៩ពួក 13 ភារស្រោចស្រព និ១ ដោះនឹក

13.1 គារពីទិត្យមើលគំនិតគ្រោខ នៃប្រពន្លំសំខាន់ដែលមានស្រាប់

13.1.1 គារពិសិត្យមើលប្រុចឆ្អឹគំពេខ

សំរាប់ប្រពន្ធ័ស្រោចស្រពដែលមានស្រាប់យ៉ាងច្រើន ជាពិសេសសំរាប់ប្រពន្ធ័ដែលបានសាងសង់ក្នុង របបប៉ុលពត ឯកសារ និង គំនូវប្លង់មួយចំនួននៃផែនការស្រោចស្រព ហើយគំរោងដែលអាចរកបានក្នុង ពេលបច្ចុប្បន្ន។ ទោះយ៉ាងនេះក្ដី វាមានការលំបាកក្នុងការដណ្ដើមយកគំនិតនៃប្លង់ដើម និង គ្រោងសំណង់ ដែលមានស្រាប់។ សំរាប់ផែនការស្ដារ និង ជួសជុលឡើងវិញនៃប្រព័ន្ធស្រោចស្រពដែលមានស្រាប់ វាជា គំរូវការចាំបាច់ក្នុងការដណ្ដើមយកនូវលក្ខណៈ នៃប្រព័ន្ធក្នុងការចាប់ផ្ដើមការងារជាបន្ទាន់ ។ គោលប្លង់ដើម គំរូប្លង់គ្រោង និង មូលដ្ឋានពត៌មានសំរាប់ប្លង់គ្រោង គួរតែផ្ដល់របាយការណ៍រាល់ទីតាំងពិតប្រាកដ ។ ការវាស់ស្ងង់ និង សំភាសន៍ត្រូវបានប្រើគ្រប់សំណង់ពីពេលមុន ។

តាមពត៌មានបានបង្ហាញបញ្ជាក់ពិត ប្រាកដគួរតែបានបង្រួញតាមរយៈផែនការ :

- គោលនៃប្លង់ដើម
 - ឋានលេខា ភូតព្ភសាស្ត្រ និង គំនូសព្រាងនៃប្រព័ន្ធស្រោចស្រពដែលមានស្រាប់
 - ការអនុវត្តន័កសិដ្ឋាន និង បែបបទដំណាំ នៃផ្ទៃដីដែលបានស្នើរឡើង
 - គោលនៃប្លង់ស្រោចស្រពដើម (ផ្ទៃដីស្រោចស្រព សំណង់សំរាប់ស្រោចស្រព ។ល។)
- ស្ថានភាពនៃភូតព្ហសាស្ត្រ និង ឋានលេខា (ផែនទី ជំរេល សម្ពាធ ទន្លេ ឬ ស្ទឹង បង្ហូរ ទីដីខ្ពស់
 (ដីចំការ)) ។
- ដីប្រើប្រាស់ និង ផ្ទៃដីដែលត្រូវលើកឡើង
- ឧតុនិយម និង ជលសាស្ត្រ
- សមត្ថភាព និង មុខងារ នៃសំណង់ស្រោចស្រពដែលមានស្រាប់
- គំរូគ្រោងប្លង់

13.1.2 គារពិចារណាពិសេសលើប្រព័ន្ធដែលមានស្រាប់

ប្រតិបត្តិតាមដំណោះស្រាយនៃការសិក្សា បញ្ហាបច្ចេកទេសជាច្រើនដែលបានរកឃើញលើសំណង់ ដែលមានស្រាប់ ។ បញ្ហាមួយចំនួនមិនអាចដោះស្រាយដោយការស្ដារ និង ជួសជុលឡើងវិញនៃសំណង់ដើម ។ តាមបញ្ហានេះគួរតែត្រូតពិនិត្យឱ្យបានទាន់ពេលលើសំណង់ដែលមានស្រាប់ ។

(1) **ក្តីប្រឡាយ** (Route of Canal)

ក្នុងករណីខ្លះប្រឡាយដែលមានស្រាប់ មានទីតាំងក្នុងស្ថានភាពគុណវិបត្តិដែលផ្នែកភាគច្រើននៃ ប្រឡាយដែលត្រូវបានសាងសង់ដោយការជីក ។ ក្នុងប្រទេសកម្ពុជាបានហៅដូចនេះថា ៉ខូរអណ្តែង ៉ មានភាពគ្របដណ្តប់ពីលើ ។ សំណង់អំពីដីដែលជាដីខួរអណ្តែងមានភាពងាយស្រួលពេលដែលដីបានបង្ហាញ ពីក៏វិតខ្ពស់នៃវត្តមានទឹក ។ ភ្លឺប្រឡាយគូរតែបានសំរេចចិត្តពិតប្រាកដដោយសមគូរ ដូច្នេះតុល្យភាពមុខកាត់ ត្រូវថែទាំ និង ការជីកជំរៅបានរក្សាទុកមិនឱ្យលើស 2 ម. ។ ប្រសិនភ្លឺដើមមិនបានធ្វើឱ្យពេញចិត្តតាមតំរូវការ ជំរើសភ្លឺនៃ ប្រឡាយគួរតែបានពិចារណា ។

(2) សំភារៈសំរាប់សាងសង់ក្លី

សំរាប់អាងទឹក និង ទំនប់ជាច្រើន សំភារៈក្នុងស្រុកសំរាប់ធ្វើការសាងសង់នៅការដ្ឋានត្រូវបានប្រើ ប្រាស់ដោយគ្មានការប្រព្រឹត្តត្រឹមត្រូវ ។ ដូចបានអធិប្បាយខាងលើ ដីខ្សាច់ និង ការស្ដារដី មិនសមគួរសំរាប់ភ្លឺ ហើយសំភារៈចាំបាច់ដូចជាដីក្រហមគួរតែបានប្រើប្រាស់ ។ ការការពារទំនប់ដូចជារៀបថ្មស្ងួតតាមជើងទេរ ក៏ចាំបាច់ផងដែរ ។ ដូច្នេះទឹកន្លែង និង មាឌុនៃសំភារៈសំរាប់ការសាងសង់សំរាប់ភ្លឺគួរមានភាពប្រុងប្រយ័ត្នក្នុង ការពិនិត្យពិច្ច័យ ។

(3) សំធាង់បង្ហេរមេស់អាងទឹក

អាងទឹកជាច្រើនបាត់បង់មុខងារចាប់តាំងពីទំនប់បាក់ធ្លាយ ។ ហេតុផលចម្បងនៃការបាក់ធ្លាយមាន :
i) គ្មានសំណង់បង្ហៀរ ii) កង្វះខាតខ្វារទឹក (Slop log) iii) កង្វះខាតសំភារ:សំរាប់សាងសង់ភ្លឺ iv)
ជំរេលជើងទេររបស់ ភ្លឺ (ទំនប់)មិនគ្រប់ គ្រាន់ v) កង្វះខាតក្នុងការការពារភ្លឺ (ទំនប់) និង សំណង់ ។ល។

ដូច្នេះប្រភេទសំណង់សំរាប់បង្ហូរទឹកចេញដែលត្រូវការការថែទាំបន្តិចបន្តួច ហើយដែលប្រតិបត្តិការ គួរតែត្រូវបានកសាងឡើង ហើយនិងសំណង់បង្ហៀវដែលធ្វើប្រតិបត្តិការ គួរតែមានទ្វារទឹកដ៏ល្អដើម្បីបង្ហាញឱ្យ ដឹងនៅក្នុងអំឡុងពេលដែលមានទឹកជំនន់ ។

(4) សំណង់ឆ្លងកាន់ប្រឡាយ

ក្នុងករណីជាច្រើន សមត្ថភាពនៃសំណង់ឆ្លងកាត់លើប្រឡាយ ស្ពោន លូបង្ហូរទឹកឆ្លងកាត់ទទឹង ប្រឡាយ លូទឹកកាត់ភ្លឺ ទសំរាប់បង្ហូរទឹកជាដើម ។ល។) ដែលមិនគ្រប់គ្រាន់ ហើយទឹកជំនន់កន្លងមក ជារឿយៗបានបំផ្លាញប្រឡាយដោយខ្លួនវា ។ ដូចនេះសមត្ថភាពនៃសំណង់ឆ្លងកាត់ គួរតែបានត្រួតពិនិត្យឡើង វិញឱ្យបានសមរម្យ ។

(5) សចថ្ថភាពនៃប្រឡាយដែលចានស្រាប់

ប្រឡាយដែលមានស្រាប់បានប្រើប្រាស់មិនសំរាប់តែការស្រោចស្រពប៉ុណ្ណោះទេ ប៉ុន្តែគឺសំរាប់ដោះ ទឹកចេញផងដែរ ។ ដូច្នេះសំណើរសមត្ថភាពរបស់ប្រឡាយគួរតែសំរេចចិត្តពិតប្រាកដក្នុងការដាក់បញ្ចូលក្នុង គោលបំណងរួមគ្នាតែមួយ ។

13.2 គឺតែគោលស់នៃគារស្ការ និ១ បួសបុលឡើ១ទិញ

ក៏រិតគោលដៅនៃការស្ដារ និង ជួសជុលឡើងវិញ ការស្រោចស្រព និង ប្រព័ន្ធដោះទឹកគឺបានរៀបរាប់ សេចក្ដីសរុបតាមតារាង 13.1 ដូចខាងក្រោម :

13.2.1 ដែននាគោមេស្រាចស្រព

(1) វិធីសាស្ត្រការស្រោចស្រច

តាមរយៈការស្រោចស្រពស្រូវ រិធីសាស្ត្រការស្រោចស្រពដោយស្រះទឹក និង រិធីសាស្ត្រ សន្សំសំថៃទឹក ត្រូវបានពិចារណា ។ ក្នុងករណីនេះមានន័យថា ធនធានទឹកមិនបានគ្រប់គ្រាន់សំរាប់ វិធីសាស្ត្រការស្រោចស្រពដោយប្រើប្រាស់ទឹកនោះទេ វិធីសាស្ត្រការស្រោចស្រពដោយសន្សំសំថៃទឹកគួរបាន ផ្លាស់ប្តូរសំរាប់ស្រូវ ដូច្នេះធនធានទឹកត្រូវបានកំណត់ក្នុងការសន្សំសំថៃ ។ ការស្រោចស្រពផ្លាស់ប្តូរសារ ចុះសារឡើងសំរាប់ក្រុមប្រឡាយស្រោចស្រព ។ ប្រឡាយមេ និង ប្រឡាយស្រោចស្រព គួរប្រើប្រាស់បាន រយះពេល 24 ម៉ោង ហើយក៏រិតកំពស់ទឹកគួរបានថែរក្សាដោយសំណង់ត្រូតពិនិត្យ ។ គោលគំនិតនៃ វិធីសាស្ត្រការស្រោចស្រពបានអធិប្បាយក្នុងផ្នែកចម្បង 13.4.1 "ការអនុវត្តន៍ប្រព័ន្ធទីវ៉ាល " (Field application System) វិធីដំណើរការនៃការប៉ាន់ស្មានតំរូវការទឹកបានអធិប្បាយក្នុងផ្នែកចម្បង 13.4.2 "

(2) ភាពទុកទិន្តជាផ

ភាពទុកចិត្តបាន 80% ឬ 4 ក្នុងរយះពេល 5 ឆ្នាំ គឺបានរក្សារទុកជារបស់ខ្លួនតាម ភាពទុកចិត្តបាននៃប្រព័ន្ធស្រោចស្រព ។ ក្នុងភាពដែលអាចប្រព្រឹត្តទៅបាននេះ សំណើ នៃថ្ងៃដីស្រោចស្រព ដែលស្រោចស្រពបានតាមសំណើ បរិមាណទឹក 80% នៃភាពទុកចិត្តបាន ។

13.2.2 សំណល់សំពាប់ក្រោយស្រព

(1) អាងទិក

1) ការក្រោងទឹកជំនន់

ការក្រោងទឹកជំនន់នៃអាងទឹកគួរអោយបានសមស្របតាមលក្ខណៈវិនិច្ច័យដូចខាងក្រោម

តារាង ការក្រោងទឹកជំនន់

លក្ខណ:សម្បត្តិនៃអាងទឹក	ក៏រិតតោលដៅនៃការអភិវឌ្ឍន៍.
ការគ្រោងទឹកជំនន់សំរាប់សំណង់បង្អៀរលើទឹកស្ទឹងគ្រប់ឆ្នាំ េរាល់កាល គ្រប់កាល >	រយៈពេលទឹកជំនន់ដែលមានឡើងវិញក្នុង 100ឆ្នាំ ឬ ទឹកជំនន់ធំបំផុតក្នុង អតីតកាល (បានប៉ាន់ស្ពានដោយតាមដាន និង សំភារៈអ្នកមានលំនៅ ជាប់លាប់ក្នុងបរិវេណនោះ) ទោះយូរ យ៉ាងណាក៍ដោយ ។
ការត្រោងទឹកជំនន់សំរាប់អាងទឹកខ្នាតតូចដែលផ្ទៃរងទឹកភ្លេងតូចជាង 10 Km² ឬសមត្ថភាពនៃការរក្សាទឹកសរុប តិចជាង 50,000 m³	រយៈពេលទឹកជំនន់ដែលមានឡើងក្នុង 20 ឆ្នាំ

វិធីដំណើរការនៃការប៉ាន់ស្មានការត្រោងទឹកជំនន់ ត្រូវបានអធិប្បាយយ៉ាងលំអិតក្នុងផ្នែក 11.2 ៉ីទឹកជំនន់ ៉ី។

2) ទំនប់

ទំនប់នៃអាងទឹកគួរបានសាងសង់ឡើងដោយវត្ថុធាតុដើមគឺដី ។ កំពស់ខ្ពស់បំផុតទំនប់គួរតែ កំណត់ត្រឹម 5 ម. ជាគោល ដូចនេះជាភាពរឹងមាំដែលបានថែទាំទំនប់ ។ ប្រសិនមានកំពស់ខ្ពស់ជាង 5 ម ការវិភាគលើភាពរឹងមាំនៃទំនប់គួរបានប្រតិបត្តិ ។ សំភារៈក្នុងស្រុកនៅជិតទឹកខ្លែងដែលបានស្នើរអាច ប្រើប្រាស់បានប្រសិនបើសំភារៈទាំងនេះគ្មានលាយខ្សាច់ (ដីខ្សាច់) ឬ មានចរិតលក្ខណៈនៃការបែក ខ្ញែកគ្នារបស់ដី ។ ផ្នែកជើងទេរនៃអាងទឹកគួរបានការពារជាមួយសំភារៈមិនជ្រាបទឹក និង រៀបថ្ន ។

គំរូពំនុះកាត់នៃទំនប់បានបង្ហាញក្នុងរូបភាព 13.1 ក្នុងករណីនេះសំភារៈមិនជ្រាបទឹកមិន គួរបានប្រើប្រាស់ ជើងទេរទំនប់គួរបានប្តូរឱ្យស្រាល ដូច្នេះភាពវឹងមាំនៃទំនប់គឺមាំមួន ។ ដូចក្នុងរូបភាព 13.2 បញ្ជាក់ស្រាប់។

3) សំណង់បង្ហូរទឹកចូល

សំណង់បង្ហូរទឹកចូលប្រកបឡើងដោយទ្វារធ្វើការជាប្រចាំ ។ ទំហំទ្វារគួរធ្វើឱ្យរឹងមាំ ដូច្នេះធ្វើ ឱ្យស៊ាំនឹងភាពរីងមាំ ។ ក៏រិតមេនៃទ្វារគួរដាក់ក៏រិតដែលបានធ្វើការប៉ាន់ស្មានក៏រិតរក្សាទឹកច្បាស់លាស់ ក្រោយ 20ឆ្នាំ ការធ្វើការក៏រិតកំពស់ទឹកនៃអាងទឹកគឺបានអធិប្បាយក្នុងផ្នែក 13.5 ។

4) សំណង់បង្ហេវ្រ

បែបផែនហូរពីលើសំណង់បង្ហៀវទឹក មានភាពងាយស្រួលដល់ការបង្ហូវទឹកបានរហ័សនៃទឹក ជំនន់ដោយមិនភ្នាត់ក្នុងការកាត់បន្ថយទឹកចេញ ។ ក្នុងករណីនេះការគ្រោងក្នុងការកាត់បន្ថយទឹកជំនន់ ដែលធំខុសពីធម្មតាពេលដែលផ្ទៃរងទឹកភ្លៀងធំ ការធ្វើការងារនៃសំណង់បង្ហៀវទឹក និង សំណង់បង្ហៀវ ទឹកជាបន្ទាន់ត្រូវបានធ្វើឡើងដោយឡែកពីគ្នា ។ ចាប់តាំងពីតំលៃនៃសំណង់បង្ហៀវទឹកជាផ្នែកដ៏ធំដែល មាននៅក្នុងតំលៃសរុបនៃសំណង់ ប្រភេទសំណង់សាមញ្ញជាមួយសំភារៈក្នុងស្រុកត្រូវបានទទួលការ ត្រូតពិនិត្យ ។ សំណង់បង្ហូវទឹកចេញមួយដែលបានធ្វើការសាងសង់ជិតសំណង់ហូរទឹកពីលើសំណង់ បង្ហៀវទឹក ដូច្នេះក៏រិតកំពស់ទឹកក្នុងអាងបានធ្វើការត្រួតពិនិត្យ ទោះបីក៏រិតផ្ដល់ឱ្យស្នើ ឬ ទាបជាង និង រក្សារការកាត់បន្ថយបាននៃវំហូររបស់ស្ទឹង ។

5) ចន្លោះសេរី

ចន្លោះស៊េរីនៃអាងទឹកមួយជាមូលដ្ឋានមិនឱ្យលើសពី 0.90 ម. (ពីក៏រិតកំពស់ទឹកជំនន់ដល់ក៏រិត កំពស់ខ្នងទំនប់) ។ សំរាប់អាងទឹកខ្នាតតូចដែលផ្ទៃរងទឹកភ្លឿងតូចជាង 10 គម² ឬ សមត្ថភាពនៃការ រក្សាទឹក ទុកតិចជាង 50,000 មា. ចន្លោះស៊េរីដែលអាចទទួលយកបានគឺ 0.60 ម. ។

6) កករល្បាប់

កករល្បាប់ក្នុងអាង គួរបានប៉ាន់ស្មានសំរាប់ក៏វិតទឹកក្នុងអាងមិនអាចប្រើប្រាស់ពិតប្រាកដនៃ សមត្ថភាពរក្សារទឹកទុក ។ គំរូនៃអត្រាចំនួនកករល្បាប់ 0.1 មម. /គម²/ខេឆ្នាំ ដែលអាចប្រើ ប្រាស់បានសំរាប់ការប៉ាន់ស្មាននៃមាខកករល្បាប់ ។ ក៏វិតកករល្បាប់ក្រោយរយៈពេល 20 ឆ្នាំ ដែលអាច ទទូលយកបានគឺ ក៏វិតកំពស់ទីកទាប់ ដែលស្មើនឹងក៏វិតកំពស់ទីកហូវចេញ ។

(2) ប្រឡាយ

ប្រឡាយមិនប្រើប្រាស់ និង ប្លុកស្រោចស្រព

ប្រឡាយជាច្រើនរួមមានប្រឡាយមេ ប្រឡាយរង ប្រឡាយស្រោចស្រព និង ផ្លូវទឹក ។ ប្រឡាយមេ និង ប្រឡាយរងត្រូវមានសំណង់ទ្វារទឹកត្រូតពិនិត្យ ហើយសំណង់ទ្វារទឹក បង្វែរទឹកដែល អាចកាត់បន្ថយបានក្នុងការត្រួតពិនិត្យ ។

ការហូរចេញទៅកាន់ប្លុកប្រឡាយស្រោចស្រពត្រូវមានសំណង់ត្រួតពិនិត្យផងដែរ (ទ្វារទឹក ឬ ស្នាក់ទឹក) ហើយទ្វារហូរទឹកចូលពិនិត្យដោយចរន្ត ទឹកហូរ ។ ផ្ទៃនៃប្លុកប្រឡាយស្រោចស្រព ប្រមាណ 50 ហិចតា ដែលរួមទាំងទីតាំងភូមិផង ។ ប្រវែងបណ្ដោយប្រឡាយស្រោចស្រពមើនអោយ លើសពី । គ.ម ។ ការបង្វែរទឹកពីប្រឡាយស្រោចស្រពចស្រពទៅកាន់ផ្លូវទឹកមិនបានត្រួតពិនិត្យបើគ្មាន សំណង់ទ្វារទឹក ។ ប្រឡាយស្រោចស្រព និង ផ្លូវទឹកគួរមានសមត្ថភាពគ្រប់គ្រាន់នៃការប្រកាន់យក ការស្រោចស្រពសារចុះសារឡើងទៅក្នុងបញ្ជី ។

2) ស្រទាប់ខាងក្នុង

សេចក្តីចាំបាច់នៃស្រទាប់ខាងក្នុង គួរបានពិភាក្សាជាមូលដ្ឋានពីចរិកលក្ខណៈរបស់ដីនៃការកាត់ជា ចំណែកនូវសំភារៈរបស់ភ្លឺ (ភ្លឺប្រឡាយ) ។ សំរាប់ស្រទាប់ខាងក្នុងដីស្រទាប់ក្នុង ដែលការច្រើសរើស ជាបឋមជាមួយនឹងមេគុណភាពគគ្រាត "Manning" គឺ 0.025² ។ ក្នុងករណីនេះការគ្រោង ល្បឿនមិនអាចថែរក្សាបានស្រទាប់ខាងក្នុងជាមួយស៊ីម៉ង់ត់ដី បន្ទះបេតុង ហើយនឹងបេតុងដែលលាយឯ ទីកន្លែងនោះផ្ទាល់គួរបានត្រូតពិនិត្យ ។ សំរាប់ប្រឡាយដែលរត់ឆ្លងកាត់ផ្ទៃនៃដីខ្សាច់ត្រូវប្រើដីមិន ជ្រាបទឹកដាក់ជាទ្រនាប់ដោយត្រឹមត្រូវ ឬ សំភារៈប្រើសំរាប់ស្រទាប់ខាងក្នុងផ្សេង១ទៀត ។ ជាតួយ៉ាង ផ្នែកខ្លះនៃប្រឡាយបង្ហាញរូបភាព 13.3 ។ វាតប្បីសំតាល់បានថាការដាក់ ទ្រនាប់ដីនៃ ប្រឡាយជាសេចក្តីត្រូវការធ្វើការថែរក្សាខូបដោយយកចេញកំទេចឈើ និង កករល្បាប់ក្នុងផ្នែកនៃ ប្រឡាយដែលត្រូវបានធ្វើឡើងដោយសហគមន៍កសិករប្រើប្រាស់ទឹក (FWUC) ។ ការបង្ហាញពិចំនុច ផ្សេង១ទៀត ស្រទាប់ខាងក្នុងនៃប្រឡាយត្រូវអោយស្រាលដែលជាបន្ទុកដីធ្ងន់លើការថែរក្សាខូបរបស់ សហគមន៍កសិករប្រើប្រាស់ទឹក (FWUC) ។ វាមានន័យថាស្រទាប់ខាងក្នុង នឹងកើនឡើងនូវការ បង្ហាញតំលៃ ប្រាក់ជាដើមទុន ប៉ុន្តែតំលៃថែទាំថយចុះ ។

3) ការប្រើប្រាស់ជាប្រយោជន៍សមត្ថភាពមានស្រាប់

ជាអត្ថិភាពនៃការស្ដារ និង ជួសជុលឡើងវិញនូវប្រឡាយគួរបានផ្ដល់ទៅអោយ ៉សេចក្ដីត្រូវ ការបានមកដោយរំហូរទឹកក្នុងប្រឡាយ ។ ក្នុងបញ្ហានេះផ្នែកប្រឡាយមានស្រាប់អាចប្រើប្រាស់ ជាប្រយោជន៍បានដោយធ្វើឱ្យមាឌដីតិចបំផុត ។ ក្នុងករណីនេះចំនួនភាពគគ្រាតធំបំផុតគឺ 0.035 (ប្រសិនផ្នែកដែលមានស្រាប់ពេញដោយភាពប្រើប្រាស់ជាប្រយោជន៍) ឬ 0.030 (ប្រសិនផ្នែកដែល មានស្រាប់ប្រើប្រាស់បានផ្នែកខ្លះៗ) គួររក្សាទុកបាន ។ ការបង្ហាញដោយរូបភាពលំអិតក្នុងរូបភាព 13.4 ប្រសិនប្រឡាយដែលមានស្រាប់ប្រើប្រាស់បានពេញលេញ (ចំនុចចាប់ផ្តើមទៅកាន់ចំនុច បញ្ចប់)សមត្ថភាព និង ក៏រិតកំពស់ទឹកក្នុងប្រឡាយគួរតែត្រួតពិនិត្យបានដោយគ្មានវិភាគរំហូរជា ឯកសណ្ឋាន ។

4) ចន្លោះសេរី

បានដាក់បញ្ចូលក្នុងការគណនាចលនានៃផ្ទៃទឹកដោយទឹកឡើង ។ល។ ចន្លោះសើពិតប្រាកដគូរ យកទៅបាន ។ ជំរៅនៃចន្លោះសេរីបានអធិប្បាយក្នុងផ្នែកចម្បង 13.6.7 " ការគ្រោងជាបឋមនៃ ប្រព័ន្ធប្រឡាយ "។

5) ការប្រើប្រាស់រួមគ្នានៃប្រឡាយ

ប្រឡាយស្រោចស្រពដែលបានគ្រោងជាអាទិ ដើម្បីមានសមត្ថភាពសំរាប់ទឹកស្រោចស្រព ។ ទឹកបានដោះចេញពីជុំវិញកសិដ្ឋាន កំលាំងដោះទឹកបានទៅកាន់ប្រឡាយស្រោចស្រពឆ្លងកាត់តាម សំណង់បង្ហូរចេញទៅវាលស្រែ ។ ដូចជាការហូរចូលដោយប្រើប្រាស់ចន្លោះសេរីក្នុងការដោះទឹក ឬ សមត្ថភាពដែលមានស្រាប់នៃប្រឡាយ។

6) ការត្រូតពិនិត្យផ្លូវ

ប្រឡាយមេ និង ប្រឡាយរងជារបស់ផ្ទៃដីស្រោចស្រពលើសពី 1,100 ហិចតាត្រូវមានការត្រួត ពិនិត្យផ្លូវដែលទទឹងខ្នងសរុប 5 ម. ។ ការត្រួតពិនិត្យផ្លូវត្រូវបានប្រើប្រាស់សំរាប់យានជំនិះ ។ ប្រឡាយសំរាប់ផ្ទៃដីស្រោចស្រពតិចជាង 1,000 ហិចតា ត្រូវមានទំហំតូចជាង ហើយការងារថែទាំមិន ត្រូវការចាំបាច់សាងសង់ដោយម៉ាស៊ីន ។ ដូច្នេះទទឹងខ្នងសរុបការត្រួតពិនិត្យរបស់ផ្លូវសំរាប់ប្រឡាយ រងតិចជាង 1,000 ហិចតា គឺ 2,0 ម. ដែលមួយណាក៏អាចធ្វើដំណើរបានដោយម៉ូតូ ។ ក្នុងនេះប្រឡាយ ដែលរត់តាមបណ្ដោយផ្លូវដែលមានស្រាប់ ដែលបំពេញតំរូវចិត្តរបស់ទំហំទទឹងខ្នងអធិប្បាយខាងលើ ការត្រួតពិនិត្យផ្លូវមិនត្រូវបានស្នើរឡើង ។

7) សំណង់ឆ្លងកាត់ទទឹង

សំណង់លូកាត់ទទឹង និង សំណង់លូទឹកតាមផ្លូវ ត្រូវបានរៀបចំជាមួយលូបេតុង ។ មុខកាត់លូតូច បំផុតគឺ ០, 60 ម. ។

8) ឧបករណ៍វ៉ាស់វែង

ឧបករណ៍ស្ទង់មើលក៏វិតកំពស់ទឹក 2 ត្រូវបានភ្ជាប់ភាពងាយស្រួលផ្សេងៗ ពីប្រឡាយមេ ទៅកាន់ប្រឡាយរង ។ ឧបករណ៍ស្ទង់មើលត្រូវបានប្រគល់ឱ្យទាំងពីរផ្នែកខាងលើនៃប្រឡាយ (ប្រឡាយមេ) និង ផ្នែកខាងក្រោមនៃប្រឡាយ (ប្រឡាយរង) ។ ការស្រោចស្រពសារចុះសារឡើង ត្រូវបានផ្ដល់ឱ្យប្លុកប្រឡាយស្រោចស្រពស្រើជាប្រយោជន៍ បន្ទាប់មកការបែងចែកទឹកសំរាប់ប្លុក

ប្រឡាយស្រោចស្រពត្រូវបានត្រួតពិនិត្យដោយពេលវេលា ។ រាល់ការបើកទ្វារទឹកត្រូវបានត្រួតពិនិត្យ និង ប្រតិបត្តិតាមក៏វិតកំពស់ទឹកក្នុងប្រឡាយស្រោចស្រព ។

(3) ស្រះទិក

1) ស្រះទឹក

ជំរៅស្រះទឹកដែលបានជីកគូរតែ 3 ម. ដូច្នេះ ចំនួនទឹកក្រោមដីពិតប្រាកដដែលប្រើប្រាស់ជា ប្រយោជន៍បាន ។ ជំរេលជើងទេរនៃស្រះ 1:2.0 ហើយស្រទាប់ខាងក្នុងនៃជើងទេរមិនត្រូវបាន ពិចារណា ។ ជុំវិញស្រះទឹកគួរតែសង់ឡើងនូវភ្លឺតូច១ដើម្បីជៀសវាងសំណឹកតាមជើងទេរ ។

2) សំណង់ដែលជាប់ទាក់ទងផ្សេង១

កាំជណ្ដើរឈើ និង របងព័ទ្ធជុំវិញភ្លឺស្រះគួរតែមានរួមជាមួយផងដែរ ។

13.2.3 សំណទ់ដោះពីគ

(1) ៩យោធាយធ្វើឱ្យល្អឡើងវិញ

នៅក្នុងប្រទេសកម្ពុជាការដាំដុះស្រូវបានប្រើប្រាស់លក្ខខ័ណ្ឌទឹកជំនន់មានឈ្មោះថា ^{*} ការដាំដុះបណ្តាញ ទឹក ^{*} គឺនៅក្នុងតំបន់ជាច្រើន ។

ទោះបីយ៉ាងណាក៏ដោយ ការដោះទឹកគួរតែជាមូលដ្ឋានក្នុងការគ្រោងដែលមានសមត្ថភាពគ្រប់គ្រាន់ ឆ្កោះទៅកាន់ទីបញ្ចប់ហៅថាទន្លេ ឬ ស្ទឹង ។ ប្រសិនបើសមត្ថភាពដែលមានស្រាប់នៃទីបញ្ចប់ ទន្លេ ឬ ស្ទឹង មិនអាចគ្រប់គ្រាន់ សមត្ថភាពគួរតែបានពង្រីកឱ្យធំដោយការជីក ឬ ការសាងសង់ទំនប់ ។ ការពិចារណាដី លើសលប់បរិមាណនៃការងារសំរាប់ការងារសាងសង់ទំនប់ ការធ្វើឱ្យល្អឡើងវិញការដោះទឹកដែលបាន ពិចារណាសំរាប់តំបន់ដែលការដោះទឹកមានស្រាប់ ស្ទឹង ឬ ទន្លេ ជាមួយនឹងសមត្ថភាពទទួលបានគ្រប់គ្រាន់ ។

(2) សមត្ថភាពព្រោង

សំរាប់ផែនការស្ដារ និង ជួសជុលឡើងវិញប្រព័ន្ធស្រោចស្រពការដោះទឹកគឺត្រូវបានពិចារណាជាបឋម ដោះទឹកពីការស្រោចស្រពទៅតំបន់ខាងក្រៅ សំរាប់ការថែទាំនៃលក្ខខ័ណ្ឌដែលមានស្រាប់ ។ ប្លុកប្រឡាយ ស្រោចស្រពតូរតែមានទីវាលសំរាប់ដោះទឹកដែលមានសមត្ថភាពសរុបស្មើនឹង សមត្ថភាពរបស់ប្រឡាយស្រោច ស្រព ។ ការដោះទឹកពីប្រឡាយស្រោចស្រពតូរតែបានភ្ជាប់ទៅនឹងសំណង់ដោះទឹកធំមួយ ឬ ប្រឡាយស្រោច ស្រពសំរាប់តំបន់ក្រោមប្រឡាយដើម្បីយកទឹកដែលដោះចេញមកប្រើជាថ្មី ។

ក្នុងករណីនេះ សមត្ថភាពរបស់ប្រឡាយដែលមានស្រាប់ ហើយ ទន្លេមានសមត្ថភាពទទូលបាន គ្រប់គ្រាន់ ការធ្វើឱ្យល្អឡើងវិញនូវសំណង់ដោះទឹកត្រូវបានពិចារណាជាមួយតំរូវការចំនួនទឹកដែលត្រូវដោះ ចេញសំរាប់រយៈពេលភ្លៀង 3 ថ្ងៃ ក្នុង 10 ឆ្នាំមានឡើងវិញម្តងដែលកើតឡើងការជន់លិចក្នុងរយៈពេល 3 ថ្ងៃ ចំនួនតំរូវការទឹកត្រូវថយចុះដោយការគណនា ក្នុងការរក្សាទឹកទុក (សមត្ថភាពផ្ទុកទឹក) ក្នុងវាលស្រែ ។ ក្នុងផ្នែករង 13.6.7 បានអធិប្បាយលំអិត "គ្រោងការបឋមនៃប្រព័ន្ធប្រឡាយ " ។

13.2.4 ការឧត្តលខុសគ្រូទ

(1) ការសាងសង់

សេវាកម្មវិស្វកម្មសំរាប់ប្រព័ន្ធ និង ការសាងសង់នៃប្រព័ន្ធស្រោចស្រពដែលប្រកបឡើងដោយសំណង់ បង្វែរទឹក អាងទឹក ប្រឡាយមេ ប្រឡាយរង និង ប្រឡាយស្រោចស្រពដែលបានដំណើរការដោយសេវាកម្ម សាធារណៈ (MOWRAM) ។ ការសាងសង់ផ្លូវទឹកត្រូវបានដំណើរការដោយអ្នកទទួលផលដែលទទួលការ ណែនាំបច្ចេកទេសពី (MOWRAM) ។

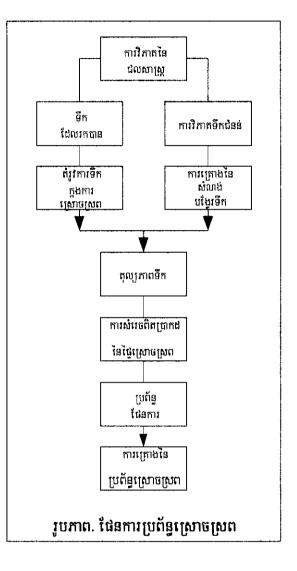
(2) ប្រតិបត្តិការ និង ការថែទាំ

យោងតាមនយោបាយរបស់រាជរដ្ឋាភិបាល សំណង់ស្រោចស្រព និង សំណង់ដោះទឹកគួរបានប្រគល់ឱ្យ សហគមន៍កសិករប្រើប្រាស់ទឹក ហើយសហគមន៍កសិករប្រើប្រាស់ទឹក (FWUC) គួរប្រតិបត្តិការ និង ការថែទាំ (O & M) ដោយភ្លាម១បន្ទាប់ពីការបញ្ចប់នៃការសាងសង់ ។

ទោះបីជាយ៉ាងណាក៍ដោយ សំរាប់ប្រព័ន្ធខ្នាតធំល្មម វាជាការលំបាកសំរាប់អ្នកទទួលផលទទួលធ្វើ ប្រតិបត្តិការ និង ការថែទាំ (O & M) ដោយភ្លាម១បន្ទាប់ពីការបញ្ចប់នៃការសាងសង់ ។

លើការបំពាក់បំប៉នការងារ នៃសហគមន៍កសិករប្រើប្រាស់ទឹក (FWUC) សំរាប់រយៈពេលពិតប្រាកដ (ឧទាហរណ៍ 4 ឆ្នាំ) បន្ទាប់ពីការសាងសង់ត្រូវបានប្រតិបត្តិដោយ (MOWRAM) ។

13.3 ការទឹតសិតនៃខែងការប្រព័ន្ធបុស្រាចស្រព


ប្រព័ន្ធស្រោចស្រព ជាទូទៅត្រូវបានរៀបចំដោយយោងតាមដំណើរការដូចខាងក្រោម :

(1) ការវិភាគតៃជលសាស្ត្រ

ការវិភាគនៃជលសាស្ត្រ គួរបានធ្វើលើទឹក ដែលរកបាន និង ទឹកជំនន់សំរាប់មូលដ្ឋានរៀប ចំប៉ារ៉ាម៉ែត្រដើម្បីគ្រោងនៃប្រព័ន្ធបង្វែរទឹក និង សំរាប់ផែនការនៃប្រព័ន្ធស្រោចស្រព ។ រាល់កន្លះ ខែ ឬ មួយខែនៃរំហូរ 80% ភាពដែលអាចទុក ចិត្តបានដែលបានស្ទើរនៃទីតាំងសំណង់បង្ហូរចូល គួរ តែបានធ្វើការប៉ាន់ស្មានតាម បរិមាណទឹកដែលអាច រកបាន ហើយការគ្រោងទឹក ជំនន់នៃរយះទឹកជំនន់ មានឡើងវិញចំពោះខ្លួនគួរបានប៉ាន់ស្មាន សំរាប់ការ គ្រោងសំណង់បង្ហៀវ និង សំណង់ទ្វារទឹកនៃអាង ទីក និង សំណង់ដាះទឹក ។

(2) ការ៉ោត់ស្មាតនៃទំរូវការទិកក្នុងការស្រោចស្រ១

តំរូវការទឹក ការស្រោចស្រពគឺបានប៉ាន់ ស្មានពីការប្រើប្រាស់ទឹកសំរាប់តំរូវការ ដែលស្នើរ ឡើងដោយដំណាំ ដោយធ្វើការប៉ាន់ស្មានលើមូល ដ្ឋានសក្កានុពលភាពនៃរំហូត ។ លំអិតនៃដំណើរ ការប៉ាន់ស្មានតំរូវការទឹក ក្នុងការស្រោចស្រពបាន អធិប្បាយក្នុងផ្នែក 13.4. ។

(3) ផុល្យភាពទីក

តុល្យភាពទឹកគឺបានប្រព្រឹត្តទៅលើមូលដ្ឋានទឹកដែលរកបាន និង តំរូវការស្រោចស្រពផ្ទៃដីស្រោច ស្រពគឺបានប៉ាន់ស្មានដោយបែងចែកបរិមាណទឹក ដែលរកបានដោយឯកតាតំរូវការទឹកក្នុងការស្រោចស្រពបាន អធិប្បាយក្នុងផ្នែក 13.4. ។

(4) ការសំរេចចិត្តពិតប្រាកឋនៃថ្ងៃបីស្រោចស្រព

យោងតាមការប៉ាន់ស្ពាន ផ្ទៃដីស្រោចស្រពក្នុងការសិក្សាតុល្យភាពទឹក ផ្ទៃដីស្រោចស្រពត្រូវបាន ពណ៌នាលើផែនទី ។ វាគួរបានសំគាល់ថាផ្ទៃដីស្រោចស្រព ីផ្ទៃដីសុទ្ធសាធ លៅថាផ្ទៃដីដាំដុះ ។ ខណៈដែល ីផ្ទៃដីសរុប ដែលរួមជាមួយដីប្រឡាយ ដីភ្លឺស្រែ ដីផ្លូវ ។ល។

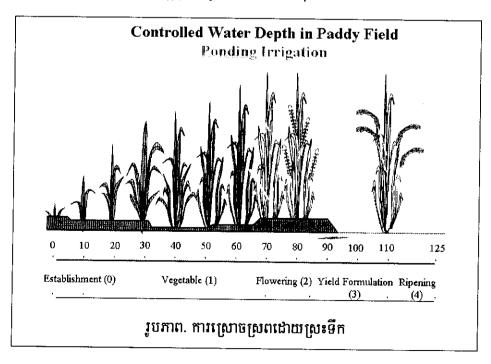
(5) ប្រព័ត្នថែតការ

យោងតាមផ្ទៃដីស្រោចស្រព បានពណ៌នាលើផែនទី បានសំរេចចិត្តពិតប្រាកដប្លុកស្រោចស្រពសំរាប់ ប្រព័ន្ធប្រឡាយនីមួយ១ ។

13.4 ដំរួចការណ៍ឥស្គ្រោចស្រព

13.4.1 ការអនុទត្តន៍ប្រព័ន្ធនីទាល

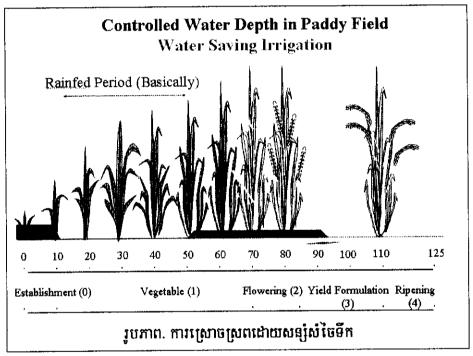
វិធីសាស្ត្រស្រោចស្រពទីវាលក៏វិតធំ រួមជាមួយប្រសិទ្ធិភាពស្រោចស្រព។ នៅក្នុងផ្នែកបន្ទាប់នេះ វិធីសាស្ត្រការស្រោចស្រពទីវាលសំរាប់ស្រូវ និង ដំណាំរួមផ្សំ បានពិភាក្សាជាអាទិភាពក្នុងការប៉ាន់ស្មាននៃ តំរូវការទឹកស្រោចស្រព ។


(1) វិធីសាស្ត្រស្រោចស្រពសំរាប់ការមាំស្ត្រវ

1) ការស្រោចស្រពដោយស្រះទឹក

ការស្រោចស្រពដោយស្រះទឹក គឺជាបែបផែនវិធីសាស្ត្រស្រោចស្រពមួយសំរាប់ការដាំស្រូវ ។ រាងស្រែគឺព័ទ្ធជុំវិញដោយភ្លឺដែលមានកំពស់ប្រហែល 20 សម. ។ ទឹកស្រោចស្រពគឺបានរក្សាទុកក្នុង វ៉ាលស្រែដែលបានស្ទូងស្រូវ ។ គុណសម្បត្តិ និង គុណវិបត្តិនៃវិធីសាស្ត្រស្រោចស្រពដោយស្រះ ទឹកបានបង្ហាញតាម:

គុណសម្បត្តិ :

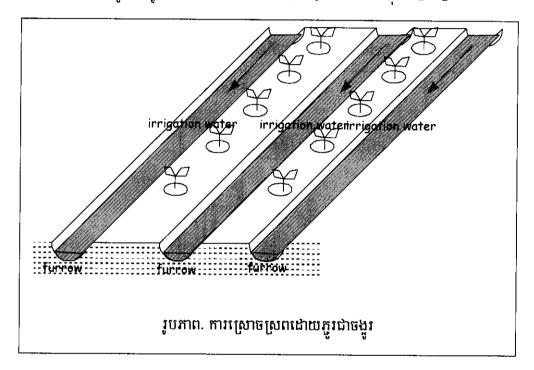

- ត្រួតពិនិត្យស្មៅងាយស្រួល
- ងាយស្រួលគ្រប់គ្រងទឹក (មិនចាំបាច់ធ្វើការកែសំរួលឱ្យបានញឹកញាប់)
- ការប្រើជីបានផលយូរ
- ការកករងយឺតៗនៃសារធាតុរុក្ខជាតិតូចៗដែលមានជាតិពុល ។ល។

2) ការស្រោចស្រពដោយសន្សំសំថៃទីក

ថ្វីត្បិតគុណសម្បត្តិការស្រោចស្រពដោយស្រះទឹកបានអធិប្បាយខាងលើ ស្រូវមិនត្រូវការ ជីវសាស្ត្រស្រះទឹកដោយខ្លួនវា វិធីសាស្ត្រស្រោចស្រពដោយសន្សំសំថៃទឹកគី ដំណើរការទឹកចាំបាច់ ដែលបានមក អំឡុងពេលយ៉ាងសំខាន់នៃរយៈពេលកំពុងធំចាត់ដល់រយៈពេលមានផ្លែផ្កាកើតឡើង ហើយផ្តល់ទឹកតិចបំផុតដើម្បីរក្សាឱ្យសើមក្នុងអំឡុងរយៈពេលធំចាត់ផ្សេង១ឡើត ។ ដោយវិធីសាស្ត្រ ផ្លាស់ប្តូរវាលស្រែត្រូវបានថែទាំ ឬ ត្រូវបានធ្វើឱ្យល្អឡើងវិញ ។ ទោះបីយ៉ាងណា ការរាយការណ៍អំពី ការគ្រប់គ្រងទឹក ជាតំរូវការចាំបាច់សំរាប់វិធីសាស្ត្រនេះ ។

ជាឧទាហរណ៍ កំពស់ទឹកត្រូវការបានថយចុះ 25 % ដោយការអនុវត្តនិវិធីសាស្ត្រស្រោច ស្រពដោយសន្សំសំថៃទឹកសំរាប់ផែនការស្រោចស្រពអាងទឹកខាងលើស្ទឹងស្លាតូ (USP) ។

ការប្រតិបត្តិដោយវិធីសាស្ត្រស្រោចស្រពដោយសន្សំសំចៃទឹក គឺបានរេវ្យបរាប់ក្នុងផ្នែកបន្ទាប់ 16.2 ការប្រតិបត្តិនៃសំណង់ផ្សេង១ ។


ការស្រោចស្រពពីស្រែមួយទៅស្រែមួយ (ការស្រោចស្រពស្វីត)

ប្រព័ន្ធស្រោចស្រពដែលមានស្រាប់ជាច្រើន មានការខ្វះខាតបណ្តាញប្រឡាយស្រោចស្រាច វាល ហើយទឹកបានចែកពីស្រែមួយទៅស្រែមួយទៀត ។ ក្នុងករណីនេះ ទឹកស្រោចស្រពទៅកាន់ស្រែ ខាងចុងគឺមិនបានធានា ពីព្រោះទឹកមិនបានទៅដល់ លើកលែងតែស្រែក្នុងតំបន់ខាងលើបានទទួលការ ស្រោចស្រពគ្រប់គ្រាន់ ។ ការអនុវត្តន៍ការស្រោចស្រពទឹកពីស្រែមួយទៅស្រែមួយគឺ មូលហេតុដីធំមួយ នៃពេលវេលាដាំដុំ៖ និង មានភាពលំបាកក្នុងការគ្រប់គ្រងទឹក ។ ប្រឡាយស្រោចស្រព និង ផ្លូវទឹកគួរបានសាងសង់ឡើងក្នុងភាពសមរម្យ ដែលរយៈចំងាយខិតជិតពីស្រែមួយទៅស្រែមួយទៀត ដើម្បីបែងចែកឱ្យបានទាំងអស់ ។

(2) វិធីសាស្ត្រស្រោចស្រ០សំរាប់ការមាំមំណាំរួមថ្នំ

1) ការស្រោចស្រពដោយភ្ជួរជាចង្អរ

ការស្រោចស្រពសំរាប់ដំណាំរួមផ្សំ គឺជាទូទៅប្រព្រឹត្តទៅបានតាមការស្រោចស្រពដោយកាយ ឬ ភ្ជួរជាចង្ហូរ ។ ដំណាំបន្ទាប់បន្សំ និង បន្លែ បានដាំក្នុងវាលស្រែដែលពេញដោយដំណាំមានទំរង់ជាជួរ នៅទីវ៉ាល ដូច្នេះការធ្វើដីឱ្យសើមក្នុងភាពសមរម្យតំបន់ផ្លូវទឹកដែលបានបង្ហូរ ។ ការស្រោចស្រពដោយ ភ្ជួរជាចង្អូរ គឺបានប្រព្រឹត្តទៅដោយបែងចែកទឹកឆ្ពោះទៅស្នាមភ្លោះចន្លោះជាជួរ១ ។ ប្រសិទ្ធិភាពការ ស្រោចស្រពដោយភ្ជួរជាចង្អួរមិនបានខ្ពស់ទេពីព្រោះទឹកជ្រាបចូលផងដែរទៅក្នុងដីផ្នែកក្រៅរងដំណាំ ។

2) ការស្រោចស្រពដោយកំលាំង (Mannual Irrigation)

ការស្រោចស្រពដោយកំលាំងគឺបានប្រព្រឹត្តទៅដោយកំលាំងមនុស្សជាមួយប៉ោតទឹក ។ ទឹក ពេលខ្លះបានរក្សានៅទីរក្សាទឹក ហើយបានស្រោចស្រពពីដំណាំមួយគុម្ពទៅដំណាំមួយគុម្ព ។ វិធីសាស្ត្រ ការស្រោចស្រពដោយកំលាំងមិនអាចអនុវត្តន៍សំរាប់ផ្ទៃដីស្រោចស្រពធំបានទេ ប៉ុន្តែប្រសិទ្ធិភាពការ ស្រោចស្រពគឺមានក៏រិតខ្ពស់ ។

13.4.2 គំរុខការជីក ស្រោចស្រពសុល្ឋ

ក្នុងផ្នែកនេះ ពន្យល់ពីវិធីសាស្ត្រសំរាប់ការប៉ាន់ស្មានតំរូវការទឹកស្រោចស្រពក្នុងការចុះសម្រុងគ្នាជា មួយការស្រោចស្រព និង ការដោះទឹកចេញឯកសារលេខ 24 ។ សំរាប់ការស្រោចស្រពដោយសន្សំសំថៃទឹក ការស្រោចស្រព និង ដោះទឹកចេញរបស់អង្គការ FAO ឯកសារលេខ 33 អាចបញ្ជាក់បាន ។

(1) ស្ត្រវ

រូបភាព 13.5 បង្ហាញពីដំណើរការគណនានៃតំរូវការទឹកស្រោចស្រពសំរាប់វាលស្រែ ។

1) ទិន្នន័យ និង តំរូវការពត៌មាន

តំរូវការទិន្នន័យ និង ពត៌មាន មានទិន្នន័យទឹកភ្លៀង ទិន្នន័យអាកាសធាតុ គំរូដាំដុះនឹងហូរ ជ្រាបបាត់បង់ក្នុងវាលស្រែ ។ ទិន្នន័យភ្លៀងប្រចាំថ្ងៃ គួរតែបានប្រមូល ។ ទិន្នន័យអាកាសធាតុគួរតែប្រកប ឡើងដោយសីតុណ្ហភាព សំណើម ពន្លឺព្រះអាទិត្យ និង ល្បឿនខ្យល់ ។

តំរូវការទឹកស្រោចស្រពក្នុងថ្នាលសំណាលសុទ្ធ

 $NIWR_n = LP + CU + P - ER$

ដែល, NIWR, : តំរូវការទឹកស្រោចស្រពសំណាប (មម)

LP: តំរូវការទឹកសំរាប់ការរៀបចំដី (មម).

តំរូវការទឹកសំរាប់រៀបចំដី ជាធម្មតាធ្វើជាផ្លូវពី 100 មម. ទៅ 200 មម. អាស្រ័យលើតុណសម្បត្តិដី និង ដីមានជាតិទឹក ។ ក្នុងរដូវភ្លៀងដំបូង ដីដែលមានជាតិទឹកគឺ ក៏រិតទាប ដូច្នេះហើយតំរូវការទឹកសំរាប់ការរៀបចំដីគឺច្រើន ។ នៅពេលរដូវភ្លៀងធ្លាក់ ជោគជាំខ្លាំង គឺខែកញ្ហា ដីទំនេរភាគច្រើនពេញដោយទឹក ដូច្នេះហើយតំរូវការទឹកសំរាប់រៀបចំ ដីគឺទាបណាស់ ។ ផ្ទៃដីដែលធ្លាប់លិចទឹក ដូចជាផ្ទៃដីនៅផ្នែកខាងក្រោមអាងទឹកត្នោតទេរ មិនត្រូវការទឹកសំរាប់រៀបចំដីទេ ពីព្រោះទឹកដែលសល់នៅអាចប្រើប្រាស់បានក្នុងដីទំនាប ។

តំរូវការទឹកសំរាប់ការរៀបចំដី

រដូវភ្លៀងដំបូង: 150 មម ~ 200 មម

ពាក់កណ្ដាលរដូវភ្លេង: 120 មម ~ 150 មម

រដូវភ្លេង្ហែជោគជាំ : 50 មម \sim 100 មម

តំបន់ដែលធ្លាប់លិចទឹក : មិនត្រូវការ

CU: ទឹកប្រើប្រាស់សំរាប់ស្រោចស្រព (មម), CU = kc ETo

ដែល kc: មេគុណរបស់ដំណាំ

មេតុណរបស់ដំណាំ kc ជាធម្មតាគឺ 1.0 ក្នុងថ្នាលសំណាប

ETo: សក្តានុពលនៃរំហូត (មម) បានប៉ាន់ស្មានដោយវិធីសាស្ត្រកែខែរបស់ PENMAN ដែលបានពន្យល់ក្នុងផ្នែក (3) ។

P: ការបាត់បង់ដោយជំរាប (មម) ។

ER: បរិមាណទឹកភ្លៀងក្នុងករណីនេះ ការគណនាតំរូវការទឹកនៃសំណាប បរិមាណទឹកភ្លៀងជា ញឹកញាប់មិនបានយកមកប្រើប្រាស់ ពីព្រោះតំរូវការទឹករបស់សំណាបតិច ។

3) តំរូវការទឹកស្រោចស្រពសុទ្ធ ក្នុងទីវាលធំ

$$NIWR_m = LP + (CU + P + S - ER)$$

ដែល NIWR _m : តំរូវការទឹកស្រោចស្រពសុទ្ធក្នុងទីវាលធំ (មម)

LP: តំរូវការទឹកសំរាប់ការរៀបចំដី (មម) ការរៀបចំដីសំរាប់ទីវាលធំ គឺ សំខាន់ប្រហាក់ប្រហែលទៅនឹងថ្នាលសំណាបដែរ ។

CU: ទឹកប្រើប្រាស់សំរាប់ស្រោច (មម), CU = kc ETo

ដែល kc: មេគុណដំណាំសំរាប់ដំណាក់កាលស្រូវធំធាត់ក្នុងរដូវភ្លេវ្រងបានសន្មត់តាមការចុះសម្រុង ជាមួយនឹងការស្រោចស្រព និង ដោះទឹកចេញរបស់អង្គការ FAO ឯកសារលេខ 24 ។

	<u> </u>	ma Ke f	បរាបស្រួវក	ណ្ដោលវាល	កន្លះខែ	
ទ ី 1	ย ี 2	ទី 3	ទី 4	ទី 5	ទី 6	§ 7
1.10	1.10	1.10	1.05	1.05	1.05	0.95

តារាង Ke សំរាប់ស្រូវស្រាលរាល់កន្លះខែ

9 1	ទី 2	ទី 3	ទី 4	ទី 5
1.10	1.10	1.05	1.05	0.95

ETo: សក្តានុពលវំហូត (មម) បានប៉ាន់ស្ពានដោយវិធីសាស្ត្រកែខែរបស់ PENMAN សូមមើលផ្នែក (3)

P: ជំរាប (មម)

ដីទំនាបជាច្រើនក្នុងខេត្តតាកែវស្ថិតនៅក្នុងក្រុមដី ំព្រៃខ្មែរ ំប្ញ ំបន្ទះឡាង ំ។ អាស្រ័យតាមការសាកល្បងដំណើរការដីទំនាបតាមបណ្ដោយស្ទឹងស្លាគូ ការបាត់បង់ ដោយជំរាបក្នុងក្រុមដីនេះ គឺបានប៉ាន់ស្ទានប្រហាក់ប្រហែល 3 មម/! ថ្ងៃ ។

ក្នុងការប៉ាន់ស្ពាននៃតំរូវការទឹកស្រោចស្រព ការបាត់បង់ដោយជំរាបគូរបានគិត អំឡុងពេលតែមួយ រយៈពេលចាប់ផ្ដើម 30 ថ្ងៃនៃរយៈពេលចេញពន្លករហូតដល់បញ្ចប់ ពេលចេញផ្លែផ្កា ។ ការស្រោចស្រពដោយសន្សំសំចៃទឹកអាចធ្វើការសន្សំសំចៃទឹកពី 20 % ទៅ 25 % នៃតំរូវការទឹកស្រោចស្រពសុទ្ធសរុបធ្វើឡើងក្នុងតំបន់ដីទំនាបដែល ការបាត់បង់ដោយជំរាបគឺ 2 មម ទៅ 3 មម / 1 ថ្ងៃ ។ ការស្រោចស្រពបន្ថែមសំរាប់ ការដុះពន្លក ល្មមសមគួរលិចទៅក្នុងទឹកគឺបានត្រូវការពេលផ្នែកខាងក្រៅនៃវាលស្រែ សូត ។ ចំនួនដែលបានស្រោចស្រពនេះគឺ 30 មម ។

ER: បរិមាណទឹកភ្លេង្រ(មម)

បរិមាណទឹកភ្លៀងគឺបានគណនាលើលក្ខខ័ណ្ឌដូចខាងក្រោម : ពេលបរិមាណភ្លៀងប្រចាំថ្ងៃទាបជាង 5 មម. បរិមាណទឹកភ្លៀង = 0.0. ពេលបរិមាណទឹកភ្លៀងប្រចាំថ្ងៃពីរយៈ 5 មម. ទៅ 80 មម. បរិមាណទឹកភ្លៀងគឺ 80 % នៃបរិមាណទឹកភ្លៀងប្រចាំថ្ងៃ ។ ពេលបរិមាណទឹកភ្លៀងប្រចាំថ្ងៃ ច្រើនជាង 80% បរិមាណទឹកភ្លៀងគឺ 64 មម. ប្រសិនបរិមាណទឹកភ្លៀងប្រចាំថ្ងៃម៉េនអាចរកបាន បរិមាណទឹកភ្លៀងប្រចាំខែនឹងបង្រុម មក 75 % នៃបរិមាណទឹកភ្លៀងប្រចាំខែមិនអាចរកបាន បរិមាណទឹកភ្លៀងប្រចាំខែនឹងបង្រុម

5) តំរូវការទឹកស្រោចស្រពសុទ្ធសរុប

$$NIWR_{paddy} = NIWR_n \times Af + NIWR_m$$

ដែល

 $NIWR_{paddy}$: តំរូវការទឹកស្រោចស្រពសុទ្ធរបស់ស្រូវ

Af: ផ្ទៃដីសំរាប់ផលិត ។ ផ្ទៃដីសំណាបប្រហែល 5% នៃផ្ទៃដីស្រែធំ

ដូច្នេះ Af = 0.05

(2) បំណាំរួមថា (បំណាំចំការ)

រូបភាព 13.6 បង្ហាញពីដំណើរការ ការគណនាតំរូវការទឹកស្រោចស្រពសំរាប់ដំណាំចំការ ។

$$NIWR_{crop} = LP + CU - ER$$

ដែល NIWR_{crop}: តំរូវការទឹកស្រោចស្រពសុទ្ធសំរាប់ដំណាំចំការ (មម)

LP: តំរូវការទឹកសំរាប់ការរៀបចំដី (មម)

ក្នុងករណីដែលស្រទាប់ដីហាប់ស្ងួត ហើយវីងលំបាកក្នុងការផ្ដល់ទឹកសំរាប់ការរៀបចំដី។ ពេលដំណាំចំការបានដាំក្នុងចុងរដូវភ្លៀង ខែ វិច្ឆិកា និង ធ្នូ ឬ ក្នុងអំឡុងរដូវភ្លៀង វ៉ាសង្ឃឹមថា បរិមាណដីស្រទាប់លើចំនួនទឹកល្មមសមគួរនិងធំធាត់អាចងាយស្រួលដល់ ការអនុវត្តន៍ក្នុងរដូវភ្លៀង ទោះបីគ្មានទឹក ក៏មិនមែនជាសេចក្ដីត្រូវការក្នុងការរៀបចំដី នោះទេ ។

CU: ទឹកប្រើប្រាស់សំរាប់ស្រោចស្រព (មម), CU = kc ETo

ដែល kc: មេគុណនៃដំណាំ

រយៈពេលធំធាត់ និង មេគុណដំណាំខុសគ្នារវាងប្រភេទផ្សេង១ នៃការដាំដំណាំចំការ ពិតប្រាកដ ។ ក្នុងនេះ ផែនការស្រោចស្រពក្នុងគ្រោងការណ៍ចំបង និង ដំណាក់កាលការ សិក្សា រយៈពេលការធំធាត់មធ្យម និង មេគុណដំណាំមធ្យមជាធម្មតាត្រូវបានទទួលយក មេគុណដំណាំតាមតារាងគឺតួយ៉ាងដូចជាមេគុណដំណាំមធ្យមនៃដំណាំចំការ ។

តារាង Kc សំរាប់រាល់កនះខែ

ទី 1	ទី 2	§ 3	9 4	ទី 5	ទី 6
0.50	0.55	0.70	0.80	090	0.60

ETo: សក្តានុពលនៃរំហូត (មម.) បានប៉ាន់ស្មានដោយវិធីសាស្ត្រកែខែរបស់ PENMAN សូម មើលផ្នែក (3)

ER: បរិមាណទឹកភ្លេង្រ (មម)

បរិមាណទឹកភ្លេងសំរាប់ដំណាំចំការអាចប៉ាន់ស្មានបានដោយវិធីសាស្ត្រផ្សេងៗគ្នា ។ ទី 1 គឺការរំហូត / បរិមាណទឹកភ្លេងនៃវិធីសាស្ត្រ តារាង 34 ក្នុងឯកសារលេខ 24 ការស្រោចស្រព និង ដោះទឹកចេញរបស់អង្គការ FAO ដូចបានបង្ហាញស្រាប់ ។

តារាងមធ្យមភាគបរិមាណទឹកភ្លៀងប្រចាំខែដែលបានរៀបរាប់ទៅនឹងមធ្យមភាគប្រចាំខែនៃ ET ដំណាំហើយមានន័យថាបរិមាណទឹកភ្លៀងប្រចាំខែ (USDA (SCS), 1969)

										۳,	•						
Monthly mean ra	<i>'</i>	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100	112.5	125.0	137.5	150.0	162.5	175.0	187.5	200.0
	25	8	16	24					- Average monthly effective					. 6.11			
	50	8	17	25	32	39	46		- Ave	erage i	nontn	ly effe	ctive r	aintail	. 1		
ģ	75	9	18	27	34	41	48	56	62	69							
evapo n (ri	100	9	19	28	35	43	52	59	66	73	80	87	94	100			
9 6	125	10	20	30	37	46	54	62	70	76	85	92	98	107	116	120	
monthly e	150	10	21	31	39	49	57	66	74	81	89	97	104	112	119	127	133
돌혈	175	11	23	32	42	52	61	69	78	86	95	103	111	118	126	134	141
	200	11	24	33	44	54	64	73	82	91	100	109	117	125	134	142	150
Mean	225	12	25	35	47	57	68	78	87	96	106	115	124	132	141	150	159
	250	13	25	38	50	61	72	84	92	102	112	121	132	140	150	158	167

 20
 25
 37.5
 50
 62.5
 75
 100
 125
 150
 175
 200
 <-Effective storage in soil (mm)</th>

 0.73
 0.77
 0.86
 0.93
 0.97
 1.00
 1.02
 1.04
 1.06
 1.07
 1.08
 <-Storage factor</td>

CALCULATION OF EFFECTIVE RAINFALL FOR UPLAND CROP

Mean monthly rainfall (mm) 100.0 mm <- Data Input! (12.5 - 200.0)

Mean potential evapotranspiration (mm 150.0 mm <- Data Input 1 (25.0 - 250.0)

Effective storage of soil layer (mm) 175.0 mm <- Data Input 1 (20.0 - 200.0)

Effective storage of soil layer (mm)

Effective rainfall for 75 mm (mm)

175.0 mm

- Data Input! (20.0 mm)

74.0 mm

Storage factor 1.07

Effective rainfall (mm) 79.2 mm <- This is the result!

ពេលបរិមាណទឹកភ្លៀងមានការរអាក់រអូលក្នុងការប៉ាន់ស្មាន ឬ ប្រភេទដំណាំដែលបានដាំមិនបាន រ្សេបចំឡេងទាត់ បរិមាណទឹកភ្លៀងប្រចាំខែអាចបង្ហែមបានមកត្រឹម 75% ភ្លៀងប្រចាំខែ ។

(3) **សក្ខាតុរាលនៃរំហ្គូ**ត (ETo)

សមីការនៃវិធីសាស្ត្រកែខែរបស់ PENMAN គឺ

ETo = c [W Rn +
$$(1-W)$$
 f(u) (ea-ed)]
រយៈពេលអារ៉ូឌីណាមិច

ដែល w: សីតុល្អភាពដែលជាប់ទាក់ទងភាគរយនៃបន្ទក

Rn: ការសាយភាយសុទ្ធដែលស្មើនឹងរំហូតគិតជា មម/ថ្ងៃ

f(u): ការធ្វើអំពើនៃខ្យល់ដែលជាប់ទាក់ទង

(ea-ed): ភាពខុសគ្នារវាងការភាយចំហាយទឹក មានន័យថាសីតុណ្ហភាពនៃខ្យល់ហើយ មានន័យ ថារំហូតពិតប្រាកដរបស់ខ្យល់ ឬ ការបញ្ឈប់ទាំង 2 ។

c: ការធ្វើឱ្យស្មើគ្នាសំរាប់បន្ទុកជាក់លាក់រវាងពេលថ្ងៃ និង ពេលយប់ នៃលក្ខខ័ណ្ឌអាកាសធាតុ ។ តួយ៉ាងការគណនាសំរាប់ប៉ាន់ស្មាន ETo ដោយវិធីសាស្រ្តកែខែរបស់ PENMAN ដូចបានបង្ហាញតាម តារាងខាងក្រោម ។ តារាងលំអិតនឹងបានប្រឹក្សាយោបល់ទៅលើការស្រោចស្រព និង ដោះទឹកចេញរបស់ អង្គការ FAO ឯកសារលេខ 24 ។

តារាង : ការគណនានៃរំហូតដោយវិធីសាស្ត្រកែខែរបស់ PENMAN

Pochentong Station (11°North, 10 m in Altitude) Feb. Mar. May Jun. Sept Apr. Jul. Aug. Oct. Nov. Dec. Remarks 25 9 Input 26.3 27.6 29.3 30.1 28.9 28.2 28.2 27.9 27.2 26.5 Tmean (C) RHmean (%) 72.9 70.5 70.6 71.4 76.4 78.8 82.3 75.2 Input 82.9 85.5 79.6 86.0 ea (mbar) 34.2 38.4 38.3 36.2 34.7 33.4 from Table 5 D ed (mbar) 24 9 26.0 28.7 30.4 32.2 31.4 31.6 31.8 32.1 31.1 27.6 25.1 D=CxB/100 (ea-ed) (mbar) 9.3 109 12.0 12.2 99 8.5 6.8 6.6 7.1 8.3 E=D-C Wind, Vw (m/s) 3.8 4.6 3.9 5.0 4,3 2.7 3.6 3.7 Input, 12 m above Wind, Vw (m/s) 2.7 3.5 2.5 at 2m above GL U (km/day) 184.6 235.4 249.1 227.6 246.2 279.4 234.8 301.5 258.7 164.7 2169 220.9 1.08 0.71 0.86 0.23 0.23 (1-W) of wind & numidity 0.25 0.24 0.22 0.23 0.23 0.23 0.24 0.24 0.25 0.26 Table 8 8.7 7.3 5.8 8.6 8.6 8.3 6.1 59 5.6 5.8 7.4 8.4 Sunshine, n (hr) Input W of radiation 0.75 0.78 0.78 0.77 0.75 0.74 Table 9 Ra (mm/day) 13.00 14.00 15.20 15 60 15.40 15.50 15.30 14.60 13.50 12.70 Table 10 N (hr) 11.50 11.80 12.00 12.30 12.60 12.70 12.60 12.40 11.80 11.60 12.10 11.50 Table 11 0.73 N=J/M n/N 0.76 0.73 0.71 0.68 0.48 0.48 0.64 Rs (mm/day) 8.2 8.6 92 9.2 7.5 7.4 7.6 7.4 7.2 77 7.8 O=(0.25+0.5xN)xL $P=(1-\alpha)xO$, $\alpha=0.25$ 6.9 6.9 5.5 5.7 5.4 5.8 Rns (mm/day) 6.1 6.5 6.3 15.9 Table 13 f(Tmean) 16.2 16.5 16.7 16.4 16.3 16.3 161 R=0.34-0.044xD^{0.5} f(ed) 0.12 0.12 0.10 0.10 0.09 0.09 0.09 0.09 0.09 011 0.12 f(n/N)0.78 0.76 0.74 0.71 0.62 0.53 0.51 0.53 0.52 0.54 0.67 0.76 S=0.1+0.9xN 1.4 T=QxRxS 0.8 Rnl (mm/day) 1.5 1.3 0.8 4.4 U=P-T Rn (mm/day) 4.6 5.0 5.6 5.8 5.4 4.8 4.9 4.8 4.6 4.6 0 99 1.00 1.01 1.00 0.98 0.97 0.95 0.95 0.98 0.98 0.98 Table 16 ETo (mm/day) 5.0 W=Vx(KxU+IxHxE)

តារាងលើទំពរ័ទាំងអស់បានទទួលពីការអធិប្បាយឯកសារខាងលើ

តារាង : ប៉ារ៉ាម៉ែត្រ បានប្រើប្រាស់ក្នុងឯកសារស្រោចស្រព និង ដោះទឹក FAO លេខ 24

Te	ا ما ،	_	c	(page	~		
1.2	lDI	e	Э.	I Dage	7	ı	١

Table 5 (page 21)										
Tmean	ea	Tinean	ea							
20	23.4	21	24.9							
21	24.9	22	26.4							
22	26.4	23	28.1							
23	28.1	24	29,8							
24	29.8	25	31.7							
25	31.7	26	33.6							
26	33.6	27	35.7							
27	35,7	28	37.8							
28	37.8	29	40.1							
29	40.1	30	42.4							
30	42.4	31	44.9							
31	44.9	32	47.6							
32	47.6	33	50.3							
33	50.3	34	53.2							
34	53.2	35	56.2							
35	56.2	36	59.4							

Table 8	(page	24)

Table 8 (page 24)								
Tmean	(1-W)							
20	0.32							
21	0.315							
22	0.29							
23	0.28							
24	0.27							
25	0.26							
26	0.25							
27	0.24							
28	0.23							
29	0.23							
30	0.22							
31	0.21							
32	0.20							
33	0.20							
34	0.19							
35	0.18							
at altitude	2 0 m							

Table 9	(page	24
Tmean	W	
20	0.69	
21	0.70	
22	0.71	1
23	0.72	
24	0.73	
25	0.74	
26	0.75	
27	0.76	
28	0.77	
29	0.78	
30	0.78	!
31	0.79	
32	0.80	
33	0.81	
34	0.82	
35	0.83	

at altitude 0 m

	, <u>,, ,, , , , , , , , , , , , , , , , </u>		
Tmean	f(Tmean)	Tmean	f(Tmean)
20.0	14.6	28.0	16.3
20.5	14,7	28.5	16.4
21.0	14.8	29.0	16.5
21.5	14.9	29.5	16.6
22.0	15.0	30.0	16.7
22.5	15,1	30.4	16.8
23.0	15.2	30.8	16.9
23.5	15.3	31.2	17.0
24.0	15.4	31.6	17.1
24.4	15.5	32.0	17.2
24,8	15.6	32.4	17.3
25.2	15.7	32.8	17,4
25,6	15.8	33.2	17.5
26.0	15.9	33.6	17.6
26.5	16.0	34.0	17.7
27,0	16.1	34.5	17.8
27.5	16.2	35.0	17.9

Table 10 (page 25)

Northern Hemisphere

		rremap										
North Lat	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct,	Nov.	Dec.
12	12.8	13.9	15.1	15.7	15.7	15.5	15.5	15.6	15.2	14.4	13.3	12.5
10	13.2	14.2	15.3	15.7	15.5	15.3	15.3	15.5	15.3	14.7	13.6	12.9

Table 11 (page 26)

ı	North Lat	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
	15	11.6	11.8	12.0	12.3	12.6	12.7	12.6	12.4		11.8	11.6	11.5
	10	11.8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8

Table 16 (page 28)

		Rhma	x=60%		Rhmax=90%						
Rs (mm/day)	3	6	9	12	3	6	9	12			
Uday (m/sec)	Uday / Unight = 2.0										
0	0.96	0.98	1.05	1.05	1.02	1.06	1,10	1.10			
3	0.83	0.91	0.99	1.05	0,89	0.98	1.10	1,14			
. 6	0.70	0.80	0.94	1.02	0.79	0.92	1.05	1.12			
9	0.59	0.70	0.84	0.95	0,71	0.81	0,96	1.06			
[Uday / Unight = 1.0										
0	0.96	0.98	1.05	1.05	1.02	1.06	1.10	1.10			
3	0.78	0.86	0.94	0.99	0.85	0.92	1.01	1.05			
6	0.62	0.70	0.84	0.93	0.72	0.82	0.95	1.00			
. 9	0.50	0.60	0.75	0.87	0.62	0.72	0.87	0.96			

សំគាល់ : ទំព័រក្នុងវង់ក្រចកបានបង្ហាញការស្រោចស្រព និង ដោះទឹកចេញ FAO ឯកសារ 24

13.4.3 គំនេកាលើកស្រោចស្រពមិនសមម្បេ

តំរូវការទឹកស្រោចស្រព បានគណនាដោយសមីការខាងក្រោម :

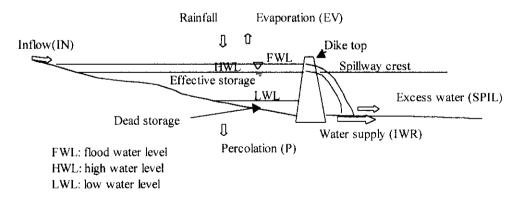
 $IWR = (NIWR_{paddy} \times A_{paddy} / Ef_{paddy} + NIWR_{uplandcrop} \times A_{uplandcrop} / Ef_{uplandcrop})/100,000$

ដែល IWR: តំរូវការទឹកស្រោចស្រពសុទ្ធ (លានម៉ែត្រគូប) (MCM)

NIWR: តំរូវការទឹកស្រោចស្រពសុទ្ធ (មម)

A : ផ្ទៃដីដាំដុះ (ហិចតា)

Ef: ប្រសិទ្ធិភាពស្រោចស្រព


ប្រសិទ្ធិភាពការស្រោចស្រពស្រូវ (Et) បានយកគឺ 0.5 ទៅ 0.6 និង (Et) សំរាប់ដំណាំគឺ 0.5 ទៅ 0.55 ។ ប្រសិនបើផ្ទៃដីស្រោចស្រពតិចជាង 100 ហិចតា ហើយប្រតិបត្តិការអាចអនុវត្តន៍ទៅបានពេលថ្ងៃ ប្រសិទ្ធិភាព អាចស្រោចស្រពបានក៏រិតខ្ពស់អាចយកបានក្នុងចំនួនប៉ាន់ស្មាននៃតំរូវការទឹកស្រោចស្រព ។

13.4.4 គំរួការគណាល់ខត់រួចការណ៍កក្រោចស្រា

តារាង 13.2 បង្ហាញឧទាហរណ៍នៃការគណនាត់រូវការទឹកស្រោចស្រព ។

13.5 គុល្យគាពនីក ~ ប្រតិបត្តិការអាចនឹក

ការគណនាតុល្យភាពទឹករវាងធនធានទឹកដែលមានស្រាប់ និង តំរូវការទឹកស្រោចស្រពគឺត្រូវបាន ធ្វើឡើងដើម្បីធ្វើការប៉ាន់ស្ពានតំបន់ដែលអាចត្រូវបានស្រោចស្រពដោយធនធានទឹក ។ កត្តាចំបងនៃការ គណនាលើតុល្យភាពទឹកគឺ ការហូរចេញពីទឹកទន្លេ តំរូវការទឹកស្រោចស្រព ចំណុះនៃការស្ដុកទឹក ការបាត់បង់រំហូតរបស់អាងទឹក ។ល។ ដូចដែលត្រូវបានបង្ហាញខាងក្រោម :

តុល្យភាពទឹកគីបង្ហាញតាមរយៈសមិការដូចខាងក្រោម

$$IN + R = IWR + EV + P + SPILL + \angle S$$

ដែល IN: រំហូរចូលនៃទឹក

R: រំហូរចូលទឹកភ្លេវុងដោយផ្ទាល់ទៅក្នុងអាងទឹក

IWR: ការផ្គត់ផ្គង់ទឹក

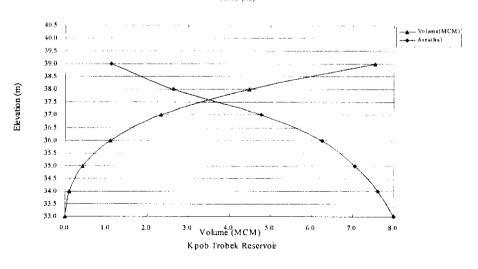
EV: រំហូតដែលបាត់បង់ចេញពីអាងទឹក

P: ការហូរជ្រាបដែលបាត់បង់ចេញពីអាងទឹក

SPILL: ទឹកដែលហូរធ្លាក់ចុះលើស

▲s: មាឌុផ្ចុកដែលផ្លាស់ប្តូរ

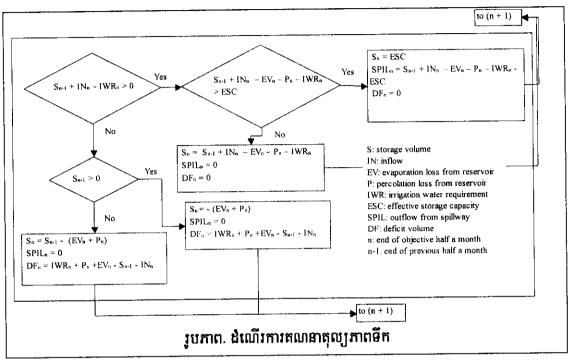
13.5.1 គារលើកឱ្យខ្ពស់ខែរព១ស្តុកនឹក


ប្រការសំខាន់សំរាប់តុល្យភាពទឹក ការរ្យេបចំព្រោងដំបូងនៃអាងទឹក និង ទំនប់ទឹកត្រូវតែបានធ្វើឡើង។ នៅក្នុងការគ្រោង ផ្នែកខាងក្រោមនឹងត្រូវបានសំរេចចិត្ត ។

(i) ការលើកកំពស់របស់ទំនប់ទឹក (ii) ក៏រិតទឹកជំនន់ និង ទឹកឡើងខ្ពស់ (iii) ក៏រិតទឹកទាប និង (iv) ការលើកកំពស់តំបន់ស្តុកទឹក និង ខ្សែកោងមាឌុនៃការលើកកំពស់តំបន់ស្តុក ។

ការគ្រោងលើការលើកកំពស់ទំនប់ទឹកឱ្យខ្ពស់ គឺជាទូទៅត្រូវបានកំណត់ដែលជាហេតុនាំឱ្យការលើក កំពស់ទំនប់ទឹកឱ្យខ្ពស់នាពេលបច្ចុប្បន្នមិនគួរត្រូវបានផ្លាស់ប្តូរធំធេងពេកទេ ។ ប្រសិនបើចំណុះនៃការផ្ទុកទឹក អាចត្រូវបានកើនឡើងគួរឱ្យពិចារណា ដោយលើកកំពស់ទំនប់ទឹកតែបន្តិចដោយពុំមានបញ្ហាធ្ងនធ្ងរនៅក្នុង សង្គម និង បញ្ហាវិស្វកម្ម ទំនប់ទឹកដែលខ្ពស់ជាងនេះគួរតែអាចត្រូវបានពិចារណាផងដែរ ដែលជាផ្នែកមួយ ផ្សេងទៀតនៃការធ្វើឱ្យប្រសើរឡើងវិញ ។

ចំណុះ នៃការផ្ទុកទឹកខាងក្រោមគឺត្រូវបានកំណត់សំរាប់កករល្បាប់ និង មាឌដែលត្រូវការគឺគ្រាន់តែ គណនាជាលទ្ធផលរបស់អត្រាកករល្បាប់ជាក់លាក់មួយ និង ផ្ទៃរងទឹកភ្លៀង ។ មាឌរបស់វានឹង ត្រូវបានប៉ាន់ស្មានដោយពីងផ្នែកទៅលើបទពិសោធន៍នៃកករល្បាប់ដែលមាននៅក្នុងអាងទឹករាក់ និង មាឌរបស់កករល្បាប់ដែលត្រូវបានយល់ព្រមដោយគំរោងជាច្រើនដែលស្ថិតនៅក្បែរប្រព័ន្ធ ។ យោងទៅតាម គំរោងពីអតីតកាលនៅតំបន់ដីទាប ០.1 មម/គម² /ឆ្នាំ គឺត្រូវបានស្នើរ ។


គំរូរ នៃខ្សែកោងតំណាងមាឌ និង ផ្ទៃផ្ទុកទឹកគឺបានបង្ហាញដូចរូបខាងក្រោម :

រូបភាព. ខ្សែកោង ផ្ទៃ និង មាឌ

13.5.2 លក្ខខ័ណ្ឌខែការគណនា

ការគណនាតុល្យភាពទឹកសំរាប់ប្រព័ន្ធស្តុកទឹកមួយរវាងធនធានទឹកដែលមានស្រាប់ ហើយ តំរូវការទឹក សំរាប់ស្រោចស្រពគឺត្រូវបានបង្ហាញនៅក្នុងរូបភាពខាងក្រោម :

លក្ខខ័ណ្ឌ និង ការប៉ាន់ស្មានសំរាប់ការគណនាតុល្យភាពទឹកត្រូវបានសង្ខេបដូចខាងក្រោម :

- (1) រយៈពេលនៃការគណនាគួរតែមានរយៈពេលវែងតាមដែលអាចធ្វើបាន ។ តំបន់ដែលអាចស្រោចស្រព ទឹកបានចំនួន 80%ដែលអាចយកជាការបាន ឬ ការទទួលទឹកមានការធ្លាក់ចុះ គួរតែត្រូវបានប៉ាន់ស្មាន ចំនួនមួយដងក្នុងរយៈពេល 5 ឆ្នាំ ។ ដូច្នេះរយៈពេលនៃការគណនាគួរតែត្រូវបានធ្វើឡើងយ៉ាងហោច ណាស់ក្នុងរយៈពេល 15 ឆ្នាំ ។
- (2) ដំណើរការនៃការគណនា នឹងត្រូវធ្វើឡើងកន្លះខែម្តងដោយពឹងផ្នែកជាមូលដ្ឋានលើទិន្នន័យដែលមាន ។
- (3) ការប៉ាន់ស្មានលើការធ្លាក់ចុះរបស់ទឹកភ្លៀងជារឿងរាល់ខែ នឹងត្រូវបានបែងចែកទៅក្នុងការធ្លាក់ចុះរបស់ ទឹកភ្លៀងរយៈពេលកន្លះខែម្តង ។
- (4) ការវាយតំលៃទៅលើលទ្ធផលនៃការគណនា : ចំនួនដងនៃការស្រោចស្រពទឹកដែលបានធ្លាក់ចុះត្រូវបាន រាប់បញ្ចូល ។ ជាគោលការណ៍ N/5 ដងនៃការធ្លាក់ចុះរបស់ទឹកក្នុង N ឆ្នាំ សំរាប់ដំណាំនីមួយៗត្រូវបាន ចាត់ទុកថា ការស្រោចស្រពទឹកអាចធានានឹងគ្របដណ្ដប់តំបន់ស្រោចស្រពចំនួន 80 % ដែលអាចយកជា ការបាន ។

(5) រំហូនទឹកធាន់បង់ខេញ្ញទីអាងស្តុកទឹក :

អត្រានៃការរំហូតគឺតែងតែត្រូវបានប៉ាន់ស្វានថាមានដល់ 90% នៃ ETo ។ នៅក្នុងអាងស្តុកទឹក ដ៏រាក់នេះ ការបាត់បង់រំហូតគឺជាមូលដ្ឋានឥន្លឹះនៅក្នុងតុល្យភាពទឹក ។ ការបាត់បង់រំហូត គឺសមាមាត្រ ទៅនឹងផ្ទៃទីកដែលផ្លាស់ប្តូរនៅពេលដែលក៏វិតទឹក ឬ មាខុផ្ទុកផ្លាស់ប្តូរ ។ ការត្រលប់ក្រោយ របស់សមីការសំរាប់ការគណនាផ្ទៃទីក ពីមាខុផ្ទុកគួរតែរួមបញ្ចូលទៅក្នុងការគណនាតុល្យភាពទឹក ។

ប្រសិនបើតំបន់ផ្ទុក និង ខ្សែកោងមាឌមិនអាចត្រូវបានគូសដោយផ្នែកលើផែនទីលំអិតទេ ការបាត់បង់រំហូតទឹកនឹងត្រូវបានប៉ាន់ស្មានដោយធ្វើការបែងចែកជា 3 ដំណាក់កាលដូចខាងក្រោម :

- មាឌុស្តុក >= ចំណុះផ្ទុកពេញ ពេលនោះ សមីការ = XX MCM/កន្លះខែ
- ចំនុះផ្ទុកពេញ > មាឌុស្តុក > 0 ពេលនោះ សមីការ = xxx MCM/ កន្លះខែ
- មាឌុស្តុក <= 0 ពេលនោះ សមីការ = 0

(6) ការចាត់បង់សោយប្រាបទិកពីអាងស្តូកទឹក

អត្រានៃការជ្រាបទឹកហាក់បីដូចជាតូច បើប្រៀបធៀបជាមួយនឹងរំហូតទឹក ។ ចំនួនតូច ខ្លះ ឧទាហរណ៍ 0.5 មម/រ ថ្ងៃ គួរតែត្រូវបានពិចារណាសំរាប់អាងស្ដុកទឹករាក់ដែលមាននៅក្នុងវ៉ាលស្រែ ។ ការបាត់បង់ដោយការជ្រាបគឺត្រូវបានព៉ាន់ស្ថានផងដែរថាសមាមាត្រទៅនឹងក្រឡាផ្ទៃទឹក ។ ដូច្នេះការបាត់ បង់គួរតែត្រូវបានគណនាដោយសមីការត្រលប់ក្រោយសំរាប់គណនាតំបន់ក្រឡាផ្ទៃទឹកពីមាឌុស្ដក ។

(7) ការចារចូលទិកភ្លៀងដោយថ្នាល់ទៅក្នុងថ្ងៃទិករបស់អាងស្គុកទិក

ទឹកភ្លៀងដែលហូរចូលដោយផ្ទាល់ទៅក្នុងផ្ទៃទឹករបស់អាងស្ដុកទឹក គឺពុំត្រូវបានពិចារណានៅក្នុង ការសិក្សាតុល្យភាពទឹកជាទូទៅទេ ពីព្រោះផ្នែកខ្លះរបស់ទឹកភ្លៀងត្រូវបានរួមបញ្ចូលទៅក្នុងការហូរ ចេញ ។ ក្នុងករណីដែលតំបន់ជុំវិញអាងស្ដុកទឹកគ្របដណ្ដប់ផ្ទៃរងទឹកភ្លៀងដោយអត្រាខ្ពស់ជាង 10% វាអាចត្រូវបានរួមបញ្ចូលទៅក្នុងការគណនាលំនឹងរបស់ទឹក ។

(8) ក្នុងករណីដែលទំនប់ទីកតូចផ្សេង១គ្នា ដែលពុំមានចំនុះផ្ទុកទីក ចំនួនទឹកជំនន់ភាគច្រើនហូរកាត់ទំនប់ កាត់ទន្លេ ហើយ មិនអាចត្រូវបានបង្វែរបានទេ ។ ដូច្នេះនៅក្នុងការគណនាតុល្យភាពទីក ធនធានទឹក ដែលមានស្រាប់គួរតែត្រូវបានប៉ាន់ស្មានដោយអត្រាមិនស្មើគ្នាជាក់លាក់ ដូចដែលបានពន្យល់នៅក្នុងផ្នែក 11.1 "ភាពដែលអាចមានទីក" ។

13.5.3 គំរុការគណនា

គំរូនៃការគណនាតុល្យភាពទឹកគឺបានបង្ហាញក្នុងតារាង 13.3

13.6 នែងអារម្រព័ន្ធត្រេវាចស្រព

នៅក្នុងផ្នែកនេះ ផែនការដំណើរការសំរាប់ស្តារ និង ជួសជុលឡើងវិញសំខាន់ប្រព័ន្ធស្រោចស្រពខ្នាត មធ្យម និង ធំដូចបានរៀបរាប់ ។ ផែនការដំណើរការបានទទួលយកសំរាប់គំរោងជួសជុលឡើងវិញប្រព័ន្ធ ស្រោចស្រព ផ្នែកខាងលើស្ទឹងស្លាគូ (USP) គឺជារឿយ១សំអាងលើឧទាហរណ៍ ។

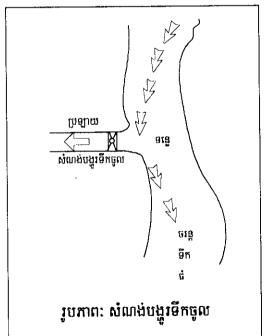
13.6.1 ការមម្ភើតធ្វើទនៃប្រព័ន្ធស្រោចស្រព

ប្រព័ន្ធខ្នាតមធ្យម និង ខ្នាតធំដូចជា USP ប្រកបឡើងតាមការរៀបរាប់ការបង្កើតឡើងនៃប្រព័ន្ធ :

- ប្រព័ន្ធបង្វែរទឹក (សំណង់ទ្វារទឹក សំណង់បង្ហូរចូលសេរី អាងទឹក ប្រឡាយបង្វែទឹក) ។
- ប្រព័ន្ធផ្ទេរ និង បែងចែកទឹក (ប្រឡាយមេរង និង ប្រឡាយស្រោចស្រព) និង
- ការអនុវត្តន៍ប្រព័ន្ធទីវ៉ាល (ផ្លូវទឹក) ។

សំរាប់ USP អាងទឹកទំនប់លោក គឺបានប្រើប្រាស់ចំបងតាមសំណង់បង្វែរទឹកដែលអាងទឹកខ្ពបត្របែក ជាច្បាប់នៃ សំណង់រក្សាទឹកទុក ។

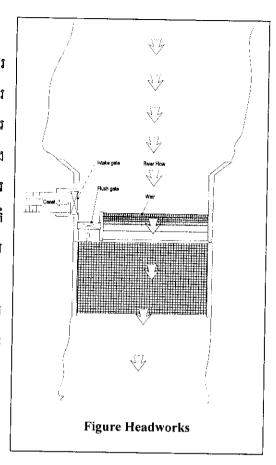
13.6.2 ប្រព័ន្ឋបច្ចែរនីក


(1) ប្រភេទនៃប្រព័ន្ធបង្វែរទិក

ក្នុងតំរោងការស្ដារ និង ស្ថាបនាឡើងវិញ ប្រព័ន្ធបង្វែរទឹកដើមគួរតែបានធ្វើការពិនិត្យឡើងវិញ ។ សំណង់បង្វែទឹកគួរតែបានសំរេចចិត្តពិតប្រាកដ ប្រព្រឹត្តទៅតាមចារឹកលក្ខណៈនៃប្រភពទឹក ។ ប្រសិនបើរំហូរ ឋិតថេរ ហើយគ្រប់គ្រាន់សំរាប់សំណើ ផ្ទៃដីស្រោចស្រព ហើយផ្លូវទឹកធំ១មិនបានផ្លាស់ប្ដូរទៅក្នុង ផ្លូវទឹកទន្លេពេញ ន្ដាំ សំណង់បង្ហូរទឹកចូលសើរប្រហែលជាការបង្វែរទឹកដ៏ប្រសើរតាមសំណង់បង្ហូរទឹកចូល ។

ប្រសិនបើរំហូរថិតថេរ ហើយគ្រប់គ្រាន់សំរាប់ផ្ទៃដីស្រោចស្រព ប៉ុន្តែ ចលនានៃផ្លូវទឹកនាំទឹកទៅក្នុង ទន្លេ សំណង់បង្ហៀវមួយគួរតែបានសាងសង់កាត់ទទឹងទន្លេ ។ សំណង់ទ្វារទឹកដែលមានសំណង់បង្អែរទឹកប្រកប ឡើងដោយបង្ហៀវ និង សំណង់បង្ហូរទឹកចូលប្រសិនបើមាឌរំហូរមានរយៈពេលយូរ គ្រប់គ្រាន់ ប៉ុន្តែរយៈ ពេលផ្លាស់ប្តូរជានិច្ចនៃព្រំដែនរំហូរ ផ្ទៃដីស្រោចស្រព អាងទឹក ឬ ទំនប់ត្រូវបានស្នើរឡើង ។

(2) សំនាង់បង្ហរចូលស៊េរី


សំណង់បង្ហូរចូលសេរីប្រកបឡើងដោយ សំណង់ ទ្វារបង្ហូរចូល និង ប្រឡាយ ។ សំណង់បង្ហូរចូលស៊េរី មានគុណសម្បត្តិល្អដោយសារតំលៃសាងសង់ទាប ប៉ុន្តែ ត្រូវការចរន្តទំទឹកថិតថេរទាំងពីរគឺទីតាំង និង បរិមាណ ក្នុងរយៈពេលតែមួយ។ សំណង់បង្ហូរចូលសេរីត្រូវការ រាយការណ៍ពីប្រតិបត្តិការទ្វារទឹក ដើម្បីជៀសវាងកករ ល្បាប់ក្នុងអំឡុងរយៈពេលទឹកជំនន់ទន្លេ និង កករល្បាប់ ទីតាំងសមរម្យសំរាប់សំណង់បង្ហូរ ជុំវិញខ្មារទឹក ត្រូវបានពិចារណាព្រំដែនពិតក្នុងប្រទេស ចូលសេរី ពីព្រោះក៏វិតកំពស់រំហូរទឹកទន្លេផ្លាស់ប្តូរជានិច្ច កម្ពុជា ក៏វិតកំពស់ទឹកមិនអាចថែទាំបានដោយគ្នាន ហើយ សំណង់ត្រួតពិនិត្យកាត់ទន្លេ ។

(3) សំលាង់ឡាវទីក

សំណង់ទ្វារទឹកប្រកបឡើងដោយ ទំនប់បង្ហៀវ កាត់ទទឹងទន្លេវ សំណង់ទ្វារបង្ហូវទឹកចូល និង ទ្វារបង្ហូវ ដើម្បីដោះកករល្បាប់ជុំវិញទ្វារបង្ហូវទឹកចូល ។ កករ ល្បាប់រងចុះ ហើយអាងទឹកគ្មានកករសំរាម ការសាង សង់នៅចំនុចចាប់ផ្ដើមនៃប្រឡាយ ជៀសវាងការ ជ្រៀតជ្រៃកចូលនៃកករល្បាប់ក្នុងប្រឡាយ ។ របាំងគឺ ជាប្រភេទមួយនៃសំណង់ទ្វារទឹក ដែលមានស៊េរីទ្វារ កាត់ទន្លេជំនួសទំនប់ បង្ហៀវថេរ ។

សំណង់ទ្វារទឹក មិនមានសមត្ថភាពរក្សាទឹក
ហើយ តុល្យភាពទឹកគួរតែប្រព្រឹត្តទៅលើមូលដ្ឋាន
ដែលអាចរកបានរំហូរនៃទន្លេ ។ ទោះបីជាយ៉ាងណា
ទឹកឡើងជាក់ស្តែងផ្នែកខាងលើ គួរតែបានវិភាគដោយ
យោងតាមគ្មានសណ្ឋានវិភាគវំហូរ ដូច្នេះផ្ទៃជំនន់ផ្នែក
ខាងលើត្រូវបានប៉ាន់ស្មាន ។

(4) អាងទិក

ក្នុងករណីទូទៅ "អាងទឹក "បានកំណត់ដោយទំនប់ដែលកំពស់របស់វាទាបជាង 15 ម. ។ ក្នុងប្រទេស កម្ពុជា អាងទឹកជាច្រើនមានភ្លឺទំនប់ពីសំភារៈក្នុងស្រុកដូចគ្នា ហើយកំពស់ទាបជាង 10 ម. ។ ជំរៅទឹកជាក់ ស្តែងដែលអាចរកបានសំរាប់ការស្រោចស្រពទាបជាង 1.0 ម. ក្នុងអាងទឹកជាច្រើន ។ មុខងារដែល ជឿជាក់បាននៃអាង ទឹកគឺបំពេញការស្រោចស្រព និង បទបញ្ជាទឹកហូរក្នុងរដូវភ្លឿង ។

(5) ប្រឡាយបង្វែរទិក

ប្រឡាយបង្វែរទឹកនាំទឹកទៅកាន់ផ្ទៃដីស្រោចស្រព ។ ក្នុងករណីទូទៅ គ្មានសំណង់បង្ហូរទឹក ចេញបានសាងសង់លើប្រឡាយបង្វែរទឹក ។ ប្រឡាយបង្វែរទឹកដែលភ្ជាប់ប្រភពទឹកទៅនឹងអាងទឹកផ្នែកខាង លើគួរតែមានសមត្ថភាពគ្រប់គ្រាន់ដើម្បីនាំទឹកទៅកាន់អាងយ៉ាងឆាប់រហ័ស ។ សមត្ថភាពនៃប្រឡាយបង្វែរ ទឹកគួរតែបាន សំរេចចិត្តពិតប្រាកដលើមូលដ្ឋាននៃការចំលងតាមការប្រតិបត្តិរបស់អាងទឹក ដូចបានអធិប្បាយ ក្នុងផ្នែក 13.5 ។

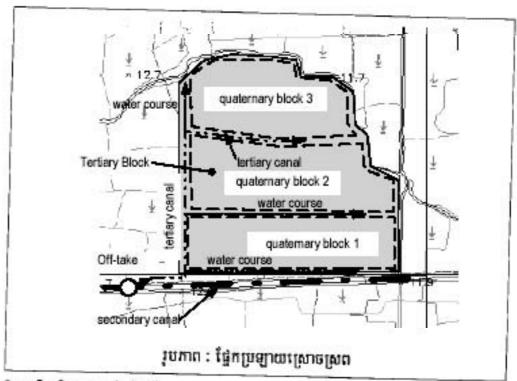
13.6.3 ការស្ពោះនៅ និខ ប្រព័ន្ធបែខចែកនឹក

ប្រព័ន្ធប្រឡាយស្រោចស្រពមួយជាទូទៅប្រកបឡើងដោយ i) ប្រឡាយមេ ii) ប្រឡាយរង iii) ប្រឡាយស្រោចស្រព ។ សំរាប់ប្រព័ន្ធប្រឡាយនីមួយៗទ្វារទឹកបង្ហូរចូល ទ្វារត្រួតពិនិត្យទឹក សំណង់ទំលាក់ទឹក សំណង់កាត់ទទឹងប្រឡាយ ។ល។ បានធ្វើឱ្យងាយស្រួលក្នុងការរៀបចំបែងចែកទឹកបានមក ។

(1) ប្រឡាយថេ និង ប្រឡាយរង

ប្រឡាយគូរតែបានគ្រោងតាមរយៈការពេញចិត្តនៃល្បឿនទឹក ។ យោងតាមស្រទាប់ខាងក្នុងនៃ ប្រឡាយ និង សំណង់ទំលាក់ទឹក ដែលបានគ្រោង សំណង់លើប្រឡាយដែលបានរៀបរាប់ដូចខាងក្រោម :

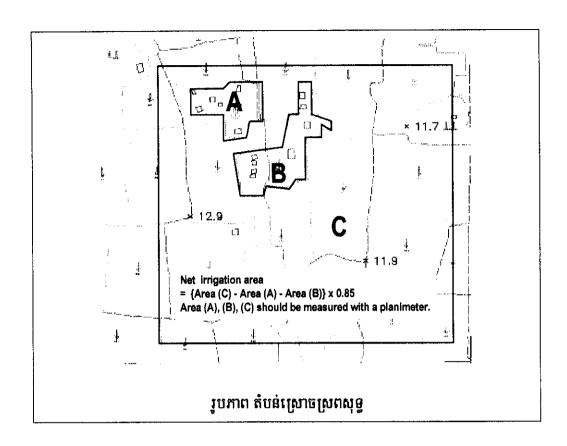
- សំណង់បង្វែរទឹក
- សំណង់បង្ហូវចេញទៅកាន់ប្រឡាយស្រោចស្រព
- សំណង់ទំលាក់ទឹក
- សំណង់ត្រូតពិនិត្យទឹក (ទ្វារ)
- សំណង់កាត់ទទឹងប្រឡាយ (លូ ជលមាគាំ លូតូច១ ឬ លូជ្រុង)
- សំណង់លូបង្ហូរកាត់ទទឹង
- ស្ពាន (ស្ពានលើផ្លូវប្រឡាយ លើភ្លឺប្រឡាយ)
- សំណង់បង្ហៀរ
- សំណង់បង្ហូរចូលពីសំណង់លូបង្ហូរកាត់ទទឹង និង
- ផ្លូវសំរាប់ត្រូតពិនិត្យ


ប្រឡាយមេជាទូទៅ ត្រូវបានគ្រោងក្នុងការបែងចែកទឹកស្រោចស្រពសំរាប់ 24 ម៉ោង ។

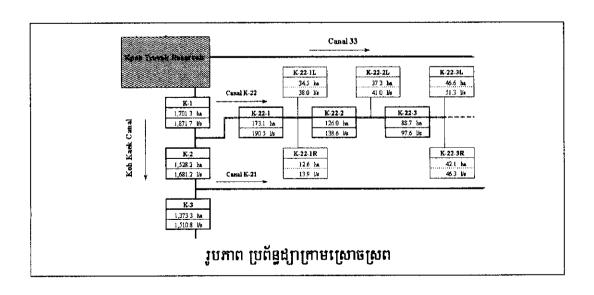
សមត្ថភាពនៃប្រឡាយរង់គឺបានសំរេចចិត្តពិតប្រាកដតាមឯកតាត់រូវការទឹកស្រោចស្រព និង កាលវិភាគ ទឹក ។ ក្នុងករណីនេះដែរ ការស្រោចស្រពសារចុះសារឡើង គឺបានរៀបចំសមត្ថភាពក្នុងការបែងចែក ឱ្យបានទូលំទូ លាយទៅនឹងសេចក្តីត្រូវការមាឌទឹកជាមួយពេលវេលាកំណត់ ។

(2) ផ្នែកប្រឡាយស្រោចស្រព

ផ្នែកប្រឡាយស្រោចស្រពគួរបានរៀបចំ និង គ្រោងដាក់បញ្ចូលក្នុងការពិចារណាតាមអ្វី១ដូចខាងក្រោម


- ទំហំខ្នាត (ផ្ទៃដី) នៃផ្នែកប្រឡាយស្រោចស្រពគូរតែតិចជាង 50 ហិចតា ។
- ផ្នែកប្រឡាយស្រោចស្រពនីមួយ១គួរមានមួយ ឬ ច្រើននូវសំណង់បង្ហូរចេញពីប្រឡាយរង ។
- ផ្នែកប្រឡាយស្រោចស្រពមួយគួរតែមានទីតាំងជាមួយ ឬ ជិតភូមិ
- ផ្នែកប្រឡាយស្រោចស្រពមួយគួរមានមួយ ឬ ច្រើនខ្សែប្រឡាយស្រោចស្រព និង ផ្លូវទឹក (1/4 ប្រឡាយ) បានបង្វែរទឹកពីប្រឡាយស្រោចស្រព ។
- ផ្លូវទឹកគួរគ្របដណ្តប់ផ្នែកស្រោចស្រពប្រហែល 5 ហិចតា និង
- សំណង់នៃផ្លូវទឹកគូរតែបានធ្វើដោយអ្នកទទួលផលដោយខ្លួនឯងដែលទទួលការចង្អុរលបង្ហាញ បច្ចេកទេសពី DOWRAM ។

13.6.4 ការសំខេចចិត្តពិតប្រាកដល់ខ្មែរវិទ្យសេចប្រព


យោងតាមការប៉ាន់ស្ថានផ្ទៃដីស្រោចស្រពក្នុងការសិក្សាតុល្យភាពទឹក ផ្ទៃដីស្រោចស្រពត្រូវបានបញ្ជាក់ ក្នុងការពណ៌នាលើផែនទី ។ វាគួរបានសំគាល់ថា ផ្ទៃដីស្រោចស្រពតិ៍ ផ្ទៃដីសុទ្ធ ប្រជាថាផ្ទៃដីដាំដុំ៖ ខណៈដែល ផ្ទៃដីសមរម្យ រួមជាមួយដីសំរាប់ប្រឡាយ ដីទូលសំរាប់ដាំដំណាំ ផ្ទូវត្រួតពិនិត្យ ។ល។ ផលចែកនៃផ្ទៃដីសមរម្យសុទ្ធអាស្រ័យលើមាត្រដ្ឋាននៃផែនទី ប៉ុន្តែ ០.85 គឺភាពសមគួរបានប្រើប្រាស់សំរាប់ ! ក្នុង 10.000 មាត្រដ្ឋានផែនទី និង ០.80 សំរាប់ 1 ក្នុង 50.000 មាត្រដ្ឋានផែនទី បន្ទាប់ពីកាត់ចោលផ្នែកមិនមែនកសិដ្ឋានលើផែនទី ។

ក្នុងការបញ្ជាក់ផ្ទៃដីស្រោចស្រព ក៏រិតកំពស់ និង ការតំរង់ជាជួរ នៃប្រឡាយស្រោចស្រពគួរតែបាន ត្រួតពិនិត្យដោយប្រុងប្រយ័ត្ន ។ ផ្ទៃដីស្រោចស្រពគួរតែតិចជាងការគ្រោងក៏រិតកំពស់ទឹកក្នុងប្រឡាយ ស្រោចស្រព ។ ប្រសិនបើក៏រិតកំពស់ទឹកគឺ EL. 35 ម. ផ្ទៃដីស្រោចស្រពគួរតែតិចជាង EL.34.3 ម. ដោយគិតការបាត់បង់ដោយយកចិត្តទុកដាក់ ។

13.6.5 ជ្យាគ្រាមអាមេរួសាចស្រព

ការតំរង់ជាជួរនៃប្រឡាយស្រោចស្រពតួរបានសំរេចចិត្តពិតប្រាកដ ដូចដែលបណ្តាញប្រឡាយដែលគ្រប ដណ្តប់ដោយបានបញ្ជាក់ផ្ទៃដីស្រោចស្រព ។ បន្ទាប់មកផ្នែកប្រឡាយស្រោចស្រពដែលបានបញ្ជាក់លើផែនទី មានផ្ទៃដីស្រោចស្រព 50 ហិចតា ឬ តិចជាងនេះ ។ ឈ្មោះ (ក្រម) តំរូវការទឹកស្រោចស្រព និង ផ្ទៃដីផ្នែក ប្រឡាយស្រោចស្រពនីមួយ១ដែលបានចែកក្នុងប្រព័ន្ធនៃដ្យាក្រាមស្រោចស្រពដូចបានបង្ហាញខាងក្រោម :

13.6.6 កាមគ្រា១ដំបូ១នៃប្រព័ន្ធប្រុន្សាយ

(1) ការព្រោងសមត្ថភាព

ការគ្រោងសមត្ថភាពនៃប្រឡាយស្រោចស្រពគឺបានសំរេចចិត្តពិតប្រាកដជាមួយ i) ឯកតាត់រូវការទឹក ស្រោចស្រព (លីត្រ / វិនាទី / ហិចតា) ii) កាលវិភាគទឹក និង iii) ចន្លោះសេរី ។ ប្រសិនបើប្រព័ន្ធ ស្រោចស្រពមួយមាន 1000 ហិចតានៃផ្ទៃដីស្រោចស្រព ប្រឡាយមេគួរតែមានសមត្ថភាពសុទ្ធ 1.1 ម³/វិនាទី ។ សំរាប់ក្នុងប្រព័ន្ធប្រឡាយណាមួយ "ការស្រោចស្រពសារចុះសារឡើងគឺត្រូវបានស្នើ សមត្ថភាព គួរតែបានបង្កើនដើម្បីបំពេញតំរូវការទឹកស្រោចស្រពជាមួយរយៈពេលពិតប្រាកដនៃការស្រោចស្រព។ សំរាប់ ឱកាសនេះ ប្រឡាយណាមួយដែលស្រោចស្រព 10 ហិចតារៀងរាល់ 3 ថ្ងៃ ការគ្រោងសមត្ថភាពសុទ្ធ គួរតែ 3 ដង គឺ 33 លីត្រ / 1 វិនាទី ។

(2) ចត្លោះស៊េរី

ចន្លោះស៊េរីនៃប្រឡាយមួយគឺបានសំរេចចិត្តពិតប្រាកដ យោងតាមចារឹកលក្ខណៈនៃប្រឡាយនោះហៅ ថា ប្រឡាយស្រោចស្រព ប្រឡាយដោះទឹកចេញ និង សំរាប់គោលបំណងទាំងពីរ (ស្រោចស្រព និង ដោះទឹក) ។ ចន្លោះស៊េរីដែលបានត្រួតពិនិត្យតាមការរៀបរាប់ពីដំណើរការហើយចន្លោះស៊េរីធំជាងគេគួរបានរក្សាទុក ។

សមីការសំរាប់ការប៉ាន់ស្មានចន្លោះសេរី

តាមសមីការដែលបានប្រើប្រាស់ខាងក្រោម :

 $F_b = 0.05d + \beta \cdot h_v + h_w$

ដែល F_b : ចន្លោះសេរី (ម)

d : ជំរៅទឹក(ម)

eta : ការផ្លាស់ប្តូរភាគរយល្បឿនទឹកទៅល្បឿនថេរ (1.0)

 h_v : ល្បឿនទីក (ម) $h_v = \frac{v^2}{2 \cdot g}$

h_w : ចន្លោះសេរីសំរាប់ការផ្លាស់ប្តូរជាំនិច្ចនៃផ្ទៃទឹកខាងលើ (0.15 ម)

ប្រសិនបើជំរៅទឹកគឺ 2.0 ម. ជាមួយនឹងល្បឿន 0.44 ម/វិនាទី ចន្លោះសេរីបានប៉ាន់ស្ពានគឺ 0.26 ម. ។

2) កំរិតកំពស់ទឹកសំរាប់ 120 % នៃសមត្ថភាព

ប្រសិនបើការគ្រោងសមត្ថភាពប្រឡាយគឺ 3.5 ម³/វិនាទី ជាមួយនឹងជំរៅទឹក 2.0 ម..
ហើយជំរៅទឹកសំរាប់ 4.2 ម³/វិនាទី (120% នៃ 3.5 ម³/វិនាទី) គឺ 2.15 ម. 0.15 ម. ដែលគោរពតាម
ចន្លោះសេរី ។

ក្នុងករណីខាងលើចន្លោះស៊េរីធំជាងគេ 0.26 ម. ដែលបានរក្សាទុក ។

(3) ទំព័ន្ធាននៃប្រឡាយ

ទំហំនៃប្រឡាយដែលសមគួរបានសំរេចចិត្តពិតប្រាកដ ដោយវិភាគសណ្ហានរំហូរទឹកតាមរូបមន្តរបស់ Manning ។ លំអិតបានអធិប្បាយក្នុងផ្នែករង 11.2.5 ការគណនាជលសាស្ត្រតាមរូបមន្តរបស់ Manning ។

ផលប្រៀបធ្យើបនៃជំរៅប្រឡាយទៅទទឹងបាតប្រឡាយ 0.8 ទៅ 1.0 ។ ប្រសិនបើទទឹងបាតប្រឡាយ គឺ 1.0 ម. ការគ្រោងជំរៅទឹក 1.0 ម. ឬ ទាបជាងនេះ ។ យោងតាមជំរល់មុខកាត់បណ្ដោយ ផលធ្យើបនៃ ជំរៅទឹក ទៅកាន់ទទឹងបាតនៃប្រឡាយ និង ការគ្រោងល្បឿនទឹកដែលអនុញ្ញាតិបានអធិប្បាយក្នុងការរៀបរាប់ ទំហំ ខ្នាតនៃប្រឡាយអាចបានសំរេចចិត្តពិតប្រាកដ ។

(4) ការព្រោងល្បើតទិក

ការគ្រោងល្បឿននៃប្រឡាយ ដែលបានសំរេចចិត្តពិតប្រាកដប្រព្រឹត្តទៅលើសំណង់នៃប្រឡាយ ដែលបានធ្វើ ឱ្យស្របគ្នាតាមលក្ខណៈវិនិច្ឆ័យ ។

1) ល្បឿនមធ្យម

ល្បឿនហូរមធ្យមគឺបានសំរេចចិត្តពិតប្រាកដសំរាប់កើតឡើងជាច្រើនដើម្បីធារទឹកក្នុងប្រឡាយ ។ សំរាប់ប្រឡាយស្រោចស្រព ការគ្រោងធារទឹកសំរាប់រយៈពេលស្រោចស្រពធម្មតា (0.6 ទៅ 1.0 លីត្រ/វិនាទី/ហិចតា) ដែលបានរក្សាទុកសំរាប់ការសំរេចចិត្តពិតប្រាកដនៃល្បឿនមធ្យម ។ ធារទឹក មធ្យមដែលអនុញ្ញាតិឱ្យបានគឺការប្រុងប្រយ័ត្នកករល្បាប់ និង ត្រូតពិនិត្យសំរាម 0.45 ម/វិនាទី ប្រសិនបើការងារថែមាំ (កករល្បាប់ និង សំរាមដែលបានយកចេញ) ដោយសង្ឃឹមលើអ្នកប្រើប្រាស់ទឹក។

2) ល្បឿនអតិបរមា

ល្បឿនអតិបរមាដែលបានអនុញ្ញាតិគឺបានត្រួតពិនិត្យសំរាប់ការគ្រោងធារទឹកអតិបរមា ល្បឿន អតិបរមាដែលបានអនុញ្ញាតិគឺបានបង្រួមតាមតារាងដូចខាងក្រោម :

តារាង: ល្បឿនទឹកអតិបរមាដែលអនុញ្ញាតិបាន.

ប្រភេទនៃប្រឡាយ	ល្បឿន (ម/វិនាទី)		
ប្រឡាយដី (ដីខ្សាច់)	0.45		
ក្រឡាយដី (ខ្សាច់ល្អ)	0.60		
ប្រឡាយដី (ដីល្អ)	0.70		
ប្រឡាយដី (ដីល្បាយអិដ្ឋល្អ)	0.90		
ប្រឡាយដី (ដីល្បាយអិដ្ឋ)	1.00		
ប្រឡាយដី (ដីល្បាយអិដ្ឋលាយខ្សាច់)	1.20		
បេតុងក្រាស់ (0.18 ម.)	3.00		
បេកុងស្ដើង (0.10 ម.)	1.50		
ប្បីបងិដ្ឋ	1.50~2.00		
អិដ្ឋាស៊ីម	2.50		
ហេដុងល្	3.00		

(5) ការបាន់បង់ផៃជលសាស្ត្រ

ការបាត់បង់ផ្សេងៗគួរបានពិចារណាក្នុងការគ្រោងនៃប្រព័ន្ធប្រឡាយក្នុងទំរង់នៃ"ដើមហេតុការបាត់បង់" ក៏វិតកំពស់ទឹកពិតប្រាកដក្នុងប្រឡាយ ។

1) ការបាត់បង់ដោយកកិត

ដើមហេតុការបាត់បង់ដោយកកិតគឺបានប៉ាន់ស្មានដោយរូបមន្ត Manning ខាងក្រោម :

$$h_f = \frac{Q^2 \cdot l}{2} \left(\frac{n_1^2}{R_1^{4/3} \cdot A_1^2} + \frac{n_2^2}{R_2^{4/3} \cdot A_2^2} \right) = \frac{1}{2} \left(\frac{n_1^2 \cdot V_1^2}{R_2^{4/3}} + \frac{n_2^2 \cdot V_2^2}{R_2^{4/3}} \right) \cdot l$$

ដែល,

Q : ធារទឹក (ម³/វិនាទី)

A : ផ្ទៃវ៉ហូរ (ម²)

h_f : ដើមហេតុការបាត់បង់ដោយកកិត (ម)

l : ចំងាយរវាងផ្នែក (ម)

R : កាំនៃជំរៅ (ម)

n : មេគុណភកិត

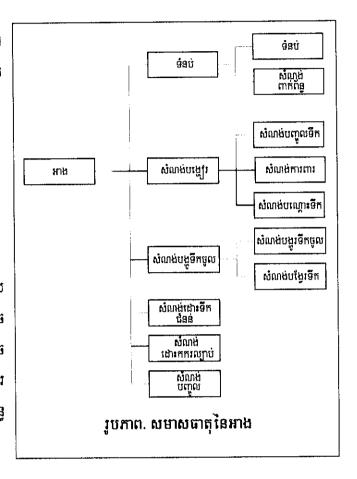
V : ល្បឿនមធ្យម (ម/វិនាទី)

2) ការបាត់បង់ផ្សេងៗ

ដើមហេតុការបាត់បង់ផ្សេង១ដូចបញ្ជីខាងក្រោម គួរបានពិចារណា

- ដើមហេតុការបាត់បង់នៅសំណង់ និង បង្ហូរចេញ
- ដើមហេតុការបាត់បង់ពេលឆ្លងកាត់
- ដើមហេតុការបាត់បង់ដោយរបាំង
- ដើមហេតុការបាត់បង់ដោយស្ពានលយទៅក្នុងទឹក
- ស្ពានលយកោងទៅក្នុងទឹក

តាមរយ:ការបាត់បង់ជាច្រើនខាងលើពី 0.02 ម. ទៅ 0.05 ម. នៃដើមហេតុការបាត់បង់ សំរាប់ទីតាំង និង សំណង់នីមួយ១ ។ សំរាប់សំណង់ធំ ហើយ ប្រឡាយមានល្បឿនទឹកខ្ពស់ ការបាត់បង់នៃជលសាស្ត្រ គួរបានធ្វើការគណនា ប៉ុន្តែសំរាប់ប្រព័ន្ធប្រឡាយតូច១ 0.02 ទៅ 0.05 ម. ដើមហេតុការបាត់បង់ អាចបានរក្សាទុកលើទីតាំង ឬ សំណង់ដូចបានអធិប្បាយខាងលើ ។

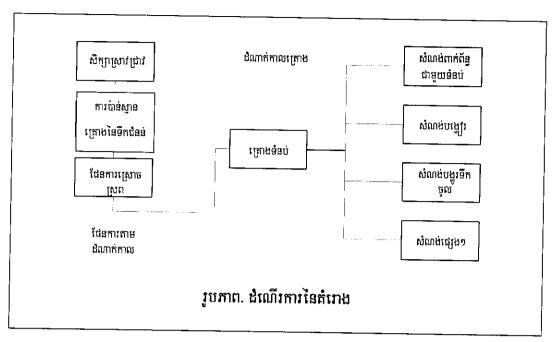

13.7 ម្រព័ន្ធម្រេចម្រពុំនៃដំបន់អាចខ្លាតដូច :

13.7.1 ស្ថានភាពនូនេះ

ប្រព័ន្ធនៃតំបន់ស្រោចស្រង់ អាង ខ្នាតតូចដូចជា កម្មវិធីនៃតំបន់អាងខ្នាត តូច ដែលមានាសមាសធាតុដូចតទៅ :

- អាង (បរិមាណដែលត្រូវ ចាត់ចែង)
- ប្រព័ន្ធប្រលាយ (ប្រលាយចែកចាយ)

សំរាប់គ្រប់ប្រព័ន្ធស្រោចស្រពនៃ
តំបន់អាងខ្នាតតូច ផ្ទៃដីស្រោចស្រពដែល
មាន ស្រាប់នៃបរិមាណតុល្យភាពស្រោច
ស្រព ដែលជាប្រភពទឹកនៃប្រព័ន្ធស្រោច
ស្រព ដែលជំបាងដទៃទៀត ។ ដូច្នេះការ
អភិវឌ្ឍន៍ប្រព័ន្ធប្រលាយ នៃប្រព័ន្ធ
ស្រោចស្រពតំបន់អាងខ្នាតតូចដែលជា
ការស្រូបយកដោយអ្នកដែលបានទទួល
ដែលប្រយោជន៍ ។


នៅក្នុងក្បួនណែនាំនេះ អាងគឺជាការកំណត់ដូចជា អាងមួយជាមួយទំនប់ដី ដែលមានកំពស់តិចជាង 10 ម. "

សំណង់នៃអាងទំនប់ទាំងអស់ដែលមានគឺ សំណង់បង្ហៀវ សំណង់ស្ទាក់ទឹក សំណង់បញ្ចូលទឹក និង សំណង់ដទៃទៀត ។ល។

13.7.2 គឺពេលដែលការ

គំរោងការលំអិតនៃការស្ដារ និង កសាងឡើងវិញនៃអាងទឹកគួតែនៅក្រោម ដំណើរការប្រសិទ្ធិភាព មួយ យោងលើការពិភាក្សាល្អិតល្អន់ជាមួយនឹងការងារដែលពាក់ព័ន្ធ ។

ដំណើរការជាស្តង់ដារមួយនៃគំរោងប្លង់នៃការកសាងឡើងវិញអាងទឹកបង្ហាញខាងក្រោម :

(1) ការសិក្សាស្រាវប្រាវ

ការសិក្សាស្រាវជ្រាវនូវអាងទឹកដែលមានស្រាប់ត្រូវតែប្រព្រឹត្តទៅតាមគំរូខាងក្រោម :

- ជំរាបនៃទំនប់
- ស្នាមបែក និង កំហូចទ្រង់ទ្រាយ នៃទំនប់
- កង្វះខាតនៃកំពស់បំរុង
- អស្ថិរភាពនៃទំនាបដោយសារការសិ៍ក៏វិចវិល
- សំណង់បង្ហេវ្រគ្មានមុខងារច្បាស់លាស់
- សំណង់បង្ហូរទឹកចូលគ្នានមុខងារច្បាស់លាស់
- សំណង់ត្រូតពិនិត្យគ្មានមុខងារច្បាស់លាស់ (ទ្វារទឹករវៃ សំណង់វ៉ាស់ធារទឹក ។ល។)

(2) ការប៉ាច់ស្អាចត្រោងនៃទិកជិនថ

សំរាប់គ្រប់បណ្តាអាងទឹកទាំងអស់ ការគ្រោងទឹកជំនន់ជាការប្រកាន់យកនៃលទ្ធផលដែលបង្ហាញជា បន្តបន្ទាប់ដូចនេះ

1) ការវិភាគនៅលើប្រូបប៊ីលីតេ

ប្រសិនបើទិន្នន័យធារទឹកទន្លេអាចមាន ការវិភាគនៅលើប្រ៉ូបាប៊ីលីតេ គឺជាការពន្យល់បង្ហាញ ក្នុងផ្នែក 11.2 ត្រូវតែប្រកាន់យកជាចាំបាច់ ។ ក្នុងរយៈពេលជាមួយគ្នានៃការគ្រោងផែនការទឹកជំនន់ (design floods) ដែលប្រកាន់យក បង្ហាញក្នុងតារាង 13.1 ។

2) បរិមាណទឹកជំនន់ធំបំផុតពីអតីតកាល

ទឹកជំនន់ធំជាងគេ ក្នុងពេលកន្លងមកអាចប៉ាន់ប្រមាណទៅលើប្រភពនៃការតាមដានទឹកជំនន់ កន្លងមក ឬ ក៏ការពិនិត្យដោយប្រចាំ ។ យោងទៅលើនីវ៉ូទឹកនៃការសង្កេតចារទឹក ការគណនាចារទឹក ដទៃទៀត ដោយការវិភាគទៅលើឯកទំរង់ហូរ ឬ ក៏មិនមែនឯកទំរង់ហូរ ។ ការសិក្សាស្ទង់ទន្លេ វាជាតំរូវការសំរាប់ការវិភាគ ។

(3) ថែនការប្រព័ត្នស្រោចស្រព និង ប្រព័ត្នសោះទិក

ផ្ទៃដីដែលអាចស្រោចស្រពបាន នៃប្រព័ន្ធស្រោចស្រពអាងទឹកវាគឺជាការត្រូតពិនិត្យនូវភាពដូចគ្នា នៃតុល្យភាពទឹកនៃអាងទាំងអស់សំរាប់ឆ្នាំបន្តបន្ទាប់ ។ ភាពដូចគ្នាទាំងនេះនឹងបង្ហាញពិស្តាក្នុងរូបភាព នៃផ្នែក 13.5 "តុល្យភាពទឹក " ផ្ទៃដីស្រោចស្រព និង សំណង់ទាំងឡាយបានធ្វើជាគំរោងដែលបានរៀបរាប់ ក្នុងផ្នែក ខាងលើ ។

13.7.3 ការកំណត់ខូចខ្នាតប្រទែច

(1) ក៏វិទាក់១ស់

ការកំណត់ក៏រិតកំពស់គឺបានរៀបរាប់នៅក្នុងអនុផ្នែកនៃ 13.5.1 "ការកំណត់ក៏រិតកំពស់នៃអាងទឹក"

(2) ទំផប់ទិក

សេចក្តីអធិប្បាយនៅក្នុងផ្នែក 13.2 ក៏វិតគោលដៅនៃការស្តារ និង ការកសាងឡើងវិញ ។ ទំនប់ ទាំងអស់ដែលកំពស់មិនខ្ពស់ជាង 5 ម. គួរតែអនុវត្តទៅតាមស្តង់ដារដែលបានបង្ហាញនូវផ្នែកនៃទំរង់ 13.1 ។ ទទឹងរបស់ទំនប់ផ្នែកខាងលើគឺ 5 ម. និង ជើងទេរទំនប់គឺ 1:2.0~1:3.0 សំរាប់ផ្នែកនៃអាង និង 1:1.5~1:2.5 សំរាប់ផ្នែកខាងក្រៅអាង ។ ទំនប់ដែលមានស្រាប់អាចប្រើប្រាស់បាន ប្រសិនបើទំនប់នោះមានលក្ខណៈ មាំមូន ។ ដើមឈើទាំងអស់ដែលនៅលើទំនប់ត្រូវតែយកចេញព្រមទាំងផ្លាស់ប្តូរនូវសំភារៈដែលមានការខ្វះ ចន្លោះទាំងអស់ ។ ដីខ្សាច់ដែលមានខ្សាច់សុទ្ធ 75% រឺក៏ច្រើនជាង និង ដីដែលមានដីអិដ្ឋ 15% រឺក៏ច្រើនជាង អាចត្រូវប្រើប្រាស់សំរាប់ជាសំភារៈតូទំនប់ ។ ទំនប់ណាដែលកំពស់ខ្ពស់ជាង 5 ម. ត្រូវតែពិនិត្យលំអិត ដោយ ការវិភាគយ៉ាងហ្មត់ចត់បន្ទាប់ពីការអង្កេតនូវសំភារៈតូទំនប់ទាំងអស់នៃទំនប់ដែលមានស្រាប់ ឬ ក៏សន្និតិការ ប្រើប្រាស់កន្លែងជីកថ្ម ។

(3) សំនោងបង្កេដ្

បរិមាណ និង ទំហំនៃសំណង់បង្ហៀវ គួរតែកំណត់ដោយអាស្រ័យលើ ការប៉ាន់ប្រមាណគំរោងការលំអិត នៃទឹកជំនន់ ។ នៅក្នុងក្បួនណែនាំនេះ ប្រភេទសំណង់បង្ហៀវ (ទឹកហូវលើក្រេស = over flow type) គឺតំរូវឱ្យដល់ ការបញ្ជៀសនូវភាពបរាជ័យនៃប្រតិបត្តិការក្នុងខណៈពេលនៃទឹកជំនន់ ។ បរិមាណធារទឹក នៃលំហូវពីលើ (overflow) សំណង់បង្ហៀវត្រូវបានគណនាតាមរូបមន្តដូចខាងក្រោមនេះ :

 $Q = CBH^{(3/2)}$

ដែល, C : ប្រសិទ្ធិភាពនៃធារទឹក

B : ប្រវែង១ទឹងបង្ហូរ នៃក្រេស (crest) (ម)

н : កំពស់បង្ហូរ (ម)

C-គឺជាតំលៃនៃក៏វិតអតិប្បរមា ប៉ុន្តែសំរាប់ប្រភេទស្តង់ដារនៃសំណង់បង្ហៀវប្រភេទហូរលើក្រេស C~1,9-2,2 ។ សំរាប់សំណង់បង្ហៀវដែលមានក្រេសធំ C=1,7 អាចនឹងទទួលយកក្នុងការចាប់ផ្តើមដំបូងនៃ ការប៉ាន់ប្រមាណសំរាប់ការបង្កើតឡើងនូវតំរោងការលំអិតនៃទឹកជំនន់អាងទឹកទំនប់លោក (Q=420m³/s) អាចនឹងបង្ហៀវចេញតាមរយៈសំណង់បង្ហៀវប្រភេទហូរពីលើ (overflow type) អនុវត្តន៍ដូចតទៅ:

- 1) ក្នុងករណីដែលកំពស់បង្ហូរ $0.8\,$ ម. ប្រភេទហូរពីលើសំណង់បង្ហៀរ (C=2.2) $B=Q/CH^{(3/2)}=267\,$ ម
- 2) ក្នុងករណីដែលកំពស់បង្ហូរ 1.10 ម. ប្រភេទហូរលើសំណង់បង្ហៀរ (C=2.2) B = Q / CH^(3/2) = 165 ម

(4) សំណាច់យកទឹកទាំងអស់ :

សំណង់យកទឹកទាំងអស់ត្រូវតែគ្រោងលំអិតជាមួយនឹងការគ្រោងធារទឹករបស់ប្រលាយ ដែលភ្ជាប់ ជាមួយអាងទឹក ។

(5) ការថែទាំឡាវទិក :

ការថែទាំទ្វារទឹកត្រូវតែដាក់បញ្ចូលសំរាប់ការរក្សាទឹកក្នុងអាងព្រមទាំងសំរាប់ការបង្ហូរចេញនៃស្ទឹង ឬ ទន្លេ ។ បរិមាណធារទឹកនៃទ្វារទឹកមិនត្រូវបានគណនាសំរាប់ធារទឹកជំនន់ឡើយ ។ ទ្វារទឹកត្រូវតែសាងសង់ ឡើងនៅជិតប្រភពទឹកស្ទឹង ។

13.8 ម្រាំន្នស្រោចស្រពដែលម្រើត្រាស់ស្រះនឹក

13.8.1 លក្ខណៈធ្មូនេះ

ប្រព័ន្ធស្រោចស្រពដែលប្រើស្រះទឹកដែលមានស្រាប់ដែលមានសមាសភាគដូចនេះ

- ស្រះ (ជាលក្ខណ:ឯកជន ក្រុម រឺ ស្រះប្រឡាយ) និង
- សំណង់ពាក់ព័ន្ធ (ជំណើ្តរ របង ប្រលាយយកទឹក ។ល។)

ផ្ទៃដីស្រោចស្រពដែលលាតសន្ធឹងនៅក្នុងបរិវេណនៃស្រះ និង ការយកទឹកប្រើប្រាស់គួរតែធ្វើដោយ រប្រៀប ផ្សេងៗគ្នា (ដោយប្រើប្រាស់ឧបករណ៍សាមញ្ញុ រឺ ក៏ម៉ាស៊ីនបូមទឹក)

ប្រភេទនៃស្រះមាន :

- ស្រះជាក្រុម ប្រើប្រាស់ដោយក្រុមកសិករ
- ស្រះឯកជន ប្រើប្រាស់ដោយកសិករដែលជាម្ចាស់ផ្ទាល់
- ស្រះប្រឡាយសាងសង់ឡើងនៅក្នុងប្រឡាយ (ដីសាធារណ:)

13.8.2 ដែលការ

ប្រព័ន្ធស្រោចស្រពដែលប្រើស្រ៖ ជាទូទៅសាងសង់ឡើងនៅលើដីឯកជន ឯផែនការ និង គំរោង លំអិត ត្រូវតែប្រព្រឹត្តទៅនៅក្នុងលក្ខណៈសហការជាមួយអ្នកដែលបានផលប្រយោជន៍ ។ នៅក្នុងគំរោងដាក់ សំណើ ដល់អ្នកប្រើប្រាស់នៅលើការវ៉ាស់ស្ទង់ផែនការ និង ទំរង់គំនូរបច្ចេកទេស ។

(1) អត្តសញ្ញាឆាកម្ម (ទំនៅ-12)

ការអភិវឌ្ឍន៍ស្រះជាការដាក់សំណើ ឱ្យដល់គ្រប់នៃអ្នកភូមិ ។ សំរាប់សេចក្ដីបញ្ជាក់នៃស្រះដើម្បីនឹង ធ្វើការ អភិវឌ្ឍន៍ក្បួនដូចខាងក្រោមនេះ វាជាការបង្ហាញច្បាស់ :

- ភូមិសាស្ត្រ (ការសំរបសំរូល និង ផែនទី)
- ប្រភេទនៃស្រះដែលបានស្នើឡើង
- សមាជិករបស់ស្រះជាក្រុម
- ទំហំដីសំរាប់ស្រះស្រោចស្រព

អាទិភាពដើម្បីធ្វើអត្តសញ្ញាណកម្ម ការពន្យល់ និង ពិភាក្សា នឹង ត្រូវធ្វើឡើងជាមួយប្រធានភូមិ ឬ ក៏ អ្នកតំណាងដ៏ទៃឡេតដូចជាប្រធានក្រុមជាដើម ។

បន្ទាប់ពីប្រមូល នូវពត៌មានសំខាន់១សំរាប់អត្តសញ្ញាណគំរូការពន្យល់នៅក្នុងការប្រជុំនៃគំរោងជា ពិសេស ទៅលើការទទួលខុសត្រូវនៃគំរោងព្រមទាំងការចូលរួមពីអ្នកដែលទទួលផលប្រយោជន៍ទាំងអស់ត្រូវ តែជាអ្នកធ្វើសំណើរ ។

(2) ការវាល់ល្ងង់ (ទំរង់-13)

ការវាស់ស្ទង់នៅលើការធ្វើស្រ៖ និង ផ្ទៃដីស្រោចស្រព គួរតែប្រព្រឹត្តទៅនៅលើការអង្កេតនូវ ចំនុចទាំងអស់ ដែលបានបង្ហាញនូវទំរង់-13 ។ បន្ទាប់ពីការសិក្សាវាស់ស្ទង់ ការចាប់ផ្តើមដំបូងនៃគំរោងលំអិត ត្រូវតែប្រព្រឹត្តទៅភ្លាម១ដើម្បីនឹងពន្យល់លើគោលការណ៍សំខាន់១ នៃការសាងសង់ចំពោះអ្នកដែលបានទទួល ផលប្រយោជន៍ ។ បន្ទាប់មក គោលការណ៍របស់គំរោងគឺ (ការចូលរួមរបស់អ្នកដែលបានទទួលផលប្រយោជន៍ និង ការទទួលខុសត្រូវរបស់ម្ចាស់គំរោង) ត្រូវតែបញ្ជាក់ទៅវិញទៅមក ។

ការចូលរួម និង ការទទួលខុសត្រូវរវាងម្ចាស់តំរោងនិងអ្នកដែលបានទទួលផលប្រយោជន៍ត្រូវតែសំរេច ឱ្យបានត្រឹមត្រូវដោយម្ចាស់តំរោង ។

(3) ការត្រោង (ទំរង់-14)

ការគ្រោងលំអិតស្រះត្រូវតែធ្វើឡើងបន្តបន្ទាប់នៃការផ្តល់នូវប៉ារ៉ាម៉ែត្រក្នុងទំរង់ 14 ។ ជំរៅស្រះគឺថេរ = 3 ម. ។ ដូច្នេះហើយទឹកក្នុងដីត្រូវបានបង្កើនបានខ្លះៗនូវការប្រើប្រាស់ ។ មាឌរបស់សំណង់ និង បរិមាណគួរតែគណនាអាស្រ័យលើឯកតាត់លៃ ដែលបានផ្តល់នៅក្នុងទំរង់គំរោងលំអិត (ទំរង់- 14) ។

13.9 ប្រព័ន្ធដោះនឹក

13.9.1 លក្ខណៈខ្មនៅ

សេចក្តីរៀបរាប់នៅក្នុងផ្នែក 13.2 "ក៏វិតគោលដៅនៃការស្តារ និង កសាងឡើងវិញ៉ាំ ការពម្រឹកនូវប្រព័ន្ធដោះ ទឹកគួរតែត្រូវបានពិចារណាសំរាប់តំបន់ដែលមានទឹកច្រើន អាចនឹងប្រើប្រាស់នូវការ បង្ហូរបរិមាណចេញដោយប្រព័ន្ធដោះទឹកនៅកន្លែងទាប (អូរ ស្ទឹង បឹង) ។ ប្រសិនបើបរិមាណទឹកដែលមាន ស្រាប់ពុំបានគ្រប់គ្រាន់ការពង្រីកនូវប្រព័ន្ធដោះទឹកគឺពុំត្រូវបានពិចារណាឡើយ ប៉ុន្តែការថែរទាំជួសជុលនូវ ប្រព័ន្ធដែលមានបច្ចុប្បន្នវាជាការចាំបាច់ ។ នៅក្នុងករណីនេះ តំរូវការនៃការដោះទឹកគួរតែមានតុល្យភាព ទៅនឹងតំរូវការទឹកស្រោចស្រព ដូច្នេះហើយទឹកស្រោចស្រពគួរតែដោះចេញក្នុងភាពសមរម្យមួយ (ប្រហែល 1.0 លីត្រ/ហ.ត) ។

13.9.2 គំរុចការប្រព័ន្ធដោះនឹក

(1) ប្រព័ត្នមោះទឹកសំរាប់វាសង្គ្រែ

តំរូវការនៃប្រព័ន្ធដោះទឹកសំរាប់វាលស្រែគួរតែត្រូវពិចារណា ដើម្បីនឹងបង្ហូរចេញក្នុងរយៈពេលភ្លៀងប៊ ថ្ងៃ ក្នុងរយៈពេល 10 ឆ្នាំប្រាកដនៃទឹកជំនន់ ។

តំរូវការដោះទឹកចេញ សំរាប់ទីវាលស្រែ ជាការគណនាសរុបនូវលក្ខខ័ណ្ឌជាបន្តបន្ទាប់ :

- ជំរោទឹកដំបូងនៃស្រែ : 50 មម.

- ជំរោទិ៍កដែលចាំបាច់ : 150 មម.

- បរិមាណទឹកក្នុងរយៈពេលដែលធ្វើឱ្យលិចលង់ 3 ថ្ងៃ

- ទឹកភ្លេងបីថ្ងៃ ក្នុងរយៈពេល 10 ឆ្នាំក្នុងខេត្តតាកែវ 173 មម

ឯកតានៃបរិមាណទឹកដែលត្រូវដោះចេញគួរតែសំរេចដោយយកទឹកភ្លេងប៊ីថ្ងៃ នៃជំនន់ដែលបង្ហាញនូវ រូបភាព 13.7 ។ ក្រោមលក្ខខ័ណ្ឌខាងលើឯកតានៃតំរូវការដោះទឹកត្រូវសំរេចយក 1,6 លីត្រ/វិនាទី/ហត. ។

(2) ការមោះទិកសំរាប់បំណាំផ្សេងៗ

តំរូវការដោះទឹកសំរាប់ដំណាំផ្សេងៗគួរត្រូវពិចារណានៅលើការបង្ហូរដោយទឹកភ្លៀង 1 ថ្ងៃក្នុងទិន្នន័យ 10 ឆ្នាំ ដោយពុំគិតពីការជន់លិច ។ តំរូវការដោះទឹកសំរាប់ដីដំណាំតំបន់ខ្ពស់ ឬ គណនាទៅតាមលក្ខខ័ណ្ឌ ដូចតទៅ :

- ជំរៅទឹកតំបូងនៅក្នុងស្រែ: 0 មម.

- ជំរៅទឹកដែលអនុញ្ញាតិ : 0 មម.

- បរិមាណទឹកក្នុងខណៈដែលធ្វើឱ្យលិចលង់: រ ថ្ងៃ

ឯកត្តានៃតំរូវការដោះទឹក គួរត្រូវបានសំរេចយក ដូច្នេះដំណាំទាំងអស់នឹងមិនត្រូវបានលិចលង់ឡើយ ។ នៅក្នុងលក្ខខ័ណ្ឌភាគច្រើន ដំណាំត្រូវបានដាំនៅលើផ្ទៃដីស្រែក្នុងខណៈពេលដែលមុន ឬ បន្ទាប់ពីរដូវភ្លៀងព្រម ទាំងប្រព័ន្ធដោះទឹកនៃទីវាលស្រែត្រូវតែយកមកប្រើប្រាស់ ។ ហេតុដូច្នេះហើយ វាជាការចាំបាច់ដើម្បីបញ្ចៀស ទឹកជំនន់សំរាប់ដំណាំផ្សេងៗដោយការអនុវត្តន៍ជាក់ស្តែងនៅលើកសិដ្ឋានដែលឱ្យឈ្មោះថា "high ridge cultivation" រូបភាព 13.8 បង្ហាញពីដំណាំរួមផ្សំដែលដាំពូនជាជួរកំពស់ 125 មម. ដែលជាតំរូវការសំរាប់ បញ្ចៀសនូវការជន់លិចជាមួយនិងឯកតាតែមួយនៃតំរូវការដោះទឹកគឺ 1,6 លីត្រ/វិនាទី/ហត. សំរាប់ការ ដាំស្រូវ ។

នេះជាការណែនាំការលើករងកំពស់ខ្ពស់ជាង 150 មម. ត្រូវតែប្រកាន់យកដូចបង្ហាញខាងក្រោម :

13.10 ការចាន់ស្មានអំពែ

(1) សក្ខណៈទូទៅ

ការលើកគំរោងមួយត្រូវតែអនុវត្តន៍ជាមួយនឹងការវិនិយោគថវិកាផ្ទាល់ពិតប្រាកដ របស់រដ្ឋាភិបាល កម្ពុជា ឬ ក៏ថវិកាអន្តរជាតិ ។ ការពិចារណានៅលើក៏វិតនៃថវិកាសំរាប់ការអភិវឌ្ឃន៍ មធ្យោបាយសេដ្ឋកិច្ច នៅក្នុងពាក្យថាតំលៃ និង វិភាគចំណូលនឹងត្រូវធ្វើឡើងសំរាប់គ្រប់ប្រភេទនៃគំរោង ។ ដូច្នេះ តំលៃប៉ាន់ស្មាន គឺជាការពិចារណាមួយដ៏សំខាន់នៅក្នុងគំរោងប្លង់នៃជំពូកទាំងអស់នៃការត្រួតពិនិត្យនូវ មធ្យោបាយសេដ្ឋកិច្ច ។ នៅក្នុងផ្នែកនេះ ដំណើរការនៃការប៉ាន់ស្មានតំលៃសំរាប់ការវាយតំលៃតំរោងគឺជាការវាយតំលៃតំរោង ដែលបានរៀបរាប់លំអិតនៅក្នុងជំពូក 18 ។

(2) ប្រភេទនៃជំនាង និង កិច្ចសន្យា

អាទិភាពដើម្បីនឹងប៉ាន់ស្មានតំលៃនៃប្រភពធនធានទាំងអស់ និង ដំណាក់កាលនៃការអនុវត្តន៍ត្រូវតែ ធ្វើការសន្មត ។ សំរាប់គំរោងធំ១ដែលអនុវត្តន៍ជាមួយ និង ការប្រាក់បរទេសគួរតែធ្វើកិច្ចសន្យាជាទូទៅតាម រយៈការដេញថ្លៃជាលក្ខណៈអន្តរជាតិ (ICB) ក្នុងខណៈពេលដែលការងារសាងសង់ដែលមិនជាសំខាន់ណាស់ ណាកិច្ចសន្យាគួរតែធ្វើឡើងតាមរយៈការដេញថ្លៃក្នុងលក្ខណៈជាតិ (LCB) ។ តំលៃនៃគំរោង ឬ ក៏តំលៃឯកត្តា នៃការងារសំណង់នីមួយ១សំរាប់ ICB គួរតែខ្ពស់ជាង LCB ។ ដូច្នេះឯកត្តាតំលៃត្រូវតែធ្វើការសំរេចអាស្រ័យ លើប្រភេទនៃកិច្ចសន្យាដែលត្រូវបានធ្វើឡើងជាមួយគំរោង ។

(3) សមាសភាជនៃជំនំលជ់រោង

តំលៃនៃតំរោង (ថវិកាហិរញ្ញវត្ថុ) សំរាប់ការប៉ាន់ស្ពានតំលៃគួរតែមានសមាសភាគដូចតទៅ :

- តំលៃសាងសង់ផ្ទាល់
- តំលៃចំណយផ្សេងៗ
- តំលៃលើការរុះរ៉េតែហដ្ឋាន និង ផ្ទៃដីដែលប៉ះពាល់ក្នុងសំណង់
- តំលៃចំណាយលើរដ្ឋបាល
- តំលៃបំរើការលើផ្នែកវិស្វកម្ម
- តំលៃបំរុងសំរាប់ការប្រែប្រួលបរិមាណការងារ
- តំលៃបំរុងសំរាប់ការប្រែប្រួលនូវតំលៃទីផ្សារ (អត្រាប្តូរប្រាក់ ពលកម្ម សំភារៈបរិក្ខារ ។ល។)

ពំលៃសាងសង់ផ្ទាល់

តំលៃសាងសង់ផ្ទាល់គឺមានតំលៃទាំងអស់នៃទំហំការងារសំរាប់ការងារសំណង់ដែលរួមបញ្ចូលកា រដឹកចូល និង ការដឹកចេញ តំលៃគ្រឿងចក្រ កំលាំងពលកម្ម ការរៀបចំការងារទាំងឡាយ ព្រមទាំង សកម្មភាពទាំងអស់ដែលជាប់ទាក់ទង និង ការងារសាងសង់ ។ តំលៃជាទូទៅបូកសរុបដោយការងារ សំណង់ទាំងអស់ដូចជាការរៀបចំការងារ អាងទឹក ប្រលាយមេ ប្រលាយរង និង ការអភិវឌ្ឍន៍នៅលើ កសិដ្ឋាន ។ល។

2) តំលៃចំណាយផ្សេង១

តំលៃចំណាយផ្សេងៗគឺបូកបញ្ចូលនូវតំលៃនៃការអភិវឌ្ឍន៍ស្ថាប័ន ប្រសិនបើគំរោងមាន សមាសភាគនៃការកសាងសមត្ថភាពនៃបណ្តាគំរោងទាំងនោះ ។ ប្រសិនបើការអភិវឌ្ឍន៍ស្ថាប័ន ត្រូវបានអនុវត្តន៍ដូចជាផ្នែកមួយនៃសេវាវិស្វកម្ម តំលៃនៃការអភិវឌ្ឍន៍ស្ថាប័នគួរតែរួមបញ្ចូលទៅក្នុង តំលៃសេវាវិស្វកម្ម ។

3) តំលៃបរិក្ខារសំរាប់ប្រតិបត្តិការ និង ថែទាំ

បរិក្ខារដែលចាំបាច់សំរាប់ប្រតិបត្តិការ និង ការថែទាំត្រូវតែស្វែងរកមកមុនពេលបញ្ចប់ការងារ សាងសង់ទាំងអស់ ព្រមទាំងតំលៃចាំបាច់សំរាប់បរិក្ខារគួរតែបានត្រូវបូកបញ្ចូលទៅក្នុងតំលៃវិនិយោត ដំបូង ។ ប្រសិនបើការងារប្រតិបត្តិការ និង ការថែទាំ ត្រូវបានធ្វើនៅលើប្រភេទនៃកិច្ចសន្យា ឬ ក៏គ្មានបរិក្ខារ ឬ ក៏មានភាពគ្រប់គ្រាន់នៃបរិក្ខារសំរាប់ប្រតិបត្តិការ និង ការថែទាំតំលៃមិនមានភាព ចាំបាច់នៅក្នុងការគណនា ។

4) តំលៃនៃការរើប្តូរលំនៅដ្ឋាន និង ដីដែលច៉ះពាល់

ក្នុងករណីនេះ ការរើប្តូរលំនៅដ្ឋាន និង ផ្ទៃដីដែលប៉ះពាល់ វាជាប្រការសំខាន់សំរាប់ការអនុវត្តន៍ គំរោងតំលៃត្រូវបានប៉ាន់ស្មាន ។

5) តំលៃនៃការចំណាយទៅលើការងាររដ្ឋបាល

តំលៃរដ្ឋបាលបូកសរុបជាមួយប្រាក់ខែ ព្រមទាំងប្រាក់បេសកកម្មសំរាប់បុគ្គលិកផ្នែករដ្ឋបាល របស់គំរោង ក្នុងខណៈពេលអនុវត្តន៍គំរោង តំលៃប្រតិបត្តិការនៃសំណង់ទាំងអស់ បរិក្ខារព្រមទាំងការ ចំណាយ ផ្សេងៗ សំរាប់ការងារប្រតិបត្តិ ។

6) តំលៃសំរាប់សេវាផ្នែកវិស្វកម្ម

តំលៃសំរាប់សេវាវិស្វកម្ម បូកសរុបជាមួយនឹង តំលៃសំរាប់សិក្សាវាស់ស្ទង់ គ្រោងប្លង់ ការងារត្រួតពិនិត្យ ព្រមទាំងតំលៃផ្សេងៗឡេតនៃសកម្មភាពវិស្វកម្មចាំបាច់សំរាប់ការអនុវត្តន៍តំរោង។ តំលៃសេវាវិស្វកម្ម ជាទូទៅប៉ាន់ស្មាននូវភាគរយពិតប្រាកដគឺ ~ 10% នៃតំលៃសរុបរបស់គំរោង ។

7) តំលៃបំរុងសំរាប់ការប្រែប្រួលបរិមាណការងារ

តំលៃបំរុងសំរាប់ការប្រែប្រួលបរិមាណការងារជាការចាត់បញ្ចូលនូវភាគរយប្រាកដមួយនៃការ សរុបនូវតំលៃដែលអធិប្បាយខាងលើ ឧទាហរណ៍ 10% នៃការសន្ទតនៃកំណើនការងារប្រាកដមួយ ឬក៏ការចំណាយផ្សេង១ដែលអាចនឹងកើតឡើងនៅក្នុងដំណាក់កាលនៃការសាងសង់ ។

ន) តំលៃបំរុងសំរាប់ការប្រែប្រួលនៃតំលៃទីផ្សារ

តំលៃបំរុងសំរាប់ការប្រែប្រួលនៃតំលៃទីផ្សារជាការសន្មត់តំលៃប្រាកដ ដែលអាចប្រែប្រួល សំរាប់អត្រាប្រាក់រៀល និង ប្រាក់បរទេស ‹ដុល្លាសហរដ្ឋ› ។

(4) នំលៃប្រាក់មរាមរ

សមាសភាគនីមួយៗនៃតំលៃរបស់គំរោងត្រូវតែផ្តល់ដោយការចូលរួមដូចខាងក្រោម សំរាប់ការវាយ តំលៃគំរោង

- តំលៃសំភារៈ (ក្នុងស្រុក បរទេស)
- តំលៃបរិក្ខារ (ក្នុងស្រុក បរទេស)
- តំលៃកំលាំងពលកម្ម (ក្នុងស្រុក)
- តំលៃពលកម្មជំនាញ (ក្នុងស្រុក បរទេស)

សំរាប់ជាឧទាហរណ៍ តំលៃនៃការជីកដីដោយម៉ាស៊ីនបង្ហាញដូចតទៅ :

សំរ	ករ:	បរិ	ក្ខារ	ពលកម្ម		
ក្នុងស្រុក	បរទេស	ក្នុងស្រុក	បរទេស	ធម្មពា	ជំនាញ	
0.9 %	17.5 %	7.6 %	68.6 %	0.0 %	5.3 %	

ការជីកដីដោយម៉ាស៊ីន វាជាការចាំបាច់ណាស់ដែលត្រូវការបរិក្ខារ និង ប្រេងឥន្ធនៈ ព្រមទាំងពលកម្ម ដែលមានជំនាញ ដូច្នេះការចរាចរប្រាក់ និង តំលៃចូលរួមគឺរក្សាទុកដាច់ដោយឡែក ។ នៅលើការងារដោយ ទែក្រ ផេរង១ទៅ្ខដូចជាការជីកដីដោយកំលាំងពលកម្មត្រូវបានរក្សាទុកដោយឡែកដូចតទៅ :

1	្វំភារៈ	បរិ	ក្ខារ	ពលកម្ម	
ក្នុងស្រុក	បរទេស	ក្នុងស្រុក	បរទេស	ធម្មតា	ជំនាញ
0.5 %	9.5 %	4.1 %	37.4%	45.5 %	2.9 %

ក្នុងករណីនេះ កំលាំងពលកម្មធម្មតាតំលៃរបស់វ៉ាក្កោបក្តាប់ប្រមាណពាក់កណ្តាលនៃតំលៃសរុប ។

តំលៃប្រាក់ចរាចរ និង តំលៃដោយឡែក ជាការកំណត់មួយដោយជំពូកការងារយោងលើតំរូវការ ការងារ ។

(5) ការចេញច្រាក់ចាយវាយ

ការចេញប្រាក់ចាយវាយនៃតំលៃគំរោងត្រូវតែកំណត់ យោងលើការអនុវត្តន័កម្មវិធីរបស់គំរោង ។ តំលៃវិនិយោគដំបូងគួរតែផ្តល់សំរាប់គំរោងក្នុងរយៈពេលណាមួយ (ឧទាហរណ៍ 5 ឆ្នាំ) ។

(6) ជំនៃប្រតិបត្តិការ និង ការថែទាំ

តំលៃនៃការងារប្រតិបត្តិការ និង ការថែទាំប្រចាំឆ្នាំនៃសំភារៈបរិក្ខាររបស់តំរោងបូកសរុបជាមួយ ប្រាក់ខែរបស់បុគ្គលិកសំរាប់ការិយាល័យតំរោង បុគ្គលិកនៃសហគមន៍កសិករប្រើប្រាស់ទីក បុគ្គលិកនៃផ្នែក ទីផ្សារ តំលៃសំភារៈនឹងឈ្នួលពលកម្ម សំរាប់ការថែទាំប្រចាំឆ្នាំតំលៃនៃប្រតិបត្តិការ ការជួសជុល ថែទាំ មធ្យោបាយដឹកជញ្ជូន ព្រមទាំងការជួសជុលខ្នាតធំតាមប្រភពកុងត្រារ្យេងរាល់ប្រាំឆ្នាំម្ដង ។

(7) នំលៃក្រឿងបច្ឆាស់

សំណង់ខ្លះៗរបស់គំរោងព្រមទាំងបរិក្ខារ មានរយៈកាលសេដ្ឋកិច្ចខ្លីជាងគំរោង និង តំរូវការនូវការផ្លាស់ ប្តូរក្នុងរយៈពេលដែលសន្មត់ 50 ឆ្នាំនៃជីវិតរបស់គំរោង ។ តារាងជាបន្តបន្ទាប់បង្ហាញពីរយៈកាលជីវិតសេដ្ឋកិច្ច ដែលបានកំណត់នៅក្នុងតំបន់ដែលបានសិក្សានៃផ្នែកខាងលើស្ទីងស្លាគុ (USP) ។

តារាងរយៈកាលបំលាស់ប្តូរ

អធិប្បាយ	រយៈពេលជីវិតសេដ្ឋកិច្ច				
ការិយាល័យ / បរិក្ខារ	30 ឆ្នាំ				
ទ្វារទឹកទាំងអស់	25 ឆ្នាំ				
ដែកបទ្ទះ	10 ឆ្នាំ				
បរិក្ខារដឹកជញ្ជូន និង ម៉ាស៊ីនភ្លើង	10 ឆ្នាំ				
បរិក្ខាររដ្ឋបាល	8 ឆ្នាំ				
បរិក្ខារសំរាប់ផ្នែកទីផ្សារ	8 ឆ្នាំ				
ទ្វារទឹកឈើ	5 ឆ្នាំ				