CAPÍTULO 3 CONDICIONES AMBIENTALES, LEYES, REGULACIONES Y ESTÁNDARES

3.1 GENERAL

La ciudad de Santiago y sus áreas circundantes, están siendo objeto de un proceso de crecimiento acelerado. Entre los años 1981 y 1999 la población urbana de la ciudad casi se duplicó, ya alcance un nivel de 650,000. Este rápido proceso de urbanización ha traído consigo también muchos problemas ambientales. Los sistemas urbanos de servicios han fallado en cuanto al desarrollo del servicio de expansión de distritos urbanos y de una población en proceso de crecimiento sostenido.

La ciudad de Santiago está localizada en el área del torrente superior del caudal del río Yaque Del Norte. El río es el más grande del país y una importante fuente de suministro de agua para propósitos domésticos, industriales y de irrigación. El aumento de los volúmenes de aguas residuales descargados en el río debido a una incontrolable expansión y un limitado desarrollo de infraestructura urbana causan un serio deterioro de la calidad del agua en el Área de Estudio.

3.2 CALIDAD DEL AGUA

3.2.1 ESTATUS ACTUAL DE LA CALIDAD DEL AGUA

(1) El Río Yaque Del Norte

Desde Julio de 1999, CORAASAN ha implementado un programa de monitoreo de la calidad del agua del río Yaque del Norte midiendo unos 20 parámetros típicos de calidad como son DDOBQO, sólidos suspendidos, pH, conductividad eléctrica, sulfato, amoníaco-nitrógeno, nitrito, nitrato, etc. en cinco estaciones seleccionadas en el río a lo largo del perímetro de la ciudad de Santiago, y en cuatro arroyos pequeños que desembocan en el río.

La toma del suministro del agua del río en el punto St. 1 (Toma de Pastor), la cual no está afectada por las aguas residuales de la ciudad de Santiago, las concentraciónes de DBO varien entre 0.4 hasta 11 mg/L con una concentración promedio de 2 mg/L, como se muestra en la tabla debajo. El agua del río en el punto St. 5, aguas abajo de la Planta de Tratamiento de Aguas Residuales de Rafey) está más contaminada debido a la descarga de aguas residuales urbanas, con altas concentraciones de DBO variando de 18 ~ 40 mg/L. Más aún, se observa una tendencia en concentraciones de DQO, NH₄-N, etc.

El INDRHI también instituyó un programa de monitoreo de la calidad del agua y para esto estableció 17 puntos en toda el área que abarca el río Yaque del Norte desde 1993 bajo la cooperación de la Agencia Alemana de Cooperación GTZ en datos sobre DOB, DQO, etc., los cuales están disponibles.

Como fue discutido en el Capítulo 2, la cantidad de agua suplida por el depósito de López-Angostura al río Yaque del Norte fluctúa grandemente entre 20 y 120 m³/s. El caudal (la toma de agua para irrigación + el caudal aguas abajo) en el punto de observación 4 Km. aguas arriba del canal de agua para irrigación tuvo un rango entre 15 y 52 m³/s y un caudal promedio de 30 m³/s.

La toma de agua para agricultura fue del orden de $7 \sim 27 \text{ m}^3/\text{s}$. Haciendo un balance de los caudales, el caudal que fluye por la ciudad podría tener un rango entre $3 \sim 35 \text{m}^3/\text{s}$, pero en época

de estiaje el caudal actual del río es mucho menor que el estimado por el balance de caudal.

Las calidades de agua observadas en los cinco puntos de monitoreo aparecen en la siguiente tabla:

Calidad del Agua del Río Yaque del Norte

D	to de Monitoreo	India del Agua del K			es, 2000	
Pun	to de Monitoreo	Indicador de	Julio	Agosto	Octubre	Noviembre
		DBO ₅ (mg/l)	1.3	0.4	-	11
		DQO _{Cr} (mg/l)	4	6	23	29
St.1	Antes Toma de	NH ₄ -N (mg/l)	0.08	0.03	0.15	0.13
50.1	Pastor	OD (mg/l)	7.4	6.3	4.72	5.5
		Conductividad Eléctrica (µ S/cm)	172	160	120	125
		DBO ₅ (mg/l)	4.8	1.3	-	18
		DQO _{Cr} (mg/l)	8	21	19	40
St.2	Antes Obra	NH ₄ -N (mg/l)	0.18	0.23	0.28	0.28
50.2	Toma de Canal	OD (mg/l)	7	6	4.47	5.4
	Conductividad Eléctrica (µ S/cm)	184	208	160	163	
		DBO ₅ (mg/l)	17	29	-	23
	Después	DQO _{Cr} (mg/l)	143	160	25	12
St.3	Descarga	NH ₄ -N (mg/l)	1.41	1.81	2.18	0.61
20.0	Tenería Bermúdez	OD (mg/l)	N.D.	N.D.	2	4.6
	Bermadez	Conductividad Eléctrica (µS/cm)	557	613	480	157
		DBO ₅ (mg/l)	19	30	-	17
		$\mathrm{DQO_{Cr}}\left(\mathrm{mg/l}\right)$	159	154	112	68
St.4	Frente Planta	NH ₄ -N (mg/l)	0.2	1.08	0.8	0.4
20.1	Rafey	OD (mg/l)	N.D.	N.D.	0.87	4.8
		Conductividad Eléctrica (µ S/cm)	607	650	492	188
		DBO ₅ (mg/l)	18	40	-	19
	Dognués	DQO _{Cr} (mg/l)	113	148	175	53
St.5	Después Descarga WWTP	NH ₄ -N (mg/l)	0.74	2.78	2.48	0.5
50	Rafey	OD (mg/l)	N.D.	N.D.	2.2	5.1
	-	Conductividad Eléctrica (µ S/cm)	661	796	528	226

(Fuente: CORAASAN)

En la temporada de sequías cuando el caudal es bajo, la capacidad de dilución y asimilación del río se reduce significativamente, y la calidad del agua se degrada en gran manera. Ya que hay una estrecha relación entre la calidad del agua y el caudal del río, es imperativo asegurarse del caudal preciso de agua usada para irrigación, y predecir la situación real del balance de agua del río.

Los mayores factores que afectan el deterioro de la calidad del agua del río Yaque del Norte pueden ser resumidos como sigue:

- (1) Aún si toda el agua residual doméstica fuera colectada por el sistema de tratamiento de aguas residuales de la ciudad de Santiago, la mayoría de estas serían descargadas al río sin ningún tratamiento a causa de un funcionamiento defectuoso del mismo sistema;
- (2) Las aguas residuales que vienen fuera del área donde no hay un sistema de alcantarillado sanitario, también son descargadas al río sin ningún tratamiento;
- (3) Según CORAASAN, a Febrero del 2001, existen en la ciudad de Santiago aproximadamente 250 fábricas y establecimientos. Casi todas las aguas residuales proveniente de esas fuentes están descargadas al río sin suficiente o ningún tratamiento;
- (4) Las aguas residuales producidas por los habitantes en las orillas del río, son descargadas directamente a este con una alta contaminación en razón de que contienen desperdicios sólidos;
- (5) Una considerable cantidad de agua es tomada para fines de irrigación inmediatamente aguas abajo del punto de muestreo St.2 y la calidad de esta agua tiende a deteriorarse particularmente después de ser tomada; y
- (6) Químicos usados en las tierras de labranza en las aguas arriba del río están considerados como una fuente de contaminación del agua del río.

(2) Tributarios del Río Yaque del Norte

El río Yaque del Norte (Río) tiene muchas ramificaciones a través de la ciudad de Santiago. Hidráulicamente el área de la ciudad de Santiago puede ser dividida en cuatro zonas, que corresponden a varias pequeñas cuencas de ríos. Cada una de estas zonas tiene ramificaciones y canales de drenaje que acarrean cantidades significativas de contaminantes al río y aparentemente contribuyen a contaminar severamente el agua del río.

La situación es mucho peor en las zonas de alta densidad poblacional donde la descarga incontrolada de basura y desperdicios sólidos en ríos y arroyos es una práctica cotidiana. En muchos lugares a lo largo de los ríos y arroyos se encuentran caseríos aún en la misma orilla que descargan sus aguas residuales en ellos.

CORAASAN también conduce monitoreos mensuales de la calidad del agua de los cuatro ríos pequeños: 1) Arroyo Hondo, 2) Arroyo Nibaje, 3) Arroyo Gurabo, y 4) Arroyo Jacagua, fluyendo en el río Yaque Del Norte en la ciudad. La tabla a continuación muestra los datos de la calidad del agua de los cuatro ríos pequeños monitoreados por CORAASAN.

Calidad del Agua de los Arroyos Tributarios del Río Yaque del Norte

		·		Mes,	2000	
Pun	to de Monitoreo	Indicador de Contaminación	Agosto	Septiemb re	Octubre	Noviemb re
		DQO _{Cr} (mg/l)	35	20	129	63
	NH ₄ -N (mg/l)	1.7	1.0	1.0	2.4	
St.6	Arroyo Hondo	OD (mg/l)	3.2	4.9	5.8	5.6
	Conductividad Eléctrica (µS/cm)	421	245	200	313	
		DQO _{Cr} (mg/l)	92	56	69	43
		NH ₄ -N (mg/l)	4.4	5.2	5.2	7.4
St.7	Arroyo Nibaje	OD (mg/l)	2.7	5.0	0.7	5.5
		Conductividad Eléctrica (µ S/cm)	871	920	894	816
		DQO _{Cr} (mg/l)	128	54	139	64
		NH4-N (mg/l)	3.0	2.6	1.3	3.3
St.8	Arroyo Gurabo	OD (mg/l)	1.8	2.6	3.8	3.2
		Conductividad Eléctrica (µS/cm)	1,203	751	740	1,118
		DQO _{Cr} (mg/l)	164	124	105	186
		NH ₄ -N (mg/l)	8.3	5.7	1.3	9.0
St.9	Arroyo Jacagua	OD (mg/l)	0.8	2.3	2.5	1.7
		Conductividad Eléctrica (µS/cm)	1,499	1,273	1,044	1,272

Fuente: CORAASAN

Los datos muestran que los cuatro ríos tributarios están contaminados. Los valores de la conductividad eléctrica, siendo los más confiables dentro de los parámetros de la calidad del agua debido a errores no comunes en la medición, también indican que el río Jacagua es el más contaminado seguido por el río Arroyo Gurabo, Arroyo Nibaje, y Arroyo Hondo. Los otros parámetros muestran la misma tendencia.

3.2.2 MONITOREO DE LA CALIDAD DEL AGUA

Un monitoreo sobre la calidad del agua fue conducido por el Equipo de Estudio. Los principales objetivos del monitoreo se muestran a continuación:

- Obtener las condiciones actuales de la calidad del agua en la región de Santiago, especialmente del Yaque del Norte y sus tributarios;
- Obtener las condiciones actuales de operación de las plantas de tratamiento de alcantarillado y fábricas industriales en la ciudad de Santiago y sus alrededores.
- Obtener datos básicos para la proyección de la calidad del agua de la ciudad de Santiago donde el proyecto de mejoramiento de alcantarillado sea implementado.

(1) Recolección de Muestras

Un total de sesenta y seis (66) muestras fueron obtenidas en dos eventos. En cada evento, treinta y tres (33) muestras fueron obtenidas el 1ro. y el 6 de Marzo, respectivamente. Los lugares de

muestreo se muestran en la tabla debajo y en la Figura 3.1:

- Cinco (5) plantas de tratamiento de alcantarillado: [TP1 TP5]
- Diez (10) puntos de ríos y canales: [RC1 RC10]
- Quince (15) industrias descargando efluentes industriales: [F1 F15]

Lugares de Muestreo para la Investigación de Calidad del Agua

	WWTP			Río/Canal		Industria
ТР	Rafey	Influente	RC 1	Antes Toma de Pastor	F1	Embotelladora Dominicana
1	1 Efluente		RC 2	Antes Obra Toma de Canal	F2	Hilos A & E
TP 2	Cienfuegos	Influente	RC 3	Después Descarga Tenería Bermúdez	F3	Wash & Finish
ТР	Embasia	Influente	RC 4	Frente Planta Rafey	F4	Sadosa
3	Embrujo	Efluente	RC 5	Después Descarga A. Rafey	F5	Hoyo De Lima
TP 4	Los Salados	Influente	RC 6	Arroyo Hondo	F6	Baltimore Dominicana
TP	Tamboril	Influente	RC 7	Arroyo Nibaje	F7	Tenería Bermúdez
5	Tambom	Efluente	RC 8	Arroyo Gurabo	F8	Destilería Bermúdez
			RC 9	Arroyo Jacagua	F9	Procesadora De Carnes Checo
			RC 10	Distintos canales de irrigación	F10	Acero Del Cibao
					F11	Bojos Leather
					F12	E. León Jiménez
					F13	Corporación Industrial Del Norte
					F14	Pasteurizadora Cibao
					F15	Isidro Bordas

(2) Parámetros Analizados

Los siguientes treinta y tres (33) parámetros fueron analizados considerando las características de las muestras.

(1)Temperatura del agua (2)pH (3)Conductividad Eléctrica (4)Oxígeno Disuelto(OD) (5) Demanda bioquímica de oxígeno(DBO₅) (6)Demanda química de oxígeno(DQO_{Cr}) (7)Sólidos Suspendidos(SS) (8)Cloro (Cl) (9)Sulfato(SO4²⁻) (10)AmoníaDQOe Nitrógeno(NH⁴⁻-N) (11) Nitrato de Nitrógeno(NO₃—N) (12)Nitrito de Nitrógeno(NO₂—N) (13)Nitrógenos Totales(T-N) (14)Fosfato Fosfórico(PO₄³⁻) (15) Fósforos Totales(T-P) (16) Aceite y Grasa (17) Coliformes Totales (18) Coliformes fecales Totales (19)Fenoles (20)Cadmio(Cd) (21) Plomo(Pb) (22) Zinc(Zn) (23)Cromo Hexavalante(Cr(VI)) (24) Cromo Total(T-Cr) (25)

Arsénico(As) (26) Mercurios Totales(T-Hg) (27) Cobre(Cu) (28) Hierro(Fe) (29)Cianuro(CN) (30) Magnesio(Mg) (31) sulfonato alkilo lineal(LAS) (32) Compuestos Organoclorados (33) Pesticidas

(3) Resultados de la Investigación

Los resultados de la investigación están resumidos en el Apéndice 2 del Reporte de Apoyo. Sobre sustancias tóxicas, metales pesados, compuestos organoclóridricos y pesticidas, no se detectaron concentraciones significativas en las aguas del río. Los resultados indican que la contaminación del agua del río Yaque del Norte es ocasionada principalmente por causas orgánicas.

3.2.3 RESUMEN DE LA CALIDAD DEL AGUA EN EL AREA DEL ESTUDIO

Los resultados de la evaluación y los datos monitoreados por CORAASAN se combinaron para calcular el valor promedio de los mayores parámetros de agua en las estaciones de monitoreo del río en el Area del Estudio. La tabla siguiente resume el cálculo de los valores para las respectivas estaciones de monitoreo desde RC1 a RC10.

Valores Promedio de los Indicadores de la Contaminación del Agua en las Aguas del Río en la Ciudad de Santiago (Valores Promedio de los Años 2000 y 2001)

					9 1 1 0 111				0 <i>j</i> =00		
Punto de Mo	onitoreo	RC1	RC2	RC3	RC4	RC5	RC6	RC7	RC8	RC9	RC10
DBO ₅	[mg/L]	2.8	5.7	31	32	26	43	22	39	79	6
$\mathrm{DQO_{Cr}}$	[mg/L]	21	22	90	105	108	73	65	72	202	23
SS	[mg/L]	113	159	125	386	385	165	142	218	210	214
Conductivida d Eléctrica	[µ S/cm]	141	186	486	532	564	457	844	1,018	1,362	225
NH ₄ -N	[mg/L]	0.08	0.25	1.90	1.50	1.97	2.0	5.5	3.7	8.5	0.3
NO ₃ -N	[mg/L]	1.1	1.3	0.9	1.0	1.9	1.9	2.3	1.3	2.0	2.5
NO ₂ -N	[mg/L]	0.006	0.013	0.025	0.035	0.072	0.058	0.057	0.038	0.019	0.020
T-N	[mg/L]	0.56	4.4	7.6	24	7.6	5.3	51.9	10.5	14.9	13.0
T-P	[mg/L]	0.82	0.57	1.32	1.90	0.18	2.66	0.60	1.82	1.55	0.89
OD	[mg/L]	6.6	6.7	2.3	2.0	2.1	5.2	3.6	1.6	1.2	7.9

(Fuente: CORAASAN, Equipo de Estudio JICA)

La calidad del agua en RC1, la cual está localizada en el punto del torrente más arriba del Río Yaque del Norte en el Area de Estudio, muestra una calidad de las condiciones del agua relativamente buenas (DBO $_5$: 2 mg/L, OD: 8mg/L). Esta agua puede ser utilizada para propósitos de irrigación y suministro de agua potable con un tratamiento total.

Esto revela que el agua es contaminada desde el torrente más arriba hacia el más bajo (desde el RC1 al RC5), por ejemplo, las concentraciones de DBO₅ y conductividad eléctrica se incrementaron pero el OD decayó hacia el torrente bajo. También se confirma que la calidad del agua desde la estación de monitoreo RC3 a RC5 empeora después de recibir el agua contaminada de los ríos tributarios y flujos de agua (de RC6 a RC9).

3.3 CONDICIONES DE SALUD PÚBLICA

El reciente e incontrolado desarrollo urbano y la escasez de facilidades ambientales y sanitarias representan la mayor causa del deterioro de las condiciones ambientales y sanitarias de la ciudad de Santiago y sus áreas aledañas. Alrededor del 90% de las aguas residuales producidas por la

zona urbana de la ciudad de Santiago son recolectadas por una red de alcantarillado; sin embargo solo el 15% o 54,432 m³/d del total de ellas están tratadas por las Plantas de Tratamiento según las estimaciones de CORAASAN. El resto de las aguas residuales encuentran su camino hacia las vías de agua de las cercanías. Bajo esa crítica situación de carácter ambiental, enfermedades como la diarrea, fiebre tifoidea, hepatitis y dengue se propagan por grandes áreas.

El número de pacientes por enfermedades relacionadas a la contaminación del agua en el área de la ciudad de Santiago y el índice de mortalidad relacionada a las diez mayores enfermedades se muestra en la próximas tablas. Las estadísticas sobre el número de pacientes enfermos a causa de estas enfermedades indican que los índices de enfermos y de mortalidad se están incrementando.

Enfermedades Relacionadas al Agua en la Ciudad de Santiago

Enfermedades	1990	1994
1. Infecciones renales agudas	10,696	13,572
2. Enfermedad diarreica aguda (EDA)	6,800	9,642
3. Tifoidea	162	1,047
4. Hepatitis A	68	133

Fuente: CORAASAN

Número de casos e Índice de Mortalidad a Causa de las Diez Mayores Enfermedades en la Provincia de Santiago

Enfermedades	Número de Casos	Números/1,000 población
1. Infección renal aguda (IRA)	31,088	38.8
2. Enfermedad diarreica aguda (EDA)	14,565	18.2
3. Hipertensión arterial (HTA)	13,825	17.3
4. Enfermedades ginecológicas	7,117	8.9
5. Infección urinaria	7,607	8.3
6. Enfermedades dermatológicas	5,924	7.4
7. Cefalea	5,918	7.3
8. Diabetes	5,215	6.5
9. Anemia	3,655	4.6
10.Asma bronquial	3,366	4.2
Total	97,280	

Fuente: Informe Anual de la Dirección Provincial de Santiago, 1997.

La siguiente tabla muestra el porcentaje de los casos de enfermedades registrados en las ciudades de Santiago, Tamboril y Licey. Durante los últimos 12 meses, distintos tipos de enfermedades han afectado tan sólo al 18% de los miembros de los hogares de la ciudad de Santiago, 24% en Licey y 20% en Tamboril respectivamente.

Las enfermedades comunes en Santiago, Tamboril y Licey fueron parásitos, hepatitis infecciosa y enfermedades intestinales. Sin embargo, en Santiago y Tamboril la fiebre tifoidea y el dengue fueron las enfermedades más importantes que afectaron a los hogares. En todos los casos, los porcentajes variaron entre un 2% y un 8%. Otras enfermedades como la disentería y la amebiasis no se registraron.

Registros de Enfermedades en el Area de Estudio

Municipalidad		Registros de Enfermedades %							
	Fiebre Tifoidea	Disentería	Parásitos	Hepatitis infecciosa	Amebiasis	Gastroenteritis	Dengue	Infección intestinal	Sin enfermedad
Santiago	3	0.75	4	2	0	0.25	4	3	82
Tamboril	4	0	4	4	0	0	6	2	80
Licey	0	0	4	8	0	4	0	6	76
Total	3	1	4	2	0	1	4	3	82

Fuente: Encuesta de conocimiento de la población. Febrero, 2001.

3.4 Drenaje de Aguas Pluviales

La Oficina de Obras Públicas Municipales del Ayuntamiento de Santiago es la responsable de la planificación e implentación del sistema drenaje de las aguas pluviales en la ciudad de Santiago. La oficina planifica, construye, opera y da mantenimiento los conductos de drenaje, tuberías, canales y otras facilidades auxiliares. Para la operación rutinaria de drenaje y los trabajos de mantenimiento, tres grupos de trabajo están involucrados, cada grupo está compuesto por seis personas y un camión.

Los flujos de las calles generalmente corren hacia las cunetas (generalmente en forma –L) y fluyen dentro de los registros de las mismas instalados en intervalos de 30 a 50 metros, que a su vez son descargadas ya sea directamente al río o a través de canales de drenaje cercanos.

Durante los tiempos de lluvia en Abril o Mayo, los canales de drenaje en algunas calles de topografía irregular son ocasionalmente inundadas debido a la insuficiente capacidad hidráulica de las cunetas y sus registros o de los terrenos bajos. Durante septiembre hasta diciembre, las lluvias son moderadas con un promedio de 10.4-días de lluvia por mes por tanto menos inundaciones.

Otros serios problemas relativos al sistema de drenaje son practicados en áreas de alta densidad poblacional. Los depósitos incontrolables de basura y otros desechos sólidos arrojados a los canales de drenaje al descubierto y tuberías constituyen una práctica usual en tales áreas. Los depósitos acumulados de sólidos en los canales de drenaje han causado estancamientos de agua en muchos puntos, provocando problemas severos de contaminación del agua y emanación de malos olores. Estas inundaciones han ocurrido mayormente en la Av. Salvador Estrella Sadhalá y el Mirador del Yaque.

A pesar de estos incidentes, el drenaje pluvial tiene menos problemas que la descarga de las aguas residuales debido a las favorables condiciones topográficas en el área. Particularmente en estas áreas con 220 m ó más por encima de la elevación del nivel del mar, no han habido serias inundaciones.

3.5 MANEJO DE LOS DESPERDICIOS SÓLIDOS

El Ayuntamiento de Santiago privatizó la recogida de la basura, confiándole este servicio a

"Servicio de Limpieza de Santiago (SLS),"para cubrir 18 Sectores sirviendo a aproximadamente el 30% del total de la población urbana. En 1997, la Sala Capitular le permitió a SLS atender la recogida de la basura en 20 Sectores o el 53% del total del área urbana y sirviendo a una población de 340,330 habitantes o 64% de la población de la ciudad de Santiago.

En 1998 un total de 460 t/d de sólidos fueron recogidos, de los cuales aproximadamente un 68.9 % provino de residencias, y el resto de origen comercial, industrial institucional, calles y de otras fuentes. Sin embargo, en muchos sitios a lo largo de los distritos urbanos, cantidades significativas de basura están tiradas en las calles, drenajes y ríos creando así la contaminación del agua.

Los sólidos recolectados por fuente son mostrados en la siguiente tabla:

Desperdicios Sólidos por Sector en la Ciudad de Santiago

Sectores	Desperdicios Sólidos Recolectados (t/d)	Porcentaje de Recolección
1. Residencial	317	68.9
2. Zonas Francas e Industrias	56	12.2
3. Mercados	25	5.4
4. Parques y Calles	25	5.4
5. Comerciales	19	4.1
6. Institucional	18	3.9
Total	460	100.00

Fuente: CEUR / PUCMM, 1998.

Al presente, los desechos sólidos recolectados son transportados por camiones compactadores u otro medio, y a su vez depositados en 47 vertederos localizados alrededor de la ciudad (vea la Figura 3.1). Muchos de esos pequeños depósitos o vertederos han sido dejados al descubierto o sin la apropiada limpieza, y por consecuencia crean una condición no sanitaria a las zonas adyacentes. El mayor de los vertederos está localizado a aproximadamente 2 Km. de la Planta de Tratamiento de Rafey, y tiene un área total de 3.13 hectáreas. Este lugar se llenará en un futuro cercano, y el Ayuntamiento de Santiago planea la selección de otro lugar que sea apropiado para este propósito.

3.6 LEYES, REGULACIONES Y ESTÁNDARES EN EL CONTROL DE LA CONTAMINACIÓN DEL AGUA

3.6.1 LEY GENERAL

La "Ley General de los Recursos Naturales y Medio Ambiente (Ley N0. 6418-2000)" es una ley básica para la administración y protección. Esta ley incluye 204 artículos de 6 títulos y fue promulgada en Agosto 18, 200. En la Ley General, del Artículo 86 al Artículo 89 de la Sección II del Título III, estipula el marDQOe conservación y protección de la calidad del agua en la República Dominicana.

3.6.2 REGULACIONES

La "Secretaría de Estado de Medio Ambiente y Recursos Naturales (SEMARENA)", ha elaborado recientemente una serie de "Normas Ambientales":

- i) Normas en la Calidad del Agua y Control de Desperdicios (AG-CC-01);
- ii) Normas en la Calidad del Aire y el Control de Emisiones a la Atmósfera (AR-CA-01);
- iii) Normas en Control de la Contaminación del Ruido (RU-CA-01); y
- iv) Normas en Desperdicios de Sólidos y Desperdicios Radioactivos (RE-DH-01).

Las Normas han adaptado los estándares previos y definido los límites permisibles para los parámetros del ruido, aire, agua y otros varios parámetros de medio ambiente. Desde que las Normas fueron impuestas todos los demás estándares aplicados anteriormente fueron eliminados.

Las Normas para el Control de la calidad del agua son definidas bajo "Norma de calidad del agua y control de descargas, AG-CC-01, Junio 2001" las cuales incluyen la calidad permisible y el control de las aguas de descargas municipales e industriales a las aguas públicas de la región y a los sistemas de alcantarillado público.

(1) Estándares de la Calidad del Agua

Las Normas en la calidad y control de descarga del agua (AG-CC-01), define los estándares de la calidad de la superficie del agua. En la Norma, la superficie del agua es clasificada en cuatro (4) categorías por el uso del agua. Los parámetros de la calidad del agua, más de 70, son establecidos para cada categoría. Los estándares de la calidad del agua se muestran en la Tabla 3.6.2. Los valores estándares mayores y el uso del agua por cada categoría están resumidas en la siguiente tabla:

		Mayores Parámetros de la Calidad del Agua						
ategoría	Uso del Agua	pН	BDO ₅	SS	OD	Coliforme		
			(mg/L)	(mg/L)	(%Sat.)	(MPN/ 100mL)		
A	Suministro de agua con tratamiento simple, actividades recreativos con contacto directo, etc.,	6.5 - 8.5	2	-	> 80	1,000 **(400)		
В	Suministro de agua con apropiado tratamiento, irrigación, conservación natural, deportes acuáticos, etc.,	6.5 - 9.0	5	-	> 70	1,000 (1,000)		
С	Navegación	5.0 -10.0	100	-	> 50	10,000 (4,000)		
D-1*	Superficie de agua para ser preservada en condiciones naturales	-	-	-	-	-		

Nota) * D-1 aplicado a la Superficie del Agua. ** figuras en () son Coliformes Fecales

Lo siguiente está descrito en la Norma para las respectivas categorías de la superficie del agua.

Categoría A – Aguas destinadas al abastecimiento público e industrial sin necesidad de tratamiento previo, excepto filtración y simple desinfección. Aguas también podrían ser utilizadas en la conservación del medio ambiente natural, como propagación y propósitos varios, y para propósitos agrícolas incluyendo irrigación de vegetales crudos (o directos), consumo, y para usos recreativos con contacto directo, por ej.: natación.

Categoría B – Aguas a ser utilizadas para el abastecimiento de agua potable con un tratamiento

de agua convencional incluyendo procesos de sedimentación y filtración. Aguas también podrían ser utilizadas para la preservación de la flora y la fauna, para irrigación, deportes acuáticos sin contacto directo, algunos procesos industriales y de granjas.

Categoría C – Aguas a ser utilizadas para la navegación pero con una limitada interacción con el medio ambiente.

Categoría D (1) –Áreas de Preservación en condiciones naturales, por su excepcional calidad o gran valor ecológico. Los usos de esta áreas incluyen demostraciones e investigaciones científicas, actividades estéticas y paisajistas y actividades relacionadas con el manejo y la conservación que no alteren el medio ambiente. Todos estos ecosistemas deben conservarse en condiciones naturales, refiriéndose a esas condiciones que regulan ante agentes externos que modifican su balance natural. Para esto, las descargas que se lleven a cabo no deben afectar las condiciones de este ecosistema.

(2) Efluentes Estándares

Las Normas de la calidad del agua y el control de descarga (AG-CC-01) también estipulan el control de las descarga de aguas residuales y establecen efluentes estándares: 1) Las calidades permisibles de las descargas de aguas residuales aguas superficiales y subsuelo, 2) Las calidades permisibles de las descargas de aguas residuales a aguas costeras, 3) Las calidades permisibles de las descargas de aguas residuales químicas a aguas superficiales y subsuelo, 4) Limites de la calidad de descarga de aguas residuales industriales al alcantarillado público, y 5) Límites máximos de descargas industriales.

La calidad permisible de las descargas de aguas residuales tanto para aguas superficiales como costeras es definida en la Sección 4 de las Normas, Tabla 4.1, la cual cubre los valores máximos de los parámetros físicos, químicos y biológicos según los tipos de usos del agua recibida.

Las calidades permisibles de las descargas de aguas residuales para los cuerpos de agua públicos y sistema de alcantarillado son mostrada en las siguientes tablas:

Calidades Permisibles de las Descargas de Aguas Residuales para Aguas de Superficies

Población									Números de
equivalente			Unidade	es de M	ledida (m	g/L)			Coliformes
1									Totales
	pН							(MPN/100ml)	
						+ NO ₃)		Cl.	
<1,000	6 –8.5	50	160	50	-	-	-	0.05	1,000
1,001 - 5,000	6 -8.5	50	160	50	-	-	-	0.05	1,000
5,001 - 10,000	6 -8.5	45	150	45	-	-	-	0.05	1,000
10,001 - 100,000	6 -8.5	35	130	40	10	18	3	0.05	1,000
>100,000	6 –8.5	35	130	35	10	18	2	0.05	1,000

Nota: Per cápita la producción diaria de DBO5 es aproximadamente 60g/día.

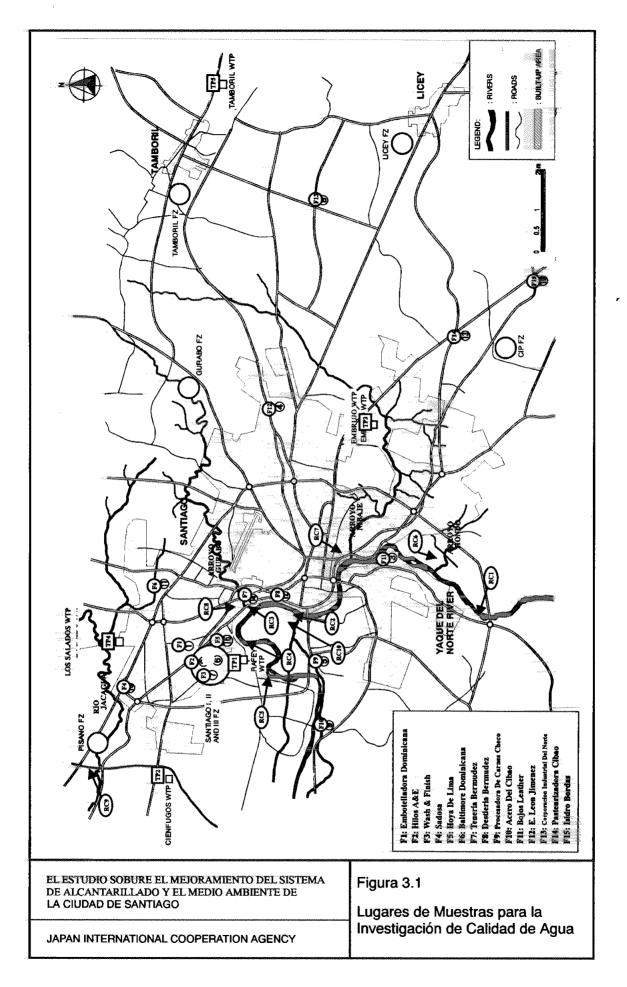
Fuente: Tabla 5.1. Descargas de agua residual municipal en aguas superficiales y el subsuelo, pp. 21.

Las calidades permisibles de las descargas de aguas residuales a las Aguas Costeras

Las canuaue	Las candades permisibles de las descargas de aguas residuales a las Aguas Costeras								
Población								Ī	Números de
equivalente		Unidades de Medida (mg/L)							Coliformes
•									Totales
	pН	DBO ₅	DQO _{Cr}	SS	N-NH4	J-(NH ₄ +	P- PO ₄	Res.	(MPN/100ml)
						NO ₃)		Cl.	
<1,000	6 -8.5	100	400	90	-	-	-	0.05	1,000
1,001 - 5,000	6 -8.5	100	400	90	-	-	-	0.05	1,000
5,001 - 10,000	6 -8.5	100	400	90	-	-	-	0.05	1,000
10,001 - 100,000	6 –8.5	70	300	75	30	50	8	0.05	1,000
>100,000	6 -8.5	70	300	75	30	50	8	0.05	1,000

Nota: Per cápita la producción diaria de DBO5 es aproximadamente 60g/día.

Fuente: Tabla 5.2. Descargas de agua residual municipal en aguas costeras, pp. 22.


Límites de Descarga de Aguas Residuales al Alcantarillado Público

Parámetro	Calidad Permisible (mg/L)
DBO ₅	350
DQO	900
T-P	10
T-N	40
РН	6 - 9
SS	400

Fuente: Tabla 5.4. Descargas de agua residual municipal en aguas superficiales y el subsuelo, pp. 26.

Las descargas de aguas residuales industriales a los cuerpos públicos también están definidas bajo la Sección 2.5, las tablas 5.3, 5.4, y los límites de los valores máximos de las calidades de descarga de aguas residuales en la Tabla 5.5. De acuerdo al tipo del cuerpo receptor que recibe agua, las descargas de aguas residuales industriales están subdivididas en categorías, incluyendo, i) Industrias químicas, ii) Descarga en aguas costeras, iii)Descarga en sistema de alcantarillado,

iv)Descarga a aguas superficiales y al subsuelo. Más detalles de los estándares de las calidades de descarga de aguas residuales industriales están descritas en el Capítulo 5, "Tratamiento y Administración Actual de Aguas Residuales Industriales".

