ឡែកលី 2

ខែនការ ទិខ កាក្រោខ

ខំពុក 10 គំនិតមុលដ្ឋាន និច គោលមំណច

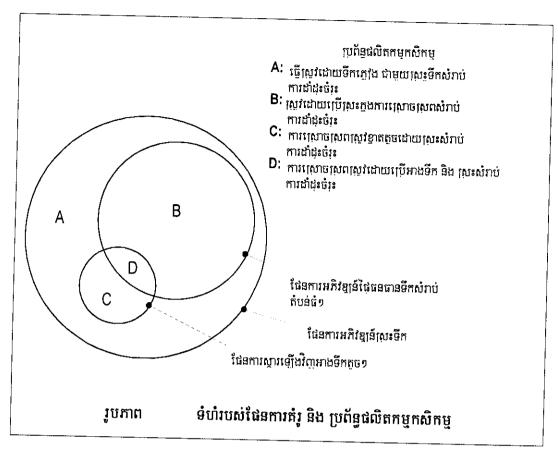
10.1 គំនិតមូលដ្ឋាន

10.1.1 ការអតិចខ្លាន់គំរូ

ការសិក្សាលើការស្ដារ និង ជួសជុលឡើងវិញនូវប្រព័ន្ធផលិតកម្មកសិកម្មក្នុងតំបន់អាងទឹកស្លាតូនៅ ព្រះរាជាណាចក្រកម្ពុជាត្រូវបានធ្វើឡើងសំរាប់ការជ្រើសរើសនូវផ្ទៃដីស្រោចស្រព (650គម² នៃផ្ទៃដីសរុប) ដែលមានក្នុងអាងទឹកស្ទឹងស្លាគូ ។

ចាប់តាំងពីការសិក្សាបានចាប់ផ្ដើម ក្រុមសិក្សាបានវិភាតស្ថានភាពបច្ចុប្បន្ន បញ្ហា និង ក៏រិតកំណត់ របស់តំបន់សិក្សា ហើយរៀបចំផែនការមេសំរាប់ផែនការស្ដារ និង ជួសជុលឡើងវិញនូវប្រព័ន្ធផលិតកម្ម កសិកម្មដែលមានស្រាប់នៅក្នុងប្រទេសកម្ពុជា ។ លក្ខណៈនៃប្រព័ន្ធផលិតកម្មកសិកម្មក្នុងតំបន់សិក្សាមាន:
i) ការធ្វើស្រែតែដេងក្នុងមួយឆ្នាំដោយពីងផ្នែកលើស្ថានភាពទឹកភ្លៀង និង ii) ការបង្កើតប្រព័ន្ធដំណាំចំរុះ ខ្នាតតូចដែលមានដំណាំសំរាប់លក់ បសុសត្វ ។ ល ។

ដូចដែលបានដឹងហើយថា ប្រព័ន្ធផលិតកម្មកសិកម្ម ដែលបានស្នើឡើងក្នុងផែនការមេមានបីប្រភេទ គឺ ផែនការជួសជុលឡើងវិញប្រព័ន្ធស្រោចស្រពផ្នែកខាងលើស្ទឹងស្លាគូ (USP) ផែនការស្ដារឡើងវិញអាងទឹក តូចៗ និង ផែនការអភិវឌ្ឍន៍ស្រះទឹកតូចៗ (PDP) ។


USP ត្រូវបានចាត់ទុកជា "ការអភិវឌ្ឍន៍ផ្ទៃធនធានទឹកសំរាប់ផ្ទៃដីធំ និង SRP PDP ត្រូវបានចាត់ទុក ជា "ការអភិវឌ្ឍន៍ធនធានទឹកខ្នាតតូចសំរាប់ការធ្វើដំណាំស្រូវ និង ដំណាំបន្ទាប់បន្សំ" និង "ការអភិវឌ្ឍន៍ ប្រព័ន្ធទ្រង់ទ្រាយការដាំដុះចំរុះខ្នាតតូច ក្នុងភូមិ ឬ តាមគ្រួសារ ។

ដូច្នេះប្រព័ន្ធផលិតកម្មទាំងបីបានដាក់បញ្ចូលជា "ផែនការតំរូសំរាប់ការស្ដារ និង ជួសជុលឡើងវិញនូវ ប្រព័ន្ធផលិតកម្មកសិកម្មក្នុងប្រទេសកម្ពុជា" ។

តារាងផែនការគំរួ

កំរ្	ផែនការក្នុងការសិក្សា	ដំណាំគោលដៅ និង សត្វ			
ការអភិវឌ្ឍន៍ផ្ទៃធនធាន ទឹកសំរាប់ផ្ទៃដី ស្រោចស្រាធំ	ផែនការជួសជុលឡើងវិញប្រព័ន្ធ ស្រោចស្រពផ្នែកខាងលើស៊ីងស្អាតូ (USP)	ស្រូវ និង ដំណាំបន្ទាប់ បន្សំ			
ផែនការស្ដារឡើងវិញនូវអាងទឹកតូច	ផែនការស្ដារឡើងវិញអាងទឹកតូច (SRP)	ស្រូវ និង ដំណាំបន្ទាប់ បន្សំ			
ំ ជំនការអភិវឌ្ឍន៍ស្រះទឹកតូច	ផែនការអភិវឌ្ឍន៍ស្រះទឹកតូច (PDP)	សំណាប បន្លែ ដំណាំសំរាប់ លក់ បសុសត្វ។ល។			

ផ្ទៃដីកសិកម្មបានបញ្ជាក់ដោយគំរូមួយ ឬ គំរូពីរ បី ដូចបានបង្ហាញក្នុងរូបភាពខាងក្រោមៈ

នៅក្នុងការសិក្សានេះ USP SRP PDP ត្រូវបានរៀបចំជា "គំរោងឯករាជ្យ" ប៉ុន្តែ SRP និង PDP អាចនឹងត្រូវស្នើបន្ថែមការស្រោចស្រពផ្ទៃដីធំ១ សំរាប់ការកំណត់គោលបំណង និង ទ្រទ្រង់ប្រព័ន្ធដាំដុះចំរុះ របស់គ្រួសារកសិករ ។

10.1.2 ជំណាក់កាលអតិចឡូន៍

ក៏វិតកំណត់នៃការអភិវឌ្ឍន៍មានឥទ្ធិពលយ៉ាងខ្លាំងទៅលើតំលៃតំរោង និង ការទ្រទ្រង់ ។ ការងារ អភិឌ្ឍន៍ គួរតែធ្វើតាមដំណាក់កាលអាស្រ័យលើស្ថានភាពបច្ចុប្បន្នរបស់ផ្ទៃដីដាំដុះដែលបានកំណត់ ។

លទ្ធផលនៃការសិក្សាបង្ហាញថា នៅទីនោះនៅមានការខ្វះខាតស្បៀង ជំងឺឆ្លង (មូលហេតុនៃការ ស្លាប់ដោយជំងឺធំបំផុតនៅខេត្តតាកែវ គឺជំងឺគ្រុនចាញ់ បន្ទាប់មករោគរបេង និង បណ្តាលមកពីជំងឺរលាក ទងសូត) ការខ្វះខាត ការប្រើប្រាស់ទឹកដែលមានសុវត្ថិភាព និង ឧបករណ៍អនាម័យ ។ ចំនួននៃកម្មវិធី និង គំរោងសំរាប់កែលំអស្ថានភាពទាំងអស់នេះត្រូវបានធ្វើដោយ IOs និង NGOs ក្នុងខេត្តតាកែវ ហើយ ផលប្រយោជន៍ ពិតប្រាកដត្រូវបានបង្កើតឡើងតាមរយៈគំរោង និង កម្មវិធីទាំងអស់នោះ ។ NGOs មូលដ្ឋាន ដែលបុគ្គលិករបស់គេបានបណ្តុះបណ្តាលដោយគំរោងដែលបានចាប់ផ្តើមកម្មវិធីរបស់ពួកគេ ដោយសហប្រតិបត្តិ ការជាមួយ NGOs និង IOs អន្តរជាតិ ។

កម្មវិធីសីលាត្រូវបានធ្វើជាមួយការសំរបស់រូលនៃ UNDP និង ក្រសួងអភិវឌ្ឍន៍ជនបទ (MRD) ដែលបានប្រតិបត្តិនៅក្នុងខេត្តជាច្រើនរួមទាំងខេត្តតាកែវផងដែរ ។ កម្មវិធីគឺឆ្ពោះទៅរកការកែលំអហេដ្ឋា រចនាសម្ព័ន្ធជនបទដូចជា: ផ្លូវថ្នល់ សំណង់ សាលាវៀន អណ្ដូងទឹក ស្រះទឹកជាលក្ខណ:សហគមន៍សំរាប់ ប្រើប្រាស់តាមគ្រួសារ ។ល។ ដែលម្ចាស់ការទ្រទ្រង់ដោយគណ:កម្មការភូមិអភិវឌ្ឍន៍ភូមិ (VDC) ។ ក្នុងការ ពិចារណាលើស្ថានភាពទាំងនោះ ក៏រិតគោលដៅនៃការអភិវឌ្ឍន៍របស់ផែនការ ដែលនឹងរៀបចំជា ការកែលំអ ផលិតកម្មកសិកម្មដោយ ការអភិវឌ្ឍន៍ធនធានទឹក និង កែលំអសំណង់ស្រោចស្រព ។ មិនចាំបាច់និយាយពី គោលដៅអភិវឌ្ឍន៍ផ្សេងទៀត ដែលគួរតែត្រូវពិចារណានៅក្នុងផែនការឡើយ ។

តារាងខាងក្រោមបង្ហាញពីដំណាក់កាលអភិវឌ្ឍន៍ សេចក្តីត្រូវការ បញ្ហា និង គំរោងដែលរ្យប់ផែនការ ជាដំណាក់កាល ។

តារាងដំណាក់កាលអភិវឌ្ឍន៍ និង គោលដៅ

គោលដៅរបស់ដំណាក់កាលអភិវឌ្ឍន៍ និង តំរូវការ	វិ បញ្ហាជាចំបង	សមាសភាគគំរោង
កិរិត-1: តំរូវការចាំបាច់របស់មនុស្ស ● ការថែរក្សាសុខភាពជាបឋម		សុខភាព (ការចាក់ផ្ដាំបង្ការ ថែនការគ្រួសារ) ការសិក្សាបឋម
ទីកថីក លំនៅដ្ឋាន បណ្ដុះបណ្ដាលវិជ្ជាជីវៈ ។ល។	 កំលាំងពលកម្មស្ត្រី និង កុមារ លំនៅដ្ឋាន ការងារបន្តិចបន្តួច ជំមីឆ្លង ។ល។ 	• ជំនួយស្បៀងសង្គោះបន្ទាន់ ‹ស្បៀងពលកម្ម› ។ល។
ការិត.2: បោះឋ្មារចនាសម្ព័ទ្ធ	ជលិតកម្មទាប	 ការស្ដារឡើងវិញឧបករណ៍ស្រោច ស្រព ការអភិវឌ្ឍន៍ធនធានទឹក ការគ្រប់គ្រងសត្វចម្ងៃ ការបណ្ដុះបណ្ដាលកសិករ ។ល។
ក៏រិត-3: ការកាត់បន្ថយតំលៃផលិតកម្ម កែលំអក់វែនៅក្នុងសកម្មភាព ផលិតកម្ម	ប្រសិទ្ធិភាពទាប (ចំណូល)	 ក្រុមកសិករសំរាប់ការទទូល និង ការផ្សព្វផ្សាយ ក្រោយការច្រូតកាត់ ទីផ្សារ សហគមន៍កសិករប្រើប្រាស់ទីក (FWUC) ។ល។
ករិត-4:	តំលែបន្ថែមទាប • ខ្វះជំនាញកែច្នៃ • ខ្វះថវិកា • ខ្វះទីជ្យារ ។ល។	 បណ្តុះបណ្តាលជំនាញកែច្នៃ ការចាប់ផ្តើមនៃផ្នែកឯកជន ឥណទានខ្នាតតូចសំរាប់ កសិ-ឧស្សាហកម្ម

តំបន់សិក្សាត្រូវបានចាត់ទុកស្ថិតនៅក៏រិត-រ ឬក៏រិត-2 និង ការអភិវឌ្ឍន៍ដ៏ទូលំទូលាយនៃហេដ្ឋារចនា សម្ព័ន្ធសំរាប់ផលិតកម្មកសិកម្មគឺជាប្រការចាំបាច់ ។

10.1.3 គឺវិតគំណត់មេស់ប្រព័ន្ធស្រោចស្រព

ចំពោះប្រព័ន្ធស្រោចស្រពមានបីប្រភេទដូចខាងក្រោម:

(1) បច្ចេកទេសស្រោចស្រា

បច្ចេកទេសប្រព័ន្ធស្រោចស្រពសំរាប់ត្រូតពិនិត្យ គ្រប់គ្រងសំណង់រហូតដល់ប្រព័ន្ធចែកចាយទឹក ។ ទឹក ស្រោចស្រពបានបែងចែកទៅតាមស្រែនីមួយ១តាមទ្វារនៃសំណង់ នៅប្រឡាយចែកចាយបច្ចេកទេសប្រព័ន្ធ ស្រោចស្រពអាចគ្រប់គ្រងទឹកតាមនាទីដោយប្រដាប់វាស់ស្ទង់រហូតដល់ដឹកសិដ្ឋាន ដែលនៅខាងចុងប្រព័ន្ធ ។

(2) ការស្រោចស្រតពាក់កណ្ដាលបច្ចេកទេស

ប្រព័ន្ធស្រោចស្រពពាក់កណ្ដាលបច្ចេកទេសសំរាប់ត្រូតពិនិត្យ គ្រប់គ្រងសំណង់នៅលើប្រឡាយមេ និង ប្រឡាយបន្ទាប់បន្សំ ។ ការស្រោចស្រព គឺការចែកចាយទឹកទៅកាន់ប្លុកចែកចាយតាមទ្វារនៃសំណង់ ។ ចាប់ពី ប្រឡាយចែកចាយទឹក ត្រូវបានចែកចាយដោយគ្មានសំណង់អចិន្ត្រៃយ៍ ប៉ុន្តែការត្រូតពិនិត្យជាបណ្ដោះអាសន្ន ជាមួយសំភារៈមូលដ្ឋានដូចជាដី ឈើ ។ល។

(3) ការស្រោចស្រពភ្នានលក្ខណ:បច្ចេកទេស

ប្រព័ន្ធស្រោចស្រពត្មានលក្ខណៈបច្ចេកទេសសំរាប់ត្រួតពិនិត្យសំណង់មួយចំនួននៅលើប្រឡាយមេ និង ប្រឡាយបន្ទាប់បន្សំ ។ សំណង់ទាំងនោះប្រើប្រាស់សំរាប់ត្រួតពិនិត្យកំពស់ទឹកនៅក្នុងប្រឡាយដែលចែកចាយ ទឹកទៅប្រឡាយផ្សេងៗទៀត ។ របៀបចែកចាយដូចជាការផ្លាស់ប្តូរពីមួយទៅមួយធ្វើអោយទឹកមិនគ្រប់គ្រាន់ ដល់ប្រព័ន្ធស្រោចស្រព ។ តាមការពិចារណាអំពីក៏រិតសំណង់ស្រោចស្រព និង បទពិសោចនៃការគ្រប់គ្រង ទឹកដោយសមាគមន៍កសិករប្រើប្រាស់ទឹក (FWUC) និង មន្ទីធនធានទឹក និង ឧតុនិយម (DWRAM) បច្ចុប្បន្ននេះ ប្រព័ន្ធស្រោចស្រពពាក់កណ្តាលបច្ចេកទេសត្រូវបានចាត់ ទុកជាគោលដៅក៏រិតអភិវឌ្ឍន៍នាពេល បច្ចុប្បន្ន ។ គោលដៅក៏រិតរបស់សំណង់នីមួយៗបានរៀបរាប់លំអីតក្នុងផ្នែក 13.2 គោលដៅក៏រិតនៃការ ស្ថាបនាឡើងវិញ និង ការស្តារ ។

10.2 គោលចំណទ

10.2.1 គោលចំណល់នគារចូលរួម

អាចនិយាយបានថាការចូលរួមរបស់អ្នកទទួលផលប្រយោជន៍ ជានិច្ចជាកាលមិនបានគាំទ្រដល់ កិច្ចសន្យាក្នុងការអភិវឌ្ឍន៍ឡើយ ប៉ុន្តែការគាំទ្រមិនអាចសំរេចបាន ដោយគ្មានការចូលរួមឡើយ ។

ការសាងសង់សំណង់ស្រោចស្រពមួយចំណែក ត្រូវរ៉ាប់រងដោយអ្នកទទូលផលប្រយោជន៍ដោយខ្លួនឯង។ ម៉្យាងវិញទៀតការងារប្រតិបត្តិការ និង ការថែទាំ (O&M) សំណង់ស្រោចស្រព ក៏នឹងត្រូវធ្វើដោយអ្នក ទទួលផលប្រយោជន៍ ឬ សមាគមន៍កសិករប្រើប្រាស់ទឹក (FWUC)/ ក្រុមកសិករប្រើប្រាស់ទឹក (FWUG) ។ សំរាប់ការងារទាំងអស់នេះអ្នកទទួលផលប្រយោជន៍ គួរតែចូលរួមពីដំណាក់កាល ដំបូងរបស់គំរោង ដូចជា ផែនការ និង ការគ្រោង ។

សំរាប់គំរោងស្ដារអាងទឹកតូច១ បញ្ហារួមគឺ ការធ្វើស្រែក្នុងអាងទឹកខុសច្បាប់ ។ ជាទូទៅអ្នកធ្វើស្រែ ខុសច្បាប់ក្នុងអាងទឹក និង អ្នកធ្វើស្រែក្នុងផ្ទៃដីស្រោចស្រពដែលជាដីរបស់ភូមិ ហើយបញ្ហា និង ការវិវាទទាំង នោះត្រូវបានដោះស្រាយដោយអ្នកទទួលផលប្រយោជន៍ខ្លួនឯង ដោយមានការសំរបស់រូលពីក្រសួងធនធានទឹក និង ខុតុនិយម (MOWRAM) និង ការិយាល័យគំរោង ។

10.2.2 គាពដែលអាចប្រព្រឹត្តនៅជាន និ១ គាពដែលអាចនុកចិត្តបាន

ចាប់តាំងពីគំរោងស្រោចស្រពជាចំបងអាស្រ័យដោយទឹកភ្លៀង វ៉ាគឺជាប្រការសំខាន់ណាស់ក្នុងការ សន្ទត់លើភាពដែលអាចប្រព្រឹត្តទៅបាន និង ភាពដែលអាចទុកចិត្តបានក្នុងផែនការសំរាប់គំរោងស្រោចស្រព ។ 80% នៃភាពដែលអាចទុកចិត្តបាន គឺជាទូទៅត្រូវបានអនុវត្ត " 80%" មានន័យថាតំបន់ស្រោចស្រព ដែលបានស្នើអាចទទួលបរិមាណទឹកដែលស្នើក្នុង 4 នៃ 5 ឆ្នាំ ។ ក៏រិតភាពដែលអាចប្រព្រឹត្តទៅបាន គឺកំណត់ក៏រិតនៃការអភិវឌ្ឍន៍គំរោង ដូច្នេះនោះជាផ្លូវសេដ្ឋកិច្ចដ៏ពិតប្រាកដមួយដែលអាចប្រើទុកចិត្តបាន ។

ក្នុងប្រទេសកម្ពុជាជារឿយ១តូរលេខផ្ទៃដីស្រោចស្រព ត្រូវបានប៉ាន់ស្ថានដោយឈរលើមូលដ្ឋាន តំលែមធ្យម និង ក៏វិតប្រចាំឆ្នាំ ។ តំលែមធ្យមសំរាប់រយៈពេលវែងជាញឹកញាប់មិនបង្ហាញអោយ ឃើញនូវការខ្វះខាតទឹកជាក់លាក់សំរាប់ដំណាំ និង ទឹកជំនន់ដ៏ធ្ងន់ធ្ងរឡើយ ។ សូម្បីនៅរដូវភ្លៀង ក៏មានភាព រាំងស្ងួតមួយរយៈដែរ ដែលនាំអោយប៉ះពាល់ដល់ការលូតលាស់របស់ដំណាំ ហើយស្ថានភាពបែបនេះត្រូវដាក់ បញ្ចូលក្នុងការពិចារណាដោយការវិភាគភាពដែលអាចប្រព្រឹត្តទៅបាន ។

10.2.3 គារថែលាំ សិច គារគែលអមុខចារជើម

មុនពេលផែនការ មុខងារដើមនៃប្រព័ន្ធដែលមានស្រាប់ គួរត្រូវបានធ្វើការត្រួតពិនិត្យ ។ ប្រសិនបើ មុខងារដើមសមល្មមសំរាប់អនុវត្តន៍ផ្ទៃដីស្រោចស្រព ការងារស្ដារឡើងវិញ គួរគប្បីស្នើឡើងទោះណាវាមិន សមល្មម ការជួសជុលឡើងវិញគប្បីស្នើឡើង ។ ទោះបីជាយ៉ាងណាក៏ដោយការជួសជុលឡើងវិញមិនមានន័យ ជានិច្ចថាការពង្រីកផ្ទៃដីស្រោចស្រពជាមួយការអភិវឌ្ឍន៍នៃអាងទឹកធំ១ និង ប្រឡាយឡើយ ។ ការពិចារណា លើភាពត្រឹមត្រូវនៃបច្ចេកទេស និង ការប៉ះពាល់បរិស្ថាន វាបានបញ្ជាក់ពីការថែទាំសមត្ថភាពដើម និង ពង្រីក ផ្ទៃដីស្រោចស្រព ឬ វិចីសាស្ត្រស្រោចស្រពគូរតែបានកំណត់អោយបានសមស្រប ។

៩ភូត 11 ខេសខាននីត

ធនធានទឹក គឺជាបញ្ហាសំខាន់បំផុតមួយ សំរាប់ផែនការ និង ការគ្រោងរបស់ប្រពន្ធ័ស្រោចស្រព ។ ជំពូកនេះទាក់ទងជាមួយវិធីសាស្ត្រទាំងឡាយសំរាប់ប៉ាន់ស្មានភាពអាចរកបានរបស់ធនធានទឹក និង ទឹកជំនន់ ជាពិសេសសំរាប់ដីទំនាបដែលលាតសន្ធឹងទៅផ្នែកខាងកើតរបស់ភ្នំដ៏វិនៅក្នុងប្រទេសកម្ពុជា ។ ទោះបីជាយ៉ាង ណាក៏ដោយ ដោយសារការខ្វះខាតទិន្នន័យ និង ពត៌មាន ឯកសារនេះគឺជាកម្មវត្ថុសំរាប់ការពង្រឹងដោយមាន ទិន្នន័យ និង ពត៌មានបន្ថែមថ្មី១។

11.1 នាពអាចគេលាននៃនិគ

ភាពអាចរកបាននៃទឹក គឺជាពត៌មានសំខាន់ណាស់សំរាប់ការគ្រោងរបស់សំណង់ទន្លេ ។ ទោះបីជា យ៉ាងណាក៏ដោយ គ្មានទិន្នន័យរំហូរដែលអាចរកបានភាគច្រើនរបស់ទន្លេតូច១ និង ស្ទឹងនៅក្នុងប្រទេស កម្ពុជា ។

ទំនាក់ទំនងរវាងរំហូរប្រចាំឆ្នាំ (AQ) និង ទឹកភ្លៀងប្រចាំឆ្នាំ (AR) និងបង្ហាញដោយសមិការ^រ ខាងក្រោម ។

$$AQ(mm) = 0.982AR - 863$$

យោងលើសមីការនេះ រំហូរប្រចាំឆ្នាំនៅដីទំនាប ដែលលាតសន្ធឹងពីខេត្តបាត់ដំបងដល់ខេត្តតាកែវ គឺ 315មម ដែលនៅកន្លែងទឹកភ្លៀងប្រចាំឆ្នាំគឺប្រហែល 1.200មម ។ អត្រារំហូរប្រចាំឆ្នាំគឺ 25% ។ បើ ទឹកភ្លៀង ប្រចាំឆ្នាំស្មើនឹង 1500មម វំហូរប្រចាំឆ្នាំគឺ 610មម ដែលនោះប្រហែលពីរដងនឹងរំហូរប្រចាំឆ្នាំ ក្នុងទឹកភ្លៀងប្រចាំឆ្នាំ 1200មម ។ នៅពេលដែលទឹកភ្លៀងតិចជាង 1200មម សមីការខាងលើមិនអាច អនុវត្តបានទេ ។ ការបាត់បង់ និង ការធ្លាក់ចុះរបស់រំហូរទាំងពីរនេះដូចទឹកភ្លៀងថយចុះ ។ រំហូរប្រចាំឆ្នាំ ដែលបានគ្រោងទុក មុខជាប្រហែល 200មម នៃ 1000មម ទឹកភ្លៀងប្រចាំឆ្នាំ ឬ 150មម នៃ 900មម ទឹកភ្លៀងប្រចាំឆ្នាំ ។

ដើម្បីប៉ាន់ស្មានរំហូរប្រចាំខែរបស់រំហូរទន្លេពីភ្នំដ៏វីទៅកាន់ដីទំនាបខាងកើត សមីការ² ជាបន្តបន្ទាប់នឹង មានប្រយោជន័ ។

$$ER = R - L$$

 $L = 1.23 \times ET_0 \times (1 - \exp^{-0.006 \times R})$

ដែល ER: ទឹកភ្លេងបានការដែលចូលរួមទៅរំហូរ (មម)

R: ទឹកភ្លៀងប្រចាំខែ (មម)

L: ការបាត់បង់ (មម)

ETo: បូតង់ស្យែលអេវ៉ាប៉ូត្រែនស្ពើរ៉េស៊ីន (មម)

^{1.} តារាងភ្ជាប់ A: ដលសាស្ត្រ ការសិក្សានូវការស្ដារប្រព័ន្ធស្រោចស្រពនៅក្នុងប្រទេសកម្ពុជា លេខាធិការដ្ឋានទន្លេមេគង្គ មិថុនា ឆ្នាំ 1994 ។

^{2.} សមីការនេះបាន១ទូលពីសហសម្ព័ន្ធវិភាតរវាងទឹកភ្លេងប្រចាំខែ និង រំហូរប្រចាំខែរបស់អាងស្ទឹងព្រែកត្នោត ។

 $Q = 0.66ER_0 + 0.23ER_1 + 0.08ER_2 \cdot 0.015ER_3 + 0.01ER_4 + 0.005ER_5$

ដែល

Q: រំហូរប្រចាំខែ (មម)

ER: ទឹកភ្លៀងបានការ (មម)

តូរលេខដែលភ្ជាប់មានរ្យេងលំដាប់លំដោយ 0 1 2 3 និង 4 បង្ហាញខែនេះ ខែមុន 2 ខែកន្លងទៅ ប៊ីខែ និង បនខែកនុងទៅ ។

តារ៉ាខ ស៊ីន់ស្មាន ETo ពីធិខ្លិយអាគាសនាគុដែលធន្ទលនានពីពោចិនគុខដោយគារគែប្រែ តែនប៉ែន (Modified Penman)

មកវា	កុម្ភះ	មិនា	មេសា	ឧសភា	មិថុនា	កក្កដា	សីហា	កញ្ញា	តុលា	វិច្ឆិកា	ធ្ន
162	174	216	206	191	167	153	159	140	133	150	156

ប្រហែល 65% នៃទឹកភ្លេងបានការ ដែលចូលរួមទៅរំហូរក្នុងខែដូចគា្ន 25% នៅខែទីពីរ និង 8% ទៅ ខែទីបី ។

ក្នុងករណីស្ទឹងតូច១ ឧទាហរណ៍ បើអ្នកទទួលពត៌មានថាស្ទឹងមិនហូរនៅក្នុងរដូវប្រាំង ពីខែកុម្ភ: ដល់ ឧសភា មេគុណរបស់ ER3 ER4 និង ER5 ត្រូវថយចុះ ឬ សូន្យ និង ជួសវិញ មេគុណរបស់ ERO និង ER1 ដែលផ្តល់ឱ្យតំលៃធំ ដើម្បីអោយរំហូរប្រចាំខែក្នុងកំឡុងពី ខែកុម្ភ: ដល់ ខែឧសភាក្លាយជាសូន្យ ឬ តិចបំផុត ។

រំហូរប្រចាំខែរបស់ស្ទឹងតូច១ ដែលមានប្រភពដើមពីតំបន់ភ្នំនៅក្នុងតំបន់ ជាកន្លែងដែលទឹកភ្លឿង ប្រចាំឆ្នាំគឺប្រហែល 1200មម មានបង្ហាញខាងក្រោម ។

តារាខ ខំហុខនៅតួខស្នីខតុខនៅតួខដ៏នំនាម

x1.000 ម ³/ខែ/គម²

រយះពេលខូប	មករា	កុម្ភ:	មិនា	មេសា	ឧសភា	មិថុនា	កក្កដា	សីហា	កញ្ញា	តុលា	វិច្ឆិកា	រដ្ឋ
2 ឆ្នាំ	គ្នាន	0	0	0	0	7	9	19	59	85	35	9
5ឆ្នាំ	គ្នាន	0	0	0	0	0	4	6	39	33	21	5

ស្ទឹងតូចៗរីងស្ងួតពីខែ មករា និង ខែ ឧសភា លើកលែងតែមានភ្លៀងធ្លាក់ខ្លាំងពីរ បីដង ។ រំហូរចាប់ ផ្តើមនៅក្នុងខែ មិថុនា ឬ កក្កដា ។ ខែ កញ្ញា និង ខែ តុលា គឺជារដូវដែលមានរំហូរខ្ពស់បំផុត ។ ក្នុងខែ វិច្ឆិកា និង ខែ ធ្នូ រំហូរបានថយចុះគួរឱ្យកត់សំគាល់ ។

បើផ្ទៃរងទឹកភ្លៀងរបស់ស្ទឹងតូច គឺភាគច្រើនជាស្រូវពឹងលើទឹកភ្លៀង រំហូរនឹងមិនត្រូវបានសង្ឃឹម ទុករហូតដល់ដីស្រែពេញដោយទឹក និង ជាពេលចាប់ផ្តើមរបស់រំហូរ ដែលជាញឹកញាប់នាខែ កក្កដា ក្នុងឆ្នាំ ធម្មតា និង ប្រហែលជាខែ សីហា ឬ កញ្ញា ក្នុងឆ្នាំរាំងស្ងួត ។

តួរកត់សំតាល់ថា រំហូររបស់ស្ទឹងមិនអាចបង្វែរទឹកទាំងអស់ ដោយសំណង់បង្វែរទឹកតូចទេ ដែល គ្មានសមត្ថភាពស្តុកទឹក ពីព្រោះចំណែកធំរបស់រំហូរ គឺរំហូរព្យុះ ដែលជាទូទៅគឺធំជាងសមត្ថភាពបង្វែរទឹកនៃ សំណង់បញ្ចូលទឹក ។ វិមាណប្រចាំខែដែលបង្វែរដោយសំណង់បញ្ចូលទឹកមួយដែលប៉ាន់ស្ថានត្រូសៗដោយ លក្ខខ័ណ្ឌ ³ ជាបន្តបន្ទាប់ ។

³ លក្ខខ័ណ្ឌបានសំរេចដោយប្រៀបធ្យេចជាមួយធារទឹកទន្លេរៀងរាល់ម៉ោង ដែលវាស់ដោយប្រដាប់វាស់ស្ទង់កំពស់ទឹកស្វ័យ ប្រវត្តិដែលបាន តំលើងនៅការដ្ឋានអាងទឹកទំនប់លោក លើស្ទឹងស្លាតូ និង ការគ្រោងសមត្ថភាពបង្វែរទឹក។ រយៈពេល វាស់វែងគឺនៅតែត្រូវបានកំណត់ក្នុងរយៈពេលពីរបីខែ ។ ដូច្នោះលក្ខខ័ណ្ឌគឺសំដៅលើការពិនិត្យឡើងវិញ នៅពេលដែល ទិន្នន័យធារទឹកត្រូវបានប្រមូលសំរាប់រយៈពេលពីរបីឆ្នាំ ។

Qr > Qc/0.7, Qin = Qc

Qr < Qc/0.7, Qin = 0.7 Qr

លើលក្ខខ័ណ្ឌដែល $Qc = CA/(50 \sim 150)$

ដែល Qin: បរិមាណទឹកដែលបង្វែរប្រចាំខែ

Qr: ចារទឹកប្រចាំខែ

Qc: មាឌុទឹកចូល (ម³ / វិ)

CA: ផ្ទៃរងទឹកភ្លេង (គម²)

11.2 ฉัสธ์ฉฉั

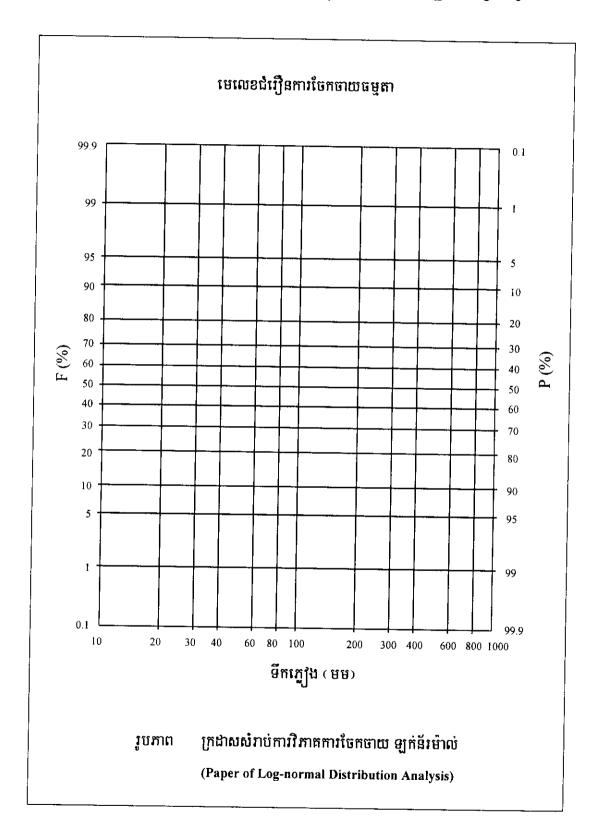
បារទឹកជំនន់ជាពត៌មានសំខាន់ណាស់សំរាប់ការគ្រោងសំណង់របស់ទន្លេ និង ប្រឡាយទឹក ។ ទោះបីជា យ៉ាងណាក៏ដោយ គា្មនទិន្នន័យទឹកជំនន់ដែលអាចរកបានសំរាប់ស្ទឹងតូចៗ និង ខ្សែទឹកនៅក្នុងប្រទេសកម្ពុជាទេ ។

ិធីសាស្ត្របួនយ៉ាងដូចជា : (1) វិធីសាស្ត្រ (ដែលក្នុងនេះហៅថាវិធីសាស្ត្រ IRS) បានត្រូវយល់ព្រម ក្នុងការសិក្សានូវការស្ដាឡើងវិញប្រព័ន្ធស្រោចស្រពនៅក្នុងប្រទេសកម្ពុជា ឆ្នាំ 1994 របស់លេខាធិការដ្ឋាន ទន្លេមេគង្គ អាស្រ័យលើកត្ដារីកចំរើន សំរាប់ភាពកើតឡឹងជាញឹកញាប់នៃទឹកជំនន់ក្នុងផ្ទៃរងទឹកភ្លៀងក្នុង ប្រទេសថៃ ដែលមានផ្ទៃតិចជាង 15.000តម² និង ក៏រឹតកំពស់ក្រោម 100ម និង (2) រូបមន្ដ Rational (3) វិធីសាស្ត្រឯកត្ដាក្រាហ្វិកជលសាស្ត្រ (Unit Hydrograph Method) (4) រូបមន្ដប Manning ត្រូវបានពន្យល់ ។

(1) ភ្លេក្រមែលអាចកើតថា៩

រូមមន្ត Rational និង វិធីសាស្ត្រឯកត្តាក្រាហ្វិកជលសាស្ត្រត្រូវការភ្លៀងដែលអាចកើតមាន ។ វិធី សាស្ត្រតូម៉ាស់ និង វិធីសាស្ត្រហាហ្សែន បានបង្ហាញនូវវិធីសាស្ត្រងាយ១ ដើម្បីប៉ាន់ស្មានតំលៃដែលអាចកើត មានដោយការបែងចែកស្ថិតិជាលំដាប់ (Plotting Order Statistics) លើក្រដាសប្រូបាប៊ីលីតេ (Probability Paper) យោងទៅលើទីតាំងនៃកាប៉ែងចែក ។

វិធីសាស្ត្រ ហាហ្សែន : P = 100(2m-1)/(2N)


វិធីសាស្ត្រ តូម៉ាស់ : P = 100m/(N+1)

ដែល N: ចំនួននៃកំណត់ត្រា

m: លំដាប់ចំនួននៃតំលៃចុះ ដោយធំបំផុតស្នើនឹង 1

P: ទីតាំងនៃកាប៉ែងចែក

ក្រដាសខាងក្រោម គឺជាសំណាករបស់ក្រដាសប្រូបាប៊ីលីតេ ។ ក្រដាសមេលេខជំរឿនការចែកចាយ ធម្មតានេះជាញឹកញាប់ត្រូវបានប្រើប្រាស់សំរាប់ប៉ាន់សា្ទនប្រូបាប៊ីលីតេ របស់ទឹកភ្លៀងលើសប្រចាំថ្ងៃ ។

(2) វិទីសាស្ត្រ IRS

វិធីសាស្ត្រនេះតាងដោយសមីការជាបន្តបន្ទាប់ ។

 $MAF = AREA^{0.9}$

 $Q_{10} = 1.53 \text{ MAF}$

 $Q_{20} = 1.77 \text{ MAF}$

 $Q_{50} = 2.00 \text{ MAF}$

 $Q_{100} = 2.20 \text{ MAF}$

ដែល MAF : ទឹកជំនន់មធ្យមប្រចាំឆ្នាំ (ម³ / វិនាទី)

Q_nៈ ទឹកជំនន់ដែលសង្ឃឹមទុកថានឹងកើតមិនលើសពីម្តង រឿងរាល់ n ឆ្នាំជាមធ្យមភាគ

n: រយៈពេលខូប (ឆ្នាំ) ។

ជាឧទាហរណ៍ ផ្ទៃរងទឹកភ្លៀងដែលប្រើប្រាស់ និង ទឹកជំនន់ដែលប៉ាន់ស្ពានដោយវិធីសាស្ត្រនេះមានដូច ខាងក្រោម :

តារាខ នីគេខឹងន់ $(Q_{10} \; \hat{a} \hat{e} \; Q_{100})$

ឈ្មោះខ្សែទឹក	ឈ្មោះអាងទឹក	ផ្ទៃរងទឹកភ្លេវុង (គម²)	ទឹកជំនន់ Q ₁₀ (ម³/វិ)	ទឹកជំនន់ Q ₁₀₀ (ម³/វិ)
ដូនភេ	ខ្ពប់ត្របែក	137	128	184
គ្រូច	អូរសារ៉ាយ	51	53	76
ត្រល់	ទំនប់លោក	332	284	409

(3) subs Rational

រូបមន្ត Rational តូវបានប្រើសំរាប់ស្ទឹងតូចរបស់ផ្ទៃរងទឹកភ្លៀងណាដែលតិចជាង 50គម² ។ ទឹកជំនន់ ខ្ពស់បំផុតបានតាងដោយសមីការដូចខាងក្រោម :

$$Q_{\text{max}} = 1/3.6 \times f \times r_t \times A$$

ដែល:

Qmax:

ទឹកជំនន់ខ្ពស់បំផុត (ម³/វិ)

f:

មេតុណវំហូរ (មើលតារាងបន្ទាប់)

តារាច មេគុណច្បៃខ្លាំច

<u> </u>	0.75 - 0.9
តំបន់កំ និង ព្រៃឈើ	0.5 - 0.75
ដីវាលកស្ចិកម	0.45 - 0.6
ដីស្រែក្រោមការស្រោចស្រព	0.7 - 0.8
សឹងតចនៅទីវ៉ាល	0.45 - 0.75
ស៊ីងភ្នំ	0.75 - 0.85

r,: អាំងតង់ស៊ីតេទឹកភ្លៀង (មម / ហ.ត)

A: ផ្ទៃរងទឹកភ្លៀង (គម²)

ពេលដែលទឹកជំនន់ប្រមូលផ្តុំដែលត្រូវដឹង ដើម្បីប៉ាន់ស្មានអាំងតង់ស៊ីតេទឹកភ្លៅងក្នុងកំឡុងពេលទឹក ជំនន់ប្រមូលផ្តុំ ។

អាំងតង់ស៊ីតេទឹកភ្លេង ជាញឹកញាប់ត្រូវបានប៉ាន់ស្មានដោយសមីការជាបន្តបន្ទាប់នៅពេលគ្មានទិន្នន័យ អាំងតង់ស៊ីតេទឹកភ្លេង ។

$$r_t = R_{24} / 24 \times (24/T)^n$$

ដែល

 r_i : T - ម៉ោងអាំងតង់ស៊ីតេទឹកភ្លេង្រអតិបរមា (មម / ម៉)

 R_{24} : ទឹកភ្លេងប្រចាំថ្ងៃ (មម)

 $0.5 \sim \, 0.667$. ជាទូទៅ 0.5 ត្រូវបានប្រើ។

ពេលដែលទឹកជំនន់ប្រមូលផ្តុំត្រូវបានគណនាដោយសមីការរីហា (Rziha) ឬ សមីការហ្វ៊ុយគុយស៊ីម៉ា -ការដួយ៉ា (Fukushima-Kadoyo) ។

សមីគារីមោ

$$T_a = 72 \times (h/l)^{0.6}$$
 (តម/ម៉)

ដែល T_a : ពេលទឹកជំនន់មកដល់

l: ប្រវែងស្ទឹងពីចំណុចប៉ាន់ស្ពានទឹកជំនន់ទៅកន្លែងបញ្ចប់ផ្នែកខាងលើរបស់ជ្រលងភ្នំ (ជម)

ភាពខុសគ្នានៃក៏វិតកំពស់រវាង L - ប្រវែង (គម) h:

បើសមីការនេះ ឱ្យពេលទឹកជំនន់មកដល់តិចជាងមួយម៉ោង ពេលទឹកជំនន់មកដល់មួយម៉ោងនឹង ត្រូវយក ។

សនីការ ហ៊្វយគុយស៊ីម៉ា កាជួយ៉ា

$$t_p = C \times A^{0.22} \times r_e^{-0.35}$$

ដែល C: មេគុលដោយយោងទៅលើការប្រើប្រាស់ដីដូចខាងក្រោម :

តំបន់ភ្នំធម្មជាតិ = $250 \sim 350 = 290$

តំបន់វាលស្មៅ 190 \sim 210 =200

ទីនេះ C=290 ត្រូវបានយក

A: ផ្ទៃរងទឹកភ្លេង (គម 2)

មធ្យមភាគទឹកភ្លេ្យងបានការក្នុងពេលទឹកជំនន់ប្រមូលផ្តុំ (មម / ម៉) r_{ρ} :

តារាងបន្ទាប់បង្ហាញពីការគណនាទឹកជំនន់សំរាប់អាងទឹកភ្លេងអាង 160 ដោយអនុវត្តសមិការ ហ្វ៊ុយគុយស៊ីម៉ា-កាដូយ៉ា។

តារាខ ការគណនានីគសិននៃមេស់អាចនីគ អាច 160 ខេត្តកាកែច

អាង 160

11110 100										
រយៈពេលខូប	R24	С	Α	rt	re	tp	d (ម៉)	n	f	Qp
(ឆ្នាំ)	(មម/ថ)		(គម ²)	(មម/ម៉)	(មម/ម៉)	(នាទី)				(B ₃ \13)
100	147	290	2	20.09	14.07	133.90	2.23	0.5	0.7	7.81
20	118	290	2	15.39	10.78	146.99	2.45	0.5	0.7	5.99

(4) វិធីសាស្ត្រឯកធ្លាក្រារឿកជនសាស្ត្រ (Unit Hydrograh Method)

វិធីសាស្ត្រឯកត្តាក្រាហ្វិកជលសាស្ត្រ ពីងផ្នែកលើក្បួន ARD 1 ដែលត្រូវបានប្រើ និង យល់ព្រមទទូល នៅការិយាល័យបង្កើនល្បឿនអភិវឌ្ឈន៍ជនបទ (ARD) ក្រសួងមហាផ្ទៃ ប្រទេសថៃ បានប្រើសំរាប់ប៉ាន់ស្មាន ទីកជំនន់សំរាប់ទន្លេតូច១ ។ ពត៌មានបន្ថែមទៀត អំពីទ្រឹស្តីបទត្រូវបានផ្តល់ឱ្យដោយការគ្រោងរបស់ទំនប់ តូច១ ឬ ផ្នែក 4 នៃជលសាស្ត្រ SCS ។ វិធីសាស្ត្រនេះត្រូវបានពន្យល់ដោយអនុវត្តតាមស្ទឹងត្រស់ (Tras Stream)-អាងទឹកទំនប់លោក ដូចជាសំណាកមួយដោយយោងទៅលើ "ក្បួនបណ្តុះបណ្តាលវិស្វកម្មអង្គភាព សន្តិភាពថៃឡង់ដំ"

ដំណាក់កាល !

ពី 1:100,000 ផែនទីឋានលេខាសាស្ត្រ សេចក្តីជាបន្តបន្ទាប់ត្រូវបានកំណត់ដំបូង ។ ផ្ទៃរងទឹកភ្លឿង (A) (332 គម²) ប្រវែងស្ទឹងបានវាស់ពីការដ្ឋានអាងទឹកនៅទីជម្រាលចែកនឹង (L) (25គម) ចំណុចកណ្តាលរបស់ ផ្ទៃដោះទឹក (Coa) (Centroid of Drainage Area) ប្រវែងរបស់ស្ទឹងពីកន្លែងប្រសព្វរបស់បន្ទាត់គូស ពីចំណុចកណ្តាល (Lc) (12គម) ។

ជម្រេលមធ្យមរបស់ស្ទឹងនៅទីជម្រេលបានវាស់ពីខ្សែកូដដី (S) 0.00433 នៅក្នុងលក្ខណៈដែល ក៏រិតកំពស់នៅការដ្ឋានអាងទឹកទំនប់លោក គឺ 36.0 ម ហើយ ក៏រិតកំពស់នៅចំណុច 140 ម គឺ 24 000 ម ពីការដ្ឋានទំនប់លោក។

ពេលមិនទាន់ដល់កំណត់ tlag ដែលត្រូវកំណត់ជាពេលពីចំណុចកណ្ដាលរបស់ព្យុះទៅវំហូរខ្ពស់បំផុត របស់ព្យុះនោះ ដែលគណនាដោយសមីការខាងក្រោម ។

$$t_{lag} = 1.90 \left[\frac{LL_c}{\sqrt{s}} \right]^{0.162} = 7.44 \, hrs$$

 $T_p = 1.11 \times t_{lag}$, ជាទូទៅស្ថិតនៅរង្វង់ដែលជិតបំផុតកន្លះម៉ោង = 8.26 ម៉ =8.5 ម៉

 ${
m Tp} \ / \ 5$: ចន្លោះការបែងចែក ឬ រយៈពេលរបស់ព្យុះនីមួយៗ = $1.7\,$ ម៉

ដំណាក់កាល 2

ទិន្នន័យទឹកភ្លៀងប្រចាំម៉ោងមិនអាចរកបាន ។ ពីទឹកភ្លៀងប្រចាំថ្ងៃដែលអាចកើតមានឡើង (R₂₄) ការចែកចាយប្រចាំម៉ោងត្រូវបានប៉ាន់ស្មានដោយសមីការខាងក្រោម ។

$$R_t = R_{24} \left(\frac{t}{24}\right)^k$$

ដែល R, : ទឹកភ្លៀងអតិបរមាក្នុងកំឡុងពេល t ម៉ោង

k : តំលៃថេរ 1/2 \sim 1/3, 1/2 គឺប្រើញឹកញាប់

បន្ទាប់មក ក្រាហ្វិកជលសាស្ត្រវំហូរព្យុះរង ត្រូវបានគិតពីការចែកចាយទឹកភ្លៀងប្រចាំម៉ោងដូច ខាងក្រោម ។.

ជួរឈរ 1: Δ t ពេលជាម៉ោង (ពីការកំណត់ Tp/5)

ជួរឈរ 2: pt ទឹកភ្លៀង ដែលថែម១លើគ្នាជាសម ដែលឥណនាដោយសមីការខាងលើ ។

ជួរឈរ 3: % ការថយចុះ ដោយសារការផ្លាស់ប្តូរ អាំងតង់ស៊ីតេព្យុះនៅលើតំបន់ជម្រេល (មើលរូបភាព 11.1)

ជួរឈរ 4: ជួរឈរ 2 * ជួរឈរ 3

ជួរឈរ 5: កំណើនទឹកភ្លេង ឬ ទឹកភ្លេងក្នុងកំឡុងពេល ∆t និមួយ 🤊

ជូរឈរ 6: ចំនួននៃជំរាប ARD សន្មត់ 0.3 សមក្នុងមួយម៉ោង ហើយដែលអត្រានៃជំរាបគឺថេរពាសពេញព្យុ៖

ជូរឈរ 7: ជួរឈរ 5 – ជួរឈរ 6 = ផ្ទៃរំហូរ ។ តំលៃទាំងអស់នេះតំណាងឱ្យរំហូរពីព្យុះរងនីមួយ១ ។

ជួរឈរ 8: តំលៃពីជួរឈរ 7 បានកែសំរួលឡើងវិញដើម្បីទទួលសមាសធាតុមធ្យមរបស់ Q_{peak}. ។

ការគ្រោងរបស់ទំនប់តូច១បានរៀបចំជាលំដាប់ដោយតាមគំរូជាបន្តបន្ទាប់ : 6 4 3 1 2 5 ។

ដំណាក់កាល 3: កំណត់ឯកត្តាក្រាហ្វិកជលសាស្ត្រសំរាប់ទីជំរាលដែលគ្មានទំហំ

តារាខ ការគណខាររំពីជីកត្តៅខ្មែលខការ

1	2	3	4	5	6	7	8
ម៉ោង	សម		សម	សម	សម	សម	សម
0.0	0.00	0.00	0.00	0.00	0.00-		0.33
1.7	3.94	0.76	2.99	2.99	0.51	2.48	0.48
3.4	5.57	0.84	4.68	1.69	0.51	1.18	0.68
5.1	6.82	0.86	5.87	1.19	0.51	0.68	2.48
6.8	7.88	0.87	6.85	0.99	0.51	0.48	1.18
8.5	8.81	0.88	7.75	0.90	0.51	0.39	0.39
10.2	9.65	0.89	8.59	0.84	0.51	0.33	
11.9	10.42	0.90	9.38	0.79	0.51	0.28	
13.6	11.14	0.91	10.14	0.76	0.51	0.25	
15.3	11.82	0.92	10.87	0.73	0.51	0.22	
17.0	12.46	0.93	11.58	0.71	0.51	0.20	
18.7	13.06	0.93	12.15	0.57	0.51	0.06	

កូអ័រដោនេឯកត្តាក្រាហ្វិកជលសាស្ត្រ (DUH) ដែលនឹងបង្ហាញក្នុងវូបភាព 11.1 ។

ជួរឈរ 1: Δ t ពេលជាម៉ោង (ពីការកំណត់ Tp/5)

ជួរឈរ 2: Δ t/Tp

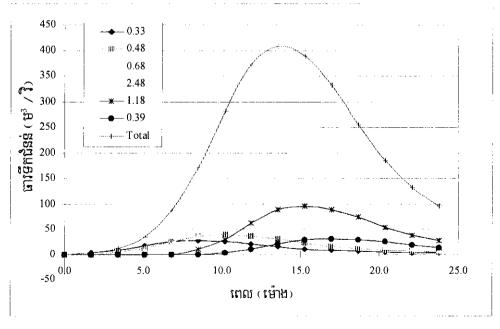
ជួរឈរ 3: DUH អ័រដោនេពីក្រាហ្វិក

ជួរឈរ 4: DUH អ័រដោនេពីខ្ទង់ 3 ចែកនិង F ដែល

 $F = (0.36* \Delta t * \Sigma DUH) / (ទីជំរាល, km²) = 0.0123$

F គឺគ្រាន់តែជាកត្តាបម្ចាស់ប្តូរ ដែលផ្លាស់ប្តូរ DUH ទៅក្នុងតំលៃរំហូរដែលផ្នែកនៅលើ ι សម នៃរំហូរ សរុបសំរាប់ផ្តល់ឱ្យតំបន់ជំរាល និង Δ t ។ ចំពោះលទ្ធផលពិតដោយមិនគិតពីចំនួនរបស់ព្យុះរងដែលបាន ធ្វើវិភាគ តំលៃ DUH គួរបូកជាមួយកូអ័រដោនេនៅក្រោមខ្សែកោងទាំងមូល ។ ដោយមិនបញ្ចូល កូអ័រដោនេខ្សែ កោងទាំងមូលនៅក្នុងតំលៃ DUH ក៏វិតខ្ពស់បំផុតរបស់ធារទឹក និង កើតឡើង ។

តារាខ ឯកត្តាត្រាច្នាំកដលសាស្ត្រសំរាប់ពីកត្តៀខបានការ នៃ ១ សម


1	2	3	4
មេរាង			
0.0	0.0	0.00	0.00
1.7	0.2	0.10	8.14
3 . 4	0.4	0.31	25.23
5 . 1	0.6	0.66	53.72
6.8	0.8	0.93	75.70
8.5	1.0	1.00	81.39
10.2	1.2	0.93	75.70
11.9	l.4	0.78	63.49
13.6	1.6	0.56	45.58
15.3	1.8	0.39	31.74
17.0	2.0	0.28	22.79
18.7	2.2	0.21	17.09
2 0 . 4	2.4	0.15	1 2 2 1
2.2.1	2.6	0.11	8.95
23.8	2.8	0.08	6.51
25.5	3 0	0.06	4 8 8
27.2	3.2	0.04	3.26
28.9	3.4	0.03	2.44
30.6	3 . 6	0.02	1.63
32.3	3.8	0.02	1.22
34.0	4.0	0.01	0.81
សរុប្រ	បស់ D U H_	6.67	

តំណាក់កាល 4: កំណត់ក្រាហ្វិកជលសាស្ត្រវំហូរចូល (អ័រដោះនឯកត្តាក្រាហ្វិកជលសាស្ត្រ ពី ដំណាក់កាល 3 គុណនឹងវំហូរព្យុះរងពី ដំណាក់កាល 2) ។

តារាខ ព្យុះរខ ទិខ សមាសតាគគ្រាច្បិត៩លសាស្ត្រ

ពេលជាមោង				ប្បះអេ			
	0.33	0.48	0.68	2.48	1.18	0.39	សរុប
0.0	0	0	0	0	0	0	0.0
1.7	2.66	0	0	0	0	0	2.7
3.4	8.23	3.88	0	0	0	0	12.1
5.1	17.53	12.02	5.52	0	0	0	35.1
6.8	24.70	25.59	17.11	20.21	0	0	87.6
8.5	26.56	36.07	36.43	62.67	9.57	0	171.3
10.2	24.70	38.78	51.33	133.42	29.66	3.15	281.0
11.9	20.71	36.07	55.19	188.00	63.15	9.77	372.9
13.6	14.87	30.25	51.33	202.15	88.99	20.79	408.4
15.3	10.36	21.72	43.05	188.00	95.69	29.30	388.1
17.0	7.44	15.12	30.91	157.68	88.99	31.50	331.6
18.7	5.58	10.86	21.52	113.20	74.64	29.30	255.1
20.4	3.98	8.14	15.45	78.84	53.59	24.57	184.6
22.1	2.92	5.82	11.59	56.60	37.32	17.64	131.9
23.8	2.12	4.27	8.28	42.45	26.79	12.29	96.2

ចំនួនខាងលើរបស់ជួរឈរនីមួយៗតំណាងឱ្យចំនួនលើសសំរាប់ព្យុះរងហូរគិតជាសម ។ ចំនួន ដែលបានគណនានៅពីក្រោម ចំនួនទាំងអស់នេះតំណាងឱ្យធារទឹកព្យុះរងគិតជា ម³ /វិ ហើយក្រាហ្វិក ខាងក្រោមតំណាងអោយលទ្ធផលរបស់ក្រាហ្វិកជលសាស្ត្រសំរាប់សមាសភាគព្យុះ ។ រំហូរមូលដ្ឋានមិនបាន យកមកគិតក្នុងវិធីសាស្ត្រនេះទេ ។ ដូច្នេះរំហូរក៏រិតខ្ពស់បំផុត គួរត្រូវបានកំណត់ដោយបន្ថែមរំហូរមូលដ្ឋានបើ ចាំបាច់ ។

រូបភាព ក្រាហ្វិករបស់ព្យុះរង និង សមាសភាគក្រាហ្វិកជលសាស្ត្រ

(5) ការតណតាទីកសោយរួមបន្តប្រតិបត្តិ (Manning Formula)

រូបមន្តប្រតិបត្តិបង្ហាញល្បឿនមធ្យម ជាមុខងាររបស់ភាពគ្រើមរបស់ប្រឡាយវង់ទឹក និង ចំណោត របស់ថាមពលទីជម្រាល ។

$$V = \frac{1}{n} R^{2/3} I^{1/2}$$

$$Q = AV$$

ដែល V: ល្បឿនមធ្យម (ម. / វិ.)

n: មេគុណភាពគ្រើម

R: កាំអ៊ីត្រូលិក = A/S (ម.)

I: ជម្រាលអេនៃកជីអ៊ីត្រូលិក

O: ធារទឹក

A: ផ្ទៃពំនុះកាត់ទទឹង (ម²)

s: បរិមាត្រដែលស៊ើម (ម.)

បើផ្ទៃទីកហូររបស់ស្ទឹងអាចត្រូវបានពន្យល់ច្បាស់លាស់ នៅក្នុងទីកន្លែងដែលទន្លេហូរចូលជ្រលងជ្រោះ យើងអាចប៉ាន់ស្មានពីកំពស់ទឹកអតិបរមាកន្លងមកពីស្នាមទឹកជំនន់ ការកែប្រែសារពើរុក្ខជាតិ និង សម្ភាសជា មួយអ្នកស្រុកនៅតាមកន្លែងដែលទៅដល់ ។ កំពស់ទឹកជំនន់អតិបរមា ពីមុនបានចង្អុលប្រាប់ដោយអ្នកស្រុក គួរត្រូវបានវាស់ជាមួយគ្នានឹងពំនុះកាត់ទទឹងទន្លេ ដោយឧបករណ៍វាស់ស្ទង់ ។ ពីការស្រាវជ្រាវទាំងអស់នេះ យើងអាចដឹងពីផ្ទៃពំនុះកាត់ទទឹងរបស់រំហូរ (A) និង ជំរាលអ៊ីដ្រូលិក (I)

តាវាខ មេគុណភាពឡើម

		មេ	គុណភាពគគ្រើម	
	សំការៈ និង លក្ខខណ្ឌ័របស់ប្រឡាយទឹក	អប្ប .	មធ្យម	អតិ
ស្ទឹងតូ	ចក្នុងទីវាល			
1.	គ្មានស្មៅ គ្រង់ គ្មានអន្លង់ជ្រៅនៅពេលកំពស់ទឹកពេញ	0.025	0.030	0.033
2.	ដូច និងថ្មនិង មានស្មៅ	0.030	0.035	0.040
3.	กห้	0.033	0.040	0.045
4.	ដូច និង ថ្មខ្លះ និង ស្មៅ	0.035	0.045	0.050
5.	ដូច និង មានការប្រែប្រួលច្រើននៃជម្រាលនិង ពំនុះកាត់ទទឹង	0.040	0.048	0.055
6.	ដូច ក្នុងសេចក្តី 4 ប៉ុន្តែមានថ្មច្រើន	0.045	0.050	0.060
7.	ស្មៅ និង អន្លង់ជ្រៅក្នុងរំហូរមកដល់តិច១	0.050	0.070	0.080
8.	। ଏହ ।	0.075	0.100	0.115
	នាក្នុងតំបន់ភ្នំ មានដំណាំតូច១បន្តិចបន្តួចនៅបាតស្ទឹង ច្រាំងស្ទឹងមានជំរាលចោត ។ ដើមឈើ និង			
	ម្លោតនៅតាមច្រាំងត្រូវបានលិចទីកនៅពេលមានព្យុះ			
1.	ដុំថ្ម និង គ្រួសនៅបាតស្ទឹង	0.030	0.040	0.050
2.	ដុំថ្នង់១	0.040	0.050	0.070
ស្ទីងជ				
1.	ពំនុះកាត់ទទឹងទៀងទាត់ដោយគ្មានដុំថ្មធំ១ និង គ្មានដើមឈើ និង ព្រៃគម្ភោត	0.025		0.060
2.	ព័ន្ទរកាត់ទទឹងត្រើមមិនឡេងទាត់	0.035		0.100

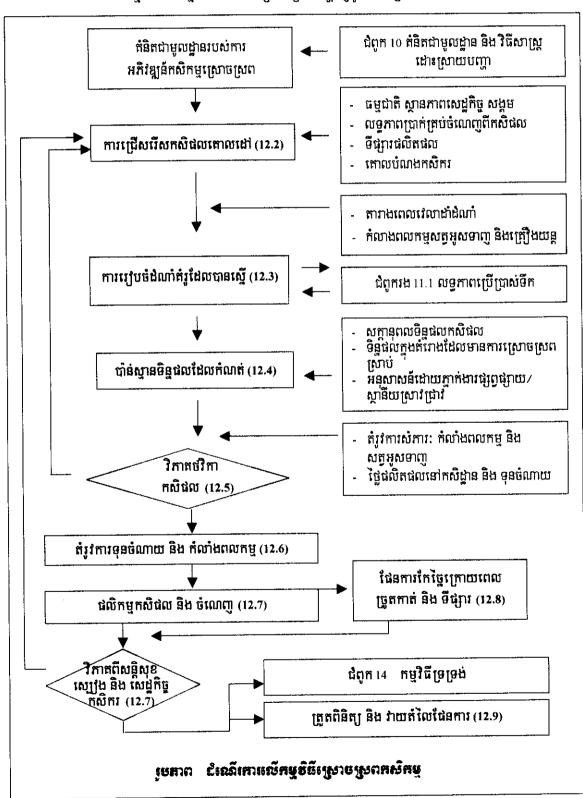
11.3 គុណភាពនីគ

рн និង ភាពប្រៃត្រូវបានត្រួតពិនិត្យសំរាប់តោលបំណងនៃការស្រោចស្រព និង វត្ថុផ្សេង១ទៀតដែល នឹងត្រូវវាយតំលៃជាទឹកជីក ។ ស្តង់ដារគុណភាពទឹកតាមមុខនីមួយ១មានបង្ហាញក្នុងតារាង 11.1 ។

ពីទស្សន:របស់គុណភាពទឹកស្រោចស្រព (យោងលើតំលៃស្តង់ដារ FAO ក្នុងតារាង 11.1)បញ្ហាដី និង ការដាំដុះដែលជាបទពិសោចធម្មតា ឬដែលបានយល់ដឹងនៅពេលទឹកត្រូវបានប្រើតិចជាងតំលៃ FAO ដែលបាន បង្ហាញដូចជា "គ្មានក៏រិតនៃការកំហិតកំណត់លើការប្រើប្រាស់" ។ ជាមួយនឹងកំហិតកំណត់បន្តិបន្តួចដើម្បីសំរាល ក៏រិតការយកចិត្តទុកដាក់នឹងកើតឡើងជាបណ្ដើៗក្នុងការប្រើសរើសដំណាំ និង ជំរើសការគ្រប់គ្រង និង ត្រូវ ការប្រសិនបើសក្តានុពលទិន្នផលពេញលេញនឹងត្រូវបានសំរេច ។ នៅពេលដែលទឹកត្រូវបានប្រើដែលវាស្មើ ឬ លើសទៅនឹងតំលៃដែលបានបង្ហាញដូចជាការកំហិតកំណត់ដ៏តឹងអ៊ីង អ្នកប្រើប្រាស់ទឹកនឹងពិសោធន៍បញ្ហាដី និង ការដាំដុះ ឬ ទិន្នផលដែលថយចុះ ។ អាស្រ័យដូចនេះបើតំលៃតុណភាពទឹកដែលបានរកឃើញដូចការប្រើប្រាស់ស្រែចស្រពដែលកំហិតកំណត់ វាត្រូវបានយល់ព្រមថាជាលំដាប់លំដោយនៃការសិក្សាសំរាប់ពិសោធ កសិកម្មដែលត្រូវធ្វើដើម្បីកំណត់ពីបច្ចេកទេសកសិកម្ម និង ការដាំដុះ ដែលនឹងត្រូវអនុវត្តមុនពេលការ ចាប់ផ្ដើមប្រើប្រាស់ទឹកក្នុងតំរោង ។

ដើម្បីលែលកដោះស្រាយបញ្ហាជាតិប្រៃ ដែលបានសង្កេតឃើញម្ដងម្កាលនៅក្នុងប្រព័ន្ធស្រោចស្រព ដែលជន់លិច ជំរើសគ្រប់គ្រងមួយចំនួនសំរាប់ត្រូតពិនិត្យជាតិប្រៃអាចបានជាបន្តបន្ទាប់ :

- កែលំអសំណង់ដោះទឹកដើម្បីត្រូតពិនិត្យ និង ធ្វើឱ្យរាក់ នឹង
- ត្រង់ទឹកដើម្បីត្រួតពិនិត្យអំបិលដែលរលាយដោយអនុវត្តន៍ការបន្ថែមទឹក
- កែលំអការអនុវត្តន័កសិកម្ម ការដាំដុះ (ការធ្វើដីឱ្យស្នើ ឬ ជាថ្នាក់១ ពេលវេលានៃការស្រោចស្រព ការ ទុកពូជការប្រើជី កសិកម្មទីជំរៅ ។ល។)
- ផ្លាស់ប្តូរ ឬ ការផ្គត់ផ្គង់ទឹកចំរុះ
- ការត្រូតពិនិត្យ និង ការអនុវត្តន៍ដំណាំគ្មានអំបិល


ពីទស្សន: នៃទឹកជីក គោលការណ៍ជាមូលដ្ឋាន គឺដើម្បីថែទាំគុណភាពទឹកដែលមានស្រាប់ទៅកាន់ ទំហំដែលអាចធ្វើបាន តាំងតែពីទឹកត្រូវប្រើប្រាស់ជាទូទៅ សំរាប់ទាំងពីរយាំងគឺការស្រោចស្រព និង សំរាប់ផឹក ឬ ជាប្រយោជន៍ក្នុងស្រុក ។ នេះមានន័យថាផែនការ និង ការអនុវត្តន័កសិកម្ម ការដាំដុះគួរត្រូវយកចិត្ត ទុកដាក់ដោយប្រុងប្រយ័ត្នដើម្បីកុំឱ្យទៅជាមូលហេតុនៃការធ្វើឱ្យទឹកក្រខ្វក់យ៉ាងធ្ងន់ធ្ងរដូចជា :

- សារធាតុក្រខ្វក់ភាគច្រើនបណ្តាលដោយកាកសំណល់កសិកម្ម ឬ ល្បាយជី
- ការធ្វើឱ្យក្រខ្វក់ដោយមេរោតភាគច្រើន គឺបណ្តាលមកពីកំណើននៃការចិញ្ចឹមបសុសត្វ និង
- ការធ្វើឱ្យក្រខ្វក់ដោយជាតិពុលភាគច្រើនបណ្តាលមកពីថ្នាំគីមីកសិកម្ម ។

ខំពុគ 12 គសិគម្ភ

12.1 ដំណើរដែលការលើកម្មតិនីក្រោចស្រាកអភិកម្ម

ដំណើរផែនការលើកម្មវិធីកសិកម្មសំរាប់គំរោងស្រោចស្រពបង្ហាញដូចខាងក្រោមនេះ :

12.2 ទារឲ្យទីសមីសជំណាំគោលដៅ

ដំណាំគោលដៅដែលនឹងស្រោចស្រពក្នុងតំបន់គំរោង គួរជ្រើសរើសដោយត្រួតពិនិត្យគ្រប់ជ្រុងជ្រោយ នូវចំណុចដូចខាងក្រោមនេះ :

- 1) ស្ថានភាពធម្មជាតិ អាកាសធាតុ និង ដីដាំដំណាំក្នុងតំបន់តំរោង
- 2) ប្រភពទឹកស្រោចស្រពដែលអាចរកបាន
- 3) ស្ថានភាពសង្គម និង សេដ្ឋកិច្ច លទ្ធភាពរកប្រាក់ចំណេញ និង លទ្ធភាពរកទីផ្សារសំរាប់កសិផលសន្តិសុខ ស្បៀងនៅក្នុងជុំវិញតំបន់គំរោងកំលាំងពលកម្មដែលអាចរកបាន សត្វអូសទាញ និង ទុនចំណាយដែល ត្រូវការ
- 4) ស្ថានភាពដែលកសិករទទូលផលប្រយោជន៍ការយល់ដឹង និង ចំណង់ចំពោះការដាំដុះ ក៏រិតជំនាញធ្វើស្រែ និង សមត្ថភាពហិរញ្ញវត្ថុសំរាប់វិនិយោគចំពោះទុនចំណាយដែលត្រូវការ និង
- 5) លទ្ធភាពសំរាប់ទ្រទ្រង់កម្មវិធី ដូចជា សេវាកម្មផ្សព្វផ្សាយ ការផ្គត់ផ្គង់ ទុនចំណាយ ឥណទាន និង ទីផ្សារ

ចំពោះការត្រួតពិនិត្យបញ្ហាខាងលើ ចាំបាច់ណាស់ត្រូវដឹងពីបរិស្ថានវិទ្យា និង លក្ខណៈបច្ចេកទេស កសិកាម្មរបស់កសិផលជ្រើសរើសក៏ដូចជាទិន្នន័យ និង ពត៌មានពីការស្ទង់មតិស្តីពីស្ថានភាពបច្ចុប្បន្នរបស់ សេដ្ឋកិច្ចសង្គម និង កសិកាម្ម ដូចដែលបានបញ្ជាក់ក្នុងផ្នែកទី រ នៃគោលការណ៍ណែនាំនេះ ។ ដំណាំគោលដៅ គួរជ្រើសរើសដោយសហប្រតិបត្តិការជាមួយសេដ្ឋកិច្ចវិទូ ក្សេត្រវិទូ និង មន្ត្រីផ្សព្វផ្សាយរបស់ក្រសូងកសិកាម្ម រុក្ខាប្រមាញ់ និង នេសាទ (MAFF) និងគំនិតព្រមទាំងអនុសាសន៍របស់អ្នកស្រាវជ្រាវកសិកាម្មផងដែរ ។ ដំណាំសំខាន់ដែលជ្រើសរើស គឺស្រូវដោយធ្វើការពិចារណាពីស្ថានភាពតំបន់ជនបទកម្ពុជា សំរាប់ទទូលបាន ស្បៀងគ្រប់គ្រាន់ និងការយល់ដឹងពីកសិការនាពេលបច្ចុប្បន្ននេះ ។ ស្បៀងគ្រប់គ្រាន់នៅលំដាប់ថ្នាក់ជាតិ ដែលសំរេចបានតាមការបង្កើនផលិតកម្មស្រូវ ។ ទោះបីជាយ៉ាងណាក៏ដោយស្ថេរភាពស្បៀងគ្រប់គ្រាន់នោះ មិនទាន់គួរជាទីពេញចិត្តនៅឡើយទេ ។ នៅតែមានតំបន់ជាច្រើននៅក្នុងប្រទេសមានការខ្វះខាតស្រូវ និងចំនួន ប្រជាពលរដ្ឋនៅតែមានអត្រាកំណើនខ្ពស់ដដែល ។ ស្រូវនៅតែជាដំណាំសំខាន់បំផុតសំរាប់គំរោងស្រោចស្រា ។ ដោយស្រូវមានច្រើនពូជ ការត្រួតពិនិត្យពូជ វាចាំបាច់ដែលតំរូវឱ្យមានការជ្រើសរើសពូជ ពូជក្នុងស្រុក (រយៈពេលដាំដុះយូរអង្វែង) ឬ ពូជស្រូវដែលផ្តល់ទិន្នផលខ្ពស់ (រយៈពេលដាំដុះខ្លីជាង) ការគិតលើរយៈពេល អាចស្រោចស្រា តំលៃនៅទីផ្សារ និង គេពលបំណងរបស់កសិការ ។

ម៉្យាងវិញទៀតការណែនាំអំពីដំណាំសំរាប់លក់ គឺដំណាំរួមផ្សំ រួមមានបន្លែផង នឹងមានសារៈសំខាន់ ដើម្បីកែលំអស្ថានភាពសេដ្ឋកិច្ចកសិករ ។ ដំណាំទាំងអស់នោះនឹងនាំយកប្រាក់ចំណូលបន្ថែមទៀតដល់កសិករ ។ ទោះជាយ៉ាងណាក៏ដោយ ការធ្វើអោយមានដំណាំច្រើនមុខគួរកំណត់ទៅតាមតំរូវការរបស់ទីផ្សារ សក្តានុភាព កសិកម្ម និង ការអនុវត្តន៍ការដាំដុះថ្មី១ដែលបានធ្វើ ។

ដំណាំគោលដៅនឹងត្រូវជ្រើសរើសចេញពីកសិផល ដែលបានស្នើជាច្រើនដែលដាំនៅពេលបច្ចុប្បន្នក្នុង និង ជុំវិញតំបន់គំរោងដែលកសិករទទួលផលប្រយោជន៍ចង់ធ្វើ និងបានគិតគូរដល់ស្ថានភាពសមស្របក្នុងតំបន់ តំរោង ។

មុខដំណាំដែលពិនិត្យសំរាប់ការជ្រើសរើសក្នុងដំណាំគោលដៅមានបង្ហាញក្នុងតារាង 12-1 និង សំណាកលទ្ធផលការត្រួតពិនិត្យសំរាប់ការជ្រើសរើសកសិផលមានបង្ហាញក្នុងតារាង 12-2 ។

12.3 ការឡើចំគំរួស់ស្កុះដែលបាលស្មើ

តារាងពេលវេលាដាំដុះដំណាំគោលដៅ ដែលជ្រើសរើសរួចសំរាប់កសិកម្មស្រោចស្រពមានបង្ហាញក្នុង ទម្រង់ (រូបភាព) គំរូដាំដុះ ។ គំរូដាំដុះបង្ហាញពីផែនការដាំដុះក្នុងបែបបទសាមញ្ញដោយមាន i) ឈ្មោះដំណាំ ii) ផ្ទៃដីដាំដុះ iii) រដូវដាំដុះ និង រយៈពេលដាំដុះ iv) ការចាប់ផ្ដើម និង បញ្ចប់ការដាំដុះ និង ការច្រូតកាត់ v) រយៈពេលវ្យបចំដី បណ្ដុះ ។

ដំណាំតំរូត្រូវពិនិត្យ ការយកចិត្តទុកដាក់ពីស្ថានភាពអាកាសធាតុពេលច្រូតកាត់ និង រយៈពេលហាល ក៏ដូចជាការរកកំលាំងពលកម្ម សត្វអូសទាញ និង គ្រឿងយន្តកសិកម្មជងដែរ ។ ដំណាំតំរូដែលបានស្នើឡើង នឹងត្រូវបញ្ចប់ក្រោយពេលត្រូតពិនិត្យពីតុល្យភាពទឹកដែលរកបាន និង តំរូវការ ដូចដែលបានបញ្ជាក់ក្នុងផ្នែក 11-1 "ទឹកដែលអាចរកបាន" ។

សំណាករបស់ដំណាំតំរូបានស្នើឡើង ដែលឈរលើមូលដ្ឋាននៃដំណាំតំរូបច្ចុប្បន្ននៅក្នុងតំបន់គំរោង មានបង្ហាញក្នុងរូបភាព 12.1 ។

12.4 គារស៊ង់ស្មាន និទ្ធដល់ដែលបានកំណត់

ទិន្នផលរំពឹងទុករបស់ដំណាំគោលដៅស្ថិតក្រោមស្ថានភាពស្រោចស្រព និង ធ្វើការប៉ាន់ស្មានដោយ យោងលើទិន្នន័យ និង ពត៌មានដូចមានខាងក្រោម :

- បង្ហាញក៏វិតទិន្នផលដោយការស្រោចស្រពក្នុង និង ជុំវិញតំបន់សិក្សា
- ទិន្នផលក្នុងឆ្នាំដែលមាន អាកាសធាតុអំណោយផលលួ (ទឹកភ្លៀង) ក្នុង និង ជុំវិញតំបន់តំរោង
- ទិន្នផលដែលធ្វើសាកល្បងពីស្ថានីយស្រាវជ្រាវកសិកម្ម
- លទ្ធភាពសកម្មភាពផ្សព្វផ្សាយ និង កម្មវិធីទ្រទ្រង់ដទៃទៀតក្នុង និង ជុំវិញតំបន់តំរោង និង
- លទ្ធភាពកែលំអការអនុវត្តន៍កសិកម្មដូចជា ការប្រើប្រាស់ពូជល្អ ការប្រើជី និង ការការពារដំណាំ

កត្តាទាំងនេះមានសារៈសំខាន់ណាស់ ដែលទិន្នផលបានរំពឹងទុកនោះជាទិន្នផលមច្បម ដែលបានកំណត់ បន្ទាប់ពីការបញ្ចប់ការសាងសង់សំណង់ស្រោចស្រពពីតំរោង ។ ទិន្នផលនឹងកើនឡើងដោយសន្សឹម១បន្ទាប់ ពីការចែកចាយដោយតំរោងទៅតាមការកែលំអជំនាញដាំដុះរបស់កសិករ និង សេវាទ្រទ្រង់តាមធម្មតាវ៉ានឹង ត្រូវចំណាយពេលអស់ជាច្រើនឆ្នាំ ដើម្បីសំរេចឱ្យបាននូវទិន្នផលដែលបានកំណត់នោះ ។

ទិន្នផលដែលបានកំណត់របស់ស្រូវដែលមានទឹកស្រោចស្រពក្នុងពេលអនាគតដ៏ខ្លីខាងមុខនេះ នៅ កម្ពុជាត្រូវបានប៉ាន់ស្មានត្រូស១លើមូលដ្ឋានស្ថានភាពបច្ចុប្បន្នផលិតកម្មស្រូវមានបង្ហាញក្នុងតារាងខាងក្រោម:

តាវាខ 12.3 និទ្ធដលស្រុចដែលពីខនុត ត្លខត់ពេខស្រោចស្រព

ពូជ	រដូវប្រាំង	រដូវវិស្សា
ពូជទិន្នផលខ្ពស់ (HYV)	3 - 4 តោន/ហ.ត	3 – 3,5 តោន/ហ.ត
ពូជក្នុងស្រុក	2,5 – 3,5 តោន/ហ.ត	2 - 3 តោន/ហ.ត

12.5 គារទីតាគ៩ទីតាគសិនល

ថវិកាកសិផលស្នើឡើង បង្ហាញពីចំនួនប្រាក់ចំណូលដុលពីផលិតផល ចំណាយផលិតកម្ម និង ចំណេញសុទ្ធក្នុងមួយឯកត្តាដី (ហ.ត) លើដំណាំនីមួយ១សំរាប់ផែនការអនាគត។ ថវិកាដំណាំ ផ្ដល់ទិន្នន័យគ្រឹះ សំរាប់ធ្វើការប៉ាន់ស្មានអត្ថប្រយោជន៍ស្រោចស្រពពីផលិតកម្មកសិផល និង សេដ្ឋកិច្ចកសិករដែលរំពីងទុក ។ លទ្ធភាពរកប្រាក់ចំណេញពីកសិផល អាចប៉ាន់ស្មានបានដោយការប្រេៗបធ្យើបថវិកាដំណាំ ។ តារាង 12-4 បង្ហាញសំណាករបស់ថវិកា ដំណាំស្នើរឡើង ដោយប្រៀបធ្យើបជាមួយស្ថានភាពបច្ចុប្បន្ន។ ចំណូលដុលរបស់ ថវិកាដំណាំដែលស្នើរឡើង បានបង្ហាញពីមូលដ្ឋានទិន្នផលកសិផលដែលរំពីងទុក និង តំលៃផលិតផលនៅកសិដ្ឋាន ។

ចំណាយផលិតកម្មផ្ទាល់ស្ថិតលើបរិមាណដែលត្រូវការ និង តំលៃឯកត្តាសំរាប់ទុនចំណាយការជួល កំលាំងពលកម្ម សត្វអូសទាញ និង ចំណាយផ្សេងៗឡើត ។ ចំណាយសំរាប់កំលាំងពលកម្មក្នុងគ្រួសារ ជាទូទៅមិនគិតបញ្ចូលក្នុងចំណាយផលិតកម្មទេ ។ ចំណាយប្រយោលរួមមានពន្ធលើដីស្រែ និង ផលិតផល ចំណាយរំលោះថ្ងៃប្រើប្រាស់ទឹក និង ថ្ងៃឈ្នួលដី ។

12.6 ការគ្រួតពិនិត្យ នុងចំណាយ និ១ កំលាំ១ពលកម្មដែលគ្រួចការ

លទ្ធភាពអាចរកបានទុនចំណាយដែលត្រូវការ សំរាប់កម្មវិធីផលិតកម្មកសិកម្មដែលស្នើឡើងគួរត្រួត ពិនិត្យទិដ្ឋភាពនៃទីផ្សារផ្គត់ផ្គង់បរិមាណ គុណភាព រដូវផ្គត់ផ្គង់ និង តំលៃ ។ បើសិនជាមានបញ្ហាខាងការ ផ្គត់ផ្គង់ទុនចំណាយផែនការផលិតកម្មមិនអាចដំណើរការបានទេ ។ ក្នុងករណីនេះ អាចមានការផ្លាស់ប្តូរ ផែនការ ឬក៏ការផ្តល់កម្មវិធីទ្រទ្រង់ផងដែរ ។ ឧទាហរណ័កម្មវិធីផលិតកម្មពូជស្រូវសំរាប់ការខ្វះខាតពូជល្អ និង កម្មវិធីដឹកជញ្ជូនជីទៅក្នុងតំបន់គំរោងដោយមានការលំបាកក្នុងការដឹកជញ្ជូនដី ។ គំរូនៃការប៉ាន់ស្មានតំរូវការ ទុនចំណាយមានបង្ហាញក្នុងតារាង 12.4 ។

តំរូវការកំលាំងពលកម្មសំរាប់កម្មវិធីផលិតកម្មកសិកម្ម ជាទូទៅ មានការកើនឡើងបើប្រៀបនឹង ស្ថានភាពបច្ចុប្បន្ន ។ តុល្បភាពកំលាំងពលកម្មដែលអាចរកបាន គួរត្រួតពិនិត្យដោយប្រុងប្រយ័ត្នសំរាប់រដូវ មមាញឹកបំផុត គឺរយៈពេលដកស្លួង និង រយៈពេលច្រូតកាត់ ។ កំលាំងពលកម្មដែលអាចរកបានសំរាប់ការងារ ក្នុងកសិដ្ឋានអាចប៉ាន់ស្ថានពីការប្រើកំលាំងពលកម្មជាមធ្យមក្នុងគ្រួសារនីមួយ១ កំលាំងពលកម្មអាចធ្វើការ បាននៅកសិដ្ឋាន និងចំនួនថ្ងៃធ្វើការ ។ កំលាំងពលកម្មគ្រួសារខ្លះ មិនធ្វើស្រែចំការទេ ដូចជាអ្នកខ្លះនៅផ្ទះ មើលកូន ចិញ្ចឹមសត្វ លក់ដូរនៅផ្សារ ។ល។

គំរូការត្រួតពិនិត្យតុល្យភាពកំលាំងពលកម្មតាមខែ មានបង្ហាញក្នុងតារាង 12.5 ។

បើសិនតំរូវការកំលាំងពលកម្មក្នុងរដូវមមាញឹកបំផុតមិនគួរឱ្យពេញចិត្តយន្តកម្មការអនុវត្តន័កសិកម្ម ឬ អាច ការជួលកំលាំងពលកម្មមកពីខាងក្រៅបាន ។

12.7 ដល់តកម្មដំណាំដែលកើចណុក ទី១ គ្នាក់ចំណេញសុគ្គ

12.7.1 នលិតអម្មដំណាំដែលកើចធុក

ផលិតកម្មដំណាំរំពឹងទុកដោយតំរោង អាចប៉ាន់ស្មានពីផ្ទៃដីដាំដុះដែលបានស្នើរ និង ឯកត្តាទិន្នផល។ កំណើនផលិតកម្មដោយតំរោងបានផ្តល់ស្ថានភាពខុសគ្នាពីរយ៉ាង "ស្ថានភាពមានតំរោង" (ផែនការដែលស្នើរ ឡើង) និង "ស្ថានភាពគ្មានតំរោង"⁽¹⁾ ។ សំណាកផលិតកម្មដំណាំដែលរំពឹងទុកមានបង្ហាញក្នុងតារាង 12.6 ។

12.7.2 គារទិតាគសន្តិសុខស្ប៉េខ

ការវិភាគពីតំរូវការ និង ការផ្គត់ផ្គង់ផលិតផលលើផែនការអនាគតគឺចាំបាច់ណាស់សំរាប់វាយតំលៃ សន្តិសុខស្បៀងក៏ដូចជាផែនការទីផ្សារផលិតផលផងដែរ។ និតិវិធីវាយតំលៃទាំងនេះបង្ហាញដូចខាងក្រោមនេះ

(1) ចុល្យភាពស្បៀង

វាជាប្រការចាំបាច់ក្នុងការវិភាតតុល្យភាពស្បៀង សំរាប់គំរោងផលិកម្មស្រូវជាពិសេសសំរាប់គំរោង មានគោលបំណងកែលំអសន្តិសុខស្បៀង ឬ ស្រូវដែលលើសពីសេចក្តីត្រូវការនៅទីផ្សារ។ សន្តិសុខស្បៀងក្នុង និង ជុំវិញតំបន់គំរោងនឹងបានត្រួតពិនិត្យ ។ សន្ទស្សន័របស់ក្រសួងកសិកម្មរុក្ខាប្រមាញ់ និង នេសាទ (MAFF) ដូចខាងក្រោម :

តាព១ 12.8 ស្ដ១់ជាសេទ្ធស្សន៍សំពម់ការត្រួតពិនិត្យសន្ដិសុខស្សេទ្រិ

្រត់រូវការអង្ករជាមធ្យមក្នុងម្នាក់១	151.2 គក្រ
2. អត្រាប្រមូលបានពីរោងកិនស្រូវ	62%
3. តំរូវការស្រូវក្នុងម្នាក់ៗ(1)/(2)	244 kg
4. បាត់បង់ក្រោយពេលច្រូតកាត់ និង ទុកធ្វើពូជ	17% នៃផលិតកម្ម
5. តំរូវការផលិតកម្មស្រូវក្នុងម្នាក់ៗ (3) / (100% - (4))	294 ជក្រ

ប្រភព : ក្រសូងកសិកម្ម រុក្ខាប្រមាញ់ និង នេសាទ

នៅក្នុងការប៉ាន់ស្មានខាងលើ ចំនួនប្រជាជននៅក្នុងតំបន់កំណត់នៅឆ្នាំកំណត់គួរ ព្យាករណ៍ដោយផ្នែក លើអត្រាកំណើនចំនួនប្រជាជន ។ ក្នុងគំរោងទាំងនេះ មានសារៈសំខាន់ណាស់ដើម្បីប៉ាន់ស្មាន តើមានកំណើនសន្តិសុខស្បៀងប៉ុន្មានភាគរយបានកែលំអ ឬ តើចំនួនស្រូវលើសប៉ុន្មានដែលត្រូវយកទៅលក់ នៅទីផ្សារ។

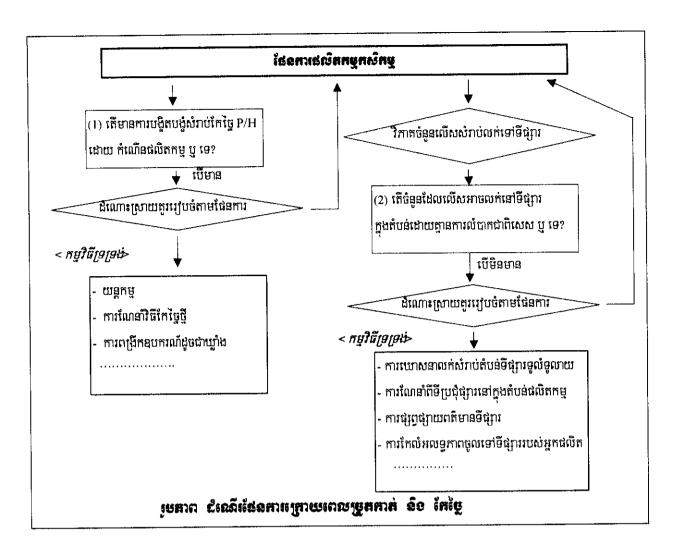
⁽I) "ស្ថានភាពគា្មនត់រោង" គឺមិនដូចស្ថានភាពបច្ចុប្បន្នទេ។ ទោះបីជាយ៉ាងណាក៏ដោយ ស្ថានភាពបច្ចុប្បន្ន អាចអំណោយ ជលដល់ស្ថានភាពគ្មានគំរោង ប្រសិនបើការប៉ាន់ស្ថានភាពទាំងពីរគឺ "បច្ចុប្បន្ន" ។

(2) ការវិភាជពីការផ្គង់ផ្គង់ និង ធំរូវការអំពីម៉ំណាំសំរាប់លក់

ការវិភាគតុល្យភាពតំរូវការ និង ការផ្គត់ផ្គង់ដំណាំសំរាប់លក់ គឺមានសារៈសំខាន់សំរាប់ការធ្វើផែនការ ទីផ្សារផលិតផលនាពេលអនាគត ។ ការត្រួតពិនិត្យនឹងធ្វើទៅលើតំបន់ទីផ្សារផលិតផលដែលកំណត់នៅក្នុង តំបន់គំរោង តំបន់ជនបទក្នុង និង ជុំវិញតំបន់គំរោងនៅជិតទីប្រជុំជនទីក្រុង ឬ ទីក្រុងធំ១ ។ ការធ្វើវិភាគ នេះបានពិនិត្យលើទីផ្សាររួមមាន ច្រកទីផ្សារកំណត់ស្ថានភាព និង ទំហំទីផ្សារ និង តុល្យភាពផ្គត់ផ្គង់តំរូវការ ប្រែប្រួលថ្ងៃផលិតផល ក៏នឹងត្រូវត្រួតពិនិត្យដែរ ។

12.7.3 ត្រាត់ចំណេញសិរញ្ញូនផ្តូស្រោចស្រព

ប្រាក់ចំណេញហិរញ្ញវត្ថុស្រោចស្រព ដោយផលិតកម្មកសិកម្មបានផ្តល់ការខុសគ្នារវាងប្រាក់ចំណេញ សុទ្ធសរុបដោយមានគំរោង និង ញូនគំរោង នឹងគឺប្រាក់ចំណេញដែលកើនឡើង ។ តារាងបង្ហាញគំរូនៃការ វិភាគប្រាក់ចំណេញដែលកើនឡើង ។


12.7.4 ការទិតាគសេដ្ឋកិច្ចគ្រួសារ

ប្រាក់ចំណេញបានពីកសិផលដោយគំរោងស្រោចស្រពនឹងបង្កើនប្រាក់ចំណេញដល់កសិករ ។ ការវិភាគ សេដ្ឋកិច្ចគ្រួសារធ្វើឡើងដើម្បីវាយតំលៃនៃគំរោងស្រោចស្រពដល់សេដ្ឋកិច្ចគ្រួសារ ។

តារាង 12.7 បង្ហាញពីការប៉ាន់ស្មានចំណូលសរុប ចំណាយផលិតកម្ម ប្រាក់ចំណេញសុទ្ធ និង ចំណេញសុទ្ធកើនឡើងតាមរបស់កសិដ្ឋានទំហំមធ្យម ។

12.8 ខែងទារខែកច្ចៃកសិនិយក្រោយពេលច្រូកកាត់ ទិខ និស្សារ

កម្មវិធីទ្រទ្រង់គួរគិតដល់ការកែច្នៃកសិផលក្រោយពេលច្រុតកាត់ និង ទីផ្សារដើម្បីធានាឱ្យបាន
កំណើនប្រាក់ចំណេញរបស់អ្នកផលិតតាមការប្រមើលទុកក្នុងផែនការផលិតកម្មកសិកម្ម ។ ដោយផ្នែកលើ
សេដ្ឋកិច្ចទីផ្សារសេរី ផលិតផលកសិកម្មបានដឹកជញ្ជូនពីតំបន់ផលិតជាច្រើនកន្ថែង និងបាននាំចូលពីប្រទេស
វៀតណាម នឹងថ្លៃដោយធ្វើការប្រកួតប្រជែងគ្នាក្នុងទីផ្សារកម្ពុជា ។ ដូច្នេះហើយយើងត្រូវយល់ឱ្យបានច្បាស់
ថាគ្មានផលិតផលណាធានាការលក់ឱ្យពេញនិយមនៅផ្សារ បើផលិផលនោះមិនមានភាពខ្លាំងក្លាជាងគេ ក្នុងការ
ប្រកួតប្រជែង និង បំពេញតំរូវការទីផ្សារទេនោះ ។ បន្ទាប់មកកម្មវិធីជួយទ្រទ្រង់ទីផ្សារជាកម្មវិធីមួយ
ដែលគួរឱ្យចង់បានពីសំណាក់អ្នកផលិតដើម្បីបំពេញឱ្យប្រសិទ្ធិភាពសេដ្ឋកិច្ចតាមផែនការផលិតកម្មកសិកម្មដែល
កម្មវិធីទ្រទ្រង់គួរធ្វើឡើងដោយអាស្រ័យលើផែនការផលិតកម្មកសិកម្មដូចមានបង្ហាញខាងក្រោម :

ដើម្បីអនុវត្តកម្មវិធីទ្រទ្រង់ទាំងអស់នេះ សំភារៈដូចជា ឥណទាន ប្រដាប់ប្រដា និង ឧបករណ៍ ព្រម ទាំងការបណ្តុះបណ្តាល គឺជាប្រការចាំបាច់ ។ អាស្រ័យហេតុនេះ ការងារសហការណ៍ជាមួយមន្ត្រីរបស់ទី ភ្នាក់ងារដែលពាក់ព័ន្ធដូចជា MAFF MRD MOT និង NGOs ដែលកំពុងអនុវត្តកម្មវិធីដែលដូច ឬ ស្រដៀងគ្នានៅក្នុង តំបន់គំរោងនិងអាចទទួលបានការណែនាំអំពីដំណាក់កាលផែនការ ។

12.9 ការត្រួតពីទិត្យ ទិខ ការចាយតំលៃដែនការ

ការត្រួតពិនិត្យ និង ការវាយតំលៃ (M & E) លើផលិតកម្មកសិកម្មនៅក្នុងគំរោងគួរត្រូវ ធ្វើក្រោយការសាងសង់ប្រព័ន្ធស្រោចស្រពដើម្បីប៉ាន់ស្មានការប៉ះពាល់គំរោង បញ្ជាក់បញ្ហាទាំងឡាយរបស់អ្នក ទទួលផលប្រយោជន៍ និង មូលហេតុដើម្បីទុកជាមេរៀនពីគំរោង និង ងាយស្រួលប្រើប្រាស់មេរៀននេះ ក្នុងផែនការគំរោងបន្ទាប់ទៀត ។

អ្នកផ្តល់ពត៌មានទូទៅ និង ទម្រង់ការសំរាប់ M & E មានបង្ហាញក្នុងទំរង់ 12 ដែលមានក៏រឹត ដូចខាងក្រោម :

- ទំហំផលិតកម្មកសិផល (ផ្ទៃដីដាំដុ៖ និង ទិន្នផលមធ្យម)
- ការប្រើប្រាស់សំភារៈពិតប្រាកដ
- បរិមាណលក់ និង តំលៃផលិតផល

- ស្បៀងគ្រប់គ្រាន់
- ការផ្គត់ផ្គង់សំភារៈ
- សកម្មភាពពង្រីក
- សកម្មភាពក្រុមកសិករដែលពាក់ព័ន្ធជាមួយវិស័យកសិកម្ម