10      | 400          | 40             | 10  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 21. Teltele              | North Shoa | Detre Libanes        | 90           | 145            | 161     | 418          | 220            | 53  |              |                |      |              |                |     |               |               |       |                        |                          |                   | Spring        | Headworks        |                   |                                    |                           |                          |                          |
| 22. Lemi                 | North Shoa | Yaya Gulale          | 30           | 56             | 187     | 200          | 225            | 113 | 30           | 56             | 187  | 200          | 225            | 113 | 1996          | 1996          | 1     |                        |                          |                   | S+R           | Headworks        | Trapizoidal       | 4.8                                | 0.6                       | 400                      |                          |
| 23. Indris               | West Shoa  | Ambo                 | 175          | 380            | 217     | 875          | 1,087          | 124 |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 24. Laku                 | West Shoa  | Bako-Tibe            | 50           | 6              | 12      | 40           | 9              | 23  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 25. Walga                | West Shoa  | Wanchi/Waliso        | 150          | 518            | 345     | 637          | 1,070          | 168 | 150          | 518            | 345  | 637          | 1,000          | 157 |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 26. Walshamo             | West Shoa  | Chaliya              | 50           | 0              | 0       | 160          | 0              | 0   |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 27. Robi                 | West Shoa  | Meta Robi            | 120          | 123            | 103     | 410          | 410            | 100 |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 28. Chole                | West Shoa  | Ambo                 | 100          | 200            | 200     | 464          | 500            | 108 |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           |                          |                          |
| 29. Lugo                 | East Shoa  | Fentale              | 57           | 53             | 93      | 70           | 64             | 91  | 57           | 53             | 93   | 70           | 64             | 91  |               |               |       |                        |                          |                   | River         | Headworks        | Trapizoidal       | 17.4                               | 1.15                      | 500                      | 3.0                      |
| 30. Sogido Bandira-01,02 | East Shoa  | Fentale              | 140          | 110            | 79      | 117          | 65             | 56  | 140          | 140            | 100  | 292          |                | 0   | 1998          | 1999          | 2     | 155                    | 1,799                    | 12,847            | River         | Headworks        | Broad crest weir  | 8                                  | 2.5                       | 330                      | 3.71                     |
| 31. Godino               | East Shoa  | Adama                | 219          | 183            | 84      | 270          | 182            | 67  | 219          | 183            | 84   | 270          | 182            | 67  | 1996          | 1997          | 2     | 708                    | 607                      | 2,770             | River         | Dam              | Ogee weir         | 21                                 | 1                         |                          | 3                        |
| 32. Balbala              | East Shoa  | Adama                | 100          | 42             | 42      | 400          | 182            | 46  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Dam              |                   |                                    |                           | ļ                        | ļ                        |
| 33. Fultino              | East Shoa  | Adama                | 85           | 33             | 39      | 182          | 165            | 91  | 85           | 33             | 39   | 177          |                | 0   |               |               |       | 1,104                  | 1,104                    | 12,986            | River         | Dam              |                   |                                    |                           | ļ                        | 5                        |
| 34. Laftu                | East Shoa  | Shashamene           | 30           | 3              | 8       | 60           | 14             | 23  | 30           | 30             | 100  | 191          | 30             | 16  | 1996          | 1997          | 2     | 450                    | 313                      | 14,990            | River         | Headworks        | Arched-broad c.w. | 9.7                                | 0.4                       | 300                      | 2.37                     |
| 35. Kararo Arsi          | East Shoa  | Arsi Negele          | 42           | 38             | 90      | 253          | 85             | 34  |              |                |      | 200          | 112            | 56  | 1993          | 1993          | 1     |                        |                          |                   | River         | Headworks        | Broad crest weir  |                                    |                           |                          | ļ                        |
| 36. Tiliku Debeda        | East Shoa  | Arsi Negele          | 50           | 25             | 51      | 200          | 101            | 51  |              |                |      |              |                |     |               |               |       |                        |                          |                   | River         | Headworks        |                   |                                    |                           | ļ                        | L                        |
| 37. Meki-Zway            | East Shoa  | Duguda Bora          | 1,500        | 33             | 2       | 3,375        | 132            | 4   | 3,500        | 216            | 6    |              | 337            |     |               |               |       | 13,915                 |                          | 3,976             | Lake          | Pump             |                   |                                    |                           | ļ                        | 2.53                     |
| 38. Dadaba Guda          | East Shoa  | Arsi Negele          | 50           | 50             | 100     | 200          | 85             | 43  | 50           | 50             | 100  | 200          | 85             | 43  | 1995          | 1997          | 3     |                        | 416                      | 8,312             | River         | Headworks        | Broad crest weir  | 28                                 | 4                         | 600                      | 1.6                      |
|                          |            |                      | 4,873        | 3,084          | 78      | 13,684       | 8,215          | 67  | 5,041        | 1,718          | 80   | 4,468        | 3,310          | 56  |               |               |       |                        |                          | 9,600             |               |                  |                   |                                    |                           |                          |                          |

| No. |                                              | Coveyance | Structure (k | m)    | Related 3 | Structure | e (no.) |       |         |             |   |               |                | Drainage | e Structur    | e (km) | Night Stor | rage    | Headworks |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
|-----|----------------------------------------------|-----------|--------------|-------|-----------|-----------|---------|-------|---------|-------------|---|---------------|----------------|----------|---------------|--------|------------|---------|-----------|---------------------------|-----------------------------|-----------------------|---|----------------------|---------------------------------------|--------------------|---------------------|--------------------------------|--------------------|-------|
| NO. | Design<br>Discharge<br>(m <sup>3</sup> /sec) |           | Secondary    |       |           | Turn      |         | Drop  | Culvert | Flume Aquic |   | Check<br>Str. | Cross<br>drain |          | Seconda<br>ry |        |            |         |           | No/damaged<br>Intake gate | Silt deposit in<br>u/stream | Damaged<br>wing walls |   | Outlet<br>protection | Uncontrolled<br>water<br>distribution | Low weir<br>height | Weed<br>infestation | Deteriorated<br>dam structures | Crest<br>submerged | Total |
| 1.  |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 2.  | 0.08                                         | 1.50      | 1.15         | 0.65  | 1         | 8         |         |       | 7       |             |   |               |                | 0.65     |               |        | 403.2      | good    | 1         | 1                         | 0                           | 0                     | 0 | 0                    | 0                                     | 1                  | 0                   | 0                              | 0                  | 3     |
| 3.  | 0.08                                         | 0.83      | 0.80         | 7.30  | 2         | 12        |         | 135   | 32      |             |   |               |                |          |               |        |            |         | 1         | 0                         | 1                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 2     |
| 4.  | 0.10                                         | 0.95      | 0.58         | 4.04  | 5         | 28        |         | 115   | 11      |             |   |               |                | 4.69     |               |        | 500        | good    | 0         | 0                         | 1                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 1     |
| 5.  | 0.125                                        | 0.50      |              | 3.20  | 5         |           | 16      | 4     | 2       |             |   |               |                |          |               |        |            |         | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 0     |
| 6.  | 0.0625                                       | 0.60      |              | 2.50  | 5         |           | 22      | 13    | 35      |             |   |               |                |          |               |        | 3,150      | good    | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 0     |
| 7.  |                                              | 1.65      | 3.18         | 4.46  | 5         | 34        | 56      |       | 4       | 1           |   |               |                | 2.591    |               |        | 504        | good    | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 1                                     | 0                  | 1                   | 0                              | 0                  | 2     |
| 8.  | 0.011                                        |           | 2.01         | 2.68  | 3         | 61        |         | 37    |         | 2           |   | ļ             |                | 0.804    |               |        | 1,960      | seepage | 0         | 1                         | 0                           | 0                     | 1 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 2     |
| 9.  | 0.300                                        | 1.87      | 1.87         | 1.70  | 2         | 45        |         | 72    | 6       |             |   |               |                | 5        |               | 18.3   |            | seepage | 1         | 1                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 2     |
| 10. | 0.185                                        | 2.40      | 1.20         | 6.00  | 2         | 63        |         | 46    | 12      |             |   |               |                | 7.2      |               |        |            |         | 0         | 0                         | 1                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 1     |
| 11. | 0.185                                        | 2.30      | 3.90         | 6.88  | 3         | 180       |         | 230   | 4       |             |   |               |                | 9.18     |               |        | 16,000     | good    | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 0     |
| 12. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 13. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 14. | 0.08                                         | 0.75      | 0.46         | 0.60  |           | 8         |         | 30    | 10      |             |   |               |                | 0.55     |               |        | 6,210      |         | 1         | 0                         | 1                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 2     |
| 15. | 0.08                                         | 0.54      |              |       |           |           |         | 6     | 2       |             |   |               |                |          |               |        |            |         | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 0     |
| 16. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 17. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 18. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 19. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 20. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 21. | 0.045                                        | 5.10      |              |       | 31        |           |         | 39    | 14      | 2           | 1 | +             |                |          |               |        |            |         | 0         | 1                         | 0                           | 1                     | 1 | 1                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 4     |
| 22. | 0.045                                        | 5.10      |              |       | 51        |           |         | 39    | 14      | 2           |   |               | +              |          |               |        |            |         | 0         | 1                         | 0                           | 1                     | 1 | 1                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 4     |
| 23. |                                              |           |              |       |           |           |         |       |         |             |   | +             |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 25. | 2.3                                          | 5.00      | 5.00         |       | 4         | 19        |         |       | 12      | 1           |   |               |                |          |               |        |            |         | 0         | 1                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 1     |
| 26. |                                              |           |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 27. |                                              |           |              |       |           |           |         |       |         |             |   | 1             |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 28. |                                              |           |              |       |           |           |         |       |         |             |   | 1             |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 29. |                                              | 3.50      | 0.50         |       |           |           | 12      |       | 2       |             |   | 2             | 6              |          |               |        |            |         | 0         | 1                         | 0                           | 1                     | 0 | 1                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 3     |
| 30. | 1.6                                          | 9.234     |              |       | 2         |           | 35      | 85    |         | 3           |   |               |                |          |               |        |            |         | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 0     |
| 31. | 0.65                                         | 8.75      | 0.48         |       | 3         | 2         | 24      |       | 5       |             |   |               | 2              |          |               |        |            |         | 1         | 1                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 2     |
| 32. |                                              |           |              |       |           |           |         |       |         |             | _ | 1             |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 33. | 0.735                                        | 3         | 1.72         | 6.51  | 2         |           | 80      | 49    | 4       |             |   | 45            |                |          |               |        |            |         | 1         | 0                         | 1                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 1                              | 0                  | 3     |
| 34. | 0.072                                        | 2.25      | 0.285        |       | 1         |           | 15      | 51    | 2       |             |   | 1             |                |          |               |        | 1,285      |         | 1         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 1     |
| 35. |                                              | 1.4       |              |       |           |           |         |       |         |             |   |               |                |          |               |        |            |         | 1         | 1                         | 1                           | 1                     | 0 | 0                    | 1                                     | 0                  | 0                   | 0                              | 1                  | 6     |
| 36. |                                              |           |              |       |           |           |         |       |         |             | _ |               |                |          |               |        |            |         |           |                           |                             |                       |   |                      |                                       |                    |                     |                                |                    |       |
| 37. | 5.34                                         | 2.5       | 3.98         | 4.234 |           |           |         |       |         |             |   |               |                |          |               |        |            |         | 0         | 0                         | 0                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 0     |
| 38. |                                              | 1.7       | 1.1          | 6     | 1         | 4         | 32      | 135   | 5       |             | _ | -             |                |          |               |        |            |         | 0         | 0                         | 1                           | 0                     | 0 | 0                    | 0                                     | 0                  | 0                   | 0                              | 0                  | 1     |
|     |                                              |           |              |       | 77        | 464       | 292     | 1,047 | 169     | 7 2         | 1 | 47            | 8              |          |               |        |            |         | 8         | 8                         | 7                           | 3                     | 2 | 2                    | 2                                     | 1                  | 1                   | 1                              | 1                  | 36    |

| No. I             | Main Can        | al             |                                                    |           |                                  |                             |                                |                             |                                 |                          |                                      |                                 |                                         |         |                                     |   |                                               |                       |       | SC, TC, FI     | ) and Draina       | ige Canals                              |                                |                         |                                            |                                   |             |                          |                                |                                               |
|-------------------|-----------------|----------------|----------------------------------------------------|-----------|----------------------------------|-----------------------------|--------------------------------|-----------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------------|-----------------------------------------|---------|-------------------------------------|---|-----------------------------------------------|-----------------------|-------|----------------|--------------------|-----------------------------------------|--------------------------------|-------------------------|--------------------------------------------|-----------------------------------|-------------|--------------------------|--------------------------------|-----------------------------------------------|
|                   | Silt<br>deposit | Weed<br>growth | Cracks<br>lined canals<br>/ concrete<br>structures | aakano/Br | Embank.<br>damaged<br>by animals | No design<br>canal<br>shape | Embank.<br>damaged by<br>human | Overtoppi<br>ng of<br>water | Small<br>longitudina<br>l slope | Illicit water<br>tapping | No gates<br>for<br>division<br>boxes | Deblis<br>dropped<br>from banks | Damaged<br>drops &<br>division<br>boxes | damaged | Missing<br>structures<br>(turn-out) |   | Missing<br>structures<br>(intercept<br>drain) | Emergency<br>spillway | Total | Weed<br>growth | Embank.<br>Damaged | Erosion<br>of bank<br>fill<br>materials | Submerged<br>off-take to<br>TC | Removal of<br>fill soil | Lack of<br>cross<br>drainage<br>structures | No gates for<br>division<br>boxes | Constructio | No design<br>canal shape | Poor<br>draingae<br>facilities | Missing<br>structures<br>(intercept<br>drain) |
| 1.                | 0               | 0              | 1                                                  | 0         | 0                                | 0                           | 0                              | 1                           | 1                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 0              | 1                  | 0                                       | 0                              | 1                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 3.                | 1               | 0              | 1                                                  | 0         | 1                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 2     | 1              | 1                  | 1                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 4.                | 1               | 0              | 1                                                  | 1         | 1                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 1              | 0                  | 0                                       | 1                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 5.                | 0               | 1              | 0                                                  | 0         | 1                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 2     | 1              | 1                  | 0                                       | 1                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 6.                | 0               | 0              | 1                                                  | 0         | 1                                | 0                           | 1                              | 0                           | 0                               | 1                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 4     | 1              | 0                  | 0                                       | 0                              | 1                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 7.                | 1               | 0              | 1                                                  | 1         | 0                                | 1                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 0              | 0                  | 1                                       | 0                              | 0                       | 1                                          | 1                                 | 0           | 1                        | 1                              | 1                                             |
| 8.                | 0               | 1              | 0                                                  | 0         | 0                                | 1                           | 0                              | 0                           | 0                               | 0                        | 1                                    | 0                               | 0                                       | 0       | 1                                   | 0 | 0                                             | 0                     | 4     | 1              | 0                  | 1                                       | 0                              | 0                       | 0                                          | 1                                 | 0           | 0                        | 0                              | 0                                             |
| 9.                | 1               | 1              | 0                                                  | 0         | 0                                | 1                           | 0                              | 1                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 1 | 0                                             | 0                     | 4     | 1              | 0                  | 1                                       | 0                              | 0                       | 0                                          | 0                                 | 1           | 0                        | 0                              | 0                                             |
| 10.               | 0               | 0              | 0                                                  | 0         | 0                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 1                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 1     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 11.<br>12.<br>13. | 1               | 1              | 1                                                  | 0         | 1                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 1              | 0                  | 1                                       | 0                              | 0                       | 1                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 14.               | 0               | 1              | 1                                                  | 0         | 1                                | 1                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 4     | 1              | 1                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 15.<br>16.<br>17. | 0               | 0              | 0                                                  | 1         | 0                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 1     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 18.<br>19.        |                 |                |                                                    |           |                                  |                             |                                |                             |                                 |                          |                                      |                                 |                                         |         |                                     |   |                                               |                       |       |                |                    |                                         |                                |                         |                                            |                                   |             |                          |                                |                                               |
| 20.               |                 |                |                                                    |           |                                  |                             |                                |                             |                                 |                          |                                      |                                 |                                         |         |                                     |   |                                               |                       |       |                |                    |                                         |                                |                         |                                            |                                   |             |                          |                                |                                               |
| 22.               | 0               | 0              | 1                                                  | 1         | 0                                | 1                           | 0                              | 0                           | 0                               | 0                        | 1                                    | 0                               | 1                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 5     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 1           | 0                        | 0                              | 0                                             |
| 23.<br>24.        |                 |                |                                                    |           |                                  |                             |                                |                             |                                 |                          |                                      |                                 |                                         |         |                                     |   |                                               |                       |       |                |                    |                                         |                                |                         |                                            |                                   |             |                          |                                |                                               |
| 25.<br>26.        | 0               | 0              | 0                                                  | 0         | 0                                | 1                           | 0                              | 0                           | 0                               | 1                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 2     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 27.<br>28.        |                 |                |                                                    |           |                                  |                             |                                |                             |                                 |                          |                                      |                                 |                                         |         |                                     |   |                                               |                       |       |                |                    |                                         |                                |                         |                                            |                                   |             |                          |                                |                                               |
| 29.               | 0               | 0              | 0                                                  | 1         | 0                                | 0                           | 0                              | 0                           | 1                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 2     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 30.               | 1               | 0              | 0                                                  | 0         | 0                                | 0                           | 0                              | 1                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 1     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 31.<br>32.        | 1               | 1              | 0                                                  | 1         | 1                                | 1                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 1                               | 1                                       | 1       | 0                                   | 0 | 1                                             | 1                     | 9     | 1              | 1                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 33.               | 1               | 1              | 0                                                  | 0         | 1                                | 0                           | 1                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 0              | 1                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 34.               | 1               | 1              | 0                                                  | 1         | 0                                | 0                           | 1                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 1              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 35.<br>36.        | 0               | 1              | 0                                                  | 1         | 0                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 2     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 37.               | 0               | 0              | 0                                                  | 0         | 0                                | 0                           | 0                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 0     | 0              | 0                  | 0                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| 38.               | 1               | 1              | 1                                                  | 0         | 0                                | 0                           | 1                              | 0                           | 0                               | 0                        | 0                                    | 0                               | 0                                       | 0       | 0                                   | 0 | 0                                             | 0                     | 3     | 1              | 1                  | 1                                       | 0                              | 0                       | 0                                          | 0                                 | 0           | 0                        | 0                              | 0                                             |
| $\square$         | 10              | 10             | 9                                                  | 8         | 8                                | 7                           | 4                              | 3                           | 2                               | 2                        | 2                                    | 2                               | 2                                       | 1       | 1                                   | 1 | 1                                             | 1                     | 64    | 11             | 7                  | 6                                       | 2                              | 2                       | 2                                          | 2                                 | 2           | 1                        | 1                              | 1                                             |

| N   |                            |                 |                    |       | Manifordi          | Information        |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     | WUA            |                 |                           |                 |        |                        |          |
|-----|----------------------------|-----------------|--------------------|-------|--------------------|--------------------|-------------------------------|-----------|-----|--------------------------------|----------------------------|------------|--------------|---------------|------------------------------|-----|------------------------|-----|----------------------------|---------|--------------------------|----------------------------------|---------------------|----------------|-----------------|---------------------------|-----------------|--------|------------------------|----------|
| No. |                            |                 |                    |       | Monitoring         | Information        |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  | 1 1                 | WUA            |                 |                           |                 |        |                        |          |
|     | Lack of<br>division<br>box | Silt<br>deposit | Canal<br>breaching | Total | Design<br>document | Working<br>drawing | Constructi<br>on<br>completed | Siltation |     | Beneficieri<br>es<br>Operation | Beneficieri<br>es Maintain | OIDA<br>DA | OM<br>Manual | O&M<br>Charge | O&M<br>Charge<br>(Birr/Year) |     | Farm input<br>shortage |     | Dispute<br>in water<br>use | between | Full use<br>of<br>scheme | Scheduled<br>cropping<br>pattern | Salimity<br>problem | WUA<br>Members | Establis<br>hed | Legal<br>Registrat<br>ion | Water<br>Master | By-law | Meeting<br>(no./month) |          |
| 1.  |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 2.  | 0                          | 0               | 0                  | 3     | No                 | Partial            | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        | No           | No            |                              | No  |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 3.  | 0                          | 0               | 0                  | 4     | No                 | Partial            | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        | No           | No            |                              | No  | Yes                    | No  | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        |          |
| 4.  | 0                          | 0               | 0                  | 5     | No                 | Yes                | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        | No           |               |                              |     | Yes                    | No  | No                         | No      | Yes                      | No                               | No                  | 317            |                 |                           |                 |        |                        |          |
| 5.  | 0                          | 0               | 0                  | 6     | No                 | Partial            | Yes                           | No        | Yes | Yes                            | Yes                        | Yes        |              |               |                              |     | Yes                    |     | No                         | No      |                          | No                               |                     | 59             | 1991            | 1993                      | Exist           |        |                        |          |
| 6.  | 0                          | 0               | 0                  | 7     | No                 | Partial            | Yes                           | No        | No  | No                             | No.                        | Yes        |              |               |                              |     | Yes                    | No  | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        |          |
| 7.  | 0                          | 0               | 0                  | 13    | No                 | Partial            | Yes                           | Yes       | Yes | Partial                        | Partial                    | Yes        | No           | No            |                              | No  | Yes                    | Yes | No                         | No      | No                       | No                               | No                  | 180            |                 |                           | Exist           | Not    |                        | Not      |
| 8.  | 0                          | 0               | 0                  | 10    | No                 | Yes                | Yes                           | No        | Yes | Yes                            | Yes                        | Yes        |              |               |                              |     | Yes                    | Yes | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        | ļ        |
| 9.  | 0                          | 0               | 0                  | 11    | No                 | No                 | No                            | Yes       | Yes | No                             | Yes                        | Yes        | No           | No            |                              | No  | Yes                    | Yes | Yes                        | No      | No                       | No                               | No                  | 280            | 1999            |                           | Exit            | Exit   | 4                      | Not      |
| 10. | 0                          | 0               | 0                  | 10    | No                 | Partial            | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        | No           | No            |                              | No  | Yes                    | No  | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        | <b> </b> |
| 11. | 0                          | 0               | 0                  | 13    | No                 | Partial            | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        | No           | No            |                              | No  | Yes                    | No  | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        | <u> </u> |
| 12. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        | ļ        |
| 13. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 14. | 0                          | 0               | 0                  | 14    | No                 | Partial            |                               | No        | Yes | Yes                            | Yes                        | Yes        | No           |               |                              |     | Yes                    | Yes | No                         | No      | No                       | No                               | No                  |                |                 |                           | Exit            |        |                        | <u> </u> |
| 15. | 0                          | 0               | 0                  | 15    | No                 | Partial            | Yes                           | No        | Yes | Yes                            | Yes                        | Yes        | No           |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 16. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 17. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 18. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
|     |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 20. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 21. | 0                          | 0               | 0                  | 23    |                    |                    | No                            | No        | No  | No                             | Yes                        | No         | No           | Yes           | 3                            | Yes | Yes                    | Yes | Yes                        | No      | Yes                      | No                               | No                  | 280            | 1997            |                           | Exit            | Exit   | 1                      | Exit     |
| 23. |                            |                 |                    |       |                    |                    | 110                           | 110       | 110 | 110                            | 103                        | 110        | 110          | 103           |                              | 103 | 103                    | 103 | 103                        | 110     | 103                      | 110                              | 110                 | 200            | 1,777           |                           | LAII            | LAI    |                        | Lat      |
| 24. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 25. | 0                          | 0               | 0                  | 25    | Yes                | No                 | Yes                           | Yes       | Yes | Yes                            | Yes                        | No         | No           | No            |                              | No  | Yes                    | Yes | Yes                        | Yes     | Yes                      | No                               | No                  | 673            |                 |                           | Not             | Not    |                        | Not      |
| 26. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 27. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 28. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        |          |
| 29. | 1                          | 0               | 0                  | 30    | No                 | No                 | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        | No           | No            |                              | No  |                        | Yes | No                         | No      | No                       | No                               | No                  | 320            |                 |                           |                 |        |                        |          |
| 30. | 0                          | 0               | 0                  | 30    | No                 | Partical           | Yes                           | Yes       |     |                                |                            | Yes        | No           |               |                              |     | Yes                    | No  | No                         |         | No                       | No                               | No                  |                |                 |                           |                 |        |                        | ļ        |
| 31. | 0                          | 1               | 0                  | 32    | No                 | No                 | Yes                           | Yes       | No  | Yes                            | Yes                        | Yes        | No           | No            |                              | No  | Yes                    | Yes | Yes                        | No      | No                       | Yes                              | No                  | 346            |                 |                           | Exit            | Not    |                        | Not      |
| 32. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     | ļ                          |         |                          |                                  | ļļ                  |                | ļ               |                           |                 |        |                        | ļ        |
| 33. | 0                          | 1               | 0                  | 34    | No                 | Partical           | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        |              |               |                              |     | Yes                    | Yes | Yes                        | Yes     | No                       | No                               | No                  |                |                 |                           |                 |        |                        |          |
| 34. | 0                          | 0               | 0                  | 34    |                    |                    | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        |              |               |                              |     | Yes                    | Yes | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        | ļ        |
| 35. | 0                          | 0               | 0                  | 35    | No                 | No                 | Yes                           | No        | Yes | Yes                            | Yes                        | Yes        |              |               |                              |     | Yes                    | Yes | No                         | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        | <u> </u> |
| 36. |                            |                 |                    |       |                    |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        | ───      |
| 37. | 0                          | 0               | 0                  | 37    | No                 | No                 | No                            | Yes       |     |                                |                            | Yes        |              |               |                              |     |                        |     |                            |         |                          |                                  |                     |                |                 |                           |                 |        |                        | <u> </u> |
| 38. | 0                          | 1               | 1                  | 41    | No                 | Partial            | Yes                           | Yes       | Yes | Yes                            | Yes                        | Yes        |              |               |                              |     | Yes                    | Yes |                            | No      | No                       | No                               | No                  |                |                 |                           |                 |        |                        | ┥──┤     |
|     | 1                          | 3               | 1                  | 432   | [                  |                    |                               |           |     |                                |                            |            |              |               |                              |     |                        |     |                            |         |                          |                                  |                     | 1              |                 |                           |                 |        |                        |          |

| No.   | Name of Scheme        | Location     |                   | Imigation | Area (May 2    | 2000) | Panafiaiaa   | (May 2000)     |       | Imigation | Area (Oct 20   | 01) | Panafiaiaa   | (Oct. 2001     |    | Constant      | tion Period |       | Construct              | ion Cost                 |                   |                  |                     | Headworks        |                                    |                           |                          |                          |
|-------|-----------------------|--------------|-------------------|-----------|----------------|-------|--------------|----------------|-------|-----------|----------------|-----|--------------|----------------|----|---------------|-------------|-------|------------------------|--------------------------|-------------------|------------------|---------------------|------------------|------------------------------------|---------------------------|--------------------------|--------------------------|
| NO.   |                       | Zone         | District (Wareda) |           | Actual<br>(ha) | %     | Plan<br>(HH) | Actual<br>(HH) | ,<br> | Plan (ha) | Actual<br>(ha) | %   | Plan<br>(HH) | Actual<br>(HH) | %  | commne<br>ced |             | Years | Plan<br>(Birr<br>1000) | Actual<br>(Birr<br>1000) | Unit<br>(Birr/ha) | Water<br>Sources | Intake<br>Structure | Туре             | Length of<br>weir/dam<br>crest (m) | Height of<br>weir/dam (m) | Intake size<br>(dia, mm) | Water Duty<br>(l/sec/ha) |
| 1. K  | Kujur                 | West Walaga  | Najo              | 57        | 0              | 0     | 110          | 0              | 0     | 57        | 31             | 54  | 110          | 60             | 55 | 1998          | 1999        | 2     | 699                    |                          | 12,269            | River            | Headworks           | Broad crest weir | 20                                 | 1.1                       | 400                      | 1.05                     |
| 2. E  | Sorta                 | West Walaga  | Sayo              | 40        | 7              | 18    | 120          | 31             | 26    | 40        | 23             | 57  | 150          |                |    | 1995          | 1996        | 2     | 140                    | 222                      | 5,550             | River            | Headworks           | Barrage          |                                    |                           | 400                      |                          |
| 3. E  | Bondo                 | West Walaga  | Sayo              | 50        | 8              | 16    | 150          | 25             | 17    | 50        |                |     | 250          | 36             | 14 | 1993          | 1994        | 2     | 494                    | 385                      | 7,694             | River            | Headworks           | Broad crest weir | 20                                 | 1.2                       | 400                      | 2.1                      |
| 4. E  | Degaro                | West Walaga  | Nadijo            | 120       | 28             | 23    | 296          | 120            | 41    | 71        | 12             | 17  | 296          |                |    | 1996          | 1997        | 2     | 1,537                  | 1,294                    | 18,293            | River            | Headworks           | Broad crest weir | 20                                 | 1.2                       | 500                      |                          |
| 5. 0  | 345 .                 | West Walaga  | Gimbi             | 60        | 8              | 13    | 228          | 26             | 11    | 60        | 50             | 84  | 450          |                |    |               |             |       | 300                    | 330                      | 5,501             | River            | Headworks           | Broad crest weir | 20                                 | 1.2                       | 400                      |                          |
| 6. S  | lokoru                | West Walaga  | Rharasibu         | 30        | 25             | 83    | 267          | 37             | 14    | 30        | 18             | 58  | 265          |                |    | 1997          | 1998        | 2     | 339                    |                          | 11,309            | River            | Headworks           | Broad crest weir | 15                                 | 1.2                       | 500                      |                          |
| 7. V  | Vaja                  | East Walaga  | Limu              | 25        | 25             | 99    | 200          | 198            | 99    | 25        | 25             | 100 | 200          |                |    | 1996          | 1997        | 2     | 210                    | 322                      | 12,897            | River            | Headworks           | Broad crest weir | 12.0                               | 1.5                       | 600                      |                          |
| 8. E  | Dhangago-01+02        | East Walaga  | Jima-Rare         | 30        | 21             | 71    | 253          | 129            | 51    | 50        | 26             | 52  | 253          | 78             | 31 | 1995          | 1996        | 2     | 168                    |                          | 3,356             | River            | Headworks           | Broad crest weir | 14                                 | 0.95                      | 500                      | 1.68                     |
| 9. J  | ato-01+02             | East Walaga  | Jima-Rare         | 54        | 46             | 85    | 515          | 419            | 81    | 114       | 80             | 70  | 515          |                |    |               |             |       | 630                    | 630                      | 5,525             | River            | Headworks           | Ogee weir        | 20                                 | 1.45                      | 600                      |                          |
| 10. 0 | Gambela Tare          | East Walaga  | Guto-Wayu         | 150       | 59             | 39    | 235          | 86             | 37    | 150       | 34             | 23  | 272          |                |    |               |             |       | 711                    | 711                      | 4,742             | River            | Headworks           | Broad crest weir | 20                                 | 1.5                       | 600                      | 3.0                      |
| 11. N | legeso                | East Walaga  | Bila-Sayo         | 30        | 30             | 100   | 128          | 160            | 125   | 30        | 30             | 100 | 180          | 128            | 71 | 1996          | 1997        | 2     | 247                    | 210                      | 7,008             | River            | Headworks           |                  | 6.8                                | 0.8                       | 600                      |                          |
| 12. A | Abono-02              | East Walaga  | Jima-Arjo         | 80        | 67             | 83    | 248          | 160            | 65    | 80        | 78             | 97  | 248          |                |    | 1994          | 1995        | 2     |                        |                          |                   | River            | Headworks           | Barrage          | 6.8                                | 0.8                       |                          | 1.5                      |
| 13. T | îate                  | East Walaga  | Leka-Dulacha      | 20        | 0              | 0     | 75           | 0              | 0     | 18        |                |     | 54           |                |    | not c         | ompleted    | 1     | 171                    |                          | 9,507             | River            | Headworks           |                  | 18                                 | 1                         |                          |                          |
| 14. J | ato-02 (see No.9)     | East Walaga  | Guto-Wayu         | 60        | 0              | 0     | 157          | 0              | 0     |           |                |     |              |                |    |               |             |       |                        |                          |                   |                  |                     |                  |                                    |                           |                          |                          |
| 15. E | Dhangago-02(see No.8) | East Walaga  | Guto-Wayu         | 20        | 0              | 0     | 162          | 0              | 0     |           |                |     |              |                |    |               |             |       |                        |                          |                   |                  |                     |                  |                                    |                           |                          |                          |
| 16. C | Gibe Lamu-01          | East Walaga  | Jima-Rare         | 53        | 53             | 100   | 250          | 54             | 22    | 113       | 52             | 46  | 250          |                |    | 1994          | 1997        | 4     | 680                    | 816                      | 7,224             | River            | Headworks           | Broad crest weir | 30                                 | 1                         | 600                      |                          |
| 17. 0 | Gibe Lamu-02          | East Walaga  | Bila-Sayo         | 60        | 23             | 39    | 250          | 37             | 15    |           |                |     |              |                |    |               |             |       |                        |                          |                   | River            | Headworks           |                  |                                    |                           |                          |                          |
| 18. J | are                   | East Walaga  | Bila-Sayo         | 40        | 0              | 0     | 112          | 0              | 0     | 40        | 20             | 50  | 112          | 44             | 39 | 1998          | 1999        | 2     |                        |                          |                   | River            | Headworks           | Broad crest weir | 8                                  |                           | 500                      |                          |
|       | Koba Guda             | Ilu Aba Bora | Gachi-Boracho     | 56        | 0              | 0     | 57           | 0              | 0     | 50        | 6              | 12  | 49           |                |    | 1994          | 1997        | 4     |                        | 1,500                    | 30,000            | River            | Headworks           | Ogee weir        | 24                                 | 2                         | 400                      |                          |
| 20. N | lada Guda             | Jima         | Omo-Nada          | 120       | 31             | 26    | 340          | 48             | 14    | 120       | 41             | 34  | 480          | 78             | 16 | 1994          | 1995        | 2     |                        |                          |                   | River            | Headworks           | Ogee weir        | 32.25                              | 1.50                      |                          |                          |
| 21. K |                       | Jima         | Dedo              | 120       | 54             | 45    | 270          | 54             | 20    | 120       | 34             | 28  | 270          |                |    |               |             |       |                        |                          |                   | River            | Headworks           | Ogee weir        | 12                                 | 1                         |                          | 2.3                      |
| 22. E | Birbirsa              | Jima         | Qarsa             | 70        | 5              | 7     | 150          | 52             | 35    | 70        | 35             | 50  | 62           |                |    | 1996          | 1997        | 2     |                        |                          |                   | River            | Headworks           | Barrage          | 3.8                                | 1.5                       | 500                      |                          |
| 23. A | Abono                 | Jima         | Sayo Chokorsa     | 160       | 0              | 0     | 300          | 0              | 0     | 160       | 35             | 22  | 200          |                |    |               |             |       |                        |                          |                   | River            | Headworks           |                  | 3                                  |                           |                          |                          |
| 24. V |                       | Jima         | Dedo              | 180       | 25             | 14    | 300          | 40             | 13    | 150       | 76             | 51  | 300          |                |    | 1987          | 1995        | 9     | 311                    |                          | 2,076             | River            | Headworks           | Ogee weir        | 20                                 | 3.6                       | 600                      | 2.4                      |
|       |                       |              |                   | 1,685     | 514            | 36    | 5,173        | 1,676          | 29    | 1,598     | 706            | 53  | 4,966        | 424            | 38 |               |             |       |                        |                          |                   |                  |                     |                  |                                    |                           |                          |                          |

|       |                                              | Coveyance Structure (km) Related Structure (no.) |            |        |                 |     |          |      |           |       | Drainage        | e Structure (k | m)       | Night Stora    | ae.  |           |       |                               |            |                                        |                                    |                             |                           |              |                       |                            |                              |                                         |       |
|-------|----------------------------------------------|--------------------------------------------------|------------|--------|-----------------|-----|----------|------|-----------|-------|-----------------|----------------|----------|----------------|------|-----------|-------|-------------------------------|------------|----------------------------------------|------------------------------------|-----------------------------|---------------------------|--------------|-----------------------|----------------------------|------------------------------|-----------------------------------------|-------|
| No.   | Design<br>Discharge<br>(m <sup>3</sup> /sec) | Main                                             | Secondary  |        | Division<br>box |     | Off-take | Drop | Culvert   | Flume | Inlet<br>outlet | Chute          | Syphon   | Cross<br>drain | Main | Secondary |       | Capacity<br>(m <sup>3</sup> ) | Consitions | Headworks<br>No/damaged<br>sluice gate | Temporary<br>diversion<br>problems | Silt deposit in<br>u/stream | No/damaged<br>Intake gate | Damaged weir | River bank<br>erosion | Stilling basin<br>problems | Stoplog of<br>barrage broken | Back fill<br>behind wing<br>wall eroded | Total |
| 1.    |                                              | 3.6                                              |            | 2.1    |                 | 23  |          | 18   |           | 2     |                 |                |          |                |      |           |       |                               | poor       | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | . o   |
| 2.    | 0.04                                         | 2.70                                             |            |        |                 | 13  | 1        |      | 2         |       | 3               |                |          |                |      |           |       |                               |            | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| 3.    | 0.18                                         | 1.80                                             | 0.60       | 0.30   | 1               | 11  |          | 7    | 2         |       |                 |                |          |                |      |           |       |                               |            | 1                                      | 0                                  | 1                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 2     |
| 4.    | 0.16                                         | 8                                                |            |        | 1               | 47  |          | 7    | 2         | 3     |                 | 4              |          |                |      |           |       | 8,064                         | very poor  | 0                                      | 0                                  | 1                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 1     |
| 5.    | 0.130                                        | 2.47                                             | 0.95       |        | 1               | 14  |          | 3    | 1         | 2     | 2               |                |          |                |      |           |       |                               |            | 0                                      | 0                                  | 1                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 1     |
| 6.    | 0.08                                         |                                                  |            |        | 1               | 13  |          |      |           |       |                 |                |          |                |      |           |       |                               |            | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| 7.    | 0.2                                          | 1.50                                             | 0.45       |        | 1               | 18  | 2        |      |           |       |                 |                |          |                |      |           |       |                               |            | 0                                      | 1                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 1     |
| 8.    | 0.45                                         | 1.95                                             | 0.56       |        |                 | 8   |          | 1    | 3         |       |                 |                |          |                |      |           | 0.54  |                               |            | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| 9.    | 0.214                                        | 2.5                                              | 0.8        |        | 2               | 31  | 64       | 64   | 3         |       |                 | 1              |          |                |      |           |       |                               | seepage    | 1                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 1     |
| 10.   | 0.250                                        | 7.30                                             | 3.06       | 2.38   |                 | 45  |          | 20   | 10        |       |                 |                |          |                |      |           | 2.35  | 8,400                         | fair       | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| .11.  | 0.200                                        | 2                                                |            |        |                 | 22  | 2        | 1    |           |       |                 |                |          |                |      |           |       |                               |            | 0                                      | 0                                  | 0                           | .0                        | 0            | 1                     | 0                          | 1                            | 1                                       | 3     |
| .12.  |                                              | 3.60                                             |            |        |                 | 46  |          | 19   |           | 1     |                 |                | ļ        |                |      |           |       |                               |            | 0                                      | 0                                  | 0                           | .0                        | 0            | 0                     | 1                          | 0                            | 0                                       | 1     |
| 13.   |                                              | only hea                                         | dworks com | pleted |                 |     |          |      |           |       |                 |                |          |                |      |           |       |                               |            | .0                                     | 0                                  | 0.                          | .0                        | 0            | 0                     | 0                          | 0                            | 0                                       | . 0   |
| .14.  |                                              |                                                  |            |        |                 |     |          | ļ    | _ <u></u> |       | ļ               |                | <u> </u> |                |      |           |       |                               |            |                                        | ļ                                  | <u> </u>                    |                           |              |                       |                            |                              |                                         |       |
| 15.   |                                              |                                                  |            |        |                 |     | ļ        |      |           |       |                 |                | <b>.</b> |                |      |           |       |                               |            |                                        |                                    |                             |                           |              |                       |                            |                              |                                         |       |
| 16.   | 0.45                                         | 5.15                                             | 1.70       | 1.48   | 2               | 60  | 32       | 11   | 2         | 2     |                 |                |          |                |      |           |       |                               |            | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| . 17. |                                              |                                                  |            |        |                 |     |          |      | · · · ·   |       |                 |                |          |                |      |           |       |                               |            |                                        |                                    | <u> </u>                    |                           |              |                       |                            |                              |                                         |       |
| 18.   | 0.10                                         | 1.74                                             | 0.60       |        | 2               | 32  |          | 7    | 11        | 1     |                 |                |          |                |      |           |       |                               |            | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| . 19. |                                              | 3.02                                             | 1.00       | 2.426  | 1               | 31  |          | 29   | 5         | 1     |                 |                |          |                |      | 1.72      | 1.77  |                               |            | 1                                      | 1                                  | 0                           | 1                         | 1            | 0                     | 0                          | 0                            | 0                                       | 4     |
| 20.   | 0.50                                         | 1.60                                             |            |        | 1               | 9   |          | 81   |           | 1     |                 |                |          |                | 2.0  |           |       |                               |            | 0                                      | 1                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 1     |
| 21.   |                                              | 3.50                                             | 2.925      | 11.60  | 4               | 58  |          | 43   | 5         | 2     |                 |                |          |                |      | 2.766     | 1.526 |                               |            | 1                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 1     |
| 22.   | 0.154                                        | 5.85                                             |            |        | 1               | 14  |          | 3    |           | 3     |                 |                |          | 4              | 2.0  |           |       |                               |            | 0                                      | 0                                  | 0                           | 0                         | 0            | 0                     | 0                          | 0                            | 0                                       | 0     |
| 23.   |                                              | 3.25                                             | 4.76       |        |                 | 5   |          | 5    |           |       |                 |                | 3        |                |      |           |       |                               |            | 0                                      | 1                                  | 0                           | 0                         | 0            | 1                     | 0                          | 0                            | 0                                       | 2     |
| 24.   |                                              | 2.95                                             | 1.655      | 16.55  |                 | 15  |          | 15   | 2         |       |                 |                | 1        |                | 4.0  |           |       |                               |            | 1                                      | 0                                  | 0                           | 1                         | 1            | 0                     | 1                          | 0                            | 0                                       | 4     |
| L     |                                              |                                                  |            |        | 18              | 515 | 101      | 334  | 48        | 18    | 5               | 5              | 4        | 4              |      |           |       |                               |            | 5                                      | 4                                  | 3                           | 2                         | 2            | 2                     | 2                          | 1                            | 1                                       | 22    |

| N., | Main Canal                   |              |              |                                                    |                                  |                       |                       |                          |                                    |                    |                                       |                    |       | SC, TC, FI |                       |                                      |                                            |                  |                                           |                                        |              |       | Monitoring Inf     | 6                  |                           |           |     |                            |
|-----|------------------------------|--------------|--------------|----------------------------------------------------|----------------------------------|-----------------------|-----------------------|--------------------------|------------------------------------|--------------------|---------------------------------------|--------------------|-------|------------|-----------------------|--------------------------------------|--------------------------------------------|------------------|-------------------------------------------|----------------------------------------|--------------|-------|--------------------|--------------------|---------------------------|-----------|-----|----------------------------|
|     | Seepage/Lea<br>kage of canal | Silt deposit | Canal breach | Cracks lined<br>canals /<br>concrete<br>structures | Embank.<br>damaged by<br>animals | Damaged by land slide | Insufficient<br>slope | No design<br>canal shape | Additiona<br>l turn out<br>requird | Damaged by scoring | Missing<br>structures<br>(canal ext.) | Broken<br>turn out | Total | Seepage/d  | Seepage<br>of culvert | Drainage<br>culvert less<br>capacity | Less<br>footpath and<br>cattle<br>crossing | Leakage<br>of TC | More<br>structures<br>(drop, off<br>take) | Incomplete<br>constructio<br>n (flume) | Silt deposit | Total | Design<br>document | Working<br>drawing | Construction<br>completed | Siltation |     | Beneficieries<br>Operation |
| 1.  | 1                            | 0            | 0            | 1                                                  | 0                                | 1                     | 1                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 4     | 0          | 0                     | 1                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 1     | Yes                | Yes                | Yew                       | Yes       | No  | Yes                        |
| 2.  | 1                            | 0            | 1            | 0                                                  | 0                                | 0                     | 1                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 3     | 0          | 1                     | 0                                    | 1                                          | 0                | 0                                         | 0                                      | 0            | 1     | Yes                | Yes                | Yes                       | Yes       | No  | Yes                        |
| 3.  | 0                            | 1            | 1            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 2     | 0          | 0                     | 0                                    | 1                                          | 0                | 0                                         | 0                                      | 0            | 1     | Yes                | Yes                | Yes                       | Yes       | No  | Yes                        |
| 4.  | 1                            | 0            | 1            | 0                                                  | 1                                | 1                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 4     | 0          | 0                     | 1                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 1     | Yes                | Yes                | Yes                       | Yes       | No  | Yes                        |
| 5.  | 0                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 1                  | 0                                     | 0                  | 1     | 1          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | No                 | Yes                       | Yes       | No  | Yes                        |
| 6.  | 1                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 1     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | Yes                | Yes                |                           | Yes       | No  | Yes                        |
| 7.  | 0                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 1                        | 0                                  | 0                  | 0                                     | 0                  | 1     | 1          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | No                 | Yes                       | Yes       | No  | Yes                        |
| 8.  | 1                            | 1            | 1            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 3     | 0          | 1                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | Yes                | Yes                | Yes                       | Yes       | Yes | Yes                        |
| 9.  | 1                            | 0            | 0            | 0                                                  | 1                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 2     | 0          | 0                     | 0                                    | 0                                          | 0                | 1                                         | 0                                      | 0            | 1     | No                 | No                 | Yes                       | Yes       | No  | Yes                        |
| 10. | 1                            | 0            | 0            | 0                                                  | 1                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 2     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 1            | 1     | No                 | No                 | Yes                       | No        | No  | Yes                        |
| 11. | 0                            | 1            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 1     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | Partial            | Partial            | Yes                       | Yes       | No  | Yes                        |
| 12. | 1                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 1     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 1                                      | 0            | 1     | No                 | No                 | No                        | Yes       | No  | Yes                        |
| 13. |                              |              |              |                                                    |                                  | only head             | works comp            | leted                    |                                    |                    |                                       |                    |       | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | No                 | No                        |           | No  | No                         |
| 14. |                              |              |              |                                                    |                                  |                       |                       |                          |                                    |                    |                                       |                    |       |            |                       |                                      |                                            |                  |                                           |                                        |              |       |                    |                    |                           |           |     |                            |
| 15. |                              |              |              |                                                    |                                  |                       |                       |                          |                                    |                    |                                       |                    |       |            |                       |                                      |                                            |                  |                                           |                                        |              |       |                    |                    |                           |           |     |                            |
| 16. | 1                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 1                                  | 0                  | 0                                     | 1                  | 3     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | Partial            | Yes                       | Yes       | No  | Yes                        |
| 17. |                              |              |              |                                                    |                                  |                       |                       |                          |                                    |                    |                                       |                    |       |            |                       |                                      |                                            |                  |                                           |                                        |              |       |                    |                    |                           |           |     |                            |
| 18. | 1                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 1                                  | 0                  | 0                                     | 0                  | 2     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | Yes                | Yes                | Yes                       | Yes       | No  | Yes                        |
| 19. | 1                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 1     | 1          | 0                     | 0                                    | 0                                          | 1                | 0                                         | 0                                      | 0            | 1     | No                 | Yes                | Yes                       | No        | No  | Yes                        |
| 20. | 1                            | 0            | 1            | 1                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 3     | 0          | 1                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | No                 | Yes                       | Yes       | Yes | Yes                        |
| 21. | 0                            | 0            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 0     | 1          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | No                 | Yes                       | No        | No  | Yes                        |
| 22. | 1                            | 0            | 0            | 1                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 1                                     | 0                  | 3     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | Yes                | Yes                | No                        | Yes       | Yes | Yes                        |
| 23. | 0                            | 1            | 0            | 0                                                  | 0                                | 0                     | 0                     | 0                        | 0                                  | 0                  | 0                                     | 0                  | 1     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | Partial            | Yes                       | Yes       | No  | No                         |
| 24. | 0                            | 1            | 0            | 1                                                  | 0                                | 0                     | 0                     | 1                        | 0                                  | 0                  | 0                                     | 0                  | 3     | 0          | 0                     | 0                                    | 0                                          | 0                | 0                                         | 0                                      | 0            | 0     | No                 | Partial            | Yes                       | Yes       | No  | Yes                        |
|     | 13                           | 5            | 5            | 4                                                  | 3                                | 2                     | 2                     | 2                        | 2                                  | 1                  | 1                                     | 1                  | 41    | 4          | 3                     | 2                                    | 2                                          | 1                | 1                                         | 1                                      | 1            | 8     |                    |                    |                           |           |     |                            |

| No.   |                           |         |            |               |                              |                 |                        |                   |                         |                              |                       |                                  |                     | WUA            |             |                       |              |        |                        |                  |
|-------|---------------------------|---------|------------|---------------|------------------------------|-----------------|------------------------|-------------------|-------------------------|------------------------------|-----------------------|----------------------------------|---------------------|----------------|-------------|-----------------------|--------------|--------|------------------------|------------------|
|       | Beneficieries<br>Maintain | OIDA DA | OM Manual  | O&M<br>Charge | O&M<br>Charge<br>(Birr/Year) | Bank<br>Account | Farm input<br>shortage | Water<br>shortage | Dispute in<br>water use | Conflict<br>between<br>US/DS | Full use of<br>scheme | Scheduled<br>cropping<br>pattern | Salimity<br>problem | WUA<br>Members | Established | Legal<br>Registration | Water Master | By-law | Meeting<br>(no./month) | Record of meetng |
| 1.    | Yes                       | No      | No         | No            |                              | No              | No                     | Yes               | No                      | No                           | No                    | No                               | No                  | 60             | 1999        |                       | Exist        | Exist  | Not regularly          | Exist            |
| 2.    | Yes                       | Yes     | Yes        | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 148            | 1995        |                       | Exist        | Exist  | Not regularly          | Exist            |
| 3.    | Yes                       | Yes     | Yes        | No            |                              | No              | Yes                    | Yes               | Yes                     | Yes                          | No                    | No                               | No                  | 36             | 2000        |                       | Exist        | Exist  | 2                      | Not              |
| 4.    | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 296            | 1997        |                       | Exist        | Exist  | Not regularly          | Not              |
| 5.    | Yes                       | Yes     | Yes        | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 450            | 1997        | 2000                  | Not          | Not    | Not regularly          | Exist            |
| 6.    | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | Yes               | Yes                     | No                           | No                    | No                               | No                  | 56             | 1997        |                       | Exist        | Exist  | Not regularly          | Exist            |
| 7.    | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | Yes                   | No                               | No                  | 200            | 1997        |                       | Exist        | Exist  | Not regularly          | Exist            |
| 8.    | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | Yes                     | No                           | No                    | No                               | No                  | 78             | 1995        |                       | Exist        | Exist  | Not regularly          | Exist            |
| 9.    | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 515            | 1995        |                       | Not          | Not    | Not regularly          | Exist            |
| 10.   |                           | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 160            | 1995        |                       | Exist        |        | Not regularly          | Exist            |
| .11.  | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | Yes                   | No                               | No                  | 128            | 1997        |                       | Exist        | Exist  | Not regularly          | Exist            |
| .12.  | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 248            | 1995        |                       | Exist        | Exist  | Not regularly          | Not              |
| 13.   | No                        | only    | eadworks o | complet       | ed                           |                 |                        |                   |                         |                              | No                    | No                               | No                  |                |             |                       |              |        |                        |                  |
| .14.  |                           |         |            |               |                              |                 |                        |                   |                         |                              |                       |                                  |                     |                |             |                       |              |        |                        |                  |
| . 15. |                           |         |            |               |                              |                 |                        |                   |                         |                              |                       |                                  |                     |                |             |                       |              |        |                        |                  |
| 16.   | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      |                              | No                    | No                               | No                  | 90             | 1997        |                       | Exist        | Not    | Not regularly          | Exist            |
| .17.  |                           |         |            |               |                              |                 |                        |                   |                         |                              |                       |                                  |                     |                |             |                       |              |        |                        |                  |
| 18.   | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 44             | 1998        |                       | Exist        | Exist  | Not regularly          | Exist            |
| 19.   | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 49             | 1997        |                       | Not          | Not    | Not regularly          | Not              |
| 20.   | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | Yes               | Yes                     | Yes                          | No                    | No                               | No                  | 78             | 1995        |                       | Exist        | Exist  | 2                      | Not              |
| 21.   | Yes                       | Yes     | Yes        | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 270            | 1989        | 2000                  | Exist        | Not    | 1                      | Exist            |
| 22.   | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | No                | No                      | No                           | No                    | No                               | No                  | 62             |             |                       | Exist        | Not    | 2                      | Exist            |
| 23.   | Yes                       |         |            |               |                              |                 | Yes                    | No                | No                      | No                           | No                    | No                               | No                  |                |             |                       |              |        |                        |                  |
| 24.   | Yes                       | Yes     | No         | No            |                              | No              | Yes                    | Yes               | Yes                     | Yes                          | No                    | No                               | No                  | 300            | 1997        |                       | Exist        | Not    | Not regularly          | Not              |
|       |                           |         |            |               |                              |                 |                        |                   |                         |                              |                       |                                  |                     |                |             |                       |              |        |                        |                  |

| No.   | Name of Scheme   | Location       |                  | Irrigation   | Area (May      | 2000) | Beneficies   | s (May 2000    | ))  | Irrigation | Area (Oct 2    | 2001) | Beneficies   | (Oct. 200)     | 1) | Construc      | tion Perio    | d     | Construct           | on Cost                  |                   |                  |                  | Headworks        |                                    |                           |                          |                          |
|-------|------------------|----------------|------------------|--------------|----------------|-------|--------------|----------------|-----|------------|----------------|-------|--------------|----------------|----|---------------|---------------|-------|---------------------|--------------------------|-------------------|------------------|------------------|------------------|------------------------------------|---------------------------|--------------------------|--------------------------|
|       |                  | Zone           | District (Wareda | ı) Plan (ha) | Actual<br>(ha) | %     | Plan<br>(HH) | Actual<br>(HH) | %   | Plan (ha)  | Actual<br>(ha) | %     | Plan<br>(HH) | Actual<br>(HH) | %  | commne<br>ced | Complet<br>ed | Years | Plan (Birr<br>1000) | Actual<br>(Birr<br>1000) | Unit<br>(Birr/ha) | Water<br>Sources | Intake Structure | Туре             | Length of<br>weir/dam<br>crest (m) | Height of<br>weir/dam (m) | Intake size<br>(dia, mm) | Water Duty<br>(l/sec/ha) |
| 1. A  | Arara-01         | Eastern Branch | East Harar       | 40           | 50             | 125   | 276          | 276            | 100 | 40         | 40             | 100   | 276          |                |    | 1995          | 1995          | 1     |                     | 225                      | 5,630             | Spring           | Headworks        | Spring intake    |                                    |                           | 600                      |                          |
| 2. A  | Arara-02         | Eastern Branch | East Harar       | 25           | 25             | 100   | 100          | 100            | 100 |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
| 3. E  | Babi Ali         | Eastern Branch | East Harar       | 46           | 60             | 130   | 130          | 220            | 169 | 46         | 60             | 130   | 130          |                |    | 1995          | 1995          | 1     |                     | 244                      | 5,313             | Spring           | Headworks        |                  | 32                                 | 3.0                       | 600                      | ļ                        |
| 4. E  | Burka Deneba     | Eastern Branch | East Harar       | 76           | 76             | 100   | 215          | 216            | 100 |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
| 5. 0  | Chulul           | Eastern Branch | East Harar       | 75           | 64             | 86    | 275          | 256            | 93  |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
| 6. E  | Erer Meda Talila | Eastern Branch | East Harar       | 100          | 100            | 100   | 550          | 550            | 100 | 100        | 100            | 100   | 600          |                |    | 1995          | 1995          | 1     |                     | 503                      | 5,034             | Spring           | Headworks        | Spring intake    | 13                                 | 2.6                       | 608                      |                          |
| 7. 0  | Galan Sadi       | Eastern Branch | East Harar       | 100          | 100            | 100   | 360          | 360            | 100 | 100        | 100            | 100   | 627          |                |    | 1997          | 1997          | 1     |                     | 719                      | 7,189             | Spring           | Headworks        |                  | 13.0                               | 1.6                       | 600                      |                          |
| 8. J  | arjartu          | Eastern Branch | East Harar       | 60           | 36             | 60    | 240          | 240            | 100 |            |                |       |              |                |    |               |               |       |                     |                          |                   | River            | Headworks        |                  |                                    |                           |                          |                          |
| 9. N  | Mudana Silo      | Eastern Branch | East Harar       | 51           | 56             | 110   | 120          | 175            | 146 |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
| 10. N | Melba            | Eastern Branch | East Harar       | 51           | 44             | 86    | 107          | 107            | 100 |            |                |       |              |                |    |               |               |       |                     |                          | -                 | Spring           | Headworks        |                  |                                    |                           |                          |                          |
|       | Ramis            | Eastern Branch | East Harar       | 60           |                | 85    | 273          | 273            | 100 | 60         | 80             | 133   | 273          |                |    | 1997          | 1997          | 1     |                     | 206                      | 3,435             | River            | Headworks        | Broad crest weir | 18.0                               | 2.7                       | 600                      |                          |
|       | Burka Burbursa   | Eastern Branch |                  | 40           |                | 0     | 100          | 0              | 0   |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  | 5.0                                | 0.6                       | 400                      | 1.5                      |
|       | Said Ali         | Eastern Branch | East Harar       | 46           |                | 154   | 160          | 270            | 169 |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
|       | Water-01         | Eastern Branch |                  | 60           |                | 104   | 130          | 130            | 100 |            | 60             | 100   | 130          |                |    | 1997          | 1997          |       |                     | 391                      | 6,509             | Spring           | Headworks        | Gabion type weir | 20.0                               | 1.5                       |                          |                          |
|       | Water-02         | Eastern Branch |                  | 71           |                | 85    | 150          | 150            | 100 | 75         | 60             | 80    | 150          |                |    | 1997          | 1997          | 1     |                     | 194                      | 2,591             |                  | Headworks        |                  | 16.0                               | 2.0                       |                          |                          |
|       |                  |                |                  | 40           |                |       |              |                |     | 40         |                |       | 160          |                |    | 1996          | 1996          |       |                     |                          |                   | Spring           |                  | Gabion type weir |                                    |                           |                          |                          |
|       | Water-03         | Eastern Branch |                  |              |                | 100   | 260          | 260            | 100 | 40         | 40             | 100   | 160          |                |    | 1996          | 1996          | 1     | _                   | 517                      | 12,925            | River            | Headworks        | Metal sheet gate | 13                                 | 2                         |                          |                          |
|       | Harewo           | Eastern Branch |                  | 40           |                | 38    | 133          | 60             | 45  |            |                |       |              |                |    |               |               |       |                     |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
|       | Amir Nur Decho   | Eastern Branch |                  | 40           |                | 43    | 80           | 28             | 35  |            |                |       |              |                |    | +             |               |       | -                   |                          |                   | Spring           | Headworks        |                  |                                    |                           |                          |                          |
|       | Chafe Gurati     | Eastern Branch |                  | 60           |                | 58    | 86           | 139            | 162 |            |                |       |              |                |    |               |               |       |                     |                          |                   | River            | Headworks        |                  |                                    |                           |                          |                          |
| 20. F |                  | Eastern Branch |                  | 70           |                | 57    | 80           | 63             | 79  | 70         | 40             | 57    | 150          |                |    | 1995          | 1995          | 1     |                     | 367                      | 5,241             | River            | Headworks        | Broad crest weir | 35                                 | 0.4                       | 60                       |                          |
| 21. F | Iomicho          | Eastern Branch | West Harar       | 375          | 212            | 57    | 600          | 200            | 33  |            |                |       |              |                |    |               |               |       |                     |                          |                   | River            | Headworks        |                  |                                    |                           |                          |                          |
| 22. F | Kaseheja         | Eastern Branch | West Harar       | 187          | 139            | 74    | 748          | 556            | 74  |            |                |       |              |                |    |               |               |       |                     |                          |                   | River            | Headworks        |                  |                                    |                           |                          |                          |
| 23. N | Midhagudu        | Eastern Branch | West Harar       | 235          | 105            | 45    | 250          | 53             | 21  |            |                |       |              |                |    |               |               |       |                     |                          |                   | River            | Headworks        |                  |                                    |                           |                          |                          |
|       |                  |                |                  | 1,948        | 1,456          | 82    | 5,423        | 4,682          | 92  | 591        | 580            | 100   | 2,496        |                |    | <u> </u>      |               |       |                     |                          | 5,985             |                  |                  |                  |                                    |                           |                          |                          |

| No.        |                                              | Coveyance | Structure (km) |          | Related St      | ructure (no | o.)      |      |         |       |                 |           |                 | Drainag | ee Structure | (km)       | Night Storag                  | ge         | Headworks  |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
|------------|----------------------------------------------|-----------|----------------|----------|-----------------|-------------|----------|------|---------|-------|-----------------|-----------|-----------------|---------|--------------|------------|-------------------------------|------------|------------|-----------------------------|-------------------------------|-----------------------|----------|----------------------------------------------|------------------------------|----------------------------|------------------------------|-------------|-------|
|            | Design<br>Discharge<br>(m <sup>3</sup> /sec) | Main      | Secondary      | Tertiary | Division<br>box | Turn-out    | Off-take | Drop | Culvert | Flume | Inlet<br>outlet | Chute Syp | non Cro<br>drai | s Main  | Secondar     | y Tertiary | Capacity<br>(m <sup>3</sup> ) | Consitions | No/damaged | l No/damaged<br>sluice gate | Damaged<br>weir<br>structures | River bank<br>erosion | Silation | Lack of<br>spillway,<br>sluice and<br>others | Sliding soils<br>into spring | Stilling basin<br>problems | Approach<br>canals<br>broken | Weed growth | Total |
| 1.         |                                              | 2         |                |          |                 |             |          |      |         |       |                 |           |                 |         |              | _          |                               |            | 0          | 0                           | 0                             | 0                     | 0        | 0                                            | 1                            | 0                          | 0                            | 0           | 1     |
| 2.<br>3.   |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               |            | 1          | 1                           | 1                             | 0                     | 1        | 0                                            | 0                            | 0                          | 0                            | 0           | 4     |
| 4.         |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 | _       |              |            |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 6.         |                                              | 6.6       |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               |            | 1          | 1                           | 0                             | 1                     | 0        | 0                                            | 0                            | 0                          | 0                            | 0           | 3     |
| 7.         |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              | -          |                               |            | 1          | 1                           | 1                             | 1                     | 0        | 0                                            | 0                            | 0                          | 0                            | 0           | 4     |
| 9.         |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 10.        |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 11.        |                                              | 7.0       |                |          |                 |             | 100      |      | 4       |       |                 |           |                 |         |              | -          |                               |            | 1          | 1                           | 1                             | 0                     | 0        | 0                                            | 0                            | 0                          | 0                            | 0           | 5     |
| 13.        |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               | not        |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 14.        |                                              | 4.0       |                |          |                 | 55          |          |      |         |       |                 |           |                 |         |              |            | 2,430                         | functional | 1          | 0                           | 0                             | 0                     | 0        | 1                                            | 0                            | 0                          | 0                            | 0           | 3     |
| 16.        |                                              | 3.0       |                |          |                 |             |          |      |         |       |                 |           |                 |         |              | 1          |                               |            | 1          | 1                           | 0                             | 0                     | 0        | 0                                            | 0                            | 0                          | 0                            | 1           | 3     |
| 17.        |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              | -          |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 18.        |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 20.        |                                              | 3.25      | 0.725          | 4.50     | 1               |             | 11       | 25   | 1       |       |                 | 1         |                 |         |              |            |                               |            | 1          | 1                           | 1                             | 0                     | 1        | 0                                            | 0                            | 0                          | 0                            | 0           | 4     |
| 21.<br>22. |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 | -       |              |            |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
| 23.        |                                              |           |                |          |                 |             |          |      |         |       |                 |           |                 |         |              |            |                               |            |            |                             |                               |                       |          |                                              |                              |                            |                              |             |       |
|            |                                              |           |                |          | 1               | 55          | 111      | 25   | 5       | 0     | 0               | 0 1       | 0               |         |              |            |                               |            | 9          | 7                           | 5                             | 3                     | 2        | 2                                            | 1                            | 1                          | 1                            | 1           | 32    |

| No. N    | Main Canal                   |              |                          | 1                                 |                          |                                                    |       | SC, TC, F            | D and Drain | nage Canal | 5                                     |                          |                     |       | Monitoring In      | formation          |                           |           |                              |                            |                           |         |           |    |                              |              |
|----------|------------------------------|--------------|--------------------------|-----------------------------------|--------------------------|----------------------------------------------------|-------|----------------------|-------------|------------|---------------------------------------|--------------------------|---------------------|-------|--------------------|--------------------|---------------------------|-----------|------------------------------|----------------------------|---------------------------|---------|-----------|----|------------------------------|--------------|
| 5        | Seepage/Leak<br>age of canal | Silt deposit | No design<br>canal shape | Damaged<br>structures by<br>flood | Damaged by<br>land slide | Cracks lined<br>canals /<br>concrete<br>structures | Total | Seepage<br>of canals | No SC       | No TC      | Drainage<br>culvert not<br>functional | Syphon not<br>functional | Drainage<br>problem | Total | Design<br>document | Working<br>drawing | Construction<br>completed | Siltation | Training to<br>beneficieries | Beneficieries<br>Operation | Beneficieries<br>Maintain | OIDA DA | OM Manual |    | O&M<br>Charge<br>(Birr/Year) | Ban<br>Accor |
| 1.       | 0                            | 0            | 1                        | 1                                 | 0                        | 0                                                  | 2     | 0                    | 0           | 1          | 0                                     | 0                        | 0                   | 1     | No                 | No                 | Yes                       | Yes       | No                           | Yes                        | Yes                       | No      | No        | No |                              | No           |
| 2.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 3.       | 0                            | 1            | 0                        | 1                                 | 0                        | 0                                                  | 2     | 0                    | 1           | 1          | 0                                     | 0                        | 0                   | 2     | No                 | No                 | Yes                       | Yes       | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | N            |
| 4.<br>5  |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 5.       | 0                            | 1            | 0                        | 1                                 | 1                        | 0                                                  | 3     | 0                    | 0           | 0          | 1                                     | 0                        | 0                   | 1     | No                 | No                 | Yes                       | Yes       | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | N            |
| 7.       | 1                            | 1            | 0                        | 0                                 | 0                        | 0                                                  | 2     | 0                    | 0           | 0          | 1                                     | 0                        | 0                   | 1     | No                 | No                 | Yes                       | Yes       | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | N            |
| 8.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 9.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 0.       | 0                            | 0            | 1                        | 0                                 | 0                        | 0                                                  | 1     | 0                    | 0           | 1          | 1                                     | 0                        | 0                   | 2     | No                 | No                 | No                        | Yes       | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | N            |
| 2.       | 1                            | 0            | 0                        | 0                                 | 0                        | 0                                                  | 1     | 0                    | 0           | 0          | 1                                     | 0                        | 0                   | 1     | No                 | No                 | Yes                       | No        | No                           | Yes                        | Yes                       | No      | No        | No |                              | N            |
| 3.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 4.       | 0                            | 1            | 0                        | 0                                 | 0                        | 0                                                  | 1     | 0                    | 0           | 1          | 0                                     | 0                        | 0                   | 1     | No                 | No                 | Yes                       | Yes       | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | 1            |
| 5.       | 0                            | 0            | 1                        | 0                                 | 0                        | 1                                                  | 2     | 0                    | 0           | 0          | 1                                     | 1                        | 0                   | 2     | No                 | No                 | No                        | Yes       | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | <u> </u>     |
| 6.<br>7. | 1                            | 0            | 0                        | 0                                 | 1                        | 0                                                  | 2     | 0                    | 0           | 1          | 0                                     | 0                        | 0                   | 1     | No                 | No                 | Yes                       | No        | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | N            |
| 8.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 9.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 0.       | 1                            | 0            | 0                        | 0                                 | 0                        | 0                                                  | 1     | 1                    | 0           | 0          | 0                                     | 0                        | 1                   | 2     |                    |                    | Yes                       | No        | No                           | Yes                        | Yes                       | Yes     | No        | No |                              | N            |
| .1.      |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
| 2.       |                              |              |                          |                                   |                          |                                                    |       |                      |             |            |                                       |                          |                     |       |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |
|          | 4                            | 4            | 3                        | 3                                 | 2                        | 1                                                  | 17    |                      | 1           | 5          | 5                                     |                          |                     | 14    |                    |                    |                           |           |                              |                            |                           |         |           |    |                              |              |

| No.        |                        |                   |                         |                              |                    |                                  |                     | WUA            |             |                       |              |        |                        |                  |
|------------|------------------------|-------------------|-------------------------|------------------------------|--------------------|----------------------------------|---------------------|----------------|-------------|-----------------------|--------------|--------|------------------------|------------------|
|            | Farm input<br>shortage | Water<br>shortage | Dispute in<br>water use | Conflict<br>between<br>US/DS | Full use of scheme | Scheduled<br>cropping<br>pattern | Salimity<br>problem | WUA<br>Members | Established | Legal<br>Registration | Water Master | By-law | Meeting<br>(no./month) | Record of meetng |
| 1.         | No                     | Yes               | Yes                     | No                           | No                 | Yes                              | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 2.         | Yes                    | Yes               | Yes                     | No                           | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 4.         |                        |                   |                         |                              |                    |                                  |                     |                |             |                       |              |        |                        |                  |
| 6.         | Yes                    | No                | No                      | No                           | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 7.         | Yes                    | No                | No                      | No                           | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 9.         |                        |                   |                         |                              |                    |                                  |                     |                |             |                       |              |        |                        |                  |
| 10.        | Yes                    | Yes               | Yes                     | Yes                          | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 12.        | Yes                    | Yes               | Yes                     | Yes                          | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 13.        | No                     | Yes               | Yes                     | No                           | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 15.        | Yes                    | Yes               | Yes                     | No                           | No                 | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 16.<br>17. | Yes                    | Yes               | Yes                     | No                           | Yes                | No                               | No                  | No WUA         | Not         |                       | Not          | Not    | Not                    | Not              |
| 18.        |                        |                   |                         |                              |                    |                                  |                     |                |             |                       |              |        |                        |                  |
| 19.<br>20. | Yes                    | No                | Yes                     | Yes                          | No                 | No                               | No                  | 5              | 1997        |                       | Not          | Not    | Not                    | Not              |
| 21.        |                        |                   |                         |                              |                    |                                  |                     |                |             |                       |              |        |                        |                  |
| 22.        |                        |                   |                         |                              |                    |                                  |                     |                |             |                       |              |        |                        |                  |
|            |                        |                   |                         |                              |                    |                                  |                     |                |             |                       |              |        |                        |                  |

| No.   | Name of Scheme | Location |                   | Irrigatio    | n Area (Ma     | ay 2000) | Beneficies   | (May 200       | 0)  | Irrigatior   | Area (Oc       | 1 2001) | Beneficies   | 6 (Oct. 200    | 1)  | Construct     | ion Period    | 1     | Construct           | ion Cost                 |                   |               |                  | Headworks        |                                    |                           |                          |                          |
|-------|----------------|----------|-------------------|--------------|----------------|----------|--------------|----------------|-----|--------------|----------------|---------|--------------|----------------|-----|---------------|---------------|-------|---------------------|--------------------------|-------------------|---------------|------------------|------------------|------------------------------------|---------------------------|--------------------------|--------------------------|
|       |                | Zone     | District (Wareda) | Plan<br>(ha) | Actual<br>(ha) | %        | Plan<br>(HH) | Actual<br>(HH) | %   | Plan<br>(ha) | Actual<br>(ha) | %       | Plan<br>(HH) | Actual<br>(HH) | %   | commne<br>ced | Complet<br>ed | Years | Plan (Birr<br>1000) | Actual<br>(Birr<br>1000) | Unit<br>(Birr/ha) | Water Sources | Intake Structure | Туре             | Length of<br>weir/dam<br>crest (m) | Height of<br>weir/dam (m) | Intake size<br>(dia, mm) | Water Duty<br>(l/sec/ha) |
| 1. 1  | Haya Oda       | Bale     | Mana Angetu       | 100          |                | 96       | 220          | 178            | 81  | 100          | 38             | 38      | 220          | 178            | 81  | 1996          | 1996          | 1     |                     | 1,313                    | 13,129            | River         | Headworks        | Ogee type        | 10.9                               | 1                         | 800                      | 2.472                    |
| 2. 1  | Hora Boka      | Bale     | Sinana Dinsho     | 32           | 0              | 0        | 183          | 0              | 0   | 26           |                |         | 188          |                |     | 1994          | 1996          | 3     |                     |                          |                   | River         | Headworks        | Rock fill type   |                                    |                           |                          |                          |
| 3. (  | Gomgoma        | Bale     | Mana Angetu       | 71           | 51             | 72       | 156          | 182            | 117 | 71           |                |         | 156          |                |     | 1994          | 1995          | 2     |                     | 733                      | 10,331            | River         | Headworks        | H. circle        | 8.0                                | 2.5                       | 800                      | I                        |
| 4. 0  | Chiri          | Bale     | Mana Angetu       | 50           | 50             | 100      | 140          | 152            | 109 | 50           | 49             | 98      | 140          | 142            | 101 | 1995          | 1996          | 2     |                     | 364                      | 7,281             | River         | Headworks        | Broad crest weir | 10.0                               | 1.0                       | 800                      | 2.4                      |
| 5. 1  | Dinki          | Bale     | Ginir             | 200          | 169            | 84       | 450          | 265            | 59  | 200          | 186            | 93      | 450          | 370            | 82  |               |               |       |                     | 1,641                    | 8,206             | River         | Headworks        | Ogee type        |                                    | 1.0                       | 600                      |                          |
| 6. 1  | Melko Buta     | Bale     | Goro              | 85           | 0              | 0        | 340          | 0              | 0   | 85           | 7              | 9       | 340          |                |     | 1988          | 1988          | 1     |                     |                          |                   | River         | Headworks        | Ogee type        | 20.0                               |                           |                          |                          |
| 7. 5  | Shaya          | Bale     | Sinana Dinsho     | 230          | 0              | 0        | 271          | 0              | 0   | 230          | 0              | 0       | 271          | 0              | 0   | 1987          | 1987          | 1     |                     |                          |                   | River         | Headworks        |                  | 20.0                               | 1.0                       | 600                      | ļ                        |
| 8. 1  | Ukuma          | Bale     | Dodola            | 100          | 0              | 0        | 400          | 0              | 0   | 77           | 76             | 99      | 288          |                |     | 1998          | 1998          | 1     |                     | 884                      | 11,482            | River         | Headworks        | Ogee type        | 10.0                               | 1.0                       | 600                      |                          |
| 9. /  | Arada Tare     | Bale     | Ginir             | 120          | 120            | 100      | 288          | 300            | 104 | 120          | 218            | 181     | 288          | 429            | 149 |               |               |       | 1,722               | 1,257                    | 10,474            | River         | Headworks        | Broad crest weir | 4.5                                | 0.8                       | 400                      | 2.47                     |
| 10.   | Oda-Roba       | Bale     | Ginir             | 70           | 70             | 100      | 120          | 200            | 167 | 70           | 77             | 110     | 200          |                |     | 1997          | 1997          | 1     |                     | 760                      | 10,851            | River         | Headworks        | Ogee type        | 12.0                               | 1.0                       | 600                      |                          |
| 11. 1 | Melka Hida     | Borana   | Galana-Abaya      | 70           | 0              | 0        | 136          | 0              | 0   | 70           | 39             | 56      | 138          |                | 0   | 1999          | 1999          | 1     |                     | 426                      | 6,086             | River         | Headworks        | Broad crest weir | 15.0                               | 1.0                       | 600                      | 2.0                      |
| 12. / | Abeda Chambe   | Borana   | Adola             | 60           | 0              | 0        | 200          | 0              | 0   | 60           | 0              | 0       | 200          | 0              | 0   | 1995          | 1995          | 1     | 1,200               |                          | 20,000            | River         | Headworks        |                  | 20.0                               | 0.6                       | 800                      |                          |
| 13.   | Ambentu        | Borana   | Tena              |              |                |          |              |                |     | 200          | 186            | 93      | 450          | 192            | 43  | 1995          | 1996          | 2     |                     | 884                      | 4,421             | River         | Headworks        |                  | 10.0                               | 0.6                       |                          |                          |
|       |                |          |                   | 1,188        | 556            | 46       | 2,904        | 1,277          | 53  | 1,359        | 876            | 71      | 3,329        | 1,311          | 57  |               |               |       |                     |                          | 10,226            |               |                  |                  |                                    |                           |                          |                          |

| No. |                                              | Coveyance | Structure (kr | n)       | Related          | l Structur   | e (no.)      |      |         |           |               |         |                             |       | :              | Drainagee | Structure     | (km)     | Night Storag                  | е          | Headworks                     |              |   |                                     |   |                     |                                            |                                            |                       |                         |                 |       |
|-----|----------------------------------------------|-----------|---------------|----------|------------------|--------------|--------------|------|---------|-----------|---------------|---------|-----------------------------|-------|----------------|-----------|---------------|----------|-------------------------------|------------|-------------------------------|--------------|---|-------------------------------------|---|---------------------|--------------------------------------------|--------------------------------------------|-----------------------|-------------------------|-----------------|-------|
|     | Design<br>Discharge<br>(m <sup>3</sup> /sec) | Main      | Secondary     | Tertiary | Divisio<br>n box | Turn-<br>out | Off-<br>take | Drop | Culvert | Flume Spi | llwa<br>y Chu | ute cro | toad<br>ossin<br>bridg<br>e | yphon | Cross<br>drain | Main      | Secondar<br>y | Tertiary | Capacity<br>(m <sup>3</sup> ) | Consitions | No/damage<br>d sluice<br>gate | Silt deposit |   | No back fill<br>behind wing<br>wall |   | Weed<br>infestation | No ins<br>pection box<br>on pipe<br>intake | River<br>course not<br>excavated<br>in d/s | River bank<br>erosion | River course<br>changed | No wing<br>wals | Total |
| 1.  |                                              | 0.423     | 1.5           | 3.095    | 3                | 19           |              | 16   | 2       |           | 1             |         | 6                           |       |                |           |               |          |                               |            | 1                             | 1            | 1 | 1                                   | 1 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 5     |
| 2.  |                                              | 1.725     |               |          |                  | 7            | 16           | 3    | 1       |           |               |         |                             |       |                |           |               |          |                               |            | 0                             | 0            | 0 | 0                                   | 1 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 1     |
| 3.  |                                              | 3.516     | 1.636         | 1.760    | 1                | 8            | 10           | 103  | 4       |           |               |         | 2                           | 2     |                |           |               |          |                               |            | 0                             | 0            | 0 | 1                                   | 0 | 1                   | 1                                          | 0                                          | 0                     | 0                       | 0               | 3     |
| 4.  |                                              | 2.79      | 0.932         | 2.931    | 2                | 9            |              | 29   | 5       |           |               |         | 4                           |       |                |           |               |          |                               |            | 0                             | 0            | 0 | 1                                   | 0 | 1                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 2     |
| 5.  |                                              |           |               |          | 2                | 25           |              | 36   | 6       |           |               |         |                             |       |                |           |               |          |                               |            | 1                             | 1            | 0 | 1                                   | 0 | 1                   | 0                                          | 1                                          | 0                     | 0                       | 0               | 5     |
| 6.  |                                              |           |               |          |                  | 28           | 14           | 3    | 1       |           |               |         | 4                           |       |                |           |               |          |                               | good       | 1                             | 1            | 1 | 0                                   | 1 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 4     |
| 7.  |                                              |           |               |          |                  |              |              |      |         |           |               |         |                             |       |                |           |               |          |                               |            | 1                             | 1            | 1 | 0                                   | 1 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 4     |
|     |                                              |           |               |          | 5                | 28           |              | 90   | 4       | 1         |               |         | 13                          |       | 3              |           |               |          |                               | good       | 1                             | 1            | 0 | 0                                   | 0 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 2     |
| 8.  | 0.058                                        | 1.55      | 4.127         |          | 1                | 45           |              | 47   | 2       | 2         |               |         | 5                           |       | 1              |           |               |          | 1,024.0                       | Not        | 1                             | 1            | 1 | 0                                   | 0 | 0                   | 0                                          | 0                                          | 1                     | 0                       | 0               | 4     |
| 10. |                                              |           |               |          | 1                | 4            |              | 11   |         | 1         | 2             |         | 6                           |       |                |           |               |          |                               |            | 1                             | 1            | 1 | 0                                   | 0 | 0                   | 0                                          | 0                                          | 0                     | 1                       | 0               | 4     |
| 11. | 0.15                                         | 1.055     | 0.485         | 2.20     | 4                | 31           | 3            | 11   | 1       | 1         |               |         | -                           |       |                |           |               |          |                               |            | 0                             | 1            | 0 | 0                                   | 0 | 1                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 2     |
| 12. |                                              | 1.10      | 1.450         |          |                  | 5            | 8            | 8    | 2       | -         |               |         |                             |       |                |           |               |          |                               |            | 1                             | 0            | 0 | 0                                   | 0 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 0               | 1     |
| 12. |                                              | 8.00      | 2.75          | 7.20     | 11               | 22           |              | 23   |         |           |               |         |                             |       |                |           |               |          |                               |            | 0                             | 0            | 0 | 0                                   | 0 | 0                   | 0                                          | 0                                          | 0                     | 0                       | 1               |       |
|     |                                              |           |               |          | 30               |              |              | 380  | 28      | 5         | 4 2           |         | 40                          | 2     | 4              |           |               |          |                               |            | 8                             | 8            | 5 | 4                                   | 4 | 4                   | 1                                          | 1                                          | 1                     | 1                       | 1               | 38    |

| No | Main Canal                       |                                                    |   |                                |   |   |   |       |             |   |       |                |                                  |            |    |          |        |       | SC, TC, FI                           | ) and Drair         | nage Canals       | \$             |                 |                         |                          |                                |                                |                      |                                            |                                       |                    |       | No. |
|----|----------------------------------|----------------------------------------------------|---|--------------------------------|---|---|---|-------|-------------|---|-------|----------------|----------------------------------|------------|----|----------|--------|-------|--------------------------------------|---------------------|-------------------|----------------|-----------------|-------------------------|--------------------------|--------------------------------|--------------------------------|----------------------|--------------------------------------------|---------------------------------------|--------------------|-------|-----|
|    | Seepage/Lea<br>kage/Breach<br>ed | Cracks<br>lined canals<br>/ concrete<br>structures |   | Gates<br>fixed not<br>properly |   |   |   | canal | no strength |   | water | No<br>spillway | Missing<br>structures<br>(slabs) | structures | of | not back | uction | Total | No gates<br>for<br>division<br>boxes | Seepage/<br>Leakage | Canal<br>breached | Weed<br>growth | Silt<br>deposit | Structures<br>destloyed | No design<br>canal shape | Canal<br>damaged by<br>animals | Poor<br>draingae<br>facilities | Lack of<br>back fill | Lack of<br>cross<br>drainage<br>structures | Canal body<br>used for<br>cultivation | Poor<br>plastering | Total |     |
| 1  | 0                                | 0                                                  | 1 | 0                              | 0 | 0 | 0 | 0     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 1     | 0                                    | 0                   | 0                 | 1              | 1               | 0                       | 0                        | 0                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 2     | 1.  |
| 2  | 0                                | 2                                                  | 1 | 0                              | 1 | 1 | 0 | 0     | 1           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 4     | 1                                    | 0                   | 0                 | 0              | 0               | 0                       | 0                        | 0                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 1     | 2.  |
| 3  | 1                                | 0                                                  | 1 | 0                              | 0 | 0 | 1 | 1     | 0           | 1 | 1     | 0              | 0                                | 0          | 0  | 0        | 0      | 5     | 1                                    | 1                   | 1                 | 0              | 1               | 0                       | 0                        | 0                              | 1                              | 1                    | 0                                          | 0                                     | 0                  | 6     | 3.  |
| 4  | 1                                | 1                                                  | 0 | 0                              | 0 | 0 | 0 | 0     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 0     | 1                                    | 0                   | 0                 | 1              | 1               | 0                       | 1                        | 1                              | 1                              | 0                    | 1                                          | 0                                     | 0                  | 7     | 4.  |
| 5  | 1                                | 0                                                  | 0 | 0                              | 0 | 1 | 0 | 0     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 1     | 1                                    | 0                   | 0                 | 1              | 0               | 0                       | 0                        | 0                              | 0                              | 0                    | 0                                          | 1                                     | 0                  | 3     | 5.  |
| 6  |                                  | 0                                                  | 0 | 0                              | 0 | 0 | 1 | 0     | 0           | 0 | 0     | 1              | 0                                | 0          | 0  | 0        | 0      | 2     | 1                                    | 1                   | 1                 | 0              | 0               | 0                       | 0                        | 1                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 4     | 6   |
| 7  |                                  | 0                                                  | 0 | 0                              | 0 | 1 | 0 | 0     | 0           | 1 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 2     | 0                                    | 1                   | 1                 | 0              | 0               | 1                       | 0                        | 1                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 4     | 7   |
| 8  |                                  | 1                                                  | 1 | 0                              | 0 | 0 | 0 | 0     | 1           | 0 | 0     | 0              | 1                                | 1          | 1  | 0        | 0      | 5     | 0                                    | 0                   | 0                 | 0              | 0               | 1                       | 0                        | 0                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 1     | ,.  |
| 9  |                                  | 1                                                  | 0 |                                | 0 | 0 | 0 | 0     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 1        | 0      | 2     | 0                                    | 0                   | 0                 | 0              | 0               | 0                       | 1                        | 0                              | 0                              | 0                    | 0                                          | 0                                     |                    | 2     | 0.  |
| 10 |                                  | 0                                                  | 0 | 1                              | 1 | 0 | 0 | 0     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 2     | 0                                    | 1                   | 0                 | 0              | 0               | 0                       | 0                        | 0                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 1     | 10. |
|    |                                  |                                                    | 0 | 0                              |   |   |   |       | 0           |   | 0     | 0              |                                  | 0          |    |          |        |       |                                      |                     |                   | 0              | 0               | 0                       |                          | 0                              |                                |                      | 0                                          | 0                                     |                    |       | 10. |
| 11 |                                  | 1                                                  | 1 |                                | 0 | 0 | 1 | 0     |             | 0 |       |                | 0                                |            | 0  | 0        | 0      | 1     | 1                                    | 1                   | 1                 |                |                 |                         | 0                        |                                | 0                              | 0                    |                                            |                                       | 0                  | 3     | 11. |
| 12 |                                  | 0                                                  |   | 1                              | 0 | 0 | 0 | 1     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 1      | 4     | 0                                    | 0                   | 0                 | 0              | 0               | 0                       | 0                        | 0                              | 00                             | 0                    | 0                                          | 0                                     | 0                  | 0     | 12. |
| 13 | 1                                | 1                                                  | 0 | 4                              | 3 | 0 | 0 | 0     | 0           | 0 | 0     | 0              | 0                                | 0          | 0  | 0        | 0      | 2     | 1                                    | 6                   | 5                 | 4              | 4               | 3                       | 3                        | 0                              | 0                              | 0                    | 0                                          | 0                                     | 0                  | 7     | 13. |

| Monitoring         | g Informatio       | on                            |           |    |                                    |      |      |              |               |                              |                 |                           |                   |                            |                              |     |                                  |                     | WUA            |                 |                           |                 |        |                            |                    |
|--------------------|--------------------|-------------------------------|-----------|----|------------------------------------|------|------|--------------|---------------|------------------------------|-----------------|---------------------------|-------------------|----------------------------|------------------------------|-----|----------------------------------|---------------------|----------------|-----------------|---------------------------|-----------------|--------|----------------------------|--------------------|
| Design<br>document | Working<br>drawing | Constructi<br>on<br>completed | Siltation | to | Beneficie<br>ries<br>Operatio<br>n | ries | OIDA | OM<br>Manual | O&M<br>Charge | O&M<br>Charge<br>(Birr/Year) | Bank<br>Account | Farm<br>input<br>shortage | Water<br>shortage | Dispute<br>in water<br>use | Conflict<br>between<br>US/DS | 1   | Scheduled<br>cropping<br>pattern | Salimity<br>problem | WUA<br>Members | Establis<br>hed | Legal<br>Registra<br>tion | Water<br>Master | By-law | Meeting<br>(no./mont<br>h) | Record o<br>meetng |
| F/S                | No                 | Yes                           | No        | No | Yes                                | Yes  | Yes  | Yes          | No            |                              | No              | Yes                       | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 | No                            | Yes       | No | No                                 | No   | No   | No           | No            |                              | No              | Yes                       | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 |                               |           | No | Yes                                | No   | No   | Yes          | No            |                              | No              | Yes                       | Yes               | Yes                        | Yes                          | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 | Yes                           | No        | No | Yes                                | Yes  |      |              |               |                              |                 | Yes                       | No                | No                         | No                           | Yes | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 | Yes                           | Yes       | No | Yes                                | No   |      | No           | No            |                              | No              | Yes                       | Yes               | Yes                        | Yes                          | No  |                                  |                     | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 | Yes                           | No        | No | Yes                                | No   | No   | No           | No            |                              | No              | Yes                       | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 |                               | No        | No | No                                 | No   | No   | No           | No            |                              | No              | Yes                       | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| F/S                | Partial            | No                            | No        | No | Yes                                | Yes  |      | No           | No            |                              | No              | Yes                       | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| F/S                | No                 | Yes                           | Yes       | No | Yes                                | Yes  | Yes  | Yes          | No            |                              | No              | Yes                       | Yes               | Yes                        | Yes                          | Yes | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| F/S                | No                 |                               | Yes       | No | Yes                                | Yes  |      |              |               |                              |                 | Yes                       | No                | No                         | Yes                          | Yes |                                  |                     | Not            |                 |                           | Not             | Not    |                            |                    |
| Yes                | Yes                | Yes                           | No        | No | Yes                                | Yes  | Yes  | No           | No            |                              | No              | Yes                       | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | Partial            | No                            | No        | No | No                                 | No   | Yes  |              | No            |                              | No              |                           | No                | No                         | No                           | No  | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
| No                 | No                 | Yes                           |           | No | Yes                                | Yes  | Yes  | No           | No            |                              | No              |                           | No                | No                         | No                           | Yes | No                               | No                  | Not            |                 |                           | Not             | Not    |                            |                    |
|                    |                    |                               |           |    |                                    |      |      |              |               |                              |                 |                           |                   |                            |                              |     |                                  |                     |                |                 |                           |                 |        |                            |                    |

Chapter 4

Program 3 of Verification Study

Environmental Monitoring –

Irrigation Water Use in the Meki Area

# CHPTER 4 ENVIRONMENTAL MONITORING – IRRIGATION WATER USE IN THE MEKI AREA

# 4.1 Policy and Institutional Background

# 4.1.1 National Environmental Policy

One of the most significant changes in public awareness in recent years in Ethiopia is the growing concern about maintaining the integrity of the environment, on which the country is fully dependent on the natural resource base for most economic activities. The commitment of the Government to environmental conservation and sustainable use of resources has been stated in all national development plans over the past decade. A national environmental policy, which is stated in the Environmental Action Plan (1997), provides guidance for actions in all sectors. The key objectives of the policy are:

- 1) To facilitate optimal use of the national land base and water;
- 2) To promote sustainable use of natural resources to meet the needs of present generations while preserving their ability to meet the needs of future generations;
- 3) To treat environmental conservation and economic development as integral aspects of the same process of sustainable development; and
- 4) To generate income and meet national goals and international obligations by conserving biodiversity, reversing desertification, mitigating effects of disasters including drought.

# 4.1.2 Institutional, Policy and Legal Framework

(1) Institutional Framework

Socio-economic reforms in Ethiopia during 1970s and 1980s disregarded the conservation of natural resources, which have seen unprecedented depletion. A century ago, closed forest covered 40% of the country, but barely 4% is left today, suggesting that deforestation rate has been and continues to be very high. Desertification, which is due to destructive developmental activities, inadequate and erratic rainfall, and frequent droughts, is also threatening the country. Both sheet and gully erosion is also widespread in the country. Fertile soil losses due to erosion is estimated at 42 tons of top soil per hectare per year, and soil erosion amounts to 1.5 billion tons per year. And water resources are shrinking and being degraded with problems of high salinity and fluoride.

To address these issues, the Government has over the years, set up institutions on environmental matters, notably the Environmental Protection Authority (EPA), which was established in 1995, and other environment-related agencies. These institutions were set up at Federal and Regional levels to help the Federal Government to integrate development plans within overall national set goals. The EPA is the Coordinating Agency for the Federal Policy on Natural Resources and the Environment. Other agencies are: Ministries of Agriculture; Water Resources; Mines and Energy; Public Works and Urban Development; Education; Information and Culture; Health; Labor and Social Affairs; Trade and Industry; and Economic Development. However, these institutions have several deficiencies: (i) lack of capacity to deliver environmental management services; (ii) extension system is strongly crop-bias with less attention to the environment; (iii) inadequate research on natural resources conservation and water hydrology; (iv) inadequate budget for extension services; and (v) inadequate participatory process in conservation.

(2) Policy and Legal Framework

Environmental legislation is found in various sectoral statutes under the different line ministries dealing with agriculture, health, water, forestry, fisheries and livestock, which have competing and exclusive interests in the use and management of natural resources. These statutes face fundamental constraints in enforcement mainly due to adoption of a sectoral approach rather than an integrated one. The policies also tend to contradict or overlap each other, rendering their implementation difficult. Although the Ethiopian constitution has a clear provision for some aspects of integrated development such as on land ownership, sub-sector specific policies are lacking for forestry, wildlife resources, land use, settlement and socio-economics at both national and regional levels. Where new policies exist, explicit guidelines for implementation, monitoring, evaluation and regulation are lacking. For example, the Water Resources Management Policy is comprehensive enough, but lacks guidelines on minimum maintenance flow in rivers and on minimum water levels for lakes to facilitate monitoring and regulation of development actions that would ensure ecological balance.

(3) Economic Causes of Water and Land Degradation in Ethiopia

Overexploitation of natural resources in Ethiopia is mainly because the net revenues currently being earned by the local population for conserving natural resources are quite inadequate to cover the opportunity costs of the land, i.e. the forgone benefits of alternative land uses). The relatively high opportunity costs create economic incentives to destroy, for example, water catchment areas including soil, water and vegetation at the expense of conservation. This is because the current economic and environmental policies in Ethiopia do not generate the scale of revenues needed to prevent the wide spread water and land degradation. Unless the compensation to landowners for not developing say, land in catchment areas is raised adequately, significant water and degradation will continue as the opportunity cost of conservation increases. And the productivity of land will decline as water and productive soil cover diminishes.

The JICA Study identified several but inter-related causes of water and land degradation Ethiopia. The *proximate* cause of degradation is due to habitat conversion, while the fundamental causes are considered to be 'economic policy failures'. Policy failures include *absence of policies* and *market failure* (absence of prices to reflect the true costs or benefits of conservation). And *implementation failure* is failure to manage the environment due to weak institutions, inadequate technical capacity and funding, while *information failure* is failure to demonstrate and communicate the values of conservation to decision-makers and stakeholders. What these economic and institutional failures do is to make conservation appear less investment-worthy than alternative land uses. If these economic distortions are identified and removed and good policies are provided, the resulting incentives can be used more effectively to divert land, capital and labor towards conservation of the environment and watershed areas in the country.

# 4.2 Irrigation Water Use in the Meki Area

# 4.2.1 Environmental Background of the Meki Area

The Meki area lies on the bottomland of the Rift Valley system, which is prone to drought because of erratic nature of limited rainfall, i.e. 774 mm per year at Meki. The supplemental irrigation is one the means to minimize drought risk and sustain the agricultural production by peasants. The construction of dam and diversion weir on the Meki river are alternatives for irrigation water supply to the study area.

The Meki-Ziway-Abijata sub-basin is important in the Rift Valley system in terms of potentials for water resources exploitation. However, the lakes and rivers have interconnected system and the constraints for water resources are complex. Therefore, the diversion of water from the Meki river will affect the water recharge of the Ziway lake, which can lead to change in outflow to Bulbula river and will ultimately affect water level of the Abijata lake. The irrigation development of the basin requires a judicious planning for protection of the fragile eco-system. The existing irrigation schemes in the Meki area are summarized below.

#### 4.2.2 Meki-Ziway Irrigation Scheme

#### (1) Outline of Scheme

The Meki-Ziway Irrigation Project is located 5 km west of Meki town. The project is established in 1989 with a technical assistance arranged with the previous government. It was envisaged to develop 3,000 ha, out of which 1,500 ha was to be a state farm, while the balance was to be allocated to local farmers. So far, 930 ha of land on the right bank of the lower Meki river has been developed, including intake channel from the Ziway lake, pump station, delivery pipeline, main, secondary, tertiary canals and related structures. The pump station have nine (9) pumps, of which two (2) were reserved as stand-by, and pumps having a capacity of 764 liter/sec./unit and a head of 16.3 m have been established. Currently, the facilities are under the control of OIDA, while electricity is supplied by Ethiopia Lightening and Power Authority (ELPA).

(2) Operation and Maintenance

The project was ceased in 1992 due to the change of the government policy. In the previous period, free water was supplied to farmers under full control of the government. After the governmental reform, however, the responsibility of the government is limited only to security control of the pumping station by the Oromia Water, Mine & Energy Resources Development Bureau (OWMEDB) and the main canal system by OIDA. Without any subsidy, farmers are obliged to pay electricity supply charges against operation hours. Except for some 300 ha planted in 1990, the project has been substantially lying idle since then.

Two (2) sets of pumps out of nine (9) are currently functioned, while seven pumps need repair works. In order to activate the scheme to some extent, the rehabilitation work is required. It is suggested that an inventory survey to be conducted to clarify the defect of the scheme and to estimate cost for the rehabilitation and availability of spare parts. It is noted that spare parts are not of the international standard.

Only 300 ha are activated out of 3,000 ha. Increase of farmers, who will commence cultivation in the remaining area, could relieve the burden for the farmers to pay the pump operation charge. It is worth, therefore, while considering the farmland re-allocated to farmers, who are residing outside of the scheme.

### 4.2.3 Small Irrigation Schemes

(1) Commercial Horticultural Production

The irrigation water use is not controlled and regulated under the government law. Some 180 small pumps are currently installed for irrigation purposes in the Dugda Bora Wareda. Most of these pumps are owned by rich farmers and private investors, who generally hire peasants as farm labor force. The pumps are used for horticultural crops throughout the year.

(2) Community-based Irrigation Schemes

On the other hand, the community-based irrigation activities are limited in terms of both number of farmers and extent of irrigation area. They organize the water users associations and seek assistance from NGOs to start irrigation farming. They operate on their plots on individual basis but share the common service given by the motor pumps, which are usually provided by NGOs.

There are 15 farmers groups, water user associations, composed of 500 peasants who irrigate 404.6 ha mainly for horticultural crop production. The irrigation farmers groups in Dugda Bora Wareda are listed in Table X.4.1.

| No. | Name of WUA      | PA             |      | Members | 3     | Irrigation | Source of  | Year of    |
|-----|------------------|----------------|------|---------|-------|------------|------------|------------|
|     |                  |                | M-1- | E1-     | T-4-1 | Area       | Water      | Establish- |
|     |                  |                | Male | Female  | Total | (ha)       |            | ment       |
| 1   | Lega Meki-1      | Gemu Sbubi     | 10   | -       | 10    | 32.5       | Meki river | 1997       |
| 2   | Lega Meki-2      | Bekere Girrisa | 19   | 5       | 24    | 6.0        | Meki river | 1998       |
| 3   | Bekere Girrisa   | Bekere Girrisa | 130  | 5       | 135   | 218.0      | Ziway lake | 1997       |
| 4   | Melka Cherecha   | Welda Mekdela  | 34   | -       | 34    | 14.1       | Ziway lake | 1998       |
| 5   | Meika Korma      | Welda Kelina   | 28   | 9       | 37    | 16.6       | Ziway lake | 1998       |
| 6   | Melka Aba Godana | Welda Kelina   | 18   | 1       | 19    | 7.8        | Meki river | 1998       |
| 7   | Oda Bokota       | Oda Bokota     | -    | 23      | 23    | 5.0        | Meki river | 1999       |
| 8   | Teppo-140        | Teppo Chareke  | 40   | -       | 40    | 13.0       | Ziway lake | 1997       |
| 9   | Cheleleka Denbel | Dodola Denber  | 34   | 1       | 35    | 10.9       | Ziway lake | 1998       |
| 10  | Dodoata Denbel   | Dodola Denber  | 15   | -       | 15    | 18.1       | Ziway lake | 1997       |
| 11  | Wayyo Gabrier    | Wayyo Gabrier  | 19   | 5       | 24    | 13.8       | Ziway lake | 1996       |
| 12  | Wedia Kelina     | Wedia Kelina   | 30   | 1       | 31    | 8.6        | Ziway lake | 1998       |
| 13  | Wayyo Serrit     | Wayyo Gabrier  | 28   | 4       | 32    | 17.0       | Ziway lake | 1999       |
| 14  | Tuchi Denbel     | Tuchi Denbel   | 16   | -       | 16    | 15.3       | Ziway lake | 1996       |
| 15  | Jara Wayu        | Elen           | 20   | 5       | 25    | 8.0        | Elen lake  | 1998       |
|     | Total            | -              | 441  | 59      | 500   | 404.6      | -          | -          |

 Table X.4.1 Irrigation Farmers Groups in Dugda Bora Warada

Except for Bekere Girrisa located in the command area of the Meki-Ziway irrigation project, they have been developed using the surface water resources of the Meki river and the Ziway lake by use of small pumps.

(2) Operation and Maintenance

Water abstracted by pumps is discharged to the raised earth canals, which convey the water to distribution canals. Irrigation is applied through furrows. The schemes run in accordance with discussion and consensus by all members. All members participate in operation and maintenance works of the scheme. Further, decision of the group is made by members meetings when problems arise.

Pump operation and water distribution in some schemes are entrusted to water masters employed by the groups, with an average allowance of Birr 50 per month. The water master attends the water distribution work, forming canal embankment and furrows per each farm lot. The group members and the water master share irrigation benefits in accordance with the agreement. This system contributes to proper water distribution, even without concrete water diversion structures in these schemes.

At present, success of the small-scale pump irrigation schemes leads to increase of application by farmers, who are anxious for new schemes. However, it should be mentioned that increase of the schemes might cause disordered water use along the Meki river. The government agencies including OIDA is expected, therefore, to involve in the schemes positively, restricting and monitoring of the existing and new schemes in terms of water resources development

# 4.3 Climatic Conditions of the Meki Area

The Meki area is located between latitude 8° 03'N and 8° 24'N and longitude 38° 32'E and 39° 02'E in the Ethiopian Rift Valley; a huge volcano-tectonic sunken block basically formed in the Tertiary period. The Ethiopian Rift Valley traverses in the SW-NE direction incising between the Ethiopian plateau and the Somalian plateau with a formation of a 35 to 80 km wide corridor between the faults. In north of Nazarethe, this corridor opens out into a triangle on the Afar, which is the junction of three tectonic directions, namely the Red Sea, the Gulf of Aden and the Ethiopian Rift. In the Quaternary, occurrence of heavy rains led to the formation of large lakes including the Ziway lake, which is charged by the Meki river.

The climate in the study area and around the lakes is arid or semi-arid. However, it is humid to dry sub humid in the river catchment areas in the highlands, west of Butajira and east of Assela. The climate of the basin is governed mainly by the movement of Equatorial low-pressure zones as summarized in Table X.4.2.

| S.N. | Season               | Month                   | Location of<br>Low Pressure            | Wind Direction                                                                  | Rainfall<br>Condition                                        |
|------|----------------------|-------------------------|----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1    | Dry                  | November<br>to February | South of the<br>Equator                | Dry northeast Trade<br>winds from the<br>Arabian Peninsula                      | Dry                                                          |
| 2    | Light rain<br>(Belg) | March to June           | Southern<br>Sudan                      | Southeast winds from the Indian Ocean                                           | Light and less reliable rainfall                             |
| 3    | Rainy<br>(Meher)     | July to<br>October      | Arabian<br>Peninsula &<br>Central Asia | Moist southwest<br>winds from the south<br>Atlantic ocean and<br>central Africa | Area receives most<br>of its rains from<br>July to September |

Table X.4.2 Rainfall Season in the Area

The Meki meteorological station is located at the center of the study area; it receives an average annual precipitation (1966-1999) of 774 mm. The annual rainfall is rather erratic. It ranges from a low of 344 mm in 1995 to a high of 1,091 mm in 1983. About 64% of the annual rainfall is recorded during the period from June to September. The drier months are from November to February, only 8% of the annual rainfall are recorded during this period. The heaviest precipitation usually falls during August as much as 21% of the annual precipitation occurring during this period.

# 4.4 Hydrology

#### 4.4.1 General

The northern rift valley sub catchment has seven (7) major water bodies in its hydrologically closed basins; Meki river, Katar river, Ziway lake, Bulbula river, Horakelo river, Abijata lake, and Langano lake. The location of water bodies and streamflow gauging station is shown in Attachment X-4-1. Main features of lakes are shown in Table X.4.3.

| S.N. | Lake    | Lake     | Storage | Mean  | Altitude | Catchment | Annual |
|------|---------|----------|---------|-------|----------|-----------|--------|
|      |         | Area     | Volume  | Depth |          | Area      | Inflow |
|      |         | $(km^2)$ | (MCM)   | (m)   | (m)      | $(km^2)$  | (MCM)  |
| 1.   | Ziway   | 440      | 1,466   | 2.5   | 1,636    | 7,380     | 704    |
| 2.   | Langano | 230      | 3,800   | 17.0  | 1,590    | 2,006     | -      |
| 3.   | Abijata | 180      | 954     | 7.6   | 1,580    | 10,740    | 227    |
| 4.   | Shala   | 370      | 37,000  | 86.0  | 1,567    | 2,300     | -      |

Table X.4.3 Main Features of Lakes

The Meki and Katar rivers replenish the Ziway lake, which in turn give rise to the outflow to the Bulbula river that flows south for 30 km before draining into the terminal lake Abijata. Other rivers, which flow into Abijata, are the Horakelo river from the Langano lake and the Gogessa river, a branch of the Gidu river draining from west of the Abijata. These lakes and rivers have interconnected system and the constraints for water resources are complex. Therefore, the water resources development of the basin requires a judicious planning for protection of the fragile eco-system. Their main features are presented in Table X.4.4.

River Runoff Drain No. Station Catchment Annual Annual Area Rainfall Discharge Coefficient Into Lake  $(km^2)$ (MCM) (mm)Meki Village 1,006 Meki 2,433 291 0.12 Ziway 1 2 Katar Abura 3,350 874 413 0.14 Ziway 3 Kekersitu Adamitulu 7,488 180 Abijata 4 Horakelo Near Bulbula 2,050 47 Abijata

Table X.4.4 Main Features of Rivers

#### 4.4.2 Meki River

The Meki river originates in the highlands of Guraghe and travels a distance of about 100 km from the highlands at altitude of 3,600 m to 1,636 m before draining into the Ziway lake. The upper reaches of the basin are steep and mountainous, while the lower basin is flat with broad valley. The total catchment area of the river near Meki town is 2,433 km<sup>2</sup>. According to discharge data recorded near Meki town (1965-1999), average annual discharge of the river is 291 MCM or 9.18 m<sup>3</sup>/s. Monthly discharge of the river at Meki town station is summarized in Table X.4.5.

Table X.4.5 Monthly Discharge of Meki river Near Meki Town

|      |      |      |      | Av   | erage Ri | iver Disch | arge (m <sup>3</sup> /s | 5)    |      |      |      |      | Annual          |
|------|------|------|------|------|----------|------------|-------------------------|-------|------|------|------|------|-----------------|
| Jan  | Feb  | Mar  | Apr  | May  | Jun      | Jul        | Aug                     | Sep   | Oct  | Nov  | Dec  | Year | Volume<br>(MCM) |
| 0.94 | 2.28 | 5.01 | 7.01 | 7.31 | 6.29     | 18.75      | 29.64                   | 19.93 | 8.77 | 3.29 | 0.90 | 9.18 | 291             |

The high discharge occurs during the months of August and September, while low discharge generally occurs during the dry season from December to February. The river discharge sometimes becomes zero during these months.

# 4.4.3 Ziway Lake

The main water source for the lake is the flows of the Katar and Meki rivers. The Meki river is gauged at Meki town (CA =  $2,433 \text{ km}^2$ ), while the Katar river is gauged near Abura (CA =  $3,350 \text{ km}^2$ ). The mean annual flows recorded at the two stations are 291 MCM and 413 MCM, respectively. The total catchment area of the Ziway lake is about 7,380 km<sup>2</sup>. The remaining catchment that is surrounding lake passing through swamp contributes little as the large part of the water is evaporating before it contributes to the lake effectively. The total annual average inflow in the lake can be safely be estimated by the sum of the Katar and Meki river flows as recorded at the gauging stations, which is about 704 MCM.

The water balance of the Ziway lake consists of inflow, outflow from the lake (Bulbula river) and evaporation from and precipitation on the lake surface.

### 4.4.4 Bulbula River

The water level of Ziway lake influences the outflow to the Bulbula river. The upper part of the Bulbula river is also known as the Kekersitu river. The water level of the Ziway lake is controlled by a natural basalt bar on the Bulbula river lying some 6 km downstream the from river outflow at the lake. An average annual flow of 180 MCM flow down to the Abijata lake. The average lake water level and monthly discharge of the river recorded at the Adamitulu station are shown in Table X.4.6.

 Table X.4.6
 Average Water Level of Ziway Lake and Outflow to Bulbula River

| Station<br>Unit                            | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep   | Oct   | Nov   | Dec  | Avg. |
|--------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|
| Ziway<br>Water<br>Level (m)                | 1.06 | 0.95 | 0.85 | 0.80 | 0.76 | 0.74 | 0.83 | 1.19 | 1.50  | 1.53  | 1.34  | 1.23 | 1.07 |
| River<br>Q at<br>Adami (m <sup>3</sup> /s) | 4.07 | 2.56 | 1.23 | 1.34 | 1.27 | 1.38 | 1.98 | 6.16 | 13.68 | 15.09 | 11.84 | 7.50 | 5.70 |

#### 4.4.5 Abijata Lake

The Abijata lake is located in the Abijata-Shella National Park and particularly known for its migratory pelican and flamingo birds. The lake is recharged mainly by the Bulbula and Horakelo rivers. These rivers outflow or spill from the Ziway and Langano lakes respectively, therefore, the three lakes form an interconnected subsystem. The Bulbula river contributes about 125 MCM annually to the Abijata lake, while the Horakelo rivers from the Langano lake contributes about 46 MCM to the Abijata lake. The rest of the Abijata catchment contributes relatively little. The Gogessa river, which is a small eastern tributary of the Jidu river, has some old data

from which the yield is estimated at 10 MCM. The other wetter catchment between Shala and Abijata with a catchment area of 60 km<sup>2</sup> and a runoff coefficient of 20% yields to about 7 MCM. The remaining catchment of Abijata do not have any permanent drainage and only contribute water to the lake during heavy rains as overland flow. The Abijata lake is highly mineralized and is not important for use in irrigated agriculture. However, the Abijata Soda Ash Enterprise is extracting about 2 MCM of water annually for soda ash production from the lake water since 1990.

# 4.5 Water Use

Figure X.4.1 shows the water use for irrigation in the Meki-Ziway water resources system. Most of irrigation schemes in the area are pumping water from the Ziway lake or the Bulbula river.

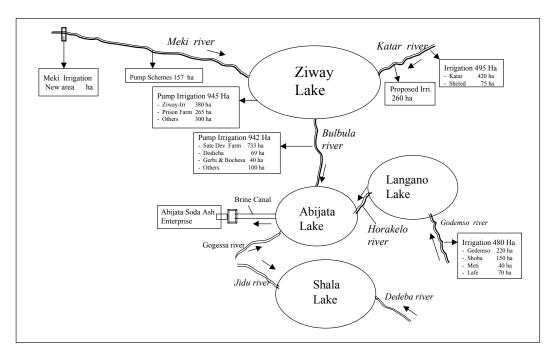



Figure X.4.1 Water Use for Irrigation in the Meki-Ziway Water Resources System

There are several small and medium scale irrigation schemes and state farm developed by abstraction of water from the Ziway lake, Bulbula, and Katar rivers. Table X.4.7 presents the irrigation system utilizing the water abstraction from lakes and rivers.

| No. | Irrigation              | Irrigation | Water       |
|-----|-------------------------|------------|-------------|
|     | System                  | Area (ha)  | Source      |
| 1.  | Katar Irrigation        | 420        | Katar River |
|     | Sheled                  | 75         |             |
| 2   | Pumping Schemes on Meki | 157        | Meki river  |
| 3.  | Meki Ziway Project      | 380        | Ziway Lake  |
|     | Ziway Prison Farm       | 265        | -           |
|     | Others                  | 300        |             |
| 4.  | Ziway State Hort. Farm  | 733        | Bulbula     |
|     | Dodicha                 | 69         |             |
|     | Gerbi and Bochessa      | 40         |             |
|     | Others                  | 100        |             |

Table X.4.7 Water Use in the Meki-Ziway System

# 4.6 **Objectives of Environmental Monitoring under Program 3**

In line with poverty alleviation and food security policies, OIDA has embarked on the community-based irrigation development in the Meki area through Program 4 of the Verification Study (the V/S). In future, with demonstration effects of the V/S, the small-scale irrigation farming will be rapidly expanded within the Meki area. As the executing agency of irrigation sector in Oromia, OIDA' responsibility will accordingly expand not only the financial and technical supports to the peasants but also the control of water use.

At present, OIDA has no particular environmental monitoring department/section although the environmental conservation and the watershed management related to irrigation development are under the responsibility of OIDA. Program 3 aims at initiating the environmental monitoring and assessment in the Meki area, as a model area. Environmental monitoring will be additional workload especially for the OIDA staff assigned to the Meki area with further financial burden. Taking such conditions of OIDA into consideration, Program 3 envisaged to select essential environmental parameters, optimize the OIDA's scope of work and prepare realistic and sustainable environmental monitoring activities.

### 4.7 Inventory of Small Irrigation Pumps

# 4.7.1 Data Collection

Neither water rights nor regulation in the Meki river basin, probably in a whole country, are officially introduced. Therefore, any enterprises and investors can install irrigation pumps in the basin. The inventory survey in 2000 verified that there were 160 pumps in Dugda Bora wareda of which 75 pumps were installed in the Meki river and the Ziway lake. The number of pumps tends to increase in recent years. The inventory survey was carried out in June 2001 by the OIDA Meki office.

The results are presented in Attachment X-4-2. In total, 181 units of the small pumps have been introduced in the Meki and Ziway basins. Program 3 of the verification study focused on water use for the irrigation sector. Most of investors do not keep records of their pump operation and are negative to submit their records to the government organizations.

# 4.7.2 Location and Pump Owners

The distribution of the 181 pumps in terms of location (PA) and owners is summarized in Table X.4.8.

|                         |            |           | Land | Ownership (1      | No.)    |
|-------------------------|------------|-----------|------|-------------------|---------|
| Location                | Pump (No.) | Area (ha) | Rent | Private/<br>Share | Unknown |
| Malina                  | 46         | 208       | -    | -                 | 46      |
| Meki Town               | 36         | 65        | 23   | 12                | 1       |
| Shubi Gamo (Gemu Shubi) | 33         | 62        | 12   | 1                 | 20      |
| Bekele Girisa           | 27         | 96        | 20   | 2                 | 5       |
| Elen                    | 10         | 39        | -    | -                 | 10      |
| Tuchi Dambel            | 7          | 87        | 5    | 1                 | 1       |
| Wayo Gabriel            | 3          | 31        | -    | -                 | 3       |
| Others                  | 19         | 246       | -    | -                 | 19      |
| Total                   | 181        | 834       | 60   | 16                | 105     |

Table X.4.8 Summary of Inventory of Small Pumps

# 4.7.3 Pump Capacity (horsepower) and Irrigated Areas

The relationship between the pump capacities (horsepower) and the irrigated areas is presented below.

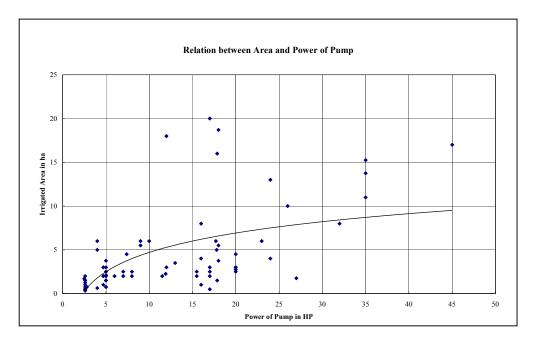



Figure X.4.2 Relationship between Pump Capacity and Irrigation Area

### 4.7.4 Estimated Water Use by the Small Pumps

It is highly difficult for the OIDA Meki office to obtain the records of operation hours of the existing pumps due to several reasons. Firstly, the legal status of the OIDA local staff is unclear and not authorized in terms of the current monitoring activities. Secondly, the pump owners do not keep the operation records and reluctant to disclose their actual water use, if any record. With the engineering and agronomic sense, the water consumption will be estimated through further study.

# 4.8 Water Consumption of Meki-Ziway Irrigation Project

#### 4.8.1 Pump Operation in 2001

The Project is operational in 2001. By obtaining the crop credit from Oromia Cooperative Development Bureau, 337 farm households in Bekele Girisa PA organized the farmers association. The Bureau financed Birr 301 per 0.25 ha. The total irrigated area amounts to 216 ha. This means that the total credit financed by the Bureau amounted to Birr 260,064 (US\$ 30,960).

The credits are used for procurement of farm inputs for irrigated maize and electricity charge. The operation was started in April 2001. The association paid Birr 36,895 (US\$ 4,400) against the total electricity bills from April 2001 to August 2001. This amount is equivalent to Birr 171 (US\$ 20) per ha. It is noted that this

# X – 4 - 13

electricity cost is much cheaper than the average fuel cost of the prevailing small pump irrigation.

# 4.8.2 **Operation Records**

The operation records of the pumps of the Meki-Ziway Irrigation Project in 2001 are presented in Attachment X-4-3. Out of nine (9) units of pumps, only two (2) units of No. 5 and No. 8 are operated. This crop season started on 10th April 2001. In the period from 10th April to 4th July, they were operated for 103:20 hours and 70:11 hours, respectively.

Since the pumping capacity is 0.72 m<sup>3</sup>/sec/unit, the total water volume pumped up amounted to 449,800 m<sup>3</sup>. This water consumption is equivalent only to 0.06% of the annual inflow of the Meki and Katar rivers to the Ziway lake, i.e. 704 MCM. It is noted that the water use of the Meki-Ziway Project is extremely small. Although further monitoring is required, the environmental impact of the Project may also be negligible.

# 4.9 Tree Planting in the Meki Area

Soil conservation measures are categorized into two (2), namely agronomic and engineering conservation measures. The agronomic conservation measures include water harvesting, contour farming, grassed waterways, mulcting, etc., while the engineering conservation measures include terrace channel with stepped chute, erosion and torrent control, sedimentation tank, waterway-road, bench terrace, gully protection dam, disaster preventing dam, hillside works, etc. World Food Program (WFP) applies mainly agronomic conservation measures by farmers, while few engineering conservation measures are applied.

The nationwide soil conservation program phase-IV is in progress in Ethiopia by WFP. Under the program, local farmers are involved in afforestation by providing labor force. Farmers are provided wheat flour and edible oil as wages. In the past, Nazareth (Adama) and Lume Wareda of East Showa Zone were covered by the program. As a continuation of the program, WFP embarked on soil conservation practices in Dugda Bora Wareda in 2000. Out of nine (9) candidate micro-catchments, the following four (4) were selected and the afforestation program will be started for the target year of 2005.

| Micro-<br>catchments     | Peasant Association (PA) | Beneficiaries | Area (ha) |
|--------------------------|--------------------------|---------------|-----------|
| <ol> <li>Mati</li> </ol> | Dalota Mati (54)         | 955           | 787       |
| 2 Wede Weji              | Menjegso Weji (15)       | 451           | 1,493     |
| 3Lube                    | Menjegso Weji (15)       | 450           | 1,100     |
| ④Jero Raka               | Jero Raka(16)            | 360           | 1,157     |

Table X.4.9 Tree Planting Program under WFP

The use of vegetative material in gully control offers an inexpensive and permanent protection. Vegetation protects the gully floor and banks from scouring. Grass on the gully floor slows down the velocity of runoff and causes deposition of silt. It can also be of economic value to the land user. There are two ways of establishing vegetation in the gully: (i) natural recover and (ii) use of planting material. A gully will re-vegetate naturally if the water causing erosion is conserved or diverted before it reaches the gully and if livestock are kept away. Costs are minimal but recovery will be slow if the soil is poor. Furthermore, if the gully sides are steep, vegetation may not establish itself.

In selecting the type of vegetation the conservationist will be guided by the use to be made of the stabilized gully. Material for the floor should grow thickly and should have a deep and dense rooting system. It should have a spreading habit and form a mat. Examples of common grasses used are Star grass (*Cynodon spp.*), *Paspalum spp, Kikuyu grass (Pennisetum clandestinum)* and Rhodes grass (*Chloris gayana*). Although Vetiver (vetivaria zizanioides) is not a spreading grass, it can be used to form barriers at intervals across the gully floor. Where the inflow has been stopped, Napier grass (*Pennisetum purpurem*) can be useful but if there is a high discharge, it may cause runoff to cut round the sides and enlarge the gully. In such a situation it can be planted at the foot of the sidewalls. In dry areas, grasses may be difficult to establish and succulents such as sisal and finger Euphorbia (*E. tirucalli*) can be useful. Trees should not normally be planted in the bed of the gully but can be planted on the gully sides if they are not too steep.

The following table shows the tree seedlings released by the Meki tree nursery under the control of OADB.

| No. | Type of Seedling       | Seedlings<br>Planted by | Seedlings<br>Planted by | Seedlings<br>Planted by | TOTAL     |
|-----|------------------------|-------------------------|-------------------------|-------------------------|-----------|
|     |                        | Individuals             | WFP Project             | Government              |           |
| 1   | Eucalyptus spp.        | 1,135,319               | 80,113                  | 10,403                  | 1,225,835 |
| 2   | Shinus molle           | 145,969                 | 32,370                  | 1,310                   | 179,649   |
| 3   | Acacia saligna         | 113,533                 | 58,120                  | 5,500                   | 177,153   |
| 4   | "Muliyaa"              | 129,750                 | 18,018                  | 3,850                   | 151,618   |
| 5   | Lucenea                | 97,314                  | 25,310                  | 7,000                   | 129,624   |
| 6   | Dovyalis abyssinica    | -                       | 17,200                  | 5,570                   | 22,770    |
| 7   | Casurina equisetifolia | -                       | 2,210                   | 5,518                   | 7,728     |
| 8   | Delonix regia          | -                       | -                       | 1,205                   | 1,205     |
| 9   | Spathodea campanulata  | -                       | 5,013                   | 1,895                   | 6,908     |
| 10  | Pawpaw                 | -                       | -                       | 786                     | 786       |
| 11  | Moringa oleifera       | -                       | 8,600                   | 1,600                   | 10,200    |
| 12  | Gravillea spp          | -                       | 750                     | 741                     | 1,491     |
| 13  | Jacaranda              | -                       | 8,496                   | 9,272                   | 17,768    |
| 14  | Cordea africana        | -                       | 3,010                   | -                       | 3,010     |
|     | TOTAL                  | 1,621,885               | 259,210                 | 54,650                  | 1,935,745 |

Table X.4.10 Number of Seedlings Planted in 1999/2000

Source: Dugda Bora Agricultural Bureau, 2000

Spacing for the seedlings depends on tree species, soil type, whether trees are planted for hill side revegetation or afforestation. For example, common spacing used in Ethiopia and Kenya for Eucalyptus species range from 1 m x 1 m, 2 m x 2m to 2.5 m x 2.5 m. Although the details of the actual spacing requirement have to be clarified with OADB, the total area planted with 1.9 million seedling is estimated to cover some 400 ha to 500 ha.

# 4.10 Monitoring Program

# 4.10.1 Selection of Monitoring Aspects

Program 3 concentrated and embarked on the first four environmental monitoring aspects in Table 4.11, namely (1) river discharge recording, (2) water use by Meki-Ziway Project, (3) estimated water use by small pump irrigation and (4) afforestation, which are strongly related to irrigation water use and watershed management.

Although further assessment and discussion are required, the JICA Study Team recommends adding three (3) more monitoring aspects to them. They are (5) water quality analysis, (6) farm economy of irrigation farmers and (7) water resource development activities including irrigation and drinking water supply by donors and NGO. These aspects are also very important to evaluate the environmental changes by water use. Further study will be made in Tokyo by obtaining comments and advises from Hydrologist of the JICA Study Team. The recommendable monitoring program is summarized below.

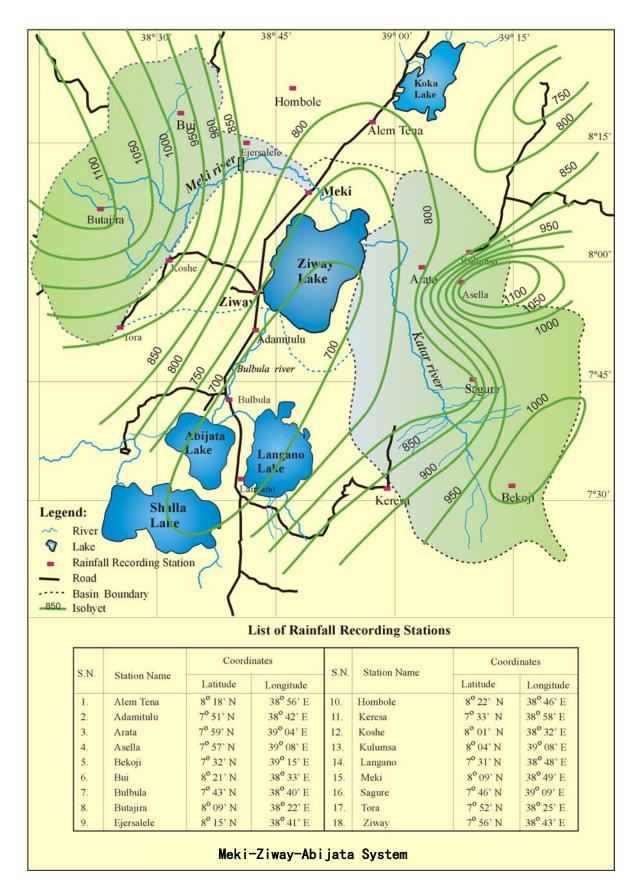
| Monitoring Aspect                                                                                                                               | Methodology                                                                                                                                                                                      | Frequency                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) River discharge of<br>Meki and Bulbula<br>rivers                                                                                            | <ul> <li>Automatic water level recorders installed<br/>by the JICA study team</li> </ul>                                                                                                         | - Throughout the year                                                                                                                                                                                      |
| (2) Meki-Ziway<br>Irrigation Project                                                                                                            | <ul> <li>Operation records of pumping facilities</li> <li>Irrigated area</li> <li>Use of farm inputs</li> <li>Pump failures and repairs</li> </ul>                                               | <ul> <li>Monthly records</li> <li>Interview to Bureau of<br/>Agriculture and Bureau of<br/>Cooperatives at the end of<br/>crop seasons</li> <li>Benchmark survey of typical<br/>farmers</li> </ul>         |
| (3) Small pumps                                                                                                                                 | <ul> <li>Inventory of pump owners</li> <li>Operation records</li> </ul>                                                                                                                          | <ul> <li>Annual basis</li> <li>Interview to Bureau of<br/>Agriculture and Bureau of<br/>Cooperatives at the end of<br/>crop seasons</li> <li>Benchmark survey of<br/>representative pump owners</li> </ul> |
| (4) Afforestation                                                                                                                               | <ul> <li>Questionnaire survey to Bureau of<br/>Agriculture</li> <li>Interview to Meki tree nursery</li> <li>Inventory survey of activities of donors<br/>(WFP) and NGOs (Self-help)</li> </ul>   | - Annual basis                                                                                                                                                                                             |
| (5) Water quality<br>analysis of Meki and<br>Bulbula rivers                                                                                     | <ul> <li>Labo-test will be done on the contract<br/>basis</li> <li>Test items to be discussed</li> </ul>                                                                                         | - Highest and lowest periods                                                                                                                                                                               |
| (6) Farm economy of irrigation areas                                                                                                            | <ul> <li>Crops, production, etc.</li> <li>Farm gate prices</li> <li>Marketing</li> <li>Gross revenue and crop production cost</li> <li>Use of farm inputs</li> <li>Financial analysis</li> </ul> | <ul> <li>Questionnaire survey to<br/>Bureau of Agriculture, pump<br/>owners and farmers</li> </ul>                                                                                                         |
| <ul> <li>(7) Activities of donors<br/>and NGOs in water<br/>resources<br/>development, e.g.<br/>drinking water,<br/>irrigation, etc.</li> </ul> | <ul> <li>Interview survey of activities of donors<br/>(WFP) and NGOs (Self-help)</li> </ul>                                                                                                      | <ul> <li>Annual basis</li> </ul>                                                                                                                                                                           |

#### Table X.4.11 Environmental Monitoring under Program 3

# 4.10.2 Assessment Required

(1) Organizational set-up and training

The field works according to the recommended monitoring program are actually new tasks not for the OIDA HQ but for the OIDA Meki office. This additional workloads of the OIDA Meki office should be carefully assessed.


As far as the technical capacity is concerned, OIDA is able to execute monitoring of these aspects. However, the training for environmental monitoring should be

X – 4 - 17

considered in order to perform the sustainable and reliable monitoring data collection.

(2) Budgetary arrangement

Lack of transportation facilities is crucial not only for the OIDA's regular duties but also additional environmental monitoring program, which are proposed under the Study. Budgetary arrangement should also be discussed prior to expand their scope.



## List of Irrigation Pumps in Dugda Bora Wareda

| No PA                            | A                                  | Owner's Name            | Ту      | pe of Engine       | Horse         | Type of Eng<br>Capacity | Diameter      | Area of I<br>To be | Land (ha)<br>Developred | Land Ownership                   |
|----------------------------------|------------------------------------|-------------------------|---------|--------------------|---------------|-------------------------|---------------|--------------------|-------------------------|----------------------------------|
| 1 Walda Maqd                     | lala Tasfaye Abedi                 |                         | Diese   | Engine             | Power<br>17.0 |                         | (inch)<br>3.0 | Developed          | 2.00                    | Rent Land                        |
| 2 Wayo Gaber                     |                                    | erial (WIIA)            |         | Engine<br>Engine   | 35.0          |                         | 4.0           |                    | 13.75                   | (WUA)                            |
| 3 Wayo Gaber                     |                                    |                         |         | Engine             | 45.0          |                         | 6.0           |                    | 17.00                   | (WUA)                            |
| 4 Wayo Gaber                     |                                    |                         |         | Engine             | 45.0          |                         | 6.0           |                    |                         |                                  |
| 5 Walda Meqd                     |                                    |                         |         | Engine             | 17.0          |                         |               |                    |                         |                                  |
| 6 Walda Meqd                     |                                    |                         |         | Engine             | 20.0          |                         |               |                    |                         |                                  |
| 7 Walda Meqd<br>8 Walda Meqd     |                                    | and Worku Hund          |         | Engine<br>Engine   | 15.2          |                         |               |                    |                         |                                  |
| 9 Tuchi Danba                    |                                    |                         |         | Engine             | 17.0          |                         | 6.0           | 13.00              | 30.00                   | Rent Land                        |
| 10 Tuchi Danba                   |                                    |                         |         | Engine             | 16.0          |                         | 4.0           | 2.00               | 1.00                    | Rent Land                        |
| 11 Tuchi Danba                   |                                    | 2                       |         | Engine             | 24.0          |                         | 6.0           | 3.00               | 4.00                    | Rent Land                        |
| 12 Tuchi Danba                   |                                    |                         |         | Engine             | 50.0          |                         | 6.0           |                    | 37.00                   | Rent                             |
| 13 Tuchi Danba                   |                                    |                         |         | Engine             | 25.0          |                         | 6.0           |                    | 15.25                   | Rent                             |
| 14 Tuchi Danba<br>15 Tuchi Danba |                                    | al (WUA)                |         | Engine<br>Engine   | 35.0          |                         | 4.0 3.0       |                    | 15.25                   | (WUA)                            |
| 16 Tepo Korika                   |                                    |                         |         | Engine             | 17.0          |                         | 4.0           |                    | 20.00                   | Rent                             |
| 17 Tepo Koroke                   |                                    | WUA)                    |         | Engine             | 24.0          |                         | 4.0           |                    | 13.00                   | (WUA)                            |
| 18 Tepo Goroke                   | e Tepoo Vally Farm                 |                         | Diesel  | Engine             | 25.0          |                         | 6.0           |                    | 35.00                   | Rent                             |
| 19 Shubi Gemu                    |                                    |                         |         | Engine             | 15.5          | 46.90                   |               |                    | 2.50                    | Rent,Share and Privat            |
| 20 Shubi Gemu                    |                                    |                         |         | Engine             | 17.0          |                         | 4.0           |                    | 0.50                    | Rent Land                        |
| 21 Shubi Gemu<br>22 Shubi Gemu   |                                    |                         |         | Engine<br>Engine   | 17.7          |                         | 3.0 8.0       |                    | 1.50<br>6.00            | Rent and Share<br>Rent and Share |
| 23 Shubi Gemu                    |                                    |                         |         | Engine             | 10.0          |                         | 2.0           |                    | 6.00                    | Rent and Share                   |
| 24 Shubi Gemu                    |                                    |                         |         | Engine             | 4.0           | 16.70                   | 3.0           |                    | 6.00                    | Rent and share                   |
| 25 Shubi Gemu                    | Kidane Kelalaw                     |                         | Gasolin | ne Moter           | 16.0          |                         | 6.0           |                    | 4.00                    | Rent and Share                   |
| 26 Shubi Gemu                    |                                    |                         |         | Engine             | 18.0          |                         | 4.0           |                    | 5.50                    | Rent and Share                   |
| 27 Shubi Gemu                    |                                    | am and Asafa G/mariyanm |         | Engine             | 74.0          | 50.00                   | 6.0           |                    | 4.50                    | Rent and Share                   |
| 28 Shubi Gemu 29 Shubi Gemu      |                                    |                         |         | Engine<br>ne Moter | 20.0          | 16.74                   | 4.0 3.0       |                    | 2.75<br>0.75            | Rent and Share<br>Rent           |
| 30 Shubi Gemu                    |                                    |                         |         | ne Moter           | 2.8           | 16.74                   | 3.0           |                    | 0.75                    | Private and Share                |
| 31 Shubi Gemu                    |                                    |                         |         | Engine             | 5.0           | 15.50                   | 3.0           |                    | 2.50                    | Private and Share                |
| 32 Shubi Gemu                    |                                    |                         |         | Engine             | 5.0           |                         | 3.0           |                    | 1.50                    | Private and Share                |
| 33 Shubi Gemu                    | Chinko Danye and                   |                         | Diesel  | Engine             | 5.0           | 15.50                   | 3.0           |                    | 1.50                    | Private and Share                |
| 34 Shubi Gemu                    |                                    |                         |         | Engine             | 15.5          |                         | 6.0           |                    | 2.00                    | Private                          |
| 35 Shubi Gemu                    |                                    | moter                   |         | Engine             |               |                         | 5.0           |                    | 6.25                    | Land uncultivated                |
| 36 Shubi Gemu 37 Shubi Gemu      |                                    |                         |         | Engine<br>Engine   | 11.5          |                         | 5.0           |                    | 6.25<br>2.00            | Rent and Share                   |
| 38 Shubi Gemu                    |                                    |                         |         | Engine             | 11.5          |                         | 3.0           |                    | 2.00                    |                                  |
| 39 Shubi Gemu                    |                                    |                         |         | Engine             | 5.6           | 18.30                   | 3.0           |                    |                         |                                  |
| 40 Shubi Gemu                    |                                    | am                      | Diesel  | Engine             | 20.0          | 26.50                   |               |                    |                         |                                  |
| 41 Shubi Gemu                    |                                    | am                      |         | Engine             | 17.9          |                         | 5.0           |                    |                         |                                  |
| 42 Shubi Gemu                    |                                    |                         |         | Engine             | 17.0          |                         | 6.0           |                    |                         |                                  |
| 43 Shubi Gemu<br>44 Shubi Gemu   |                                    |                         |         | Engine             | 17.8<br>37.0  |                         |               |                    |                         |                                  |
| 44 Shubi Gemu<br>45 Shubi Gemu   |                                    | m                       |         | Engine<br>ne Moter | 4.0           | 16.70                   | 3.0           | 2.00               | 0.63                    |                                  |
| 46 Shubi Gemu                    |                                    |                         |         | Engine             | 5.0           | 10.70                   | 5.0           | 2.00               | 0.05                    |                                  |
| 47 Shubi Gemu                    |                                    |                         |         | ne Moter           | 2.6           | 15.50                   | 3.0           |                    |                         |                                  |
| 48 Shubi Gemu                    | Getachaw Teka                      |                         | Gasolir | ne Moter           |               |                         |               |                    |                         |                                  |
| 49 Shubi Gemu                    |                                    |                         |         | Engine             | 18.0          |                         | 6.0           |                    |                         |                                  |
| 50 Shubi Gemu                    |                                    |                         |         | Engine             | 17.0          |                         | 3.0           |                    | 2.50                    |                                  |
| 51 Shubi Gemu<br>52 Shubi Gemu   |                                    |                         |         | Engine<br>Engine   | 17.0<br>2.6   | 15.50                   | 4.0           |                    | 3.00                    |                                  |
| 53 Oda Bokota                    | Dawit Haile                        |                         |         | Engine             | 27.0          | 15.50                   |               |                    |                         |                                  |
| 54 Oda Bokota                    | Walda Oda Bogota                   | 1                       |         | Engine             | 35.0          |                         |               |                    |                         |                                  |
| 55 Malina                        | Abara Gelata                       |                         |         | Engine             |               |                         |               |                    | 4.00                    | Not operational                  |
| 56 Malina                        | ?                                  |                         |         | Engine             |               |                         |               |                    | 6.00                    |                                  |
| 57 Malina                        | Bokana Guda                        |                         |         | Engine             |               |                         |               |                    | 6.00                    |                                  |
| 58 Malina<br>59 Malina           | Asafa Jimma                        |                         |         | Engine             |               |                         |               |                    | 6.00<br>6.00            |                                  |
| 60 Malina                        | Tashom Guda<br>Dolo ?              |                         |         | Engine<br>Engine   |               |                         |               |                    | 4.00                    |                                  |
| 61 Malina                        | Sanbato Guda                       |                         |         | Engine             | <u> </u>      |                         |               |                    | 0.25                    |                                  |
| 62 Malina                        | Ayano Hunde                        |                         |         | Engine             |               |                         |               |                    | 0.25                    |                                  |
| 63 Malina                        | Burkune Oda                        |                         | Diesel  | Engine             |               |                         |               |                    | 0.25                    |                                  |
| 64 Malina                        | Tuju Rago                          |                         | Diesel  |                    |               |                         |               |                    | 0.25                    |                                  |
| 65 Malina                        | Savuy Oda<br>Biyo Oda              |                         |         | Engine             | <b>├</b> ──   | <u> </u>                |               |                    | 0.25                    |                                  |
| 66 Malina<br>67 Malina           | Biyo Oda<br>Tena Negatu            |                         |         | Engine<br>Engine   | -             | 3.00                    |               |                    | 0.25                    |                                  |
| 68 Malina                        | Nadhi Hunde                        |                         |         | Engine             |               | 1.00                    |               |                    | 3.00                    |                                  |
| 69 Malina                        | G/Hiwat Tafari                     |                         |         | Engine             |               | 1.00                    |               |                    | 4.00                    |                                  |
| 70 Malina                        | Fitala Hawas                       |                         | Diesel  | Engine             |               | 1.00                    |               |                    | 6.00                    |                                  |
| 71 Malina                        | Abrahame H/giorg                   | is                      | Diesel  | Engine             |               | 1.00                    |               |                    | 10.00                   |                                  |
| 72 Malina                        | Gada Dagaga                        |                         |         | Engine             |               | 1.00                    |               |                    | 4.00                    |                                  |
| 73 Malina<br>74 Malina           | Abrahame Eshetu<br>Dabo Tera       |                         |         | Engine<br>Engine   |               | 2.00                    |               |                    | 14.00<br>8.00           |                                  |
| 75 Malina                        | Bulbual Erba                       |                         |         | Engine             |               | 1.00                    |               |                    | 6.00                    |                                  |
| 76 Malina                        | ?                                  |                         |         | Engine             |               | 1.00                    |               |                    | 4.00                    |                                  |
| 77 Malina                        | Godana Dadhi                       |                         | Diesel  | Engine             |               | 1.00                    |               |                    | 7.00                    |                                  |
| 78 Malina                        | Midhaga Tere                       |                         |         | Engine             |               | 1.00                    |               |                    | 6.00                    |                                  |
| 79 Malina                        | Gemmechu Badha                     | dia                     |         | Engine             |               | 1.00                    |               |                    | 8.00                    |                                  |
| 80 Malina<br>81 Malina           | Badho Tere<br>Oda Bulbula          |                         |         | Engine<br>Engine   |               | 1.00                    |               |                    | 4.00<br>6.00            |                                  |
| 81 Malina<br>82 Malina           | Saltu Tumbi                        |                         |         | Engine             |               | 1.00                    |               |                    | 10.00                   |                                  |
| 83 Malina                        | Dabo Busa                          |                         |         | Engine             | <u> </u>      | 1.00                    |               |                    | 10.00                   |                                  |
| 84 Malina                        | Erenso Hawas                       |                         |         | Engine             |               | 1.00                    |               |                    | 10.00                   |                                  |
| 85 Malina                        | Namagugdi Eresns                   | 0                       | Diesel  | Engine             |               | 1.00                    |               |                    | 10.00                   |                                  |
| 86 Malina                        | Abiti Bekele                       |                         |         | Engine             |               | 1.00                    |               |                    | 5.00                    |                                  |
| 87 Malina<br>88 Malina           | Jimma Boters                       |                         |         | Engine             |               | 1.00                    |               |                    | 1.00                    |                                  |
| 88 Malina<br>89 Malina           | Dejene Ayala<br>Haji Sayifadin Aba | dala                    |         | Engine<br>Engine   |               | 1.00                    |               |                    | 8.00<br>10.00           |                                  |
| 90 Malina                        | Alamayhu                           | 100                     |         | Engine             | 1             | 1.00                    |               |                    | 10.00                   |                                  |
| 91 Elen                          | Pro. Jara Wayo                     |                         |         | Engine             | 2.0           | 1.00                    |               |                    | 8.00                    |                                  |
|                                  |                                    |                         |         | Engine             | 2.0           |                         |               |                    |                         |                                  |

| No         | PA                               | Owner's Name                         | Type of Engine                   |              | Type of Eng<br>Capacity | ine<br>Diameter<br>(inch) | Area of I<br>To be<br>Developed | and (ha).<br>Developred | Land Ownership                       |
|------------|----------------------------------|--------------------------------------|----------------------------------|--------------|-------------------------|---------------------------|---------------------------------|-------------------------|--------------------------------------|
|            |                                  |                                      | Diesel Engine                    |              |                         |                           |                                 |                         |                                      |
| 94<br>95   | Elen                             | Tekola                               | Diesel Engine<br>Diesel Engine   | 2.0          |                         |                           |                                 | 15.00                   |                                      |
| 95         | Elen                             | Ashenafi Mamo                        | Diesel Engine                    | 1.0          |                         |                           |                                 | 2.00                    |                                      |
| 97         | Elen                             | Soresa Balda                         | Diesel Engine                    | 1.0          |                         |                           |                                 | 6.00                    |                                      |
| 98         | Elen                             | Adana Bekele                         | Diesel Engine                    | 1.0          |                         |                           |                                 | 4.00                    |                                      |
| 99         | Elen                             | ( )                                  | Diesel Engine                    |              |                         |                           |                                 |                         |                                      |
| 100<br>101 | Elen                             | NGO<br>Zerehun Tena                  | Diesel Engine<br>Diesel Engine   | 1.0          |                         |                           |                                 | 2.00                    |                                      |
| 102        | Elen                             | Abera Bekele                         | Diesel Engine                    | 1.0          |                         |                           |                                 | 2.00                    |                                      |
| 103        | Dodota Danbal                    | Hiyout Farm (Getachaw Worku)         | Diesel Engine                    | 26.0         |                         | 4.0                       | 6.00                            | 10.00                   | Defect in motor                      |
| 104        | Dodota Danbal                    | Walda Dodota Danbel (WUA)            | Diesel Engine                    | 12.0         |                         | 4.0                       |                                 | 18.00                   | (WUA)                                |
| 105        | Dodota Danbal                    | Walda Kalalaga Danbel (WUA)          | Diesel Engine                    | 35.0         |                         | 4.0                       | 14.00                           | 11.00                   | (WUA)                                |
| .06        | City 01<br>City 01               | Arbi Gari<br>Abata Water             | Gasoline Moter<br>Gasoline Moter | 2.6          | 15.50                   | 3.0                       |                                 | 1.25                    | Share and Rent<br>Rent Land (City)   |
| .08        | City 01                          | Tanda Mola                           | Gasoline Moter                   | 8.0          | 30.00                   | 4.0                       |                                 | 2.50                    | Rent Land (City)                     |
| 09         | City 01                          | Girma Alemu                          | Gasoline Moter                   | 2.6          | 16.70                   | 3.0                       |                                 | 0.50                    | Rent Land (City)                     |
| 10         | City 01                          | Dagaga Debele                        | Gasoline Moter                   | 2.6          | 15.50                   | 3.0                       |                                 | 0.33                    | Rent Land (City)                     |
| 11         |                                  | Negussie Eshete<br>Alemayhu Getahun  | Gasoline Moter<br>Gasoline Moter | 2.6<br>4.0   | 15.50<br>16.70          | 3.0                       |                                 | 0.50 5.00               | Rent Land (City)<br>Rent Land (City) |
| 112        | City 01                          | Girma Mamo (A)                       | Eletrcal Moter                   | 4.0          | 10.70                   | 5.0                       |                                 | 2.00                    | Rent (City)                          |
| 14         | City 01                          | Samuel W/Yohannes                    | Diesel Engine                    |              |                         |                           |                                 | 1.00                    | Rent (City)                          |
| 15         | City 01                          | Kasa Amba                            | Diesel Engine                    |              |                         | 5.0                       |                                 | 2.50                    | Rent (City)                          |
| 16         | City 02                          | Ababa Tasfaye (A)                    | Diesel Engine                    | 7.0          |                         | 3.0                       |                                 | 2.50                    | Rent Land                            |
| 17 18      | City 02<br>City 02               | Asaminew Nigatu<br>Abadi G/mariyame  | Diesel Engine<br>Diesel Engine   | 23.0         |                         | 4.0                       |                                 | 2.00 6.00               | Rent Land<br>Rent Land               |
| 18         | City 02<br>City 02               | Abaa Nagasa                          | Diesel Engine                    | 7.0          |                         | 4.0                       |                                 | 2.00                    | Rent Land                            |
| 20         | City 02                          | Abara                                | Gasoline Moter                   | 2.6          | 15.00                   | 2.0                       |                                 | 1.00                    | Rent Land                            |
| 21         | City 02                          | Ababa Tasfaye (A)                    | Diesel Engine                    | 5.0          |                         | 4.0                       |                                 | 0.75                    | Rent Land                            |
| 22         |                                  | Dasta Bayisa (A)                     | Diesel Engine                    | 0.0          |                         | 4.0                       |                                 | 1.00                    | Rent Land                            |
| 23<br>24   | City 02<br>City 02               | Tasfaye Abedi<br>Berga Tilahuna      | Diesel Engine                    | 8.0          | l                       | 3.0                       |                                 | 2.00                    | Rent Land<br>Rent Land               |
| 24         | City 02<br>City 02               | Berga Tilahune<br>Matwos Wagkuma     | Diesel Engine<br>Diesel Engine   |              |                         | 4.0                       |                                 | 1.50                    | Rent Land<br>Rent Land               |
| 26         | City 02                          | Niguisse Ararso                      | Diesel Engine                    | 1            |                         | 4.0                       |                                 | 2.00                    | Rent Land                            |
| 127        | City 02                          | Gugesa Yadate                        | Diesel Engine                    | 1            |                         | 4.0                       |                                 | 1.00                    | Rent Land                            |
| 28         | City 02                          | Getu Abebe                           | Diesel Engine                    |              |                         |                           |                                 | 2.00                    | Rent Land                            |
| 29<br>30   | City 02<br>City 02               | Eshetu Gabiso<br>Abadi G/mariyame    | Diesel Engine<br>Diesel Engine   | 38.0         |                         | 6.0                       |                                 | 2.00                    | Private                              |
|            | City 03                          | Gaber Wolde                          | Gasoline Moter                   | 2.6          |                         | 3.0                       |                                 | 0.75                    | Share                                |
|            | City 03                          | Mokennen Abebe                       | Gasoline Moter                   | 2.8          | 15.50                   | 3.0                       |                                 | 0.75                    | Share                                |
| 33         | City 03                          | Lakewe Nagashe                       | Diesel Engine                    | 20.0         |                         | 6.0                       |                                 | 2.50                    | Share                                |
| 34         | City 03                          | Haron W/yesuse (B)                   | Diesel Engine                    | 6.0          |                         | 2.0                       |                                 | 2.00                    | Share                                |
| 135        | City 03<br>City 03               | Mokennen Hebiro<br>Tadase Tabore     | Gasoline Moter<br>Diesel Engine  |              |                         | 3.0 4.0                   |                                 | 0.50                    | Share<br>Rent Land                   |
| 37         | City 03                          | Desta Bayesa (B)                     | Diesel Engine                    |              |                         | 4.0                       |                                 | 2.00                    | Private,Rent and Shar                |
| 138        | City 03                          | Haron W/yesuse                       | Diesel Engine                    | 27.0         |                         | 6.0                       |                                 | 1.75                    | Private and Share                    |
| 139        | City 03                          | Abraham G/Hiwot                      | Diesel Engine                    | 16.0         |                         | 6.0                       |                                 | 8.00                    | Private and Rent Land                |
| 40         | City                             | A/mako Temamo                        | Gasoline Moter                   | 2.6          |                         | 3.0                       |                                 | 0.50                    | Share                                |
| 41         |                                  | Abraham Asfaw<br>Miftah Mohammed     | Gasoline Moter<br>Diesel Engine  | 2.6          |                         | 3.0                       |                                 | 1.50                    | Share<br>Rent and Share              |
|            | Bekele Girisa                    | Tedi Kabada                          | Diesel Engine                    | 4.7          |                         | 3.0                       |                                 | 2.00                    | Rent and Share                       |
|            |                                  | Muzamil Abdo                         | Diesel Engine                    | 2.6          | 15.00                   | 3.0                       |                                 | 2.00                    | Rent and share                       |
| 45         | Bekele Girisa                    | Tesfaye Gashew                       | Diesel Engine                    | 5.0          | 16.70                   | 3.0                       | 1.00                            | 2.00                    | Rent and share                       |
|            |                                  | Misba Yasin<br>Turamo Asefa          | Diesel Engine                    | 5.0<br>9.0   | 16.70                   | 3.0                       |                                 | 3.75                    | Rent and share<br>Rent and Share     |
| 47         | Bekele Girisa                    | Gennen G/sabsibe                     | Diesel Engine<br>Diesel Engine   | 9.0          |                         | 6.0                       | 2.00                            | 5.00                    | Rent and Share                       |
|            | Bekele Girisa                    | Getachaw Birega                      | Diesel Engine                    | 5.0          |                         | 3.0                       |                                 | 3.00                    | Rent and Share                       |
|            | Bekele Girisa                    | Biyo Hola                            | Diesel Engine                    | 20.0         |                         | 6.0                       |                                 | 3.00                    | Rent and Share                       |
|            | Bekele Girisa                    | Badaso Balcha                        | Diesel Engine                    | 20.0         | 10.00                   | 6.0                       |                                 | 3.00                    | Rent and Share                       |
| 52         | Bekele Girisa<br>Bekele Girisa   | Bayena Badore<br>Mamush Kasa         | Diesel Engine<br>Diesel Engine   | 4.7<br>20.0  | 15.50                   | 3.0                       |                                 | 3.00                    | Rent and Share<br>Rent and Share     |
|            | Bekele Girisa                    | Ababa Tesfaye                        | Diesel Engine                    | 12.0         | 33.30                   | 5.0                       |                                 | 3.00                    | Rent and Share                       |
| 55         | Bekele Girisa                    | Ashama and Shamgo                    | Diesel Engine                    | 11.9         | 30.00                   | 4.0                       |                                 | 2.25                    | Rent and Share                       |
|            | Bekele Girisa                    | Dr. Fekere Tekele                    | Diesel Engine                    |              | -                       | 5.0                       | 4.00                            | 10.00                   | Rent                                 |
|            | Bekele Girisa<br>Bekele Girisa   | Buffa Kushina<br>Silu Adara          | Diesel Engine<br>Diesel Engine   | 17.8<br>20.0 |                         | 6.0<br>5.0                |                                 | 5.00<br>4.50            | Rent                                 |
|            | Bekele Girisa<br>Bekele Girisa   | Silu Adara<br>Tekelu Adara           | Diesel Engine                    | 13.0         | <u> </u>                | 5.0                       |                                 | 4.50                    | Rent<br>Rent                         |
|            | Bekele Girisa                    | Andaregchew Sahile                   | Diesel Engine                    |              | 1                       | 4.0                       |                                 | 4.00                    | Rent                                 |
| 61         | Bekele Girisa                    | Dammis Alemu                         | Diesel Engine                    | 2.6          | 15.50                   | 3.0                       |                                 | 0.50                    | Rent                                 |
|            | Bekele Girisa                    | Asaminuw Nigatu                      | Diesel Engine                    | 17.9         | <u> </u>                | 6.0                       |                                 | 16.00                   | Rent & Share                         |
|            | Bekele Girisa<br>Bekele Girisa   | Walda Laga Niagi-2 (WUA)<br>Milo Ido | Diesel Engine<br>Diesel Engine   | 4.7          | 15.50                   | 4.0                       |                                 | 4.00                    | (WUA)                                |
|            |                                  | Asaminuw Nigatu                      | Diesel Engine                    | 4.7          | 15.50                   | 6.0                       |                                 | 1.00                    |                                      |
| 66         | Bekele Girisa                    | Mana Barumsa Bekele                  | Diesel Engine                    |              |                         | 4.0                       |                                 | 4.00                    |                                      |
|            | Bekele Girisa                    | Firala Hawas                         | Diesel Engine                    |              |                         | 3.0                       |                                 | 2.00                    |                                      |
|            | Bekele Girisa                    | Hagos Berhe                          | Diesel Engine                    | 10.0         | <u> </u>                | 3.0                       |                                 |                         |                                      |
| .69<br>.70 | Bagale Girisan<br>Abono Gaberial | Ayalewe Mokria<br>Hadish i           | Diesel Engine<br>Diesel Engine   | 17.0<br>32.0 | 44.44                   | 4.0                       |                                 | 80.00                   | Rent                                 |
| 70         | Abono Gaberial<br>Abono Gaberial | Hadish ii<br>Hadish iii (WUA)        | Diesel Engine                    | 32.0         | 44,44                   | 5.0                       |                                 | 40.00                   | (WUA)                                |
| 172        | Abono Gaberial                   | Hadish ii                            | Diesel Engine                    |              |                         | 5.0                       |                                 |                         |                                      |
| 173        | Garaba Chorike Addi              | Kider Negeso                         | Diesel Engine                    | 18.0         | 18.00                   | 3.0                       | 3.75                            | 3.75                    | Rent and share                       |
| 74         | Giraba Korki Adi                 | Kidane Kelalaw                       | Diesel Engine                    |              |                         | 2.0                       | 37.25                           | 2.75                    | Rent                                 |
| 75         |                                  | Hagos Berhe                          | Diesel Engine<br>Diesel Engine   | 25.0         | 15.83                   | 4.0                       |                                 | 5.50                    | Rent and Share                       |
| 176        |                                  | Mamush Kasa                          | Diesel Engine                    | 9.0          |                         | 4.0                       |                                 | 6.00                    | Rent and Share                       |
| 178        |                                  |                                      | 2 ASOL LIIGHIC                   | 7.0          | 1                       | ч.0                       |                                 | 0.00                    | und ondie                            |
| 179        |                                  |                                      | Diesel Engine                    | 24.0         |                         | 4.0                       |                                 |                         |                                      |
|            |                                  | Wojii Gullalle                       | Diesel Engine                    |              |                         |                           |                                 |                         |                                      |
| 80<br>81   |                                  | Ayalewe Mokria                       | Diesel Engine                    | 17.0         |                         |                           |                                 |                         |                                      |

#### MEKI-ZIWAY IRRIGATION PROJECT PUMP OPERATION RECORD (PUMP NO. 5)

| Date      | Time    |         |               |              | Kwh     |         |          |        |
|-----------|---------|---------|---------------|--------------|---------|---------|----------|--------|
|           | Started | Stopped | Duration (hr) | Accum.(hr)   | Started | Stopped | Consumed | Accum. |
| 10-Apr-01 | 10:30   | 14:00   | 3:30          | 24x0 + 3:30  | 045607  |         |          |        |
| 11-Apr-01 | 14:10   | 15:10   | 1:00          | 24x0 + 4:30  |         |         |          |        |
| 18-Apr-01 | 7:10    | 11:10   | 4:00          | 24x0 + 8:30  |         |         |          |        |
| 19-Apr-01 | 6:30    | 11:30   | 5:00          | 24x0 + 13:30 |         |         |          |        |
| 20-Apr-01 | 6:30    | 11:00   | 4:30          | 24x0 + 18:00 |         |         |          |        |
| 21-Apr-01 | 6:50    | 10:40   | 3:50          | 24x0 + 21:50 |         |         |          |        |
| 23-Apr-01 | 7:00    | 9:25    | 2:25          | 24x1 + 0:15  |         |         |          |        |
| 24-Apr-01 | 6:35    | 10:45   | 4:10          | 24x1 + 4:25  |         |         |          |        |
| 24-Apr-01 | 2:50    | 3:50    | 1:00          | 24x1 + 5:25  |         |         |          |        |
| 25-Apr-01 | 6:20    | 11:00   | 4:40          | 24x1 + 10:05 |         |         |          |        |
| 26-Apr-01 | 4:20    | 4:50    | 0:30          | 24x1 + 10:35 |         | 046716  | 1,109    | 1,109  |
| 27-Apr-01 | 6:40    | 11:00   | 4:20          | 24x1 + 14:55 | 046716  | 046849  | 133      | 1,242  |
| 28-Apr-01 | 6:35    | 10:45   | 4:10          | 24x1 + 19:05 | 046849  | 046980  | 131      | 1,373  |
| 29-Apr-01 | 6:27    | 9:11    | 2:44          | 24x1 + 21:49 | 046980  | 047062  | 82       | 1,455  |
| 3-May-01  | 7:05    | 10:55   | 3:50          | 24x2 + 1:39  | 047062  | 047176  | 114      | 1,569  |
| 4-May-01  | 6:33    | 8:15    | 1:42          | 24x2 + 3:21  | 047176  | 047227  | 51       | 1,620  |
| 6-Jun-01  | 6:15    | 10:20   | 4:05          | 24x2 + 7:26  | 047227  | 047350  | 123      | 1,743  |
| 6-Jun-01  | 2:12    | 4:02    | 1:50          | 24x2 + 9:16  | 047350  | 047407  | 57       | 1,800  |
| 8-Jun-01  | 6:30    | 10:00   | 3:30          | 24x2 + 12:46 | 047407  | 047512  | 105      | 1,905  |
| 9-Jun-01  | 6:46    | 8:30    | 1:44          | 24x2 + 14:30 | 047512  | 047557  | 45       | 1,950  |
| 10-Jun-01 | 6:12    | 8:41    | 2:29          | 24x2 + 16:59 | 047557  | 047632  | 75       | 2,025  |
| 11-Jun-01 | 6:40    | 9:45    | 3:05          | 24x2 + 20:04 | 047632  | 047724  | 92       | 2,117  |
| 27-Jun-01 | 7:35    | 12:00   | 4:25          | 24x3 + 0:29  | 047724  | 047855  | 131      | 2,248  |
| 28-Jun-01 | 6:20    | 12:00   | 5:40          | 24x3 + 6:09  | 047855  | 048022  | 167      | 2,415  |
| 28-Jun-01 | 2:50    | 4:55    | 2:05          | 24x3 + 8:14  | 048022  | 048085  | 63       | 2,478  |
| 29-Jun-01 | 6:50    | 9:10    | 2:20          | 24x3 + 10:34 | 048085  | 048156  | 71       | 2,549  |
| 30-Jun-01 | 8:05    | 11:00   | 2:55          | 24x3 + 13:29 | 048156  | 048242  | 86       | 2,635  |
| 1-Jul-01  | 6:30    | 11:20   | 4:50          | 24x3 + 18:19 | 048242  | 048384  | 142      | 2,777  |
| 2-Jul-01  | 6:10    | 12:00   | 5:50          | 24x4 + 0:09  | 048384  | 048546  | 162      | 2,939  |
| 3-Jul-01  | 2:05    | 4:30    | 2:25          | 24x4 + 2:34  | 048546  | 048616  | 70       | 3,009  |
| 4-Jul-01  | 6:30    | 11:30   | 5:00          | 24x4 + 7:34  | 048616  | 048766  | 150      | 3,159  |
| Total     |         |         |               | 24x4 + 7:34  |         |         |          | 3,159  |

#### MEKI-ZIWAY IRRIGATION PROJECT PUMP OPERATION RECORD (PUMP NO. 8)

| Date      |         |         | Time          |              | Kwh     |         |          |        |  |
|-----------|---------|---------|---------------|--------------|---------|---------|----------|--------|--|
| Ī         | Started | Stopped | Duration (hr) | Accum.(hr)   | Started | Stopped | Consumed | Accum. |  |
| 10-Apr-01 | 10:30   | 2:00    | 3:30          | 24x0 + 3:30  | 036673  |         |          |        |  |
| 11-Apr-01 | 2:10    | 3:10    | 1:00          | 24x0 + 4:30  |         |         |          |        |  |
| 18-Apr-01 | 7:10    | 11:10   | 4:00          | 24x0 + 8:30  |         |         |          |        |  |
| 19-Apr-01 | 6:30    | 11:30   | 5:00          | 24x0 + 13:30 |         |         |          |        |  |
| 20-Apr-01 | 6:30    | 11:00   | 4:30          | 24x0 + 18:00 |         |         |          |        |  |
| 21-Apr-01 | 6:50    | 10:40   | 3:50          | 24x0 + 21:50 |         |         |          |        |  |
| 23-Apr-01 | 7:00    | 9:25    | 2:25          | 24x1 + 0:15  |         |         |          |        |  |
| 24-Apr-01 | 6:35    | 10:45   | 4:10          | 24x1 + 4:25  |         |         |          |        |  |
| 24-Apr-01 | 2:50    | 3:50    | 1:00          | 24x1 + 5:25  |         |         |          |        |  |
| 25-Apr-01 | 6:20    | 11:00   | 4:40          | 24x1 + 10:05 |         |         |          |        |  |
| 26-Apr-01 | 6:20    | 12:00   | 5:40          | 24x1 + 15:45 |         |         | 1,109    | 1,109  |  |
| 26-Apr-01 | 2:20    | 4:50    | 2:30          | 24x1 + 18:15 |         | 037957  | 133      | 1,242  |  |
| 27-Apr-01 | 6:35    | 10:00   | 3:25          | 24x1 + 21:40 | 037957  | 038058  | 131      | 1,373  |  |
| 28-Apr-01 | 6:35    | 10:10   | 3:40          | 24x2 + 1:20  | 038058  | 038165  | 82       | 1,455  |  |
| 29-May-01 | 6:25    | 9:11    | 2:46          | 24x2 + 4:06  | 038165  | 038246  | 114      | 1,569  |  |
| 3-May-01  | 7:05    | 10:55   | 3:50          | 24x2 + 7:56  | 038246  | 038359  | 51       | 1,620  |  |
| 4-May-01  | 6:30    | 8:15    | 1:45          | 24x2 + 9:41  | 038359  | 038403  | 123      | 1,743  |  |
| 6-Jun-01  | 6:13    | 10:18   | 4:05          | 24x2 + 13:46 | 038403  | 038514  | 57       | 1,800  |  |
| 6-Jun-01  | 2:11    | 4:01    | 1:50          | 24x2 + 15:36 | 038514  | 038565  | 105      | 1,905  |  |
| 8-Jun-01  | 6:30    | 10:00   | 3:30          | 24x2 + 19:06 | 038565  | 038666  | 45       | 1,950  |  |
| 9-Jun-01  | 6:53    | 8:30    | 1:37          | 24x2 + 20:43 | 038666  | 038705  | 75       | 2,025  |  |
| 10-Jun-01 | 6:12    | 8:40    | 1:28          | 24x2 + 22:11 | 038705  | 038775  | 92       | 2,117  |  |
|           |         |         |               |              |         |         |          |        |  |
|           |         |         |               |              |         |         |          |        |  |
|           |         |         |               |              |         |         |          |        |  |
|           |         |         |               |              |         |         |          |        |  |
| Total     |         |         |               |              |         |         |          |        |  |

Chapter 5

Program 4 of Verification Study

# Guideline for Formation and Operation of Water Users Associations (WUA)

# Chapter 5 Guideline for Formation and Operation of Water Users Associations (WUA)

## 5.1 Introduction

## 5.1.1 Background

The Master Plan proposes [1-2] Meki Irrigation and Rural Water Supply Project to introduce a gravity irrigation system to drought prone zone of the Maki area by means of proposed headwork and the irrigation system on the Meki River, covering 2,300 ha and 9,200 households. Toward a realization of the project, [1-1] Water Users Associations (WUAs) Support Program will be implemented so the beneficiary farmers will organize water users' associations (WUA), and their capacity of the project management shall be strengthened.

The community-based irrigation development in Dugda Bora Wareda extends to 400ha under the management of 15 WUAs organized by 500 household. These irrigation schemes contribute to the regional economy through production of both food crops and vegetables as well as creation of employment opportunities to local farmers. Successful performance also empowers local farmers, who are not involved in the irrigation projects, as a whole. The farmers groups are listed below.

| No. | Name of WUA      | РА             |      | Members |       | Irrigation<br>Area | Source of<br>Water | Year of<br>Establish- |
|-----|------------------|----------------|------|---------|-------|--------------------|--------------------|-----------------------|
|     |                  |                | Male | Female  | Total | (ha)               |                    | ment                  |
| 1   | Lega Meki-1      | Gemu Sbubi     | 10   | -       | 10    | 32.5               | Meki river         | 1997                  |
| 2   | Lega Meki-2      | Bekere Girrisa | 19   | 5       | 24    | 6.0                | Meki river         | 1998                  |
| 3   | Bekere Girrisa   | Bekere Girrisa | 130  | 5       | 135   | 218.0              | Ziway lake         | 1997                  |
| 4   | Melka Cherecha   | Welda Mekdela  | 34   | -       | 34    | 14.1               | Ziway lake         | 1998                  |
| 5   | Meika Korma      | Welda Kelina   | 28   | 9       | 37    | 16.6               | Ziway lake         | 1998                  |
| 6   | Melka Aba Godana | Welda Kelina   | 18   | 1       | 19    | 7.8                | Meki river         | 1998                  |
| 7   | Oda Bokota       | Oda Bokota     | -    | 23      | 23    | 5.0                | Meki river         | 1999                  |
| 8   | Teppo-140        | Teppo Chareke  | 40   | -       | 40    | 13.0               | Ziway lake         | 1997                  |
| 9   | Cheleleka Denbel | Dodola Denber  | 34   | 1       | 35    | 10.9               | Ziway lake         | 1998                  |
| 10  | Dodoata Denbel   | Dodola Denber  | 15   | -       | 15    | 18.1               | Ziway lake         | 1997                  |
| 11  | Wayyo Gabrier    | Wayyo Gabrier  | 19   | 5       | 24    | 13.8               | Ziway lake         | 1996                  |
| 12  | Wedia Kelina     | Wedia Kelina   | 30   | 1       | 31    | 8.6                | Ziway lake         | 1998                  |
| 13  | Wayyo Serrit     | Wayyo Gabrier  | 28   | 4       | 32    | 17.0               | Ziway lake         | 1999                  |
| 14  | Tuchi Denbel     | Tuchi Denbel   | 16   | -       | 16    | 15.3               | Ziway lake         | 1996                  |
| 15  | Jara Wayu        | Elen           | 20   | 5       | 25    | 8.0                | Elen lake          | 1998                  |
|     | Total            | -              | 441  | 59      | 500   | 404.6              | -                  | -                     |

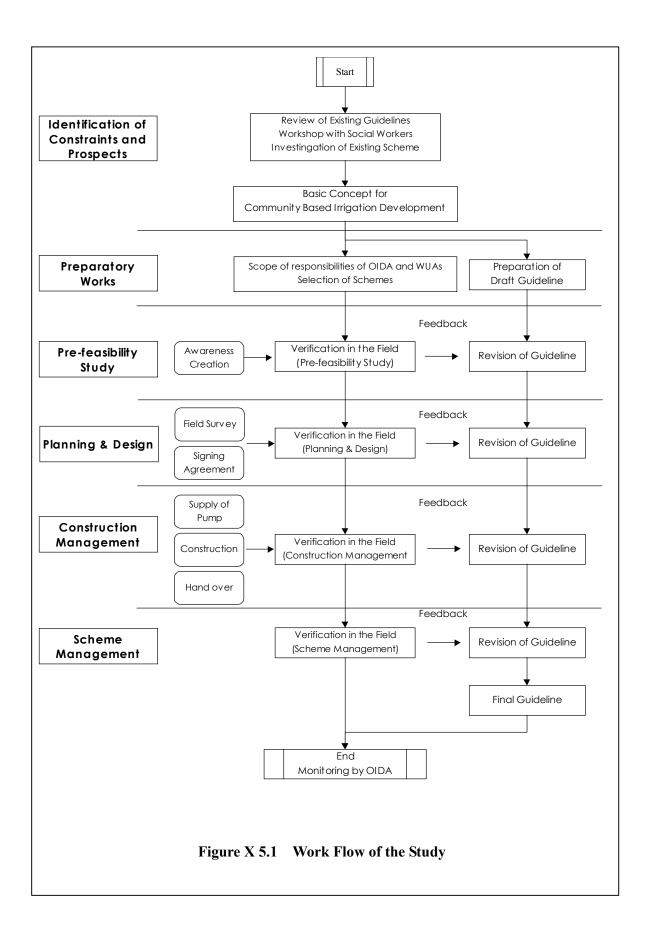
Table X.5.1 Farmers Groups in Dugda Bora Wareda

Except for Bekere Girrisa located in the command area of the Meki-Ziway irrigation project, they have been developed using the surface water resources of the Meki river and the Ziway lake by use of small pumps. [1-1] Water Users Associations (WUAs) Support Program will be carried out through strengthening those existing WUAs as well as other farmers groups in rainfed area.

Under the above-mentioned circumstances, it is vital for OIDA to establish a systematic approach and method for establishment of WUA.

## 5.1.2 Objectives

This verification study program focus on standardization of community mobilization for establishment of WUAs for small-scale irrigation development (5 ha) in line with the concept of [1-1] Water Users Association Support Program.


#### 5.1.3 Approach to the Study

The Study aims at establishment of WUA with participatory approach, which enables sustainable irrigation farming, learning from past experience of projects under support of ESRDF and NGO. The sustainability will consists of (1) financial sustainability, (2) technical sustainability, and (3) institutional sustainability.

The Study will provide the training to the OIDA community development experts and social workers under Community Participation Department. According to the OIDA Wareda Office at Meki, some groups have already requested OIDA to provide both technical and financial supports for the small-scale irrigation development. Among already recognized groups, three (3) groups will be selected and actually participate in the small-scale irrigation development. The OIDA staff will organize PRA, in which direct interview, questionnaire survey, focus group discussion and community resources mapping, etc. The PRA will lead the groups to formulate group fund under the registered bank accounts. A pumping facility will be supplied to a group after consensus and mutual agreement will be attained within a group. Management of the schemes by the group will be monitored by OIDA. The lesson leant from a series of process will be compiled "a guideline for community-based small-scale pump irrigation project in Meki".

## 5.1.4 Plan of Operation

Work flow of the Study is presented in Figure X.5.1, showing identification of constraints and prospects, preparatory works, verification of the draft guidelines in the field, and feed-back to the guideline.



## 5.2 Identification of Constraints and Prospects

#### 5.2.1 Review of Existing Guidelines and Manuals

Present guidelines of community mobilization prepared by IFAD and ESRDF were reviewed. They only describe concept and principle for the community mobilization. Thus, preparation of practical manuals and guidelines for the community mobilization have been expected so that even less experienced social workers can attain the required the work performance.

## 5.2.2 Workshop with OIDA's Social Workers

A workshop with OIDA's social workers was held on  $5^{th}$  and  $6^{th}$  of July 2001 in order to evaluate their capacity of community mobilization and to interview their needs for the revised guideline. 9 social workers in the head office and 4 branch offices were present on the workshop.

The findings through a questionnaire and discussion are summarized as follows:

- Although they have experience of community mobilization for planning, design, construction, and operation and maintenance stages to some extents, their performances tend to depend on personal experience.
- It is necessary for social works to get broad knowledge and information for irrigation farming, especially cost – benefit analysis of agricultural crops, e.g., benefit, production cost, and even – break point.
- All the attendance point out that <u>land holding is major prevailing constraint for</u> <u>irrigation development</u>. Numbers of small-scale landowners with a small number of large-scale landowners could cause difficulty for censuses for delineation of irrigated lands. The large-scale landowners tend to entrust their farmlands to cultivators living out of the community, and are reluctant to share their land to the small-scale landowners. This situation may cause conflict among the community and a decline of the irrigation scheme. It is also commented that the land issue derives from unsatisfactory legislation in terms of land and water rights.

At operation and maintenance (O&M) stage, the social workers are in engaged in technical guidance to WUA for operation and maintenance of the irrigation schemes and assistance to WUA for conflict management. The technical guidance consists of operation and maintenance of irrigation facilities, water management, farming practices, and marketing. They mentioned that the lack of the O&M fund is the most constraint in existing irrigation schemes, and the awareness creation on this issue at the planning stage is essential for sustainable irrigation scheme management. Further special care should be given to preparation of by-law and financial management to strengthen WUA management capacity in cooperation with the Bureau of Co-operatives.

The comments and suggestion arisen in the discussion were incorporated to prepare

the draft guideline.

## 5.2.3 Farmers' Groups Applied for Pump Irrigation Scheme

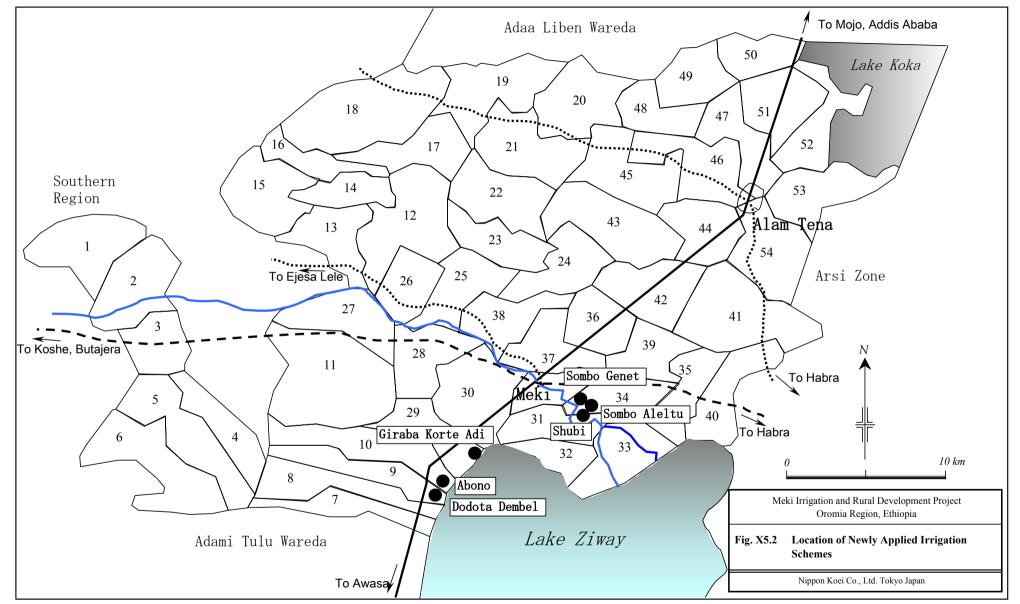
Several farmers' groups in Dugda Bora have submitted application form to start small-scale pump irrigation schemes. They are listed below, and their locations are shown in Figure X 5.2.

|    | Name of group    | No. of<br>members | Command area | Water<br>source |
|----|------------------|-------------------|--------------|-----------------|
| 1. | Shubi            | 15                | 15.0 ha      | Meki river      |
| 2. | Sombo Ganet      | 25                | 12.5 ha      | Meki river      |
| 3. | Sombo Aleltu     | 20                | 5.0 ha       | Meki river      |
| 4. | Abono            | 47                | 23.5 ha      | Ziway Lake      |
| 5. | Giraba Korte Adi | 23                | 15.0 ha      | Ziway Lake      |
| 6. | Dodota Dembel    | 65                | 23.5 ha      | Ziway Lake      |

 Table X 5.2
 Farmers Groups Applying Pump Irrigation Scheme

Field investigation for the above schemes were conducted by OIDA and JICA Study Team. General features of them are summarized below.

As long as All of the farmers' groups, who apply OIDA to supply a pump for irrigation, have an experience of irrigation farming, sharing farming lands with a private pump owner, residing in the same PA or Meki. The farmers rent a part of their land to the owner, and the owner supply irrigation water to the farmers in return for land rental charge.


However, the farmers are not satisfied with that system due to frequent <u>conflict with</u> the pump owner regarding water distribution, and share of profits from the lands.

Further, because of shortage of money, the farmers are obliged to get their farm inputs from the owner in advance, and to repay in kind after harvest. The farmer mentioned that the inputs through the pump owner were too expensive compared with market price, and that it should result in loss even from irrigation farming.

Under the above circumstances, the farmers wish to organize a WUA so as to manage irrigation scheme, being independent from the pump owner.

It was observed, however, that the interviewed farmers had too much expectation for irrigation. In fact, they estimated their net benefit on the basis of the highest price of agricultural products in a year, and they were not aware of risk accompanied with irrigation farming due to decline of the price. Moreover, asked whether introduction of irrigation practice would resolve shortage of funds for farm input, they had little distinct prospects.

Figure X.5.2



X - 5 - 6

## 5.3 Basic Concept for Community-based Irrigation Development

Several discussion and field investigation reached the basic concept of communitybased irrigation development with sustainability as described below.

(1) Economical sustainability

Allocation of Irrigated land

Special attention is paid to an <u>equal irrigated land allocation</u> to all WUA members with optimum scale to avoid economical imbalance among the members. An area of 0.25 ha per each member will be proposed taking into consideration previous OIDA's experience and family labor force.

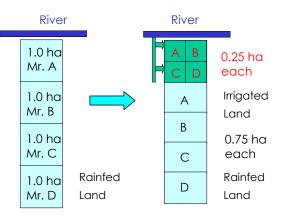
#### Group fund formation

Group fund formation by WUA shall be promoted for securing the funds for the initial cultivation. In stead of 10% labor contribution in construction cost, wages for the construction works will be paid to the farmers. The wages will be saved into a bank account of WUA and they



Figure X.5.3 Group Fund Formation of WUA

will be utilized as the initial cost for cultivation. OIDA will help WUA to open the bank account.


## Saving for replacement of pump

OIDA is requested to instruct WUA members to save money annually for replacement of a pump considering a life of the pump.

(2) Technical sustainability

## Land consolidation

Land consolidation of irrigated land near water resource shall be facilitated in order to enhance irrigation performance. This measure could reduce canal length and water seepage, and consequent fuel cost, improving irrigation efficiency and performance of the pump. It is essential to exchange of farmland among the WUA members to achieve the effect





of land consolidation, discussing thoroughly among the members.

(3) Institutional sustainability

# Support to WUA to be self-help organization

From planning stage, OIDA will be requested to support WUA continuously so that the WUA become a self-help organization. This will include mechanism of decision-making, operation and maintenance of the scheme facilities, water management, and financial management.

Strengthening of monitoring & evaluation by OIDA

Function of OIDA for monitoring and evaluation of the schemes shall be strengthened, determining their method, such as frequency, monitoring index, and so on.

(4) Exchange of information through awareness creation

An emphasis shall be put on an awareness creation to farmers is, so that they have knowledge of responsibility and management of WUA as well as general information of irrigation farming. It is expected that OIDA also get farmers' intention for proposed schemes so as to realize sustainable irrigation development.

(5) Revised guideline

The revised guideline, focusing on process to establish WUA in community-based small-scale pump irrigation schemes in the Meki area, will aim to cover engineering aspect as well as social matters, and all development stage, such as preliminary study, planning, design, construction, and scheme management.

# 5.4 Preparatory Works

## 5.4.1 General

In line with the basic concept discussed in the previous section, preparatory works for the study was conducted. It includes scope of (1) responsibilities of OIDA and WUAs, (2) selection of the study sites and communities, (3) cost and benefit analysis, (4) preparation of draft guideline, (5) organization set-up for the field study.

# 5.4.2 Scope of Responsibilities of OIDA and WUAs

On the basis of the concept discussed in the section 5.3, the scope of responsibilities of OIDA and WUAs are set as described below. The scope shall be presented to the WUA members at the beginning.

#### Responsibilities of OIDA and the group in the scheme

- OIDA is responsible for
  - Procurement and installation of <u>a small pump of 10 HP</u> for irrigation, which enable them to feed <u>5 ha of land</u>.
  - Planning and design of irrigation facilities, including mapping
  - Construction of pump house
  - Assistance and guidance for construction of irrigation canal
  - Construction of related structures of irrigation canal, if needed.
  - Provision of initial training of the pump operation.
  - Provision of guidance for WUA establishment and management, such as water management, financial management, farming, marketing.
  - Monitoring of performance of irrigation scheme

#### WUA are responsible for:

- Selection of leader, secretary, accountant, and auditor
- Selection of a pump operator
- Coordination of irrigation farming size of 0.25 ha per household
- Conducting <u>land consolidation and exchange</u> among farmers so that every member can make benefit with irrigated farming
- Construction of irrigation canals under guidance of OIDA
- Operation and maintenance of the scheme, such as procurement and management of fuel, repair and maintenance of the pump, water distribution, maintenance of canals.
- Opening bank account in the name of WUA
- <u>Saving money for depreciation cost of the pump</u>
- Keeping account records of WUA, income and expenditure
- Keeping records of fuel procurement and consumption
- Opening the account records to the member
- Procurement of agricultural input, like seed, fertilizer, pesticide, and marketing of agricultural products
- Reporting regularly to OIDA
- Preparation of by-law of WUA

#### 5.4.3 Selection of the Study Sites and Communities

The following three groups were selected for the verification of the WUA establishment process, taking into consideration access to the site and scale of command area scale as a development model in the Study area:

|    | Name of group | No. of  | Command | Water      |
|----|---------------|---------|---------|------------|
|    |               | members | area    | source     |
| 1. | Shubi         | 15      | 15.0 ha | Meki river |
| 2. | Sombo Ganet   | 25      | 12.5 ha | Meki river |
| 3. | Sombo Aleltu  | 20      | 5.0 ha  | Meki river |

Table X.5.3 Selected Farmers Groups of the Study

They are neighboring communities along the Meki river belong and located in Shubi Gamo PA, some 5-km west of Meki town.

## 5.4.4 Cost and Benefit Analysis

For the awareness creation to the WUA members, data Collection for cost and benefit analysis was carried as shown below.

- Benefit
  - Farm gate price of the products with range from annual minimum and maximum price (trend of annual fluctuation).
  - Factors the price varies, such as mass production and production in another areas
  - Yield of the products with range from minimum and maximum yields.
  - Gross income per household
- Cost
  - Composition of production cost
  - Input (seed, fertilizer, and pesticide)
  - Fuel
  - Maintenance cost for the pump including its spare parts.
  - Depression cost for the pump

# 5.4.5 Preparation of Draft Guideline

Based on review of existing irrigation scheme and comment by the social works in the workshop, the draft guideline for small-scale community based irrigation project in Meki area was prepared.

# 5.4.6 Organizational Set-up for the Field Study

The team for the study was organized by community mobilization department of the head office (1), community mobilization team of the central branch office (2), planning and study team of the head office (2), construction team of the central branch office (1), and Meki Wareda Office (3).

## 5.5 Work Flow of Community-based Irrigation Development

#### 5.5.1 General

Field works for formation and operation of WUA is conducted according to the following stages:

- Awareness Creation
- Planning and Design
- Construction management
- Scheme management

Activities for each stage are presented in the proceeding section.

#### 5.5.2 Activities

(1) Awareness Creation

Awareness creation through PRA was described hereinafter

1) Mapping by WUA members

The WUA members prepared a map, showing farm lots of individual farmer with border, roads, households, proposed location of pump house, proposed layout of irrigation canals, and so on.

## 2) Responsibility of OIDA and WUA

As per the contents described in the Section 5.4.2, responsibility of OIDA and WUA was presented to the WUA members. The following items were explained carefully:

- Irrigated land size
- Necessity of land consolidation
- Necessity of saving money for pump replacement
- 3) Management of Scheme

Management to be done by the WUA was explained according to the following aspects:

- Organizing committee members,
- Meeting,
- Irrigation scheduling and water distribution plan,
- Water distribution,
- Maintenance,
- Financial management,
- By-law, and
- Conflict management.

Items discussed in the meeting are shown in Attachment X 5.1.

4) Cost and Benefit Analysis

As for production cost and income, the interviews to the WUA members were carried out to grasp knowledge and information what they have. Consequently, the JICA Study team presented cost and benefit analysis for major crop, adding the following comments and suggestion to the WUA members:

- Irrigation farming may result in loss according the price of the products,
- Proper farming management with optimum use of farm inputs is essential for economical farming,
- To avoid the risk for price decline of a particular crop, crop diversification is recommended, and
- Cultivation period shall be determined taking into consideration an annual fluctuation of the price of products.
- 5) Group Fund Formation

After discussion on whether the WUA members are able to afford the funds for purchasing farm input or not, the concept group fund formation shown in the Section 5.3 was presented to them.

(2) Signing of agreement between OIDA and WUA

The number of meeting for each WUA was five for one and half month. In accordance with the series of discussion in the meetings, draft agreement for community-based small-scale irrigation project was prepared in Oromo language and discussed with the WUA members. After confirmation of responsibility and undertaking of both OIDA and the WUA, the agreement was signed. It is observed that some of the applicants withdrew the WUA because they did not agree to exchange the lands according to the agreement, and that the equal number of new members joined the WUA. The final number of members with their command area is shown below

|   |    | Name of group | No. of  | Command  | Date           | Date of       |
|---|----|---------------|---------|----------|----------------|---------------|
|   |    |               | members | area     | PRA starts     | Agreement     |
|   | 1. | Shubi         | 15      | 3.75 ha  | July. 9, 2001  | Aug. 27, 2001 |
| 2 | 2. | Sombo Ganet   | 28      | 7.00 ha  | July. 10, 2001 | Aug. 21, 2001 |
|   | 3. | Sombo Aleltu  | 20      | 5.00 ha  | Sep. 1, 2001   | Sep. 20, 2001 |
|   |    | Total         | 63      | 15.75 ha |                |               |

Table X 5.4WUAs Signing Agreement

The draft agreement is shown in Attachment X 5.2.

- (3) Physical planning and Design
  - 1) Delineation of irrigation area and plan of facilities layout

Based on the map prepared by WUA member, delineation of irrigation area with land consolidation and exchange was discussed. Further location of the

pump station and irrigation canal network is also decided tentatively.

2) Mapping and canal route survey

After the agreement was made, a surveyor in the OIDA head office commenced a survey in the field, including some benchmark, grid survey at intervals of 20 meters to prepare the topography map with a scale of 1 to 1000.

3) Design and cost estimate

Based on the topographic map, engineers of the planing and design department in the Head office carried out design and cost estimate for the main canal with related structure and pump house. The salient features of the irrigation schemes are as follows:

| Facilities              | Description                            |  |  |
|-------------------------|----------------------------------------|--|--|
| Irrigation canals       | 600-800 m long earth canal             |  |  |
| Structures on the canal | drops and off-takes                    |  |  |
| Pump house              | an area of 9 m2 (3m x 3m),             |  |  |
|                         | block wall, corrugated iron sheet roof |  |  |

Table X 5.5 Salient Features of Irrigation Schemes

4) Confirmation of the plan with WUA

Location of the pump house and irrigation canal route were discussed and confirmed with WUA members in the field.

- (4) Construction management
  - 1) Preparatory works

In accordance with the design drawing, setting of canal route and pump station was carried out in the field by the surveyor and Meki Wareda staff in cooperation with the WUA members. In response to the request of WUA members, minor revision of the canal alignment was made in the field.

Result of the canal design indicated that soil for canal embankment was needed. Field investigation concluded that the soil would be borrowed near the project area of the Meki Ziway Irrigation project, Bekera Girrisa PA.

OIDA dispatched dump truck and wheel loader for transportation of the borrowed material to the project area.

2) Construction of irrigation canal

Construction of the irrigation canal was carried out by farmers' participation. The work, consisting of site clearing, excavation, embankment, structure, was supported by OIDA providing guidance and equipment for transportation of embankment materials. Short of the workers was supplemented by daily casual labors. Special care was given for embankment work with proper watering and compaction. 3) Construction of pump house

OIDA constructed the pump house, purchasing the construction materials, and employing carpenters, masons, and labors. The work consisted of excavation of foundation, concrete block wall, corrugated iron sheet roof, iron window and door, plastering, and transition outlet to the irrigation canal.

4) Procurement of pump

Taking in consideration availability of after-care support and intention of the WUA members, it was decided that 12 HP of pumps made in Italy were purchased. The procurement was carried out in Addis Ababa after approval of JICA.

5) Installation of the pump

After pre-delivery inspection, the pumps were transported to the site and installed. Training for pump operation was carried out to the OIDA staff and the representative of the WUAs.

6) Handing over the pump

With document of handing over, the pumps were handed over to the WUAs.

- (5) Scheme management
  - 1) Selection of committee members

Committee members, consisting of chairman, vice chairman, secretary, cashier, and auditor, were selected in the WUA meeting. The minutes of the discussion was prepared for opening of the WUA bank account.

2) Water management and operation and maintenance of the pump

OIDA assisted the WUA in terms of irrigation rotation, operation and maintenance of the pump, fuel management. It was decided that the spare parts and consumable of the pumps were kept by OIDA. OIDA also provided the WUAs the formats of fuel management, and accounting. Those activities are expected to be supported continuously by OIDA

3) Preparation of a model by-law

The community mobilization department of the OIDA Head Office prepared a model by-law for the WUA. The discussion with the WUA members is needed for finalization of the document.

#### 5.6 Lesson Learnt

## 5.6.1 Awareness Creation

After the heated discussion with the WUA members, they understood the responsibly taken by the WUA, such as land allocation per member, land

consolidation, saving of depreciation cost for a pump, and so on. It was confirmed that the land holding among the members is key issue to go forward the implementation of the project.

The members were not satisfied with the condition for the project implementation, such as output of the pump, irrigated land size, expecting all of their land could be fed with the project. After explanation by OIDA, explaining that the project starts with optimum size of farm land, and that the condition does not prohibit extension of irrigated land in future.

It is notable, in Sombo Genet and Sombo Aleltu, that some members withdrew from the WUA because they did not agree land consolidation and exchange. And then, other members agreeing the condition entered the WUA. This fact indicates that awareness creation through PRA methods, providing clear information regarding responsibility of the WUA and its members, enable each member to select an option whether he (she) enter the WUA or not.

The mapping by the WUA members helped them to be aware of their land resource and to think about land consolidation although the social workers were in doubt that the WUA members could draw the map. It is concluded that the mapping will be helpful for preliminary discussion for a project planning.

## 5.6.2 Membership

It is noted the membership of WUA is entitled for sons of the members over 18 years old as well as the head of household if the members of WUA approve that the children have membership. Thus, it is necessary to check the membership by not only the authorized application but also interview of the WUA member.

#### 5.6.3 Land Consolidation

It was understood that the land consolidation was primary issue for consensus with the WUA member. Though, at first, the WUA members hope that all of the farm lands applied could be irrigated, they agreed to consolidate the irrigated land near the Meki river, and to exchange their lands. The JICA study team analyzed a primary factor why the agreement was made in the study area, focusing the following factors:

- Little difference of land productivity enabled the member exchange their land.
- A farmers' willingness for the pump irrigation was more than that an attachment of present land holding.

It was useful to explain the WUA members the effect of land consolidation by use of tool

#### 5.6.4 Cost and Benefit Analysis with WUA

The production cost estimated by the WUA members tends to be lower that those by

the JICA Study Team. The JICA Study Team, taking into consideration the optimum usage of the agricultural inputs, reviewed the cost-benefit analysis for major crops. The result of the analysis is presented in Appendix III. It is essential that social workers shall be familiar with the crop budget and marketing mechanism of irrigated farming.

#### 5.6.5 Group Fund Formation

It was revealed that the WUA had difficulty to open the bank account in the name of the WUA. The Commercial Bank of Ethiopia need a recommendation by the Zonal Administration, with recommendation by the Wareda administration, and minutes of meeting of the WUA showing names of the three committee members. OIDA will be requested to support the WUA to obtain the recommendation letter by the governmental organizations.

## 5.6.6 Engineering Support Required

For the implementation of the projects, an engineering supports required by OIDA are, survey and mapping, design of the irrigation canals, arrangement of borrowed material for canal embankment, and employment of daily hired labor.

In the Shubi scheme, it was observed that a part of the command area decided by the WUA members were in difficulty for irrigation due to elevation of the area. Thus, an assessment of land potential from the engineering aspects will be needed, conducting leveling survey and topography mapping by OIDA.

Although alignment of canal network and hydraulic design of irrigation canals are carried out by a design engineer of OIDA, the feedback of the results to the WUA members would be necessary. In fact, as for the Sombo Genet, revision of tertiary canal alignment were carried out at field, taking into account intention of the WUA members.

At first, it was assumed that some of excavated materials could be used for the embankment material. But the borrowed material for canal embankment was more that that expected in the design because the excavated materials had problems of quality and transportation measure.

Although all the WUA members agreed to participate in the construction works, some 50% of the members were absent from the works because the construction period was during harvesting season. Thus, it was decided that the daily hired labors were employed to expedite the works.

## 5.6.7 Construction period

Even though the development plan, such as location of the pump station, canal route, and location of off-takes, were consented by the WUA members, different opinions or objection were raised by them during the construction period. The OIDA staff expected to be flexible for minor design revision requested by the WUA members at the field as long as it does not affect total construction cost and work seriously.

Prior to the construction, location of an access road to the site shall be discussed carefully with the WUA members to minimize damage of crops under cultivation.

The construction time schedule should have been informed clearly to the WUA members. It was observed that some of the members commenced the irrigation farming without knowing the schedule.

Before the borrowed soils are gathered, discussion with farmers residing near the site is be necessary through the Wareda administration and PA chairman to avoid the conflict between the construction team and the farmers. Some farmers refused the team to collect the soils because depression by the soil collection might cause breeding of mosquitoes in the rainy season.

#### 5.7 Feedback to Guideline

The lessons leant obtained from the field verification were incorporated in the final guideline of the community-based irrigation project. The guideline is presented in Attachment X-5-3.

#### 5.8 Recommendations

Through the verification study, the process of establishment of WUAs for smallscale irrigation development is being standardized, involving staff of OIDA into the field verification. Further, the staff is having a grasp of the WUA establishment process. It is recommended that the process will be scrutinized by OIDA and be extended to other areas and other work category like small-scale surface irrigation scheme.

After construction, the activities of the WUAs shall be monitored continuously and carefully by OIDA. The monitoring will focus on whether equity of land and water resources allocation will be ensured among the WUA members, and whether the members hold the regular meeting for solving their problems in the scheme. It is also of importance that they can form the fund for replacement of the pump and farm inputs. Further impacts resulting from the implementation of the project shall be monitored carefully, consisting of reaction of outsiders, such as private investors, and existing water users.

## **Management of WUA**

Points to be stressed (Creation of ownership to scheme)

- Farmers' managed scheme by self-help. Free from dependency on the Government
- Create and follow the rule and regulation by Farmer themselves
- Member should follow leader's instruction
- Difficulty of irrigation farming should be solved by farmers themselves
- Irrigation farming could lead to not only more benefits but also more cost.
- Operation cost of the scheme should be borne by farmer themselves. Farmer should save money.
- Life of a pump is 5 years. Farmer should save money for replacement. No assistance for the cost by the government.

#### Responsibility and Obligation of Farmers

It cost very much to operate an irrigation scheme. Let farmers understand the facts as shown below

|    |                                                   | responsionnes of farmers                                                                               |                                                                                                                                    |
|----|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|    | Item                                              | Leader and                                                                                             | Members                                                                                                                            |
|    |                                                   | Committee members                                                                                      |                                                                                                                                    |
| 1. | Organizing group                                  | -                                                                                                      | -Selection of leader and committee member                                                                                          |
| 2. | Meeting                                           | -Chair a meeting<br>-Participation in committee<br>meeting                                             | -Participation in a general meeting                                                                                                |
| 3. | Irrigation scheduling and water distribution plan |                                                                                                        | -Decision of irrigation plan in general<br>meeting<br>-Follow cropping season according to<br>irrigation schedule                  |
| 4. | Water distribution                                | -Water distribution by water master                                                                    | -Follow water distribution plan<br>-Follow instruction by water master                                                             |
| 5. | Maintenance                                       | -Preparation of maintenance<br>plan<br>-Maintenance of pump<br>-Maintenance of canals                  | -Patrol of facilities<br>-Communal work for maintenance<br>-Cleaning of canals<br>-Pay fuel charge<br>-Saving for pump replacement |
| 6. | Financial management                              | -Book keeping by accountant<br>-Internal auditing by auditor<br>-Opening of account book to<br>members |                                                                                                                                    |
| 7. | Rule and penalty                                  | -Preparation of rule and<br>regulation<br>-Action to violator                                          |                                                                                                                                    |
| 8. | Conflict management                               | -Settle dispute among farmers                                                                          | -Communication in case of dispute<br>-Self-help concept by WUA                                                                     |

Responsibilities of farmers' Group

#### AGREEMENT

# Implementation of Community-based Small-scale Pump Irrigation Project for The Study on Meki Irrigation and Rural Development Project in Oromia Region, Ethiopia

This AGREEMENT ON Implementation of Community-based Small-scale Pump Irrigation Project (hereinafter referred to as WORK) is made between Oromia Irrigation Development Authority (hereinafter referred to as OIDA) and <u>Water Uers' Association</u> (hereinafter referred to as WUA) on the date of \_\_\_\_\_\_, 1993 (\_\_\_\_\_\_, 2001). The terms and conditions set for performance of the WORK are as follows:

#### WITNESS

#### Whereas:

1. Both OIDA and WUA shall undertake the WORK complying with the "Condition of Agreement" attached herewith.

2. Both OIDA and WUA agree to the terms and conditions in respect to the WORK as specified hereunder.

(i) The following documents are considered as a part of this agreement, viz.:

- (a) The General Conditions of the Agreement, and
- (b) List of Applicants with their Signatures
- (ii) The Contract shall be effective on the date the agreement is signed by the OIDA and the WUA.

Both OIDA and WUA agreed in witness hereof, and the Agreement is being effective on the date of \_\_\_\_\_, 1993 ( \_\_\_\_\_, 2001) through signing of the authorised representatives.

Signature of OIDA

Signature of WUA

Mr.

Oromia Irrigation Development Authority. (OIDA) Mr. Representative of \_\_\_\_\_\_Users' Association

## Implementation of Community-based Small-scale Pump Irrigation Project

#### for

#### The Study on Meki Irrigation and Rural Development Project in Oromia Region, Ethiopia

#### **General Condition of Agreement**

## 1. Obligations of OIDA

- 1.1 OIDA is responsible for
  - Procurement and installation of a small pump of some **10 HP** for irrigation with spare parts.
  - Construction of pump house and related facilities
  - Construction of irrigation canals and related structure
  - Provision of initial training of the pump operation.
  - Provision of guidance for WUA establishment and management, such as water management, financial management, farming, marketing.
  - Monitoring of performance of irrigation scheme

#### 2. Obligations of WUA

- 2.1 WUA are responsible for:
  - Selection of committee members, such as leader, secretary, accountant, and auditor, and other committee members required
  - Selection of a pump operators
  - Coordination of irrigation farming land size of **0.25 ha** per each member
  - Conducting land exchange among farmers so that every member can make benefit equally with irrigated farming
  - Construction of irrigation canals under supervision of OIDA
  - Conducting excavation, land clearing, filling & embankment, and others works directed by OIDA,
  - Operation and maintenance of the scheme, such as procurement and management of fuel, repair and maintenance of the pump, water distribution, maintenance of canals.
  - Opening bank account for communal money saving
  - Saving all money obtained from wages of the construction works in the bank account of WUA
  - Saving money for depreciation reserve of the pump
  - Keeping account records of WUA, income and expenditure
  - Keeping records of fuel procurement and consumption
  - Opening the account records to the member
  - Procurement of agricultural input, like seed, fertilizer, pesticide,
  - Marketing of agricultural products
  - Reporting regularly to OIDA according to the specified formats
  - Preparation of rule and regulation for management of the scheme

## 3 Cautions

- 3.1 The performance of irrigation scheme shall be monitored regularly by OIDA, especially in financial status of the scheme.
- 3.2 If, in the opinion of OIDA, WUA shows that he is unable to perform the Works due to the following reasons, OIDA reserves the right to withdraw the pump from community:
  - Saving money for depreciation reserve is not carried out properly.
  - No cultivation is made during two consecutive years after installation of the pump.
  - Unclearness or dishonesty is observed in the account book.
  - Unfairness is observed for irrigation water distribution,
  - Unfairness is observed for land consolidation and exchange
- 3.3 The farmers shall not entrust cultivation of their land to an outsider without consent of WUA committee.
- 3.4 The WUA shall not resell of the pump in all cases. In such case, the pump should be compensated by the WUA. The act will be illegal and accused.
- 3.5 The WUA shall not transfer the Work or the benefits or obligations to any other person.

#### 4 Construction

- 4.1 The schedule of procurement and installation of the pump shall be decided by OIDA taking into consideration progress of the construction works.
- 4.2 The work quantity and specification for construction of irrigation canal and related structures, if any, shall be specified in other documents.
- 4.3 The amount or labor wage rate for participation in the construction works shall also be specified in other documents
- 4.4 The time of completion for construction of irrigation canals and related structures, if any, shall be specified in other documents.

## 5. Others

- 5.1 If there are some issues, which are not specified in the agreement, it shall be settled by mutual discussion between both parties.
- 5.2 If any dispute shall arise between OIDA and WUA in connection with the agreement, it shall be settled by mutual discussion between both parties.