|--|

LOCAL WATER UTILITIES ADMINISTRATION (LWUA) REPUBLIC OF THE PHILIPPINES

BASIC DESIGN STUDY REPORT ON THE PROJECT FOR IMPROVEMENT OF WATER QUALITY IN LOCAL AREAS IN THE REPUBLIC OF THE PHILIPPINES

JUNE 2000

JAPAN INTERNATIONAL COOPERATION AGENCY JAPAN TECHNO CO., LTD .

GR 1
CR(4)
00-125

PREFACE

In response to a request from the Government of the Republic of the Philippines, the Government of Japan decided to conduct a basic design study on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines and entrusted the study to the Japan International Cooperation Agency(JICA).

JICA sent to the Philippines a study team from 23 August to 1 October 1999 for the 1st field survey and from 15 November to 24 December 1999 for the 2nd field survey. The team held discussions with the officials concerned of the Government of the Philippines, and conducted a field study at the study area.

After the team returned to Japan, further studies were made. Then, a mission was sent to the Philippines in order to discuss a draft basic design, from 6 March to 15 March 2000 as the 1st explanation of draft basic design, and from 26 June to 2 July 2000 as the 2nd explanation of draft basic design, and as a result, the present report was finalized.

I hope that this report will contribute to the promotion of the Project and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of the Republic of the Philippines for their close cooperation extended to the teams.

June, 2000

Kimio FUJITA President Japan international Cooperation Agency

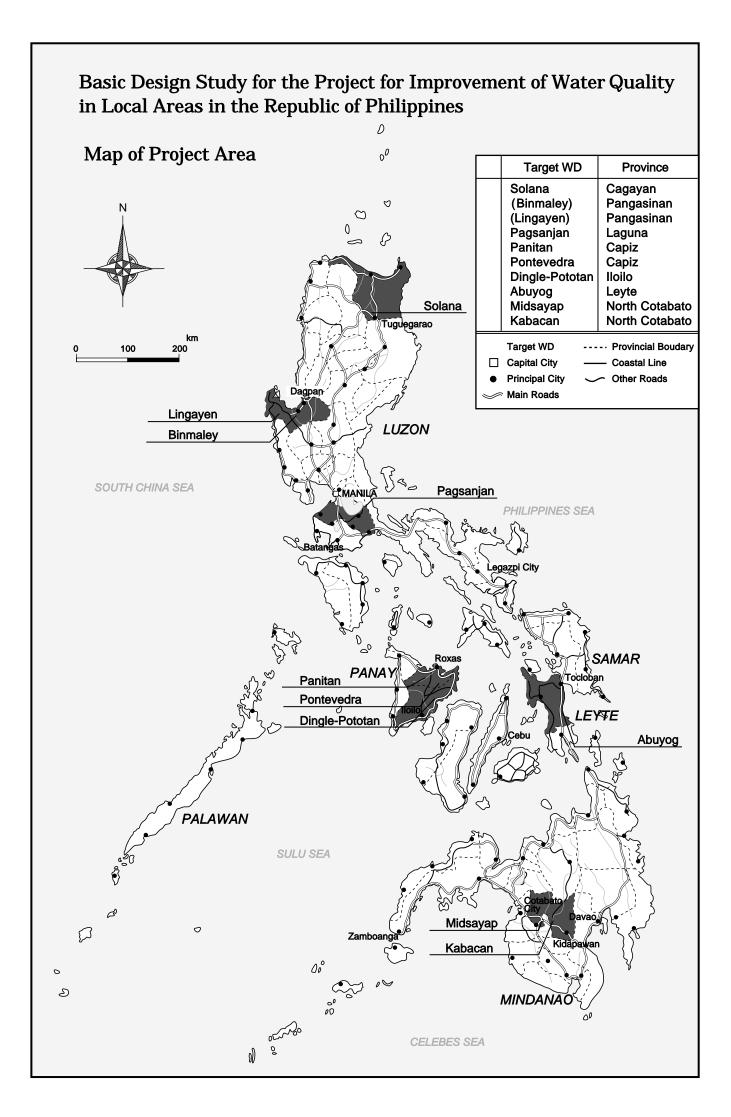
June, 2000

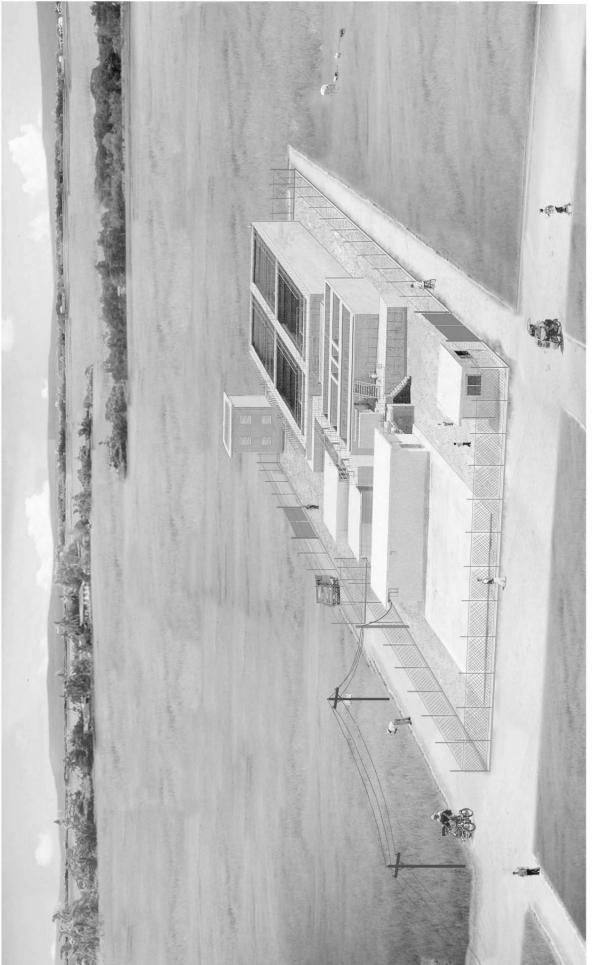
LETTER OF TRANSMITTAL

We are pleased to submit you the basic design study report on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines.

This study was conducted by Japan Techno Co., Ltd, under a contract to JICA, during the period from 13 August 1999 to 30 June 2000. In conducting the study, we have examined the feasibility and rationale of the Project with due consideration to the present situation of the Philippines and formulated the most appropriate basic design for the Project under Japan's grant aid scheme.

Finally, we hope that this report will contribute to further promotion of the Project.


Very truly yours,


Kanji TAKAMATSU

Project Manager

Basic Design Team on The Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines

Japan Techno Co., Ltd.

Basic Design Study for the Project for Improvement of Water Quality in Local Areas in the Republic of Philippines

CONTENTS

Preface	
Letter of Transmittal	
Location Map	
Perspective	
Contents	i
List of Figure	iii
List of Table	iv
Abbreviations	vi
Chapter 1 Background of the Project	
1-1 Details of the Philippines	1-1
1-2 Background of Water Sector	1-2
1-3 Background and Contents of the	1-3
1-4 Change of the Target Water	1-4
Chapter 2 Contents of the Project	
2-1 Objectives of the Project	2-1
2-2 Basic Concepts of the Project	
2-2-1 Target WDs	2-2
2-2-2 Per Capita Supply Rate	2-4
2-2-3 Planned Population & Water Supply Capacity	2-5
2-3 Basic Design	
2-3-1 Design Concept	2-7
2-3-2 Basic Design	2-15
2-3-3 System Design	2-21
Chapter 3 Implementation Plan	
3-1 Implementation Plan	
3-1-1 Implementation Policies	3-1
3-1-2 Conditions for the Implementation	3-3
3-1-3 Scope of Works	3-3
3-1-4 Supervision Plan	3-5
3-1-5 Procurement Plan	3-7
3-1-6 Implementation Schedule	3-10
3-2 Project Cost Estimation	3-13

3-3 Maintenance Plan	
3-3-1 System of Maintenance	3-14
Chapter 4 Project Evaluation and Recommendation	
4-1 Project Effect	4-1
4-2 Recommendation	4-4
Appendices	
1. Member List of the Study Team	A-1
2. Study Schedule	A-3
3. List of Concerned Parties in the Philippines	A-6
4. Minutes of Discussions	A-10
5. Cost to be Borne by the Recipient Country	A-40
6. References	A-41
7. Technical Data and Basic Design Drawings	A-42

LISTE DE FIGURE

Figure 2 - 1	Flow Chart of ICC System	2 - 14
Figure 2 - 2	System to be constructed (1)	2 - 18
Figure 2 - 3	System to be constructed (2)	2 - 19
Figure 2 - 4	Outline of deferrization and demanganization tests	2 - 25
Figure 2 - 5	Outline of Color treatment tests	2 - 26
Figure 2 - 6	Flow Diagram	2 - 28
Figure 2 - 7	Water Treatment Flow Diagram, Solana	2 - 37
Figure 3 - 1	Organization for Project Implementation	3 - 2
Figure 3 - 2	Flow of Project Implementation	3 - 6

LIST OF TABLE

Table 1 - 1	General Conditions of the Philippines	1 - 1
Table 1 - 2	Conditions of the Selection of requested 10 WDs	1 - 3
Table 1 - 3	Target WDs as of the Request	1 - 4
Table 1 - 4	Requested Facilities and Equipment	1 - 4
Table 1 - 5	Target WDs (1999)	1 - 5
Table 2 - 1	Target Study Site (1999)	2 - 3
Table 2 - 2	Production Volume of Target Well	2 - 4
Table 2 - 3	Water Supply Capacity of Target Well	2 - 5
Table 2 - 4	Planned Population &Water Supply Capacity in Target WDs in 2010	2 - 5
Table 2 - 5	Water Supply Capacity of each WD	2 - 6
Table 2 - 6	Production Volume of each WD & Planned Water Supply in 2010	2 - 7
Table 2 - 7	Target parameter and value	2 - 9
Table 2 - 8	PDM of Project including Soft-Component	2 - 11
Table 2 - 9	PDM relation to Soft-Component	2 - 12
Table 2 - 10	Target parameter of water treatment facilities	2 - 15
Table 2 - 11	Target Wells/Result of Water Quality Analysis	2 - 16
Table 2 - 12	Designed Capacity and Concept	2 - 20
Table 2 - 13	Characteristics of Target Well	2 - 23
Table 2 - 14	Outline of the processing examinationaccording to the group	2 - 27
Table 2 - 15	Aluminum sulfate feeding rate	2 - 33
Table 2 - 16	Hydrate lime feeding rate	2 - 34
Table 2 - 17	Chlorine feeding rate	2 - 34

Table 2 - 18	Chlorine feeding rate	 2 - 35
Table 3 - 1	Equipment for measuring and analysis	 3 - 8
Table 3 - 2	Attached equipment	 3 - 8
Table 3 - 3	Specifications of Equipment for measuring and analysis	 3 - 9
Table 3 - 4	Specifications of Attached equipment	 3 - 9
Table 3 - 5	Progress Schedule of the Project	 3 - 12
Table 3 - 6	Necessary site area of each WD	 3 - 13
Table 3 - 7	Electric power conduct expense of each WD	 3 - 13
Table 3 - 8	Annual maintenance cost of treatment facilities of each WD	 3 - 15
Table 3 - 9	Personnel required for facilities operation of each WD	 3 - 15
Table 4 - 1	Effects and degree of Improvement due to Project Implementation	 4 - 3

ABBREVIATIONS

ADB	Asian Development Bank
AusAID	Australia's Agency for International Development
BHN	Basic Human Needs
CNC	Certificate of Non-Coverage
DANIDA	Danish International Development Agency
DENR	Department of Environmental and Natural Resources
DPWH	Department of Public Works and Highways
ECC	Environmental Compliance Certificate
EMB	Environmental Management Bureau
E/N	Exchange of Notes
GNP	Gross National Prouduct
ICC	Investment Coordination Committee
JICA	Japan International Cooperation Agency
KfW	Kreditanstalt für Wiederaufbau
LGUs	Local Government Units
LWUA	Local Water Utilities Administration
MDC	Municipal Development Committee

MWSS	Metropolitan Waterworks and Sewerage System
NEDA	National Economic and Development Authority
NWRB	National Water Resources Board
Р	Peso
PDC	Provincial Development Committee
PDM	Project Design Matrix
RDC	Regional Development Committee
SIDA	Swedish International Development Agency
UNICEF	United Nations Children's Fund
WD	Water Districts

CHAPTER 1 BACKGROUND OF THE PROJECT

Chapter 1 Background of the Project

1-1 Details of the Philippines

The Republic of the Philippines (hereafter described as the Philippines) is situated on the west edge of the Pacific Ocean, and is composed of 7,100 islands. A total area of the country is about 300,000 km². The eleven large islands (such as Luzon, Mindanao, Samar, Cebu and Leyte) account for 96% of the total area of the country. The fifty-three percent of the total area is categorized as forests, and the 40% is arable land. The estimated population of the country in 1998 was about 75,000,000.

In the Philippines, the Aquino regime was established in 1986 after the Marcos regime which had continued for about 20 years from 1965. Afterwards, a gradual economic recovery proceeded with 3 different presidents. Meanwhile the U.S. military withdrew from the Philippines in 1992, and more diplomatic priorities are given to Japan and the ASEAN countries comparing with the past when those are exclusively given to the U.S. At the same time, the country is becoming more influential in the international arena.

		11	-
Item	Indication	Item	Indication
Government	Republic	GNP per capita	US\$1,050 (1998)
Sovereign	President Estrada	Inflation rate	9.0%
	Manila	Percentage of	99%
Capital city		elementary education	
		enrollment	
Racial	Malei, Mixed blood of Spanish,	Percentage of	Manila:100%
	Chinese and small number of	elementary education	Local:30%
composition	mountains races	completion	
Language	English and Tagalog	Literacy rate	95% (1995)
Religion	Rome Catholicism, Christianity, and	Birth rate	29‰ (1997)
Religion	Islam		
Area	300,176 km ²	Mortality rate	6‰ (1997)
Population	75,100,000 (1998)	Infant mortality rate	32‰ (1997)
Population	2.2% (1990-1997)	Life span	68 (1997)
growth rate		-	
Unit of	Peso (P)	Total fantility note	2.7 (non)
currency	(1999.7 US\$1=P38.4)	Total fertility rate	3.7 (per)

Table 1-1 General data of the Philippines

The economic development plan in the Philippines is planned principally by NEDA (National Economic Planning Authority). The present development plan was announced by "Mid-Term, National Development Five-year Plan 1999-2004" in December 1999.

The aims of this plan are reduction of poverty, improvement of the standards of the living and making the country a part of the Newly Industrialized Economies. In addition, the improvement of the coverage of drinking water supply is described as the most important issue for the Basic Human Needs (BHN) in this plan.

1-2 Background of Water Sector

As for the water administration of the Philippines, NWASA, which had been founded in 1955 to take charge of nationwide water supplies and wastewater treatments, was divided into 3 sections (i.e., the metropolitan area, local cities and rural villages) in 1972. Metropolitan Waterworks and Sewage Systems (MWSS) is in charge of the Manila metropolitan area. Local Water Utilities Administration (LWUA) is in charge of local cities of 20,000 or more people. And the Department of Public Works and Highways (DPWH) and Local Government Units (LGUs) manage and supervise the rural areas of 20,000 or less people. Moreover, National Water Resources Board (NWRB) composed of the related ministries is responsible for the development and the maintenance of a nationwide water resource.

"Nationwide Water Supply, Sewerage and Sanitation Master Plan 1988-2000" was planned by the departments relating to the water sector such as NEDA, Department of the Interior and Local Government (DILG), DPWH, and NWRB in 1987. Setting the year 2000 as the target year, the nationwide water supply has been executed aiming at the following three points. The basic concept has been succeeded to the water sector in the Mid-Term, National Development Five-year Plan (1999-2004 years) planned by a present regime.

- 1) Safe water supply to a large number of households to be achieved in a short period
- 2) Improvement of the coverage of drainage and hygiene services
- 3) Reorganization of services

In this situation, LWUA, the responsible and implementing agency of this project, has been working with the focus on the higher coverage of water supplies. Yet, there are problems to be tackled. They are some groundwaters contain high concentrations of iron, manganese, color, taste and odors; the consumers hesitate to purchase the waters; and they tend to use the shallow wells instead, although these shallow wells might be contaminated more.

1-3 Background and Contents for the Request of the Project

Facing with the situation mentioned above, the Government of the Philippines planned "Project for Improvement of Water Quality in Local Areas" (hereafter described as "the Project") and requested grant aid assistance from the Government of Japan in July 1997.

LWUA examined 29 WDs under their affiliation whose water sources contain high iron and manganese concentration values than those of the Philippines National Standard for Drinking Water. Out of these 29 WDs, 10 WDs that met the 4 conditions mentioned below were selected as the target WDs of the Project. For these 10 target WDs, the construction of water treatment facilities and relating facilities was requested. The contents of the Request are shown below.

Table 1-2 Conditions of the Selection of requested 10 WDs

WDs whose water qualities do not fulfill the Philippines National Standard for Drinking Water WDs which are unable to receive loans due to their limited scales

WDs which are unable to receive loans due to their limited scales WDs which can secure the land necessary for the Project execution WDs which are not requesting similar projects to other donors.

Table 1-5 Target WDS				
Island	Water Supply Area LWUA / 1999	Province	Name of WDs	Region
	Area 1	Cagayan	1.Solana	Region-2
T	Area 3	Laguna	2.Pagsanjan	Region-4
Luzon		Batangas	3.Balayan	Region-4
	Area 4	Sorsogon	4.Matnog	Region-5
Panay	Area 5	Capiz	5.Panitan	Region-6
			6.Pontevedra	Region-6
		Iloilo	7.Dingle-Pototan	Region-6
Leyte	Area 6	Leyte	8.Abuyog	Region-8
Mindanao	Area 8	North	9.Midsayap	Dector 19
		Cotabato	10.Kabacan	Region-12

Table 1-3 Target WDs

Table 1-4 Requested Facilities and Equipment

Construction and installation of water treatment facilities
Rehabilitation of the existing well pumps
Rehabilitation of the existing facilities for disinfection
Rehabilitation and construction of pump houses
Installation of pipes and electrical equipment for the relating facilities
mentioned above
Procurement of laboratory equipment for water analyses

1-4 Change of the Target Water District

At the beginning of the 1st Field Survey, the Philippines side suggested that Balayan WD and Matnog WD in Luzon Island are removed from the target WDs because it was found that the qualities of water in these WDs fulfill the country's water standards.

On the other hand, it has been reported that other 16 WDs have problems of color, odor and objectionable taste which seem to be due to humic substances. And thus, 2 WDs, Binmaley WD and Lingayen WD in Luzon Island which satisfy 4 conditions of the selection in Table 1-2 are newly requested as target WDs.

As this result, the number of target WDs remains 10. The target WDs in the Project are

shown in Table 1-5 below.

Island	Water District LWUA	Province	Target WD	Total Population	Barangay Population	Served Population	Water Supply (m3/day)
		Cagayan	1.Solana	68,994	8,207	6,834	750
т	Area 1		2.Binmaley	66,832	45,479	22,626	2018
Luzon	Luzon Pangasi Area 3 Lagun		3.Lingayen	82,819	36,416	16,782	1537
			4.Pagsanjan	31,679	25,020	17,568	1603
			5.Panitan	31,737	10,508	2,322	232
Panay	Area 5	Capiz	6.Pontevedra	41,742	20,800	8,500	721
i anay	Alea J	Iloilo	7.Dingle- Pototan	97,157	30,042	14,934	2094
Leyte	Area 6	Leyte	8.Abuyog	56,410	15,703	5,258	522
		North	9.Midsayap	147,255	34,218	10,254	1119
Mindanao	Area 8	Cotabato	10.Kabacan	71,152	17,069	15,942	1902
		Total		695,777	243,462	121,020	12498

Table 1-5 Target WDs (1999)

CHAPTER 2 CONTENTS OF THE PROJECT

Chapter 2 Contents of the Project

2-1 Objectives of the Project

The Government of the Republic of the Philippines undertakes "Water supply, Sewerage, and Sanitation Master Plan (1988-2000 years)" which has been advanced aiming at 2000 year, with this concept, is planning the target concerning the water sector in "The Mid-Term Development Five-year Plan (1999-2004 years) " planned in December, 1999. Under this situation, the Government of the Republic of the Philippines is putting her importance on the improvement of water coverage rate in the basic living standard of the people. To fulfill safe and stable water supply to the large number of the households in the shortest period, the Government is encouraging efficient, decentralized and autonomous operation of water companies. Under the above mentioned governmental policy, this Project is to construct water treatment facilities and related facilities for the 10 Water Districts (WDs) supervised by the Local Water Utilities Administration (LWUA), which is the implementing agency as well as responsible agency of the Project. The target 10 WDs are facing with such problems as the deterioration of water supply service level, the difficulty of establishing an appropriate water tariff, the tendency of the customers avoiding water supplied by WDs, and the failure to expand water coverage rate caused by the quality of water from the existing water sources. The purpose of the Project is to increase volume and coverage of water supply by improving the water quality, and subsequently to improve water-supply service level and the operational status of the WDs.

In addition to resolving water quality problems of target 10 WDs, LWUA also hopes to have spin-off effect to the other WDs which have similar water quality problems by transferring technology of water treatment under the Project.

To realize this Project purpose, water treatment facilities complying with the water quality improvement objectives for the water sources at each of the 10 WDs are to be constructed. Since one of these WDs uses two wells as water sources, the number of water treatment facilities are eleven in total.

2-2 Basic Concepts of the Project

The 10 WDs for this project have conducted the feasibility study (F/S) or the corresponding technical study as scheduled for the plan year of 2010 under the support of LWUA, and have improved and expanded the undertakings on the basis of the project. However, it is difficult to develop new good quality water as well as to improve the water quality for the financial reason. The increase in water supply volumes is impossible because the boreholes that were drilled once have been abandoned due to their bad water quality. Those WDs are facing many operational problems including water loss volumes in discharge through pipeline inside scales, in particular, due to bad water quality.

Some WDs having multiple boreholes can obtain good quality raw water, but their production volumes are low. Therefore, the increase of water supply volumes would not be expected unless new boreholes with quality water are developed or unless the water quality of the existing boreholes is improved under the project. At present, those WDs are forced to supply water from the existing boreholes with bad water quality. Under this situation described above, the supply of groundwater of improved quality from the boreholes in each WD under the project have large significance.

As to water volumes, even if volumes of quality water supplied from the planned boreholes are increased after implementation of the project, those volumes could not satisfy the volumes planned for 2010 on the basis of the F/S that has been conducted by each WD in the past. However, it is necessary to preferentially solve many problems which are resulted from supply water of inferior quality through improving the water quality as early as possible. Thus, it is planned to set up water treatment facilities and associated facilities in order to improve the inferior water quality due to the problems of each WD's boreholes.

2-2-1 Target WDs

The target 10WDs of this Project are water district in local cities which lie six regions over four islands as shown in the table 2-1.

Island	Water Supply Area LWUA	Province	Target WD	Barangay * Population	Served Population	Water supply (m3/day)
	Area 1	Cagayan	1.Solana	8,207	6,834	750
T	A	Denstrationen	2.Binmaley	45,479	22,626	2,018
Luzon	Area 2	Pangasinan	3.Lingayen	36,416	16,782	1,573
	Area 3	Laguna	4.Pagsanjan	25,020	17,568	1,603
			Capiz 5.Panitan 10,508			232
Panay	Area 5	Capiz	6.Pontevedra	20,800	8,500	721
		Iloilo	7.Dingle-Pototan	30,042	14,934	2,094
Leyte	Area 6	Leyte	8.Abuyog	15,703	5,258	522
		North	9.Midsayap	34,218	10,254	1,119
Mindanao	Area 8	Cotabato	10.Kabacan	17,069	15,942	1,902
		Total		243,462	121,020	12,498

Table 2-1 Target Study Site (1999)

^(*) Unit of administrative boundary in the Philippines.

Each WD has relied upon water supply from its boreholes of bad quality water formerly since 1929 and lately from 1992 though water supply demand has been increasing with a increase of population. The water supply undertakings have faced many difficulties due to this problem and are not in a position to accomplish the expansion of water districts and increase in water supply contracts that should contribute to good operation. Some WDs could not meet the demand for water supply by the marine product processing industry that will turn out a large number of big users within those WDs though it is operationally profitable for the water supply undertakings.

At the same time, WDs are facing with a worsening state of operation due to low income from individual connection charge and water charge and increasing operational cost for chlorine to disinfect water. In order to remove obstructions caused by the slime generated in the pipelines from reactions with the chlorine, frequent back wash of the pipelines are required and this increases un-accounted-for-water. Thus WDs with water quality problems are urgently required to improve their water quality. Most of these WDs are small scale, and it is not easy for them to receive financing from LWUA for new undertakings.

At the present, 29 WDs affiliated with LWUA have problems with iron and manganese,

and 16 WDs have problems with coloring, odor and/or taste. Under the Project, 8 of the former and 2 of the latter have been chosen by LWUA on the basis of the four conditions for selection set forth in the time of the request.

2-2-2 Per Capita Supply Rate (Capacity of water treatment facility)

The project is aimed at setting up water treatment facilities to improve the raw water quality of main boreholes under operation in 10 WDs that have large production volumes, but problems in quality.

The target water volumes will, therefore, depend upon the capacity of each of water treatment facilities, namely the production volume of each main borehole. The production volume of each planned borehole is shown in the next Table. The water supply capacity is equal to the balance of subtraction of the water volume for operation of the water treatment facilities from the production volumes.

NT			Production Volume
No	Target WD	Target Well	m³/d
1	Solana	Basi	1,296
9	Dinmolay	Caloocan	1,555
2	Binmaley	Fabia	1,728
3	Lingayen	Libsong	2,434
4	Pagsanjan	Sabang	1,097
5	Panitan	Phase2	1,296
6	Pontevedra	Sublangon	2,708
7	Dingle-Pototan	Abangai	2,592
8	Abuyog	Barayong	2,539
9	Midsayap	Villiarica	2,030
10	Kabacan	No.2 P.S.	2,592
	total		21,867

The water volume that can be transmitted to the water supply line is equal to the balance of subtraction of the water volume for operation of the water treatment facilities from the above water volumes, as shown in the next Table.

No	Target WD	Target Well	Supply Capacity
	_	_	m³/d
1	Solana	Basi	1,231
2	Dinmolay	Caloocan	1,477
2	Binmaley	Fabia	1,642
3	Lingayen	Libsong	2,312
4	Pagsanjan	Sabang	1,042
5	Panitan	Phase2	1,231
6	Pontevedra	Sublangon	2,573
7	Dingle-Pototan	Abangai	2,462
8	Abuyog	Barayong	2,412
9	Midsayap	Villiarica	1,929
10	Kabacan	No.2 P.S.	2,462
	total		20,773

Table 2-3Water Supply Capacity of Target Well

2-2-3 Planned Population & Water Supply Capacity

Each WD execute the feasibility study and various studies with 2010 year as the target year. The planned served population and water supply capacity are shown in the table below.

Target WD	WD's Population	Population of Supply Area	Served Population	Planned Water Supply (m3/day)
Solana	80,085	14,675	11,738	2,364
Binmaley	73,604	64,556	37,758	5,295
Lingayen	89,504	51,651	41,360	5,773
Pagsanjan	38,901	31,546	26,505	5,994
Panitan	43,260	21,564	6,991	2,283
Pontevedra	51,949	43,866	15,093	2,445
Dingle-Pototan	109,301	33,796	19,690	3,955
Abuyog	64,500	18,060	16,801	2,777
Midsayap	127,897	46,508	27,705	5,074
Kabacan	82,590	43,762	22,319	3,455
Total	761,591	369,984	225,960	39,415

Table 2-4 Planned Population & Water Supply Capacity in Target WDs in 2010

The transmission volume from the water treatment facilities to be set up under the Project to the water distribution lines and the production volumes of spring water and other existing boreholes from which water can be pumped up without any problem of quality are shown in the following Table.

		115 1	ů.	
		Sustainable	Yield (m³/day)	
Target WDs	Production Volume of Target Well	Supply Capacity*	Supply Capacity of Other Well	Total Capacity of Water Supply
Solana	1,296	1,231	812	2,043
Binmaley Caloocam	1,555	1,477	100	0.057
Binmaley Fabia	1,728	1,642	138	3,257
Lingayen	2,434	2,312	0	2,312
Pagsanjan	1,097	1,042	4,389	5,431
Panitan	1,296	1,231	0	1,231
Pontevedra	2,708	2,573	0	2,573
Dingle-Pototan	2,592	2,462	2,193	4,655
Abuyog	2,539	2,412	0	2,412
Midsayap	2,030	1,929	0	1,929
Kabacan	2,592	2,462	1,233	3,695
Total	21,867	20,773	8,765	29,538

Table 2-5 Water Supply Capacity of each WD

*Supply Capacity is deducting unaccounted-for-water such as back wash draining, sludge, cleaning water inside the facilities, etc. from the yield.

The following table shows the comparison of the planned water supply rate at 2010 according to the F/S with total production volume of water of each WD after this Project is executed.

Target WD	Production Volume	Planned Water Supply (m3/day)
Solana	2,043	2,364
Binmaley	3,257	5,295
Lingayen	2,312	5,773
Pagsanjan	5,431	5,994
Panitan	1,231	2,283
Pontevedra	2,573	2,445
Dingle-Pototan	4,655	3,955
Abuyog	2,412	2,777
Midsayap	1,929	5,074
Kabacan	3,695	3,455
Total	29,538	39,415

Table 2-6 Production Volume of each WD & Planned Water Supply in 2010

2-3 Basic Design

2-3-1 Design Concept

- (1) Policies on natural conditions
 - 1) Characteristic of target wells

Examining the characteristics of the wells in each WDs, for which water treatment facilities are to be constructed as the main component of the Project, it was found that old wells were constructed in 1980 and new ones in 1998. The hydrogeological background, the results of pumping tests, and Langelier's index which indicates the tendency of scale formation and corrosion were also investigated. The yield of each wells can be evaluated from the existing data of pumping tests and the field survey done by utilizing existing intake facilities. However, as every target well has problems in terms of the quality, rehabilitation of the wells such as elimination of scale formation and pumping tests are necessary at the implementation stage of the Project for the sustainable use of the wells.

2) Policies on water quality

At the stage of the request of the Project, the objective parameters for quality improvement were iron and manganese.

During the Field Survey I, an offer was raised from the Philippines side for the exclusion of two WDs from the target WDs. The reason for the exclusion was that the water quality test for the above mentioned two WDs executed after the request was satisfactory for the Philippines National Standard for Drinking Water. However, instead of the above two WDs, other two WDs which have difficulties in the operation of water supply systems due to coloring and offensive smell were requested as the new target WDs. Thus the objective parameters for quality improvement were increased to include coloring and offensive smell.

At the stage of the analyses in Japan after the Field Survey I, the possibility of trihalomethane formation, which is the byproduct of the reaction of organic substances like humic substances and chlorine as disinfectant, was pointed out. Although this parameter is not included in the Philippines' standard, it was decided that the tests were going to be conducted. Under the constraints such as the scattered test points in 4 islands and the difficulty of quick transportation of water sampling to Tokyo via Manila, the tests of Trihalomethane Formation Potential were carried out for the sampling waters collected from all the target sites in the Field Survey II (the results of the precise analyses of Trihalomethane Formation Potential are attached in the Appendices).

The results of the test for Trihalomethane Formation Potential is within the standard of Japan and the USA. Therefore, it is not necessary to include this as a objective parameter. However, it shall be suggested that LWUA and the WDs admit the situation and carry out thorough monitoring of the water quality (e.g., frequent monitoring of Trihalomethane) after the completion of the Project.

The target parameters for water treatment for each target wells under the Project are shown in next Table.

The objective of water quality improvement is to satisfy the water quality criteria of the Philippines. In addition, the removal of iron and manganese should be aimed at meeting the requirement for prevention of coloration. Ammonia is not included, as a removed item, in the water quality criteria of the Philippines, but it should also be removed because its existence is a problem in the process of removal of manganese.

Tangat nanomatan	Iron	Manganese	Ammonia	Color	Offensive
Target parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Taste & Odor
Philippines standard	1.0	0.50	0	5	Normal
Target Value	0.3	0.05	0	5	Normal

Table 2-7 Target parameter and value

3) Other

As for the ground leveling, though the conditions are different in each WDs, embankment is necessary to have the difference of water level necessary for the water treatment process. As the result of Geological Soil Survey, there are several sites whose ground is weak. In these sites, the soil improvement shall be done by the Japanese Contractor to construct heavy structures.

The temperature is high in general, and fairly high in the direct rays of sun. Some measures against the problem caused by the occurrence of convection in the water treatment facilities shall be taken.

(2) Policies on social conditions

As the environmental consideration around the sites, the discharge of sludge from sedimentation device and the washing water from the filtration device are collected into a simple discharged water treatment facility at first, and only the supernatant fluid is discharged. The design of water treatment facilities shall fit to the protection of the surrounding environment, especially the saucer of the discharge like creeks, rivers, and irrigation ditches, though there is no regulations regarding discharged water from water treatment facilities in Philippines. Judging from the results of the surveys, it is evaluated that the discharged water from each of the water treatment facilities in this project will not cause pollution to the creeks and rivers in terms of quantity and quality.

With respect to the process of the construction, since all of the 10 WDs are running water supply services, it shall be taken into consideration not to cause inconvenience for the residents such like long stop of water supply by the construction works.

(3) Policies on maintenance

Each WDs has long experience in water supply services. Their general activities such as water production, distribution, meter readings, billing and collection of water charge is in order. WD's staff are well-skilled for daily activities such as pump operation, plumbing and maintenance of the pipelines. However, they have no experience in the operation of water treatment facility to be constructed under the Project.

As for the electrical equipment and machinery to be used under this Project, there will be no increase of huge manpower since they are designed under the concept of manual operation system. However, as for the water treatment technique to improve water quality, since the basic scientific knowledge is required for operation, a training program shall be planned and executed by soft-component. A fairly long period group training and operation training for each treatment parameter for all 10 WDs are necessary (The Project Design Matrix are shown in the following pages.)

Most of the personnel in Implementing Agency do not have experience either in the operation of treatment facility for the improvement of groundwater quality or in the groundwater development method considering its quality. Counterpart training will be effective in respect of acquisition of such skills.

(4) Policies on execution by phase

There is a necessity of division by two terms on the scale of the works and the system when this Project is executed. Therefore, an original examination of the condition like the following was done.

- ① Efficiency to execute two or more vicinity sites to the same period in the same region by thinking from construction side.
- ② Evenness of amount of works in division by two terms.
- ③ Idea like the following presented by the Philippines side concerning the priority level of site selection for the execution.

i) Priority to the sites where the impact and the effect are high(50%)

- ii) Priority to the sites with a difficult water quality problem(30%)
- iii) Priority to the sites where the land securing ends (20%)

Narrative Summary	<u>v</u>	able Indicators	Means of Verification	Important Assumptions							
Overall Goal	Verm			(Necessary assumptions to sustain							
				the effects of the development)							
1. To Improve water	1. The W	Ds' management is	1. WDs' financial	$\boldsymbol{\cdot}$ The conditions of water supplies							
supply services and	profitab	le.	statements	are not changed by the natural							
management of	2. Compla	ints from the	2. Records of complaints	and social factors.							
WDs	resident	s decrease.									
Project Purpose				(Necessary assumptions to achieve the overall goal)							
1. To expand the water	1. Served	population increases.	1. Number of customers	• The water policies are not							
supply services		ume of served water		changed.							
2. To increase the	increase		2. Records of the quantity	• The WDs' policies of							
usage of water			of supplied water	management are not changed.							
supply services											
Outputs				(Necessary assumptions to achieve the project purposes)							
1. Water quality is	1. The con	ncentration levels of	1. Records of water	• The water sources are not dried							
improved.	iron, m	anganese etc. are up	analyses	out or are not salinised.							
2.Treated water is	to the st	tandard.	2. Records of the quantity	\cdot Water qualities are not							
supplied.	2. () m3/d	ay of treated water is	of treated water	deteriorated by industries and so							
3.Operators' skills are	supplied		3. Records of WDs'	forth.							
improved	3. Technic	1	operation and	Water is not stolen.							
	reduced		maintenance	• The cost of living does not							
				increase extremely.							
Activities		Inputs		(Necessary assumptions to achieve the outputs)							
Japan		Japan		• The trained operators fulfill							
1-1. Construction of wat	er treatment	Construction of f	acilities and procurement of	their duties.							
facility		<u>equipment</u>									
1-2. Procurement of eq	uipment for	Facilities for Wa	ter Treatment 11 sites								
monitoring		Construction of	• •								
2-1. Construction of pipeli		Rehabilitation of	f wells 11 sites								
2-2. Rehabilitation of well		Personnel		Preconditions for the activities							
2-3. Rehabilitation of exist	0	Project Manager		• The residents use treated water.							
3-1. To make the plans for	the training	Hydro-geologist Water treatment	- nlonon	• WDs secures adequate							
of operators 3-2. To train operators		Water treatment	•	personnel.							
5-2. TO train operators		Water facility pl Water quality ar		• LWUA supports WDs.							
Philippines			naintenance planer								
1. Management of the		-	initial planet								
I I. Management of the	facilities of	Contractor									
-	facilities of		assessment planer								
water supplies			assessment planer								
-	y systems		assessment planer								
water supplies 2-1. To install water suppl	y systems	Environmental a	assessment planer								
water supplies 2-1. To install water suppl 2-2. To run the services acc	y systems	Environmental a	assessment planer								
water supplies 2-1. To install water suppl 2-2. To run the services ac budget plan	y systems cording to the	Environmental a Philippines <u>Personnel</u>	assessment planer								
water supplies 2-1. To install water suppl 2-2. To run the services acc budget plan 2-3. To collect water fees	y systems cording to the tem to let	Environmental a Philippines <u>Personnel</u> Counterpart	assessment planer								
water supplies 2-1. To install water suppl 2-2. To run the services acc budget plan 2-3. To collect water fees 3. To make the sys	y systems cording to the tem to let	Environmental a Philippines <u>Personnel</u> Counterpart WD's operators	-								

 Table 2-8
 Project • Design • Matrix (PDM) of Project including Soft-Component

Table 2-9	, v	0	Manage West Granting	
Narrative Summary	Verifi	iable Indicators	Means of Verification	Important Assumptions
Overall Goal				(Necessary assumptions to sustain the effects of the development)
1. To improve the WD's water supply	1. The V	VDs' management is	1. WDs' financial	• The water policies are not
services and management	profita	ble.	statements	changed.
	2. Compl	aints from the	2. Records of complaints	• The WDs' policies of
	resider	nts decrease.		management are not changed.
	3.			
Project Purpose				(Necessary assumptions to achieve the overall goal)
1. To improve the operators' skills	1. Techni	cal problems are	1. Records of operation and	\cdot The trained operators fulfill
	reduced.		maintenance	their duties.
				•
Outputs				(Necessary assumptions to achieve the outputs)
1. To make the manual of	1. Opera	tors work more	1. WD's working record	$\cdot $ The participants for the training
operation plans	efficie	ntly.	2. Records of supplied	are willing to learn.
2. To control the water quantity	2. Water	is supplied to the	water	
with monitoring equipment		mers constantly.	3. Records of water quality	
3. To control the water quality		ater quality is up to	4. Records of the	
with monitoring equipment		andard.	equipment operation	
4. To let the counterparts acquire		equipment for the	5. Records of the	
the skills for water treatment		treatment is handled	wastewater/sludge	
5. To let the counterparts acquire	prope	0	treatment	
the skills for wastewater and		water and sludge are		
sludge treatment		d properly.		
Activities	6.	Inputs		(Necessary assumptions to achieve
The average of the second seco		mputo		the outputs)
Japan		Japan		\cdot WDs' operators participate the
1. To instruct general common items.			rement of equipment	training
2. To carry out On the Job Training(O		Water Treatmen		
3. To instruct how to use the monitori	ng	Construction of j		
equipment and its necessity		Rehabilitation of	f wells 11 sites	
4. O&M for Emergency		Personnel		
5. To instruct water quality anaysis		Project Manager		
		Water facility pla Water quality ar		Preconditions for the activities
Philippines		1 5	naintenance planer	WDs secures adequate personnel
Technical staff attend the training		operation and h	annenunce plunti	・ LWUA supports WDs
recument stan attend the training				
		Philippines		
		Personnel		
		LWUA Counterp	art	
		WD Operators		
		WD Engineer		

 Table 2-9
 Project · Design · Matrix (PDM) relation to Soft-Component

(5) Policies on the procurement except for facilities

In this Project, the procurement of equipment for measuring and analysis of water quality is included in the Request. It is composed of basic water quality testing equipment such as jar testers and so on. They are used for the analysis of the quality of raw water and treated water for the autonomous operation and maintenance done by WDs themselves after the completion of water treatment facilities. These equipment are adequate for the target treatment parameters of 10WDs(11water treatment facilities).

(5) Policies on the procurement except for facilities

In this Project, the procurement of equipment for measuring and analysis of water quality is included in the Request. It is composed of basic water quality testing equipment such as jar testers and so on. They are used for the analysis of the quality of raw water and treated water for the autonomous operation and maintenance done by WDs themselves after the completion of water treatment facilities. These equipment are adequate for the target treatment parameters of 10WDs(11water treatment facilities).

(6) Policies on ICC relation

The scale of undertaking under the project will be subject to the assessment by the ICC of the NEDA. The LWUA will apply for the ICC's assessment in the stage of pre-implementation of the project. (Refer to the flowchart of the ICC system in the next page.) It is necessary to submit the materials of the project to the NEDA, but the implementation agency has to apply for assessment on the environmental impacts and development to the Environmental Bureau and submit the "Screening for Environmental Impact Statement".

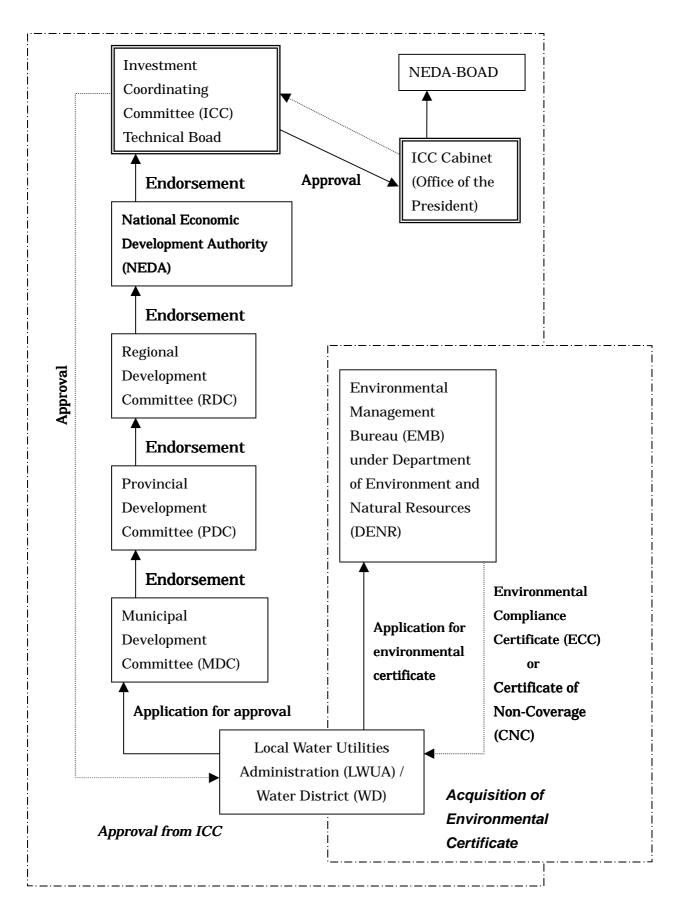


Figure 2-1 Flow Chart of ICC System

2-3-2 Basic Design

(1) Target parameter of water treatment facilities

As the result of the water quality test of the object well (Refer to the next page), the object parameter of each water treatment facilities was set based on processing target value and the water quality of the object well.

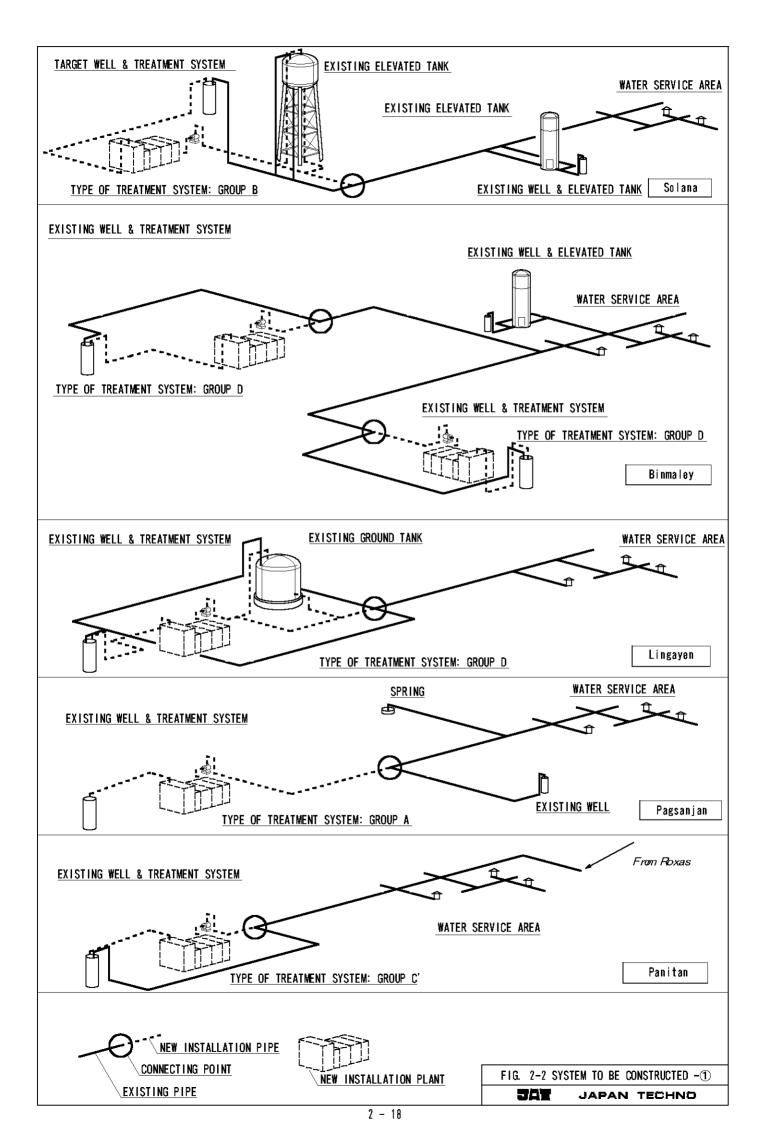
The following Table shows the 6 groups (A, B, C, C', D, E) of target parameter of water treatment facilities.

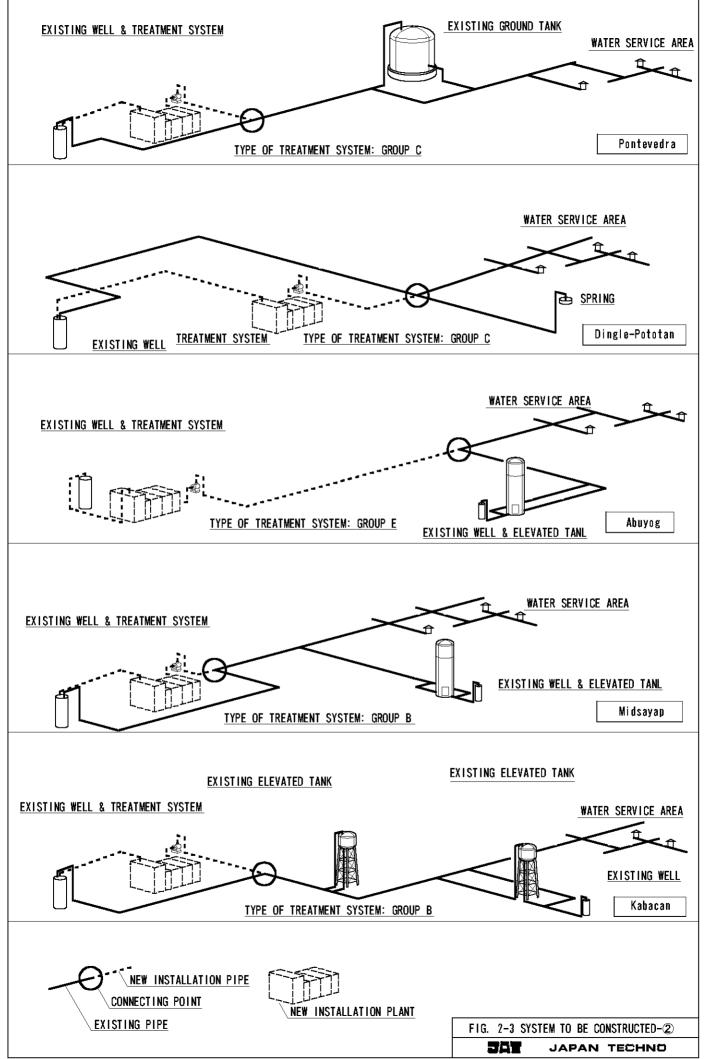
Target WD	Well	Iron	Manganese	Ammonia	Color	Taste & Odor	Туре
Solana	Basi						В
Diamalan	Caloocan				•		D
Binmaley	Fabia				ullet	ullet	D
Lingayen	Libsong				\bullet	\bullet	D
Pagsanjan	Sabang	•					А
Panitan	Phase2	●	•	●			C'
Pontevedra	Sublangon	●	●	●			С
Dingle-Pototan	Abangai	●	•	●			С
Abuyog	Barayong	●	•	●	●	●	E
Midsayap	Villiarica	●	•				В
Kabacan	No.2						В

 Table 2-10
 Target parameter of water treatment facilities

Table 2-11 Traget Wells/Result of Water Quality Analysis

No		WD	Item Unit	Term eratu re ℃	рН		EC mS/m	laity																	Coliforms	Standard plate count bacteria /mL		Na mg/L		0				Pb mg/L					Ba mg/L	Sb mg/L		L.I.	Odor/Taste
	Phi	illipines Sta	andard [*]		6.5-8.5			5	5 1	1.00 (0.50	1.00	0.01		500	300	300		50	3			250		0	10	250	200			0.2	1.00	5.00	0.01	0.003	0.001	0.07	0.05	0.70	0.005	0.01		Not abnormal
1	S	Solana	Basi	28.2	6.92	0.44	40	2	0 2	2.10	1.20 (0.20	ND	88	310	159	128	221	ND	0.26	ND	1.7	ND	3.4	0	42	8	15	51	7.7	ND	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	-0.46	Metallic odor
			Caloocan	30.0	8.30	0.71	50	0	80 C).06 (0.05 (0.20	ND	80	338	32	27	240	ND	ND	ND	ND	ND	7.6	0	300<	30	101	11	1.3	ND	0.05	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	0.30	Hidrogen sulfade od
2	Bi	nmaley	Fabia	32.0	8.20	0.78	53	0	50 ().14 (0.06 (0.20	ND	78	300	24	19	242	ND	ND	ND	ND	1.0	8.3	0	74	11	103	8	1.2	ND	ND	0.02	ND	ND	ND	0.0	0.0	ND	ND	ND	0.09	Hidrogen sulfade od
3	Li	ngayen	Libsong	28.0	8.38	0.83	128	0	40 (0.10	ND	ND	ND	26	698	68	59	162	ND	ND	ND	ND	ND	11.1	0	300<	318	243	24	2.2	ND	0.05	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	0.46	Hidrogen sulfade od
4	Pa	gsanjan	Sabang	28.5	7.28	1.01	88	1	0 2	2.20 (0.28 (0.20	ND	86	343	230	98	313	0.50	0.60	ND	2.4	8.2	3.2	0	5	65	43	39	31.7	ND	ND	0.09	ND	ND	ND	0.0	0.0	ND	ND	ND	-0.06	Metallic odor
5	Pa	anitan	Phase 2	28.0	6.67	0.35	69	8	59	ə . 00 :	1.20	ND	ND	87	433	257	150	267	ND	ND	5.9	ND	33.7	3.2	0	500<	61	35	60	26.0	ND	ND	0.10	ND	ND	ND	0.0	0.0	ND	ND	ND	-0.58	Metallic odor
6	Por	ntevedra	Sublangon	27.6	6.60	0.38	114	0	0 1	1.40 (0.96	ND	ND	88	1040	549	450	136	ND	ND	0.5	ND	33.7	1.6	0	500<	280	25	180	24.0	ND	ND	0.05	ND	ND	ND	0.0	0.0	ND	ND	ND	-0.56	Metallic odor
7	D Pe)ingle- ototan	Abangai	27.8	7.35	0.23	149	8	10 1	1.00 (0.68	ND	ND	63	941	433	298	570	0.20	ND	4.0	ND	0.7	1.8	0	500<	202	217	119	33.0	ND	ND	0.02	ND	ND	ND	0.0	0.0	ND	ND	ND	0.64	Metallic odor
8	А	buyog	Barayong	30.6	6.73	0.42	239	1	15 4	4.00 :	1.90 (0.20	ND	76	1613	1192	425	1610	ND	0.05	7.2	1.8	ND	4.7	0	4	41	166	170	184	ND	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	0.60	Metallic Odor/Hydrogen sulfide odor
9	Mi	idsayap	Villiarica	27.0	7.09	0.47	107	0	0 1	1.70 (0.97	ND	ND	68	690	377	240	454	ND	ND	ND	1.2	ND	2	69	400<	140	90	96	32.9	ND	0.06	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	0.21	Metallic odor
10	K	abacan	No.2	28.9	7.08	0.66	55	0	0 1	1.70	1.90	ND	ND	88	401	187	75	282	0.50	0.56	ND	2.3	8.3	1.2	3	119	22	40	30	26.9	ND	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	-0.43	Metallic odor


2-16


(2) Structure of whole system

The whole system from the intake at the target well to the service lines through the water treatment facility is as follows.

- 1) The raw water pumped from the existing target well by the submersible motor pump is transmitted to the water treatment facility through the existing or new raw water transmission pipes. (Each water treatment facility is located near a pump station or at a distance of about 1 km from it.)
- 2) Raw water is treated in the facility in accordance with each target parameter, and after the chlorine disinfection, the water is transmitted by pump to a water service area through the existing or new distribution pipelines. After that the water is distributed to each household through branches of service pipes.
- To treat the wastewater from the backwashing the supernatant water is discharged from a treatment facility, and the sludge is landfilled after sun drying.
- (3) Planned facilities in each WD

The system from intake at a well to distribution through transmission and treatment of raw water is different to some extend depending on each WD due to issues of land securing. The followings are the systems to be constructed in this Project.

(4) Designed capacity

The designed capacity of water treatment facilities is based on the table below.

	Table 2-12 Designed Capacity and Concept						
	Intake Facility	Raw WaterWater TreatmentWater TransmissionTransmissionFacilityFaci					
	Borehole	Pipe	Facility	Reservoir	Pump	Pipe	
	pump (m³/d)	(m ³ /d)	(m ³ /d)	(m ³)	(m³/hr)	(m³/hr)	
Solana	1,296	1,296	1,296	540	95	95	
Binmaley Caloocan	1,555	1,555	1,555	650	115	115	
Binmaley Fabia	1,728	1,728	1,728	720	130	130	
Lingayen	2,434	2,434	2,434	1020	180	180	
Pagsanjan	1,097	1,097	1,097	460	80	80	
Panitan	1,296	1,296	1,296	540	95	95	
Pontevedra	2,708	2,708	2,708	1130	200	200	
Dingle-Pototan	2,592	2,592	2,592	1080	190	190	
Abuyog	2,539	2,539	2,539	1060	190	190	
Midsayap	2,030	2,030	2,030	850	150	150	
Kabacan	2,592	2,592	2,592	1080	190	190	
				8 hours-			
				storage of			
	Produ	iction of target wel	1	Maximum			
Concent	=Maximum daily	water supply+ W	Vater for the	daily water	Maximum water supply rate		
Concept	operation of	f water treatment i	facility	supply (also	per	hour	
				used as the			
				distribution			
				tank)			

Table 2-12 Designed Capacity and Concept

2-3-3 System Design

(1) Target well as water sources

All the target wells in 10WDs (11sites) to be treated under the Project are the existing ones constructed by each WD. The number of target wells is 11. Among these 11 wells, 9 wells are being in use in spite of water quality problem and the remaining 2 wells are abandoned due to bad water quality.

The characteristics of target wells under this Project have been evaluated based upon the results of existing pumping test, hydrogeological and engineering examination, and so forth. The characteristics of these wells are shown in the next page.

Many wells have high yield but have water quality problems. As shown in the results of water quality analysis, scale caused by the water quality is produced inside of the wells and pumps, which is an impediment of water intake. Therefore, well rehabilitation as brushing with chemical treatment needs to be carried out. At the detailed design of the Project, step pumping tests and constant discharge tests and so on, are carried out to obtain more detailed characteristics.

(2) Borehole pump

As is mentioned before, 2 wells out of 11 which had been abandoned without being equipped with pumps due to bad water quality need installation of new pumps. The other 9 wells continue the operation in spite of the inadequate water quality. Because these pumps have been transmitting raw water from the wells to the distribution pipelines directory, their discharge heads are very high and thus exhausted. The raw water transmission under the Project is from the wells to the water receiving points in the treatment facilities. The existing pumps are excessive in terms of discharge heads which cause ineffective consumption of electricity. Pumps must be replaced by the adequate ones considering the design of the treatment facilities.

Regarding pumps, many of WDs under the control of LWUA are using borehole

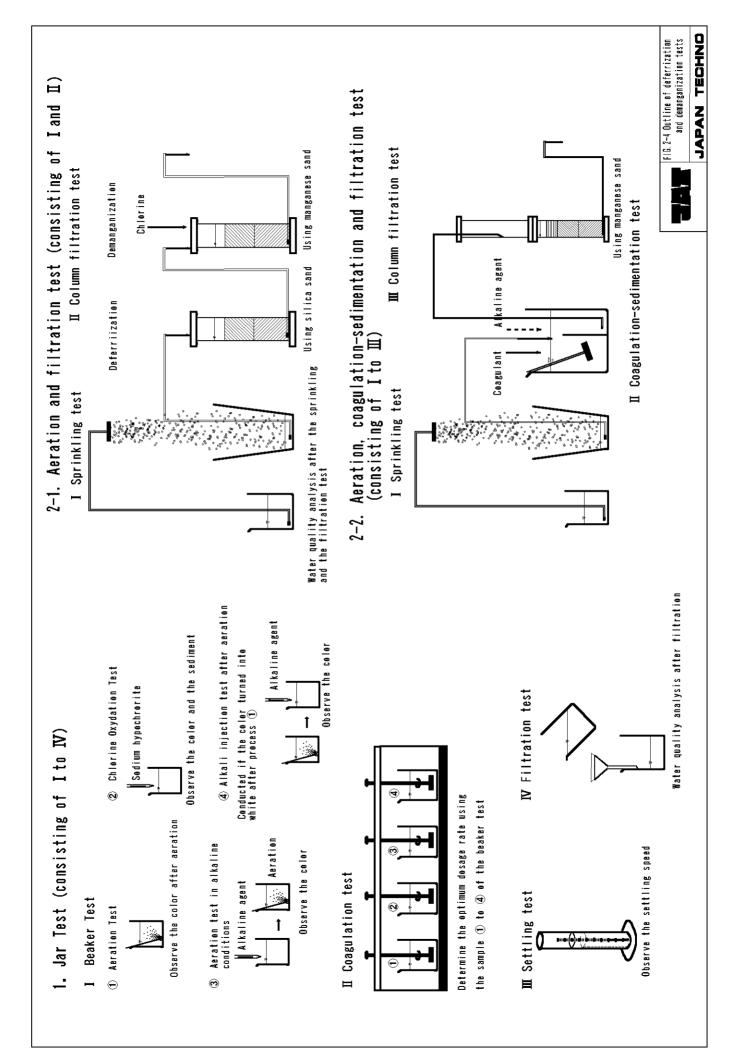
vertical pumps. However, for the ease of maintenance and the policy of LWUA, they are being replaced by the submersible pumps. This Project adopts submersible pumps. The specification was designed considering well structure and characteristics and conditions of delivery side.

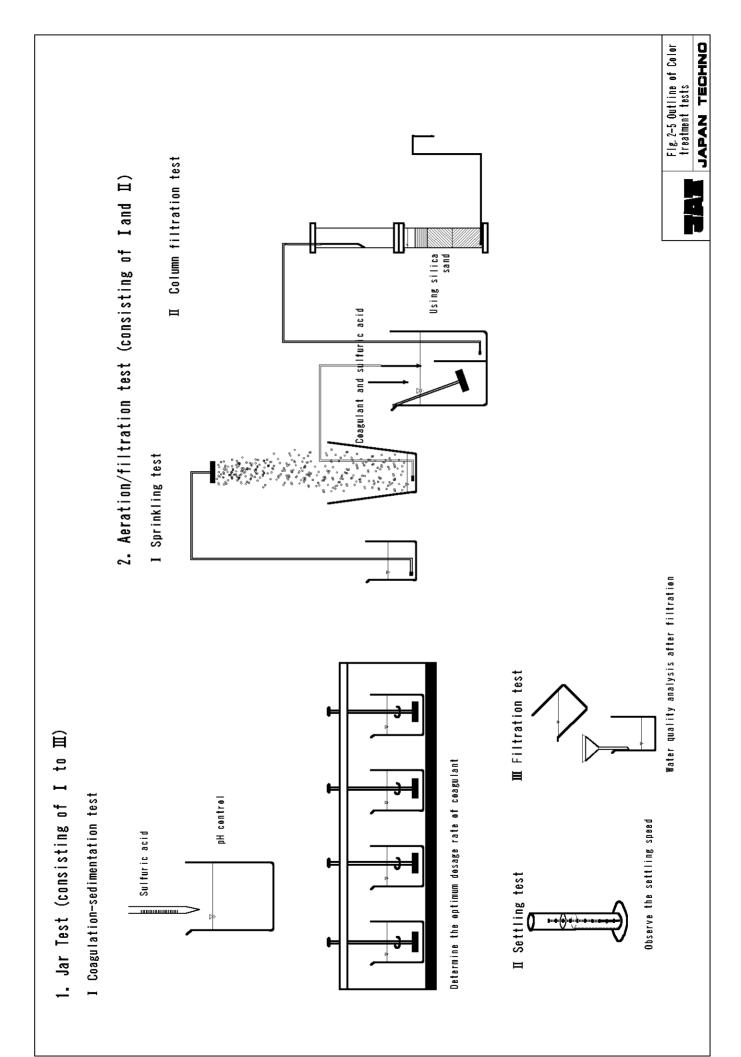
· · · · · ·					0		,	
No	Target WD	Pumping Station	Diam.	Depth	Dynamic	Static	Pumping	Note
			(mm)	(m)	Water	Water	Rate	
					Level(m)	Level(m)	(m3/d)	
		Centeo	200	78	14.0	11.1	812	
1	Solana	Basi	250	100	9.1	7.3	1296	
		Caloocan	250	250	17.1	9.0	1555	
		Poblacion	150	120	14.2	6.8	342	×
		Nagpalangan	100	135	1.6	0.0	138	
2	Binmaley	Naguilayan	125	117	15.2	8.5	173	×
		Camaley	100	129			173	×
		Gayaman	100	150	13.6	8.1	130	×
		Fabia	350	210	6.6	4.5	1728	
		Tongton	200	183			891	×
3	Lingayen	Libsong	250	250	15.4	3.3	2434	
		Baay	250	250			432	×
		Binan	250	114	41.0	38.0	674	
	Pagsanjan	Sabang	250	62	14.5	3.6	1097	
4		Sanjuan	250	77	18.0	11.2	1728	
		Lodge Spring**					1987	
5	Panitan	Phase2 Well	250	36	7.0	3.0	1296	
	_	Sublangon	250	47	10.0	7.0	2708	
6	Pontevedra	Hipona	125	9	10.0	8.0	864	
		Morobo Spring**					640	
7	Dingle-Pototan	Moroboro Spring**					1553	
		Abangai	250	40	14.0	7.0	2592	
		Bito	200	84	21.0	0.0	864	×
8	Abuyog	Barayong	250	83	25.8	0.3	2539	
		Canugive	200	60			130	×
		Villiarica	250	56	12.0	7.0	2030	
~		Kiwanan	100	35			124	×
9	Midsayap	Kimagango	100	40			86	×
		Dilangalen	150	25			312	×
		No.1 well	200	101	9.9	5.5	1233	
10	Kabacan	No.2 well	300	100	10.6	3.0	2592	

Table 2-13Characteristics of Target Well

 \times : Abandon by beginning the project. ** Water source is the spring. : Target well

(3) Raw water transmission facility


The raw water transmission facilities are pipeline facilities which conduct raw water pumped from the well by the submersible pump to water treatment facility. In the following 8 WDs (9 sites), this facility is located in the same ground of pump station house or near by.


- Solana WD Basi
- Binmaley WD Caloocan
- Lingayen WD Libsong
- Pagsanjan WD Sabang
- Panitan WD Phase 2
- Pontevedra WD Sublangon
- Abuyog WD Barayong
- Midsayap WD Villiarica
- Kabacan WD No.2 P.S.

Dingle-Pototan WD Abangai have about 1 km of raw water transmission pipelines and Binmaley WD Fabia have 200 m of raw water transmission pipelines because the land securing was impossible near the well.

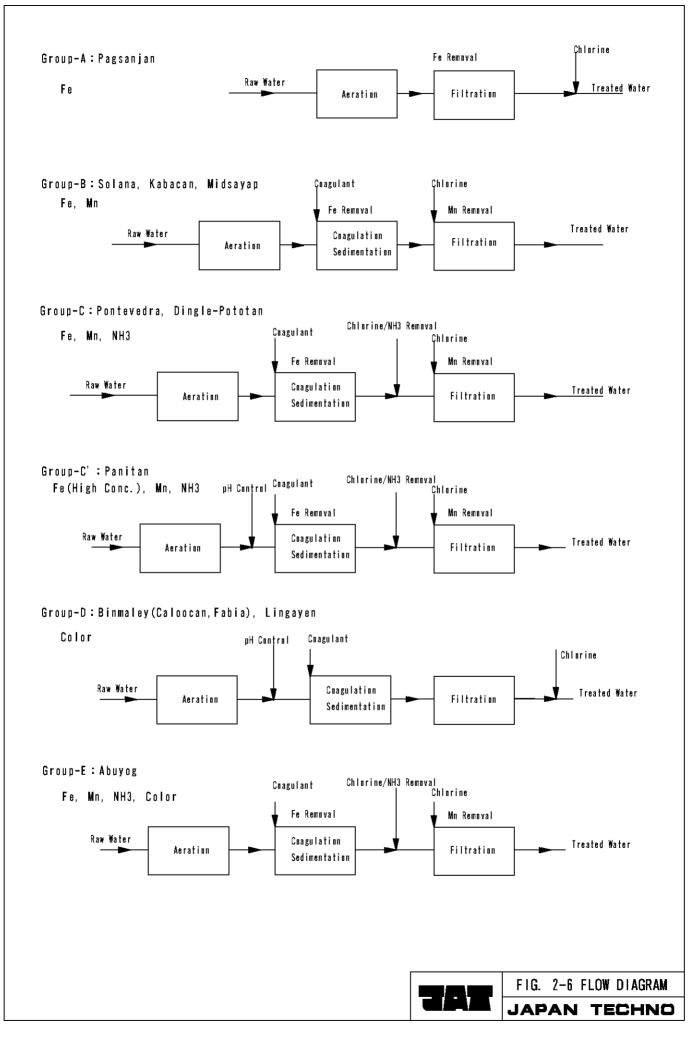
- (4) Water treatment facility
 - 1) Study of treatment process by Jar Test and Filtration Test

The jar test and the filtration test were executed in 2nd Field Survey based on 1st Field Survey by which the water quality examination of target well was executed to decide the water treatment process. The jar test and the filtration test were designed corresponding to the object item of each site which is shown in the table "Target parameter of water treatment facilities." The executed filtration test is shown in the next table "Outline of the processing examination according to the group." The jar test and the filtration test were evaluated based on "Processing parameter and processing target value", and the treatment process in the planned facilities was examined.

Α	Aeration→Silica sand filtration(Iron Removal)				
	Aeration \rightarrow Silica sand filtration(Iron Removal) \rightarrow Manganese sand filtration				
В	(Manganese Removal)				
Б	$Aeration {\rightarrow} Coagulation {-} Sedimentation (Iron Removal) {\rightarrow} Manganese \ sand \ filtration$				
	(Manganese Removal)				
	$Aeration \rightarrow Silica \ sand \ filtration (Iron \ Removal) \rightarrow Chlorination \ (Ammonia \ Removal)$				
С	\rightarrow Manganese sand filtration(Manganese Removal)				
C	Aeration \rightarrow Coagulation-Sedimentation(Iron Removal) \rightarrow Chlorination				
	(Ammonia Removal) \rightarrow Manganese sand filtration(Manganese Removal)				
C'	$Aeration {\rightarrow} pH \ control {\rightarrow} Coagulation {-} Sedimentation (Iron \ Removal) {\rightarrow}$				
C	Chlorination (Ammonia Removal) \rightarrow Manganese sand filtration(Manganese Removal)				
D	$Aeration {\rightarrow} pH \ control {\rightarrow} Coagulation {-} Sedimentation (Color \ Removal)$				
D	\rightarrow Silica sand filtration(Color Removal)				
F	Aeration \rightarrow Coagulation-Sedimentation(Iron Removal/Color Removal)				
E	\rightarrow Chlorination(Ammonia Removal) \rightarrow Manganese sand filtration(Manganese Removal)				

Table 2-14 Outline of the processing examination according to the group

*Refer to attached material (jar test and column test result) for the filtration test result.


For Groups B and C, two iron removal processes using silica sand filtering and coagulating sedimentation were conducted. For Groups B, C, C', D and E, manganese removal was conducted by adding a given amount of chlorine to the treated water and filtering the water through manganese sand after the iron removal process. (For Groups C, C' and E, the raw water contained ammonia, so that the amount of chlorine required by the ammonia content was added.)

2) Water treatment process

The water treatment systems in accordance with the target parameters of each 10WD(11 sites) based on the results of the filtration test are shown in the following pages.

① Aeration tower (Target Sites : $A \cdot B \cdot C \cdot C \cdot D \cdot E$)

The boreholes to be subject to anti-iron treatment contained 1 to 9mg/L of iron. The ferrous hydroxide that was contained in borehole water was oxidized and changed into ferric hydroxide. The primary iron has a higher solubility to be

dissolved in water while the secondary iron has a lower solubility to be sedemented. In the boreholes not to be subject to anti-iron treatment, but to chromaticity treatment, about 0.2mg/L of sulfide was contained and the hydrogen sulfide odor exceeded the threshold value. The aeration operation gave a noticeable deodorization effect.

- ② Mixing Basin (Target sites : $B \cdot C \cdot C' \cdot D \cdot E$)
 - A. pH control (Target sites : $C' \cdot D$)

The borehole raw water of Group D to be subject to chromaticity treatment (Caloocan of Binmaley, Fabia and Lingayen) contained a humic organic substance as a coloring components. The treatment is conducted by coagulating sedimentation, but pH control is made in order to perform the coagulating treatment using sulfuric acid in the optimum pH domain (pH: 5.8 to 6.0) for faster sedimentation of humic substance and for higher coagulation.

For the boreholes of Group C' (Panitan), the treatment combining aeration and filtering was made in the filtration test, and some residue that exceeded the iron standard value (1.0mg/L in the water quality criteria of the Philippines) was found. The pH value of the raw water was 6.6 and the pH value after aeration was 7.0. The rise of pH was suppressed more only by aeration compared with those at other sites. As described above, the project sites were deemed to be subject only to the impact of silicic acid (87mg/L was contained in raw water). In addition, the problem in the successive treatment was solved by adding hydrate lime to bring the water into the alkali domain (pH: about 8.5).

B. Coagulant (Target sites: $B \cdot C \cdot C' \cdot D \cdot E$)

The sedimentary iron oxide and the coloring components are coagulated. As the coagulant, aluminum sulfate is used to realize the charged neutralization of the surface of sedimentary particles suspending in colloidal state. ③ Flocculation basin (Target sites : $B \cdot C \cdot C' \cdot D \cdot E$)

When the charge of the sedimentary particles is neutralized, the repulsive power working between the particles is lost and flocks of particles are formed. To facilitate the formation of flocks, the upper and lower loop flow walls are provided in the basin without any driving device. The loop flow plates are installed in the basin with the wide interval to ensure that the loss of the loop flow from the upper to the lower stream is reduced.

(4) Sedimentation basin (Target sites: $B \cdot C \cdot C' \cdot D \cdot E$)

The mixing basin and the coagulation basin are the facilities provided to perform the sedimentation treatment. These facilities will be installed at sites of Group B (Solana, Kabacan and Midsayap), Group C (Pontevedra, Dingle-Pototan), Group C', Group D and Group E (Abuyog) in the project. This sedimentation operation is aimed at precipitating and separating the flocks generated by iron removal and coloring components.

In the project, trihalomethan was not the item of survey, and the result of measurement of trihalomethan formation ability had no problem. If a filtering basin for removal of manganese is provided in the successive process, a given amount of chlorine is injected at the inlet of the filtering basin for manganese treatment. (The manganese treatment will be handled in the next section of filtration basin.) In the project sites located in the coastal zones, there is a fear of generation of promethium-trihalomethan by chlorine feeding. Therefore, it was decided that the sedimentation operation would apply to the process of iron removal followed by manganese treatment.

In the project sites for chromaticity test, it was foreseen that the sedimentation treatment would be required because the coloring components were humin organic substances. However, the significant of that treatment was confirmed based on the result of measurement of trihalomethan formation ability. On the basis of above reason, the water quality monitoring by the LWUA side in terms of trihalomethan will be described in the Chapter 4 Project Evaluation and Recommendation.

5 Filtration basin

In Group A, the iron oxide precipitated in the aeration basin in the previous state will be removed and the filter layer will be composed of silica sand.

In Group B, the flocks carried over in the coagulation and sedimentation processes will be removed and the filter layer will be composed of silica sand.

In Groups C, C', D and E, the content of manganese is high, so that the contact oxidation of manganese sand and manganese removal will be conducted while the iron carried over from the previous stage is removed. Namely, a required amount of free chlorine is added and the water containing manganese is flowed through the manganese sand. The manganese is oxidized promptly by chlorine by means of the manganese sand as catalyzer. The manganese is chemically combined with the manganese sand put in initially and the surface of the silica sand that is produced in Philippines added later. The required amount of free chlorine is 1.29 times higher than the concentration of the manganese solution.

The chlorine feeding is performed before the filtering process, but the required amount of chlorine for ammonia should be added because the Groups C, C' and E contain ammonia. (Refer to the table: Target Wells/Results of Water Quality Analysis)

3) Design of Water treatment facility

In addition to the above-mentioned facilities for treatment processes, the design sheets for the facilities at 11 sites of 10 WDs including treated water reservoirs, backwash water basins and sludge drying beds as water treatment facilities were prepared on the basis of the functions and design specifications as described below.

1 Aeration Tower

The iron hydroxide contained in the raw water will be oxidized and treated in a state so easy to capture in the successive sedimentation basin and filtering basin. The sulfide that may cause hydrogen sulfide odor will also be removed. The volume of treated water will be the production volume of each borehole, which will be treated by two aeration towers per borehole.

The aeration will employ the sprinkler method. It has also been decided that the area per unit volume of raw water and unit time (water area load of $0.4 \text{m}^2/\text{m}^3/\text{hr}$) and 3m water head will be set in order to enhance the air-liquid contact efficiency.

② Mixing, coagulation and sedimentation basins

The mixing, coagulation and sedimentation basins will be configured as a single combined structure, in which the iron hydroxide or the chromaticity components are coagulated and separated. The treated water volume will be the sum of the production volume of each borehole and the recycled water volume because the backwash water as recycled water is reused after aeration. One mixing basin, one coagulation basin and two sedimentation basins will be installed.

The residence time in the mixing basin will be set to 1.5 minutes.

The residence time in the coagulation basin will be set to 30 minutes and nondriven slow stirring will be made by means of the upper and lower loop-flow walls. The interval between the loop-flow walls will be varied from the upper stream to the lower stream taking the stirring strength into account, so that the GT value will be about 50,000 as a whole.

The sedimentation basin is of lateral flow type. In determining its water area load (water works facilities design criteria of Japan =15 to 30mm/min), the water quality in the borehole in each site and the constant temperature of the raw water have been taken into account. The water area load of 30mm/min. and the residence time of about 2 hours have been adopted based on the sedimentation velocity of flocks as observed in jar tests.

③ Chemical Feeding Facility

i) Pretreatment of coagulation (pH control)

In Group C', hydrate lime (wet feeding 10%) will be added as the pretreatment of the iron removal process. The feeding rate is set to 66mg/L in average as the result of the jar test and filtration test in which the pH value of about 8.5 has been the optimum in the iron removal process.

In Group D, sulfuric acid (35% dilute sulfuric acid) will be added as the pretreatment of the chromaticity component coagulation process. The feeding rate is set to 100mg/L in average as the result of the jar test and filtration test in which the pH value of about 5.8 has been the optimum in any coagulation process.

ii) Coagulant (aluminum sulfate) feeding facility

In Groups B, C, C', D and E, aluminum sulfate (8% aluminum sulfate liquid with the specific gravity of 1.32) will be added as the coagulant. The list of feeding rates of the project sites as obtained from jar tests is shown in the next Table.

	(mg/L)
Target Sites	Average feeding
	rates
Solana	20
Binmaley Caloocan	20
Binmaley Fabia	40
Lingayen	45
Panitan	20
Pontevedra	20
Dingle-Pototan	20
Abuyog	20
Midsayap	20
Kabacan	20

Table 2-15Aluminum sulfate feeding rate(mg/I)

iii) Alkali agent (pH control) feeding facility

In the treatment process in Group D, the pH value is reduced to about 5.8.

Hydrate lime (wet feeding 10%) will be added after the filtering treatment in order that the treated water may meet the drinking water quality criteria (pH value of 6.5 to 8.5). The average feeding rates are shown in the next Table.

	(mg/L)
Target Site	Average feeding
	rates
Binmaley Caloocan	17
Binmaley Fabia	17
Lingayen	28

Table 2-16 Hydrate lime feeding rate

iv) Chlorine feeding facility

In Group B, chlorine will be injected for removal of manganese. The injection point will be provided before the inflow into the filtering basin after the iron removal process. A theoretical value is adopted as the feeding rate, which is 1.29 times higher than the manganese content in the raw water. The list of feeding rates is shown in the next Table.

Table 2-17Chlorine feeding rate

		(mg/L)
Target Site	Manganese	Average feeding rates
	concentration	
Solana	1.20	1.5
Midsayap	0.97	1.3
Kabacan	1.90	2.5

In Groups C, C' and E, chlorine will be injected to remove manganese and ammonia. The feeding point will be provided at the inflow point of the filtering basin after the iron removal process. A theoretical value of feeding rate is adopted, which is equal to the sum of 1.29 times higher than the manganese content and 7.6 times higher than the ammonia content in the raw water. The list of feeding rates is shown in the next Table.

			(mg/L)
Target Site	Manganese	Ammonia	Average feeding
	concentration	concentration	rates
Panitan	1.20	5.91	46.5
Pontevedra	0.96	0.45	4.7
Dingle-Pototan	0.68	4.03	31.5
Abuyog	1.90	7.24	57.5

Table 2-18 Chlorine feeding rate

 $(m\alpha/I)$

At all the sites in Groups A, B, C, C', D and E, chlorine will be injected for disinfection. The injection point will be provided at the outflow point of the filtering basin. The feeding rate is set to 0.2~0.5 mg/L as residual chlorine.

④ Filtration basins

At all the sites in Groups A, B, C, C', D and E, two filtration basins per site will be provided and the filtering velocity of 150m/d is adopted in accordance with the water works facilities design criteria of Japan.

Silica sand (effective diameter: 0.6mm; filter layer thickness: 600mm) in Groups A and D and manganese sand (effective diameter: 0.6mm; filter layer thickness: 600mm) in Groups B, C, C' and E will be adopted as the filter media. However, the filter layer thickness at the start of operation will be 300mm of manganese sand and 300mm of silica sand because the manganese sand is proliferated by its self-catalysis in the process of manganese removal.

The filter layers in the filtering basins will be washed once a day at all the sites of Groups A, B, C, C', D and E. Surface wash and backwash will be conducted with clear water. The velocities of surface wash are 0.2m/min at all sites and the velocities of backwash are 0.6-0.7m/min.

 \bigcirc Treated water reservoir

As the result of review of the cumulative curve of distribution water volumes in each planned WD, it was found that the clear water would be required to be in storage for about 8 hours. The distribution basins are not included in the project. In taking into consideration that each WD has no clear water storage system with the function of a distribution basin, a clear water basin (also used as a distribution basin) capable of 8-hour storage of the maximum daily supply will be installed in each WD.

6 Sludge and drainage treatment

The backwash drainage used for washing the filter materials will be temporarily stored in the backwash water basin. The sludge during drainage will be precipitated at its high concentration. The supernatant will be returned to the coagulation and sedimentation basins for reuse. These basins will be equipped with a recovery pump for drainage recycling and the recycle rate will be about 10% of the inflow water volume in the system. This enables to minimize the drainage volume discharged to the external and conserve water resources.

Subsequently, the sludge precipitated at a high concentration will be sent out to the drying bed and dried under the sun with the sludge discharged from the sedimentation basin. The discharged sludge is deemed to have 0.5% (5kg/m³) of concentration. The required bed area has been studied by considering the quantities of the chemicals used in the treatment processes and calculating the material balance within the treatment system. Finally, dewatering cakes and the supernatant will be discharged respectively from the sludge drying process.

The dewatering cakes contain the components removed in the water treatment processes as well as the coagulant, and their compositions are different site by site. At the sites in Group A where iron removal is performed by filtration, the iron hydroxide is contained. In the Groups B, C and E where iron removal is performed by the coagulation and sedimentation, the iron hydroxide and aluminum hydroxide are contained. In the Group C' where the iron removal is performed by the pH control using hydrate lime, the iron hydroxide, sulfate calcium and aluminum hydroxide are contained. The coloring components such as humic substances are contained in the cakes in Group D where decolorization is performed. These dewatering cakes will be filled in a solid waste disposal site in the neighborhood of each site.

On the other hand, components of the supernatant may contain the treated water in which iron, manganese and coloring components are removed from the raw water, and also small quantities of the residual of coagulant added in the treatment processes and sludge components that are not concentrated in the dewatering cakes. The supernatant will be discharged into nearby sewerage, creeks or rivers.

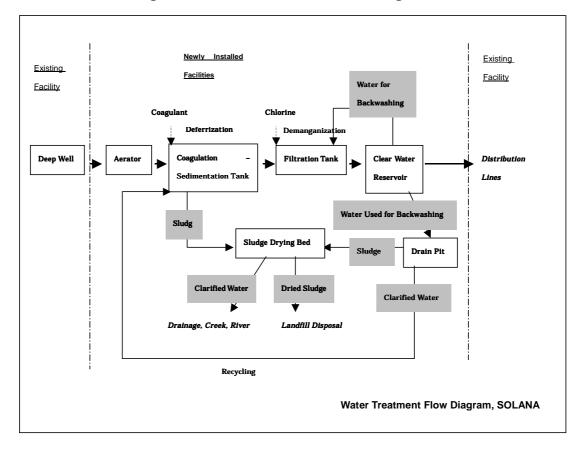


Figure. 2-7 Water Treatment Flow Diagram, Solana

The dewatering cakes and the components of the supernatant don't exert a bad influence on the environment.

(5) Water transmission facilities

① Distribution pumps

In the existing water supply systems at 10 target WDs (11 sites), the ground water taken up from a well by borehole pump has been distributed directly to the

supply pipelines only after chlorination. This causes variable pressures according to the usage condition of the water supply systems, and the pumps are likely to be damaged by the back pressures.

By the construction of the water treatment facilities, the direct water distribution by borehole pump will be abolished. Regarding borehole pumps, as mentioned before, pumps which are relevant to transmission of water to treatment facilities exclusively are utilized. Therefore, the installation of a distributing pump is required in every site. The examine about the water hammer in each site was executed.

2 Pipeline facility

The objective of these water transmission facilities is to transmit treated water to the existing distribution pipelines. The wells that have been abandoned without installing pumps and pipelines due to the water quality problems became the target of this Project, and the lands for water treatment facilities have been obtained. A distance of 2 km is allowed from water treatment facilities to a water supply area. And thus, the installation of new transmission pipelines to the existing distribution pipelines is required in Abuyog WD, Barayong well in the Leyte Island.

Site: SOLANA

Planned water volume: 1296 m^3/d Target parameters to be improved: (iron and manganese)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 100m(Depth)			Rehabilitati
Raw Water Intake Facility	Water Intake Facility	Submersible pump 0.9m ³ /min (Pumping capacity) ×33m (Pumping head), 11kw(Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
	Mixing Basin of Aluminum Sulfate	Area: $22m^2$, Capacity $65m^3$ (Total of two) RC Area: $1.4m^2$, Capacity: $2.2m^3$ Vertical submersible mixer, Paddle (500m/m ϕ , 0.75kw)	1	Overflow rate: 0.4m ² /m ³ /hr, Head: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 15m ² , Capacity: 30m ³ Vertical slow baffling type, GT value: 50000	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 33m ² , Capacity 99m ³ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Filtration Basin	RC, Gravity rapid filter Area: 9.6m² (total of two)	2	Overflow rate: 30mm/min, Effective depth: 3 m Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Capacity: 540m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
Water Treatment Facilities		Backwashing pump (submersible pump) 3.4m ³ /min (Pumping capacity)×10m (total pumping head), 11kw (power)	1	Backwashed water: 0.64m/min×Area of one basin (m²)	
		Surface washing pump (submersible pump) 1.1m ³ /min (Pumping capacity) × 30m (pumping head), 11kw(power)	1	Surface washed water: 0.20m/min×Area of one basin (m ²)	
		RC, Capacity: 27m ³	1	Surface washed water per basin	
	Drainage Basin	Recycling pump (submersible pump) 0.08m ³ /min(Pumping capacity) × 10m (pumping head), 0.4kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m ³ /min (Pumping capacity)×8m (pumping head), 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
		RC, Capacity: 2.8m ³	4	Daily vol. of sedimentation sludge Retention time: 3days	
	Sludge Drying Bed	Drainage pump (submersible pump) 0.08m3/min (Pumping capacity) × 10m (pumping head), 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical	Aluminum sulfate storage basin, Capacity: 4.7m ³	1	Retention time: 7days	
	Feeding Chamber	Diaphragm pump: 0.2L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One fo stand-b
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2–0.5mg/L	
Water	Water	Submersible pump 1.6m3/min (Pumping capacity)×50m (pumping head), 30kw(power)	2	May house water supply	
ransmission Facilities	Transmission Facilities	Pressure tank Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1	Max. hourly water supply	

Site: BINMALEY_Caloocan

Planned water volume: 1555 m³/d Target parameters to be improved: (Color)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 250m (Depth)			Rehabilitatio
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.08m3/min (Pumping capacity) × 41m (Pumping head), 15kw(Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
	Tower	Area: 26m [°] , Capacity: 78m [°] (Total of two)		Overflow rate: 0.4m²/m3/hr, Head: 3m	
	Mixing Basin of Sulfuric Acid	RC, Area: 1.4m ³ , Capacity: 2.2m ³ Vertical submersible mixer, Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Mixing Basin of Aluminum Sulfate	RC Area: 1.4m ³ , Capacity: 2.2m ³ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 18㎡, Capacity: 36m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Vertical slow baffling type, GT value: 50000		Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 40㎡, Capacity 120㎡ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
				Overflow rate: 30mm/min, Effective depth: 3m	
	Filtration Basin	RC, Gravity rapid filter Area: 11.4㎡ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand		Filtration rate: 150m/d	
		RC, Capacity: 650m ³ (total of two)	2	Max. daily water supply for 8 hrs.	-
	Treated Water Reservoir	Backwashing pump (submersible pump) 4.2m ³ /min (Pumping capacity) × 10m (total pumping head), 15kw (power)	1	Backwashed water: 0.64m∕min×Area of one basin (㎡)	
Water Treatment Facilities		Surface washing pump (submersible pump) 1.2m ³ /min (Pumping capacity)× 30m(pumping head), 11kw(power)	1	Surface washed water: 0.20m∕min×Area of one basin (㎡)	
		RC, Capacity: 43m ³	1	Surface washed water per basin	
	Drainage Basin	Recycling pump (submersible pump) 0.12m ³ /min(Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m ³ /min (Pumping capacity)×8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
		RC, Capacity: 1.5m ³	4	Daily vol. of sedimentation sludge Retention time: 3days	
	Sludge Drying Bed	Drainage pump (submersible pump) 0.08m ³ /min (Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
		Dilute sulfuric acid storage basin, Capacity: 2.5m	1	Retention time: 7days	
		Diaphragm pump: 0.5L/min (Max. flow), 0.2kW (power)	2	Injection rate	One for stand-b
	Chemical Feeding	Aluminum sulfate storage basin, Capacity: 5.7m ³	1	Retention time: 7days	
	Chamber	Diaphragm pump: 0.2L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-b
		Hydrated lime dissolving basin, Hydrated lime storage basin	1 1	Retention time: 7days	
		Diaphragm pump: 0.02L/min (Max. flow), 0.2kW (power)	2	Injection rate	One for stand-b
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
		Submersible pump			
Water Transmission Facilities	Water Transmission Facilities	1.9m³∕min (Pumping capacity)×50m (pumping head), 30kw(power) Pressure tank	2	Max. hourly water supply	
	Facilities	Max. pressure: 6kgf/cm [°] ,	1		

Site: BINMALEY_Fabia

Planned water volume: 1728 m³/d Target parameters to be improved: (Color)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	350m/m ϕ (Diameter), 210m (Depth)			Rehabilitatio
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.20m ³ /min (Pumping capacity) × 32m (Pumping head), 11kw (Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
	Tower	Area: 29㎡, Volume: 86m3 (Total of two)	-	Overflow rate: 0.4m²/m3/hr, Head: 3m	
	Mixing Basin of Sulfuric Acid	RC, Area: 1.4m ² , Volume: 2.2m ³ Vertical submersible mixer, Paddle (500m/mφ, 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Mixing Basin of Alminum Sulfate	RC Area: $1.4m^2$, Volume: $2.2m^3$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 20m ² , Volume: 40m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Vertical slow baffling type GT value: 50000		Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 44m ² , Volume 132m ³ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min, Effective depth: 3m	
	Filtration Basin	RC, Gravity rapid filter Area: 12.6m ² (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand	2	Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 720m ³ (total of two) Backwashing pump (submersible pump)	2	Max. daily water supply for 8 hrs.	-
		4.9m ³ /min (Pumping capacity) × 10m (total pumping head) 15kw (power)	1	Backwashed water: 0.64m/min×Area of one basin (m²)	
Water Treatment Facilities		Surface washing pump (submersible pump) 1.4m ³ /min (Pumping capacity) × 30m(pumping head) 11kw (power)	1	Surface washed water: 0.20m/min× Area of one basin (m ²)	
		RC, Capacity: 43m3	1	Surface washed water per basin	-
	Drainage Basin	Recycling pump (submersible pump) 0.12m3/min(Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	-
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity)×8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
		RC, Capacity: 3.4m ³	4	Daily vol. of sedimentation sludge Retention time: 3days	
	Sludge Drying Bed	Drainage pump (submersible pump) 0.08m3/min (Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
		Dilute sulfuric acid storage basin, Capacity: 2.8m ²	1	Retention time: 7days	
		Diaphragm pump: 0.6L/min (Max. flow), 0.2kW (power)	2	Injection rate	One for stand-by
	Chemical Feeding	Aluminum sulfate storage basin, Capacity: 6.3m ³	1	Retention time: 7days	
	Chamber	Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-by
		Hydrated lime dissolving basin, Hydrated lime storage basin	1 1	Retention time: 7days	
		Diaphragm pump: 0.02L/min (Max. flow), 0.2kW (power)	2	Injection rate	One for stand-by
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
		Submersible pump 2.1m³/min (Pumping capacity)×50m	2		
Water Transmission Facilities	Water Transmission Facilities	(pumping head), 30kw(power) Pressure tank		Max. hourly water supply	
1 40/1600	i donicios	Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1		

Site: LINGAYEN

Planned water volume: 2434 m³/d Target parameters to be improved: (Color)

Facility	Component	Specification	No.	Factors to specify	Remarks
Vater Source	Existing Borehole	250m/m ϕ (Diameter), 250m (Depth)			Rehabilitatio
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.69m ³ /min (Pumping capacity) × 39m (Pumping head), 18.5kw (Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
	Tower	Area: 41m ² , Volume: 122m ³ (Total of two)		Overflow rate: 0.4m ² /m ³ /hr, Head: 3m	
	Mixing Basin of Sulfuric Acid	RC, Area: 1.4m ² , Volume: 2.2m ³ Vertical submersible mixer,	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Aciu	Paddle (500m/m ϕ , 0.75kw)		Retention time: 1.5min	
	Mixing Basin of Aluminum Sulfate	RC, Area: 1.4m ² , Volume: 2.2m ³ Vertical submersible mixer	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation	Paddle (500m/m ϕ , 0.75kw) RC, Vertical baffling type Area: 29m ² , Volume: 57m ³	1	Max. daily capacity of water supply + Water used within the facilities	
	Basin	Vertical slow baffling type GT value: 50000	'	+ Recycled water Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 62m ² , Volume 186m ³ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min,	
	Filtration Basin	RC, Gravity rapid filter, Area: 17.8m ² (total of two)	2	Effective depth: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Duom	Media: silica sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 1020m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
		Backwashing pump (submersible pump) 7.0m3/min (Pumping capacity) × 10m (total pumping	1	Backwashed water: 0.64m∕min × Area of one basin (m²)	
Water Treatment Facilities		head) 30kw (power) Surface washing pump (submersible pump) 2.0m3/min (Pumping capacity) × 30m(pumping head) 15kw (power)	1	Surface washed water: 0.20m/min× Area of one basin (m²)	
		RC, Capacity: 61m3	1	Surface washed water per basin	
	During an Durin	Recycling pump (submersible pump) 0.17m3/min(Pumping capacity) × 10m (pumping head)	1	Recycled water/(daily max. water supply	
	Drainage Basin	0.75kw (power) Sludge pump (submersible pump) 0.1m3/min (Pumping capacity) × 8m (pumping head)	1	+ Water used within the facilities): 10% Backwashed water + Surface washed water - Recycled water	
		0.75kw (power) RC, Capacity: 5.3m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
	Sludge Drying Bed	Drainage pump (submersible pump) 0.16m3/min (Pumping capacity) × 10m (pumping head) 0.75kw (power)	1	Concentration of sedimentation sludge: 0.5%	
		Dilute sulfuric acid storage basin, Capacity: 4.0m ²	1	Retention time: 7days	
		Diaphragm pump: 0.8L/min (Max. flow), 0.2kW (power)	2	Injection rate	One for stand-b
	Chemical	Aluminum sulfate storage basin, Capacity: 8.9m ³	1	Retention time: 7days	
	Feeding Chamber	Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-b
		Hydrated lime dissolving basin, Hydrated lime storage basin	1 1	Retention time: 7days	
		Diaphragm pump: 0.01L/min (Max. flow), 0.2kW (power)	2	Injection rate	One for stand-b
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
		Submersible pump			
Water	Water Transmission	3.0m3/min (Pumping capacity)×50m (pumping head), 45kw(power)	2	Max. hourly water supply	
Facilities	Transmission Facilities	Pressure tank Max. pressure: 6kgf/cm ^{2.}	1	max nourry water suppry	

Site: PAGSANJAN Planned water volume: 1097 m 3 /d Target parameters to be improved: (Iron)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 62m (Depth)			Rehabilitation
Raw Water Intake Facility	Water Intake Facility	Submersible pump 0.76m ³ /min (Pumping capacity) × 39m (Pumping head), 7.5kw (Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
	Filtration Basin	Area: 18m ² , Volume 55m ³ (Total of two) RC, Gravity rapid filter Area: 8.0m ² (total of two)	2	Overflow rate: 0.4m ² /m ³ /hr, Head: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand		Filtration rate: 150m/d	
		RC, Volume: 460m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
	Treated Water Reservoir	Backwashing pump (submersible pump) 3.2m3/min (Pumping capacity) × 10m (total pumping head) 11kw (power)	1	Backwashed water: 0.64m/min×Area of one basin (m ²)	
Water		Surface washing pump (submersible pump) 0.9m3/min (Pumping capacity)× 30m(pumping head) 11kw(power)	1	Surface washed water: 0.20m/min× Area of one basin (m ²)	
Treatment Facilities		RC, Capacity: 25m3	1	Surface washed water per basin	
	Drainage Basin	Recycling pump (submersible pump) 0.07m3/min(Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity)×8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
		RC, Capacity: 1.2m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
	Sludge Drying Bed	Drainage pump (submersible pump) 0.02m3/min (Pumping capacity)×10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
Water Transmission	Water Transmission	Submersible pump 1.4m3/min (Pumping capacity)×50m (pumping head) 18.5kw(power)	2	Max. hourly water supply	
Facilities	Transmission Facilities	Pressure tank Max. pressure: 6kgf/cm ^{2,} Min. pressure: 4kgf/cm ²	1	wax. nourly water supply	

Site: PANITAN

Planned water volume: 1296 m^3/d Target parameters to be improved: (Iron, Manganese, Ammonia)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 36m (Depth)			Rehabilitati
Raw Water Intake Facility	Water Intake Facility	Submersible pump 0.9m ³ /min (Pumping capacity) × 31m (Pumping head), 11kw(Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
		Area: 22m ² , Volume 65m ³ (Total of two)		Overflow rate: 0.4m ² /m ³ /hr, Head: 3m	
	Hydrated Lime Mixing Basin	RC, Area: $1.4m^2$, Capacity: $2.2m^2$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Mixing Basin of Aluminum Sulfate	RC, Area: 1.4m ² , Volume: 2.2m ³ Vertical submersible mixer	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	Paddle (500m/m ϕ , 0.75kw) RC, Vertical baffling type Area: 15m ² , Volume: 30m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Buom	Vertical slow baffling type GT value: 50000		Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 33m ² , Volume 99m ³ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min,	
	Filtration Basin	RC, Gravity rapid filter Area: 9.6m ² (total of two)	2	Effective depth: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 540m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
Water Treatment		Backwashing pump (submersible pump) 3.4m3/min (Pumping capacity) × 10m (total pumping head) 11kw (power)	1	Backwashed water: 0.64m/min×Area of one basin (m²)	
Facilities		Surface washing pump (submersible pump) 1.1m3/min (Pumping capacity) × 30m(pumping head) 11kw (power)	1	Surface washed water: $0.20 \text{m/min} \times$ Area of one basin (m ²)	
	Drainage Basin	RC, Capacity: 27m3	1	Surface washed water per basin	
		Recycling pump (submersible pump) 0.08m3/min(Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity) × 8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
	Sludge Drying Bed	RC, Capacity: 40m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
		Drainage pump (submersible pump) 0.65m3/min (Pumping capacity) × 10m (pumping head) 2.2kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical Feeding Chamber	Aluminum sulfate storage basin, Capacity: 10.4m ³	1	Retention time: 7days	
		Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-b
		Hydrated lime dissolving basin, Hydrated lime storage basin	1 1	Retention time: 7days	
		Diaphragm pump: 0.01L/min (Max. flow), 0.2kW (power)	2	Injection rate	One fo stand-b
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
		Submersible pump			
Water Transmission	Water Transmission Facilities	1.6m3/min (Pumping capacity) × 50m (pumping head), 30kw(power)	2	Max. hourly water supply	
Facilities		Pressure tank Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1		

Site: Pontevedra

Planned water volume: 2708 $\mathrm{m^3/d}$

Target parameters to be improved: (Iron, Manganese, Ammonia)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 47m (Depth)			Rehabilitatior
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.88m ³ /min (Pumping capacity) × 34m (Pumping head), 18.5kw (Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
		Area: 45m ² , Volume 135m ³ (Total of two)		Overflow rate: 0.4m ² /m ³ /hr, Head: 3m	
	Mixing Basin of Aluminum Sulfate	RC Area: $1.4m^2$, Volume: $2.2m^3$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 31m ² , Volume: 62m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Vertical slow baffling type GT value: 50000		Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 69m ² , Volume 207m ³ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min, Effective depth: 3m	
	Filtration Basin	RC, Gravity rapid filter Area: 19.9m ² (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 1130m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
Water Treatment		Backwashing pump (submersible pump) 7.2m3/min (Pumping capacity) × 10m (total pumping head) 30kw (power)	1	Backwashed water: 0.64m/min×Area of one basin (m ²)	
Facilities		Surface washing pump (submersible pump) 2.3m3/min (Pumping capacity) × 30m(pumping head) 18.5kw(power)	1	Surface washed water: 0.20m/min× Area of one basin (m ²)	
	Drainage Basin	RC, Capacity: 55m3	1	Surface washed water per basin	
		Recycling pump (submersible pump) 0.16m3/min(Pumping capacity) × 10m (pumping head) 0.75kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity) × 8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
	Sludge Drying Bed	RC, Capacity: 4.2m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
		Drainage pump (submersible pump) 0.08m3/min (Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical Feeding Chamber	Aluminum sulfate storage basin, Capacity: 10.4m ³	1	Retention time: 7days	
		Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-by
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
Water	Water	Submersible pump 3.3m3/min (Pumping capacity)×50m (pumping head), 45kw(power)	2	Markank	
Transmission Facilities	Transmission Facilities	Pressure tank Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1	Max. hourly water supply	

Site: DINGLE-POTOTAN

Planned water volume: 2592 $\rm m^3/d$

Target parameters to be improved: (Iron, Manganese, Ammonia)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 40m (Depth)		Existing Borehole	Rehabilitatior
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.8m ³ /min (Pumping capacity) × 44m (Pumping head), 22kw(Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities Overflow rate: 0.4m ² /m ³ /hr, Head: 3m	
	Mixing Basin of Aluminum Sulfate	Area: $43m^2$, Volume $130m^3$ (Total of two) RC Area: $1.4m^2$, Volume: $2.2m^3$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 30m ² , Volume: 60m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Sedimentation Basin	Vertical slow baffling type GT value: 50000 RC, Horizontal-flow sedimentation basin, Area 66m ² , Volume 198m ³ (total of two)	2	Retention time: 30min Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min, Effective depth: 3m	
	Filtration Basin	RC, Gravity rapid filter Area: 19.0m ² (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 1080m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
Water Treatment Facilities		Backwashing pump (submersible pump) 6.4m3/min (Pumping capacity) × 10m (total pumping head) 30kw (power)	1	Backwashed water: 0.64m/min×Area of one basin (m²)	
Facilities		Surface washing pump (submersible pump) 2.0m3/min (Pumping capacity)× 30m(pumping head) 15kw(power)	1	Surface washed water: 0.20m/min \times Area of one basin $(\rm m^2)$	
	Drainage Basin	RC, Capacity: 50m3	1	Surface washed water per basin	
		Recycling pump (submersible pump) 0.14m3/min(Pumping capacity) × 10m (pumping head) 0.75kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity)×8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
	Sludge Drying Bed	RC, Capacity: 7.6m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
		Drainage pump (submersible pump) 0.08m3/min (Pumping capacity)×10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical Feeding Chamber	Aluminum sulfate storage basin, Capacity: 9.5m ³	1	Retention time: 7days	
		Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-by
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
Water Transmission Facilities	Water Transmission Facilities	Submersible pump 3.2m3/min (Pumping capacity)×50m (pumping head), 45kw(power)	2		
		Pressure tank Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1	Max. hourly water supply	

Site: ABUYOG

Planned water volume: 2539 m^3/d

Target parameters to be improved: (Iron, Manganese, Ammonia, Color)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 83m (Depth)			Rehabilitatior
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.76m ³ /min (Pumping capacity) × 50m (Pumping head), 25kw (Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
		Area: 42m ² , Volume 127m ³ (Total of two)		Overflow rate: 0.4m ² /m ³ /hr, Head: 3m	
	Mixing Basin of Aluminum Sulfate	RC Area: $1.4m^2$, Volume: $2.2m^3$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 29m ² , Volume: 57m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Sedimentation Basin	Vertical slow baffling type GT value: 50000 RC, Horizontal-flow sedimentation basin, Area 65m ² , Volume 195m ³ (total of two)	2	Retention time: 30min Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min,	
	Filtration Basin	RC, Gravity rapid filter Area: 18.6m ² (total of two)	2	Effective depth: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Duom	Media: silica sand, manganese sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 1060m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
Water Treatment Facilities		Backwashing pump (submersible pump) 6.4m3/min (Pumping capacity) × 10m (total pumping head) 30kw (power)	1	Backwashed water: 0.64m/min × Area of one basin (m ²)	
Facilities		Surface washing pump (submersible pump) 2.0m3/min (Pumping capacity) × 30m(pumping head) 15kw(power)	1	Surface washed water: 0.20m/min× Area of one basin (m ²)	
		RC, Capacity: 63m3	1	Surface washed water per basin	
	Drainage Basin	Recycling pump (submersible pump) 0.18m3/min(Pumping capacity) × 10m (pumping head) 0.75kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity) × 8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water – Recycled water	
		RC, Capacity: 8.0m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
	Sludge Drying Bed	Drainage pump (submersible pump) 0.16m3/min (Pumping capacity) × 10m (pumping head) 0.75kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical	Aluminum sulfate storage basin, Capacity: 9.3m ³	1	Retention time: 7days	
	Feeding Chamber	Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-by
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2–0.5mg/L	
		Submersible pump			
Water Transmission	Water Transmission	3.1m3/min (Pumping capacity) × 50m (pumping head), 45kw(power)	2	Max. hourly water supply	
Facilities	Facilities	Pressure tank Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1		

Site: MIDSAYAP

Planned water volume: 2030 m^3/d Target parameters to be improved: (Iron, Manganese)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	250m/m ϕ (Diameter), 56m (Depth)			Rehabilitation
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.41m ³ /min (Pumping capacity) × 36m (Pumping head), 15kw(Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
		Area: 34m ² , Volume 101m ³ (Total of two)		Overflow rate: 0.4m ² /m ³ /hr, Head: 3m	
	Mixing Basin of Aluminum Sulfate	RC Area: $1.4m^2$, Volume: $2.2m^3$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 24m ² , Volume: 48m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Vertical slow baffling type GT value: 50000		Retention time: 30min	
	Sedimentation Basin	RC, Horizontal-flow sedimentation basin, Area 52m ² , Volume 155m ³ (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min,	
	Filtration Basin	RC, Gravity rapid filter Area: 14.8m ² (total of two)	2	Effective depth: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand		Filtration rate: 150m/d	
	Treated Water Reservoir	RC, Volume: 850m ³ (total of two)	2	Max. daily water supply for 8 hrs.	
Water Treatment		Backwashing pump (submersible pump) 5.1m3/min (Pumping capacity) × 10m (total pumping head) 15kw (power)	1	Backwashed water: 0.64m/min × Area of one basin (m²)	
Facilities		Surface washing pump (submersible pump) 1.6m3/min (Pumping capacity)× 30m(pumping head) 15kw(power)	1	Surface washed water: 0.20m/min× Area of one basin (m²)	
		RC, Capacity: 40m3	1	Surface washed water per basin	
	Drainage Basin	Recycling pump (submersible pump) 0.11m3/min(Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity)×8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
	Sludge Drying Bed	RC, Capacity: 3.3m3	4	Daily vol. of sedimentation sludge Retention time: 3davs	
		Drainage pump (submersible pump) 0.08m3/min (Pumping capacity)×10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical Feeding Chamber	Aluminum sulfate storage basin, Capacity: 7.4m ³	1	Retention time: 7days	
		Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-by
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
Water Transmission Facilities	Water Transmission Facilities	Submersible pump 2.5m3/min (Pumping capacity)×50m (pumping head), 37kw(power)	2	Max. hourly water supply	
		Pressure tank Max. pressure: 6kgf/cm ^{2,} Min. pressure: 4kgf/cm ²	1		

Site: KABACAN

Planned water volume: 2592 \mbox{m}^3/\mbox{d} Target parameters to be improved: (Iron, Manganese)

Facility	Component	Specification	No.	Factors to specify	Remarks
Water Source	Existing Borehole	300m/m ϕ (Diameter), 100m (Depth)			Rehabilitatio
Raw Water Intake Facility	Water Intake Facility	Submersible pump 1.8m ³ /min (Pumping capacity) ×35m (Pumping head), 18.5kw(Power)	2	Max. daily capacity of water supply + Water used within the facilities	One for stand-by
	Aeration Tower	RC, Nozzle sprinkling method	2	Max. daily capacity of water supply + Water used within the facilities	
	Mixing Basin of Aluminum Sulfate	Area: $43m^2$, Volume $130m^3$ (Total of two) RC Area: $1.4m^2$, Volume: $2.2m^3$ Vertical submersible mixer Paddle (500m/m ϕ , 0.75kw)	1	Overflow rate: 0.4m ² /m ³ /hr, Head: 3m Max. daily capacity of water supply + Water used within the facilities + Recycled water Retention time: 1.5min	
	Flocculation Basin	RC, Vertical baffling type Area: 30m ² , Volume: 60m ³	1	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
	Sedimentation Basin	Vertical slow baffling type GT value: 50000 RC, Horizontal-flow sedimentation basin, Area 66m ² , Volume 198m ³ (total of two)	2	Retention time: 30min Max. daily capacity of water supply + Water used within the facilities + Recycled water Overflow rate: 30mm/min, Effective depth: 3m	
	Filtration Basin	RC, Gravity rapid filter Area: 19m ² (total of two)	2	Max. daily capacity of water supply + Water used within the facilities + Recycled water	
		Media: silica sand, manganese sand	0	Filtration rate: 150m/d	
Water Treatment	Treated Water Reservoir	RC, Volume: 1080m ³ (total of two) Backwashing pump (submersible pump) 6.4m3/min (Pumping capacity) × 10m (total pumping head) 30kw (power)	2	Max. daily water supply for 8 hrs. Backwashed water: 0.64m/min×Area of one basin (m ²)	
Facilities		Surface washing pump (submersible pump) 2.0m3/min (Pumping capacity)× 30m(pumping head) 15kw(power)	1	Surface washed water: 0.20m/min× Area of one basin (m ²)	
	Drainage Basin	RC, Capacity: 50m3 Recycling pump (submersible pump) 0.14m3/min(Pumping capacity) × 10m (pumping head) 0.75kw (power)	1	Surface washed water per basin Recycled water/(daily max. water supply + Water used within the facilities): 10%	
		Sludge pump (submersible pump) 0.1m3/min (Pumping capacity)×8m (pumping head) 0.75kw (power)	1	Backwashed water + Surface washed water - Recycled water	
	Sludge Drying Bed	RC, Capacity: 4.2m3	4	Daily vol. of sedimentation sludge Retention time: 3days	
		Drainage pump (submersible pump) 0.08m3/min (Pumping capacity) × 10m (pumping head) 0.4kw (power)	1	Concentration of sedimentation sludge: 0.5%	
	Chemical Feeding Chamber	Aluminum sulfate storage basin, Capacity: 9.5m ³	1	Retention time: 7days	
		Diaphragm pump: 1.4L/min (Maximum flow), 0.2kw (power)	2	Injection rate	One for stand-b
	Chlorine Feeding Chamber	Direct connection type (68kg cylinder)	1	Residue of free chlorine: 0.2-0.5mg/L	
Water Transmission	Water Transmission Facilities	Submersible pump 3.2m3/min (Pumping capacity)×50m (pumping head), 45kw(power)	2	Max. hourly water supply	
Transmission Facilities		Pressure tank Max. pressure: 6kgf/cm ^{2.} Min. pressure: 4kgf/cm ²	1	max. nouny water supply	

CHAPTER 3 IMPLEMENTATION PLAN

Chapter 3 Implementation Plan

3-1 Implementation Plan

The project is implemented under the Japanese Grant Aid System. The implementation plan of the project is as follows. Figure 3-1 shows the implementation system.

3-1-1 Implementation policies

The Local Water Utilities Administration (LWUA) is the executing and responsible agency for the project. LWUA is responsible for the entire procedure of the project. Upon completion of the said Project LWUA shall turn over the said facilities to the recipient WDs and shall provide technical assistance to ensure proper maintenance for sustainability. After the completion of the Exchange of Notes, LWUA will contract with a Japanese consultant firm for the detailed study and supervision of the project. And under the assistance of the consultant, LWUA will execute a tender for the procurement of equipment for the monitoring of water quality and the construction of water treatment facilities. The contract with a contractor will be made based on the result of the tender. In accordance with the guidelines of the Japanese Grant Aid Assistance, the prime contractor is a Japanese firm.

The Japanese prime contractor constructs such facilities, and procures relevant equipment and materials under the supervision of the consultant.

The constructed facilities and procured equipment are handed over to each WDs after the inspection held by concerned parties. From then on, the operation and maintenance (O&M) of the facilities are done by each WD.

The Japanese prime contractor must have enough experiences in the similar water supply projects including construction of filtration facilities, and have deep knowledge in the field. Since the project uses groundwater from existing wells as its water sources, the Japanese prime contractor is also required to have the expertise for groundwater development.

Since the 10 target WDs are scattered in 4 islands, cooperation from local side is

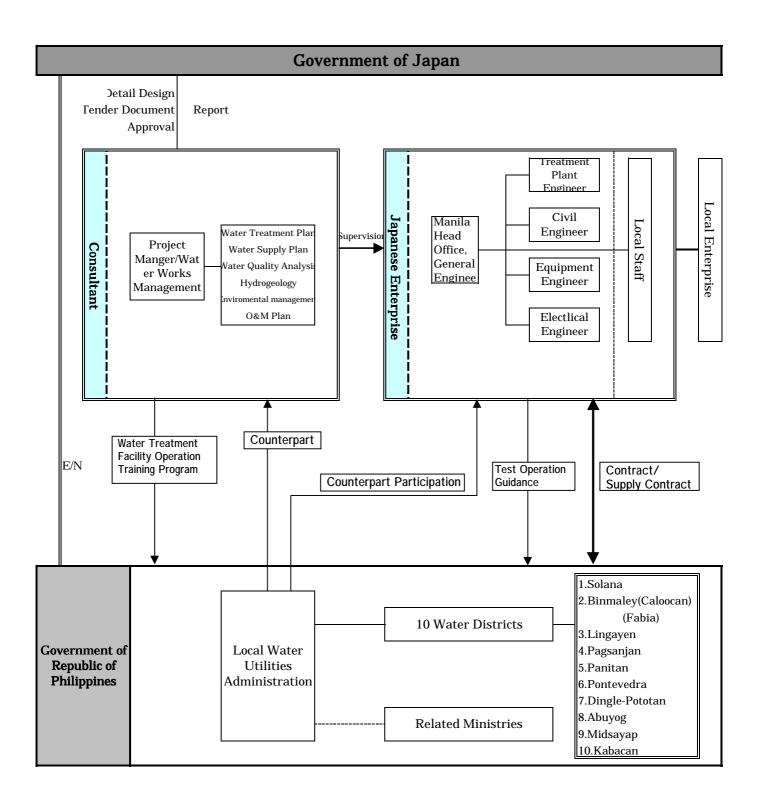


Figure 3-1 Organization for Project Implementation

indispensable. There are relatively many local firms and workers relating to the general construction works as well as water supply system construction works in the Philippines, and their capacity is appreciable.

3-1-2 Conditions for the implementation

All the necessary requirements such as right of way, permit, etc. relating to the design and construction laws, technical standards, and so forth shall be the responsibility of LWUA. However, concerning the installation of pipelines across the national roads in some target WDs, discussions with related ministries are required. All of the existing water facilities in WDs are in operation at present and the served population has reached around 123,000. The implementation schedule is planned in order to avoid inconvenience caused by the suspension of water for a long time due to the execution of construction work.

After the completion of each WD's water treatment facility, the effective backwashing of the pipelines is required before water is transmitted to the distribution pipelines. Since the pipelines are inter-connected without order in many WDs, the resident will not be able to receive water of good quality in case the back washing program is not adequate. The consultant will design the backwashing program reflecting the route of distribution pipelines. The Japanese contractor will execute the program as its responsibility in cooperation with each WDs putting effort to avoid causing inconvenience to the residents.

3-1-3 Scope of Works

Responsibilities of Japanese side are as follows:

- (1) To rehabilitate existing wells and construct water treatment facilities which use the rehabilitated wells as their water sources in 10 target WDs (in 11 sites).
- (2) To procure equipment necessary for the operation of the water treatment facilities.
- (3) To provide consultation services during the implementation of the Project.

(4) To provide technology transfer during the Project implementation on site and/or training area as identified for LWUA and WD's staff members.

As for the Philippines' side, the executing agency is requested to conduct overall management of the project and make necessary arrangement for the matters related to other ministries. Details are as follows:

- 1) To provide relevant data, information and documents necessary for the execution of the project.
- 2) To secure lands necessary for the project.
- 3) To readjust the sites and access roads before the commencement of the construction works.
- 4) To bear banking fees of the bank in Japan in accordance with the banking arrangement.
- 5) To secure smooth disembarkation of the equipment and the materials at the port and bear all the costs for the custom clearance.
- 6) To secure smooth embarkation and disembarkation for the Japanese personnel involved in the project implementation, offer them necessary convenience and security during their stay, and exempt them from customs duties and internal taxes with respect to services under the verified contracts.
- 7) To give convenience to enable the Japanese personnel to enter the Philippines, and stay and conduct their duties regarding the supplies of the equipment and the services from Japan under verified contracts.
- 8) To assign counterparts.
- 9) To assign necessary staff and secure budget for proper and effective operation and maintenance of the procured equipment and constructed facilities under the project.
- 10) To use and maintain properly and effectively all the procured equipment and constructed facilities under the project.
- 11) To organize O&M system including selection and education of personnel for the effective operation of the constructed facilities.
- 12) To bear the expenses which are necessary for the execution of the project, but not covered by the Grant.
- 13) To follow a procedure (ICC, ECC, etc.) promptly concerning a grant necessary for this execution of the Project .

3-1-4 Supervision plan

The whole process including the Detailed Design Study, tendering, contracting management, supervision on facility construction, procurement of the equipment, and the operational training is conducted as follows.

Stage	Order	Contents	
	1.	Detailed Design Study	
	2.	Preparation of tender documents	
Pre-Construction	3.	Supporting the tender	
	4.	Evaluating the result of tender	
	5.	Assistance for conclusion of the contract	
	6.	Supervision of construction and procurement	
	7.	Preparation of training program, on the job	
Under-Construction		training	
	8.	Inspection, operational instruction and training	
	9.	Formulation of reports	

Prior to the construction work, detailed designs including field survey necessary for implementation of the project shall be conducted for each target WDs based on the results of the Basic Design Study in order to determine the specifications for the facilities and the equipment and to prepare tender documents. Along with the preparation of the tender documents, a program for tendering procedure is prepared after discussions with the relating ministries. The consultant supports executing agency to carry out the tender and to have contract with the selected Japanese contractor after the evaluation of the results of the tender.

Regarding the construction stage, as is shown in the following project implementing flow, engineers dispatched to the project area will make necessary arrangement among concerned parties for smooth and effective implementation of the project and to perform quality control and construction supervision.

At the stage of the completion of the construction work, inspection on the constructed facilities and installed equipment is conducted and training concerning operation and maintenance through the training program is given to the personnel who will be engaged in the O&M activities. Reports on the completion of the project are also prepared.

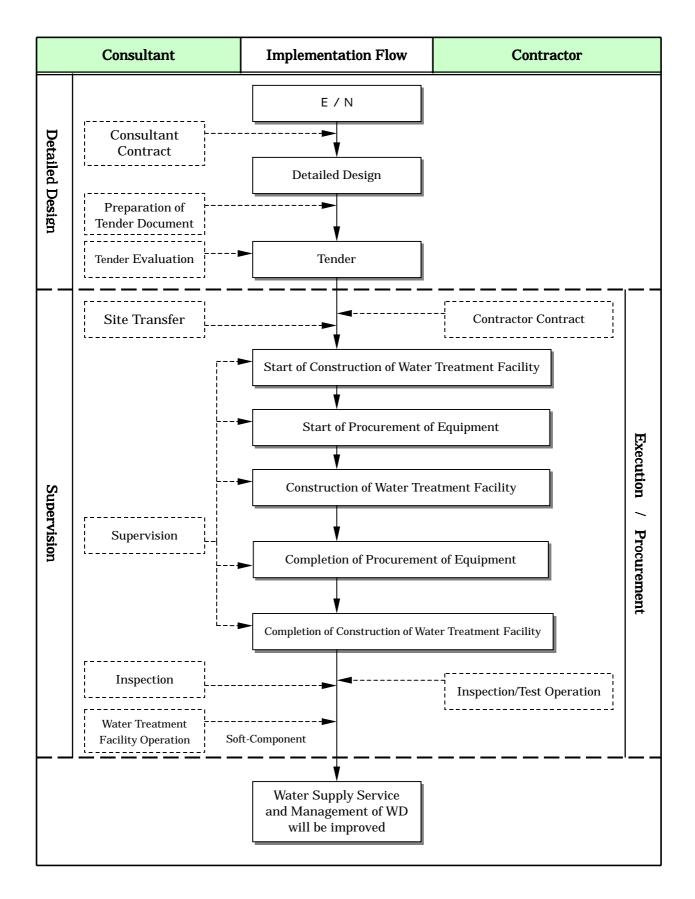


Figure 3-2 Flow of Project Implementation

3-1-5 Procurement plan

Regarding construction materials, priority is given to the locally available materials as far as the quality is guaranteed and the constant availability in the market is observed. As for the equipment, from the viewpoint of the easiness of maintenance and the provision of after-sale services, non-Japanese products are also taken into consideration. Procurement plan is as follows considering the skills and the techniques of the personnel of the Philippines' side, the existence of maintenance system and the availability in the market.

(1) Selection of the equipment to be procured

The equipment for measuring and analyses and their attached equipment are installed for the sake of the confirmation of water treatment situation and the promotion of smooth treatment process. The equipment for the measuring is portable as they are used daily and frequently. The equipment for chemical analysis adopts simple methods and can treat 5 parameters namely residual chlorine, iron, manganese, ammonia nitrogen, and COD. These equipment are installed in 11 sites, and each equipment is in correspond to the objectives of water treatment plan in each site.

- (2) Objectives and items of measuring /analyses
 - a . Items necessary for observation and management of treated water quality pH, water temperature, conductivity (EC), salinity, dissolved oxygen (DO), turbidity, color, odor, objectionable taste, residual chlorine
 - b . Items necessary for observation and management of water treatment facility Facilities of Group A : Iron Facilities of Group B : Iron/Manganese/Coagulation and Sedimentation Facilities of Group C : Iron/Manganese/Ammonia nitrogen/Coagulation and Sedimentation
 Facilities of Group C' : Iron/Manganese/Ammonia nitrogen/Coagulation and Sedimentation
 Facilities of Group D : Color/COD/Coagulation and Sedimentation
 Facilities of Group E : Iron/Manganese/Ammonia nitrogen/Color

(3) Purpose of Equipment for measuring and analysis and attached equipment

Parameter	Equipment	Purpose	Quantity
pH	pH meter	Observation and management of	11
		raw water and treated water	
Water temperature	Water quality	Observation and management of	11
	checker	raw water and treated water	
Conductivity	Water quality	Observation and management of	11
	checker	raw water and treated water	
Salinity	Salinometer	Observation and management of	11
		raw water and treated water	
Dissolved oxygen	Water quality	Observation and management of	11
	checker	raw water and treated water	
Turbidity	Water quality	Observation and management of	11
	checker	raw water and treated water	
Color/Odor/Taste	Colorimeter,	Observation and management of	11
	other	raw water and treated water	
Residual chlorine	Colorimeter	Observation and management of	11
		treated water	
Iron	Colorimeter	Observation and management of	
		raw water and treated water	
Manganese	Colorimeter	Observation and management of	7
		raw water and treated water	
Ammonia nitrogen	Colorimeter	Observation and management of	4
		raw water and treated water	
COD	COD meter	Observation and management of	
		raw water and treated water	
Coagulation and	Jar tester	Observation and management of	10
sedimentation		raw water and treated water	

Table 3-1 Equipment for measuring and analysis

 Table 3-2
 Attached equipment

Item	Equipment	Purpose	Quantity
Glass	Beaker, others	Chemical analysis	11
equipment			
Storage	Storage shed	Storage /management of glass	11
equipment	-	equipment and measuring	
		equipment	
Chemicals	Chemicals	Storage of chemicals, low	11
storage	shed	temperature conservation	
equipment			
Data	Computer	Management of data	11
management		-	

(4) Specifications of Equipment for measuring and analysis and attached equipment

Parameter	Equipment	Specification	
pH	pH meter	Glass Electrode	
Water	Water quality	Platinum RTD	
temperature	checker		
Conductivity	Water quality	AC 4 electrodes	
	checker		
Salinity	Salinometor	AC 4 electrodes	
Dissolved oxygen	Water quality	Galvanic cell	
	checker		
Turbidity Water quality		Scattering light	
	checker		
Color/Odor/Taste Colorimeter,		Odor/taste:Sense method	
	other		
Residual chlorine	Colorimeter	Colorimetory	
Iron	Colorimeter	Colorimetory	
Manganese	Colorimeter	Colorimetory	
Ammonia nitrogen	Colorimeter	Colorimetory	
COD	COD meter	Acid Potassium Permanganate	
Coagulation and	Jar tester	4 equipped / attached chemicals injector	
sedimentation			

 Table 3-3
 Specifications of Equipment for measuring and analysis

Table 3-4 Specifications of Attached Equipment

Item	Equipment	Specification
Glass equipment	Beaker, others	Beaker, flask, measuring cylinder, funnel,
		etc.
Storage	Storage shed	Aluminum flame/acrylic plate
equipment	C	(more than 500L)
Chemicals storage	Chemicals shed	Refrigerator (300L)
Data managing	Computer	CPU(more than 400MHz)
	_	HDD(more than 10GB)
		CDR/RW, Monitor(17 in), Printer(A4~)

As for the construction materials, judging from the results and evaluation of the past project, procuring from the local market can be appropriate in terms of quality, quantity, and price. The principal construction materials such as cement, aggregate, pipes, etc. are manufactured enough in the Philippines with the established local price. They are procured in the Philippines.

3-1-6 Implementation Schedule

There is a necessity of division by two terms because of the scale of the works and the system when this Project is executed. Therefore, an original examination under the condition like the following was done.

Efficiency to execute two or more vicinity sites to the same period in the same region by thinking from construction side.

Evenness of amount of works in division by two terms.

Idea like the following presented by the Philippines side concerning the priority level of site selection for the execution.

- i) Priority to the sites where the impact and the effect are high (50%)
- ii) Priority to the sites with a difficult water quality problem (30%)
- iii) Priority to the sites where the land securing ends (20%)

The above-mentioned sites are shown in the table below.

Priority	Site
High impact and the effect	Panitan, Solana
Difficult water quality problem	Abuyog, Panitan
land securing ends	All others sites excluding Abuyog, Binmaley-F

The sites where the impact and the effect are high are Panitan, Solana, and the reason is the followings.

In the current state in Panitan, the water sources facilities cannot be used due to the water quality deterioration of the deep well of the own possession, they buy expensive water from the Roxas city which is adjacent now, and this has the majority of the WD management expense in Panitan. And, with the amount of production in the Roxas city it is impossible to increase the amount of the water supply because there is no room any further.

Moreover, there is marine products processing goods factory in the Panitan city, if the amount of the water supply increases in Panitan, there is large demand's of using the water at once and it will contribute to the management improvement of this WD.

As for Solana, there are a lot of WDs in the surrounding of Solana where a similar water

quality problem is caused, and a lot of improvement requests go up to the LUWA headquarters.

Therefore, the spreading effect is expected to the surrounding WDs by executing in Solana.

For the above-mentioned reasons, theses 2WDs were evaluated as the sites where the impact and the effect would be high.

From the view of the construction works, the execution of two or more vicinity sites in the same region to the same period will produce the high efficiency in the execution. Therefore, the undermentioned each group will be executed in the same period.

Group 1 (Pangasinan[Luzon]): Binmaley-C,-F, Lingayen [3 sites] Group 2 (Panay): Panitan, Pontevedra, Dingle-Pototan [3 sites] Group 3 (Mindabao): Midsayap, Kabacan [2 sites]

Besides the above-mentioned, by the division of 2 terms, the execution sites at each period is as the following table considering the evenness of the construction amount.

In the term 1, the construction will be executed at Panitan, Solana(the impact and the effect is high), Abuyog (the difficult problem of water quality), and Pontevedra, Dingle-Pototan which belong to the Group-2 (vicinity sites of Panitan). In the term 2 the construction will be executed in the sites of the remainder.

Term	Sites	
Term 1	Panitan, Pontevedra, Dingle-Pototan, Abuyog, Solana	
Term 2	Binmaley-C and F, Lingayen, Pagsanjan, Midsayap, Kabacan	
Binmaley-C : Caloocan Binmaley-F : Fabia		

Binmaley-C : Caloocan, Binmaley-F : Fabia

Moreover, as for Midsayap and Kabacan, the examination comes to be required if there is a problem in the public peace of the North Cotabato Province on the Mindanao island at the execution time of the term 2 (2002 fiscal year).

The progress schedule of the Project is shown in the following table.

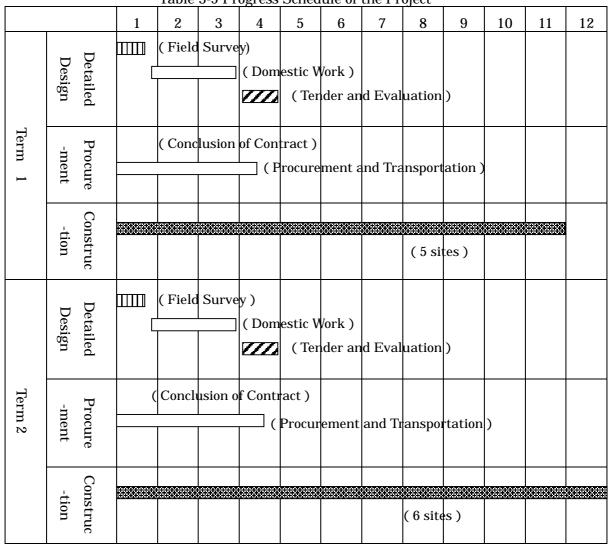


Table 3-5 Progress Schedule of the Project

3-2 Project cost estimation

In the case this Project is implemented under the Japanese Grant Aid System, the contribution of the Philippines is as follows.

(1) Land securing for the construction of facilities

No.		Necessary site area (m2)
1	Solana	900
2	Binmaley Calocan	1,100
	Binmaley Fabia	1,000
3	Lingayen	2,370
4	Pagasanjan	330
5	Panitan	1,350
6	Pontevedra	1,150
7	Dingle-Pototan	1,200
8	Abuyog	1,200
9	Midsayap	1,000
10	Kabacan	1,250
	Total	12,850

Table 3-6 Necessary site area of each WD

(2) Electric power conduct expense (Peso)

Table 3-7 Electric power conduct expense of each WD

No.		Electric power conduct (Peso)
1	Solana	220,000
2	Binmaley Calocan	210,000
	Binmaley Fabia	280,000
3	Lingayen	260,000
4	Pagasanjan	190,000
5	Panitan	190,000
6	Pontevedra	310,000
7	Dingle-Pototan	320,000
8	Abuyog	380,000
9	Midsayap	220,000
10	Kabacan	370,000
	Total	2,950,000

3-3 Maintenance Plan

3-3-1 System of Maintenance

The 10WDs under the administration of LWUA have 10 to 22 years experience of the water supply management. Basically, the existing water supply systems of these WDs use groundwaters from deep wells as main sources.

Commercial electric power is also utilized. Each of the WDs has a pump station which is provided with a borehole pump, a pressure pump, a chlorine feeding device for disinfection and a generator for the case of blackouts. House connection supplies are practiced through the pipelines whose average length is 20Km or more in each site.

The commodity charge system is adopted for the collection of water fees based on the water production cost, and the charge is based on LWUA's supervision. According to a water meter installed in each household, the invoice is issued. The water supply service has been managed with a relatively high rate of fee collection.

Because of the small business scales, these WDs lack the scale merits, and the financial situations are not so stable. However, unlike newly commencing WDs, these already existing WDs have the foundation for the development of the water supply management by introducing the water treatment facilities to improve the water quality in this Project.

The cost for the O&M in the existing facilities consists of the cost for personnel, chemicals (chlorine for disinfection), electricity and so forth. That of the newly installed facilities in this project is also composed of the same items. Although personnel expenses occupy a large ratio in the conventional management, the rate becomes relatively low in this project. On the other hand, the costs for chlorine not for disinfection use, pH adjuster and coagulant are newly added, and the electric power expenses for facilities are increased. The annual maintenance cost for treatment facilities of each WD is shown in the next table.

	Electric Power	Chemicals
Solana	125	8
Binmaley	268	71
Lingayen	197	63
Pagsanjan	80	2
Panitan	126	66
Pontevedra	196	24
Dingle-Pototan	208	72
Abuyog	218	121
Midsayap	159	12
Kabacan	195	20

Table 3-8 Annual Maintenance Cost of treatment facilities of each WD (10,000 Peso)

The costs of the electricity for intake and transmission of water account for high rate in the existing facilities. In this project, the costs for water treatment will be also added. However, the consumption of the electricity will become more efficient by the more efficient management. The costs for personnel generally account for high rates comparing with the other items. The increase of the personnel in this project will be minimized using the existing personnel. The core staffs who are working in the existing facilities continue to operate the newly installed facilities. They are supposed to have sufficient abilities through the training program provided in this project.

In case the target wells have not currently been used, new operators are required. Personnel required for the facilities' operation is shown in the next table.

	i	Ĩ
	Total operators	Operators
	needed	added
Solana	2	0
Binmaley	4	0
Lingayen	2	0
Pagsanjan	2	2
Panitan	2	2
Pontevedra	2	0
Dingle-Pototan	2	0
Abuyog	2	2
Midsayap	2	0
Kabacan	2	0

Table 3-9Personnel required for facilities' operation

Regarding maintenance plan after the handing over of the facilities under the project, it

is mainly focused on the technical aspects such as the operation and maintenance of water treatment facilities, periodical inspection and service of the equipment. They are summarized as follows.

- 1) Maintenance at normal operation
- The way to start up the pumps, the filtration tanks, the sedimentation tanks, and the equipment for the disinfection
- The way to check and record normal operation of the equipment
- The way to stop the equipment and manage them while they are not in use
- The way to analyze the quality of water (raw water and treated water)
- The way to inject chemicals (injection rate) according to the quality of water
- The way of daily maintenance of various machines and tools such as replacement of oil of driving gears and application of grease to rubber parts
- 2) Countermeasures in unusual situations
- In case of blackouts
- In case of sudden breakdowns of the equipment
- In case of abnormal quality of water
- 3) Others
- The way of regular cleaning and checking of the inside of the boreholes
- The way of regular cleaning and checking of the inside of the filtration tanks and the sedimentation tanks
- The way to maintain the other devices

- The way to prevent accidents which can occur in the facilities for chlorination
- The way to manage the stocks of consumptive goods, especially chemicals

The water fees which are significant for the O&M should be determined considering the total costs, the current water fees, LWUA's and other administration's policies, and the target people's incomes. LWUA now aims that the water fees should be below 5% of the target people' s incomes, and this project is supposed to achieve the aim. There are possibilities that the consumers accept the increase of water fees due to the improved quality, or that more people have contracts with LWUA. Nevertheless, it is still needed to do more stable business by cutting off the costs and developing more efficient system.

* * * * *

CHAPTER 4 PROJECT EVALUATION AND RECOMMENDATION

Chapter 4 Project Evaluation and Recommendation

4-1 Project Effect

LWUA, which is the responsible and implementing agency in this Project, is the only one water supply agency supporting WDs of more than 20,000 people in terms of finance and techniques. Moreover, the 10 target WDs in the Project are also implementing agencies like LWUA.

There are more than 600 WDs under the administration of LWUA, and most of them are dependant upon drilled wells as water sources. However, not small number of the WDs have problems of the water quality and supply the water which cannot fill the Philippines National Standard for Drinking Water. In this Project 10WD were chosen as the targets from 45 WDs. These WDs have been supplying water without any treatment against the problems of iron, manganese, the color and so on, and as a result, facing difficulties of management. The following conditions were applied for the selection of the target WDs.

Conditions of the Selection of the 10WDs

WDs whose water qualities do not fulfill the Philippines National Standard for Drinking WaterWDs which are unable to receive loans due to their limited scalesWDs which can secure the land necessary for the Project executionWDs which are not requesting similar projects to other donors.

As many as 121,000 residents in the 10 WDs have been supplied the water which are not fulfilling the Standard, even though they pay the water charge. Among these WDs some cannot use their own water sources and buy more expensive water from the adjacent cities. The business scale of each of the WDs is too small to undertake the water quality improvement plan, and they cannot satisfy the conditions to receive the finance. It is an emergency issue to improve the water qualities in order to improve their standards of living, which currently have hygienic problems.

It is clear that the improvement of the water qualities by the Project contributes to the improvement of the water supply environment as well as the operation of these 10WDs.

In addition, the Project can have valuable effects that the concept and the knowledge of water treatment technology and operation and maintenance are transmitted to the other WDs which also need to improve their water qualities. Each of the 10 WDs shows its capacity to accept the Project by accomplishing its responsibility like securing the necessary land and dealing with its imposed tax.

Above all, the effects and the meaning of the Project are really significant. Furthermore, each WD as an implementing agency and a recipient of the grant has a long experience of water supplies and has been showing its cooperative behavior for the Project. Thus, it is considered to be appropriate that the execution of this Project under The Grant Aid System.

Present Situation and	Measures to be taken in the	Effects and Degree of
Problem	Project	Improvement
Each WD's main well(s) contain(s) high concentration of iron, manganese, color, objectionable taste and odors, and such water cannot fulfill the Philippines Standard for the Drinking Water. That causes that the users avoid water from piped water supply and leads them to use shallow wells with a high risk of contamination. Supplied water which does not fulfill the Standard for the Drinking Water is 12,500 m ³ /day.	To install appropriate facilities of aeration, coagulation and sedimentation, and filtration for the target constituents of the water in each site.	Supply of improved water which achieve the National Standard for Drinking Water Capacity of water supply is 29,500 m ³ /day. This volume can be enough to satisfy the demand even in peak times. Due to the improved water qualities, the residents' trust and support for the services can be obtained.
Frequent backwashes to remove slime within the pipelines generate a great amount of Unaccounted- for-water and cause a poor management of water supplies.	To improve the water quality so that the backwash is not necessary.	The reduction of un- accounted-for-water by backwash contributes to better management of WDs.
The present water qualities cannot satisfy the increasing demand, and that prevents the improvement of the water supply coverage. The population who are consuming inappropriate quality of water is 121,000 in 1999.	The training program for the operators is carried out so as to achieve smooth and effective operation of water treatment facilities.	The management improves and becomes sustainable in terms of water quality and quantity through the training program. The population who are constantly supplied good quality of water will become 226,000 persons in 2010.

 Table 4-1 Effects and Degree of Improvement of Project Implementation

4-2 Recommendations

The direct effects caused by the Project and the spin-off effects to many other WDs can be expected. However, most of the target WDs in the Project are small in their operation scales, and thus, financially weak. It can be said that the only Japan's Grant Aid can undertake the Project. The WDs' officers have strong concern to the realization of the Project and the sustainable operation after the Project's completion.

Nevertheless, there are also many issues to be handled by WD themselves like securing of lands, clarification of taxes, installation of power supply system and so on. Although each WD is acting positively, small-scale WDs need to make proper efforts. Therefore, monitoring and supports in terms of technology and finance from LWUA is necessary. At the same time budgetary and investment supports from the government of Philippines' are also required.

At the stage of the analyses in Japan after the Field Survey I, the possibility of trihalomethane formation, which is the byproduct of the reaction of organic substances like humic substances and chlorine as disinfectant, was pointed out. Although this parameter is not included in the Philippines' standard, it was decided that the tests were going to be conducted. The results of the test for Trihalomethane Formation Potential was within the standard of Japan and the USA. Therefore, it is not included in this Project as a objective parameter. However both responsible and implementing agencies need to monitor the water quality with great cares after the plants start running. Especially, it is strongly recommended that LWUA, in charge of local water supplies, has the initiative of this issue.

Backwashed water and sludge generated from the water treatment process are recycled or treated so that water resources are conserved and negative impacts on the environment are not expected. However, the regular monitoring of discharged water is also important.

For the groundwater development in future, the quality of water as well as the quantity should be emphasized. Moreover, if there are potentials of groundwater of good quality outside of the target WD, the water cannot be transmitted according to the current legislation. However, these legislative issues should be discussed for the more effective systems of water supplies.

APPENDICES

APPENDIX-1 MEMBER LIST OF THE STUDY TEAM

1) Basic Design Study I

Name	Assignment	Affiliation
(1) Akira Nakamura	Team Leader	Deputy Director, Project Coordination and Managing Division, Grant Aid Management Department, JICA
(2) Ichiro YOKOTA	Technical Advisor	JICA Expert
(3) Takeharu Kojima	Project Coordinator	First Project Management Division Grant Aid Management Department, JICA
(4) Kanji Takamatsu	Chief Consultant /Management, Operation and Maintenance Planner	Japan Techno Co., Ltd.
(5) Yoshitaka Hamanaka	Water Supply System Planning	Japan Techno Co., Ltd.
(6) Hosaku Kato	Water Treatment Facilities Planning I	Japan Techno Co., Ltd.
(7) Shigeyoshi Kagawa	Hydrogeologist	Japan Techno Co., Ltd.
(8) Yusuke Ando	Water Treatment Facilities Planning II	Japan Techno Co., Ltd.

2) Basic Design Study II

Name	Assignment	Affiliation
(1) Kanji Takamatsu	Chief Consultant /Management, Operation and Maintenance Planner	Japan Techno Co., Ltd.
(2) Yoshitaka Hamanaka	Water Supply System Planning	Japan Techno Co., Ltd.
(3) Hosaku Kato	Water Quality Analysis I/ Water Treatment Facilities Planning I	Japan Techno Co., Ltd.
(4) Yusuke Ando	Water Treatment Facilities Planning II	Japan Techno Co., Ltd.

(5) Shoji Takamatsu	Cost Estimation /Procurement plan	Japan Techno Co., Ltd.
(6) Yasuhiro Matsui	Water Quality Analysis II	Japan Techno Co., Ltd.

3) Explanation of Draft Basic Design I

Name	Assignment	Affiliation
(1) Akira Nakamura	Team leader	Deputy Director, Project Coordination and Managing Division, Grant Aid Management Department, JICA
(2) Kanji Takamatsu	Chief Consultant /Management, Operation and Maintenance Planner	Japan Techno Co., Ltd.
(3) Yusuke Ando	Water Treatment Facilities Planning II	Japan Techno Co., Ltd.
(4) Ichiro Takamatsu	Economic and Financial Analysis/Legal System	Japan Techno Co., Ltd.

4) Explanation of Draft Basic Design II

Name	Assignment	Affiliation
(1) Akira Nakamura	Team leader	Deputy Director, Project Coordination and Managing Division, Grant Aid Management Department, JICA
(2) Kanji Takamatsu	Chief Consultant /Management, Operation and Maintenance planner	Japan Techno Co., Ltd.
(3) Ichiro Takamatsu	Economic and Financial Analysis/Legal System	Japan Techno Co., Ltd.

APPENDIX-2 STUDY SCHEDULE

No.	Day	Date	Activities
1	Mon	23/8	Narita - Arrive at Manila, Courtesy call to JICA
2	Tue	24/8	Courtesy call to Embasy of Japan and LWUA Explanation of inception report
3	Wed	25/8	Site Survey (Lingayen, Binmaley)
4	Thu	26/8	Site Survey (Panitan, Mambusao, Pontevedra)
5	Fri	27/8	Team1:Site Survey (Dingle-Pototan)
			Team2:Site Survey (Dingle-Pototan)
6	Sat	28/8	Team1:Site Survey (Abuyog)
	-		Team2:Site Survey (Panitan)
7	Sun	29/8	Team1: Data collection/analysis (Manila)
0		00/0	Team2: Data collection/analysis (Roxas)
8	Mon	30/8	Team1:Site Survey (Pagsanjan)
	Trees	01/0	Team2:Site Survey (Mambusao = Similar Project Site)
9	Tue	31/8	Team1:Discussion of Minutes
			Team2:Site Survey (Pontvedra)
10	Wed	1/9	Team1:Meeting with Embasy of Japan
		- 1-	Team2:Site Survey (Panitan)
11	Thu	2/9	Team1:Discussion and signing of Minutes
			Team2:Site Survey (Dingle-Pototan)
12	Fri	3/9	Site Survey (Binmaley)
13	Sat	4/9	Site Survey (Lingayen)
14	Sun	5/9	Site Survey (Binmaley)
15	Mon	6/9	Site Survey (Binmaley, Lingayen)
16	Tue	7/9	Site Survey (Binmaley, Lingayen) • Movement
17	Wed	8/9	Site Survey (Solana)
18	Thu	9/9	Site Survey (Solana)
19	Fri	10/9	Site Survey (Solana)
20	Sat	11/9	Movement / Data collection
21	Sun	12/9	Movement
22	Mon	13/9	Site Survey (Pagsanjan)
23	Tue	14/9	Site Survey (Pagsanjan) / Movement
24	Wed	15/9	Movement
25	Thu	16/9	Site Survey (Abuyog)
26	Fri	17/9	Site Survey (Abuyog)
27	Sat	18/9	Movement / Data collection
28	Sun	19/9	Movement / Data collection
29	Mon	20/9	Site Survey (Midsayap)
30	Tue	21/9	Site Survey (Midsayap)
31	Wed	22/9	Site Survey (Kabacan)
32	Thu	23/9	Site Survey (Sultan = Similar Project Site) , Movement
33	Fri	24/9	Site Survey (Kabacan) / Movement
34	Sat	25/9	Movement / Data collection
35	Sun	26/9	Data collection
36	Mon	27/9	Meeting with LWUA
37	Tue	28/9	Site Survey (Nasugbu = Similar Project Site)
38	Wed	29/9	Meeting with LWUA and Embassy of Japan
39	Thu	30/9	Meeting with JICA

1) Basic Design Study I

2) Basic Design Study II

No.	Day	Date	Activities
1	Mon	15/11	Narita - Arrive at Manila, Courtesy call to JICA
2	Tue	16/11	Courtesy call to Embassy of Japan and LWUA
3	Wed	17/11	Explanation of inception report
4	Thu	18/11	Site Survey(Nasugbu)
5	Fri	19/11	Movement, Site Survey(Pagsanjan)
6	Sat	20/11	Site Survey(Pagsanjan)
7	Sun	21/11	Site Survey(Pagsanjan)
8	Mon	22/11	Site Survey(Pagsanjan), Movement
9	Tue	23/11	Movement
10	Wed	24/11	Site Survey(Lingayen)
11	Thu	25/11	Site Survey(Lingayen)
12	Fri	26/11	Site Survey(Binmaley)
13	Sat	27/11	Site Survey(Binmaley)
14	Sun	28/11	Movement
15	Mon	29/11	Site Survey(Solana)
16	Tue	30/11	Site Survey(Solana)
17	Wed	1/12	Movement
18	Thu	2/12	Meeting with LWUA
19	Fri	3/12	Movement
20	Sat	4/12	Site Survey(Abuyog)
21	Sun	5/12	Site Survey(Abuyog)
22	Mon	6/12	Site Survey(Abuyog)
23	Tue	7/12	Movement
24	Wed	8/12	Movement
25	Thu	9/12	Site Survey(Dingle-Pototan)
26	Fri	10/12	Site Survey(Dingle-Pototan)
27	Sat	11/12	Site Survey(Pontevedra), Movement
28	Sun	12/12	Site Survey(Pontevedra)
29	Mon	13/12	Site Survey(Panitan, Roxas)
30	Tue	14/12	Site Survey(Panitan, Manbusao)
31	Wed	15/12	Movement
32	Thu	16/12	Movement
33	Fri	17/12	Site Survey(Midsayap), Movement
34	Sat	18/12	Site Survey(Midsayap)
35	Sun	19/12	Site Survey(Kabacan)
36	Mon	20/12	Site Survey(Kabacan)
37	Tue	21/12	Movement
38	Wed	22/12	Movement, Meeting with Embassy of Japan and JICA
39	Thu	23/12	Meeting with LWUA
40	Fri	24/12	Manila - Arrive at Narita

No.	Day	Date	Activities
1	Mon	6/3	Narita - Manila, Courtesy call to JICA
2	Tue	7/3	Courtesy call to LWUA, Explanation of draft final report, meeting
3	Wed	8/3	Site Survey (Panitan, Pontevedra, Dingle-Pototan) , Meeting with LWUA
4	Thu	9/3	Explanation to each WD, discussion of Minutes
5	Fri	10/3	Meeting with NEDA, Signing of Minutes
6	Sat	11/3	Data collection /analysis
7	Sun	12/3	Data collection /analysis
8	Mon	13/3	Site Survey (Abuyog)
9	Tue	14/3	Meeting with LWUA
10	Wed	15/3	Manila - Arrive at Narita

3) Explanation of Draft Basic Design I

4) Explanation of Draft Basic Design II

No.	Day	Date	Activities
1	Mon	26/6	Narita - Arrive at Manila, Courtesy call to JICA
2	Tue	27/6	Courtesy call to LWUA, Explanation of draft final report, Meeting
3	Wed	28/6	Site Survey (Panitan, Pontevedra, Dingle-Pototan) , Meeting with LWUA
4	Thu	29/6	Explanation to each WD, Discussion for Minutes
5	Fri	30/6	Meeting with NEDA, Signing of Minutes
6	Sat	1/7	Data collection /analysis
7	Sun	2/7	Data collection /analysis

APPENDIX-3 LIST OF CONCERNED PARTIES IN THE PHILIPPINES

- 1) Basic Design Study I
- 1 Embassy of Japan in the Philippines Hikaru Hukuda
- 2 JICA Philippines Office Hideo Ono Toshiyuki Kuroyanagi Tomoya Yoshida Masatoshi Takahashi Koichi Takizawa

First Secretary

Resident Representative Deputy Resident Representative Project Management Section Project Management Section Project Management Section

3 Local Water Utilities Administration : LWUA

Prodencio M. Reyes, JrAdmSimolicio C. Belisario, JrSeniEmmanuel B. MlicdemDepGil M. InfantadoHeaJessielen D. CatapangCheManuel T. YoingcoMarBoy BaraanWatAntonio MagtibayAreaOscar M JusiAreaEphraim M. JacildoAreaClint CuchueleArea

4 Water District : WD Vincent G. Soriano Mariao Gonzalo Jorge A. Salazar Jessie C. Permalino Jocelyn D. Catalan Leandro Antonio B. Capulso Adeo B. Luntao Generoso B. Adolfo, Jr Carol S. Ringor Rouben D. Landingin Jessica M. Mansilla Jose D. Tabuga Abelardo L. Rojales Administrator Senior Deputy Administrator Deputy Administrator Head Executive Assistant Chemist Management Service Office Manager Water Resource/Supply Engineer Area 1 Division Manager Area 3 Division Manager Area 5 Division Manager Area 6 Division Manager Area 8 Division Manager

Solana WD General Manager Binmaley WD General Manager Lingayen WD General Manager Pagsanjan WD General Manager Panitan WD General Manager Pontevedra WD General Manager Dingle-Pototan WD General Manager Abuyog WD General Manager Midsayap WD General Manager Kabacan WD General Manager Sultan-Kadrat WD General Manager Nasugbu WD General Manager

5 National Economic and Development Authority : NEDA Nelson Gievara Planning staff Vanessa Aghes Dimaano Planning staff Edna B. Capacillo Planning staff Aloha T. Samoza Infrastructure staff

2) Basic Design Study II

1	Embassy of Japan in the Philippines Hikaru Hukuda	First Secretary
2	JICA Philippines Office Tomoya Yoshida	Project Management Section

Local Water Utilities Administration : LWUA
Prodencio M. Reyes, Jr
Adm Emmanuel B. Mlicdem
Depu Gil M. Infantado
Head Jessielen D. Catapang
Chen Manuel T. Yoingco
Man
Boy Baraan
Wate
Antonio Magtibay
Area
Oscar M Jusi
Area
Cielito P. Establecida
Area
Ichiro Yokota
JICA

4 Water District : WD

Vincent G. Soriano Mariao Gonzalo Jorge A. Salazar Jessie C. Permalino Jocelyn D. Catalan Leandro Antonio B. Capulso Adeo B. Luntao Generoso B. Adolfo, Jr Carol S. Ringor Mr.Amba Jessica M. Mansilla Jose D. Tabuga Abelardo L. Rojales Administrator Deputy Administrator Head Executive Assistant Chemist Management Service Office Manager Water Resource/Supply Engineer Area 1 Division Manager Area 3 Division Manager Area 5 Division Manager Area 6 Division Manager JICA expert

Solana WD General Manager Binmaley WD General Manager Lingayen WD General Manager Pagsanjan WD General Manager Panitan WD Deputy Manager Pontevedra WD General Manager Dingle-Pototan WD General Manager Abuyog WD General Manager Midsayap WD General Manager Kabacan WD Deputy Manager Manbusao WD General Manager Sultan-Kadrat WD General Manager Nasugbu WD General Manager

- 3) Explanation of Draft Basic Design I
 - 1 JICA Philippines Office Hideo Ono Toshiyuki Kuroyanagi Tomoya Yoshida
- Resident Representative Deputy Resident Representative Project Management Section

2 Local Water Utilities Administration : LWUA

- Prodencio M. Reyes, Jr Simolicio C. Belisario, Jr Emmanuel B. Mlicdem Gil M. Infantado Jessielen D. Catapang Manuel T. Yoingco Boy Baraan Antonio Magtibay Oscar M Jusi Mario I Quitoriano Ephraim M. Jacildo Cielito P. Establecida Clint Cuchuele Ichiro Yokota
- 3 Water District : WD

Nar Prudente

Vincent G. Soriano Mariao Gonzalo Jorge A. Salazar Mena Lisa M. Trinidad Jocelyn D. Catalan Leandro Antonio B. Capulso Adeo B. Luntao Generoso B. Adolfo, Jr Carol S. Ringor Rouben D. Landingin Administrator Senior Deputy Administrator Deputy Administrator Head Executive Assistant Chemist Management Service Office Manager Water Resource/Supply Engineer Area 1 Division Manager Area 3 Division Manager Area 4 Division Manager Area 5 Division Manager Area 6 Division Manager JICA expert

Solana WD General Manager Binmaley WD General Manager Lingayen WD General Manager Pagsanjan WD Panitan WD Officer in charge Pontevedra WD General Manager Dingle-Pototan WD General Manager Abuyog WD General Manager Midsayap WD General Manager Kabacan WD General Manager

4 National Economic and Development Authority : NEDA Nelson Gievara Public Investment staff Edna B. Capacillo Project Monitoring staff

Infrastructure staff

Kuniaki MiyakeSecond Secretary2 JICA Philippine OfficeResident Represent	
Llidee ()ne Decident Dennegent	
Hideo Ono Resident Represent	tative
Maita P. Alcampado Project Liaison Offi	icer
Tomoya Yoshida Project Managemen	nt Section
3 Local Water Utilities Administration : LWUA	
Manuel T. Yoingco Officer-in-Charge	
Simplicio C. Belisario, Jr Senior Deputy Adm	ninistrator
Antonio B.Ramirez, Jr Office of SDA	
Gil M. Infantado Head Executive As	sistant
Jessielen D. Catapang Chemist	
Jpan A. Aban Engineer	
Nilo Dela Cruz Area 1 Division Ma	anager
Oscar M Jusi Area 3 Division Ma	anager
Danulo Basilio Area 5 Division Ma	anager
Franco Bula, Jr Area 6 Division Ma	anager
Armando Fernandez Area 8 Division Ma	anager
Ichiro Yokota JICA expert	
4 Water District : WD	
Vincent G. Soriano Solana WD Genera	l Manager

- 5 National Economic and Development Authority : NEDA Nelson Gievara Public Investment staff Vanessa Dimaano Public Investment staff Edna B. Capacillo Project Monitoring staff
- 6 Dept. of Environment Natural Resources Raynald P. Alcances

4) Explanation of Draft Basic Design II

Chief Environmental Management Specialist

APPENDIX-4 MINUTES OF DISCUSSIONS

MINUTES OF DISCUSSIONS ON THE BASIC DESIGN STUDY ON THE PROJECT FOR IMPROVEMENT OF WATER QUALITY IN LOCAL AREAS IN THE REPUBLIC OF THE PHILIPPINES

In response to a request from the Government of Republic of the Philippines (herein after referred to as "the Philippines"), the Government of Japan decided to conduct a Basic Design Study on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines (herein after referred to as "the Project") and entrusted the study to the Japan International Cooperation Agency (herein after referred to as "JICA").

JICA sent to the Philippines the Basic Design Study Team (herein after referred to "the Team"), which is headed by Mr. Akira Nakamura, Deputy Director, Project Coordination and Monitoring Division, Grant Aid Management Department, and is scheduled to stay in the country from August 23 to September 2.

The team held discussions with the officials concerned of the Government of the Philippines and conducted a field survey at the study area.

In the course of discussions and field survey, both parties have confirmed the main items described on the attached sheets. The Team will proceed to further works and prepare the Basic Design Study Report.

Akira Nakamura Leader, Basic Design Study Team, Japan International Cooperation Agency Quezon, September 2, 1999

Prudenčio M. Reves Jr. Administrator Local Water Utilities Administration

A - 10

ATTACHMENT

1. Objective

The overall objective of the Project, which shall be achieved by undertakings of both sides, is to improve the water supply services and the operating conditions of Water Districts (hereinafter referred to as "WDs"). The objective of the Grant Aid is to improve the quality of the water being supplied to the existing water distribution system of the WDs.

2. Project Sites

By an official request from the Philippines Side, Balayan WD (Batangas Province) and Matnog WD (Sorsogon Province) were deleted from the target WDs, and Binmaley WD (Pangasinan Province) and Lingayen WD (Pangasinan Province) were newly proposed as target WDs. The reasons are as listed below;

- (1) The water quality of the boreholes in Balayan WD and Matnog WD fulfill the Philippines Standards for drinking water.
- (2) The water from the boreholes in Binmaley WD and Lingayen WD were found to have objectionable odor and color, and contain high concentration of COD.
- (3) The water quality of the boreholes in Binmaley WD and Lingayen WD are typical of that
- . found in many WDs. Therefore the two WDs will be a model for WDs that have the similar water quality.

The final target WDs requested by the Philippines Side are shown in Annex-1. The Philippines Side also confirmed that these WDs fulfill the following conditions:

(1) The water of the boreholes contains water quality items that do not fulfill the Philippines

National Standard for drinking water.

(2) The WDs are unable to receive loans due to their limited scale.

(3) The WDs can secure the land necessary for Project execution.

(4) The WDs are not requesting other donors for the execution of the Projects.

However, the final target WDs shall be determined by further studies.

3. Responsible and Implementing Agencies

(1) Responsible Agency of the Project

Local Water Utilities Administration (hereinafter referred to as "LWUA", Annex-2)

(2) Implementing Agencies of the Project LWUA and WDs

4. Items requested by the Government of the Philippines

After discussions on the demarcation and the objective of the Project, the Philippines Side finally requested the Japanese Side for the construction of facilities and procurement/installation of equipment that are necessary for improving the quality of water supplied to the existing distribution network, such as listed below;

(1) Construction/Installation of water treatment facilities

(2) Replacement of well pump

(3) Replacement of disinfecting facility

(4) Rehabilitation/Construction of pump station house

(5) Installation of pipes and electrical equipment for related facilities mentioned above

(6) Procurement of monitoring and laboratory equipment

Also the Philippines Side requested the Team to apply the below design criteria to the Project.

(1) Target Year: 2010

(2) Average Daily Consumption per Capita: 90 to 120 (liters/day/capita)

The Team will assess the appropriateness of the above request by further studies.

5. Japan's Grant Aid system

(1) The Philippines Side understands the Japan's Grant Aid scheme and procedures explained by the Team as shown in Annex-3 and Annex-4.

(2) The Philippines Side will take the necessary measures, described in Annex-5, for smooth implementation of the Project, as a condition for the Japanese Grant Aid to be implemented.

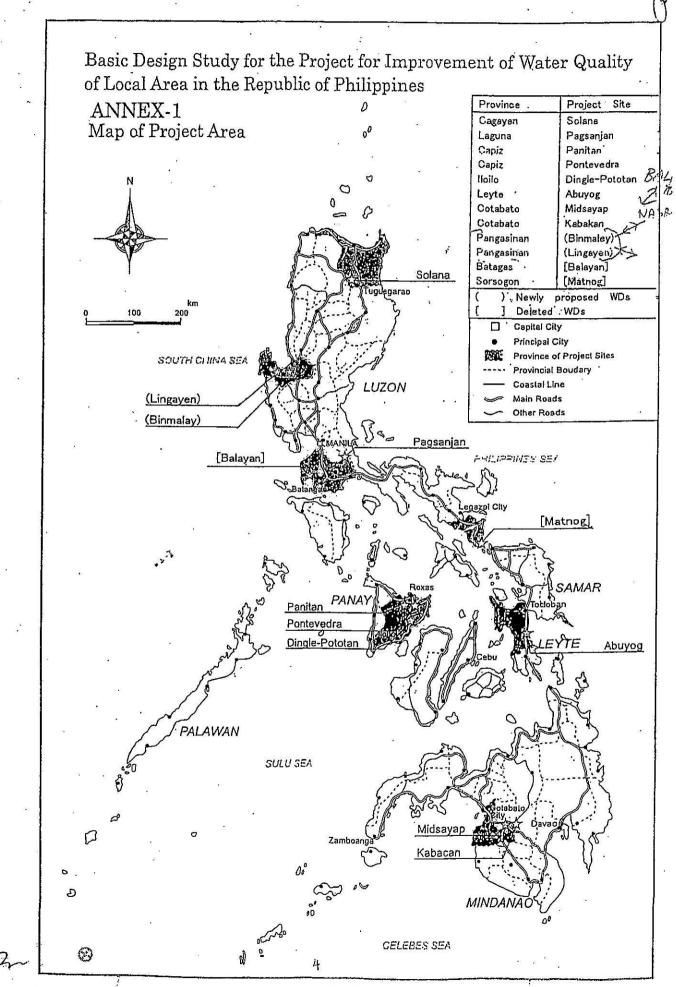
6. Schedule of the study

A - 12

(1) The consultants will proceed to future studies in the Philippines until October 1, 1999.

(2) JICA will prepare the interim report in English and dispatch a mission in order to conduct a second field study in the Philippines around November 1999.

(3) Based on the results of the studies, JICA will prepare the draft report in English and dispatch a mission in order to explain its contents around February 2000.

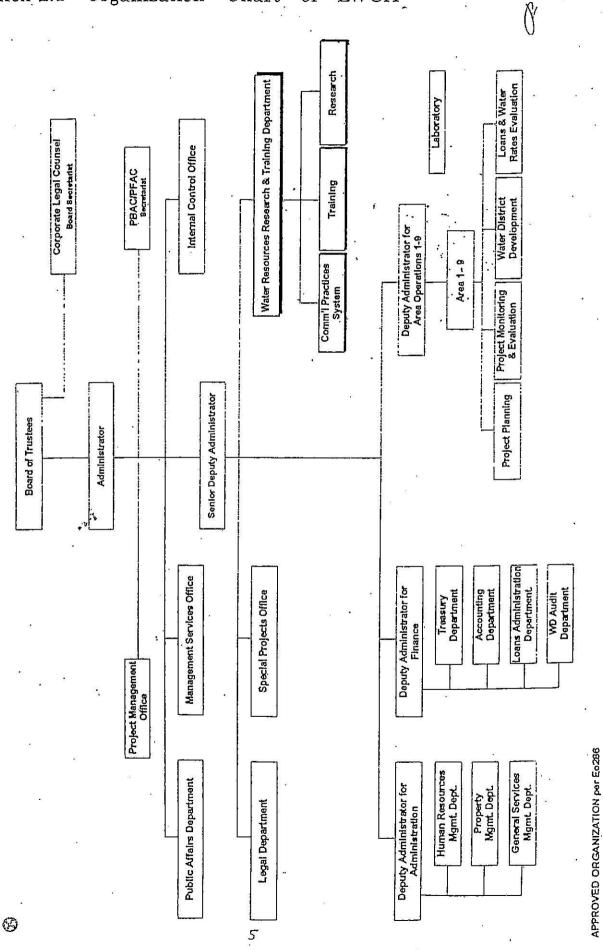

7. Other Relevant Issues

The Philippines Side and the Team has confirmed the following issues.

- (1) Both Sides have envisaged the water quality problems of Iron, NH₄-N, color, odor and other items from the water from boreholes of WDs.
- (2) LWUA and the target WDs will take all necessary precautions to secure the full safety of the Team during their study in the Philippines.
- (3) The Project does not have an approval from the Investment Coordination Committee (ICC) as of now because the contents of the former request submitted by the Philippines Side in 1997 did not require the approval from ICC. However, by further findings of LWUA and the Team, both sides envisaged that the possibilities of this Project requiring an approval from ICC is high.
- (4) As soon as the outline of this Project is designed, LWUA and other relevant agencies will take all necessary measures to acquire the approval of ICC in time.
- (5) LWUA and other relevant agencies will allocate necessary budget and take necessary measures in order to exempt Japanese nationals from taxes in the Philippines regarding this . Project.
- (6) If the Grant Aid is extended to the Project, LWUA will ensure the sustainability of the Project by monitoring the target WDs and providing technical assistance for operation and maintenance to the target WDs.

3.

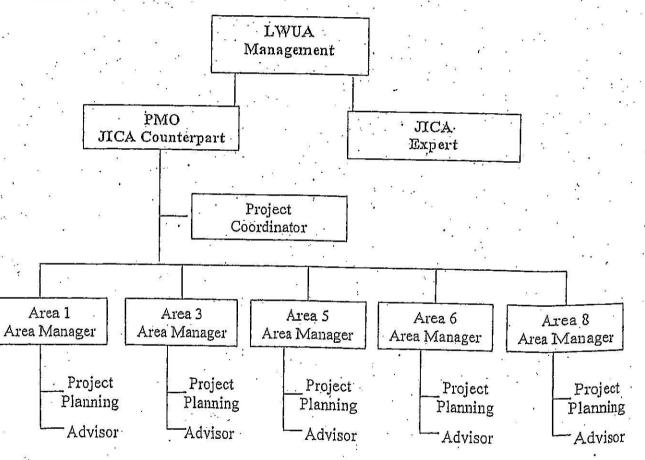
A - 13



as in the second second

Annex-2.1

t of LWUA


2- (

Annex-2.2 Organization Chart of JICA Project Management Unit in LWUA

Function

- To assist the Basic Design Team of JICA in the preparation study for the Ten (10) Water Districts for the grant-in aid project.
- > To coordinate with Water Districts concerned and other agencies units
- To provide all necessary technical, financial and management information needed for the study.
- > To assist in the preparation of reports required by the Study Team
- > To prepare monthly report to LWUA Management

Structure

· · 6 A - 16

Annex-3 JAPAN'S GRANT AID PROGRAM

1. Japan's Grant Aid Procedures

(1) The Japan's Grant Aid Program is executed by the following procedures.

- Application (request made by a recipient country)
- Study (Preliminary Study / Basic Design Study conducted by JICA)

• Appraisal & Approval (Appraisal by the Government of Japan and Approval by the Cabinet of Japan)

• Determination of Implementation (Exchange of Notes between both Governments)

• Implementation (Implementation of the Project)

(2) Firstly, an application or a request for a Grant Aid project submitted by the recipient country is examined by the Government of Japan (the Ministry of Foreign Affairs) to determine whether or not it is eligible for Japan's Grand Aid. If the request is deemed appropriate, the Government of Japan entrusts a study on the request to JICA (Japan International Cooperation Agency).

Secondly, JICA conducts the Study (Basic Design Study), using a Japanese consulting firm

Thirdly, the Government of Japan appraises to see whether or not the project is suitable for Japan's Grant Aid Program, based on the Basic Design Study report prepared by JICA, and the results are then submitted to the Cabinet for approval.

Fourthly, the Project, once approved by the Cabinet, becomes official when pledged by the Exchange of Notes signed by the Governments of Japan and the recipient country.

Finally, for the implementation of the Project, JICA assists the recipient country in such matters as preparing tenders, contracts and so on.

2. Contents of the Study

(1) Contents of the Study

The aim of the Study (hereinafter referred to as "the Study") conducted by JICA on a requested project (hereinafter referred to as "the Project") is to provide a basic document necessary for appraisal of the Project by the Japanese Government. The contents of the Study are as follows:

a) Confirmation of the background, objectives, and benefits of the requested project and also institutional capacity of agencies concerned of the recipient country necessary for

7

project implementation,

- b) Evaluation of the appropriateness of the Project to be implemented under the Grant Aid
 - Scheme from a technical, social and economical point of view,
- c) Confirmation of items agreed on by both parties concerning the basic concept of the Project,
- d) Preparation of a basic design of the Project,
- e) Estimation of costs of the project.

The contents of the original request are not necessarily approved in their initial form as the contents of the Grant Aid project. The Basic Design of the Project is confirmed considering the guidelines of Japan's Grant Aid Scheme.

The Government of Japan requests the Government of the recipient country to take whatever measures are necessary to ensure its self-Reliance in the implementation of the Project. Such measures must be guaranteed even though they may fall outside of the jurisdiction of the organization in the recipient country actually implementing the Project. Therefore, the implementation of the Project is confirmed by all relevant organizations of the recipient country through to Minutes of Discussions.

(2) Selecting (a) Consulting Firm(s)

For smooth implementation of the study, JICA uses (a) registered consulting firm(s). JICA selects (a) firm(s) based on proposals submitted by interested firms. The firm(s) selected carry (ies) out a Basic Design Study and write(s) a report, based upon terms of reference set by JICA.

The consulting firm(s) used for the study is (are) recommended by JICA to the recipient country to also work on the Project's implementation after the Exchange of Notes, in order to maintain technical consistency.

3. Japan's Grant Aid Scheme

(1) What is Grant Aid?

The Grant Aid Program provides a recipient country with non reimbursable funds needed to procure facilities, equipment and services (engineering services and transportation of the products, etc.) for economic and social development of the country under principles in accordance with the relevant laws and regulations of Japan. The Grant Aid is not in a form of donation of materials or such.

(2) Exchange of Notes (E/N)

Japan's Grant Aid is extended in accordance with the Notes exchanged by the two Governments concerned, in which the objectives of the Project, period of execution, conditions and amount of the Grant Aid, etc., are confirmed.

(3) "The period of the Grant Aid" means one Japanese fiscal year which the Cabinet approves the Project for. Within the fiscal year, all procedures such as exchanging of the Notes, concluding contracts with (a) consulting firm(s) and (a) contractor(s) and final payment to them must be completed.

However in case of delays in delivery, installation of construction due to unforeseen factors such as weather, the period of the Grant Aid can be further extended for a maximum of one fiscal year at most by mutual agreement between the two Governments.

(4) Under the Grant, in principle, Japanese products and services including transport or those of the recipient country are to be purchased.

When the two Governments deem it necessary, the Grant may be used for the purchase of products or services of a third country.

However the prime contractors, namely, consulting, contractor and procurement firms, are limited to "Japanese nationals". (The term "Japanese nationals" means persons of Japanese nationality or Japanese corporations controlled by persons of Japanese nationality

(5) Necessity of the "Verification"

The Government of the recipient country or its designated authority will conclude contracts denominated in Japanese Yen with Japanese nationals. Those contracts shall be verified by the Government of Japan. This "Verification" is deemed necessary to secure accountability to Japanese tax payers.

(6) Undertakings required to the Government of the recipient country

In the Implementation of the Grant Aid Project, the recipient country is required to undertake necessary measures such as the follows:

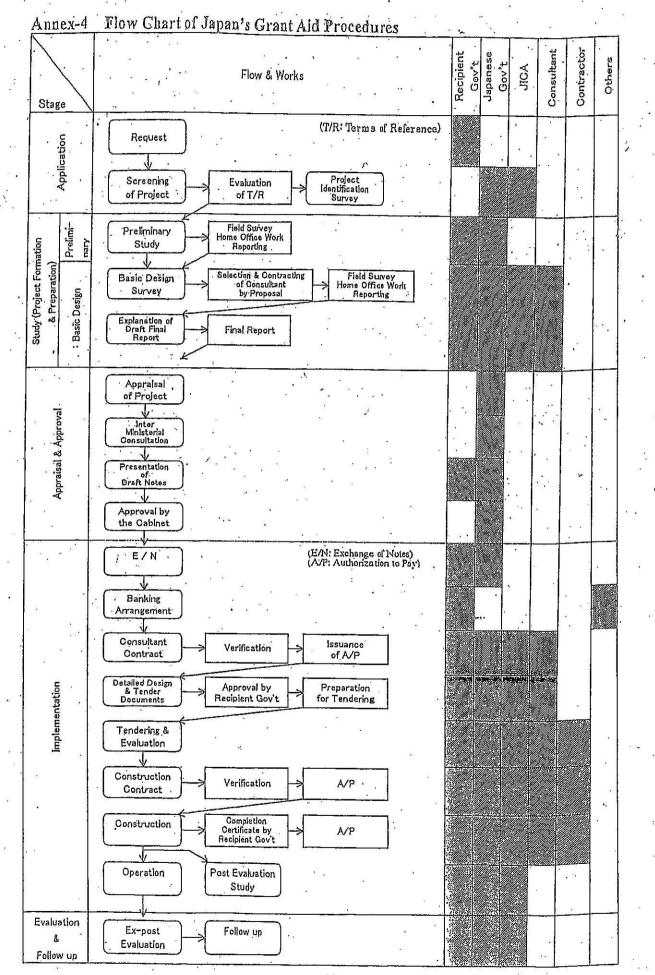
a) To secure land necessary for the sites of the project and to clear, level and reclaim the land prior to commencement of the construction work,

- b) To provide facilities for distribution of electricity, water supply and drainage and other incidental facilities in and around the sites,
- c) To secure buildings prior to the installation work in case the Project is providing equipment,
- d) To ensure all the expenses and prompt execution for unloading, customs clearance at the port of disembarkation and internal transportation of the products purchased under the Grant Aid,
- e) To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which will be imposed in the recipient country with respect to the supply of the products and services under the Verified Contracts,
- f) To accord Japanese nationals whose services may be required in connection with the supply of the products and services under the Verified Contracts, such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their works.

(7) "Proper Use"

The recipient country is required to maintain and use facilities constructed and equipment purchased under the Grant Aid properly and effectively and to assign the necessary staff for. operation and maintenance of them as well as to bear all expenses other than those to be covered by the Grant Aid.

(8) Re-export


 $\left(\mathbf{x} \right)$

The products purchased under the Grant Aid shall not be re-exported from the recipient country.

(9) Banking Arrangement (B/A)

- a) The Government of the recipient country or its designated authority should open an account in the name of the Government of the recipient country in a bank in Japan (hereinafter referred to as "the Bank"). The Government of Japan will execute the Grant Aid by making payments in Japanese yen to cover the obligations incurred by Government of the recipient country or its designated authority under the Verified Contracts.
- b) The payments will be made when payment requests are presented by the Bank to the Government of Japan under an Authorization to pay issued by the Government of the recipient country or its designated authority.

10

Annex-5 Necessary measures to be taken by the Government of the Philippines on condition that Japan's Grant Aid is extended.

- 1. To secure land necessary for the sites of the Project and to clear, level and reclaim the land prior to commencement of the construction work.
- 2. To bear commissions to the Japanese foreign exchange bank to execute the banking services based upon the banking arrangement.
- 3. To ensure prompt unloading and customs clearance at port of disembarkation in the Philippines and facilitate internal transportation therein of the products purchased under the Grant.
- 4. To ensure the customs clearance at the port, inland transportation from the port to each site, and to bear the cost for bonded storage at the port.
- 5. To exempt Japanese nationals from custom duties, internal taxes and other fiscal levies which may be imposed in the Philippines with respect to the supply of the products and services under the verified contracts. And to take necessary measures for such tax exemption.
- 6. To accord Japanese nationals, whose services may be required in connection with the supply of products and services under the verified contracts, such facilities as may be necessary for their entry into the Philippines and stay therein for the performance of their work.
- 7. To use and maintain properly and effectively all the equipment purchased and facilities constructed under the Grant.
- 8. To bear all the expenses other than those covered by the Grant, necessary for the execution of the Project.
- 9. To provide necessary data and information for the project.
- 10. To assign exclusive counterpart engineers and technicians for the Project.

12

Minutes of Discussions on the Basic Design Study on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines (EXPLANATION ON DRAFT REPORT)

In September and December 1999, the Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a Basic Design Study Team on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines (hereinafter referred to as "the Project") to the Government of the Republic of the Philippines (hereinafter referred to as "the GOP"), and through discussion, field survey, and technical examination of the results in Japan, JICA prepared a draft report of the study.

In order to explain to and consult the GOP side on the components of the draft report, JICA sent to the Philippines the Draft Report Explanation Team (hereinafter referred to as "the Team"), which is headed by Mr. Akira NAKAMURA, Deputy Director, Project Coordination and Monitoring Div., Grant Aid Management Dept., from March 6 to March 15.

As a result of discussions, both parties confirmed the main items described in the attached sheets.

Quezon, March 10, 2000

Akira Nakamura Leader Draft Report Consultation Team Japan International Cooperation Agency

Prudencio M Reyes Jr. Administrato Local Water Utilities Administration

ATTACHMENT

1. Concepts of the Draft Report

The Philippines side agreed and accepted in principle the concepts of the draft report as explained by the Team.

2. Contents of Items of the Project

Both sides have confirmed the Eleven (11) sites shown in Annex-1 and each item which will be constructed or procured under the Japanese Grant Aid attached as Annex-2.

3. Japan's Grant Aid scheme

The Philippines side has understood the Japan's Grant Aid Scheme as explained by the Team and described in Annex-3 of the Minutes of Discussions signed by both parties on September 2, 1999.

4. Necessary Measures to be taken by the GOP

(1) The GOP will take necessary measures described in Annex-3 for the smooth implementation of the Project, on the condition that Japan's Grant Aid is extended to the Project.

(2) Each Water District (hereinafter referred to as "the WD") is responsible to secure the land for the Project. Among ten (10) WDs, four (4) WDs, Solana, Lingayen, Dingle-Pototan and Midsayap have already secured the land and will submit a copy of the certificate of ownership to JICA Philippines office by the end of April, 2000. The rest six (6) WDs are presently negotiating with landowners and will submit a copy of the commitment of landowner to sell to JICA Philippines office by the end of June, 2000.

5. Schedule of the Study

JICA will complete the final report in accordance with the confirmed items and send it to the Philippines by June, 2000.

6. Other relevant issues

- (1) LWUA and the target WDs will take all necessary precautionary measures for the security for the Project during implementation.
- (2) LWUA and other relevant agencies will allocate necessary budget and take all necessary action so as to exempt Japanese nationals from custom duties, internal taxes and other fiscal levies which may be imposed in the Philippines with respect to the supply of products and materials, and services under the verified contracts during implementation stage.
- (3) LWUA and other relevant agencies will allocate necessary budget for implementation of the Project such as land acquisition, site clearance and others.
- (4) LWUA ensure that the WDs will allocate necessary budget and assign proper personnel for the operation, maintenance and management of the facilities.
- (5) LWUA and the WDs will make a request to the Team for technical guidance services (hereinafter referred to as the "Soft Component") under Japan's Grant Aid in terms of training in the operation, maintenance and management of the facilities.
- (6). LWUA and other relevant agencies will take all necessary measures to acquire the timely approval of Investment Coordinating Committee (ICC).
- (7) LWUA and other relevant agencies will take all necessary measures to acquire Environmental Compliance Certificate (ECC) or Certificate of Non-Coverage (CNC) from Department of Environment and Natural Resources (DENR) at the soonest possible time.
- (8) LWUA and the WDs will enter into a Memorandum of Agreement (MOA) for the execution of the Project by the end of March, 2000.
- (9) LWUA will ensure the sustainability of the Project by monitoring the target WDs and providing the WDs with technical and financial assistance for the appropriate operation, maintenance and management of the WDs.
- (10) Philippines side requested the Team to provide the following information required for ICC, ECC and other necessary permit clearances.
- a) Information necessary for Project description for each WD and other data relevant for application for ECC or CNC as well as for Regional Development Committee (RDC) / National Economic Development Authority (NEDA) Regional Office Endorsement to ICC.
- b) Information necessary for cost estimation of land acquisition, right of way, power take-off, taxes and other expenditure to be borne by the Philippines side for the Project implementation by each WD.
- (11) Philippines side made the following comments on the draft report of the Project.
- a) The following set of criteria shall also be considered in the prioritization of the WDs in the implementation of the Project.

<u>Criteria</u>

Weight.

... 30%

... 20%

i) Project with the highest and most significant impact and benefit ... 50%

ii) Project with the most difficult water quality problem

iii) WDs who have secured the Project sites

- b) Shorten the execution of the Project to two years considering that the present poor water quality condition highly affects the health, social and economic situation; it being a basic human needs. The sustainability of the WDs can immediately be attained if the Project duration can be condensed further.
- (12) LWUA and the Team have conferred with NEDA and have been informed that a "commitment of landowner to sell" is a requirement for ICC approval.

Island	Water Supply Area LWUA	Province	Target Water Districts	Project Sites (Pumping Station)	Region	
	Area 1		1.Solana	Basi	Region-2	
• ***			2.Binmaley	Caloocan		
Luzon	Area 1	Pangasinan		Fabia	Region-1	
			3.Lingayen	Libsong		
	Area 3	Laguna	4.Pagsanjan	Sabang	Region-4	
j.tan		Conia	5.Panitan	Phase 2 .	Region-6	
Panay	Area 5	Capiz	6.Pontevedra	Sublangon	Region-6	
ганау	Alea U	Iloilo	7.Dingle- Pototan	Abangai	Region-6	
Leyte	Area 6	Leyte	8.Abuyog	Barayong	Region-8	
Mindanao	4400 9	North	9.Midsayap	Villiarica	D.''	
ivinuanao	Area 8	Cotabato	10.Kabacan	No.2	Region-12	

Annex-1 List of Sites to be constructed under the Japanese Grant Aid Project

Annex-2 The Contents of Items for the Project

(1) Proposed Facilities for each Water District (WD)

	Electric Supply from Power Company	available	available	available	available	available	available	available	availabfe	available	available	available
	Distance to Outlet-Point	Bnol	short	middle	short	middle	gnol	short	middle	middle	short	short
	Drainage Facility	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Gonstruction	New Construction	New Construction
Line	Plumbing (outside Plant Site)	ļ	1	Conduit	j t	Pumping Main	1	T	Conduit	Pumping Main	1	1
Pipe	Plumbir to Trea Pla	Possible only inside Plant Site	Possible only inside Plant Site	Possible inside and outside Plant Site	Possible inside and outside Plant Site	Possible inside and outside Plant Site	Possible only inside Plant Site	Possible only inside Plant Site	Possible inside and outside Plant Site	Possible only inside Plant Site	Possible only inside Plant Site	Possible only inside Plant Site
	Self-Generating Electricity	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction
Treatment Facilities	Disinfection Facility	Replacement	Replacement	Replacement	Replacement	New Construction	New Construcrion	Replacement	Replacement	New Construcrian	Replacement	Replacement
Treatment	Treatment Facility	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction
ties	Pump House	Reconstruction	Reconstruction	Reconstruction	Reconstruction	New Construction	Reconstruction	Reconstruction	Reconstruction	New Construction	Reconstruction	Reconstruction
Intake Facilities	Well Pump	Replacement	Replacement	Replacement	Replacement	New . Construction	Replacement	Replacement	Replacement	New Construction	Replacement	Replacement
In	Well Rehabilitation	Necessary	Necessary	Necessary	Necessary	Necessary	Necessary	Necessary	Necessary	Necessary	Necessary	Necessary
Name of	Pumping Station	Basi	Caloocan	Fabia	Libsong	Sabang	Phase2	Sublagon	Abangay	Barayong	Vitlarica	No.2
Water	District	Solana	Binmaley	Binmaley	Lingayen	Pagsanjan	Panitan	Pontevedra	Dingle-Pototan	Abuyog	Midsayap	Kabacan

•

Gr'

• • • •

1

A - 28

(2) Proposed Equipment for the Project

Purpose of Equipment for measuring and analysis and attached equipment

Parameter	Equipment	Purpose	No.
pH	pl-I meter	Observation and management of raw water and treated water	11
Water temperature	Water quality checker	Observation and management of raw water and treated water	11.
Conductivity	Water quality checker	Observation and management of raw water and treated water	11
Salinity	Salinometer	Observation and management of raw water and treated water	11
Dissolved oxygen	Water quality checker	Observation and management of raw water and treated water	11
Turbidity	Water quality checker	Observation and management of raw water and treated water	• 11
Color/Odor/Taste	Colorimeter, other	Observation and management of raw water and treated water	11
Residual chlorine	Colorimeter	Observation and management of Treated water	11
Iron	Colorimeter	Observation and management of raw. water and treated water	8
Manganese	Colorimeter	Observation and management of raw water and treated water	7
Ammonia nitrogen	Colorimeter	Observation and management of raw water and treated water	3
COD	COD meter	Observation and management of raw water and treated water	3
Coagulation and sedimentation	Jar tester	Observation and management of raw water and treated water	7

a. Equipment for measuring and analysis

b. Attached equipment

Item	Equipment	Purpose	No.
Glass equipment	Beaker, others	Chemical analysis	11.
Storage equipment	Storage shed	Storage /management of glass equipment and measuring equipment	11
Chemicals storage equipment	Chemicals shed	Storage of chemicals, low temperature conservation	11
Data management	Computer	Management of data	1.1

- Annex-3 Necessary Measures to be taken by the Government of the Philippines on condition that Japan's Grant Aid is extended.
- 1. To secure land necessary for the sites of the Project and to clear, level and reclaim the land prior to commencement of the construction work.
- 2. To bear commissions to the Japanese foreign exchange bank to execute the banking services based upon the banking arrangement.
- 3. To ensure prompt unloading, customs clearance at the port of disembarkation in the Philippines and facilitate internal transportation therein of the products purchased under the Grant Aid.
- 4. To ensure the customs clearance at the port, inland transportation from the port to each site, and to bear the cost for bonded storage at the port.
- 5. To exempt Japanese nationals from custom duties, internal taxes and other fiscal levies which may be imposed in the Philippines with respect to the supply of the products and services under the verified contracts. And to take necessary measures for such tax exemption.
- 6. To accord Japanese nationals, whose services may be required in connection with the supply of products and services under the verified contracts, such facilities as may be necessary for their entry into the Philippines and stay therein for the performance of their work.
- 7. To use and maintain properly and effectively all the equipment purchased and facilities constructed under the Grant.
- 8. To bear all the expenses other than those covered by the Grant, necessary for the execution of the Project.

A - 30

9. To provide necessary data and information for the Project.

10. To assign exclusive counterpart engineers and technicians for the Project

Minutes of Discussions on the Basic Design Study on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines (EXPLANATION ON DRAFT FINAL REPORT)

In September and December 1999, the Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a Basic Design Study Team on the Project for Improvement of Water Quality in Local Areas in the Republic of the Philippines (hereinafter referred to as "the Project") to the Republic of the Philippines (hereinafter referred to as "the GOP"), and through discussion, field survey, and technical examination of the results in Japan, JICA prepared a draft report of the study.

In order to explain to and to consult the GOP on the components of the draft final report, JICA sent to the Philippines the Draft Final Report Explanation Team (hereinafter referred to as "the Team"), which is headed by Mr. Akira NAKAMURA, Deputy Director, Project Coordination and Monitoring Div., Grant Aid Management Dept., from June 26 to July 2.

As a result of discussions, both parties confirmed the main items described on the attached sheets.

Quezon, June 30, 2000

Akira Nakamura Leader Draft Final Report Consultation Team Japan International Cooperation Agency

Manuel T. Yoingcy Officer-in-Charge Local Water Utilities Administration

ATTACHMENT

1. Components of the Draft Final Report

The Philippines side agreed and accepted in principle the components of the draft final report explained by the Team.

2. Contents of Items of the Project

Both sides have confirmed the Ten (10) Water Districts (hereinafter referred to as "the WDs") (Eleven (11) sites) shown in Annex-1 and each item which will be constructed or procured under the Japanese Grant Aid attached as Annex-2.

3. Japan's Grant Aid scheme

The Philippines side understands the Japan's Grant Aid Scheme as explained by the Team and described in Annex-3 of the Minutes of Discussions signed by both parties on September 2, 1999.

4. Necessary Measures to be Taken by GOP

The GOP will take necessary measures describes in Annex-3 for the smooth implementation of the Project, on the condition that Japan's grant aid is extended to the Project.

5. Schedule of the Study

JICA will complete the final report in accordance with the confirmed items and send it to the Philippines by the middle of August 2000.

6. Other relevant issues

- (1) Both sides confirmed that the approval of Investment Coordination Committee (ICC) for the Project should be acquired by the end of March 2001. The Philippines side understands that LWUA is responsible for preparation of the Project proposal based on the Draft Final Report. LWUA and other relevant agencies will take all necessary measures to ensure the said schedule as per Annex-4.
- (2) LWUA and other relevant agencies will take all necessary measures to acquire Environmental Compliance Certificate (ECC) or Certificate of Non - Coverage (CNC) from Department of Environment and Natural Resources (DENR) at the soonest possible time.
- (3) LWUA shall take all over responsibility for the expense of the import duty and taxes.
- (4) LWUA will ensure the sustainability of the Project by monitoring the target WDs and providing technical assistance for operation and maintenance. In the event that the WDs need capital for expansion LWUA will extend financial assistance as needed.
- (5) Each WD shall acquire the required land for the Project by the end of November, 2000.
- (6) LWUA and each WD will assign appropriate personnel for the implementation of the Project.
- (7) The Philippines side has presented its suggestion on the Draft Final Report as reflected in the highlight of discussion described in Annex-5.

Annex-1	List of Sites to be constructed	
	under the Japanese Grant Aid Project	

Island	Water Supply Area LWUA / 1999	Province	Target Water Districts	Project Sites (Pumping Station)	Region
	Area 1	Cagayan	1.Solana	Basi	Region-2
			2.Binmaley	Caloocan	
Luzon	Area 2	Pangasinan		Fabia	Region-1
			3.Lingayen	Libsong	
- 1	Area 3	Laguna	4.Pagsanjan	Sabang	Region-4
	Area 5	Capiz	5.Panitan	Phase 2	
Panay			6.Pontevedra	Sublangon	Region-6
10400) •		Iloilo	7.Dingle-Pototan	Abangai	
Leyte	Area 6	Leyte	8.Abuyog	Barayong	Region-8
.	Area 8		9.Midsayap	Villiarica	
Mindanao		North Cotabato	10.Kabacan	No.2	Region-12

1:^{4*}

8 3

1)

-1

Annex-2 (1) The Contents of Facilities of Each Project site and Equipment

۰.

						x	1	
ł	QW.	T'arget Well	lntake facilities (Well Pump)	Raw Water Trans- mission Facility	'freatment Facilities	Drainago Facility	Bloctric Generator	Transmíssion Facility
	Solana	Basi	Ronewal	Woll→Tréatment Plant (Inside Plant)	Now Installation	Now Installation	Now Installation	Now Installation Pump
	Rinmeleu	Са Іооса п	Ronowal	Woll→Treatmonl, Plant (Insido Plant)	New Installation	Now Installation	New Installation	Now Installation Pump
	Corportion	Fabia	Ranowal	Woll→(Along the Road)→Plant	Now Installation	Now Installation	Now Installation	Ncw Installation Pump
	Lingayen	Libsong	kenewal	Woll→'Treatmont Plant (Inside Plant)	Now Installation	Now Installation	. Now Installation	Now Installation
ļ	Pagsanjan	Sabang	Now Installation	Well→Troatment Plant (Inside Plant)	New Installation	Now Installation .	New Installation	New Installation
	Panitạn	Phase2	Renowal	Well→Treatment Plant (Inside Plant)	New Installation	Now Installation	Now Installation	Now Installation
1	Pontevedra	Sublagon	Renawal	Woll→Treatmont Plant (loside Plunt)	New Installation	Now Installation	Now Installation	New Installation
ΠĹ	Dingle-Pototan	Abanagay	Kencwal	Well→(Along the Roud)→['lant	New Installation	Now Installation	New Installation	Now Installation
	Abuyog	Barayong	New Installation	Woll→Troutment Plant (Inside Plant)	rt Now Installation	Now Installation	Now Installation	Now Installation
	Midsayap	Villarica [.]	Ronowal	Well→Treatmont Plant (Inside Plant)	New Installation	New Installation	Now Installation	Now Installation
1	Kabacan	No.2 .	Renewal	Well-Treatment Plant (Inside Plant)	New Installation	Now Installation	Now Installation	Now Installation
								dun r

1

A - 34

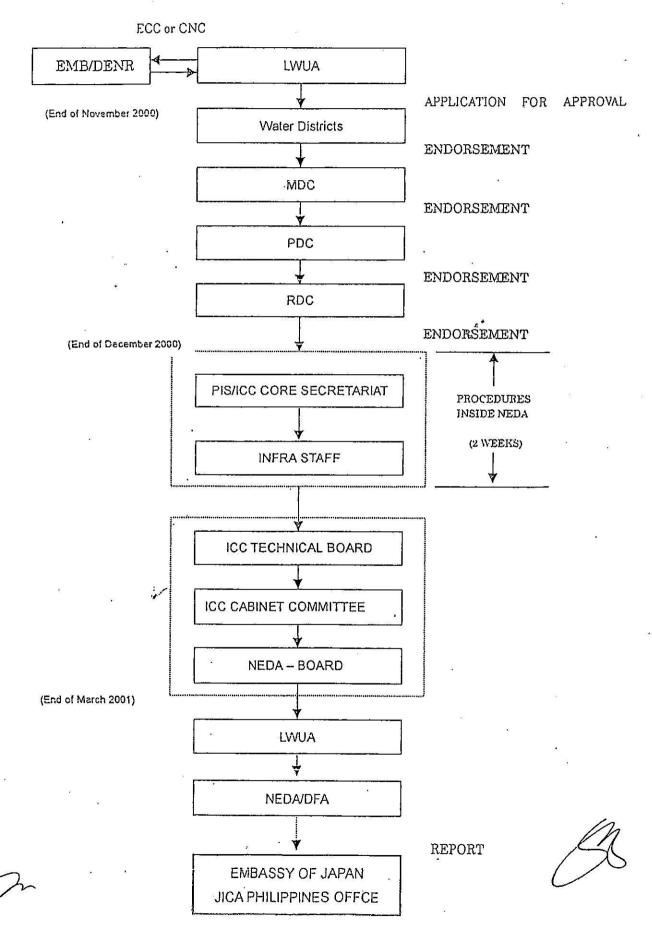
Annex-2 (2)

Equipment for measuring and analysis and attached equipment

Parameter	Equipment	Purpose	Quantity
PH	pH meter	Observation and management of	
·		raw water and treated water	1
Water temperature	Water quality		11
s	checker	raw water and treated water	
Conductivity	Water quality	Observation and management of	11
* } · · · ·	checker	raw water and treated water	240
Salinity	Salinometer	Observation and management of	11
	1	raw water and treated water	
Dissolved oxygen	Water quality	Observation and management of	11
	checker	raw water and treated water	5
Turbidity	Water quality	Observation and management of	11
	checker	raw water and treated water	
Color/Odor/Taste	Colorimeter,	Observation and management of	11
	other	raw water and treated water	waargeronieje
Residual chlorine	Colorimeter	Observation and management of	11
	· ·	treated water	4. ^{4*}
Iron	Colorimeter	Observation and management of	8
		raw water and treated water	
Manganese	Colorimeter	Observation and management of	7
		raw water and treated water	
Ammonia nitrogen	Colorimeter	Observation and management of	4
	2	raw water and treated water	
COD	COD meter	Observation and management of	3
		raw water and treated water	
Coagulation and	Jar tester	Observation and management of	10
sedimentation		raw water and treated water	

a. Equipment for measuring and analysis

b. Attached equipment


Item	Equipment	Purpose	Quantity
Glass . equipment	Beaker, others	Chemical analysis	11
Storage equipment	Storage shed	Storage /management of glass equipment and measuring equipment	11
Chemicals storage equipment	Chemicals shed	Storage of chemicals, low temperature conservation	11
Data management	Computer	Management of data	11

÷.,

Annex-3 Necessary Measures to be taken by the Government of the Philippines on condition that Japan's Grant Aid is extended

- 1. To secure land necessary for the sites of the Project and to clear, level and reclaim the land. prior to commencement of the construction work.
- 2. To bear commissions to the Japanese bank to execute the banking services based upon the banking arrangement.
- 3. To ensure prompt unloading, customs clearance at the port of disembarkation in the Philippines and facilitate internal transportation therein of the products purchased under the Grant Aid.
- 4. To ensure the customs clearance at the port, inland transportation from the port to each site, and to bear the cost for bonded storage at the port.
- 5. To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which may be imposed in the Philippines with respect to the supply of the products and services under the verified contracts. And to take necessary measures for such tax exemption.
- 6. To accord Japanese nationals, whose services may be required in connection with the supply of products and services under the verified contracts, such facilities as may be necessary for their entry into the Philippines and stay therein for the performance of their work.
- 7. To use and maintain properly and effectively all the equipment purchased and facilities constructed under the Grant.
- 8. To bear all the expenses other than those covered by the Grant, necessary for the execution of the Project.
- 9. To provide necessary data and information for the Project.
- . 10. To assign exclusive counterpart engineers and technicians for the Project.

WORK PROCESS FLOW FOR APPROVAL OF ICC

1:4

NEDA: National Economic and Development Authority

LWUA: Local Water Utilities Administration

PIS : Project Investment Staff

ICC : Investment Coordination Committee

RDC : Regional Development Committee

PDC : Provincial Development Committee

MDC : Municipal Development Committee

~).

Annex-5 The Highlight of the Discussion

The Team explained the Draft Final Report of the Basic Design Study to the Philippines side. The following suggestions were presented by the Philippines side on the Draft Final Report during the discussion. The Team confirmed that the suggestions would be reflected to the Final report.

4	No.	Page/Paragraph/Line	Suggestion
	1	Page 1-15,Table "Target Parameter and value"	Suggestion: "Odor" shall be described additionally as one of the parameters.
	2	Page2-1,"2-1-1 Implementation Plan" 1 st paragraph, Line 2 to Line 4	Deletion: "And with WDs," and "such as the detailed design study, supervision of the construction work, and handing over of the facilities and their maintenance." Addition: "LWUA is responsible for the entire procedure of the Project. Upon completion of the said Project LWUA shall turn over the said facilities to the recipient WDs and shall provide technical assistance to ensure proper maintenance for sustainability."
	3	Page 2-2, "Figure 2-1, Organization for Project Implementation"	Deletion: "Area Manager" (in the "Government of Republic of Philippines") Because Area Manager is included in LWUA.
	4	Page 2-3, "2-1-2 Conditions for the Implementation" 1 st paragraph	Draft: "All the obstacles relating to the design and construction laws, technical standards, and so forth are solved by the administration of LWUA."
	8	Line 1 to Line 2	Suggestion: "All the necessary requirements such as right of way, permit, etc. relating to the design and construction laws, technical standards, and so forth shall be the responsibility of LWUA."
	5	Page 2-4, 2 ^{₀d} paragraph	Draft: "(3) To provide consultation regarding the implementation of the project which include the offer of the training program for the candidates for maintenance works." Suggestion:"(3)To provide consulting services during the implementation of the project." and "(4) To provide technology transfer during the project implementation on site and/or training area as identified for LWUA and WDs' staff members."
L			

APPENDIX-5 COST TO BE BORNE BY THE RECIPIENT COUNTRY

In the case this Project is implemented under the Japanese Grant Aid System, the contribution of the Philippines is as follows.

Responsibility of the Philippines

No.		Necessary site area (m2)	
1	Solana	900	
2	Binmaley Calocan	1,100	
	Binmaley Fabia	1,000	
3	Lingayen	2,370	
4	Pagasanjan	330	
5	Panitan	1,350	
6	Pontevedra	1,150	
7	Dingle-Pototan	1,200	
8	Abuyog	1,200	
9	Midsayap	1,000	
10	Kabacan	1,250	
	Total	12,850	

Land securing for the construction of facilities

Electric power conduct expense (Peso)

No.		Electric power conduct (Peso)	
1	Solana	220,000	
2	Binmaley Calocan	210,000	
	Binmaley Fabia	280,000	
3	Lingayen	260,000	
4	Pagasanjan	190,000	
5	Panitan	190,000	
6	Pontevedra	310,000	
7	Dingle-Pototan	320,000	
8	Abuyog	380,000	
9	Midsayap	220,000	
10	Kabacan	370,000	
	Total	2,950,000	

APPENDIX-6 REFERENCES

Title	Date of Issue	Publisher
Medium-Term Philippine Development Plan 1999-2004	1999	NEDA
Feasibility Study Report: Solana WD	1985	LWUA
Feasibility Study Report: Lingayen WD	1997	LWUA
Feasibility Study Report: Binmaley WD	1993	LWUA
Feasibility Study Report: Pagsanjan WD	1998	LWUA
Feasibility Study Report: Dingle-Pototan WD	1982	LWUA
Feasibility Study Report: Abuyog WD	1982	LWUA
Feasibility Study Report: Midsayap WD	1999	LWUA
Feasibility Study Report: Kabacan WD	1988	LWUA
Served population and water demand projection by Solana WD		Solana WD
Engineering study by Project planning Div: Binmaley	1998	LWUA
Program of Work : Panitan	1999	LWUA
Pontevedra Water Supply System Improvement Program		LWUA
Engineering Study : Dingle-Pototan		LWUA
Program of Work : Abuyog	1998	LWUA
Water Rate Review by Kabacan WD	1999	Kabacan WD
The study on the provincial water supply, sewerage and sanitation sector plan in the Republic of the Philippines	1999	JICA
The study on the provincial water supply, sewerage and sanitation sector plan in the Republic of the Philippines	1999	JICA
The study on the provincial water supply, sewerage and sanitation sector plan in the Republic of the Philippines	1999	JICA
Study on the provincial water supply, sewerage and sanitation sector plan in the Republic of the Philippines	1996	JICA
Master plan study on water resources management in the Republic of the Philippines final report	1998	JICA
Master plan study on water resources management in the Republic of the Philippines final report	1998	JICA
Study on the provincial water supply, sewerage and sanitation sector plan in the Republic of the Philippines	1996	JICA

APPENDIX-7

TECHNICAL DATA

- 1.Result of the precise analysis Trihalomethane Formation Potencial
- 2. Existing Wells/Result of Water Quality Analysis
- 3.Jar Test Result
- 4.Column Test Result

BASIC DESIGN DRAWINGS

- 1. Flow Diagram
- 2. Layout Plan
- 3. Hydraulic Profile

				Trih	nalomethane (mg	g/L)	
WDs	Target well		Chloroform	Bromodichloro methane	Dibromochloro methane	Bromoform	Total Trihalomethane
Solana	Basi(No.2 P.S.)	raw	0.0072	0.0047	0.0031	N.D.	0.0150
Sulalla	Dasi(110.2 F.S.)	treated	0.0075	0.0022	0.0004	N.D.	0.0101
Lingayon	Librorg(No ADC)	raw	0.0415	0.0046	N.D.	N.D.	0.0461
Lingayen	Libsong(No.4 P.S.)	treated	0.0051	0.0115	0.0102	0.0114	0.0382
	Calescen(No. 1 D.C.)	raw	0.0513	0.0009	N.D.	N.D.	0.0522
Dimmelen	Caloocan(No.1 P.S.)	treated	0.0085	0.0025	0.0007	N.D.	0.0117
Binmaley	Eshie (Nie 5 D.C.)	raw	0.0279	N.D.	N.D.	N.D.	0.0279
	Fabia(No.5 P.S.)	treated	0.0079	0.0040	0.0013	N.D.	0.0132
Degeneration	Color (No. 4 D.C.)	raw	N.D.	0.0038	0.0138	0.0193	0.0369
Pagsanjan	Sabang(No.4 P.S.)	treated	N.D.	0.0008	0.0031	0.0063	0.0102
Daultan	Dh 0	raw	0.0235	0.0080	0.0039	N.D.	0.0354
Panitan	Panitan Phase2	treated	0.0025	N.D.	N.D.	N.D.	0.0025
Denteredue	C-bl-mar-	raw	N.D.	0.0016	0.0088	0.0508	0.0612
Pontevedra	Sablangon	treated	N.D.	0.0009	0.0034	0.0059	0.0102
Dingle Deteter	A 1	raw	0.0019	0.0006	N.D.	N.D.	0.0025
Dingle-Pototan	Abangai	treated	0.0013	N.D.	N.D.	N.D.	0.0013
A 1		raw	0.0023	N.D.	N.D.	N.D.	0.0023
Abuyog	Barayong(No.4 well)	treated	0.0015	N.D.	N.D.	N.D.	0.0015
Midsayap	Villiarica(No.1 P.S.)	raw	N.D.	0.0080	0.0219	0.0323	0.0622
Milusayap	Villiarica(INU.1 F.S.)	treated	N.D.	0.0048	0.0158	0.0291	0.0497
Kabacan	No.2 P.S.	raw	0.0058	0.0065	0.0091	0.0061	0.0275
		treated	0.0036	0.0035	0.0036	N.D.	0.0107
Sta	ndard value		0.06	0.03	0.1	0.09	0.1
	Limit of determinati		Chloroform		0.0013 (mg/L)		
			Bromodichlorometha		0.0004 (mg/L)		
			Dibromochlorometha	ne	0.0005 (mg/L)		
			Bromoform		0.0025 (mg/L)		

1. Result of the precise analysis Trihalomethane Formation Potential

No	WD	Item	Temperatur e	рН	EC	Turbidity	Color	T-Fe	T-Mn	F	NO3-N	NO ₂ -N	NH4-N	PO_4	COD	Coliforms	Standard plate count bacteria	Cl	CN	Cr ⁶⁺
		Unit	°C		mS/m	degree	degree	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	/100mL	/mL	mg/L	mg/L	mg/L
1	Solana	Centro	28.9	7.62	65	1	0	0.07	0.22	ND	ND	1.20	ND	1.1	3	0	132	3.1	0.0	0.0
		Poblacion	29.3	7.70	58	0	40	0.00	0.00	0.0	0.00	0.00	0.0	0.5	25	0	88	190.0	0.0	0.0
		Nagpalangan	30.0	7.60	62	0	40	0.20	0.20	0.2	0.00	0.00	0.5	0.0	20	1	120	110.0	0.0	0.0
2	Binmaley	Naguilayan	31.0	7.30	40	1	50	0.00	0.00	0.0	0.00	0.00	0.0	0.2	8	0	88	150.0	0.0	0.0
		Camaley	32.0	7.40	52	0	40	0.20	0.00	0.0	0.20	0.00	0.0	0.0	20	0	100	82.0	0.0	0.0
		Gayaman	29.8	7.60	49	0	20	0.20	0.00	0.2	0.00	0.00	0.0	0.5	10	0	10	60.0	0.0	0.0
		Tongton	31.0	8.24	61	0	30	0.50	0.00	0.5	0.00	0.00	0.5	2.0	50	2	49	25.0	0.0	0.0
3	Lingayen	Baay	32.6	8.08	284	1	30	0.50	0.00	1.0	0.00	0.00	1.0	0.5	50	2	149	375.0	0.0	0.0
		Binan	31.3	7.95	84	0	0	0.21	0.11	0.3	2.00	2.00	ND	2.9	10	0	200<	88.6	0.0	0.0
4	Pagsanjan	Sanjan	33.0	8.02	40	1	0	ND	0.00	0.5	0.5	0.0	0.0	0.5	5	0	123	50.0	0.0	0.0
		Lodge Spring	30.4	7.38	40	0	2	ND	ND	0.5	0.0	0.0	0.0	0.5	5	0	300<	25.0	0.0	0.0
5	Pontevedra	Hipona	27.5	7.36	35	1	0	0.20	0.00	0.0	0.00	0.00	0.0	0.2	0	0	50	20.0	0.0	0.0
		Morobo Spring	25.7	7.04	52	0	0	0.14	ND	ND	1.60	ND	ND	ND	4	0	21	4.5	0.0	0.0
6	Dingle-Pototan	Moroboro Spring	25.5	7.10	49	0	0	0.08	ND	ND	0.20	ND	ND	ND	3	0	18	19.0	0.0	0.0
~		Bito	31.5	7.60	96	1	7	0.44	0.35	ND	0.50	0.34	ND	2.8	6	0	500<	65.4	0.0	0.0
7	Abuyog	Can-ugib	32.2	7.12	230	5	40	2.00	1.20	0.2	-	-	ND	6.3	13	0	42	-	0.0	0.0
		Kiwanan	29.0	6.87	110	0	0	0.10	0.49	0.2	0.10	0.00	0.0	0.0	4	0	12	75.0	0.0	0.0
8	Midsayap	Kimagango	28.8	6.83	102	0	2	0.20	0.20	0.3	0.00	0.00	0.0	0.2	8	0	54	125.0	0.0	0.0
		Dilangalen	29.0	7.18	124	0	0	0.50	0.00	1.0	0.20	0.10	0.1	2.0	3	0	36	132.0	0.0	0.0
9	Kabacan	No.1	28.8	7.01	61	0	0	0.46	0.26	ND	ND	0.02	ND	1.8	11	0	0	24.1	0.0	0.0

2. Existing Wells / Result of Water Quality Analysis

Jar Test Results

Solana WD	Basi
Binmaley WD	Caloocan
Binmaley WD	Fabia
Lingayen WD	Libsong
Panitan WD	Phase 2
Pontevedra WD	Sublangon
Dingle-Pototan WI	O Abangai
Abuyog WD	Barayong
Midsayap WD	Villarica
Kabacan WD	No.2

Target Site	Solana
Target Well	Basi

Raw water Quality						
Temperature	28.2 °C					
pH	6.92					
Electric Conductivity	40 mS/m					
Fe^{*1}	3.0 mg/L					

Before dosing aluminum sulfate, 2-minutes aeration is conducted. All of the jar set under same condition.

Results of Jar Test Experiments

No. of Jar	1			2		3		4
Rapid Mixing (min ⁻¹)	300		300			300		300
Duration (min)	1			1		1		1
Slow Mixing (min ⁻¹)	30			30		30		30
Duration (min)	10			10		10		10
pH value after Coagulant Dosage	8.3			8.18		8		7.96
Coagulant Dosage Rate ^{*2}	10			20		30		40
			Test	Results				
Formed Flocs ^{*3} Conditions	E No	Floc	С	Formed in Slow Mixing	С	Formed in Slow Mixing	С	Formed in Slow Mixing
Flocs Settling rate	-			t 5mm/min		ut 5mm/min	abo	ut 5mm/min
Eloog Sottling	-		About 60% of Flocs are settled in 30 minutes.		are	About 60% of Flocs are settled in 30 minutes.		-
Flocs Settling	-		About 80% of Flocs are settled in 30 minutes.		are	About 80% of Flocs are settled in 30 minutes.		-
pH (Filtrated Water ^{*4})	-			7.5		-	-	
EC(Filtrated Water)	-			40		-		-
Fe ^{*1} (Filtrated Water)	-			0.5		-		-

*1 Fe		Analysed on	site ı	using simplifi	ed an	alysis				
^{*2} Coagulant Dosing		с. · I. · .	.1		C A					
Rate		Considering	the c	onversion rat	e of A	luminum Sul	lfate(N	AW:342).		
^{*3} Formed Flocs Conditions	A-	more than $3 \text{mm} \phi$	B-	$2\sim 3$ mm ϕ	C-	$1 \sim 2 \text{mm} \phi$	D-	less than $1 \text{mm } \phi$	E-	No Floc
^{*4} Filtrated Water		Using filter	Jsing filter paper of No.5A							
	0.5	timum Dooore	. 20~	a the e		alam wata af				

<u>Optimum Dosage: 20mg/L as the conversion rate of</u> Aluminum Sulfate (mole weight: 342)

Target Site	Binmaley WD
Target Well	Caloocan

In accordance with the established theory for removal of humic acid, coagulation experiment in weak acid area is performed.

Jar test is repeated in order to determine optimum pH value (first process), and optimum dosing rate of coagulation chemical(second process).

Optimum dosing rate is obtained considering formed flocs conditions and color in treated water.

Color in raw water has 80 degrees.

Sulfuric acid is used in pH control.

No. of Jar	1	2	3	4	
Rapid Mixing (min ⁻¹)	300	300	300	300	
Duration (min)	1	1	1	1	
Slow Mixing (min ⁻¹)	30	30	30	30	
Duration (min)	10	10	10	10	
Adjusted pH	5.8	6.2	6.6	7.0	
Coagulant Dosage Rate ^{*1}	20	20	20	20	
		Test Results			
Formed Flocs ^{*2} Condition	Formed in C Slow mixing	D Formed micro-flocs in slow mixing	E No Floc	E No Floc	
Flocs Settling Rate	less than 5mm/min	Surface Settling in a few mm	-	-	
Filtrated Water ^{*3} Color	1	5	40	-	
Observation of filtrated water	Very Clear	Colored with slightly white	-	-	

Results of Jar Test Experiment

^{*1}Coagulant Dosing Ratio ^{*2}Formed Flocs Conditions A- $\frac{\text{more than}}{3\text{mm }\phi}$ B- 2~3mm ϕ C- 1~2mm ϕ D- $\frac{\text{less than}}{1\text{mm }\phi}$ E-

- No Floc

^{*3}Filtrated Water Using filter paper of No.5A

Optimum pH value: 5.8

Jar Test (Binmaley WD Caloocan) Second Process

Target Site	Binmaley WD
Target Well	Caloocan

Raw water Qualty						
Temperature	30°C					
Color	80					
pН	8.3					
EC	50mS/m					
COD^{*1}	35					

In Second process of Jar Test, all the jars are controlled in the pH value 5.8, and find optimum dosing rate of coagulation chemical.

Results of Jar Test Experiment

No. of Jar		1		2		3		4		5
Rapid Mixing (min ⁻¹)		300		300		300		300		300
Duration (min)		1		1	1			1		1
Slow Mixing (min ⁻¹)		30		30	30			30		30
Duration (min)		10		10		10		10		10
pH value after Coagulant Dosage		5.8	5.8		5.8		5.8		5.8	
Coagulant Dosage Rate ^{*2}		10		20		30		45		80
				Test Res	sults					
Formed Flocs ^{*3} Conditions	Е	No Floc	С	Formed in Slow mixing	С	Formed in Slow mixing	D	Formed micro-flocs in slow mixing	D	Formed micro-flocs in slow mixing
Flocs Settling rate		-		han 5mm/min	less than 5mm/min		less than 5mm/min		less t	han 5mm/min
Flocs Settling		-	About 60% of Flocs are settled in 30 minutes.		About 60% of Flocs are settled in 30 minutes.		are settled in 30 minutes.		-	
Flots Setting		-	are	t 80% of Flocs settled in 60 minutes.	are	t 80% of Flocs settled in 60 minutes.	are	t 60% of Flocs settled in 60 minutes.		-
Filtrated Water ^{*4} Color		20		1		5		5	5	
Filtrated Water pH		5.7		5.7		5.2	5		4.8	
Filtrated Water EC		50		52		52	56			59
Filtrated Water COD ^{*1}				4	6		6			
Obsarvation of filtrated water		-	ligh	nentated flocs: at looking in density		nentated flocs: at looking in density		-		-

^{*1}COD

Rate

Analysed on site using simplified analysis

Considering the conversion rate of Aluminum Sulfate(MW:342).

A- $\frac{\text{more than}}{3 \text{mm } \phi}$ B- 2~3mm ϕ C- 1~2mm ϕ D- $\frac{\text{less than}}{1 \text{mm } \phi}$ E- No Floc

^{*4}Filtrated Water

^{*3}Formed Flocs

Conditions

*2Coagulant Dosing

Using filter paper of No.5A

<u>Optimum Dosage: 20mg/L as the conversion rate of Aluminum Sulfate (mole weight: 342)</u>

Target Site	Binmaley WD
Target Well	Fabia

In accordance with the established theory for removal of humic acid, coagulation experiment in weak acid area is performed.

Jar test is repeated in order to determine optimum pH value (first process), and optimum dosing rate of coagulation chemical(second process).

Optimum dosing rate is obtained considering formed flocs conditions and color in treated water.

Color in raw water has 50 degrees.

Sulfuric acid is used in pH control.

No. of Jar		1		2		3		4				
Rapid Mixing (min ⁻¹)	300			300		300	300					
Duration (min)		1	1		1		1		1			1
Slow Mixing (min ⁻¹)		30		30		30	30					
Duration (min)		10		10		10		10				
Adjusted pH		5.2		5.8		6.2	6.8					
Coagulant Dosage Rate ^{*1}		20		20		20	20					
			Т	est Results								
Formed Flocs ^{*2} Condition	E	No Floc	D	Formed micro-flocs in slow mixing	Е	Formed micro-flocs in slow mixing	E	No floc				
Flocs Settling Rate		-		face Settling a few mm	I	No Settling	-					
Filtrated Water ^{*3} Color		50		15	20		-					
Observation of filtrated water		-		-	-			-				

Results of Jar Test Experiment

^{*1}Coagulant Dosing Ratio Conditions

Considering the conversion rate of Aluminum Sulfate(MW:342).

² Formed Flocs Conditions	A-	more than $3 \text{mm} \phi$	B-	$2\sim 3$ mm ϕ	C-	$1\sim 2 \operatorname{mm} \phi$	D-	less than $1 \text{mm} \phi$	E-	No Floc
^{*3} Filtrated Water		Using filter pa	aper of	f No.5A						

Optimum pH value: 5.8

Jar Test (Binmaley WD Fabia) Second Process

Target Site	Binmaley WD
Target Well	Fabia

Raw water Qualty										
Temperature	32°C									
Color	50									
pН	8.2									
EC	53mS/m									
COD^{*1}	35									

In Second process of Jar Test, all the jars are controlled in the pH value 5.8, and find out optimum dosing rate of coagulation chemical.

Results of Jar Test Experiment

No. of Jar		1		2		3	4		
Rapid Mixing (min ⁻¹)	300			300		300		300	
Duration (min)	1			1		1	1		
Slow Mixing (min ⁻¹)		30		30		30	30		
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		5.8		5.8		5.8		5.8	
Coagulant Dosage Rate ^{*2}		10		20		30		40	
			Test	Results					
Formed Flocs ^{*3} Conditions	E	No Floc	D	Formed micro-flocs in slow mixing	С	Formed in Slow mixing	С	Formed in Slow mixing	
Flocs Settling rate		-	-		less tl	han 5mm/min	abo	ut 5mm/min	
		-	-		About 50% of Flocs are settled in 30 minutes.		About 60% of Flocs are settled in 30 minutes.		
Flocs Settling		-		-	ares	t 60% of Flocs settled in 60 minutes.	are	t 80% of Flocs settled in 60 minutes.	
Filtrated Water ^{*4} Color		50		15		15		8	
Filtrated Water pH		5.8		5.8		5.4		5.2	
Filtrated Water EC		54		54		58		58	
Filtrated Water COD ^{*1}				20		12		4	
Obsarvation of filtrated water		-		-	ligh	entated flocs: t looking in density	Sedimentated flocs: light looking in density		

^{*1}COD

Analysed on site using simplified analysis

^{*2}Coagulant Dosing Rate ^{*3}Formed Flocs Conditions ^{*4}Filtrated Water

Considering the conversion rate of Aluminum Sulfate(MW:342).

- more than $3mm \phi$ B- 2~3mm ϕ C- 1~2mm ϕ D- less than $1mm \phi$ E- No Floc Using filter paper of No.5A

<u>Optimum Dosage: 40 mg/L as the conversion rate of Aluminum Sulfate (mole weight: 342)</u>

Target Site	Lingayen WD
Target Well	Libsong

In accordance with the established theory for removal of humic acid, coagulation experiment in weak acid area is performed.

Jar test is repeated in order to determine optimum pH value (first process), and optimum dosing rate of coagulation chemical(second process).

Optimum dosing rate is obtained considering formed flocs conditions and color in treated water. Color in raw water has 40 degrees.

Sulfuric acid is used in pH control.

No. of Jar		1		2		3	4		5		6	
Rapid Mixing (min ⁻¹)		300		300		300		300		300		300
Duration (min)		1		1		1		1		1	1	
Slow Mixing (min ⁻¹)		30		30		30		30		30		30
Duration (min)		10		10		10		10		10		10
Adjusted pH		3.6		4.9		5.8		6.1		6.6		7.1
Coagulant Dosage Rate ^{*1}		15		15		15		15	15		15	
					Test	Results						
Formed Flocs ^{*2} Condition	Е	No Floc	Е	No Floc	D	Formed micro-flocs in slow mixing	E	Formed micro-flocs in slow mixing	Е	No Floc	E	No Floc
Flocs Settling Rate		-		-		face Settling a few mm		-	-		-	
Filtrated Water ^{*3} Color		40		40 20			40	40			40	
Observation of filtrated water		-		-		Clear	Colored with -			-		

Results of Jar Test Experiment

Considering the conversion rate of Aluminum Sulfate(MW:342).

*¹Coagulant Dosing Ratio
*²Formed Flocs Conditions
*³Filtrated Water

A-

 $\begin{array}{cccc} \text{more than} & & \\ 3\text{mm}\,\phi & & \\ \end{array} B - & 2 \thicksim 3\text{mm}\,\phi & & \\ C - & 1 \thicksim 2\text{mm}\,\phi & & \\ D - & & 1\text{mm}\,\phi & \\ \end{array} E - & & \\ \text{No Floc} \end{array}$

Using filter paper of No.5A

Optimum pH value: 5.8

Jar Test (Lingayen WD) Second Process

Target Site	Lingayen WD
Target Well	Libsong

Raw water Qualty									
Temperature	28°C								
Color	40								
pН	8.38								
EC	128mS/m								
COD^{*1}	40								

In Second process of Jar Test, all the jars are controlled in the pH value 5.8, and find out optimum dosing rate of coagulation chemical.

Results of Jar Test Experiment

						<u> </u>					
No. of Jar		1	2		3			4	5		
Rapid Mixing (min ⁻¹)		300	300		300		300			300	
Duration (min)		1	1		1		1		1		
Slow Mixing (min ⁻¹)		30		30		30		30	30		
Duration (min)		10		10		10		10		10	
pH value after Coagulant Dosage		5.8		5.8		5.8		5.8		5.8	
Coagulant Dosage Rate ^{*2}		5		15		30		45		60	
	1	1		Test Re	sults	1			1	1	
Formed Flocs ^{*3} Conditions	E	No Floc	D	D Formed micro-flocs in slow mixing		Formed in Slow mixing	C	Formed in Slow mixing	C	Formed in Slow mixing	
Flocs Settling rate		-		-	less than 5mm/min		abou	ut 5mm/min	abou	ut 5mm/min	
Elses Cattling		-		-	About 60% of Flocs are settled in 30 minutes.		About 70% of Flocs are settled in 30 minutes. About 80% of Flocs		About 70% of Flocs are settled in 30 minutes. About 80% of Flocs		
Flocs Settling		-		-		-	are	t 80% of Flocs settled in 30 minutes.	are	t 80% of Flocs settled in 30 minutes.	
Filtrated Water ^{*4} Color		40		20		8		6		6	
Filtrated Water pH		5.7		5.5		5.4		5.1		4.8	
Filtrated Water EC		130		130		132		132		133	
Filtrated Water COD ^{*1}				20		10		8	8		
Obsarvation of filtrated water		-		-	Sedimentated flocs: S light looking in density		0 0 0		Sedimentated flocs: light looking in density		

*1COD

Rate

^{*2}Coagulant Dosing

^{*3}Formed Flocs Conditions

^{*4}Filtrated Water

Analysed on site using simplified analysis

Considering the conversion rate of Aluminum Sulfate(MW:342).

A-	more than $3 \text{mm} \phi$	B-	$2\sim 3 \text{mm} \phi$	C-	$1\sim 2 \text{mm } \phi$	D-	less than $1 \text{mm } \phi$	E-	No Floc
Using filter paper of No.5A									

<u>Optimum Dosage: 45mg/L as the conversion rate of Aluminum Sulfate (mole weight: 342)</u>

Target Site	Panitan
Target Well	Phase 2

Raw water Quality						
Temperature	28.8 °C					
pН	6.67					
Electric Conductivity	69 mS/m					
Fe^{*1}	10 mg/L					

Results of Jar Test Experiment

No. of Jar		1		2		3	4		
Rapid Mixing (min ⁻¹)		300	300		300		300		
Duration (min)		1		1	1		1		
Slow Mixing (min ⁻¹)		30		30		30		30	
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		8.3		8.18		8		7.96	
Coagulant Dosage Rate ^{*2}		10		20		30	40		
			Test	Results					
Formed Flocs ^{*3} Conditions	Е	No Floc	С	Formed in Slow Mixing	С	Formed in Slow Mixing	С	Formed in Slow Mixing	
Flocs Settling rate		-	about 5mm/min		about 5mm/min		about 5mm/min		
Flocs Settling	-		About 60% of Flocs are settled in 30 minutes.		About 60% of Flocs are settled in 30 minutes.		-		
0	-		About 80% of Flocs are settled in 60 minutes.		About 80% of Flocs are settled in 60 minutes.		-		
pH (Filtrated Water ^{*4}	-		8.11		-			-	
EC(Filtrated Water)	-			67		-		-	
Fe ^{*1} (Filtrated Water)		-		0.2	-		-		

^{*1} Fe		Analysed on	site	using simplifi	ed ar	nalysis				
^{*2} Coagulant Dosing Rate		Considering	the c	onversion rat	e of A	Aluminum Su	lfate(MW:342).		
^{*3} Formed Flocs Conditions	A-	more than $3 \text{mm} \phi$	B-	$2\sim 3$ mm ϕ	C-	$1\sim 2 \mathrm{mm} \phi$	D-	less than $1 \text{mm } \phi$	E-	No Floc
^{*4} Filtrated Water		Using filter	pape	r of No.5A						

<u>Optimum Dosage: 20mg/L</u> as the conversion rate of Aluminum Sulfate (mole weight: 342)

Target Site	Pontevedra
Target Well	Sublangon

Raw water Quality					
Temperature	27.6 °C				
pH	6.68				
Electric Conductivity	114 mS/m				
Fe^{*1}	1.0 mg/L				

Results of Jar Test Experiment

No. of Jar		1		2		3	4		
Rapid Mixing (min ⁻¹)		300		300		300		300	
Duration (min)		1		1	1		1		
Slow Mixing (min ⁻¹)		30		30		30		30	
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		7.63		7.59		7.51		7.24	
Coagulant Dosage Rate ^{*2}		5		10		15		20	
			Test	t Results					
Formed Flocs ^{*3} Conditions	Ε	No Floc	С	Formed in Slow Mixing	С	Formed in Slow Mixing	С	Formed in Slow Mixing	
Flocs Settling rate	-		about 5mm/min		about 5mm/min		about 5mm/min		
Flocs Settling	-		About 60% of Flocs are settled in 30 minutes. About 80% of Flocs are settled in 60 minutes.		About 60% of Flocs are settled in 30 minutes. About 80% of Flocs are settled in 60 minutes.		About 60% of Flocs are settled in 30 <u>minutes.</u> About 80% of Flocs are settled in 60 minutes.		
pH (Filtrated Water ^{*4}	-		7.6		-		-		
EC(Filtrated Water)		-		154		-		-	
Fe ^{*1} (Filtrated Water)		-		0.2		-	-		

^{*1} Fe		Analysed on	site	using simplifi	ied ar	alysis				
^{*2} Coagulant Dosing Rate		Considering	the c	onversion rat	e of A	Aluminum Su	lfate(MW:342).		
^{*3} Formed Flocs Conditions	A-	more than $3 \text{mm} \phi$	B-	$2\sim 3 \mathrm{mm} \phi$	C-	$1\sim 2 \mathrm{mm} \phi$	D-	less than $1 \text{mm} \phi$	E-	No Floc
^{*4} Filtrated Water		Using filter	papei	r of No.5A						

<u>Optimum Dosage: $10 \sim 20 \text{mg/L}$ as the conversion rate of Aluminum Sulfate (mole weight: 342)</u>

Target Site	Dingle-Pototan
Target Well	Abangai

Raw water Quality					
Temperature	27.8 °C				
pН	7.35				
Electric Conductivity	149 mS/m				
${\rm Fe}^{*1}$	1.0 mg/L				

Results of Jar Test Experiment

No. of Jar		1		2		3		4	
Rapid Mixing (min ⁻¹)	300		300		300		300		
Duration (min)		1		1	1			1	
Slow Mixing (min ⁻¹)		30		30		30		30	
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		7.63		7.59		7.51		7.24	
Coagulant Dosage Rate ^{*2}		10	15		20		30		
	Test Results								
Formed Flocs ^{*3} Conditions	E	No Floc	D	Formed micro-flocs in slow mixing	С	Formed in Slow Mixing	С	Formed in Slow Mixing	
Flocs Settling rate		-	-		about 5mm/min		about 5mm/min		
	-		-		About 60% of Flocs are settled in 30 minutes		About 60% of Flocs are settled in 30 minutes		
Flocs Settling	-		About 50% of Flocs are settled in 60 minutes.		minutes. About 80% of Flocs are settled in 60 minutes.		minutes. About 80% of Flocs are settled in 60 minutes.		
pH (Filtrated Water ^{*4}	-		-		7.6		-		
EC(Filtrated Water)	-		-		154		-		
Fe ^{*1} (Filtrated Water)		-	-		0.5		-		

^{*1}Fe Analysed on site using simplified analysis *2Coagulant Dosing Considering the conversion rate of Aluminum Sulfate(MW:342). Rate ^{*3}Formed Flocs more than less than A-B- $2 \sim 3 \text{mm} \phi$ C- $1 \sim 2 \text{mm} \phi$ D-E-No Floc Conditions $3 \text{mm} \phi$ $1 \mathrm{mm} \phi$ ^{*4}Filtrated Water Using filter paper of No.5A

<u>Optimum Dosage: 20mg/L</u> as the conversion rate of Aluminum Sulfate (mole weight: 342)

Target Site	Abuyog
Target Well	Barayong

Raw water Quality					
Temperature	30.6°C				
Color	15				
pН	6.73				
EC	239mS/m				
Fe^{*1}	5				
COD^{*1}	10				

Results of Jar Test Experiment

No. of Jar		1		2		3	4		
Rapid Mixing (min ⁻¹)		300		300		300		300	
Duration (min)		1		1		1		1	
Slow Mixing (min ⁻¹)		30		30		30		30	
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		7.6		7.6		7.6		7.6	
Coagulant Dosage Rate ^{*2}		10		15		20		30	
			Test	Results					
Formed Flocs ^{*3} Conditions	D	Formed micro-flocs in slow mixing	D	Formed micro-flocs in slow mixing	D	Formed micro-flocs in slow mixing	С	Formed in Slow Mixing	
Flocs Settling rate		-	-			-		about 5mm/min	
Elses Cattling		-	-			-		About 60% of Flocs are settled in 30 minutes	
Flocs Settling		-		-		-		minutes. About 80% of Flocs are settled in 60 minutes.	
Color(Filtrated Water ^{*4})		-		-		40		10	
pH(Filtrated Water)		-		-	7.4			7.4	
EC(Filtrated Water)		-		-		240		240	
Fe ^{*1} (Filtrated Water)		-		-		0.5		0.5	
Water) COD ^{*1} (Filtrated Water)		-		-		10		8	
Obsarvation		-		- No - Sedimentation		Colored with slightly white			

^{*1}Fe•COD ^{*}Coagulant Dosage Rate ^{*}Formed Flocs Condition

^{*4}Filtrated Water

Analysed on site using simplified analysis

	Considering the conversion rate of Aluminum Sulfate(MW:342).								
A-	more than $3mm \phi$	B-	$2\sim 3$ mm ϕ	C-	$1 \sim 2 \text{mm} \phi$	D-	less than $1 \text{mm } \phi$	E-	No Floc
	Using filter	pape	er of No.5A						

 $\frac{Optimum\ Dosage:\ 30mg/L}{Aluminum\ Sulfate\ (mole\ weight:\ 342)}$ as the conversion rate of

Target Site	Midsayap
Target Well	Villarica

Raw water Quality					
Temperature	27 °C				
pН	7.09				
Electric Conductivity	107 mS/m				
${\rm Fe}^{*1}$	1.0 mg/L				

Results of Jar Test Experiment

No. of Jar		1		2		3	4		
Rapid Mixing (min ⁻¹)		300		300		300		300	
Duration (min)		1		1		1		1	
Slow Mixing (min ⁻¹)		30		30		30		30	
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		7.63		7.59		7.51		7.24	
Coagulant Dosage Rate ^{*2}		10		15		20		30	
			Tes	t Results					
Formed Flocs ^{*3} Conditions	Е	No Floc	D	Formed micro-flocs in slow mixing	С	Formed in Slow Mixing	С	Formed in Slow Mixing	
Flocs Settling rate		-		-		about 5mm/min		about 5mm/min	
Flocs Settling		-	Abaa	- t 50% of Flocs	are	About 60% of Flocs are settled in 30 minutes.		t 60% of Flocs settled in 30 minutes.	
U		-	are	settled in 60 minutes.	are	t 80% of Flocs settled in 60 minutes.	About 80% of Flocs are settled in 60 minutes.		
pH (Filtrated Water ^{*4}		-		-		7.6	-		
EC(Filtrated Water)		-		-	120		-		
Fe ^{*1} (Filtrated Water)		-		-		0.2		-	

^{*1} Fe		Analysed on site using simplified analysis								
^{*2} Coagulant Dosing Rate		Considering	the c	onversion rat	e of A	Aluminum Su	lfate(MW:342).		
^{*3} Formed Flocs Conditions	A-	more than $3 \mathrm{mm} \phi$	B-	$2\sim 3$ mm ϕ	C-	$1\sim 2 \mathrm{mm} \phi$	D-	less than $1 \text{mm } \phi$	E-	No Floc
^{*4} Filtrated Water		Using filter	paper	r of No.5A						

<u>Optimum Dosage: 20mg/L as the conversion rate of Aluminum Sulfate (mole weight: 342)</u>

Target Site	Kabacan
Target Well	No.2 P.S.

Raw water Quality					
Temperature	28.9 °C				
pН	7.08				
Electric Conductivity	55 mS/m				
Fe^{*1}	1.5 mg/L				

Results of Jar Test Experiment

No. of Jar		1		2		3	4		
Rapid Mixing (min ⁻¹)	300			300		300	300		
Duration (min)		1		1		1		1	
Slow Mixing (min ⁻¹)		30		30		30		30	
Duration (min)		10		10		10		10	
pH value after Coagulant Dosage		7.63		7.59	7.51		7.24		
Coagulant Dosage Rate ^{*2}		10		15		20		30	
		Test Results							
Formed Flocs ^{*3} Conditions	Е	NO Floc	D	Formed micro-flocs in slow mixing	С	Formed in Slow Mixing	С	Formed in Slow Mixing	
Flocs Settling rate		-	-		about 5mm/min		about 5mm/min		
Flocs Settling	-		-		About 60% of Flocs are settled in 30 minutes.		About 60% of Flocs are settled in 30 minutes.		
1 1000 5000000		-	-		About 80% of Flocs are settled in 60 minutes.		About 80% of Flocs are settled in 60 minutes.		
pH (Filtrated Water ^{*4}	-			-		7.5		-	
EC(Filtrated Water)	-		-		62		-		
Fe ^{*1} (Filtrated Water)		-	-		0.5		-		

^{*1}Fe

Analysed on site using simplified analysis

^{*2} Coagulant Dosing								
Rate		Considering	the c	onversion rat	e of A	luminum Su	lfate(MW:342).
^{*3} Formed Flocs Conditions	A-	more than $3 \text{mm} \phi$		$2\sim 3 \mathrm{mm} \phi$	C-	$1\sim 2 \mathrm{mm} \phi$	D-	less than $1 \text{mm } \phi$
^{*4} Filtrated Water		Using filter	papei	r of No.5A				

less than than B- $2 \sim 3 \text{mm } \phi$ C- $1 \sim 2 \text{mm} \phi$ D-E-No Floc $1 \text{mm} \phi$ mφ filter paper of No.5A

Optimum Dosage: 20mg/L as the conversion rate of Aluminum Sulfate (mole weight: 342)

Filtration(Column) Test Results

Solana WD	Basi
Binmaley WD	Caloocan
Binmaley WD	Fabia
Lingayen WD	Libsong
Pagsanjan WD	Sabang
Panitan WD	Phase 2
Pontevedra WD	Sublangon
Dingle-Pototan WI	O Abangai
Abuyog WD	Barayong
Midsayap WD	Villarica
Kabacan WD	No.2

Filtration (Column) Test Solana

	Target WD	i	Solana
	Target Wel		Basi
Raw Water	Fe	mg/L	2.1
	Mn	mg/L	1.2
	pН	-	6.92
	EC	mS/m	40
	DO	mg/L	0.44
	Turbidity	mg/L	2
	Color	degree	0
	Odor	-	Metallic odor
	Temperature	°C	28.2
-			-
	Test No		Test 1
—	Silica Sand	cm	60
Experiment Condition	Filtration rate	m/d	130
Condition	Aeration		Conducted
	pН	-	7.62
	DO	mg/L	6.5
Water Quality	EC	mS/m	42
After Aeration	Turbidity	mg/L	15
	Color	degree	White
	Temperature	°C	26.9
	Fe	mg/L	0.19
	Mn	mg/L	1.15
	pН	-	7.72
	DO	mg/L	7.25
Water Quality After Filtration	EC	mS/m	40
	Turbidity	mg/L	0
	Color	degree	0
	Odor	-	Unobjectionable
	Temperature	°C	25.7
	Reference		Aeration
			Silica Sand Filtration

Filtration (Column) Test Binmaley_Caloocan

	WD		Binmaley	
	Target Well		Caloocan	
Raw Water	pH	-	8.3	
	EC	mS/m	50	
	DO	mg/L	0.71	
	Turbidity	mg/L	0	
	Color	degree	80	
	Odor	-	Hydrogen Sulfide Odor	
	COD	mg/L	35	
	Temperature	°C	30	
<u> </u>	*			
	Test No		Test 1	Test 2
	Silica Sand	cm	40	60
	Anthracite	cm	20	0
	Filtration Rate	m/d	120	117
Experiment Condition	Aluminum Sulfate Dosage Rate	mg/L	20	20
	Sulfuric Acid Dosage Rate	mg/L	100	100
	Aeration		Conducted	-
	pН	-	5.86	5.89
	DO	mg/L	6.15	2.72
11 7 .	EC	mS/m	60	60
Water Quality After	Turbidity	mg/L	0	0
Aeration	Color	degree	20	20
	Odor	-	Slightly Hydrogen Sulfide Odor	Hydrogen Sulfide Odor
	Temperature	°C	29.5	30.2
	pН	-	6	6.31
	DO	mg/L	6.5	4.3
	EC	mS/m	60	61
Water Quality After	Turbidity	mg/L	1	0
Filtration	Color	degree	1	3
	Odor	-	Unobjectionable	Unobjectionable
	COD	mg/L	4	5
	Temperature	°C	32	29.8
			Aeration	
	Reference		Dosing Sulfuric Acid Dosing Aluminum Sulfate	Dosing Sulfuric Acid Dosing Aluminum Sulfate
			Anthracite+	
			Silica Sand Filtration	Silica Sand Filtration

Filtration (Column) Test Binmaley_Fabia

	WD		Binmaley			
	Target Well		Fabia			
Raw Water	pH		8.2			
Raw Water	EC	mS/m	53			
	DO		0.78			
		mg/L				
	Turbidity Color	mg/L	0 50			
		degree	50 Hydrogen			
	Odor	-	Sulfide Odor			
	COD	mg/L	35			
	Temperature	°C	32			
-						
	Test No		Test 1	Test 2	Test 3	Test 4
	Silica Sand	cm	40	60	60	60
	Anthracite	cm	20	0	0	0
	Filtration Rate	m/d	120	125	120	140
Experiment Condition	Aluminum Salfate Dosage Rate	mg/L	40	40	40	0
	Sulfuric Acid Dosage Rate	mg/L	95	95	95	0
	Aeration		Conducted	Conducted	-	-
	Hq	-	5.84	5.85	5.84	
	DO	mg/L	5.88	6.02	2.32	
	EC	mS/m	66	65	64	
Water	Turbidity	mg/L	2	2	2	
Quality After Aeration	Color	degree	50	50	40	
Actation	Odor	uegree	Hydrogen	Hydrogen	Hydrogen	
		-	Sulfide Odor	Sulfide Odor	Sulfide Odor	
	Temperature	°C	29.9	29.6	29.5	
	pН	-	6.02	5.97	5.93	7.41
	DO	mg/L	6.84	6.05	3.96	3.22
	EC	mS/m	66	66	66	54
Water	Turbidity	mg/L	0	1	1	0
Quality After Filtration	Color	degree	0	1	3	40
Pittation	Odor	-	Unobjectionable	Unobjectionable	Hydrogen Sulfide Odor	Hydrogen Sulfide Odor
	COD	mg/L	5	7	7	35
	Temperature	°C	29.2	29.1	29.3	29.3
			Aeration	Aeration		
			Dosing Sulfuric Acid	Dosing Sulfuric Acid	Dosing Sulfuric Acid	
	Reference		Dosing Aluminum Salfate	Dosing Aluminum Salfate	Dosing Aluminum Salfate	
			Anthracite+ Silica Sand Filtration	Silica Sand Filtration	Silica Sand Filtration	Silica Sand Filtration

Filtration (Column) Test Lingayen

ĺ	WD		Lingayen	
	Target Well		Libsong	
Raw Water	pH	_	8.38	
itan mater	EC	mS/m	128	
	DO	mg/L	0.83	
	Turbidity	mg/L	0	
	Color	-	40	
	Odor	_	Hydrogen Sulfide Odor	
	COD	mg/L	30	
	Temperature	°C	28	
<u> </u>	*			
	Test No		Test 1	Test 2
	Silica Sand	cm	40	60
	Anthracite	cm	20	0
	Filtration Rate	m/d	125	132
Experiment	Aluminum Salfate Dosage Rate	mg/L	45	45
Condition	Caustic Soda Dosage Rate	mg/L	100	0
	Sulfuric Acid Dosage Rate	mg/L	67	67
	Aeration		-	Conducted
	pН	-	7.33	5.4
	DO	mg/L	2.78	6.08
117.4	EC	mS/m	139	140
Water Quality After	Turbidity	mg/L	3	4
Aeration	Color	degree	80	80
	Odor	-	Hydrogen Sulfide Odor	Hydrogen Sulfide Odor
	Temperature	°C	29	29.5
	рН	-	7.6	5.7
	DO	mg/L	4.01	6.55
	EC	mS/m	138	136
Water	Turbidity	mg/L	2	0
Quality After	Color	degree	30	2
Filtration	Odor	-	Hydrogen Sulfide Odor	Unobjectionable
	COD	mg/L	20	7
	Temperature	°C	28.8	29.1
				Aeration
			Dosing Sulfuric Acid	Dosing Sulfuric Acid
	Reference		Dosing Aluminum Salfate	Dosing Aluminum Salfate
			Dosing Caustic Soda	
			Anthracite+	
			Silica Sand Filtration	Silica Sand Filtration

Filtration (Column) Test Pagsanjan

	WD		Pagsanjan	
	Target Wel	Target Well		
Raw Water	Fe	mg/L	2.2	
	Mn	mg/L	0.28	
	pН	-	7.28	
	EC	mS/m	88	
	DO	mg/L	1.01	
	Turbidity	mg/L	1	
	Color	-	0	
	Odor	-	Metallic	
	Temperature	°C	28.5	
	Test No		Test 1	
F • .	Silica Sand	cm	42	
Experiment Condition	Filtration Rate	m/d	114	
Condition	Aeration	-	Conducted	
	pН	-	7.66	
	DO	mg/L	5.83	
Water Quality After	EC	mS/m	86	
Aeration	Turbidity	mg/L	17	
	Color	-	50	
	Temperature	°C	28.5	
	Fe	mg/L	0.08	
	pН	-	7.74	
	DO	mg/L	6.38	
Water Quality After	EC	mS/m	86	
Filtration	Turbidity	mg/L	0	
	Color	-	0	
	Odor	-	Unobjectionable	
	Temperature	°C	28.5	
	Reference		Aeration	
			Silica Sand Filtration	

Filtration (Column) Test Panitan

	WD		Panitan	
	Target Well		Phase2	
Raw Water	Fe	mg/L	9	
	Mn	mg/L	1.2	
	рH	-	6.67	
	EC	mS/m	69	
	DO	mg/L	0.35	
	Turbidity	mg/L	8	
	Color	-	5	
	Odor	-	Metallic	
	Temperature	°C	28	
	Test No		Test 1	Test 2
	Silica Sand	cm	50	50
Experiment	Filtration Rate	m/d	138	103
Condition	Caustic Soda Dosage Rate	mg/L	0	96
	Aeration		Conducted	Conducted
	рH	-	7.05	8.47
	DO		5.65	6.63
Water Quality After	EC	mS/m	67	79
Aeration	Turbidity	mg/L	67	5
	Color	-	Slightly white	
	Temperature	°C	28.4	27.4
	Fe	mg/L	1.63	0
	Mn	mg/L	0.75	0.54
	pН	-	8.22	8.52
Water	DO		5.99	6.67
Quality After	EC	mS/m	65	79
Filtration	Turbidity	mg/L	22	2
	Color	-	50	0
	Odor	-	Metallic	Unobjectionable
	Temperature	°C	30.1	27.8
	Reference		Aeration	Aeration and Alkaline dosage
			Silica Sand Filtration	Silica Sand Filtration

Filtration (Column) Test Dingle-Pototan

	WD	Diı	ngle-Pototan	
	Target Well		Abangai	
Raw Water	Fe	mg/L	1	
	Mn	mg/L	0.68	
	pН	-	7.35	
	EC	mS/m	149	
	DO	mg/L	0.23	
	Turbidity	mg/L	8	
	Color	degree	10	
	Odor	-	Metallic	
	Temperature	°C	27.8	
	Test No		Test 1	Test 2
	Silica Sand	cm	53	53
Europimont	Anthracite	cm	0	0
Experiment Condition	Filtration Rate	m/d	143	113
	Chlorine dosage rate	mg/L	0	30
	Aeration		Conducted	Conducted
	pН	-	7.95	7.44
	DO		6.57	0.23
Water Quality After	EC	mS/m	148	148
Aeration	Turbidity	mg/L	8	0
	Color	degree	20	
	Temperature	°C	27.5	27.7
	Fe	mg/L	0.06	0
	Mn	mg/L	0.27	0.34
	pН	-	8.35	7.6
	DO		7.26	4.46
Water Quality After	EC	mS/m	147	154
Filtration	Turbidity	mg/L	0	1
	Color	degree	5	20
	Odor	-	Unobjectionable	Unobjectionable
	Residual Chlorine	mg/L	0	6
	Temperature	°C	30.2	29.2
	Reference		Aeration	Chlorine injection
			Silica Sand Filtration	Silica Sand Filtration

	WD		Pontevedra	
	Target Well		Sublangon	
Raw Water	Fe	mg/L	1.4	
	Mn	mg/L	0.96	
	pН	-	6.6	
	EC	mS/m	114	
	DO	mg/L	0.38	
	Turbidity	mg/L	0	
	Color	degree	0	
	Odor	-	Metallic	
	Temperature	°C	27.6	
	Test No		Test 1	Test 2
	Silica Sand	cm	55	0
Experiment	Manganese Sand	cm	0	60
Condition	Filtration Rate	m/d	145	127
	Chlorine dosage rate	mg/L	0	2
	Aeration		Conducted	-
	pН	-	7.17	7.34
	DO		6.06	7.41
Water Quality After	EC	mS/m	105	102
Aeration	Turbidity	mg/L	6	0
	Color	degree	5	8
	Temperature	°C	27.4	27.5
	Fe	mg/L	0.08	0
	Mn	mg/L	0.78	0.07
	pН	-	7.48	7.23
	DO		5.5	7.24
Water Quality After	EC	mS/m	105	103
Filtration	Turbidity	mg/L	0	2
	Color	degree	0	0
	Odor	-	0	Unobjectionable
	Chlorine dosage rate	mg/L	0	0
	Temperature	°C	27.7	28.6
	Reference		Aeration	Using the treated water of Test 1
			Silica Sand Filtration	Manganese Sand Filtration

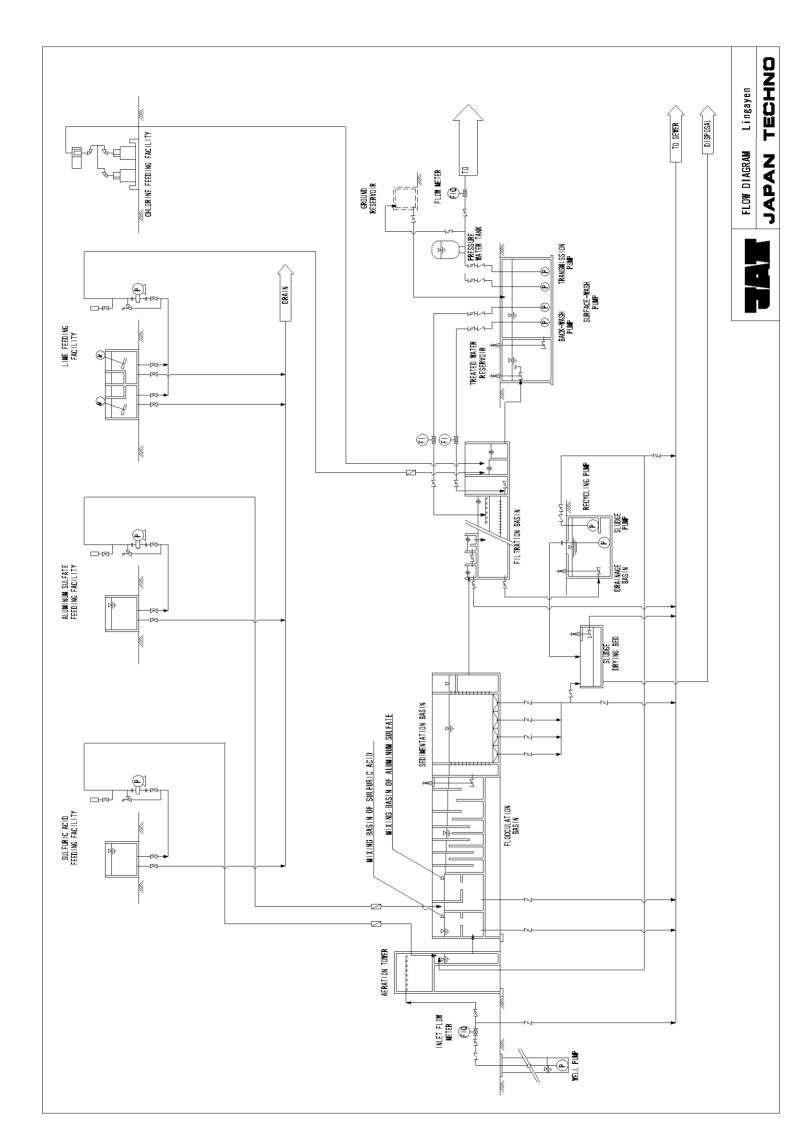
Filtratio (Column) Test Abuyog

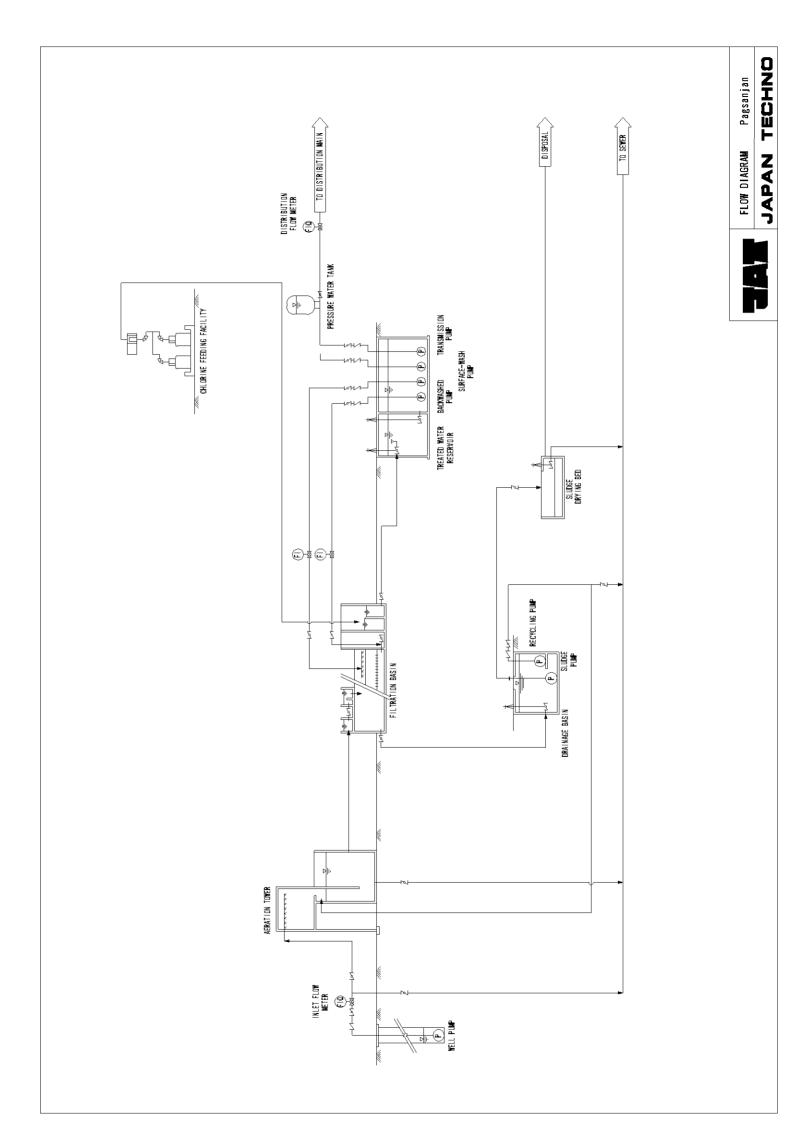
	WD	Abuyog	
	Target Well	Barayong	
Raw Water	Fe	mg/L	4
	Mn	mg/L	1.9
	pН	-	6.73
	EC	mS/m	239
	DO	mg/L	0.42
	Turbidity	mg/L	1
	Color	-	15
	Odor	-	Metallic and hydrogen sulfide odor
	COD	mg/L	4.69
	TOC	mg/L	4.2
	NH4	mg/L	3.3
	Temperature	°C	30.6

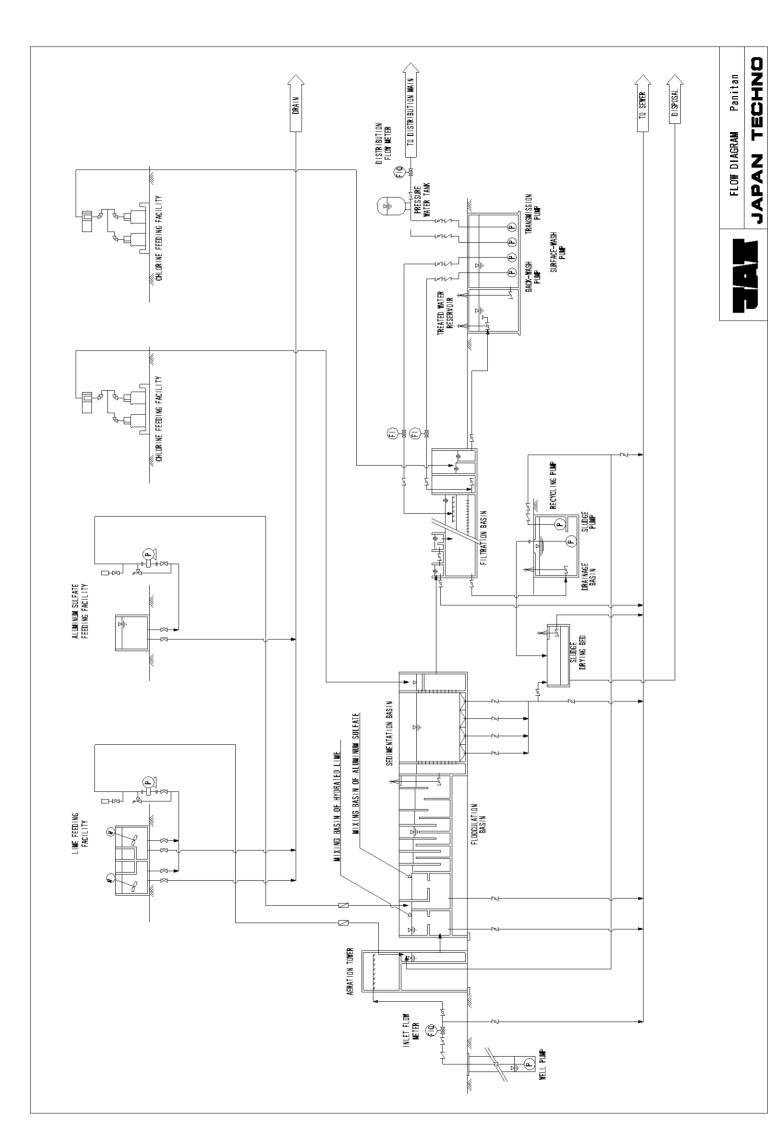
	Test No		Test 1	Test 2
	Silica Sand	cm	53	54
	Filtration Rate	m/d	131	134
Experiment	Chlorine dosage rate	mg/L	0	30
Condition	Aluminum Sulfate Dosage Rate	mg/L	30	0
	Aeration		Conducted	-
	pН	-	7.33	7.09
	DO	mg/L	5.75	2.07
Water	EC	mS/m	243	238
Quality After	Turbidity	mg/L	28	2
Aeration	Color	-	White	Brown
	Odor	-	-	-
	Temperature	°C	29.2	30
	Fe	mg/L	0.06	0.12
	Mn	mg/L	1.9	1.84
	pН	-	7.74	7.65
	DO	mg/L	5.89	6.53
	EC	mS/m	238	246
Water Quality After	Turbidity	mg/L	3	2
Filtration	Color	-	8	10
	Odor	-	Unobjectionable	Unobjectionable
	COD	mg/L	2.2	2.88
	TOC	mg/L	2.2	0
	NH4	mg/L	2	0
	Temperature	°C	28.1	29.2
	Reference		Aeration Aluminum sulfate dosage	Chlorine dosage
			Silica sand filtration	Silica sand filtration

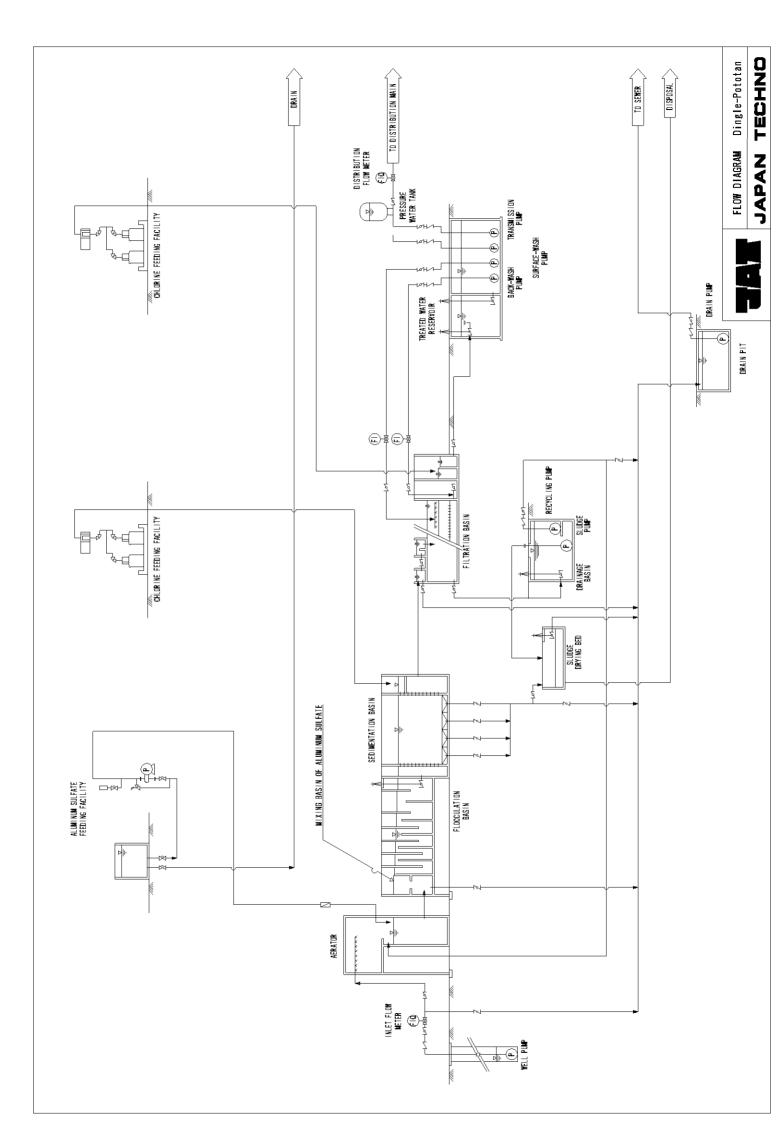

	WD		Midsayap	
	Target Well	l	Villarica	
Raw Water	Fe	mg/L	1.7	
	Mn	mg/L	0.97	
	pН	-	7.09	
	EC	mS/m	107	
	DO	mg/L	0.47	
	Turbidity	mg/L	0	
	Color	-	0	
	Odor	-	Metallic	
	Temperature	°C	27	
	Test No		Test 1	Test 2
	Silica Sand	cm	47	0
Experiment	Manganese Sand	cm	0	60
Condition	Filtration Rate	m/d	136	151
	Chlorine dosage rate	mg/L	0	8
	Aeration		Conducted	-
	pН	-	7.66	8.03
1 17 .	DO		5.03	6.1
Water Quality After	EC	mS/m	109	110
Aeration	Turbidity	mg/L	7	4
	Color	-	White	Backish Brown
	Temperature	°C	32.5	31.8
	Fe	mg/L	0.14	0.08
	Mn	mg/L	0.87	0.05
	pН	-	8.08	7.92
1 17 .	DO		4.88	6.18
Water Quality After	EC	mS/m	109	109
Filtration	Turbidity	mg/L	0	0
	Color	-	0	0
	Odor	-	Unobjectionable	Unobjectionable
	Residual chlorine	mg/L	0	0
	Temperature	°C	33.5	32.9
	Reference		Aeration	Using the treated water of Test 1
			Silica filtration	Manganese sand filtration

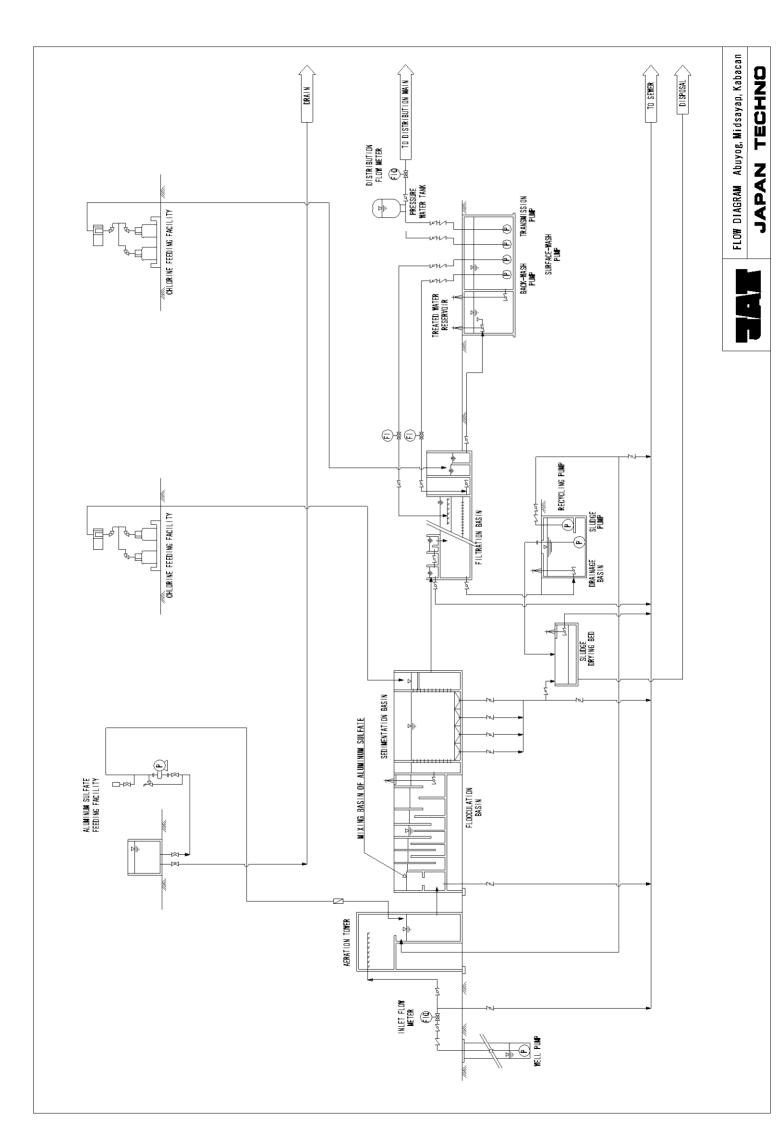
Filtration (Column) Test Kabacan

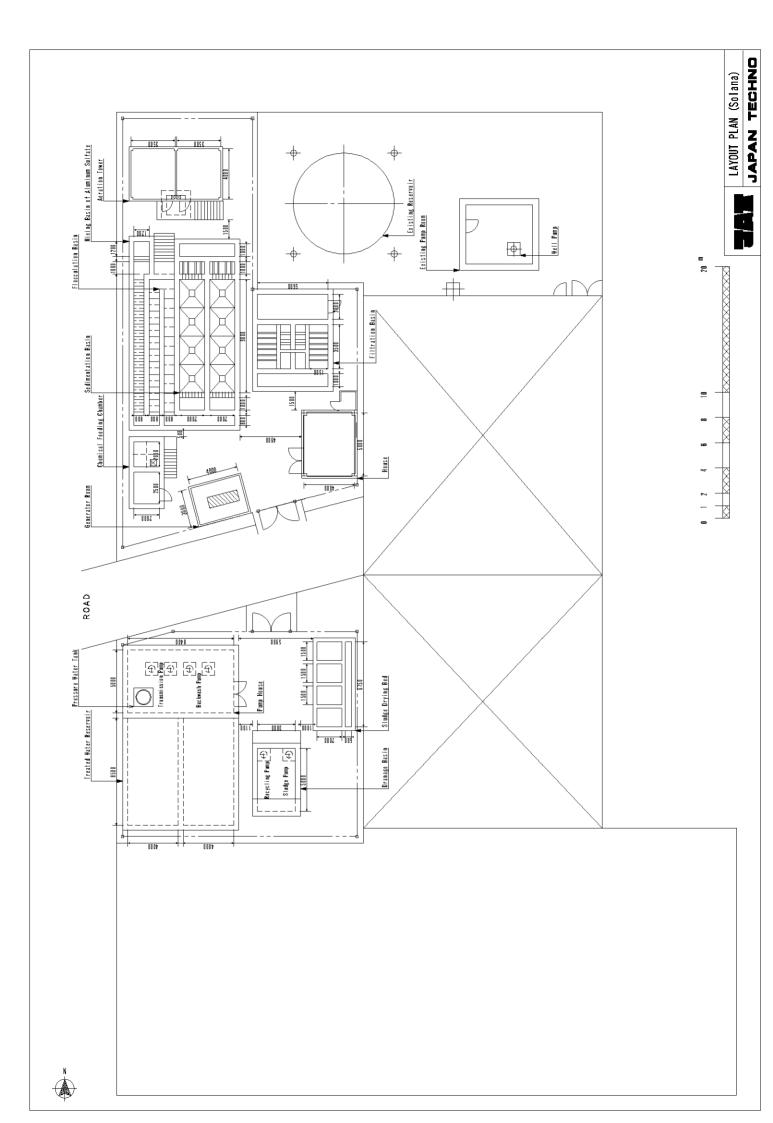

	WD		Kabacan	1
	Target Well		No.2 P.S.	-
Raw Water	Fe	mg/L	1.7	
	Mn	mg/L	1.9	
	pН	-	7.08	
	EC	mS/m	55	-
	DO	mg/L	0.66	
	Turbidity	mg/L	0	
	Color	-	0	
	Odor	-	Metallic	-
	Temperature	°C	28.9	
	Test No		Test 1	Test 2
	Silica Sand	cm	42	0
Emericant	Manganese Sand	cm	0	55
Experiment Condition	Filtration Rate	m/d	152	142
condition	Chlorine dosage rate	mg/L	0	8
	Aeration		Aeration	-
	pН	-	7.62	7.95
	DO	mg/L	6	5.3
Water Quality After	EC	mS/m	55	57
Aeration	Turbidity	mg/L	9	7
	Color	-	White	Blackish brown
	Temperature	°C	29.8	34.1
	Fe	mg/L	0.3	0.11
	Mn	mg/L	0.76	0.07
	pН	-	7.85	7.96
	DO	mg/L	4.44	5.8
Water Quality After	EC	mS/m	55	57
Filtration	Turbidity	mg/L	0	0
	Color	-	0	0
	Odor	-	N.D.	N.D.
	Residual chlorine	mg/L	0	0
	Temperature	°C	32	32.4
	Reference		Aeration	Using treated water of Test 1
			Silica filtration	Manganese sand filtration

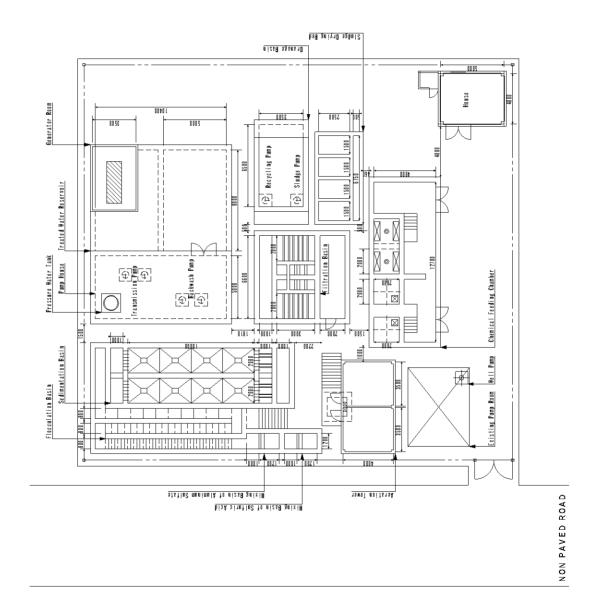

1. Flow Diagram


Solana, Pontevedra Binmaley(Caloocan, Fabia) Lingayen Pagsanjan Panitan Dingle-Pototan Abuyog, Midsayap, Kabacan



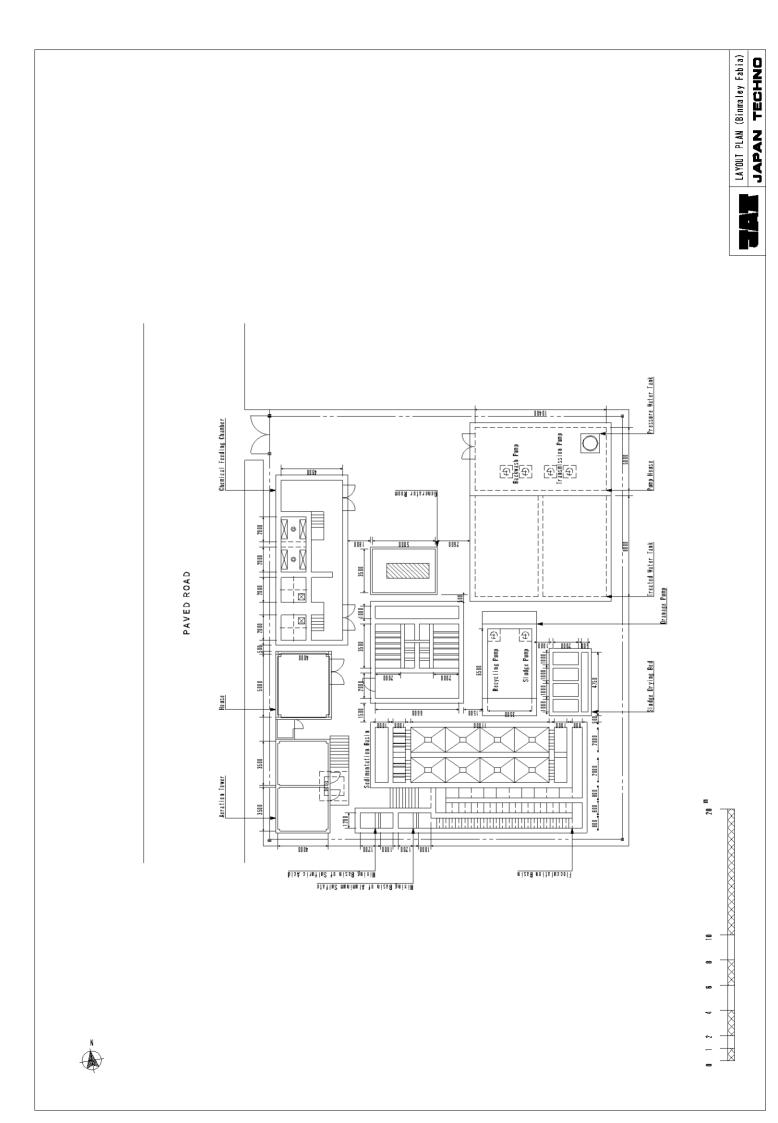


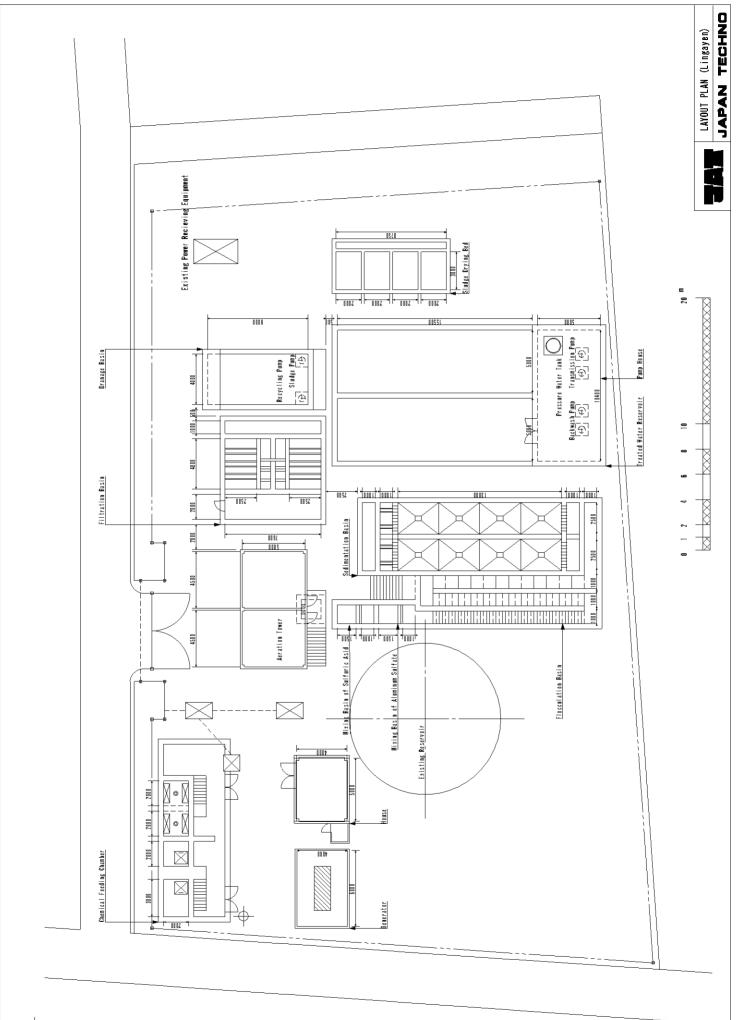


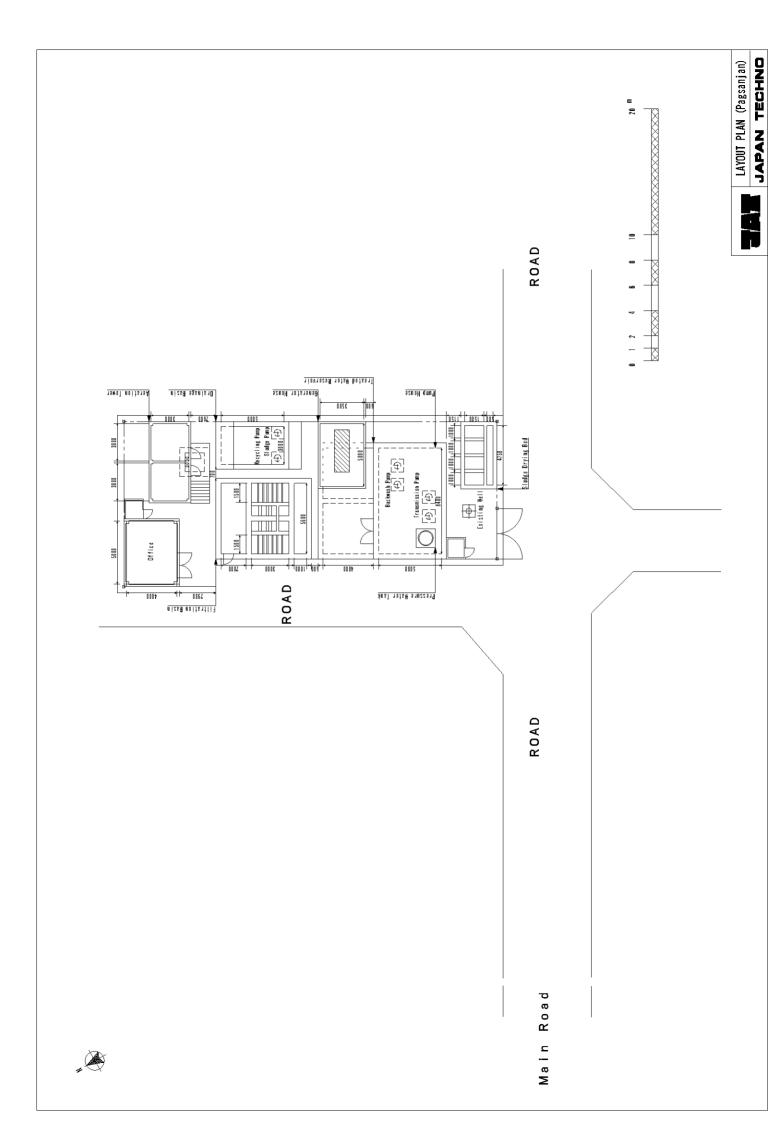


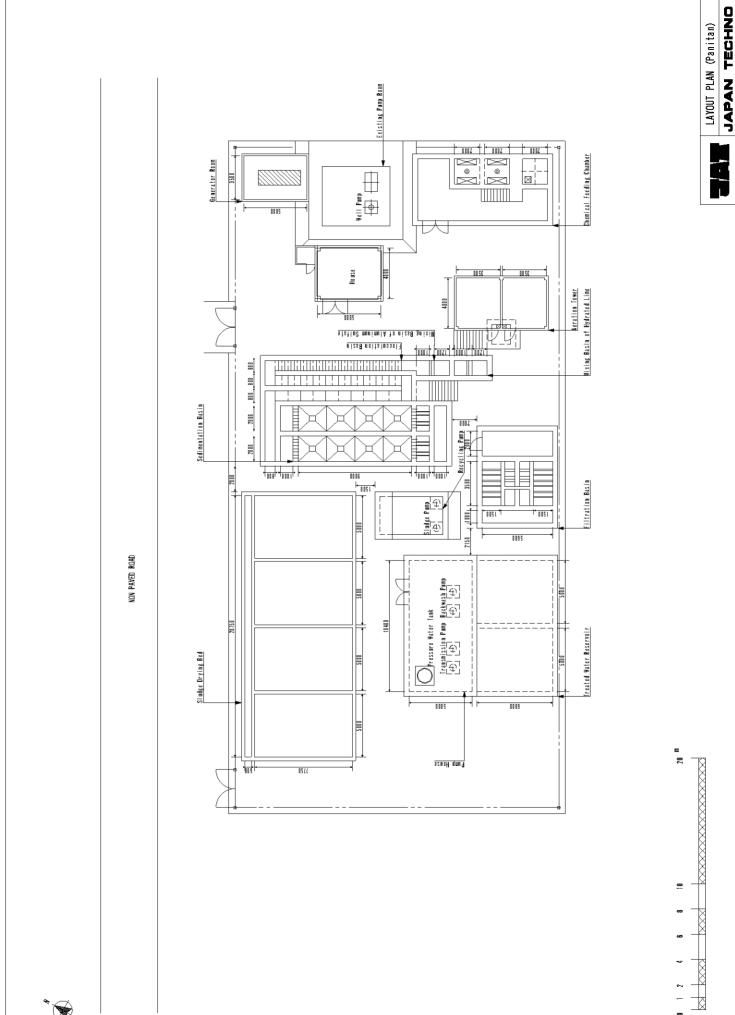
2. Layout Plan

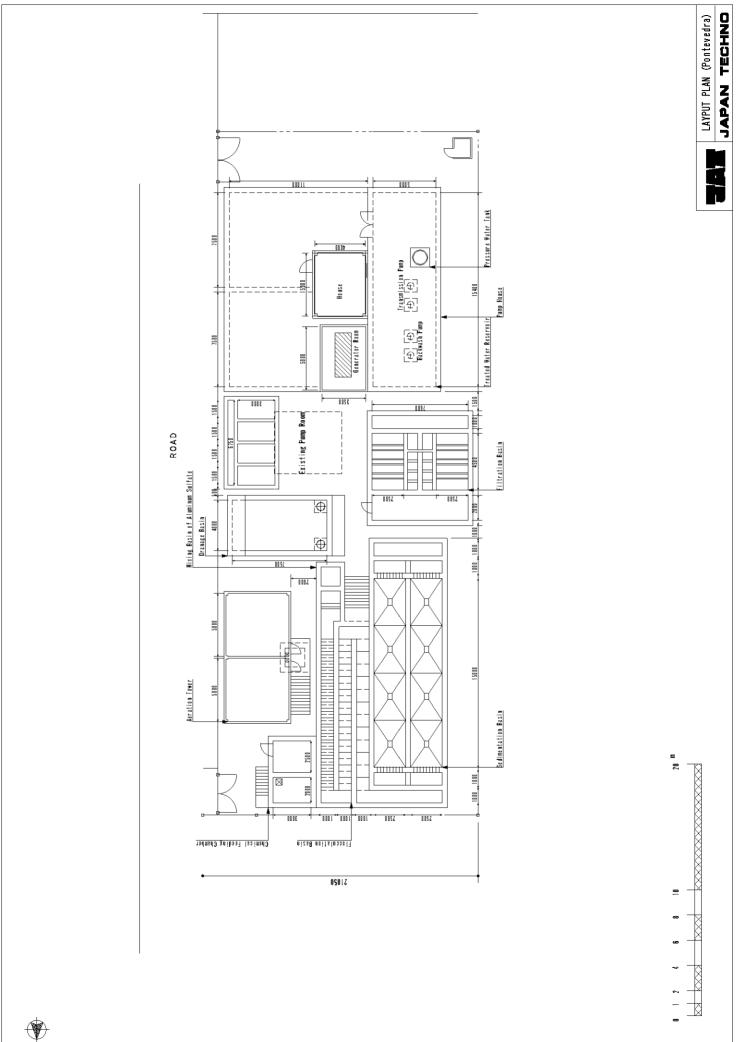
Solana Binmaley Caloocan Binmaley Fabia Lingayen Pagsanjan Panitan Pontevedra Dingle-Pototan Abuyog Midsayap Kabacan

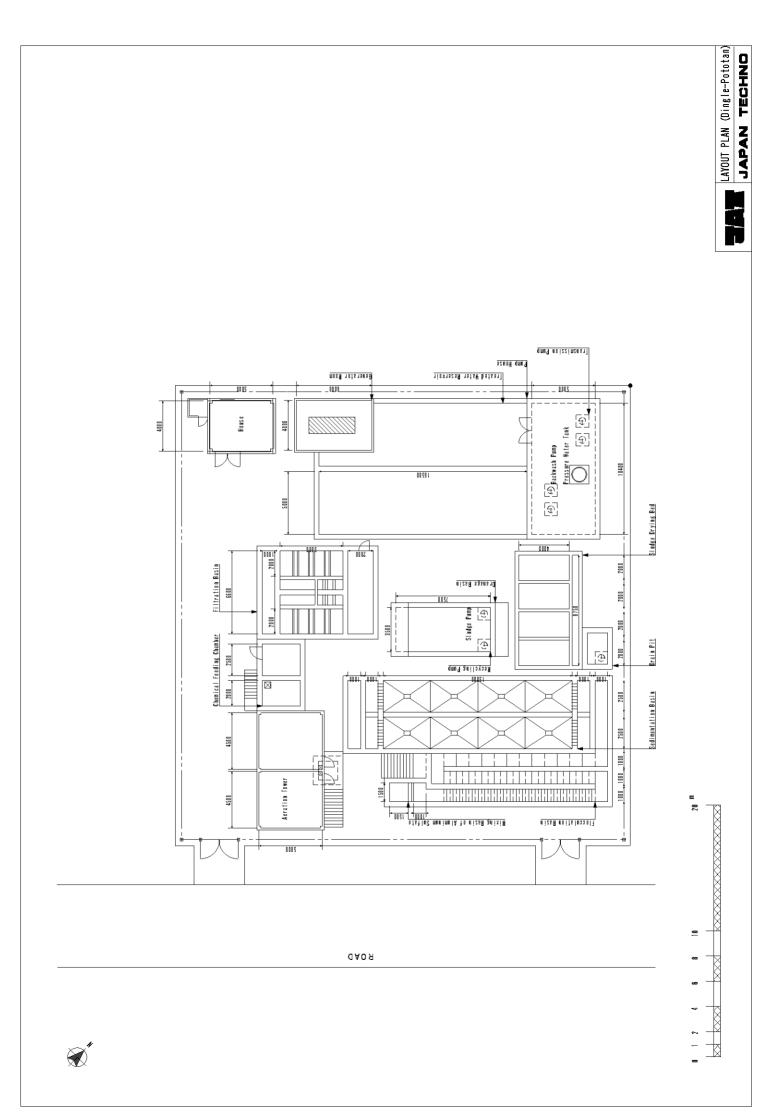


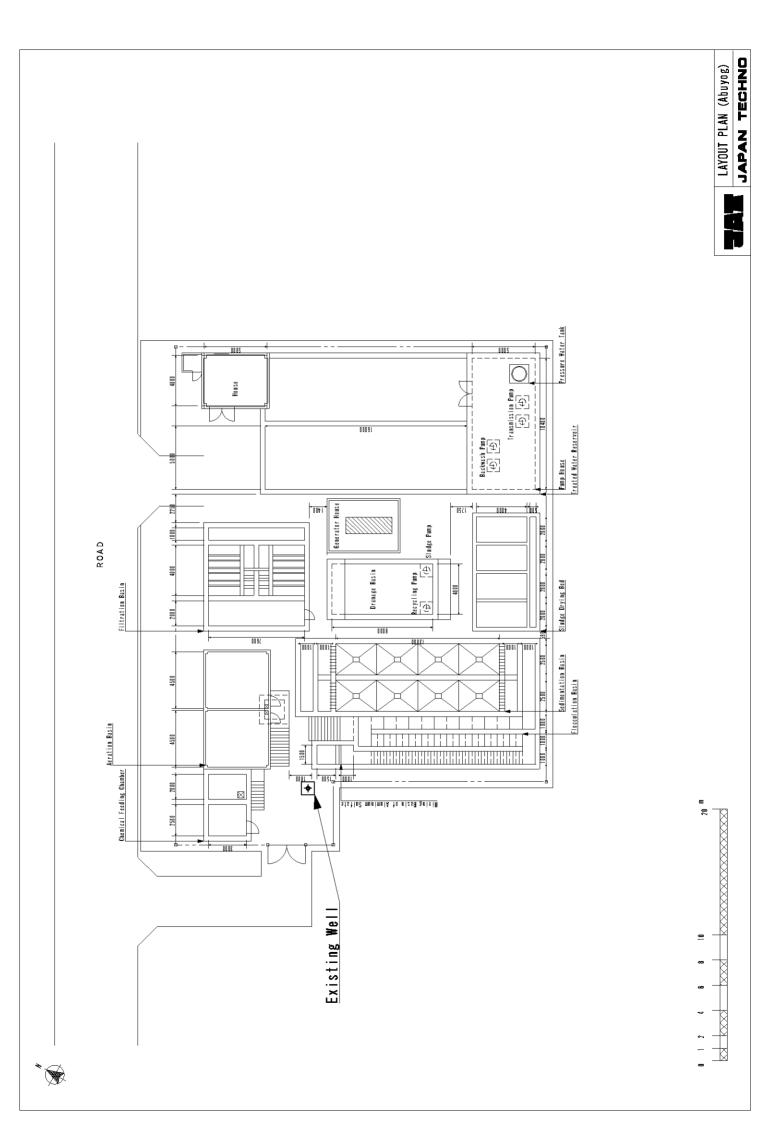


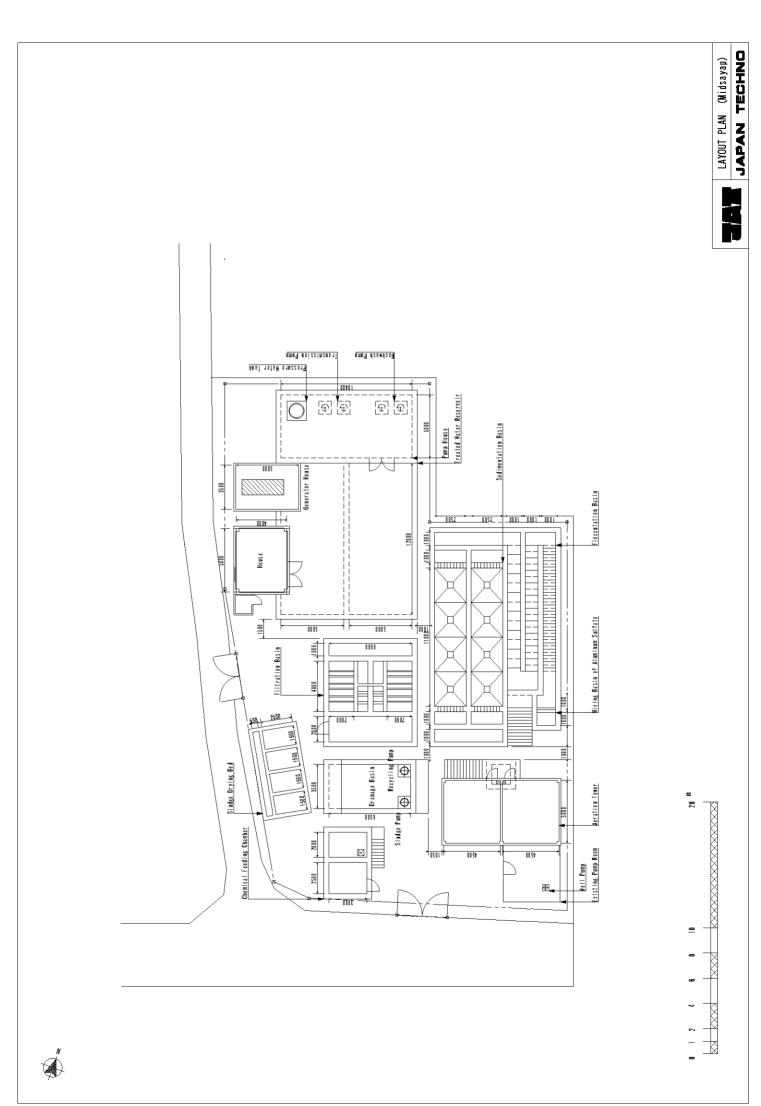

X

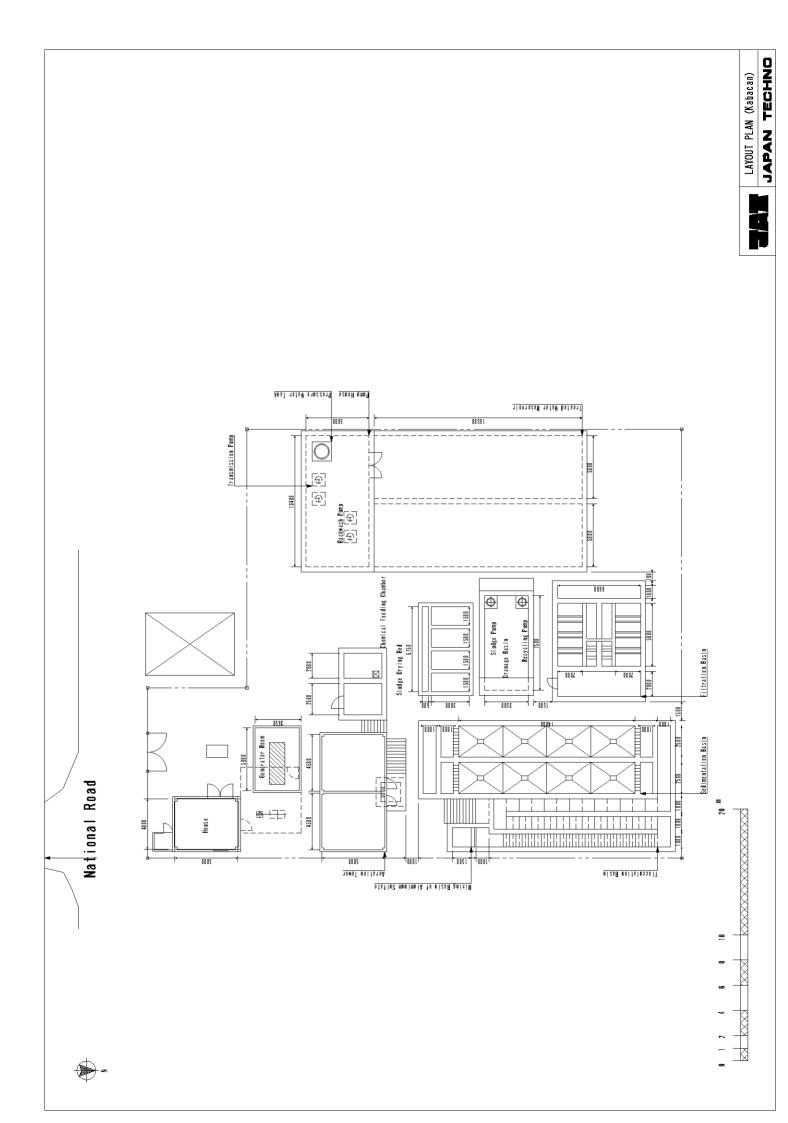

20 ^m

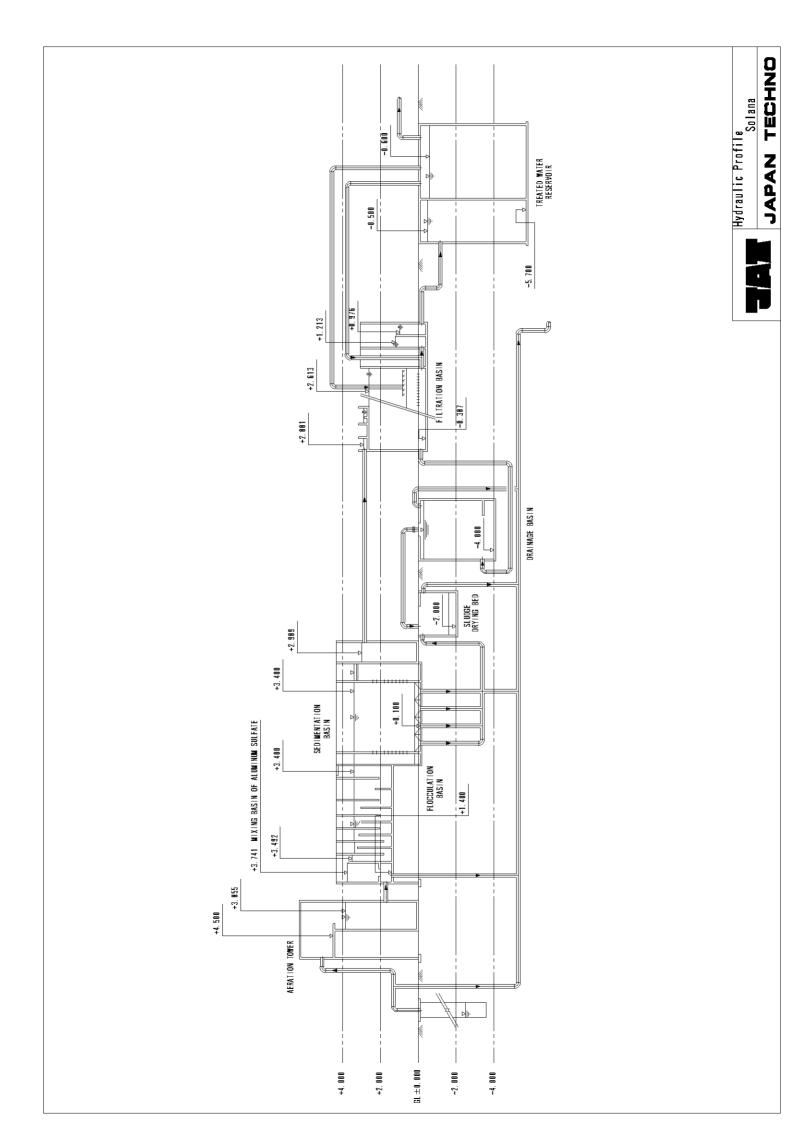

×"

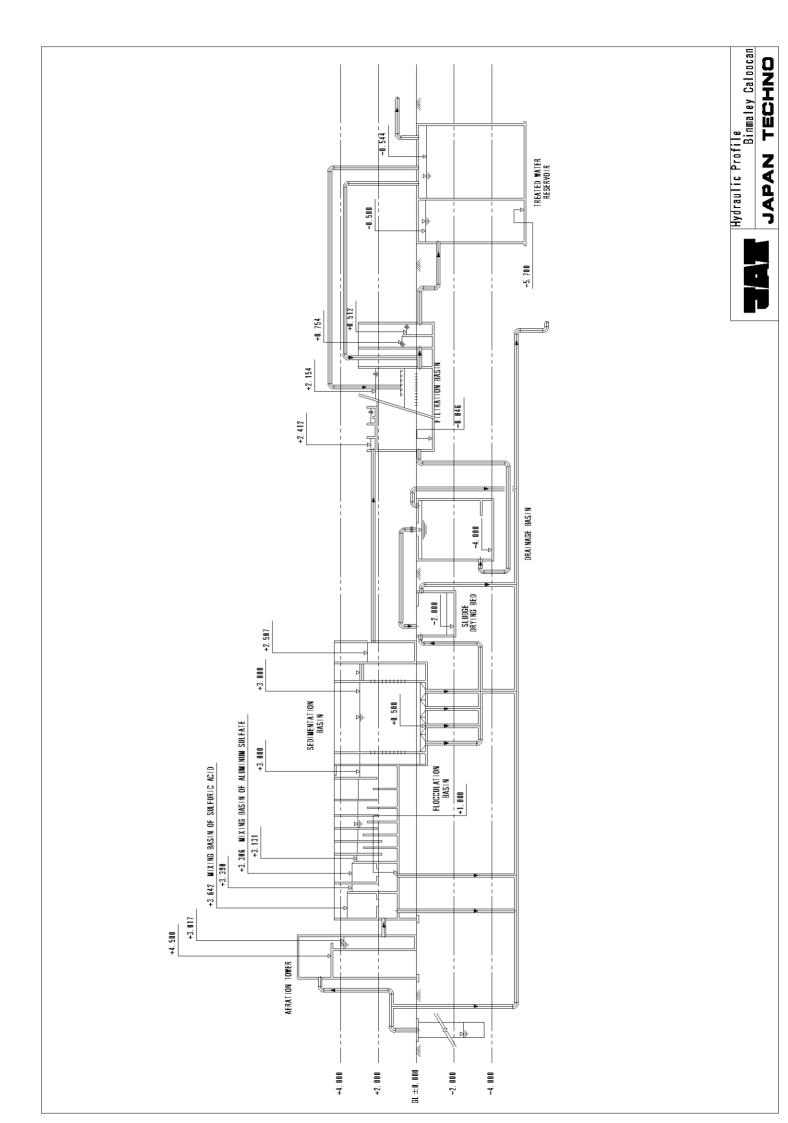


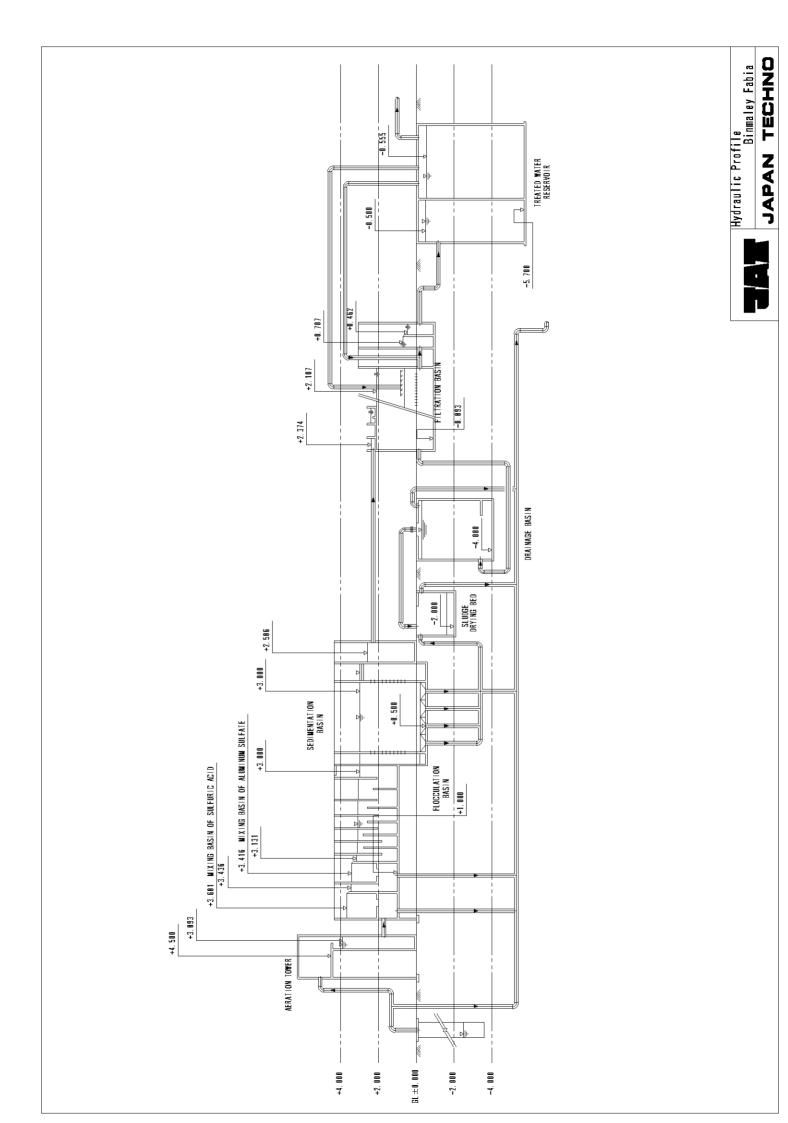


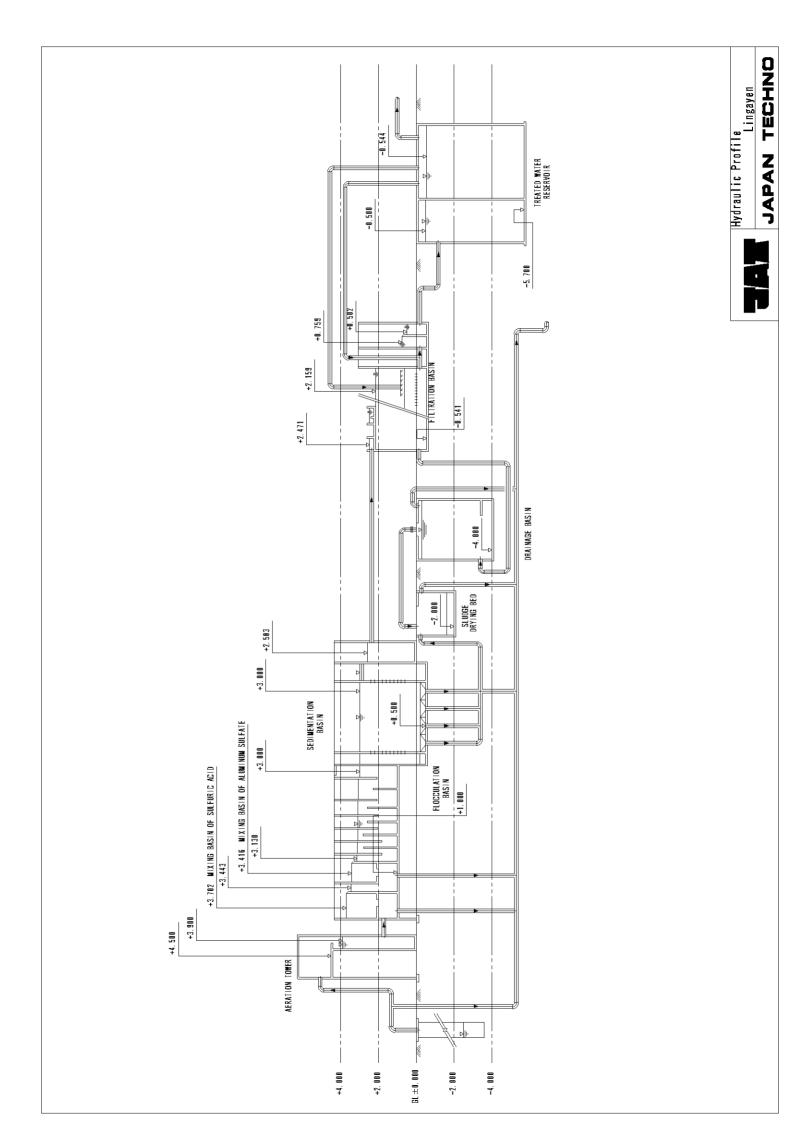


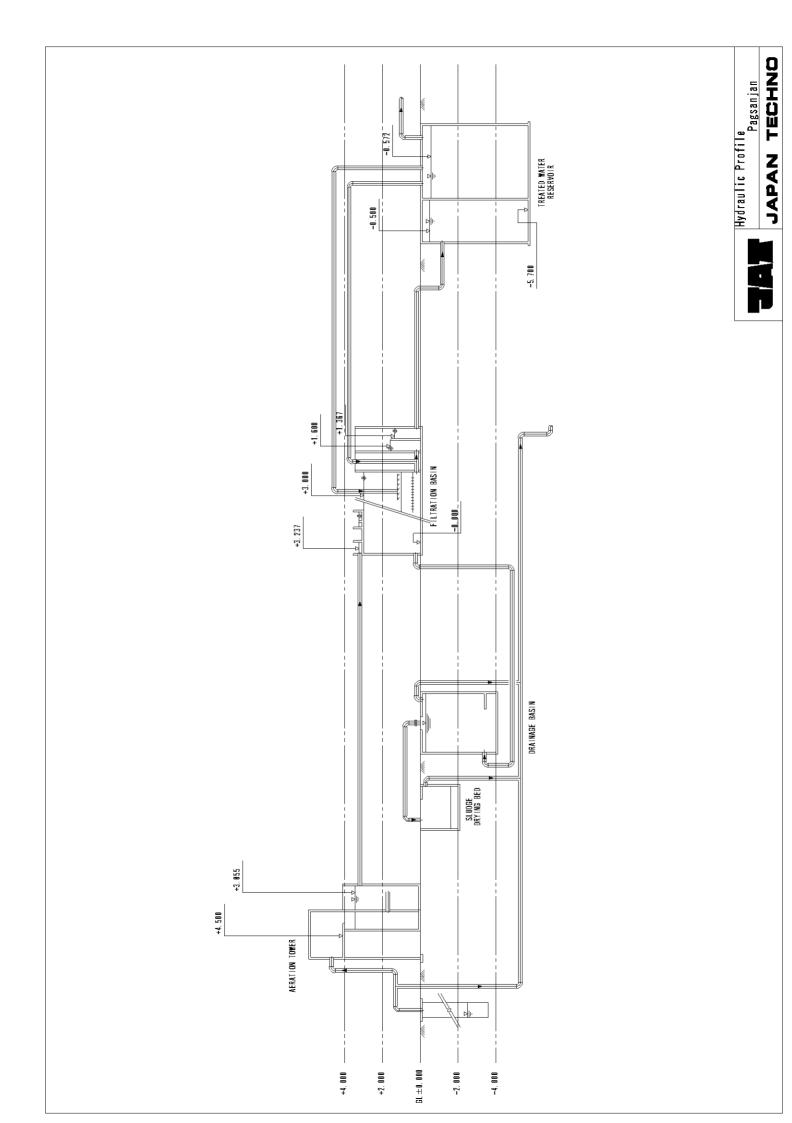









3. Hydraulic Profile


Solana Binmaley Caloocan Binmaley Fabia Lingayen Pagsanjan Panitan Pontevedra Dingle-Pototan Abuyog Midsayap Kabacan

