TABLES

Soil Group	Physio-grap hic unit	Land use	Soil color	Physical and chemical characteristics	% of paddy area in Cambodia
Prey Khmer soils	Alluvial/ collovial plain	Paddy field	Pale brawn or light gray	Deep sandy surface; low water-holding capacity; very poor nutrient and organic matter; acidic soil	11%
Prateah Lang soils	Old alluvial/ collovial plain or terrace	Paddy field	Pale brawn or light gray	Sandy topsoil, heavier subsoil; low water- holding capacity; very poor nutrient and organic matter; acidic soil	28%
Bakan soils	Depression of old alluvial/ collovial plain	Paddy field	Gray or light gray.	Medium texture topsoil, heavier subsoil; high water-holding capacity; poor drainage; Moderate nutrient and organic matter	13%
<i>Koktrap</i> soils	Alluvial plain	Paddy field	Dark gray or black soil	Heavy texture soil; high water-holding capacity; moderate nutrient and much organic matter	5%
<i>Toul</i> <i>Samroung</i> soils	Undulating alluvial/ collovial plain	Dry-crop and paddy field	Brown or gray	Heavy texture; high water-holding capacity; moderate nutrient; slightly acidic or neutral	10%
<i>Kein Svay</i> soils	Recent alluvial plain/ natural river levees	Paddy (rainy season, dry-crops (dry season)	Gray or brown	Medium to heavy texture; high water-holding capacity; good drainage; fertile soil, moderate organic matter	2%
<i>Kbal Po</i> soils	Recent alluvial plain	Paddy (dry season), flooded (rainy season)	Gray, brown, or dark gray	Heavy texture; flooded for 3 - 5 months; high water-holding capacity; fertile soil; moderate organic matter; acidic	13%
<i>Krakor</i> soils	Recent alluvial plain	Paddy (dry season), flooded (rainy season)	Gray, brown or dark gray	Heavy texture; flooded for 3 - 5 months; high water-holding capacity; fertile soil, moderate organic matter; acidic	12%
Labansiek soils	Undulating sloping hill land	Mainly dry-crop field	Red or reddish brown	Heavy texture; high water-holding capacity; moderate nutrient; slightly acidic or neutral	1%
Kompong Siem soils	Hill slopes	Mainly dry-crop field	Black or dark gray	Clay soil gravel and boulders; high water-holding capacity; fertile soil; neutral to slightly alkaline	2%

Table 4.1 General Characteristics of Soil Groups

Source: "The Soils Used for Rice Production in Cambodia ~ A Manual for Their Identification and Management" and "Rice production in Cambodia"

Nam	e of crop	Paddy	Condition:	Medium n	naturing paddy, Rai	in-fed
			Unit	Quantity	Price (Riel)	Value (Riel)
A.	Gross Income	Total (A)				496,600
	Main product		kg	1,300	370	481,000
	By-products (str	raw)	kg	1,300	12	15,600
B.	Direct Product	ion Cost Total (B)				196,843
B.1	Input Cost	Subtotal (B.1)				97,130
	Seed		kg	65	420	27,300
	Compost		m ³	2	8,000	16,000
	Chemical fertili	zer Urea	kg	25	800	20,000
		DAP	kg	25	1,000	25,000
		KCL	kg	0	800	0
	Agro-chemicals	Insecticide	kg, lit.	0	20,000	0
		Fungicide	kg, lit.	0	20,000	0
		Herbicide	kg, lit.	0	20,000	0
	Others					8,830
B.2	Labor Cost	Subtotal (B2)	man-day	90		27,000
	Hired labor		man-day	9	3,000	27,000
	Family labor		man-day	81	0	0
B.3	Draft Animal /	Machinery Cost				63,000
		(Subtotal B.3)				
	Land preparatio	n by animals	animday	7	7,000	49,000
	Land preparatio	n by tractor	hour			
	Thresher		hour			
	Transportation		animday	2	7,000	14,000
B.4	Tool / Equipme	ent Cost				9,713
C.	Indirect Cost	Total (C)				3,885
	Tax					0
	Interest of credi	t				3,885
	Irrigation servic	e fee				0
	Depreciation co	st				0
D.	Net Return	$\mathbf{D} = \mathbf{A} - (\mathbf{B} + \mathbf{C})$				200,728

Table 4.2Crop Budget of Present Condition

Station:			XXXX	XX, Tra	ım Kak	, Takeo	Provin	ce		on: 132		, 4380	00 E (U	JTM)
Year:		1999					-	- 1		MOW				
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
		100.0	2.2	-	-	-	-	2.4	NA	12.4	34.1	9.4	-	
	2	24.0	0.0	-	-	-	-	9.6	NA	1.1	54.2	2.3	-	
	3	2.0	-	-	-	-	34.2	12.4	NA	2.4	12.3	45.0	-	
	4	1.0	-	-	-	-	2.1	56.0	NA	3.6	43.1	12.3	-	
	5	23.5	-	-	-	-	-	23.1	NA	8.3	0.0	-	-	
	6	0.0	-	-	-	-	- Data n	-		35.0	5.0	-	-	
	7	0.0	-	-	-	-		ot avail	able _{2.4}	47.0	9.7	-	- \	
	8	-	-	-	-	-	1.1	0.0	-	12.0	-	23.1	-	∖no rainfa
	9	2.3	-	rāinfa	all not r	nea s ur	ahle	12.4	3.5	0.0	-	12.4	-	
1	10	4.2	5.0	/-	-	-	-	3.5	-	1.0	2.5	34.0	-	
	11	0.0	1.2	-	-	-	-	-	34.7	37.0	12.4	1.2	-	
1	12	0.0	0.0	-	-	12.5	0.6	-	90.0	2.4	24.8	3.5	-	
1	13	0.0	-	-	-	21.3	-	2.1	11.4	5.1	3.1	0.1	-	
1	14	0.0	-	-	-	-	10.3	-	2.3	2.5	0.5	-	-	
1	15	-	-	-	-	-	-	0.0	-	0.0	0.0	-	-	
sub-total	(1)	157.0	8.4	0.0	0.0	33.8	48.3	121.5	NA	169.8	201.7	143.3	0.0	
]	16	-	-	1.3	-	-	-	-	-	9.1	-	-	-	
1	17	-	-	12.4	-	-	-	32.0	-	23.5	23.1	23.0	-	
1	18	-	3.5	-	-	-	11.1	12.0	23.4	25.0	45.3	1.7	-	
1	19	-	21.2	-	-	-	-	11.1	12.4	-	-	-	-	
2	20	-	2.3	-	-	-	2.0	8.0	-	-	-	5.1	-	
	21	-	0.0	-	-	-	-	4.2	2.4	-	6.7	-	-	
	22	-	-	-	12.4	-	1.3	-	123.0	-	34.1	-	-	
	23	2.0	-	-	0.0	-	2.5	0.0	45.2	12.5	-	-	-	
	24	0.5	-	-	-	-	6.7	2.4	8.6	70.0	2.5	2.3	-	
	25	-	-	-	-	-	8.1	19.0	22.3	-	12.8	23.0	-	
	26	-	-	0.0	-	-	12.4	34.0	34.0	2.3	7.9	_	-	
	27	-	-	-	-	-	25.0	11.3	0.0	-	-	1.7	-	
	28	-	-	-	12.1	_	28.0	-	13.0	0.7	2.3	23.0	-	
	29	-		-	-	_	80.0	-	12.0	60.0	0.6	66.0	-	
	30	2.1		-	-	_	-	1.3	2.3	12.0	57.2	5.8	-	
	31	0.0		-		_		9.8	5.1	12.0	3.0	2.5	_	
- sub-total		4.6	27.0	13.7	24.5	0.0	177.1	145.1	303.7	215.1	195.5	151.6	0.0	
total	(4)	161.6	35.4	13.7	24.5	33.8	225.4	266.6	NA	384.9	397.2	294.9	0.0	NA
max.		101.0	21.2	12.4	12.4	21.3	80.0	56.0	NA	70.0	57.2	66.0	0.0	NA
min.		0.0	0.0	0.0	0.0	12.5	0.6	0.0	NA	0.0	$\frac{37.2}{0.0}$	0.1	0.0	NA
rain days		17	9	3	3	2	15	22	NA	24	24	19	0.0	NA
ann uays		1 /	フ	3	5	2	15		A	24	2 4	17	0	
									Ť					≜
				Evon	with o	nο "ΝΛ	" total	maxim	um mi	nimum	and ra	in dave	should	d be "NA"

Table 5.1Daily Rainfall Record

Station: Year:	R0001 1999	XXXX	XX, Tra	am Kak,	, Takeo	Provin	ce		on: 132 MOW		, 4380	00 E (U	TM)
Year:	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1986	100.0	23.0	12.0	2.1	0.0	12.5	125.6	450.0	231.0	281.2	14.2	11.5	1263.1
1987	24.0	12.0	2.3	0.0	12.3	67.9	45.2	234.0	111.2	33.5	45.1	3.5	591.0
1988	23.5	2.4	4.5	12.5	2.0	125.4	34.6	125.7	312.4	213.2	23.1	12.0	891.3
1989	56.8	35.6	33.2	23.5	12.7	12.0	78.9	640.1	12.4	135.0	152.9	0.0	1193.1
1990	123.2	78.1	0.0	11.0	23.0	6.8	52.3	234.5	231.0	512.0	230.1	2.3	1504.3
1991	54.1	12.0	0.0	4.5	1.4	33.5	12.3	211.3	298.4	221.0	11.0	0.0	859.5
1992	23.1	3.4	3.0	0.0	7.0	23.9	145.0	80.5	342.8	123.0	234.0	45.2	1030.9
1993	5.1	56.1	2.3	23.2	1.1	89.3	77.0	67.8	319.4	89.7	43.2	0.0	774.2
1994	34.5	23.0	1.5	34.0	0.0	12.5	34.6	411.2	223.0	45.3	35.6	123.0	978.2
1995	450.8	0.0	13.2	23.8	3.5	35.8	67.2	23.5	76.4	23.6	123.4	23.4	864.6
1996	24.2	2.3	45.0	90.0	0.0	178.9	34.5	297.5	294.3	319.3	21.5	12.5	1320.0
1997	3.1	26.7	11.2	2.1	1.0	23.0	9.3	512.4	422.4	98.2	11.5	44.2	1165.1
1998	289.4	1.3	34.0	1.0	2.5	66.7	128.4	23.5	129.0	129.4	41.5	32.5	879.2
1999	100.0	145.3	0.0	4.5	31.0	23.4	205.0	NA	312.5	222.1	23.1	5.9	NA
2000	234.1	23.0	111.0	2.0	12.5	99.0	45.0	308.9	98.9	78.0	223.0	123.0	1358.4
average	103.1	29.6	18.2	15.6	7.3	54.0	73.0	NA	227.7	168.3	82.2	29.3	NA
R80	23.5	2.4	1.5	2.0	1.0	12.5	34.6	NA	111.2	78.0	21.5	2.3	NA
max.	450.8	145.3	111.0	90.0	31.0	178.9	205.0	NA	422.4	512.0	234.0	123.0	NA
min.	3.1	0.0	0.0	0.0	0.0	6.8	9.3	NA	12.4	23.6	11.0	0.0	NA
			Even	with or	ne "NA	", total,	maxim	um, mi	nimum,	and ra	in days	should	be "NA"

Table 5.2 Monthly Rainfall Record

Monthly rainfall of 80% dependability.

If data are available for "n" years. {(n/5)+1}th smallest monthly rainfall would be R80. R80 is given with "bold face" for each month.

Doromotor	Unit		River		WHO	Standa	rd Value ^{*2}
Parameter	Unit	P1	P2	Р3	Guideline ^{*1}	River	Lake/Reservoir
Air Temperature	°C	27.0	27.0	27.0	-	-	-
Conductivity	ms/cm	110.0	98.3	99.7	-	-	-
pH Value	Unit	7.50	7.52	7.73	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5
Total Dissolved Solids (TDS)	mg/L	100	87	67	1000	-	-
Suspended Solids (TSS)	mg/L	57.3	119.3	86.7	-	25 - 100	1 - 15
Aikalinity (as CaCO ₃)	mg/L	66	40	58	-	-	-
Calcium (Ca)	mg/L	7.4	3.8	7.1	-	-	-
Magnesium (Mg)	mg/L	3.3	1.0	2.2	-	-	-
Total Hardness (Ca+Mg)	mg/L	31.9	13.5	26.7	500	-	-
Chloride (Cl)	mg/L	0.9	1.4	0.8	250	-	-
Fluoride (F)	mg/L	0.20	2.30	0.10	1.5	-	-
Copper (Cu)	mg/L	0.0	0.0	0.0	2	-	-
Iron (Fe)	mg/L	1.63	2.23	1.59	0.3	-	-
Manganese (Mn)	mg/L	0.30	0.10	0.10	0.1	-	-
Nitrate (NO ₃ -N)	mg/L	0.2	0.0	0.0	10	-	-
N-Amonia (NH ₄ -N)	mg/L	0.23	0.66	0.55	1.5	-	-
Potassium (K)	mg/L	1.50	1.90	1.80	-	-	-
E-Coli	cfu/1000ml	330	620	570	0	-	-
Total Coliforms	cfu/1000ml	2000	8400	2000	0	<5000	<1000
Fecal Coliforms	cfu/1000ml	70	0	150	0	-	-
COD _{Mn}	mg/L	2.3	7.4	3.0	-	-	1 - 8
BOD	mg/L	33.0	16.0	22.0	-	1 - 10	-

Table 5.3 Test Results of Water Quality Analysis

*1: WHO guideline for drinking water quality

*2: Water quality standard in public water areas for bio-diversity conservation (Sub-decree on

Water Pollution Control, 1999, RGC)

Stage		Detailed In	vestigation
Туре	Preliminary Investigation		_
Type	Investigation	Soft Ground Investigation	Permeable Ground Investigation
Boring	Location 1 location / 200m along the center line of the dike <u>Depth</u> 3 times of height of the dike <u>Main Purpose</u> Confirmation of N-value and permeability. Sampling of disturbed materials	Location 1 location / 100m along the center line of the dike <u>Depth</u> Up to the depth of the soft ground layer that might affect the stability of the dike <u>Main Purpose</u> Sampling of disturbed materials	Location 1 cross-section / 100m along the center line of the dike. One location each at foot of embankment (upstream side and down stream side) <u>Depth</u> Up to the continuous non-permeable layer, or up to 20 m. <u>Main Purpose</u> Sampling, Permeability test
Sounding Test	Location 1 location /50~100m along the center line of the dike.	Location 1 location / 20~50m along the center line of the dike. Depth Up to the depth of the soft ground layer that might affect the stability of the dike	Location 1 location / 100m along the center line of the dike. 1 location / 20~50m across the center line.
Sampling		Location 1 sample / 100m along the center line of the dike 1 sample per 2 m depth or 1 sample per layer if the changes of layers are remarkable.	Location 1 cross-section / 100m along the center line of the dike. One location each at foot of embankment (upstream side and down stream side) 1 sample per 2 m depth or 1 sample per layer if the changes of layers are remarkable.
In Situ Permeability Test	1 location per bore hole		Location 1 cross-section / 100m along the center line of the dike. One location each at foot of embankment (upstream side and down stream side) 1 sample per layer.
Soil Mechanical Test		1 sample per 2 m depth or 1 sample per layer if the changes of layers are remarkable.	1 sample per 2 m depth or 1 sample per layer if the changes of layers are remarkable.

Table 6.1Location and Number of Sampling

Code	Serial No	Lina No	Total L (m)	Durnaga	Lan	duse	UTM Co	oordinate			Up/	/Downs	tream - 1				Up	/Down	stream - 2	
Code	Serial No.	Line No.	Total L (m)	Purpose	Left	Right	East	North	B (m)	b (m)	H(m)	h (m)	Serious Problems	Evaluatior	B (m)	b (m)	H (m)	h (m)	Serious Problem	Evaluation
Α	1	C1I	8,800.00	IGT	V	V	54026	9987	6.20	3.00	1.70	0.20	SD,ITR	С						
Α	2	C1I	8,800.00	IGT	PF	PF	54308	9989	2.50	2.00	0.60	0.00	SD	С						
Α	3	C1I	8,800.00	IGT	PF	PF	54574	9991	2.00	2.00	0.50	0.00	SD	С						
Α	4	C1I	8,800.00	IGT	PF	PF	54952	9988	5.00	4.00	1.00	0.40	SD	С	3.00	2.00	0.50	0.00	SD	С
Α	5	C1I	8,800.00	IGT	PF	PF	55469	10004	4.00	3.00	0.90	0.00	SD	С	3.00	2.00	0.90	0.00	SD	С
Α	6	C1I	8,800.00	IGT	PF	PF	55888	10012	2.50	2.00	0.60	0.00	SD	С						
Α	7	C1I	8,800.00	IGT	PF	PF	56348	10017	5.00	3.00	1.00	0.00	SD	С						
Α	8	C1I	8,800.00	IGT	PF	PF	56861	10027	5.00	3.00	1.00	0.00	SD	С						
Α	9	C1I	8,800.00	IGT	PF	PF	57332	10037	3.00	2.00	1.00	0.00	SD	С						
Α	10	C1I	8,800.00	IGT	PF	V	57956	10047	5.00	1.50	1.50	0.00	SD,ITR	С						
Α	11	C1I	8,800.00	IGT	PF	PF	58370	9991	3.00	1.50	1.00	0.00	SD,ITR	С						
Α	12	C1I	8,800.00	IGT	PF	PF	58650	10010	4.00	4.00	0.50	0.00	SD,ITR	С						
Α	13	C1I	8,800.00	IGT	PF	PF	59150	10071	4.00	4.00	0.50	0.00	SD,ITR	С						
Α	14	C1I	8,800.00	IGT	PF	PF	59536	10081	3.00	1.50	1.00	0.00	SD,ITR	С						
Α	15	C1I	8,800.00	IGT	PF	PF	60194	10098	5.00	3.00	1.00	0.00	SD,ITR	С	4.00	2.00	0.80	0.00	SD,ITR	С
Α	16	C1I	8,800.00	IGT	PF	V	60617	10109	4.00	2.00	1.00	0.00	SD,ITR	С						
Α	17	C1I	8,800.00	IGT	V	PF	61023	10111	4.00	2.50	1.00	0.00	SD,ITR	С	3.00	2.00	1.00	0.00	SD,ITR	С
Α	18	C1I	8,800.00	IGT	PF	PF	61423	10112	4.00	2.00	1.00	0.00	SD,ITR	С						
Α	19	C1I	8,800.00	IGT	PF	PF	61852	10114	4.00	2.00	1.00	0.00	NO	В						
Α	20	C1I	8,800.00	IGT	PF	PF	62220	10112	3.00	2.00	1.00	0.00	SD,LK,ITR	С						
Α	21	C1I	8,800.00	IGT	PF	PF	62577	10142	3.00	3.00	0.20	0.00	NO	С						
Α	22	C1I	8,800.00	IGT	PF	PF	62734	10129	3.00	2.00	0.30	0.00	LK,ITR	С						
Α	23	CO	9,200.00	IGT	V	PF	40714	29269	18.00		3.00	1.00	ITR	В						
Α	24	CO	9,200.00	IGT	PF	PF	40756	28811		10.00	3.50	0.00	LK,ITR	С						
Α	25	CO	9,200.00	IGT	PF	PF	40846	28283	17.00		2.00	0.00	SD,LK,ITR	С						
Α	26	CO	9,200.00	IGT	PF	PF	40979	27472	20.00		2.00	0.00	ITR	С						
Α	27	CO	9,200.00	IGT	PF	PF	41136	26883	20.00	12.00	2.20	0.00	ITR	С						
Α	28	CO	9,200.00	IGT	PF	PF	41681	26310	20.00		2.10	0.80	LK,ITR	С						
Α	29	CO	9,200.00	IGT	PF	PF	42003	25886	18.00	4.00	3.50	0.10	SD,LK,ITR	С						
Α	30	CO	9,200.00	IGT	V	PF	42751	25276	7.00	4.00	1.80	0.90	SD	С						
Note																				

 Table 7.1
 Database on the Canal Inventory Survey

A : Fully functioning

- V: Village.
- **B** : Partly deteriorated ,but functioning in a satisfactory range
- C : Not functioning well and/or affecting the downstream flo
- **D** : Completely not functioning.
- **PF** : Paddy field.

- PO : Pond.
- RE : Reservoir.
- PA : Pagoda.
- BS : Basin
- ITR : Inspection road.

- NO : None
- RD : Road
- S: School
- **SD** : Sediments. LK : Leakage.

- - w : Water

IGT : Irrigation.

T-7

Table 8.1Minutes of Meeting

Meeting No.:	Date:	Village:				
3rd	4 Sep. 2001	Trapeang Chhuk				
510	4 Sep. 2001	T.T.K. Tboung Commune				

	Participants
Village:	Chief and vice-chief of village, villagers (9 male and 5 female)
JICA:	Mr. ITAYA, Mr. Karona and Mr. Sophal

	Main object	Results
• Collection o	f landholding data inside	Summarized in attached table. 14 HH have
small reservo	vir.	land in small reservoir. They agree for
	⇒	rehabilitation of small reservoir.
	Other discussio	n/Finding
• Villager	I request for JICA to rehabilitate	farm road in the village. They need equipments
	and some pipe.	
• Karona	You will be able to request to the	project through chief of village.
• Villager	I want to work as labor for not on	ly SRP but also USP and other constructions.
• Karona	If the project (contractor) need lal	bor, you will be able to work.
• Villager	How can we plant paddy in the re-	eservoir after receding water from the Ang 160
	reservoir?	
• Karona	It should be decide by each FWU	C. Discuss with FWUC member, please.
• Villager	If we can plant paddy in the reso	ervoir after receding water, do we have to pay
	ISF?	
• Karona	It should be decide by each FWU	C and upper organization of FWUC.
• Villager	Please irrigate his land locating	far from the small reservoir using the small
	reservoir's water.	
• Karona	I am not sure.	
Next meeting:	AM 9:00, 11 Sep. 2001	

			Irrigation Wa	ater Standard				Other Standar	·d
			FAO			Japan	Drinking	Sub-decre	e of RGC ^{*3}
Items	Deg	ree of Restriction	n Use		-	Japan	Water	Sub-ucci	
	None	Slight to Moderate	Severe	Max. Concent.	Usual range in irri.	No restrection	(WHO)	River	Lake/ Reservoir
Electric Conductivity (EC) ^{*1}	<0.7dS/M	0.7-3.0dS/m	>3.0dS/m		0-3dS/m	<u><</u> 0.3ms/cm			
pH Value ^{*1}	N	ormal range 6.5-8	8.4		6.0-8.5	6.0-7.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5
Color ^{*1}							15TCU ^{*4}		
Total Dissolved Solids (TDS) ^{*1}	<450mg/l	450-2000mg/l	>2000mg/l		0-2000mg/l		1000mg/l *4		
Suspended Solids (TSS)						<u><</u> 100mg/l		25 - 100mg/l	1 - 15mg/l
Sodium (Na) ^{*1}	<3me/L *2	3-9me/L *2	>9me/L *2		0-40me/L		200mg/l *4		
Calcium (Ca) ^{*1}					0-20me/L				
Magnesium (Mg)					0-5me/L				
Total Hardness (Ca+Mg)							500mg/l		
Chloride (Cl) ^{*1}	<4me/L *2	4-10me/L *2	>10me/L *2		0-30me/L		250mg/l *4		
Fluoride (F) ^{*1}				1.0mg/l			1.5mg/l		
Boron (B)	<0.7mg/l	0.7-3.0mg/l	>3.0mg/l		0-2mg/l		0.5mg/l		
Arsenic (As) ^{*1}				0.1mg/l		<u><</u> 0.05mg/l	0.01mg/l	<0.01mg/l	<0.01mg/l
Copper (Cu) ^{*1}				0.2mg/l		<u><</u> 0.02mg/l	2mg/l		
Iron (Fe) ^{*1}				1.0mg/l			0.3mg/l		
Zinc $(Zn)^{*1}$				2.0mg/l		<u>≤</u> 0.5mg/l	3mg/l		
Manganese (Mn) ^{*1}				0.2mg/l			0.5mg/l		
Nitrate Nitrogen (NO ₃ -N) ^{*1}	<5mg/l	5-30mg/l	>30mg/l		0-10mg/l		50mg/l		
Nitrite Nitrogen (NO ₂ -N) ^{*1}							3mg/l		
Ammo. Nitorogen (NH ₄ -N)					0-5mg/l		1.5mg/l *4		
Total Nitrogen (T-N)						<u><</u> 1mg/l	-		0.1-0.6mg/l
Potassium (K) ^{*1}					0-2mg/l				
Bacteria ^{*1}							0 /100ml		
Coliform Group ^{*1}							0 /100ml	<5000 /100ml	<1000 /100ml
DO						<u>></u> 5mg/l		2.0-7.5mg/l	2.0-7.5mg/l
COD _{Mn}						<u><</u> 6mg/l			1 - 8
BOD								1 - 10	

Table 11.1 Water Quality Standard

*1: Items recommended to be checked in Subsection 5.3.4 of Chapter 5

*2: Except sprinkler irrigation

*3: Water quality standard in public water areas for bio-diversity conservation (Sub-decree on Water Pollution Control, 1999, RGC) *4: Values which may give rise to complains from consumers

Characteristics of Ca	
Water requirement	Paddy rice requires more water than diversified crops
Droughty and wet tolerance	Resistant capacity for dry or wet condition
Photo- sensitivity	If photo-periodic sensitive crop, planting period is limited
Growing period	Period between sowing and harvesting. If transplanting, both periods o nursery and main filed.
Suitability for Clima	tic Conditions
Temperature	Range of suitable air temperature
Rainfall and air humidity	Can be used rainfall effectively? Influences of rainfall to harvesting and crop drying, heavy rain to crop growing, and. high humidity to serious pest damage.
Suitability for Soil a	
Soil chemical properties	To examine soil chemical properties by laboratory analysis.
Soil water condition	Permeability and water-storage capacity
Soil texture	Soil texture affects soil fertility, water permeability, workability for soi plowing, and drainability.
Easiness of tilling	Easiness of tilling is an essential factor for farming by labor and anima work, especially for diversified crops
Drainability and flood	Poor drain land are generally not suitable for diversified crops
Farmers intension an	nd willingness
Intention to crop	Farmers intention to paddy varieties: high yielding or local
Level of farming skill	Farmers technical level and familiarity with the crop
Socio-economic Con	ditions
Labor and draft	To examine available labor force and draft animal against the
animal requirement	requirements, and to examine mechanization, if not enough to the requirement,
Availability of inputs required	Required inputs are available in market?
Profitability of crop	Profit of crop per
Inputs cost and financial capacity of farmers	To examine value of inputs and financial situation of farmers in the project area
Marketability of pro	ducts
	In and around project area, rural market, large city market, or international market
Processing facility	Location/distance to processing facility, and processing capacity
Supply-demand balance	To examine supply and demand of target market, and fluctuation of seasonable market prices.
Transportation	Distance to target market, transportation cost, activity of traders and handling cost
Possibility of storing	Location and capacity of storage
Competition with other producing area	Price, quality, and marketing capacity of other producing area. Marketing ability of producers in the project area

Table 12.1Items of Examination for Selection of Target Crops

Candidate crop		Early Paddy	Medium Paddy	Maize	Soybean	Watermelon	Vegetable
Selected target crop		0	0		0		0
Water requirement		High	High	Medium	Low	Low	Low
Growing period	day	105 included 30 nursery period	120 included 30 nursery period	95	85	95 included 20 nursery period	80
Photo-sensitivity		No	Some varieties	No	No	No	No
Climatic suitability		good for	Good, but no good for harvesting in heavy rainy season	Good	-	Good except hevey rainy season	Good except heavy rainy season
Suitabiity for soil / land condition		Good	Good	Good	Good except poor drain land	Good except poor drain land	Good except poor drain land
Farmers intention		Moderate	High	Moderate	Low	Moderate	High
Farmers skill level of farming		Moderate	Moderate	Low	Low	Moderate	Low
Labor requirement	man-day /ha	85	85	65	65	100	120
Availability of labor and draft animal		Enough	Enough	Enough	Enough	Enough	Enough
Availability of inputs		Deficit of certified seed	Deficit of certified seed	Available	Available	Deficit of improved variety seed	Available
Anticipated yield	ton/ha	3.5	3.0	1.3	1.0	8.0	7.0
Unit price of product	Riel/kg	330	370	720	1200	400	600
Gross income	Riel/ha	1,155,000	1,110,000	936,000	1,200,000	3,200,000	4,200,000
Cost of inputs		Moderate	Moderate	Low	Low	High	High
Profitability		Low	Moderate	Low	Moderate	High	High
Target market		In and around Project area	In and around Project area	In and around Project area	In and around Project area	Town market	Phnom Penh market
Distance to market	km	5	5	5	5	15	60
Processing facility		Sufficient rice mills	Sufficient rice mills	No	No	-	-

Table 12.2 A Sample of Selection of Target Crops

Proposed (With-Project)																	
	Name of crops		F	Paddy lo	ocal	F	Paddy H	IYV		Maiz	e		Bear	ı		Vegetab	oles
		Unit	Q'ty	Price	Value	Q'ty	Price	Value	Q'ty	Price	Value	Q'ty	Price	Value	Q'ty	Price	Value
				(Riel)	1000Rie	ľ	(Riel)	[1000Riel	ľ	(Riel)	(1000Riel	[(Riel)	(1000Riel	[(Riel)	1000Riel
1	Gross Income	Riel			1,036			1,089			1,080			1,440			3,500
	Main products	kg	####	370	1,036	####	330	1,089	####	600	1,080	####	1,200	1,440	####	500	3,500
2	Direct Cost	Riel			405			405			257			382			788
2.1	Inputs	Riel			281			281			174			300			663
	Seed	kg	65	400	26	65	400	26	20	2,000	40	30	4,500	135	6	######	138
	Farm manure (wet)	ton	3	#####	75	3	#####	75	0	#####	0	0	#####	0	5	######	125
	Fertilizer Urea	kg	100	800	80	100	800	80	80	800	64	80	800	64	150	800	120
	DAP	kg	50	1,000	50	50	1,000	50	30	1,000	30	50	1,000	50	100	1,000	100
	KCL	kg	30	800	24	30	800	24	30	800	24	30	800	24	100	800	80
	Agro-chemicals	liter	0		0	0		0	0		0	0		0	4	######	40
	Others				26			26			16			27			60
2.2	Labor	m-d	90		27	90		27	80		12	65		10	120		8
	Hired labor	m-d	9	3,000	27	9	3,000	27	4	3,000	12	3	3,000	10	3	3,000	8
	Family labor	m-d	81	0	0	81	0	0	76	0	0	62	0	0	117	0	0
2.3	Draft animal	Riel			63			63			49			39			46
	Land preparation	anml-d	7.0	7,000	49		7,000	49	5.0	7,000	35	4.0		28		7,000	35
	Transportation	anml-d	2.0	7,000	14	2.0	7,000	14	2.0	7,000	14	1.5	7,000	11	1.5	7,000	11
2.4		Riel			34			34			22			34			71
3	Indirect Cost	Riel			61			58			37			50			86
	Water fee	Riel			3			0			0			0			0
	Land fee	Riel			30			30			20			20			20
	Tax	Riel			0			0			0			0			0
	Interest	Riel			28			28			17			30			66
4	Total Cost	Riel			466			463			294			432			874
5	Profit	Riel			570			626			786			1,008			2,626
	Profit ratio	%			122%			135%			267%			233%			300%

Table 12.3 A Sample of Crop Budget

Present (Without-Project)

	Name of crops	.,	F	addy l	ocal	I	Paddy H	IYV		Maize	,		Bear	1		Vegetal	oles
	· · · ·	Unit	Q'ty	Price	Value	Q'ty	Price	Value	Q'ty	Price	Value	Q'ty	Price	Value	Q'ty	Price	Value
				(Riel)	1000Rie	ľ	(Riel)	1000Riel		(Riel) (1000Riel		(Riel)	(1000Riel	ľ	(Riel)	1000Riel
1	Gross Income	Riel			481			429			540			585			2,000
	Main products	kg	####	370	481	####	330	429	900	600	540	450	1,300	585	####	500	2,000
2	Direct Cost	Riel			208			208			146			233			510
2.1	Inputs	Riel			105			105			84			163			415
	Seed	kg	65	400	26	65	400	26	20	2,000	40	30	4,500	135	6	#####	138
	Farm manure (wet)	ton	1	######	25	1	#####	25	0	######	0	0	#####	0	5	#####	125
	Fertilizer Urea	kg	30	800	24	30	800	24	20	800	16	10	800	8	80	800	64
	DAP	kg	20	1,000	20	20	1,000	20	20	1,000	20	5	1,000	5	50	1,000	50
	KCL	kg	0	800	0	0	800	0	0	800	0	0	800	0	0	#####	0
	Agro-chemicals	liter	0		0	0		0	0		0	0		0	0		0
	Others				10			10			8			15			38
2.2	Labor	m-d	80		24	80		24	70		0	60		0	100		0
		m-d	8	3,000	24	8	3,000	24	0	3,000	0	0	3,000	0	0	3,000	0
		m-d	72	0	0	72	0	0	70	0	0	60	0	0	100	0	0
2.3	Draft animal	Riel			63			63			49			49			49
	Land preparation	anml-d		7,000	49		7,000	49		7,000	35	5.0		35		7,000	35
	Transportation	anml-d	2.0	7,000	14	2.0	7,000	14	2.0	7,000	14	2.0	7,000	14	2.0	7,000	14
2.4		Riel			17			17			13			21			46
3	Indirect Cost	Riel			10			10			8			16			41
	Water fee	Riel			0			0			0			0			0
	Land fee	Riel			0			0			0			0			0
	Tax	Riel			0			0			0			0			0
	Interest	Riel			10			10			8			16			41
4	Total Cost Profit	Riel			219			219			154			249			552
5	• •	Riel			262			210			386			336			1,448
	Profit ratio	%			120%			96%			250%			135%			263%

			Per ha			Project Area							
		F	Fertilizer		Agro-	Planted]	Fertilizer	•	Agro-		
	Seed	Urea	DAP	KCL	Chemicals	area	Seed	Urea	DAP	KCL	chemicals		
	kg	kg	kg	kg	liter	ha	ton	ton	ton	ton	liter		
Proposed (With													
Paddy local		100	50	30	0	1,000	65	100	50	30	0		
Paddy HYV	65	100	50	30	0	200	13	20	10	6	0		
Paddy total						1,200	78	120	60	36	0		
Maize	20	80	40	30	0	120	2	10	5	4	0		
Bean	30	50	50	30	0	180	5	9	9	5	0		
Vegetables	6	150	100	100	4	60	0	9	6	6	240		
Total						1,560	6	18	15	11	240		
Present (With-p	oroject)												
Paddy local	65	30	20	0	0	950	62	29	19	0	0		
Paddy HYV	65	30	20	0	0	180	12	5	4	0	0		
Paddy total						1,130	73	34	23	0	0		
Maize	20	20	20	0	0	60	1	1	1	0	0		
Bean	30	10	10	0	0	30	1	0	0	0	0		
Vegetables	6	80	50	0	0	10	0	1	1	0	0		
Total						1,230	1	1	1	0	0		
Incremental													
Paddy local	0	70	30	30	0	50	3	72	31	30	0		
Paddy HYV	0	70	30	30	0	20	1	15	6	6	0		
Paddy total	0	0	0	0	0	70	5	86	37	36	0		
Maize	0	60	20	30	0	60	1	8	4	4	0		
Bean	0	40	40	30	0	150	5	9	9	5	0		
Vegetables	0	70	50	100	4	50	0	8	6	6	240		
Total		330	5	17	14	11	240						

Table 12.4 A Sample on Calculation of Required Inputs

	Planted		Labor Requirement (man-day/month) n Feb Mar Apr May Jun Jul Aug Sep Oct Nov											
	area (ha)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Per ha (man-day	/ha)													
Paddy local	1,000	5					4	12	15	16	7	15	16	90
Paddy HYV	200	7						5	16	18	6	20	18	90
Maize	120					8	19	15	19	19				80
Bean	180	10	25									15	15	65
Vegetables	60	10	10	10		10	15	10	15	10		15	15	120
Project area (100	00 man-day	y)												
Paddy local	1,000	5.0	0.0	0.0	0.0	0.0	4.0	12.0	15.0	16.0	7.0	15.0	16.0	90.0
Paddy HYV	200	1.4	0.0	0.0	0.0	0.0	0.0	1.0	3.2	3.6	1.2	4.0	3.6	18.0
Maize	120	0.0	0.0	0.0	0.0	1.0	2.3	1.8	2.3	2.3	0.0	0.0	0.0	9.6
Bean	180	1.8	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	2.7	11.7
Vegetables	60	0.6	0.6	0.6	0.0	0.6	0.9	0.6	0.9	0.6	0.0	0.9	0.9	7.2
Total (a)	1,560	8.8	5.1	0.6	0.0	1.6	7.2	15.4	21.4	22.5	8.2	22.6	23.2	####
Available labor	force * (b)	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1	49.1	####
Balance (b-a)		40.3	44.0	48.5	49.1	47.6	42.0	33.7	27.8	26.7	40.9	26.5	25.9	####
(a/b)		0.18	0.10	0.01	0.00	0.03	0.15	0.31	0.44	0.46	0.17	0.46	0.47	0.23
Note *: Estimate	ed at assum	ption	of foll	owings	3									
Beneficiarie	es househo	lds							h.h.			####		
Average far	nily size							pe	erson/h	ı.h		5.2		
Average labor force per household								pe	erson/h	ı.h		2.1		
Labor force	in the proj	ject are	ea				person ####							
Available la	bor force f	for on-	farm v	vork (8	30% fo	r male	, 50%	for fer	%			65%		
Workable d	ays for on-	farm v	vork p	er mor	ıth			da	y/mon	nth		24		
Available la	bor force f	for on-	farm v	vork pe	er mor	ıth		100	0 man	-day		49.1		

Table 12.5 A Sample of Examination of Labor Balance

			(Unit: ha)
	Planted area	Unit yield	Production
	ha	kg/ha	ton
Peoposed (With-Project)			
Paddy local	1,000	2,800	2,800
Paddy HYV	200	3,300	660
Paddy total	1,200		3,460
Maize	120	1,800	216
Bean	180	1,200	216
Vegetables	60	7,000	420
Total	1,560		
Present (Without-Project)			
Paddy local	950	1,300	1,235
Paddy HYV	180	1,300	234
Paddy total	1,130		1,469
Maize	60	900	54
Bean	30	450	14
Vegetables	10	4,000	40
Total	1,230		
Incremental			
Paddy local	50	1,500	1,565
Paddy HYV	20	2,000	426
Paddy total	70		1,991
Maize	60	900	162
Bean	150	750	203
Vegetables	50	3,000	380
Total	330		

 Table 12.6
 Prospective Crop Production

		Per ha	(1000 Rie	el/ha)			Proje	ct Area (million Ri	iel)		Farmer of	f Average 1	Farm Size	(0.8ha)	(1000Riel/ł	nousehols)
	Gross		oduction c	ost	Net	Planted	Gross		oduction c		Net	Planted	Gross	Pr	oduction of		Net
	income		Indirect	Total	return	area (ha)	income	Direct	Indirect	Total	return	area (ha)	income	Direct	Indirect	Total	Return
Proposed (With	-project))															
Paddy local	1,036	405	61	466	570	1,000	1,036	405	61	466	570	0.67	691	270	41	311	380
Paddy HYV	1,089	405	58	463	626	200	218	81	12	93	125	0.13	145	54	8	62	83
Paddy total						1,200	1,254	486	73	559	695	0.80	836	324	48	372	463
Maize	1,080	257	37	294	786	120	130	31	4	35	94	0.08	86	21	3	24	63
Bean	1,440	382	50	432	1,008	180	259	69	9	78	181	0.12	173	46	6	52	121
Vegetables	3,500	788	86	874	2,626	60	210	47	5	52	158	0.04	140	32	3	35	105
Total						1,560	1,853	633	91	724	1,129	1.04	1,235	422	61	483	752
Present (With-p	roject)																
Paddy local	481	208	10	218	263	950	457	198	10	207	250	0.63	305	132	6	138	167
Paddy HYV	429	208	10	218	211	180	77	37	2	39	38	0.12	51	25	1	26	25
Paddy total						1,130	534	235	11	246	288	0.75	356	157	8	164	192
Maize	540	146	8	154	386	60	32	9	0	9	23	0.04	22	6	0	6	15
Bean	585	233	16	249	336	30	18	7	0	7	10	0.02	12	5	0	5	7
Vegetables	2,000	510	41	551	1,449	10	20	5	0	6	14	0.01	13	3	0	4	10
Total						1,230	604	256	13	269	336	0.82	403	171	8	179	224
Incremental																	
Paddy local	555	197	51	248	307	50	579	207	52	259	320	0.03	386	138	34	173	213
Paddy HYV	660	197	48	245	415	20	141	44	10	53	87	0.01	94	29	7	36	58
Paddy total						70	720	251	61	312	407	0.05	480	167	41	208	272
Maize	540	111	29	140	400	60	97	22	4	26	71	0.04	65	15	3	17	47
Bean	855	149	34	183	672	150	242	62	9	70	171	0.10	161	41	6	47	114
Vegetables	1,500	278	45	323	1,177	50	190	42	5	47	143	0.03	127	28	3	31	95
Total						330	1,248	377	79	456	793	0.22	832	251	52	304	529

 Table 12.7
 A Sample of Production Value and Incremental Net Return

Item	Target Level and Standard
Irrigation Plan	
Irrigation m	secondary canal. Rotational irrigation for tertiary and water courses.
• Dependabil	80 % dependability (designed irrigation water supply is guaranteed for 4 years out of 5 years)
Reservoir	
• Design floo	d Reservoir on the perennial river $\rightarrow 1$ in 100 year flood or the maximum flood in the past. Small reservoirs (catchment area less than 10 km ² , or total storage capacity is less than 50,000 m ³) $\rightarrow 1$ in 20 year flood.
• Dike	Height of dike should be basically maintained at no more than 5 m for stability. Earth materials are used. Typical section is shown in Fig 13.1 and 13.2.
• Intake Struc	
• Spillway	Overflow-type spillway would be the main spillway. Operation gate should be installed for maintenance of dike and reservoir and river flow.
• Freeboard	0.90 m. 0.60 m for small reservoirs (catchment area less than 10 km^2 , or total storage capacity is less than 50,000 m ³)
• Sedimentati	on Standard unit sedimentation rate : 0.1 mm/km ² /year. Sedimentation for 20 years would be considered as dead storage.
Irrigation cana	ls
• Canal netwo	OrkMain canal, secondary canal, tertiary canal, water course.A tertiary block should be located in a village with area about 50 ha.The maximum length of the tertiary canal should be less than 1 km.The tertiary canal should have sufficient capacity for rotational irrigation.
• Lining	Earth-lined canal (Manning's roughness coefficient = 0.025) Typical canal section is given in Fig 13.3
• Existing cap	
• Freeboard	See Sub-section 13.6.7
• Conjunctive	Water from surrounding fields might be drained by using of freeboard and capacity of existing canals.
• Inspection r	The main and secondary canals commanding over 1,000 m would have inspection roads of 4.0 m in total width. For canals of less than 1,000 m, total road width would be 2.0 m.
• Crossing structure	The minimum diameter of pipe culvert should be 0.6 m for maintenance.
 Measuring devices 	Water level gauges should be installed at diversion structure to measure the discharge of diverted water. For tertiary canal, water would be distributed at full water level for certain period for rotational irrigation. Thus, water would not be controlled by discharge but by maintaining of the full water level with off-take gate.

Table 13.1Target Level and Standard of Rehabilitation and Reconstruction of Irrigation
and Drainage System (1/2)

I	tem	Target Level and Standard
Pond		
• Pond		Depth of pond should be 3.0 m to utilize groundwater
• Relat	ed facilities	Wooden step (ladder), fence around the pond
Drainage		
Impropolicy	ovement y	Full improvement with unit drainage requirement, if capacity of rivers, streams and existing drains is sufficient and does not require major construction works. If not, drainage whose capacity is equivalent to the irrigation water to the area would be secured to maintain the original drainage condition in the area.
• Desig	gn capacity	Full Improvement: Consecutive 3-day rainfall of 1 in 10 year recurrence period should be drained within 3 days allowing inundation of 150 mm. Storage capacity of paddy field could be accounted (1.6 lit/s/ha for Takeo). Irrigation Scheme: Drainage whose capacity is equivalent to irrigation water to the area should be secured (about 1.0 lit/s/ha)
Responsi	bility	
• Const	truction	Up to secondary canal \rightarrow MOWRAM (DWRAM) Tertiary and water courses \rightarrow FWUC getting technical guidance and engineering services of MOWRAM (DWRAM)
• 0&N	1	Medium to large irrigation scheme → MOWRAM (DWRAM) would support for certain period after completion (ex. 4 years). Within that period, intensive training would be conducted by MOWRAM (DWRAM) to FWUC. Small irrigation scheme would be handed over to FWUC after construction. MOWRAM (DWRAM) would provide technical support as required.

Table 13.1Target Level and Standard of Rehabilitation and Reconstruction of Irrigation
and Drainage System (2/2)

1	T			-	-			,			0	1	-		1.1		F	
_				<u> </u>	Ju	-	Ju	1	Aug	-	Septe		Octo			ember	Dece	mber
D-	sie cronning pattern			-	1	2	1	2	1	2	1	2		2		2	1	2
Ва	sic cropping pattern	ł													<u> </u>			
-	+	ł													<u> </u>	┨────┦		
								\sim										
												Mediu	m Paddy	у				
									\rightarrow	\sim							/	
		ł									\sim							
17	1985	ł												r				<u>г т</u>
_		ł									60.0	60.0						00.6
ET		а	(mm)		83.3	83.3	73.8	78.7	77.0	82.1	69.8	69.8	64.2	68.5	72.8	72.8	75.6	80.6
_	edium Paddy Irsery	·	1,000	ha														
_	nd preparation	b	(mm)				120.0	120.0	120.0	120.0	120.0							
	Area factor to total crop area	c	(mm)				0.05	0.05	0.05	0.05								
а.	Area factor in period of nursery						0.20	0.00	0.05	0.20	0.20	$\overline{}$	Area	required	d for nu	rsery be	d	-
	Requirement for l.preparation	e = b * c * d	(mm)				1.2	1.2	1.2	1.2		$\overline{}$				of main		
Co	msumptive use in nursery		()	1									fields.					
d.	Crop factor	f					1.0	1.0	1.0	1.0	1.0	X			1			
e.	Comsumptive use of water	g = f * a	(mm)				73.8	78.7	77.0	82.1	69.8	1						
1	Percoration	h	(mm)				2.0	2.0	2.0	2.0	2.0					nonth, 2	.0	
	CU+P	I = g + h	(mm)				75.8	80.7	79.0	84.1	71.8	/			ery will	be		
	Area factor to total crop area	j					0.05	0.05	0.05	0.05	0.05	\square	pre	epared.				
	Area factor in period of nursery	k					0.20	0.20	0.20	0.20	0.20							
	Comsumptive use in nursery	l = I * j * k	(mm)				0.8	0.8	0.8	0.8	0.7							
		<u> </u>		<u> </u>										Г.	[n.co-1-	ofbalf	a month.	20.0/
	ain field of paddy	 		<u> </u>													i month, ields wi	
La	nd preparation	m	(mm)	<u> </u>				120.0	120.0	120.0	120.0	120.0					nsplantii	
+	Area factor to total crop area	n						1.00	1.00	1.00		1.00		F	reparec	. 101 11 41	aspianti	-6-
_	Area factor in period of nursery	0	(<u> </u>				0.20	0.20	0.20	0.20	0.20	<u> </u>					
+	Requirement for l.preparation	p = m * n * o	(mm)	<u> </u>				24.0	24.0	24.0	24.0	24.0		<u> </u>	──	\vdash		\mid
Al	ter land preparation														<u> </u>			
	Crop factor	q						1.10	1.10	1.10	1.05	1.05	1.05	0.95	<u> </u>			
	+	1						1.10	1.10	1.10		1.05	1.05	1.05				-
-						rements			1.10	1.10		1.10	1.05					
		1				ed in eac				1.10	1.10	1.10	1.10				0.95	-
		1		bloc	ks divid	ed by fi	ve half a	L			1.10	1.10	1.10				1.05	0.95
	Comsumptive use of water	r = q * a	(mm)															
								86.59	84.65	90.29	73.24	73.24	67.41	65.06	5			
									84.65	90.29	76.73	73.24	67.41	71.90	69.11			
										90.29	76.73	76.73	67.41	71.90	76.39	69.11		
											76.73	76.73	70.62	71.90	76.39	76.39	71.82	
												76.73	70.62	75.33	76.39	76.39	79.38	76.61
	Percoration+submergence	s	(mm)															
								0.00	0.00	0.00	0.00	45.00	45.00	0.00				
+	<u> </u>	 		<u> </u>					0.00	0.00	0.00	0.00					'	\square
+	 	<u> </u>								0.00	0.00	0.00	0.00	45.00				\square
_	<u> </u>	l		<u> </u>							0.00	0.00	0.00	0.00			0.00	
+	CU+P	4	(m. 1)									0.00	0.00	0.00	0.00	45.00	45.00	0.00
+		t = r + s	(mm)					86.0	84.6	90.3	73.2	118.2	112.4	65.1	──	┢──┤		┝──┤
+	+	 		-				86.6	84.6	90.3	76.7	73.2		116.9		┝──┤		\vdash
+	+	 		-					04.0	90.3	76.7	76.7	67.4	116.9		69.1		\vdash
+	†	1		1						70.5	76.7	76.7	70.6	71.9			71.8	
+	†	ł		1							, 5.7	76.7					124.4	
1	Effective rainfall(ER)	u	(mm)	1	12.0	12.0	22.7	22.7	13.1	13.1	71.4	71.4	95.3	95.3	63.8	63.8	0.0	0.0
1	CU+P-ER	1	/	1														
		v = t - u	(mm)					63.9	71.5	77.2	1.9	46.9	17.2	0.0				
									71.5	77.2	5.4	1.9	17.2	21.7	5.3			
Τ										77.2	5.4	5.4	0.0	21.7		5.3		
					Area pl	anted /					5.4	5.4	0.0	0.0	57.6	57.6	71.8	
1					totoal a							5.4	0.0	0.0			124.4	
	Average of CU+P-ER	w	(mm)		.0:001 0		\neg	63.9	71.5	77.2	4.5	13.0	6.9	8.7	33.3	40.1	98.1	76.6
1	Area factor to total paddy crop			1				\sim						1	1			
	area	x						0.20	0.40	0.60	0.80	1.00	1.00	1.00	0.80	0.60	0.40	0.20
		y = w * x	(mm)					12.8	28.6	46.3	3.6	13.0	6.9	8.7	26.6		39.2	15.3
	Crop water requirement			1			2.0	38.8	54.6	72.3	29.5	37.0	6.9	8.7	26.6		39.2	15.3
3 Ne	t irrigation water requirement	z = e + l + p + l	(mm)															
	t irrigation water requirement Irrigation efficiency	aa					0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60			0.60	
	t irrigation water requirement		(mm) (mm) (MCM)					0.60 64.7 0.65	0.60 91.0 0.91	0.60 120.6 1.21	0.60 49.2 0.49	0.60 61.6 0.62	0.60 11.4 0.11	0.60 14.4 0.14	44.3	40.1	0.60 65.4 0.65	25.5

Table 13.2 Sample of Calculation of Irrigation Water Requirement

Table 13.3 Sample Water Balance Calculation

	Effective Gross stor Dead Stor Evaporati	on coeffcien	city: ': t from reserv	voir water su	rface		Medium paa Short Paddy Upland crop Upland crop	2 p 1	2.77 0.13 0.9	ha ha		Tumnup Le	ok reservoir				1.66 0.66 0.9	MCM MCM MCM mm/day
Year	Month	Inflow from Tumnup Lok	Inflow	Water demands	Average water surface area	Evapo. from reservoir	Percola- tion from reservoir	Water demands + Losses	Spillout	Net Storage Vol.	Deficit	Inflow	Average water surface area	Evapora- tion from reservoir	Percola- tion from reservoir	Loss from pond	Spillout	Net Storage Vol.
		(MCM)	(MCM)	(MCM)	(Mm3)	(MCM)	(MCM)	(MCM)	(MCM)	(MCM)		(MCM)	(Mm3)	(MCM)	(MCM)	(MCM)	(MCM)	(MCM)
	12									2.63								1.00
1966	1	0.44	0.06	0.50	1.905	0.134	0.014	0.65	0.00	2.48		0.30	1.413	0.099	0.011	0.11	0.00	0.75
		0.70	0.06	0.61	1.866	0.140	0.014	0.77	0.00	2.48		0.32	1.347	0.101	0.010		0.00	0.26
	2	0.33	0.03	0.60	1.757	0.147	0.013	0.76	0.00	2.08		0.16	1.011	0.085	0.008	0.09	0.00	0.00
	3	0.08	0.03	0.39	1.511	0.110	0.011	0.51	0.00	1.67 1.26		0.14	0.792	0.057	0.006	0.06	0.00	0.00
	3	0.03	0.02	0.33	1.257	0.118	0.009	0.46	0.00	1.26		0.11	0.779	0.073	0.006	0.08	0.00	0.00
-		0.03	4.05	2.34	1.890	0.100	0.008	2.47	1.52	2.63		11.99	1.413	0.079	0.000	0.08	11.89	1.00
	10	0.00	4.03	1.33	1.890	0.119	0.014	1.46	0.00	2.63		4.79	1.413	0.089	0.011	0.10	4.70	1.00
	10	1.96	1.43	2.96	1.905	0.110	0.014	3.09	0.00	2.00		5.11	1.413	0.082	0.011	0.10	3.06	1.00
	11	2.29	0.23	4.85	1.045	0.068	0.008	4.93	0.00	0.09		1.39	1.413	0.093	0.011	0.10	0.00	0.00
		1.31	0.23	3.22	0.153	0.010	0.001	3.23	0.00	0.07	Short	1.39	1.072	0.070	0.008	0.08	0.00	0.00
	12	0.31	0.04	1.42	0.111	0.000	0.001	1.42	0.00			0.38	0.885	0.060	0.007	0.07	0.00	0.00
		0.33	0.04	0.97	0.111	0.000	0.001	0.97	0.00	0.00	Short	0.41	0.895	0.065	0.007	0.07	0.00	0.00
1995	1	0.08	0.00	0.50	0.110	0.000	0.001	0.50	0.00	0.00	Short	0.14	0.793	0.056	0.006	0.06	0.00	0.00
		0.09	0.00	0.41	0.110	0.000	0.001	0.41	0.00	0.00	Short	0.15	0.797	0.060	0.006	0.07	0.00	0.00
	2	0.03	0.00	0.70	0.110	0.000	0.001	0.70	0.00		Short	0.10	0.773	0.065	0.006	0.07	0.00	0.00
		0.02	0.00	0.46	0.109	0.000	0.001	0.46	0.00			0.08	0.768	0.056	0.006	0.06	0.00	0.00
	3	0.00	0.00	0.39	0.109	0.000	0.001	0.39	0.00	0.00	Short	0.03	0.743	0.070	0.006	0.08	0.00	0.00
		0.00	0.00	0.09	0.109	0.000	0.001	0.09	0.00		Short	0.03	0.708	0.000	0.005	0.01	0.00	0.00
	4	0.00	0.00	0.00	0.108	0.000	0.001	0.00	0.00	0.00		0.02	0.706	0.000	0.005	0.01	0.00	0.00
		0.00	0.00	0.00	0.108	0.000	0.001	0.00	0.00	0.00		0.02	0.703	0.000	0.005	0.01	0.00	0.00
	5	0.00	0.00	0.00	0.107	0.000	0.001	0.00	0.00	0.00		0.02	0.701	0.000	0.005	0.01	0.00	0.00
		0.00	0.00	0.04	0.107	0.000	0.001	0.04	0.00		Short	0.02	0.698	0.000	0.005	0.01	0.00	0.00
	6	0.00	0.00	0.00	0.107	0.000	0.001	0.00	0.00	0.00	a 1	0.02	0.696	0.000	0.005	0.01	0.00	0.00
		0.00	0.00	0.02	0.106	0.000	0.001	0.02	0.00	0.00	Short	0.02	0.693	0.000	0.005	0.01	0.00	0.00

Facilities	Maintenance Level	Maintenance Item	Main Responsibility ¹⁾
	Routine	 Inspection of gate condition Inspection of dike condition Inspection of seepage/leakage condition 	SO, reservoir in charge, FWUC APEX
Reservoirs	Annual	 Painting of gates Removing of debris Minor repair of dike and gates 	FWUC APEX Labor contribution by FWUC
	Periodical (every 5 years)	 Removal of sediment to intake gates Repair of dikes by construction machines Replacement of wooden stop-logs 	members FWUC APEX Peace work by members
	Routine	 Inspection of gate condition Inspection of canal condition 	SO for reservoir, FWUC APEX
Diversion Canal	Annual Periodical (every 5 years)	 Checking and removal of sediment in siphon Removal of debris in the canal Minor repair of the canal Painting of screen of the siphon Repair of the canal by construction machine Repair of inspection road and structures 	FWUC APEX Labor contribution by FWUC members Piece work by members FWUC A DEV
	Routine	 Replacement of wooden stop-logs Inspection of gate/structure condition Inspection of canal condition Inspection of structure condition 	FWUC APEX SO in charge of main canal, APEX SC FWUC
Main Canal	Annual	 Removal of debris in the canal Minor repair of the canal Painting of screen of the siphon 	FWUC APEX Labor contribution by members
	Periodical (every 5 years)	 Repair of the canal by construction machine Repair of structures Replacement of wooden stop-logs 	FWUC APEX Piece work by members
	Routine	 Inspection of gate/structure condition Inspection of canal condition Inspection of structure condition 	SO of each SC-FWUC
Secondary Canal	Annual	 Removal of debris in the canal Minor repair of the canal Painting of screen of the siphon 	SC-FWUC Labor contribution by members
	Periodical (every 5 years)	 Major repair of canals Repair of structures Replacement of wooden stop-logs 	SC-FWUC Piece work by members
	100401110	 Inspection of gate/structure condition Inspection of canal condition Inspection of structure condition 	FO
Tertiary Canal	Annual	 Removal of debris in the canal Minor repair of the canal Painting of screen of the siphon 	FO Labor contribution by members
	Periodical (every 5 years)	 Major repair of canals Repair of structures Replacement of wooden stop-logs 	FO Labor contribution by members

Table 16.1	Maintenance of Irrigation Facilities
------------	--------------------------------------

Note: 1) Please refer to Fig. 16.2 "Responsibility of FWUC/FWUG by Scheme ~ I. Large/Medium Scale Irrigation Scheme".

Table 17.1Sample of Project Description and Screening (1/2)

Outline of Project Area:Existing cultivated land extending mainly on the right bank
of the Slakou River in Takeo ProvinceBeneficiaries and Benefited Area:65,000 ha as total Study Area, 3,500 ha covered by USP (39
villages)Relevant Main Components:SRP (280 ha), PDP (2,100 ha), RIP (154 km), Agriculture
Support Program, Institutional Development ProgramExecuting and Related Agencies:Ministry of Water Resources and Meteorology
(Ministry of Rural Development and Ministry of Agriculture,
Forestry and Fishery as related agencies)Environmental Agencies Concerned:Ministry of Environment

1. Brief Description of Project

2. Major Components of Project and Screening for Initial Evaluation

Major Components	Ty	уре	S	Scale and Characteristic				
Major Components	New	Rehab	Area, etc.	Characteristic	Screening			
a. Irrigation								
a-1 USP		0	Total:	Rehabilitation of Tumnup Lok				
			3,500 ha	and Kpob Trobek reservoirs,				
				rehabilitation of main and				
				secondary canals (total 66 km)				
a-2 SRP		0	Total:	Rehabilitation of 14 small				
			280 ha	reservoirs				
a-3 PDP	0	0	Total:	Development or improvement				
			2,100 ha	of 18,000 small ponds				
b. Drainage		0		Improvement of drainage	screen out			
				condition as a scheme of USP				
c. Land clearing &					N.A.			
leveling								
d. Sea/swamp					N.A.			
reclamation								
e. Land consolidation					N.A.			
f. New land					N.A.			
settlement								
g. Dam & reservoir								
g-1 USP		0		Tumnup Lok: 1.0 mill. m ³				
				Kpob Trobek: 2.5 mill. m ³				
g-2 SRP		0		Total 963 thou. m^3				
g-3 PDP	0	0		Total 5.3 mill. m ³				
h. Change in farming		0		Improvement of secondary	screen out			
system				cropping				

Major Components	Type Scale			cale and Characteristic	Saraaning
Major Components	New Rehab Ar		Area, etc.	Characteristic	Screening
i. Others					
i-1 RIP	0	0	154 km	Laterite surfacing road of 5 or	
				6 m wide	
i-2 Fertilizer use	0	0	USP, SRP,	Paddy: 3.3 times	
			PDP	Secondary crop: $2.5 \sim 6$ times	
i-3 Livestock	0	0	USP, SRP	Increment of potential	
husbandry				productivity	
i-4 Farmers group	0	0	USP, SRP,	Acting body for agriculture	screen out
			PDP	support	
i-4 Agricultural			- ditto -	Extension service on farmers	screen out
Extension				group basis	
i-5 Credit			- ditto -	Credit service on farmers	screen out
				group basis	
i-6 Agro-	0		Part of	Development of system for	screen out
processing &			USP area	collection and shipping of	
marketing				agricultural product	
i-7 FWUC	0		USP area	Acting body for O&M of	screen out
				irrigation system	
i-8 Capacity		0		Capacity building of DWRAM,	screen out
building				Takeo	

 Table 17.1
 Sample of Project Description and Screening (2/2)

Remarks:

USP: Upper Slakou Irrigation Reconstruction Plan

SRP: Small Reservoir Rehabilitation Plan

PDP: Small Pond Development Plan

RIP: Rural Road Improvement Program

Note:

- 1. N.A. means "Not Applicable".
- 2. Components screened out in the above table will cause no negative impacts obviously, and not be designated as the components to be examined in initial evaluation.

Table 17.2 Summarized Site Description (1/2)

1. Present Socioeconomic	Status	of the Project Area
--------------------------	--------	---------------------

Land ownership and land use, etc.	Although government granted land-use right, most of the land-use ownership in the Project Area has not been legally registered yet. Farming in ruined reservoirs and canals, even illegal, can be observed in the Project Area.
Economic activities	Most of households in and around the Project Area are engaged in agriculture. Very few economic activities of other industrial sectors are observed.
Customs (water right, etc.)	In the Project Area and its lowland, water of rivers, ponds, and reservoirs is mainly used for agricultural or fishery activities. However, none of customs or systems on water use right exists, and fishery rights are limited along the Bassac river.
Host people or community	Widow-headed households of 20 % or more are recognized as vulnerable groups in the Project Area. There are no minority or indigenous groups in the Project Area.
Health and sanitation	Malaria, as water-borne diseases, is commonly seen especially near the mountain area at the upstream of the Project Area. Sanitary conditions including drinking water are considerably poor.
Population	Total population and households in the Project Area are about 165,600 persons and 33,000 households. Percentage of male/female is 89.1 %.
Others	(mentioned in "4. Other Information)

2. Natural Conditions of the Project Area

Annual mean temperature is 28.0°C (Pochentong station, '91-'00).
Rainfall on an annual average is about 1,200 mm in the lowland of the
Project Area, and 90 % of it occurs during the wet season (May-Nov.).
The topography of the Project Area is gentle on a whole. The elevation
ranges from EL 60 m to EL 6m with a slope of 1/100 to 1/1,000.
The Slakou river finally flows into the Bassac river through Thnot Te
reservoir. Catchment area at Route No. 3 of the Slakou River is 1,200
km ² , and catchment area of three ruined reservoirs sums up to 520 km ² .
Runoff of the Slakou river basin is very small in the late dry season.
The lessive soils are dominantly occupying 54,000 ha (83 %) of the
Project Area. Fertility and productivity are low to medium.
Most of the Project Area is covered by paddy field and secondary crop
land, and forest is very limited. Scrub and abandoned field covered by
scrub spread at the foot of Noreay mountain, and are observed
occasionally around the O Saray reservoir.
It seems that none of rare or endangered species exists in the Project
Area.
The analytical results of water quality in dry season indicate that the both
surface and ground water are highly polluted with fecal contamination
from the view point of drinking water resources. For irrigation use, there
are no serious problems on the water quality.
(mentioned in "4. Other Information")

Table 17.2Summarized Site Description (2/2)

3. Area under Specific Designation

	Applicable or Not						
Items	in the	P.A.	Vicinity o	f the P.A.			
	Appl.	N.A.	Appl.	N.A.			
Habitat of fauna and flora in CITES		0		0			
Wetland designated in Ramsar Convention		0		0			
Heritage sites under the World Heritage		\cap		\cap			
Convention		0		0			
Protected areas (National park, wildlife		\cap		\cap			
sanctuaries, etc.)		0		<u> </u>			
Others							
Forest concession area		0	0				
Reforestation project area	0		0				

Remark

P.A.: Project Area

CITES: Convention on International Trade in Endangered Species of Wild Fauna and Flora

4. Other Information

1) Socioeconomically sensitive issues

- Most of households in Takeo Province use firewood and charcoal for energy of daily life.
- Small swamps, ponds, and streams in the Project Area are utilized for family fishing. Fish is important resource for not only the domestic diet but income generation for local people.
- The majority of households in the Project Area mainly fetch water for drinking or other use from nearby streams and ponds in dry season.

2) Naturally sensitive issues

- Forest areas in and around the Project Area are threatened with extraction and deforestation, because of illegal logging.
- There are two (2) reforestation projects in and around the Project Area, which are directly or indirectly managed by Department of Forestry and Wildlife of MAFF.
- The geological layer in and around the Project Area is alluvium consisting of sand, silty sand, and sandy silt, which are relatively erodible.
- The nearest protected areas around the Project Area are Kirirom National Park and Phnom Bokor National Park. Since they are located at a distance of about 40 km from the boundary of the Project Area respectively, no environmental impacts are expected.
- There are no tropical forest and wetland in and around the Project Area.

			Evaluation of the Main Components of Project $\frac{2}{2}$								
Environmental Element	Major Comp. ^{1/}	a-1	a-2	a-3	g-1	g-2	g-3	i-1	i-2	i-3	
1. Socioeconomic Issues	5 1				0	0	0				
1) Social Issues											
Planned agricultural sett	lement	*	*	*	*	*	*	*	*	*	
Compulsory relocation of	of houses	-/C	-/C	*	-/C	Х	*	-/C	*	*	
Land expropriation		-/C	-/C	*	-/C	Х	*	-/C	*	*	
Changes in mode of livin	ıg	Х	Х	Х	Х	Х	Х	+/C	*	Х	
Conflict among villagers		Х	Х	Х	Х	Х	Х	Х	*	*	
Immigrants, refugees and	d nomads	*	*	*	*	*	*	*	*	*	
2) Demographic Issues											
Population increase		*	*	*	*	*	*	*	*	*	
Change of population co	mposition	*	*	*	*	*	*	*	*	*	
3) Economic Activities											
Change of economic acti	vities	Х	Х	Х	Х	Х	Х	Х	*	+/C	
Change of occupation ar	nd labor opportunity	+/C	+/C	Х	+/C	+/C	Х	+/C	*	Х	
Income disparities		Х	Х	Х	Х	Х	Х	*	+/C	+/C	
4) Institutional and Cust	om Related Issues										
Water/fishing rights		*	*	*	*	*	*	*	*	*	
Change of social or insti	tutional structures	Х	Х	Х	Х	Х	Х	*	*	*	
2. Health and Sanitary Issues						-	-			-	
Use of agricultural chemicals		*	*	*	*	*	*	*	*	*	
Residual toxicity of agricultural chemicals		*	*	*	*	*	*	*	*	*	
Water-borne diseases	Water-borne diseases		-/C	-/C	-/C	-/C	-/C	*	*	*	
Domestic and other wast	Domestic and other wastes		Х	Х	Х	Х	Х	*	*	-/C	
3. Cultural Property Issues							-			-	
Historic and cultural ass	Historic and cultural assets		Х	Х	Х	Х	Х	Х	*	*	
Aesthetic sites and lands	cape	Х	Х	Х	Х	Х	Х	Х	*	*	

 Table 17.3
 Initial Evaluation (Social Issues) (1/2)

 $\underline{1}$: Major components to be examined (See Table 17.1)

2: Each applicable item is marked with the following classifications.

+/A: Upper part shows the direction of impacts and lower part shows the magnitude of impacts.

A: Relatively high magnitude of impacts is anticipated.

B: Relatively medium magnitude of impacts is anticipated.

C: Relatively low magnitude of impacts is anticipated.

- X: No effect is expected.
- *: No relation
- +: Positive effect is expected.
- -: Negative effect is anticipated.

			Evaluation of the Main Components of Project $\frac{2}{2}$							
Environmental Element Major Comp. $\frac{1}{2}$		a-1	a-2	a-3	g-1	g-2	g-3	i-1	i-2	i-3
4. Biological and Ecological	Issues									
Change in vegetation		Х	Х	Х	Х	Х	Х	Х	*	Х
Impacts on important or in	digenous species	Х	Х	Х	Х	Х	Х	Х	Х	Х
Degradation of precious ec	cosystem	Х	Х	Х	Х	Х	Х	Х	*	Х
Encroachment on wetlands		*	*	*	*	*	*	*	*	*
Degradation of forest resou	urce	Х	Х	Х	-/B	-/C	Х	-/B	*	Х
Degradation of mangrove	forest	*	*	*	*	*	*	*	*	*
Degradation of coral reef		*	*	*	*	*	*	*	*	*
Depreciation of fisheries		-/C	-/C	Х	+/C	+/C	+/C	Х	-/C	Х
5. Soil and Land Issues										
Soil erosion and sedimenta	tion	-/C	-/C	Х	-/C	-/C	Х	-/C	*	*
Soil salinization		Х	Х	Х	*	*	*	*	*	*
Loss of soil fertility		Х	Х	Х	Х	Х	Х	Х	+/B	+/C
Soil contamination		*	*	*	*	*	*	*	*	*
Land devastation or desert	ification	*	*	*	*	*	*	*	*	*
Devastation of hinterland		Х	Х	Х	-/B	-/C	Х	-/B	*	*
Ground subsidence		*	*	*	*	*	*	*	*	*
6. Hydrology, Water Quality,	etc.									
Change in surface water hy	ydrology	Х	Х	Х	-/C	Х	Х	*	*	*
Change in groundwater hy	drology	Х	Х	Х	Х	Х	Х	*	*	*
Inundation and flood		Х	Х	*	Х	Х	*	*	*	*
Riverbed degradation	Riverbed degradation		Х	*	Х	Х	*	*	*	*
Impediment of inland navig	Impediment of inland navigation		*	*	*	*	*	*	*	*
Contamination of water qu	Contamination of water quality		-/C	Х	*	*	*	*	-/B	-/C
Eutrophication		*	*	*	-/C	Х	Х	*	Х	Х
Low temperature water		*	*	*	Х	Х	Х	*	*	*
Atmosphere pollution		*	*	*	*	*	*	-/C	*	*

Table 17.3Initial Evaluation (Natural Issues) (2/2)

1/: Major components to be examined (See Table 17.1)

2: Each applicable item is marked with the following classifications.

+/A: Upper part shows the direction of impacts and lower part shows the magnitude of impacts.

- A: Relatively high magnitude of impacts is anticipated.
- B: Relatively medium magnitude of impacts is anticipated.
- C: Relatively low magnitude of impacts is anticipated.
- X: No effect is expected.
- *: No relation
- +: Positive effect is expected.
- -: Negative effect is anticipated.

Table 17.4 Approaches and Samples of Mitigation Measures (1/2)

1. Social Issues

Potential Negative Impacts	Approaches / Samples of Mitigation Measures
Resettlement and Land acquisition.	 Adequate selection and provision of new settlement area with housing and infrastructure based on wishes of affected people. Economic compensation and establishment of supporting system for restoration of living conditions. Provision of employment opportunities during the construction or operation stages of project.
Conflicts over water supply and inequalities in water distribution.	 Means to ensure equitable distribution among users and monitor to assure adherence. Limitation of withdrawal so that it does not exceed safe yield (recharge rate).
Conflicts caused by population increase or change in population composition.	 Improvement or establishment of infrastructure. Formulation of settlement plan with due consultation to both host and migrated people. Introduction of staged development.
Water quality deteriorated or made unusable by upstream land use and pollutants discharge.	 Control of land use in watershed areas. Control of pollution sources. Water treatment prior to use.
Introduction or increase in incidence of waterborne or water-related disease. (malaria, etc.).	 Use of lined canals or pipes to discourage vectors. Avoidance of stagnant or slowly moving water. Use of straight or slightly curving canals. Installation of gates at canal ends to allow complete flushing. Filling or draining of borrow pits. Disease prophylaxis and treatment.
Diseases and health problems from use of wastewater in irrigation.	 Reduction of pollutants discharge from irrigation service area. Improvement of agricultural practices and control of input (especially agro-chemicals, fertilizers, livestock husbandry, etc.). Wastewater treatment (e.g. settling ponds) prior to use. Establishment and enforcement of standards for wastewater use.
Impediment to movement or inland navigation.	- Provision of passageways or water-ways.
Threat to historic, cultural, or aesthetic features.	 Siting of project to prevent loss. Salvage, relocation, restoration, or protection of cultural property.

Table 17.4Approaches and Samples of Mitigation Measures (2/2)

2. Natural Issues

Potential Negative Impacts	Approaches / Samples of Mitigation Measures
Soil erosion.	- Proper design and layout of slopes and field avoiding too steep
	a gradient.
	- Slope protection and land leveling.
	- Design of terraces on hillsides minimizing surface erosion.
	- Formulation of physical and agronomical conservation.
Salinization of soils.	- Drainage improvement for avoidance of waterlogging.
	- Leaching of salts periodically.
	- Improvement of farming / cropping practice.
	- Application of crops with salinity tolerance.
Clogging of canals /	- Minimization of erosion of fields and upper watershed.
reservoirs by sediments /	- Introduction of land use regulation and land conservation
weeds.	measures such as afforestation.
	- Design and management of canals / reservoirs for removal of
	sediment / weeds.
	- Provision of access to canals / reservoirs for removal of
	sediment / weeds.
Deterioration of soil fertility.	- Reduction of soil erosion from fields.
	- Avoidance of over watering against leaching nutrients.
	- Replacement of nutrients by fertilizers or crop rotation.
Water blooms and algae	- Reduction of input of nutrients (nitrogen and phosphorous) to
proliferation.	fields.
	- Reduction of release of nutrients from fields.
Contamination of water	- Improvement of water management.
quality in downstream.	- Improvement of agricultural practices and control of input
	(especially agro-chemicals, fertilizers, livestock husbandry, etc.).
	- Regulation of waste disposal.
	- Imposition of water quality criteria.
Reduction of downstream	- Regulation of intake to minimize impacts.
flow.	- Proper operation of reservoirs and canals.
	- Redesign of project.
	- Application of compensatory measures where possible.
Encroachment on	- Establishment of buffer zones and protected areas.
ecologically sensitive areas	- Establishment of compensatory areas.
such as swamps, natural	- Siting of project to avoid or minimize loss on critical areas.
forests, etc.	
Alteration or destruction of	- Establishment of buffer zones and protected areas.
wildlife habitat, impediment	- Establishment of compensatory areas.
to movement of wildlife.	- Siting of project to avoid or minimize loss on critical areas.
	- Animal rescue and relocation.
	- Provision of corridors for movement.