5. WATER RESOURCES & WATER QUALITY DATA

Table 2-1: Stream flow measurement

Binaturi River (measured on 6 June 2000)

Distance from one								
end of water								
surface (m)	1.0	6.0	11.0	16.0	21.0	26.0	31.0	35.0
Depth (m)	2.30	3.00	4.00	4.80	5.85	4.70	1.60	1.50
Average velocity								
(m/s)	0.032	0.165	0.290	0.395	0.344	0.362	0.159	0.032
Discharge in the								
strip (m3/s)	0.074	2.468	5.800	9.468	10.062	8.507	1.272	0.192
Total flow (m3/s)	37.8							

KUPIANO

Lako R. intake (measured on 27 June 2000)

Lako K. intake (inea	Saled on T	June 200	<u> </u>				
Distance from one							
end of water		•	İ				
surface (m)	1.0	5.0	10.0	20.0	30.0	40.0	49.0
Depth (m)	0.26	0.30	0.76	0.53	0.51	0.76	0.53
Average velocity				-			
(m/s)	0.232	1.555	1.677	2.3335	2.2125	2.494	1.542
Discharge in the					•		
strip (m3/s)	0.060	1.866	6.373	12.368	11.284	18.954	7.355
Total flow (m3/s)	58.3				•		

POPONDETTA

Bangoho R. intake (measured on 20 May 2000)

Distance from one								
end of water								
surface (m)	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Depth (m)	0.21	0.27	0.35	0.42	0.56	0.61	0.71	0.60
Average velocity								
(m/s)	0.519	0.799	0.815	0.785	1.002	0.9275	0.674	0.356
Discharge in the					·		·	
strip (m3/s)	0.163	0.108	0.143	0.165	0.281	0.283	0.239	0.107

Distance from one				
end of water			Į.	
surface (m)	5.5	6.0	6.5	7.0
Depth (m)	0.36	0.24	0.30	0.20
Average velocity	T			
(m/s)	0.318	0.2555	0.169	0.41
Discharge in the				
strip (m3/s)	0.057	0.031	0.025	0.041
Total flow (m3/s)	1.6			

FINSCHHAFEN

Buta Creek (measured on 23 May 2000)

The stream flow was measured to be 16.5 L/s (0.0165 m3/s).

Table XX: Water Qualities of Existing Water Sources from the Eight Sites in the Study Area

			Date		Air			Ph	ysical Para	meters				1	Element	s				
Study Area	Location	Source	of year	Weather	Temp.	W. temp*1	· pH	EC	Turb,*2	Color	Odour &	Cq	Hg	Se	Pb	As	Cr	F	Ba	Żn
			2000		°C	°C		mS/m	<u> </u>		Taste	mg/i	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/
									De	tection Lim	it	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.1	0.1
1.Popondetta	a. Agr.College	9orehole	24,May	Fine	29.0	28.0	7.2	25.9	0	6	Nii	<0.001	<0.001	<0.001	₹0,001	<0.001	<0.001	0.70	₹0,1	₹0,1
	b. Village	Spring	25,May	Rain	28.5	25.8	5.3	14.8	0	2	Nil	(0,001	<0.001	< 0.001	<0.001	0.002	<0.001	0,64	<0.1	₹0.1
	c. W. B. Intake	Aiver	25,May	Cloudy	25,8	27.3	7,8	24.2	1	6	Algae	(0,001	<0.001	<0.001	₹0,001	0.006	<0.001	0.59	(0,1	<0.1
	d. Town	Төр	25,May	Cloudy	24.7	26.8	7.5	24,1	0	6	Chlorina	<0.001	<0.001	<0.001	(0.001	0.006	<0.001	0.56	<0.1	₹0.1
2.Daru	a. U'ume Intake	River	5,June	Rain	25.6	25.0	8.3	5.1	0.5	75	Nil	(0.001	<0.001	(0.0 01	<0.001	0,003	<0,001	0.14	CD.1	<0.1
•	b. Treatment Plant	Тар	6,June	Cloudy	27.3	28.6	5,4	9,1	0.5	5	Nii .	<0.001	<0.001	<0.001	<0.001	0.002	₹0.001	0.05	<0.1	0.3
	c. Town A	S. Well ^{vs}	6,June	Rein	27.3	27.9	7.2	82.9	0	Đ	Nil	(0.001	<0,001	<0.001	<0,001	0.002	0.002	0.56	⟨ 0.1	0.1
	d. Town B	S. Well	7.June	Cloudy	27.1	28.4	7.0	14.0	50	100	Soil	<0.001	<0.001	<0.001	(0,001	<0.001	<0.001	0.21	<0.1	0:2
	e. Town C	S. Well	7,June	Cloudy	27.3	27.2	6.3	21.1	0.5	٥	Sulfide	<0.001	<0.001	<0,001	<0.001	0.003	< 0,001	0.25	<0.1	<0.1
	f. Town D	S. Well	7.June	Cloudy	28.4	26.9	7.2	184.3	15	20	Scented	<0.001	<0.001	<0.001	0.002	0,005	0.005	0.49	0.1	₹0.1
3.Bereina	b. Training C.	Borehole	23.May	Clear	28.3	28.7	7.8	53.2	0	D	Nii	<0.001	<0.001	<0.001	<0.001	0,005	<0.001	0.43	₹0,1	<0.1
	c. P.S #1	S. Well	23,May	Clear	27.2	27.7	7.6	175.3	5	б	Nil	<0.001	<0.001	(0.001	<0.001	0.005	<0.001	0.43	<0,1	<0.1
	d. Mainohana Intake	River	23,May	Fine	29.3	24.7	9.0	12.4	150>	100>	Nil	<0,001	<0.001	<0,001	0.003	0.003	8,019	0.23	<0.1	0.1
	e, High School	Barehole	23,May	Fine	29.3	27.4	8.2	117,1	0	2	Nil	<0.001	<0.001	CO.001	<0.001	0.006	₹0,001	0.77	<0.1	₹0.1
	f. Angebang	River	23,May	Clear	28.0	24,8	7.9	12.6	150>	100>	Nil	<0.001	<0.001	<0.001	0.00B	0,004	0.023	0.33	0.1	0.1
4.Kupiano	a, Leko R. intake	River	27,June	Fine	27.7	28.3	7,7	16,4	2	0	Nil	<0.001	<0.001	100.00	₹0,001	0.003	< 0.001	0.28	<0.1	<0.1
	s. lepora	Spring	27,June	Fine	27.0	27,5	8.0	6.5	0	0	Nil	<0.001	<0.001	<0.001	<0.001	<0.001	< 0,001	0.19	₹0,1	₹0.1
5.Kwikila	a, High School	Borehole	18,May	Fine	30.6	27.9	7.3	73.6	Ø	0	Nil	<0.001	<0.001	(0.001	<0.001	<0.001	(0,001	0.65	₹0,1	<0.1
	b. Hospital	Borehole	18,May	Fine	29.5	27.2	7.3	84.3	0	0	Nil	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	0.70	0,1	0.1
	c. Salvation Army A	Borehole	18,May	Fine	30,0	28.7	6.9	79.7	0	2	Nii	<0.001	<0.001	(0,001	<0.001	<0.001	<0.001	0.49	<0,1	<0.1
	d, Salvation Army B	Borehole	18,May	Fine	30,0	28.6	7.0	86.7	0	0	Nil	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	0.47	₹0,1	0.2
	e. Kemp Welch R.	River	19.May	Fine	29.6	24.5	7.5	13.4	20	50	Nil	<0,001	100.00	<0.001	<0.001	<0.001	<0.001	0.30	0.1	<0,1
5.Finschhafen	a. Intaka	River	30,May	Fine	27.1	25.1	8.0	40.1	0	0	Nil	<0.001	<0.001	0.003	<0,081	<0.001	<0.001	0.71	<0.1	₹0.1
	b. Hospital	River	30,May	Cloudy	29.8	25,1	8.2	31.3	0.5	0	Ni)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.80	0.2	<0.1
	c, Village Intake	River	30,May	Cloudy	28.3	25.7	8.2	29.5	3	4	Nil	<0.001	<0.001	0.004	<0.001	<0.001	<0.001	0.56	<0,1	₹0.1
	d. Seminary Spring	Spring	30,May	Cloudy	28.0	25.7	7.8	29.9	0	0	Nil	<0.001	<0.001	0.006	<0.001	<0.001	₹0.001	0.41	<0.1	<0.1
	a. Town	Yep	30,May	Clear	31.0	28.3	8.1	38,1	0	0	Nil	<0.001	<0,001	<0.001	(0.001	0.003	<0.001	0.43	<0.1	<0.1
7.Mutzing	s. Manging R.	River	28,May	Fine	31,2	32.3	8.5	28.8	150>	100>	Soil	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	0.41	0.1	0.1
	b. Supply Source-2	Borehole	28,May	Fine	31.2	27.6	7,3	53.4	0	0	Nil	<0.001	<0.001	<0.001	<0.001	0.003	<0.001	0.58	<0.1	₹5,1
	c. Village	S. Well	28,May	Clear	31.2	27.9	7.3	52.7	0	1	Sail	<0.001	<0.001	0.002	<0.001	0,002	<0.001	0.82	<0.1	<0.1
	d, High School	Barehole	28,May	Clear	32.3	28.0	7.6	45.2	0	0	Nil	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	0.60	<0.1	<0,1
3.Oro Bay	a. Kosisi R.	River	25,May	Fine	32.9	26.3	7.4	5.4	5	20	NA	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	0.24	<0.1	<0.1
	b. Beans R.	River	25,May	Fine	34.0	28.6	7.9	8.0	1	6	Nil	<0.001	<0.001	<0,001	<0.001	0,002	<0.001	0.22	<0,1	0.1
	e. Hospital	River	25,May	Fina	29.0	26.8	7.2	6.0	1	20	Nil	<0.001	100.00	<0,001	⟨0.001	0.002	<0,001	0.17	<0.1	<0.1
والمنافذ والمنافذ والمراجع والمراجع	d. Fishery	S. Well	25,May	Fine	29.5	28.5	7.5	75.3	5	20	Nil	<0.001	(0.001	<0.001	<0.001	<0.001	100.0>	0.56	<0,1	<0.1
				s/Standard	a for Dr	inking Wat	er Quali	ty				,		<u>. </u>						
		WHO (1993)			-	-		5NTU	15TCU	Accepable	0.003	0.001	0.01	0.01	0.01	0.05	1.5	0.7	3
		PNG (1984))			-	6.5-9.2	-	25 units**	50 units ^{*7}	Unobjectionable	0.01	0.001	0.01	0.1	0.05	-	1.5		15
		Japan (199	3)			-	5.8~8.6		2	5	Accepable	0.01	0.0005	0.01	0.05	0.01	0.05	0.B	-	1

-208-

Table XX: continued

•													Co	mpound	ls & Otl	ners		Bac	teria	Residue
Study Area	Location	Fe	Cu	Na	Mn	CI	Ni	Sb	В	Мо	Aì	CN	NO₂	NO ₃	so.	тос	TDS	Total Coli*3	SPC*	CI
		mg/l	mg/l	mg/l	mg/i	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l			mg/l
		0.1	0.1	0.1	0.01	1	0.01	0.001	0:1	0.01	0.1	0.01	0,1	0,1	0,1	1	1	1	1	0.05
1.Popondetta	a. Agr.College	0.2	(0,1	7.5	0.38	10	<0.01	(0,00t	0.1	0.01	0.1	<0.01	<0.1	0.8	54.9	1	160	13	77	1
	b. Village	0.1	⟨0,1	7.2	0.09	9	<0.01	₹0,001	<0,1	0.01	₹0.1	<0.01	<0.1	0.5	8.5	1	118	69	200>	-
	s. W. B. Intake	0.1	<0.1	13.5	0.02	12	<0.01	<0.001	0.1	0.01	0,1	<0.01	<0,1	0.9	80.7	1	152	200>	200>	1
	d. Town	<0.1	₹0,1	13.8	0,01	13	<0.01	₹0.001	0,1	0.01	0,2	(0.01	<0,1	0.6	82.2	1	154	0	1	1
2.Daru	a. U'ume intake	0.5	₹0.1	2.4	0.01	11	(0.01	(0,001	<0.1	0.01	0.2	<0.01	<0.1	0.5	3.9	3	160	61	73	
	b. Treatment Plant	1.0	⟨0,1	7.0	0.01	11	(0.01	<0.001	<0.1	<0.01	< 0.1	<0.01	<0.1	1.2	51,3	1	34	D	6	0.2
	c. Town A	<0.1	<0.1	20.0	<0.01	100	<0.01	₹0.001	<0.1	<0.01	<0,1	<0,01	<0.1	0.6	55.5	3	524	30	200>	
	d. Town B	<0.1	<0.1	5.5	0.49	11	0.01	0.002	<0.1	0.01	0,2	<0,01	<0,1	0,4	2.2	1	72	21	200>	
	a. Town C	0.8	<0.1	20.0	0.04	50	10.0	<0.001	<0.1	0.03	<0.1	<0.01	₹0,1	0.5	19,1	1	98	200>	200>	
	f. Town D	0.3	⟨0.1	157.0	0,16	350	<0.01	<0.001	<0.1	0.02	0.1	<0.01	₹0.1	0.6	163.8	1	1030	200>	200>	***************************************
3.Bereina	b. Training C.	₹0,1	<0.1	95.1	0.03	110	(0.01	<0.001	0,1	0.01	<0.1	<0.01	<0.1	0.6	4.D	1	39	6	62	
	c. P.S #1	0,0	₹0.1	172.0	0.29	341	⟨0.01	<0.001	0,1	0,01	<0.1	<0.01	₹0.1	0.7	52.3	1	1020	47	113	***************************************
	d. Mainchena Intaka	0,2	<0,1	4,0	0.15	9	0.02	<0.001	<0.1	0,02	0,1	<0.01	<0.1	0.6	4.9	1	104	200>	200>	***************************************
	e. High School	<0.1	⟨0,1	206,0	0.05	18	<0.01	⟨0.001	0.2	0.02	₹0,1	<0,01	1,0>	0.5	8.8	1	726	В	7	************
	f. Angebang	1,4	<0.1	4.2	0.17	8	0.02	0.002	₹0.1	0.01	0.1	<0.01	₹0.1	0.4	5.1	1	118	200>	200>	
4.Kupiano	s. Lako R. intake	0.3	<0.1	4.2	0.02	1	<0.01	<0.001	<0.1	<0.01	0.2	₹0,01	₹0.1	0.6	4.6	1	13	32	B1	<u> </u>
	c. lopora	0.2	<0.1	21,4	0.02	1	<0,01	<0.001	0.1	<0.01	₹0,1	₹0.01	<0.1	0.6	17.6	1	32	4	5	
5.Kwikila	s. High School	0.1	<0.1	47.6	0.02	54	<0.01	<0.001	<0.1	0.01	<0.1	(0.01	₹0,1	1.0	3,1	1	404	200>	99	
	b. Hospital	0.2	<0.1	46.4	<0.01	48	0.01	<0.001	<0.1	<0.01	<0.1	⟨0.01	√ 0,1	1.2	9,1	1	444	11	70	***************************************
	c. Salvation Arny A	0,1	<0.1	51.2	<0.01	50	<0.01	<0.001	<0,1	0.01	<0.1	₹0.01	<0.1	9.0	4,0	1	47B	0	0	
	d. Salvation Army B	0.4	⟨0,1	54.1	0.01	50	<0.01	<0.001	(0.1	0.01	₹0.1	(0.01	<0.1	1.8	7,9	1	490	72	0	
	e. Kemp Welch R.	0.2	₹0.1	4.2	<0.01	35	<0.01	<0.001	<0.1	0.01	0,2	₹0,01	₹0.1	1.1	3.2	1	28	200>	200>	************
6.Finschhafen	a. Intake	<0.1	(0.1	5.7	<0.01	10	<0.01	<0.001	<0.1	<0.01	<0,1	<0.01	<0.1	D.7	9.5	1	250	92	58	
	b. Hospital	<0.1	(0,1	1.8	<0.01	9	<0.01	<0.001	₹0,1	0,01	<0,1	<0.01	<0.1	0.6	3.6	1	194	82	103	
	c. Village Intake	0,1	(0.1	1,1	0.02	f	<0.01	<0.001	₹0.1	0.01	₹0,1	<0,01	≺0. 1	0.5	2.1	1	182	112	84	
	d. Seminary Spring	<0,1	<0.1	1,0	₹0.01	11	<0.01	<0.001	₹0,1	<0,01	₹0,1	₹0.01	<0.1	1.5	2.4	1	166	200>	200>	
	e. Town	<0,1	<0.1	5.6	p.01	7	<0.01	<0.001	<0,1	0.01	<0.1	<0.01	<0.1	0.5	9.3	ļ	248	200>	200>	
7.Mutzing	a. Manging R.	0,1	0,1	40.8	0.02	10	<0.01	<0.001	0.2	<0.01	<0.1	₹0.01	<0.1	0.5	10.2	1	158	200>	200>	
	b. Supply Source-2	<0.1	<0,1	35.9	₹0.01	Đ	⟨0.01	(0,001	0.2	0.01	<0.1	<0.01	<0.1	0.5	18.2	4	325	109	200>	
	c. Village	0,1	<0.1	35.3	0.03	15	<0.01	⟨0,001	0.1	<0.01	<0.1	<0.D1	<0.1	0,8	18,9	2	310	19	71	
	d. High School	<0,1	<0.1	29.3	<0.01	7	₹0.01	(0,001	0.1	<0.01	⟨0,1	<0.01	₹0.1	0.8	14.5	ļ	344	36	200>	
3.Oro Bay	a. Kosisi R,	0.3	<0.1	3.6	0.01	10	(0.01	₹0.001	<0.1	0.01	0.1	<0,D1	<0.1	0.7	0.3	4	46	173	74	
•	b. Benna R.	0,1	⟨0.1	5.3	0.01	8	₹0.01	⟨0.001	< 0.1	<0.01	0.2	<0,01	<0.1	0.6	0.2	1 4	60	4	ļ	ļ
	c. Hospital	0.3	₹0.1	4.2	0.02	9	<0.01	(0.001	<0.1	<0.01	0.1	<0.01	<0.1	0.0	0.2	1 1	36	200>	200>	
	d. Fishery	0.0	<0.1	35.3	0.11	80	<0.01	<0.001	0.1	<0.01	ζ0,1	<0.01	CD.1	0.7	3.6	1	426	23	37	ļ
	Guidelines/Standard					: 00	(0.01	(\0.001	0.1	10.01	1 (0.1	1 (0.01	(0,1	U.1	3.0	<u>: ' </u>	: 42b	23	3/	<u>. </u>
··	WHO (1993)	0.3	nking w			050	0.00	0.005	0,5	0.07		1 007		F.0	050	·	1 1000		-0	
	PNG (1984)	1		200	0.5	250	0.02	0.005	u,s	0.07	0.2	0.07	3	50	250		1000		79	5
		ļ	1.5		0,5	1000						0,05		45		<u> </u>	<u> </u>		10	
<u> </u>	Japan (1993)	0,3	1	200	0.05	200	0.01	0.002	0.2	0.07	0.2	0.01	1	0		+ 8	500	<u></u> *	11	1

NΒ

- These analyses were carried out to check the water qualities for drinking.
- *1: Water temperature
- *2: Turbidity
- #3: Yetal Coliform
- =4; Standard Plate Count
- ≠5: Shallow well
- ≠6: Jecksons Turbidity Units
- *7: on the Piatium-Cobalt scale
- #8: COD 10mg/L
- *9: WHO
- All water intended for drinking: E. coll or thermotolerant collform bacteria must not be detectable in any 100ml sample.
- *10: PNG
 (i) There shall be no E, coll in any sample of 100 ml.(ii) If E, coll is absent, no sample shall contain more than 3 colliform organisms per
- *11: JPN
 SPC: shall be less then 100 in any
 1ml sample.
 Total Collierm: must not be
 detectable in any sample.

References

100 ml,

- WHO (1993), "Guidelines for drinking water quality, second edition, volume 1"
- "Public Health (Drinking Water) Regulation 1984, No. 8 of 1984"
- Nihon Kankyo Kanri Gakkai (1996), "Guidebook for new water standards"

-209-

Table XX-2: Water Qualities of Existing Water Sources from the Eight Sites in the Study Area (parameters relating to geological characteristics)

102/07/7/	Water Qualities	T		1																				 -
			Date		Air	Phy	sical P	aramete		Par	ameter	Repre	senting	Geolog	ical Char	racteris			Hardi	ness & O	thers		Non-a	metals
Study Area	Location	Source	ofyear	Weather	Temp.	W.temp*1	рΗ	EC	Turb.*2	Na	κ	Ca	CI	Mg	HCO3	CO3	so.	T-Acid	T-Alka.	T-Hard	TDS	LΙ	NH4−N	T-
		<u> </u>	2000		°C	°C		mS/m		mg/l	mg/l	mg/	mg/l	mg/l	mg/i	mg/l	mg/l	mg/1 -	mg/l	mg/!	mg/i	mg/l	mg/l	mg
I.Popondetta	a. Agr.Collage	Borehole	24,May	Fine	29.0	28.0	7.2	25.9	0	7.5	5.22	24.4	10	13.1	75.6	0.8	54.9	12.0	76	114	160	-0.8	<0.1	0.2
	b. Village	Spring	25,May	Rein	28.5	25.9	8,3	14.9	D	7.2	4.59	12.2	9	5.0	69.1	0.5	8.5	34.5	69	55	118	-2.2	0.2	0.2
	c. W. B. Intake	River	25,May	Cloudy	25.8	27.3	7.8	24.2	1	13.8	5.88	20.7	12	7.5	38.5	0,3	60.7	8.3	39	82	152	-0.7	<0.1	0.1
	d, Town	Tap	25,May	Cloudy	24.7	28.8	7.5	24.1	0	13.5	5.74	20.4	13	7.6	32.9	0.3	82.2	7.9	33	81	154	-1.1	<0.1	0.0
2,Daru	a. U'ume Intake	River	5,June	Rain	28.6	25.0	6.3	5.1	0,5	2.4	0.55	3.1	11	1,4	7.1	0.1	3.9	0.0	7	14	160	-3.5	<0.1	<0
	b. Treatment Plant	Тар	6,June	Cloudy	27.3	26.6	5.4	9,1	0.5	7.0	0.54	3.7	11	1,3	36.1	0.3	51.3	0.0	36	14	34	-3.€	<0.1	⟨0
	c. Town A	S. Well*3	6,June	Rain	27.3	27.9	7.2	92.9	0	20.0	0.88	95.4	100	33.8	123.0	1.0	55.5	0.5	124	371	524	-0.1	<0.1	0.0
	d. Town B	S. Well	7,June	Cloudy	27.1	26.4	7	14	50	5.5	0.20	6,7	11	4.8	29.9	0,2	2.2	0.1	30	36	72	-2.1	<0.1	<0.
	e. Town C	S. Well	7,June	Cloudy	27.3	27.2	6,3	21.1	0.5	20.0	1.43	4.6	50	5.2	21.0	0.2	19.1	0.1	21	33	98	-3,2	<0.1	0.1
	f. Town D	S. Well	7,June	Cloudy	28.4	26.9	7.2	184.3	15	157.0	4.62	94.5	350	62.0	27.0	0.2	163.8	1.0	27	486	1030	~0.9	<0.1	0.0
3.Bereina	b. Training C.	Borehole	23,May	Clear	29.3	26.7	7.8	53.2	0	95.1	7,18	4.5	110	3.9	208.0	1,6	4.0	6.0	208	28	39	-0.7	<0.1	0.4
	c. P.S #1	S. Well	23,May	Clear	27.2	27.7	7.8	175.3	5	172.0	9.52	111.0	341	38.6	78.1	D. 6	52.3	10.5	77	435	1020	0.0	<0.1	0,1
	d. Mainohana Intake	River	23,May	Fine	29.3	24.7	В	12.4	150>	4.0	2.95	19,3	9	3.9	122.0	1.0	4,9	7.0	123	92	104	0.0	<0.1	0.3
	e, High School	Borehole	23,May	Fine	29.3	27,4	8.2	117,1	0	206.0	14.50	8.1	18	7.9	432.0	3.4	8.8	11.3	441	52	726	0.2	<0.1	0.4
	f. Angabang	River	23,May	Clear	28.0	24.8	7.9	12.6	150>	4.2	2.48	20.7	8	4.0	142.0	1,1	6.1	4.0	143	103	116	0.0	<0.1	0.4
1.Kupiano	a, Lako R. intake	River	27,June	Fine	27.7	28.3	7.7	16.4	2	4.2	0,33	18.5	1	7.0	89.7	8.0	4,6	4.9	90	75	13	 0.3	<0.1	0.0
	c. lopera	Spring	27,June	Fine	27.0	27.5	8	6.5	0	21.4	0.59	92.3	4	18,4	369.9	0.1	17.6	11,5	371	306	32	1.2	<0.1	0.0
i.Kwikila	s. High School	Borahola	18,May	Fine	30.6	27.9	7.3	73.6	Q.	47.6	1,44	70.8	54	28.5	342.0	2.7	3.1	22.0	342	294	404	0,3	CO.1	<0.
	b. Hospital	Borehole	18,May	Fine	29.5	27.2	7.3	84.3	0	46,4	0.94	98.5	46	33,1	427.0	3.3	9.1	22.0	428	382	444	0,4	0.7	₹0.
	c. Salvation Arny A	Borshole	18,May	Fine	30.0	28,7	6.9	79.7	0	51.2	0.78	87.2	50	26.9	398.0	3.1	4,0	43.0	399	329	478	0.0	0.7	⟨0,
	d. Salvation Army B	Barehole	18,May	Fine	30.0	29.6	7	86.7	D	54,1	0.84	97.2	50	29.8	323.0	2.5	7.9	37.5	323	252	490	0.1	<0.1	<0.
	e. Kemp Welch R.	River	19,May	Fine	29.5	24.5	7.6	13.4	20	4.2	1.43	17.1	35	5.2	63.0	0.5	3.2	4,5	33	50	28	-1.1	<0.1	0.0
i.Finschhafen	a, Intake	River	30,May	Fine	27.1	25.1	В	40,1	0	5.7	6,13	71,9	10	5.9	189.0	1.5	9.5	6.8	190	201	250	0.8	<0.1	0.0
	b. Hospital	River	30,May	Cloudy	29.8	25.1	8.2	31,3	0.5	1.8	0.93	69.1	9	2.0	151.0	1.2	3.6	5.5	153	178	194	0.8	C 0.1	⟨0.
-	o, Village Intake	River	30,May	Cloudy	28.3	25.7	8.2	29.5	3	1,1	0,30	67.1	6	1,4	149.0	1.2	2.1	5.0	151	170	182	8,0	<0.1	0.0
	d. Seminary Spring	Spring	30,May	Cloudy	28.0	25.7	7.8	29,9	O	1.0	0.15	67.2	11	0.9	134 D	1.0	2.4	9.5	135	169	156	0.3	₹0.1	9.0
	e. Town	Тар	30,May	Clear	31.0	25,3	8.1	38.1	D	5.6	6,06	71.0	7	5.5	187,0	1.5	9.3	7.0	190	197	248	0,9	<0.1	0.0
.Mutzing	a. Manging R.	River	28 May	Fine	31,2	32,3	8.5	28.6	150>	40.8	2,12	81.2	10	27.5	560.0	4,4	10.2	5.3	571	315	158	2.0	<0.1	1.0
	b. Supply Source-2	Borehole	28,May	Fine	31.2	27.6	7,3	53.4	0	35.9	0.78	73,1	9	9.5	293.0	2.3	18.2	12.3	295	219	326	0.3	<0.1	<0.
	c. Village	S, Well	28,May	Clear	31.2	27.9	7.3	52.7	0	35,3	0.51	72.7	15	8.4	261.D	2.2	18,9	19.5	282	214	310	0.4	<0.1	0.0
	d. High School	Borehole	28,May	Clear	32,3	28.0	7.8	45.2	0	29.3	0.64	62.4	7	8.9	244.0	1,9	14,5	10.5	245	183	344	0.5	(0.1	< 0.
.Oro Bay	a. Kosisi R.	River	25 May	Fine	32.9	26.3	7.4	5.4	6	3.6	1.28	3.1	10	2.4	9.0	0,1	0,3	8.3	9	18	46	-2.4	(0,1	0,0
	b. Веала R.	River	25 May	Fine	34.0	28.6	7.9	8	,	5.3	1,39	4,5	8	3.6	29.0	0.2	0.2	5.8	29	27	60	-1,3	ζ0.1	0.0
	c. Hospital	River	25,May	Fine	29.0	28.8	7.2	8	1	4.2	1,74	3.6	9	2.5	16,0	0,1	0.3	7.8	16	19	36	-2,4	<0.1	0.0
	d. Fishery	S. Well	25,May	Fine	29.5	26.5	7.5	75.3	5	35.3	7.91	94.9	80	19.5	248.0	1.9	3.6	18.5	249	310	426	0.4	<0.1	0.0

NB *1: Water temperature

*2: Turbidity

*3: Shallow well

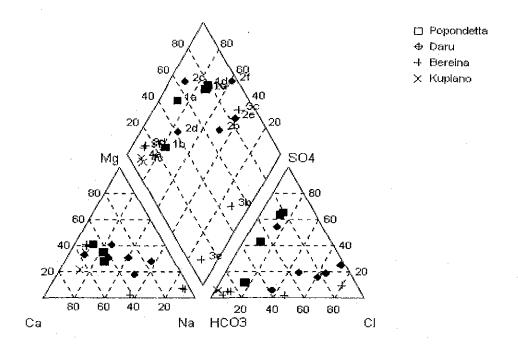


Figure 2-1 (1): Characteristics of water samples in 4 towns

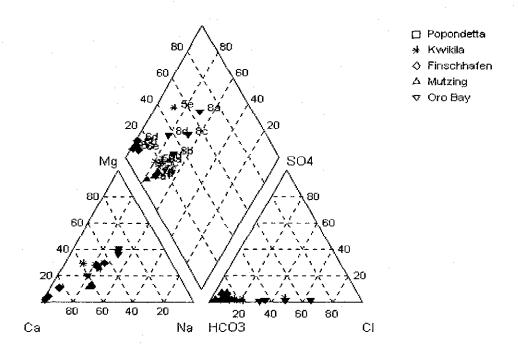


Figure 2-1 (2): Characteristics of water samples in 4 towns

Table XX: Qualities of Bianturi River Water

	XX: Qualitie		Elements						Others		· · · · · · · · · · · · · · · · · · ·
Point	Depth from the surface	Ca	GI	F	К	Na	Mg	T- Acidity	T- Alkalinity	Hardness	TDS
		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
1A	to 25cm	405	13500	1.33	494	9540	1310	14.8	115.0	6.41	15074
1	to 50cm	499	13900	1.23	565	9460	1650	17.2	116.3	8.04	14210
	to 100cm	529	13900	1.23	599	9340	1770	14.1	113.8	8.61	12095
	to 200cm	55 2	14000	1.23	626	9260	1960	19.1	113.1	9.45	15618
	to 300cm	510	14500	1,26	638	9220	1950	15.5	114.4	9.30	16087
1B	to 25cm	485	12500	1.40	580	9040	1600	17.5	120.0	7.80	32174
	to 50cm	509	13000	1.40	610	9060	1620	17.0	113.8	7.86	31076
	to 100cm	543	12000	1.45	626	9100	1830	17.5	116.5	12.59	31754
	to 200cm	755	12000	1.45	766	9020	2600	19.0	115,0	17.95	37030
	to 300cm	1070	12500	1.40	934	9000	3710	19.3	114.8	0.07	11364
2A	to 25cm	13	58	0.22	3	12	9	9.0	58.8	80.0	462
	to 50cm	15	40	0.24	3	14	10	7.0	58,8	0.08	460
	to 100cm	16	37	0.27	2	11	10	8.3	57.5	0.08	252
	to 200cm	16	38	0,23	3	21	11	9.5	59.3	0.09	146
	to 300cm	17	35	0.23	3	9	11	9.3	57.5	0.07	266
2B	to 25cm	15	19	0.22	1	11	8	14.8	52.5	0.07	268
	to 50cm	15	17	0.21	1	11	8	10.0	56.3	0.08	262
	to 100cm	16	15	0.21	1	11	9	11.3	56.3	0.07	230
	to 200cm	15	13	0.19	1	10	8	9.5	55.0	0.07	110
	to 300cm	15	11	0.18	1	10	8	9.1	56.3	0.04	122
3	to 25cm	9	10	0.15	1	7	5	13.5	40.3	0.04	188
	to 50cm	10	8	0.13	1	7	5	13.3	39.8	0.04	94
	to 100cm	10	7	0.13	1	7	5	12.5	38.0	0.04	136
	to 200cm	10	6	0.12	1	7	5	12.8	40.0	0.04	274
	to 300cm	10	6	0.13	1	8	5	11.5	38.8	0.04	132
4	to 25cm	13	8	0.14	1	9	6	12.3	48.0	0.06	800
	to 50cm	13	7	0.13	1	9	6	12.0	4 7.5	0.06	380
	to 100cm	13	7	0.14	1	9	6	12.2	48.8	0.06	236
	to 200cm	14	6	0.13	1	9	6	10.5	47.8	0.06	240
	to 300cm	13	6	0.15	1	9	6	11.6	47.8	0.06	246
5	to 25cm	11	10	0,16	1	9	5	10.0	39.3	0.05	204
	to 50cm	11	9	0.12	1	8	5	10.0	38.3	0.05	166
	to 100cm	11	8	0.14	1	9	5	9.6	38.2	0.05	214
	to 200cm	11	8	0.09	1	8	5	11.3	39.4	0.05	122
	to 300cm	11	7	0.09	1	8	5	10.5	38.0	0.05	200

Table XX: Qualities of Shallow Wells in Binaturi Area

		-		hysic ramet						٠		E	lemen	ts													Com	ound	s & O	thers		Bacte	eria
Site	Source	Date of 2000	W, temp ⁼¹	рΗ	EC	Taste & odours	ΑI	As	В	Ва	Сq	CI	Cr	Cu	F	Fe	Hg	Mn	Мо	Na	Ni	Sb	Se	РЬ	Zn .	CN	NO ₂	NO ₃	so,	тос	TDS	Total Coliform	spc*
			℃		mS/m		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/)	mg/l	mg/i	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/i	mg∕l	mg/l	mg/l	mg/l	mgc/i	mg/l	mg/l	mg/1		
Old Mawatta	S. well*4	10-Dec	30,8	6.7	39,9	acceptable	0.07	<0.001	0.1	0.01	<0.001	105	0.005	0.02	0.73	0.16	<0.001	0.19	0.006	45	<0,001	<0.001	<0,001	<0.001	0.03	0.003	0.008	0.01	4.1	2	222	>200	>200
Masingle	S. well	10-Dec	28,3	7.5	70.6	acceptable	0.05	<0,001	<0.01	0,01	<0.001	125	0.018	0.02	1.30	0,22	<0.0 01	0.14	0.013	77	<0.001	<0.001	<0,001	<0.001	0.03	0.002	0,106	0.18	2.8	3	404	>200	>200
Kunini	S, well	12-Dec	28.7	6.2	677.0	acceptable	0.10	<0.001	<0.01	0.02	<0.001	1895	0.035	0.02	0.80	0.12	<0.001	0.08	0.004	1107	<0.001	<0.001	<0 .001	<0.001	0,16	0.002	0,007	1.03	76.5	2	4220	>200	>200
Boze	S. wall	8-Dec	28.6	4.1	30.5	acceptable	0.54	<0.001	<0.01	0,04	<0.001	45	0.006	0.03	0,37	0.04	<0.001	0,10	0.006	22	0,012	<0.001	<0.001	<0.001	0.06	0.001	0.003	1.30	10.8	3	484	>200	>200
Daru Tap	Тар	8-Dec	28.3	7.4	49.9	acceptable	0,11	<0.001	<0.01	0.02	<0.001	70	0.010	0.07	0.41	0.01	<0.001	0.01	0.009	17	<0.001	<0.001	<0.001	0.009	0.20	0.003	0.003	0.70	6.1	2	498	G	0
		Guidelir	es/St	andaro	s for [Orinking Water	Qua	lity		i	` ,							-		<u>-</u>	·				-		•	·	•		:		·
	WHO	O (1993)	-	-	-	acceptable	0.2	0.01	0.5	0.7	0.003	250	0.05	2	1,5	0.3	0.001	0.5	0.07	200	0.02	0.005	0,01	0.01	3	0.07	3	50	250	-	1000	*	·6
	PN	G (1984)	-	6.5-9.2	-	unobjectionable	-	0.05	-	-	0.01	1000	-	1.5	1.5	1	0.001	0.5	-	-	-	-	0.01	0.1	15	0.05	-	45	 -	-	-	*	7
· · · · · ·	JPI	N (1993)	-	5,8-8,6	-	accecptable	0.2	0.01	0.2	-	0.01	200	0.05	1	0.8	0,3	0.0005	0.05	0,07	200	0.01	0,002	0.01	0.05	1	0.01	1	0	-	*5	500	*	8

*1: Water temperature *1: Water tempera

*2: Total coliform

i #3: Standard plate count

*4: Shallow well

*5: In Japanese standard, COD should be less than 10mg/L instead of TOC.

*6: WHO - All water intended for drinking: E, coli or thermotolerant coliform bacteria must not be detectable in any 100ml sample.

*7: PNG - (i) There shall be no E. coli in any sample of 100 ml.(ii) If E. coli is absent, no sample shall contain more than 3 coliform organisms per 100 ml.

*8; JPN - SPC: shall be less than 100 in any 1ml sample. Total Coliform; must not be detectable in any sample.

Water Qualities of Drilled Boreholes in the Eight Sites

	No. Water Date of Year 2000 Weather Air Temp temp*1 pH EC ms/s Site No. Water 2000 Source Source Source Weather Temp temp*1 pH EC ms/s Source S			Phys	ical Para	meters				Elemei	nts									
Site	No.	Water	Year	Weather	i	1 *1	На	EC	Turb*2	Colour	Odour &	Cq	Hg	Se	Pb	As	Gr	F	Ba	Zn
		source			℃_	°C		mS/m			taste	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
									De	tection lir	nit	0.001	0,001	0.001	0.001	0.001	0.001	0.1	0.001	0.01
1.Popondetta	#1	Borehole	30-Aug	Fine	32.0	27.8	7.6	25.7	0	С	Acceptable	<0,001	<0.001	<0.001	<0.001	0.001	<0.001	0.1	0.018	<0.01
	#2	Borehole	25~Aug	Fine	31,6	28.7	7.1	27.1	0	0	Acceptable	<0.001	<0.001	<0.001	0.001	0.001	<0.001	0.1	0.022	<0.01
2.Daru	#1	Borehole	29~Sep	Fine	32.5	28.8	8.1	330.0	0	Û	Saity	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	0.3	0.048	0.01
	#2	Borehole	5-Oct	Cloudy	35.5	29.5	8.3	340.0	0	0	Salty	<0,001	<0.091	<0.001	<0.001	<0.001	<0,001	1.0	0.044	0.01
3.Bereina	#1	Borehole	27-Jul	Fine	33.3	29.0	8.5	58.2	0 -	0	Acceptable	<0.001	0.001	<0.001	<0.001	0.004	<0.001	0.6	0.010	<0.01
4.Kupiano	#1	Borehole	27-Jul	Cloudy	32.4	29.4	7.7	110.0	0	0	Acceptable	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.9	0.024	0.01
5.Kwikila	#1	Borehole	6-Nov	Fine	31.5	28.8	7.4	101.5	0	0	Acceptable	<0.001	<0,001	<0.001	<0.001	0.001	<0.001	0.2	0.020	0.01
6.Finschhafen	#2	Borehole	10~Oct	Rain	32,2	28.5	7.9	31,2	0	0	Acceptable	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	0.6	0.004	0.01
7.Mutzing	#1	Borehole	8-Oct	Fine	33.5	28.2	7.4	25.5	0	1	Acceptable	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	0,1	0.003	<0.01
8.Oro Bay	#1	Borehole	3-Sep	Fine	31.8	28.7	6.9	24.6	1	0	Acceptable	<0.001	<0.001	<0,001	0.001	<0.001	0.002	0.1	0.016	<0.01
			<u></u>	Guideline	s/Stand	lards for D	rinking	Water	Quality											
		WHO (1	993)			-	-	-	5NTU	15TCU	Acceptable	0,003	0.001	0.01	0.01	0.01	0.05	1.5	0.7	3
		PNG (19	984)			-	6.5-9.2	-	25 units ⁵	50 units*6	Unobjectionable	0,01	0.001	0.01	0.1	0.05	-	1.5	-	-15
		Japan (1993)			-	5.8-8.6	-	2	5	Acceptable	0.01	0.0005	0.01	0.05	0.01	0.05	0.8	-	1

NE

SPC: shall be less than 100 in any 1ml sample.

Total Coliform: must not be detectable in any sample.

^{*1:} Water temperature. *2: Turbidity. *3: Total coliform. *4: Standard plate count, *5: Jacksons turbidity units. *6: on the Platium-cobalt scale. *7: COD 10mg/L *8: WHO

All water intended for drinking: E. coli or thermotolerant coliform bacteria must not be detectable in any 100ml

^{*9;} PNG

⁽i) There shall be no E. coli in any sample of 100 ml.(ii) If E. coli is absent, no sample shall contain more than 3 coliform organisms per 100 ml. *10: JPN

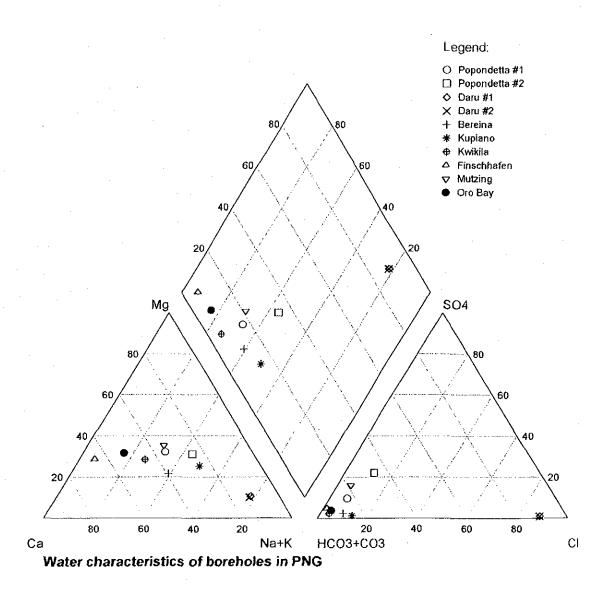
continued

			,	Eleme	nts								Compo	ounds 8	& Othe	rs		Bac	teria
Site	No.	Fe	Cu	Na	Mn	Cŀ	Ni	Sb	В	Мо	Αl	CN	NO ₂	NO ₃	SO₄	тос	TDS	Total	SPC*4
		mg/I	mg/l	mg/l	mg/l	mg/l	mg/l	mg/1	mg/i	mg/l	mg/l	mg/l	mg/!	. mg/l	mg/l	mg/l	mg/l	Coli*3	_
		0.01	0.001	1	0.001	1	0,001	0.001	0.1	0.01	0,01	0.01	0.01	1	1	0,1	1	. 1	1
1.Popondetta	#1	<0.01	0.005	16	0.010	6	<0,001	<0.001	0.1	<0.01	0.57	<0.01	<0.01	<1	11	1.7	200	0	0
	#2	0.54	0.006	5	0.002	4	<0.001	<0.001	0.1	<0.01	1.60	<0,01	<0.01	<1	10	2.8	230	0	0
2.Daru	#1	<0.01	<0.001	408	0.002	700	<0.001	<0.001	<0.1	<0,01	0.06	<0.01	<0.01	1	11	5	1940	0	0
	#2	<0.01	<0.001	399	0.011	700	<0.001	<0.001	<0,1	<0.01	0.03	<0.01	<0.01	1	10	5	2402	0	0
3.Bereina	#1	0.20	<0.001	66	0.045	. 20	<0,001	<0.001	0.1	<0.01	0,01	<0.01	0.37	1	7	1.9	437	0	0
4.Kupiano	#1	0.01	0.001	88	0.004	30	<0.001	<0.001	0.1	<0.01	0.04	<0.01	0.03	<1	4	3	745	0	0
5.Kwikila	#1	<0.01	<0.001	66	0.184	11	<0.001	<0.001	<0.1	<0.01	<0.01	0.01	0.01	, <1	10	1.4	440	0	0
6.Finschhafen	#2	80,0	0.005	6	0,001	2	<0.001	<0.001	<0.1	<0,01	0.65	<0.01	<0.01	<1	10	3.2	250	0	0
7.Mutzing	#1	<0.01	0.007	16	0.030	4	<0.001	<0.001	<0.1	<0.01	0.57	<0.01	0,04	2	16	3.9	190	0	0
8.Oro Bay	#1	0.71	0.008	6	0.020	2	<0.001	<0,001	<0.1	<0.01	0.69	<0.01	0.02	<1	3	4.8	110	0	0
		Guidel	ines/S	tandar	ds for [Prinking	, Water	Quality	y										
WHO (1993)		0.3	2	200	0.5	250	0.02	0,005	0,5	0.07	0.2	0.07	3	50	250	-	1000	,	*8
PNG (1984)		1	1.5	-	0.5	1000	_	-	_	-	-	0.05	-	45	-	_	-	,	* 9
Japan (1993)		0.3	1	200	0.05	200	0.01	0.002	0,2	0.07	0.2	0.01	1	0	-	* 7	500	*	10

References

- 1; WHO (1993), "Guidelines for drinking water quality, second edition, volume 1"
- 2: http://www.who.int/ (April 2001)
- 3: "Public Health (Drinking Water) Regulation 1984, No. 8 of 1984"
 4: Nihon Kankyo Kanri Gakkai (1996), "Guidebook for new water standards"

Water Qualities of Drilled Boreholes in the Eight Sites (parameters relating to geological characteristics)


					Physic	cal Para	meters		····	Param	eters r	eprese	nting G	eologic	al Char	acteris	tics		Hard	ness &	Others		Non-n	netals
Site	No.	Water Source	Date of Year	W. temp*1	рΗ	EC	Turb*2	Colour	Odour & taste	Na	ĸ	Ca	CI	Mg	HCO₃	CO3	SO ₄	Acid	T– Alka,	T– Hard	TDS	L⊺* ³	NH₄	T-P
			2000	<u>°</u> ℃		mS/m		_		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/
1.Popondetta	#1	Borenole	30-Aug	27.8	7.6	25.7	0	0	acceptable	16	5.3	18	6	10	120	<1	11	5.6	120	87	200	-0.3	<0.01	0.21
	#2	Borehole	25-Aug	28.7	7.1	27.1	0	0	acceptable	5	5.2	4	4	3	38	۲1	10	7.6	38	20	230	-2.0	0.01	0.63
2.Daru	#1	Borehole	29-Sep	28.8	8.1	330.0	0	0	salty	408	12.9	53	700	30	141	1.7	11	<5.0	143	257	1940	0.6	0.47	<0.05
	#2	Borehole	5-Oct	29.5	8.3	340.0	0	0	salty	399	10.2	55	700	28	142	2.6	10	<5.0	145	252	2402	0.8	0.52	<0.05
3.Bereina	#1	Borehole	27-Jul	29.0	8.5	58.2	0	0	acceptable	66	4.8	60	20	20	331	1,4	. 7	48.0	333	231	437	1.4	0.09	0.31
4.Kupiano	#1	Borehole	27-Jul	29,4	7.7	110.0	0	0	acceptable	88	1.4	39	30	24	329	2.1	4	<5.0	331	197	1	0.5	<0.01	<0.00
5.Kwikila	#1	Borehole	6-Nov	28.8	7.4	101.5	0	0	acceptable	66	0.4	100	11	38	510	1.3	10	48.0	511	406	440	0.7	0.08	0.17
6.Finschhafen	#2	Borehole	10-Oct	28.5	7.9	31.2	0	. 0	acceptable	6	1.6	64	2	17	240	< 1	10	17.0	240	228	260	0.8	0.01	<0.05
	#1	Dry					<u>.</u>	**************************************	;					-								!		
7.Mutzing	#1	Borehole	8-Oct	28.2	7.4	25.5	0	1	acceptable	16	0.6	16	4	- 10	100	< 1	16	7.2	100	81	190	-0.7	0.01	0.08
8.Oro Bay	#1	Borehole	3-Sep	28.7	6.9	24.6	1	0	acceptable	6	1.3	19	2	7	90	< 1	3	5.6	90	76	110	-1,1	<0.01	0.12

NB

1: Water temperature

2: Turbidity

3; Langelier index

6. GROUNDWATER DEVELOPMENT BOREHOLE DATA

ELECTRICAL WELL LOGGING OF TEST BOREHOLES FOR THE STUDY ON GROUNDWATER DEVELOPMENT FOR WATER SUPPLY SYSTEMS IN PAPUA NEW GUINEA

INTRODUCTION

The project for test Boreholes for The Study on groundwater Development for Water Supply Systems in Papua New Guinea had been granted by Japan International Co-operation (JICA). It is proposed to construct 10 wells at the eastern part of Papua New Guina Island.

PURPOSE OF WORK

The purpose of the electrical well logging of the test boreholes is to survey and obtain the hydrogeological conditions of the drilling site in order to be the criterior of well screen position to get the sufficient yield of groundwater.

LOCATION OF WORK

The test boreholes for the electrical well logging were designated by the Client in eight (8) study areas, i.e.; Mutzing and Finschhafen in Morobe Province, Popondetta and Oro Bay in Oro Province, Bereina, Kwikila and Kupiano in Central Province, and Daru in Western Province (To be referred to the attached map). The Total ten (10) numbers of test boreholes were constructed as summerised in figure 1.

BOREHOLE GEOPHYSICAL LOGGING

Geophysical logs was taken by the geologger 3030 Mark 2 in all holes drilled.

The logging device is capable of producing a continuous simultaneous strip record of spontaneous potential, resistivity and separately a continuous strip of gamma radiation.

AUTOMATIC ELECTRIC LOGGING METHOD

- 1. Set E-Logging machine (Geologger-3030, OYO) at specified location (see fig. 2)
- 2. Connect cable with combination probe to electric logging machine.
- 3. Set zero depth, then, set the suitable detecting range in electric logging programme.
- 4. In case of carry out by upward method, the combination probe shall be lower down to the bottom of the hole.
- 5. After that the combination probe shall be slowly pull up by winch or handle device in suitable rate, and at the same time the measuring shall be started.
- 6. The computerized electric logging machine shall automatically read the value every spacing depth and record in disket.
- 7. After completion, the recorded data shall be printed out in the selected scale.

RESISTIVITY LOGGING (MANUAL) METHOD

- 1. Set resistivity machine, ABEM meter (see fig. 3).
- 2. Marking on cable at every 1 meter interval.
- 3. Install the lead probes until the bottom of hole. The reading point shall be at the center between P1 and P2.
- 4. Pull up the probes slowly and take recording of the resistance value(R) that show on the monitor at every 1 m.
- 5. The resistivity value shall be calculated by the formula as follows:

 $\rho = 4\pi aR$

 ρ = Resistivity (Ohm)

a = Distance (spacing) from pole to pole (0.5 m.)

R = Resistance value (Ohm-m)

Then, $\rho = 6.28 R$

6. Plot on normal graph y = depth(m), X = Resistivity value (ohm)

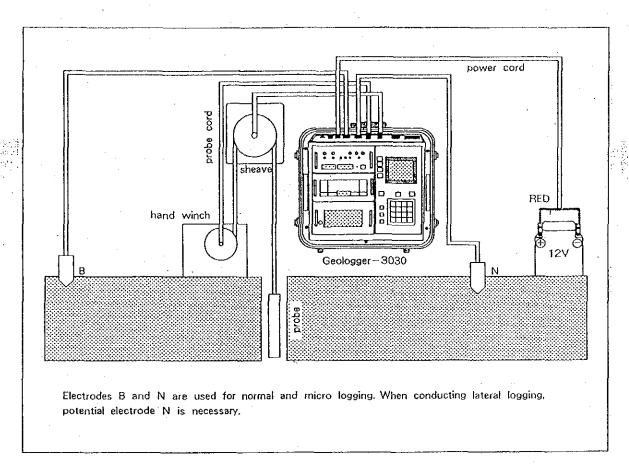
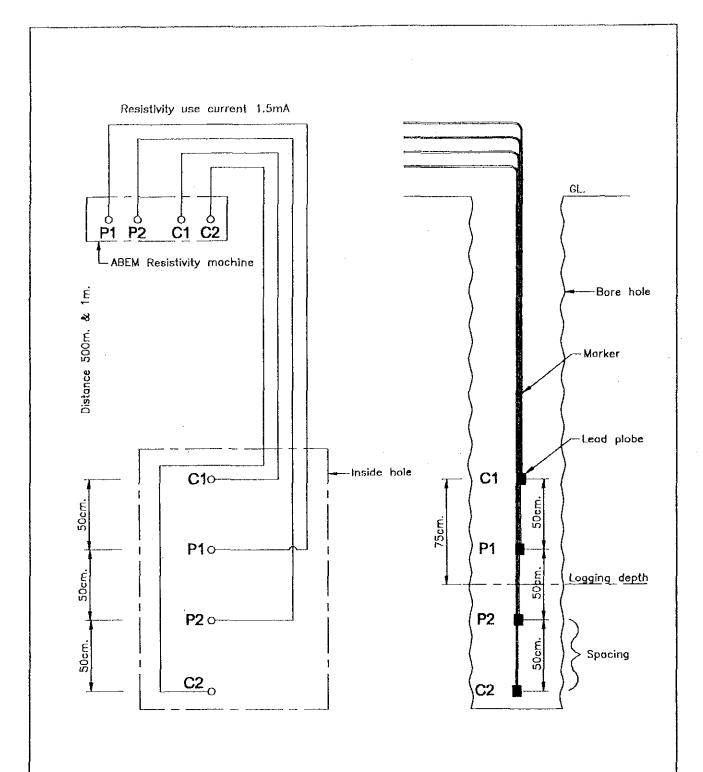
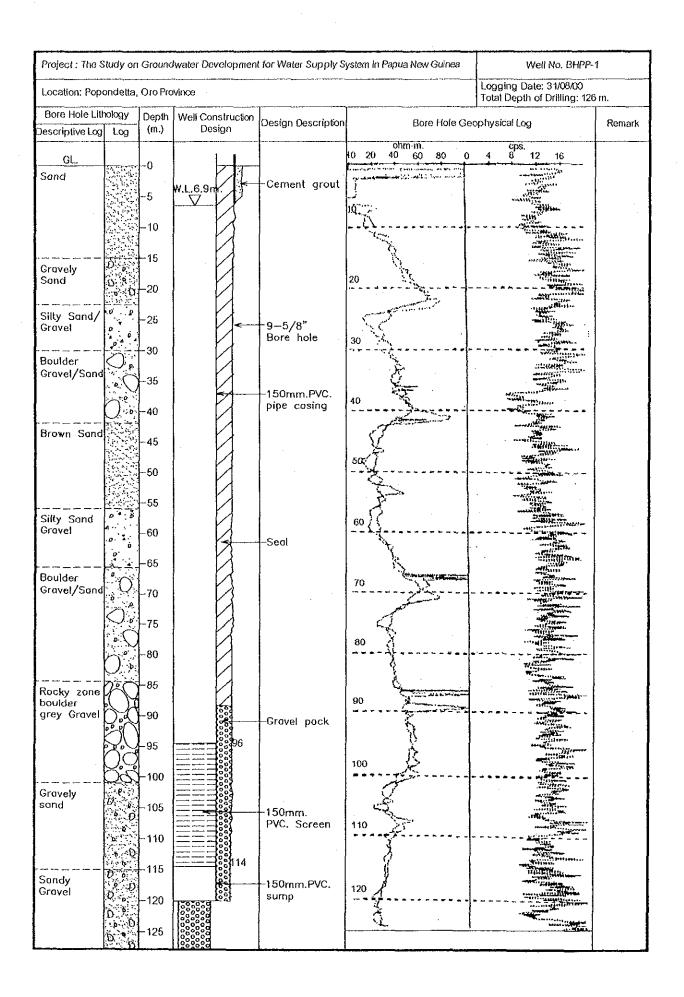
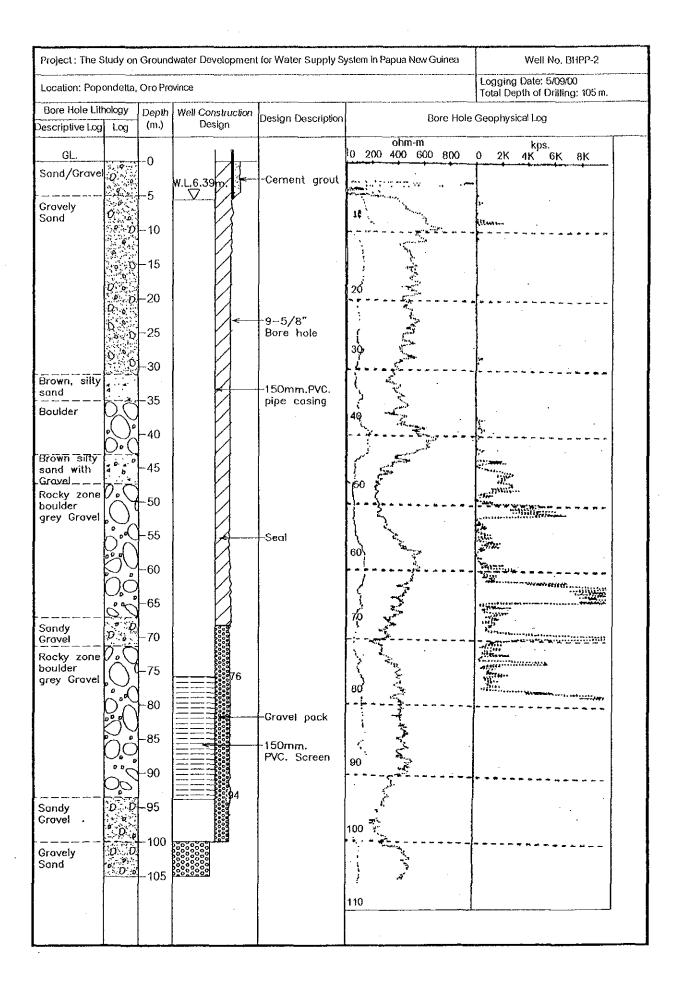



Fig 2. Electric Logging Machine

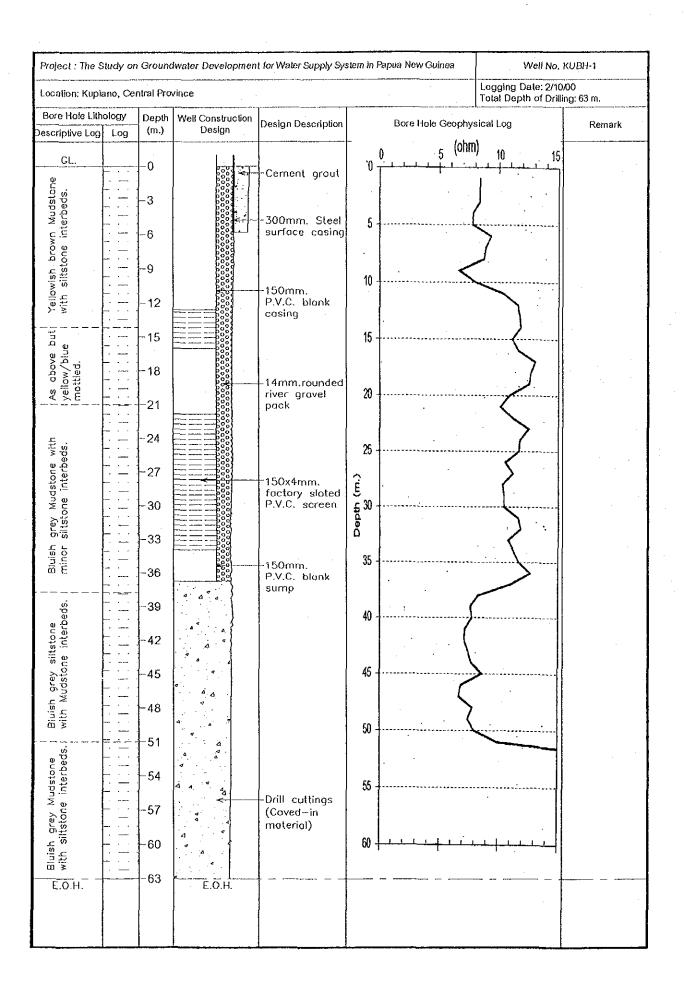
Resistivity Value are $\rho = 4 \text{TT aR}$ $\rho = 6.28 \text{R}$ (0.5m. spacing) R = Reading from ABEM meter


FIG.3 WELL LOGGING BY ABEM MACHINE


TABLE 1 : SUMMARY OF LOGGING BOREHOLE

			Depth of	Depth of	Date of	
Item	Hote No.	Location	Drilling	Logging	Logging	Remark
			(m)	(m)		
1	BHPP-I	Popondetta / Oro	126	126	31/08/00	
2	BHPP-2	n .	105	105	05/09/00	
3	DABH-1	Daru / Western	80	45	20/09/00	Probe struck at depth 45 m.
4	DABH-2	п	42	25	25/09/00	Logging when drilled at depth 25 m. (instruction by Client)
5	* KUBH-1	Kupiano / Central	63	60	02/11/00	Probe struck at 60 m.
6	BRBH-1	Bereina / Central	36	32	21/07/00	Probe struck at depth 32 m.
7	KKBH-1	Kwikila / Central	100	72	10/08/00	Probe struck at depth 72 m.
8	KKBH-2	"	44	32	16/08/00	Probe struck at depth 32 m.
9	FIBH-1	Finschfen / Morobe	13	13	29/09/00	(Logging inside casing) = no data
10	MUBH-1	Mutzing / Morobe	73	58	28/09/00	No record (Logging inside casing) = no data
11	ORBH-1	Orabag/Oro		-		Callaped hole no logging = no data

Remark: - In case probe struck, logging was stoped by instruction of client.


- (*) Borehole was logged by ABEM machine.

Project: The Study of	n Ground	lwater Developmen	t for Water Supply S	ystem in Papua New Guinea	Well No.	
Location: Daru, Cent	al Provin	ce			Logging Date: 20/1 Total Depth of Drill	09/00 ing: 80 m.
Bore Hole Lithology escriptive Log Log	Depth (m.)	Well Construction Design	Design Description	Bore Hole Geophy	sical Log	Remark
white mottled EW—HW tuffoceous CLAY Go grading into fresh volcanic tuff to about 15.0m. depth.	-4 -8 -12	34	-Cement grout -300mm, Steel surface cosing	5	40 .80 120 160	GL. EW-HW SW-fresh volconic
Grey and yellow mottled Mudstone with occassional sandstone, siltstone interbeds some shell fragments indicating shallow granine depositional environment.	- 16 20 24 28 32 36 40 44 48		-14mm.rounded rive gravel pack -150mm. P.V.C. blank casing		NORMAL:	Shallow marine sediments
Grey to white coraline Limestone with accassional inclusion of Mudstone layers.	56 -60 -64 -68	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	150mm. factory sloted P.V.C. screen -150mm. P.V.C. blank sump			Coroline Limestone with Mudstor interbeds. Shollow marine
E.O.H.	76 -76 -80	E.O.H.	Caved—in material settled at bottom			deposit

Project : The Stud	ly on Groun	dwater Developme	nt for Water Supply Sys	tem in Papua New Guinea		DABH-2
Location: Daru, C	entral Provin	ce			Logging Date: 25/0 Total Depth of Drill	09/00 ing: 42 m.
Bore Hole Litholo Descriptive Log L	Depth og (m.)	Well Construction Design	Design Description	Bore Hote Geophy 200mV ohm-m	vsical Log CDS.	Remark
GL.	-0			0 10 20 30 40	0 10 20 30 40	GL.
Brownish lateritic volc. tuff with some Fe&Mn oxide* nodules	-2	000000000000000000000000000000000000000	Cement grout 300mm, Steel surface cosing	5		EW-HW volcanic tuff
EW-HW tuff		000 000 000		1		
Grey, yellow Tondtled Tondstone Tondth shell	8	200000000000000000000000000000000000000		10		Shallow marine sediments
fragments		20000000000000000000000000000000000000	-14mm.rounded rive gravel pack			
; 	? ? 14	00000000000000000000000000000000000000	150mm. P.V.C. blank casing	15		
3	? ? -18	1000000 000000000 10000000000000000000		20		
bum %	? ? -20 ? ? -22	10000000000000000000000000000000000000			manufally print (1) (1) (1) (1) (1) (1) (1)	·
due to	? ? 24			25		No samples recovered due to 100% mud lose.
recovere	? 1-26 ? 3 ? -28		150mm. foctory sloted P.V.C. screen	10 NO 1202 SH	INTA IORT NORMAL:	
E ?	? ? -30					
. ?	? ? 34	000 000 000 000 000 000	-150mm. P.V.C. blank sump			
. ?	? ? -36 ? ? -38	4 4	Caved—in material settled at		,	
?	[?] ? -40	4	bottom			

Location: Beraina, Cer		······································		ystem in Papua New Guinea	Well No.	/00
Bore Hole Lithology	Depth	Well Construction			Total Depth of Drilli	
Descriptive Log Log	(m.)	Design	Design Description	Bore Hole Geophy	sical Log	Remark
Medium to coorse grovel Well rounded, fine sand and silt, Gravelly coorse sond Overlying by dark bluish stiff clay clean coarse sond rounded coarse coarse sond rounded coarse coarse sond rounded coarse coars	-6 -8 -10 -12 -14 -16 -18	W. L. O. H	-Cement grout -300mm. surface steel casing -undisturbed formation -14mm.rounded river gravel pack -150mm. factory sloted P.V.C. screen -150mm. Blank P.V.C. casing	1000mV to 10 20 30 40 2 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Cps. 0 100 200 300 400	100% Mud loss

Landan Malla Car	Ground	da o a			Logging Date: 10	0. KKBH-1 (08/00
ocation: Kwikila, Cer		,	·		Total Depth of Dri	ling: 100 m.
Bore Hole Lithology	Depth (m.)		Design Description	Bore Hole Geophy	/sical Log	Remark
GL. Block sliff CLAY mottle angular a cobbly gravel 4 + + + + + + + + + + + + + + + + + +	-0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -95 -100	Design W.1_2m + + + + + + + + + + + + + + + + + + +	250mm. Steel surface cosing Cement grout Colluvium Uncased open hale	Inv. Shim-m	10 20 30 10	Remark

Project: The Study on	Ground	water Developmen	for Water Supply Sy	stem in Papua New Guinea	Well No.	
Location; , Central Pro	vince				Logging Date: 16/0 Total Depth of Drilli	8/00 ng: 44 m.
Bore Hole Lithology	Depth	Well Construction	Design Description	Bore Hole Geophy	rsical Loo	Remark
Pescriptive Log Log	(m.)	Design				
GL. Black and /// brown /// stiff Clay	-2	000 0000000000000000000000000000000000	-Cement grout 250mm. Steel surface casing	2	C 200 400 600 800	
Well rounded D D D Coorse sand	4 6 8	00000000000000000000000000000000000000	150mm. foctory sloted P.V.C. screen	1 9 /		
sond with interbeds of reddish brown clay				Same and the second		
Greyish brown 22 nottled clay 22 with medium 22 come silt 22 22 22 22 22 22 22 22 22 22 22 22 22	-14 -16 -18	00000000000000000000000000000000000000	-14mm.rounded river gravel pack	16		
Brown silty sand	-20 -22 -24 -26 -28	10000000000000000000000000000000000000	-150mm. Blank P.V.C. casing	22 T	5000 11	
	-30 32	0000000 0000000		30		
Gabbro + + + + + + + + + + + + + + + + + + +	-34 -36 -38 -40		-Drill cutting and caved-in formation moterail			
E.O.H.	-44	E.O.H.				

Project : The Study Location: Finschafe			for Water Supply System	in Papua New Gulnea	Well No. Logging Date: 29/0 Total Depth of Drilli)6/00
Bore Hole Litholog Descriptive Log Lo	y Depth	Well Construction Design	Design Description	Bora Hole Geophy	<u> </u>	Remerk
GL. Over burden + + +		Surface	Backfilled to surface			
+	+ + + - 4 + + + + + + + + + + + + + + + + + + +	000000000 0000000000 00000000000000000	Blank P.V.C. Bentonite seal S.W.L. 4 m.			
Rhyolite + + + + + + + + + + + + + + + + + + +	+ + + - 6 + + + + + + + + + + + + + + +	00000000000000000000000000000000000000	Gravel pack (3—5mm.)			
+ + + + + + + + + + + + + + + + + + + +	+ + 9 + + 10 + 10		3m.Stainless steel screen			
+ + + + + + +	+ [†] + [†] - 11 + [†] + [†] - 12 + [†] + [†]	13. E. L.	Blank P.V.C. Class 18 Bottom cap			

CD:gk(RD21) Project 33121 October 2000

REPORT ON GROUNDWATER DEVELOPMENT FOR WATER SUPPLY SYSTEMS IN PAPUA NEW GUINEA - POPONDETTA #1 BORE COMPLETION REPORT

1.0 INTRODUCTION

This report describes the test bore completion details and analysis of pumping test data for Popondetta #1 that was recently installed in the Popondetta district. It is understood the bore was drilled and installed as part of the study on Groundwater Development for Water Supply Systems in Papua New Guinea, which is funded by JICA and being carried out by Japan Techno Co Ltd. Douglas Partners Pty Ltd (DP) were commissioned by New Britain Drillers Ltd (NBD) to prepare this bore completion report.

The pumping test carried out on the bore by NBD included:

- a step drawdown test;
- a 24 hour constant rate test; and
- a water level recovery test.

The pumping test data, supplied by NBD, was analysed with the objective of assessing the long term 'safe' yield for the bore (i.e. Popondetta #1).

DP did not supervise the drilling, construction, or pump testing of this test bore on-site. All information (i.e. bore construction, logging and pump test data) contained in this report was obtained by third parties including NBD and sent to DP. Therefore DP cannot be held responsible for the accuracy of the pump test data or the subsequent analysis contained in this report.

2.0 DRILLING AND BORE CONSTRUCTION

The exploratory drilling and bore construction was undertaken by NBD during the period August 2000 using a Bournedrill THD25 truck-mounted drilling rig.

Test bore Popondetta #1 was drilled initially with a 310 mm diameter hole to 6 m depth and installing 254 mm diameter steel casing (collar pipe). A 244 mm diameter hole was then drilled to 126 m depth using conventional rotary mud drilling techniques. A biodegradable liquid polymer mud was used as drilling fluid to remove the cuttings from the borehole.

The rock cuttings were logged on-site by Jim Devlin of NBD. At completion of drilling a suite of geophysical logs consisting of natural Gamma and Resistivity were run. A composite bore log showing both the lithological and geophysical logs is provided in Appendix A. The geological sequence encountered during the drilling of Popondetta #1 consisted primarily of alluvium and some pumiceous ash deposits to 126 m depth. The deposits comprised a layered sequence of sand, silty sand and sandy gravel material. It was reported a hard layer was intersected at 84 m depth and possibly comprised broken, fractured basalt interlayered with sand.

It is understood Popondetta #1 was completed by installing an in-line string of sump, screen and casing into the bore. Class 12 PVC pipe 150 mm diameter, supplied by Islex (Australia) Pty Ltd, was used as a casing and a sump (6 m long). A 150 mm diameter factory slotted screen, with 0.8 mm aperture and an open surface area of 8%, was installed from 96 m to 114 m depth. A filter pack consisting of 5-10 mm diameter gravel was placed in the annulus between the hole wall and casing/screen. The bore was developed by jetting, chemical treatment, and airlift surging until it produced clean, essentially sand free water. The top section of the annulus between the surface casing and the bore casing was cemented and bentonite sealed to prevent surface contamination from entering the bore.

The construction details provided by NBD for Popondetta #1 are summarised in Table 1 and are shown on the composite bore log in Appendix A.

Table 1: Bore Construction Details - Popondetta #1

Bore No.	Total Depth (mbgL)	Casing Diameter (mm)	Slotted Interval (mbgL)	Gravel Pack (mbgL)	Static Water Level (29/8/00) (mbgL)
Popondetta #1	120	150	96-114	20-126	7.34

Notes:

mbgL - metres below ground level

NBD reported the yield whilst airlifting the bore, at the end of the development process, was about 15 L/s.

3.0 PUMPING TESTS AND ANALYSIS

Following completion of Popondetta #1, pumping tests were undertaken to assess the hydraulic parameters of the aquifer and long term yield of the bore. The pumping tests and analysis were carried out in accordance with Australian Standard AS2368-1990¹.

3.1 Pumping Test Set-Up

A Calpeda (4SD15\23, 5.5 kW) multistage, electric submersible pump powered by a 60 kVA generator was used for the step drawdown and constant rate pumping tests. The pump intake was set at 32.5 m below ground level, about 27 m below the standing water level. Flow was controlled by an inline gate valve and was monitored using a 50 mm PMS inline flow meter.

Water level drawdown was manually measured in Popondetta #1 using electric dipmeters.

3.2 Step Drawdown Test

The step test was conducted in order to provide information on bore yield and efficiency in relation to the bore's construction and development. The data was analysed using the Eden and Hazel² method which gives an equation for the bore, enabling drawdown for the chosen flow rate over a given time period to be calculated, viz:

$$S_{wt} = (a + b \log t) Q + cQ^2$$

where:

 S_{wt} = drawdown of the water table at a given time (t)

Q = pumping rate (m³/day)

t = time in minutes

a,b,c = bore constants assessed from the step drawdown data

An assessment of the efficiency of the bore was made using the equation, viz:

bore efficiency =
$$\frac{(a + b \log t) Q}{(a + b \log t) Q + cQ^2 \times 100}$$

where:

(a + b lot t) Q = drawdown due to formation loss cQ² = drawdown due to bore loss

Standards Australia, 1990. Test Pumping of Water Wells AS2368-1990, Published by Standards Assoc. of Australia.
 Eden, R.N. and Hazel, C.P. (1973) "Computer and Graphical Analyses of Variable Discharge Pumping Test of Wells", Inst. Engrs. Australia, Civil Engng. Trans. pp 5-10

3.2.1 Popondetta #1 Analysis

A step drawdown test on Popondetta #1 comprising four, two hour steps, was undertaken on 29 August 2000. Prior to commencement of the test, the static water level was measured at 7.34 m below ground level. The step test analysis sheets are given in Appendix B. The pumping rates were progressively increased as follows:

Step 1 - 126.7 m³/day (1.5 L/s) Step 2 - 259.2 m³/day (3.0 L/s) Step 3 - 345.6 m³/day (4.0 L/s) Step 4 - 540 m³/day (6.25 L/s)

The step drawdown test data is summarised in Table 2.

Table 2: Step Test Analysis

Step	Q (m³/day)	Δs (m)	∆s/Q (m/m³/day)	S _w (1min) (m)	S _w (1min)/Q (m/m³/day)
1	126.7	0.12	9.47 x 10 ⁻⁴	0.55	4.34 x 10 ⁻³
2	259.2	0.34	1.31 x 10 ⁻³	1.56	6.02 x 10 ⁻³
3	345.6	0.34	9.84 x 10 ⁻⁴	2.65	7.67 x 10 ⁻³
4	540.0	0.54	1.00 x 10 ⁻³	5,05	9.35 x 10 ⁻³

By undertaking graphical analysis as shown in Appendix B, values for the bore constants were obtained as follows:

$$a = 3.2 \times 10^{-3}$$

 $b = 1.06 \times 10^{-3}$
 $c = 1.125 \times 10^{-5}$

Based on these, the 'bore equation' for test bore Popondetta #1 is assessed to be:

$$S_{wt} = (3.2 \times 10^{-3} + 1.06 \times 10^{-3} \log t) Q + 1.125 \times 10^{-5}$$

This equation predicts a drawdown of 6.82 m after 24 hours pumping at a rate of 540 m³/day (6.25 L/s) which compares favourably with a measured drawdown of 6.69 m during the 24 hour constant rate pumping test, undertaken at the same time.

Using this scenario, the 'bore equation' indicates that Popondetta #1 is about 50% efficient.

The bore equation indicates that pumping the bore at a constant rate of 2160 m³/day (25 L/s) for ten years will give a drawdown of approximately 75 m, about 82.3 m below ground level (maximum available drawdown is 84.6 m about 92 m below ground level, i.e. recommended pump intake level).

This is considered to be the maximum long term safe yield for this bore based on the step test analysis of the data supplied to DP.

3.3 Constant Rate and Recovery Tests

A constant rate test is undertaken to assess the hydraulic parameters of the aquifer and the presence of boundary conditions which may increase or decrease the rate of drawdown. Boundaries may be in the form of a barrier (impermeable) boundary which will increase the rate of drawdown, or recharge boundaries which would reduce the rate of drawdown. The information, together with the hydraulic parameters, allows a more accurate assessment of the long term 'safe' yield of a bore or borefield.

A 24 hour constant rate pumping test was commenced at 0800 hours on 30 August 2000 and was completed at 0800 hours on 31 August 2000. The bore was pumped continuously at a rate of 540 m³/day (6.25 L/s), and at completion of pumping a water level recovery test was undertaken.

The constant rate drawdown and recovery data by Popondetta #1 were analysed using the "Aquifer Test Version 2.0" software package³.

The constant rate drawdown data was analysed using the Cooper-Jacob straight line analysis and curve matching techniques of the Neuman method for an unconfined aquifer. The recovery data was analysed using the Theis recovery method. Details of these analysis methods are outlined in Kruseman and de Ridder (1991)⁴.

Analysis of the drawdown and recovery data provides an estimate of the hydraulic parameter of aquifer transmissivity. Transmissivity is the coefficient of hydraulic conductivity (permeability) multiplied by the aquifer thickness. The drawdown and recovery analysis sheets for Popondetta #1 are given in Appendix C and a summary of the analysis is provided in Table 3.

Table 3: Summary of Analysis of Pumping Test Data

	Tabi	es; summ	lary of Allary	ysis of Pumping	Test Data	
Bore	Pumping	SWL	Depth of	Maximum	Transmissivity	Method of
	Rate 'Q'	(mbgL)	Screen	Drawdown (m)	'T'	Analysis
·	(m³/day)		(mbgL)	During Test	(m²/day)	
Popondetta #1	540	7.34	96-114	6.69	133	Cooper/Jacob
	(6.25 L/s)				94	Neuman
					143	Theis Recovery

Note:

mbgL - metres below ground level

Waterloo Hydrogeologic 1996, "Aquifer Test Version 2.0".

⁴ Kruseman, G.P., and N.A. de Ridder, 1991. Analysis and Evaluation of Pumping Test Data. Second Edition, ILRI publication 47, Wageningen, The Netherlands.

The constant rate test data and analysis indicate that the aquifer is unconfined and receives delayed yield as a result of the groundwater extraction. The delayed yield is indicated by a slight flattening of the drawdown curve, refer to Theis – Jacobs analysis plot in Appendix C, towards the end of the test.

The pumping test data indicates that the aquifer has a transmissivity of about 125 m²/day at the drilling site.

No barrier or impermeable boundaries were reflected in the data recorded during the 24 hour constant rate test for Popondetta #1.

4.0 GROUNDWATER QUALITY

A groundwater sample collected during the pumping test was analysed on-site for water electrical conductivity (EC), salinity, pH and temperature with a standard hand held instrument. The results of the field measurements are summarised in Table 4.

Table 4: Results of Field Water Quality Analysis

		Anal	lysis	
Date	рН	EC	Salinity	Temp
		(μS/cm)	(ppk)	(°C)
29/8/2000	7.7	30	0.03	25.7

Note:

μS/cm - micro siemens per centimetre

ppk - parts per thousand

The water is of a high quality with respect to EC and hence salinity or total dissolved solids. For comparison, the World Health Organisation (WHO) guidelines for total dissolved solids of 1000 mg/L in drinking water is approximately equal to an EC of 1500 μ S/cm. The pH is slightly alkaline but is well within the WHO guidelines range of 6.5 to 8.5.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The groundwater exploratory drilling program was successful in locating a viable groundwater resource at the location of test bore Popondetta #1. The analysis of the pumping tests indicates the bore has intersected an unconfined aquifer with a transmissivity of about 125 m²/day. Field water quality measurements indicated the water to be fresh with a slightly alkaline pH of 7.7.

The pumping test analysis indicates the long term 'safe' yield of Popondetta #1 is up to 2160 m³/day or 25 L/s. A relatively steady state drawdown of about 75 m, about 82-83 m below ground level, is expected to result from long term pumping at this rate.

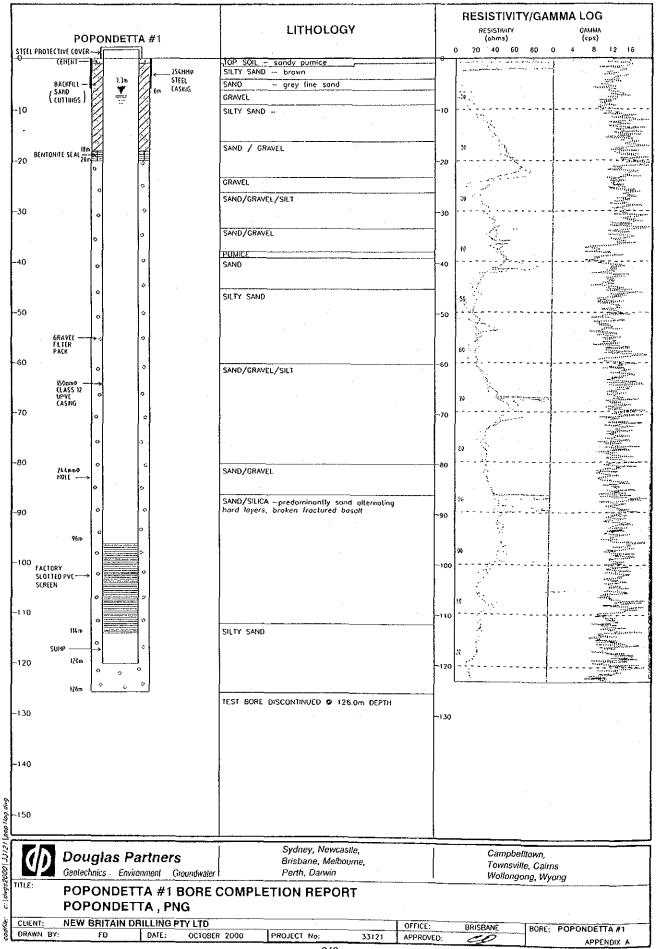
It is recommended the pump intake be set at 92 m below ground level to allow for seasonal water level fluctuations, deterioration of bore efficiency and drought conditions. Under no circumstances should the intake of the pump be installed within or close (<2 m) to the slotted screen section (refer composite log in Appendix A) of the bore as this will induce turbulent flow within the bore, thereby decreasing the bore efficiency.

Future pump testing of production bores in this area should be carried out with a pump that is capable of producing 16-20 L/s at least in order to confirm the long term safe (maximum) yields of the bores. Assessing the drawdown with the 'bore equation' (from the step test analysis) for pumping rates 3 times or greater than the test pumping rate (i.e. 6.25 L/s) is difficult and prone to error, especially when the bore efficiency is low.

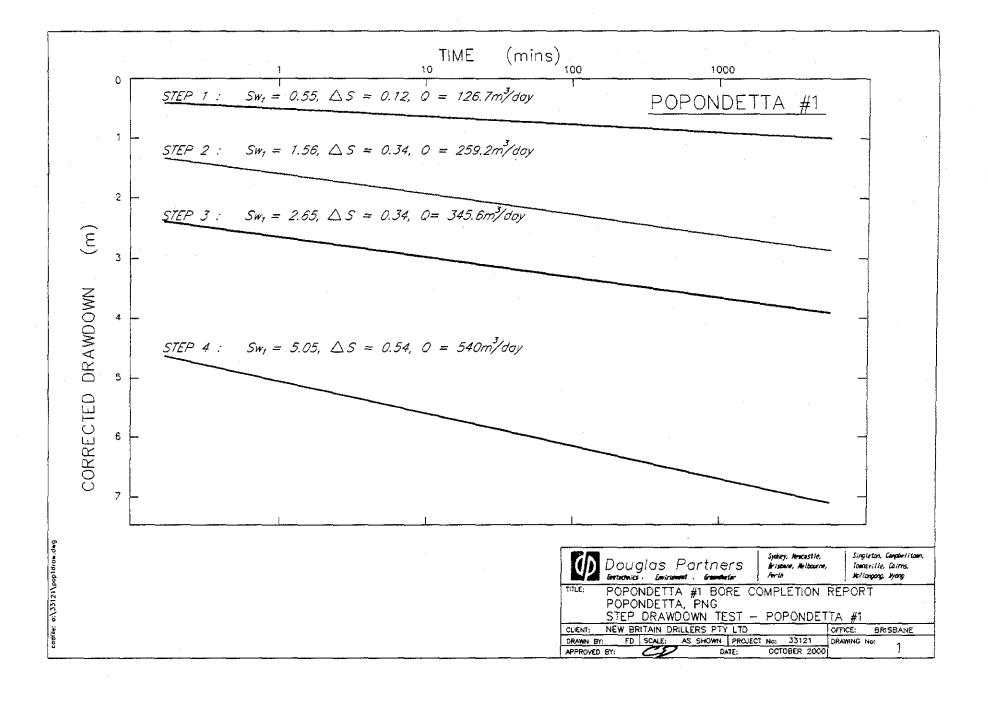
In order to confirm the potential bore yields from this aquifer, future production bores should be constructed with 200 mm diameter (minimum) casing and 10 m of stainless steel screens in order to take full advantage of the potential bore yields. This should increase the bore's efficiency and allow the housing of a pump capable of pumping up to 25 L/s.

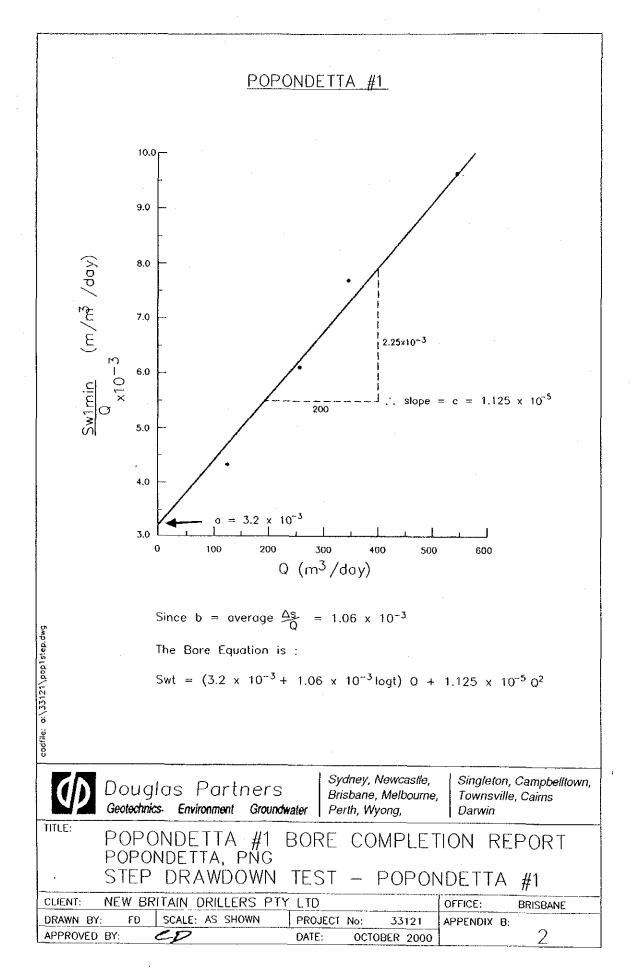
DOUGLAS PARTNERS PTY LTD

Reviewed by:

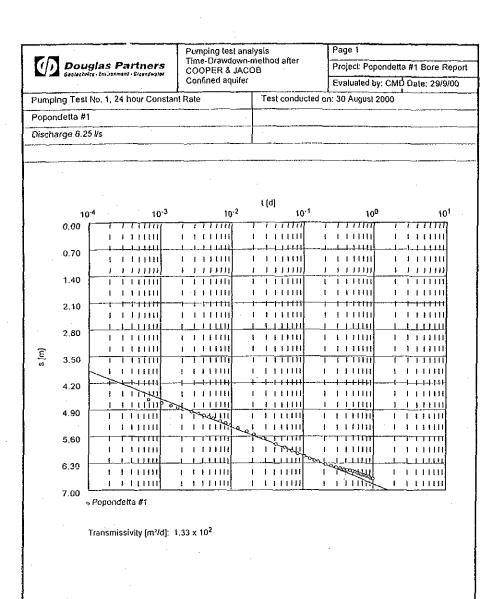

adrian Bulins

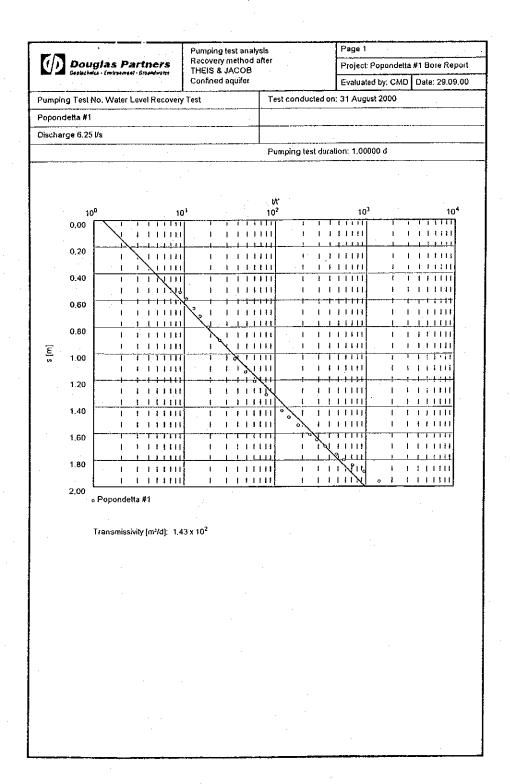
Carl Deegan


Associate/Hydrogeologist


Adrian Bulcock Principal/Hydrogeologist

COMPOSITE BORE LOG OF: TEST BORE POPONDETTA #1





~			Pump	ing test an	alysis	•	Page	1		
Doug	Douglas Partners Geouglaics - Emissiones) - Scientific - Similar - Scientific -			plot		Proje	ct Popone	etta #1 Bo	re Comp	
nedsternie - tursumbut : blokum meitz							Evalu	aled by: C	MD Date:	29/9/00
umping Test N	lo. 1, 24 ho	our Constant	Rate		Test o	onducted	on: 30 Au	ogust 2000		
opondetta #1										
Discharge 6,25	l/s								· -	
0.0	0,1	0.2	0.3	0,4	t [d] 0.5	0.6	0.7	0.8	0,9	1.0
0.00				Ī						
0.70			-	_						_
0.70		1				. [
1.40		· † -	† -	-			-		-	- 1
2.10			-						-	-
2.10		ļ								
2.80	-		† -			-			-	
E 3,50							_	.		
_{ση} 3,30										
4.20	-					-	-			- 1
4.90			-				-		-	
7.50								ĺ		
5.60	-18	· † •	-	-			-	- -	-	_
6.30		200	-» - » -	,			-			-
	-	1						→ >	- + +	—
7.00	Popondelt			h	···		······································			
·										
								÷		
								·		

		Pumping test analys		Page 2	
(/)	Douglas Partners	Time-Drawdown plo	t	Project: Popondetta	#1 Bore Completion
-	Geolechnics - Emillanment - Grandwatts			Evaluated by: CMO	Date: 29/9/00
Pumping Test No. 1, 24 hour Constant Rate		Test conducted on:	30 August 2000		
Papar	ndelta #1		Popondetta #1		
	arge 6,25 l/s		Distance from the p	oumping well 0.010 m	
	water level: 7,340 m below datum				
	Pumping test duration	Water level	Drawdov	wn	
Į	,,,				
	(d)	(m)	[m]		
1	0.00069	11.970 12.060		4.630	
2	0.00104	12,060		4,790	
3	0.00139 0.00174	12,190		4.850	·
5	0.00208	12.220		4.880	· · · · · · · · · · · · · · · · · · ·
6	0.00278	12.290	- 	4.950	
7	0,00347	12.340	<u> </u>	5.000	
8	0.00417	12.390		5.050	
9	0.00486	12,430		5.090	
10	0.00556	12.470		5.130	
11	0.00694	12.540		5.200	
12	0.00833	12,590		5.250	
13	0.00972	12,640		5,300	
14	0,01250	12.720 12.810		5.380 5.470	
16	0.01667 0.02083	12,890		5.550	*
17	0.02083	12,990		5.650	-
18	0.04167	13,140		5.800	
19	0.05556	13,230	· · · · · · · · · · · · · · · · · · ·	5.890	
20	0,06944	13.320	 	5.980	
21	0,08333	13.390		6.050	
22	0.10417	13.460		6,120	
23	0.12500	13,520		6,180	
24	0.14583	13.570	1.	6.230	
25	0.16667	13.600		6.260	
26	0.20833	13.660		6,320	
27	0.25000	13.710		6,370	
28	0.29167	13.740		6.400	
29	0.33333	13,770	<u> </u>	6.430	
30	0.37500	13,800		6.460	
31	0.41667	13,820	ļ	6.480	<u> </u>
32	0,45833 0,50000	13.830 13,850		6,490 6,510	`
34	0.54167	13,830		6.530	
35	0,58333	13.900		6.560	
36	0,62500	13,910	-	6.570	
37	0.66667	13.930	T	6.590	
38	0,70833	13,950	_	6.610	
39	0.75000	13.950		6,610	
40	0.79167	13,970		6.630	
41	0.83333	13.970		6.630	
42	0.87500	13,980		6.640	
43	0,91667	14.020		6.680	
44	0.95833	14,030		6,690	
45	1.00000	14,030		6.690	
!					
ļ					
<u>i</u>			<u> </u>	<u> </u>	

		Pumping test an NEUMAN's met	aiysis	Page 1			
Douglas Partners		Unconfined aqui	Unconfined agulfer with		Project: Popondetta #1 Bore Report		
delayed watertable			ble response	e response Evaluated by: CMD Date: 29/9/00			
Pumpir	ng Test No. 1, 24 hour Con	stant Rate	Test conducted	on: 30 August 2000			
Popono	letta #1						
Discha	rge 6.25 l/s						
	•		. 1/u				
	10 ⁻¹ 10 ⁰	10 ¹ 10 ²	10 ³ 10 ⁴	10 ⁵ 1	0 ⁶ 10 ⁷		
	10-						
				000 200000000000000	Socklifter.		
	101				7		
			0.001		Theis		
			0.06				
_	100	0.20			 		
W(uA,uB,ß)		0.60					
Š		1.00			•		
₹	10-1	2.00					
	1 1/1		-				
		06					
	10-2						
	/		/	•			
		-					
	10-3	1 1			<u>!</u>		
	o Popondella #1						
	Transmissivity [m²/c	j: 9.43 x 10			•		
			•				
		•					
				•			
				•			
		•					
		٠.					

Pumping test analysis Recovery method after THEIS & JACOB Confined aquifer Page 2
Project Popondetta #1.Bore Report
Evaluated by: CMD | Date: 29,09,00

Pumping Test No. Water Level Recovery Test Test conducted on: 31 August 2000 Popondetta #1 Popondetta #1 Discharge 6.25 l/s Pumping test duration: 1,00000 d Static water level: 7.340 m below datum Residual Time from Water level end of pumping drawdown [d] [m] 0.00069 9,300 1.960 1 0.00104 9.230 1.890 3 0.00139 9.180 1.840 0,00174 1.800 4 9.140 0.00208 9,100 1,760 5 6 0.00278 9,040 1.700 0.00347 8,990 1.650 0.00417 8.950 1.610 8 9 0.00556 8.880 1,540 10 0.00694 8.820 1.480 0.00833 8.770 1.430 12 0.01250 8.650 1.310 0.01667 8.550 14 0.02083 8.480 1.140 15 0.02778 8.380 1.040 16 0.04167 8.240 0.900 17 0.05556 8.140 0.800 18 0.06944 8.060 0.720 19 0.08333 8.000 0.660 20 0.10417 7.930 0.590 21 0.12500 7.880 0.540

CD:gk(RD22) Project 33121 October 2000

REPORT ON GROUNDWATER DEVELOPMENT FOR WATER SUPPLY SYSTEMS IN PAPUA NEW GUINEA - POPONDETTA #2 BORE COMPLETION REPORT

1.0 INTRODUCTION

This report describes the test bore completion details and analysis of pumping test data for Popondetta #2 that was recently installed in the Popondetta district. It is understood the bore was drilled and installed as part of the study on Groundwater Development for Water Supply Systems in Papua New Guinea, which is funded by JICA and being carried out by Japan Techno Co Ltd. Douglas Partners Pty Ltd (DP) were commissioned by New Britain Drillers Ltd (NBD) to prepare this bore completion report.

The pumping test carried out on the bore by NBD included:

- a step drawdown test;
- a 24 hour constant rate test; and
- · a water level recovery test.

The pumping test data, supplied by NBD, was analysed with the objective of assessing the long term 'safe' yield for the bore (i.e. Popondetta #2).

DP did not supervise the drilling, construction, or pump testing of this test bore on-site. All information (i.e. bore construction, logging and pump test data) contained in this report was obtained by third parties including NBD and sent to DP. Therefore DP cannot be held responsible for the accuracy of the pump test data or the subsequent analysis contained in this report.

2.0 DRILLING AND BORE CONSTRUCTION

The exploratory drilling and bore construction was undertaken by NBD during the period August 2000 using a Bournedrill THD25 truck-mounted drilling rig.

Test bore Popondetta #2 was drilled initially with a 310 mm diameter hole to 6 m depth and installing 254 mm diameter steel casing (collar pipe). A 244 mm diameter hole was then drilled to 108 m depth using conventional rotary mud drilling techniques. A biodegradable liquid polymer mud was used as drilling fluid to remove the cuttings from the borehole.

The rock cuttings were logged on-site by Jim Devlin of NBD. At completion of drilling a suite of geophysical logs consisting of natural Gamma and Resistivity were run. A composite bore log showing both the lithological and geophysical logs is provided in Appendix A. The geological sequence encountered during the drilling of Popondetta #2 consisted primarily of alluvial deposits to 108 m depth. The alluvial deposits comprised a layered sequence of basaltic boulders interlayered with sand, gravel, silty sand and sandy gravel material. It was reported a hard layer was intersected between 84 m and 108 m depth and possibly comprised broken, fractured or vuggy basalt interlayered with sand.

It is understood Popondetta #2 was completed by installing an in-line string of sump, screen and casing into the bore. Class 12 PVC pipe, 150 mm diameter, supplied by Islex (Australia) Pty Ltd, was used as a casing and a sump (6 m long). A 150 mm diameter factory slotted screen, with 0.8 mm aperture and an open surface area of 8%, was installed from 76 m to 94 m depth. A filter pack consisting of 5-10 mm diameter gravel was placed in the annulus between the hole wall and casing/screen. The bore was developed by jetting, chemical treatment, and airlift surging until it produced clean, essentially sand free water. The top section of the annulus between the surface casing and the bore casing was cemented and bentonite sealed to prevent surface contamination from entering the bore.

The construction details provided by NBD for Popondetta #2 are summarised in Table 1 and are shown on the composite bore log in Appendix A.

Table 1: Bore Construction Details - Popondetta #2

Bore No.	Total Depth (mbgL)	Casing Diameter (mm)	Slotted Interval (mbgL)	Gravel Pack (mbgL)	Static Water Level (22/8/00) (mbgL)
Popondetta #2	100	150	76-94	60-108	5.55

Notes:

mbgL - metres below ground level

NBD reported the yield whilst airlifting the bore, towards the completion of the development process, was about 15 L/s.

3.0 PUMPING TESTS AND ANALYSIS

Following completion of Popondetta #2, pumping tests were undertaken to assess the hydraulic parameters of the aquifer and long term yield of the bore. The pumping tests and analysis were carried out in accordance with Australian Standard AS2368-1990¹.

3.1 Pumping Test Set-Up

A Calpeda (4SD\23, 5.5 kW) multistage, electric submersible pump powered by a 60 kVA generator was used for the step drawdown and constant rate pumping tests. The pump intake was set at 32.5 m below ground level, about 27 m below the standing water level. Flow was controlled by an inline gate valve and was monitored using a 50 mm PMS inline flow meter.

Water level drawdown was manually measured in Popondetta #2 using electric dipmeters.

3.2 Step Drawdown Test

The step test was conducted in order to provide information on bore yield and efficiency in relation to the bore's construction and development. The data was analysed using the Eden and Hazel² method which gives an equation for the bore, enabling drawdown for the chosen flow rate over a given time period to be calculated, viz:

$$S_{wt} = (a + b \log t) Q + cQ^2$$

where:

 S_{M} = drawdown of the water table at a given time (t)

Q = pumping rate (m³/day)

t = time in minutes

a,b,c = bore constants assessed from the step drawdown data

An assessment of the efficiency of the bore was made using the equation, viz:

where:

(a + b lot t) Q = drawdown due to formation loss cQ² = drawdown due to bore loss

¹ Standards Australia, 1990. Test Pumping of Water Wells AS2368-1990, Published by Standards Assoc. of Australia. ² Eden, R.N. and Hazel, C.P. (1973) "Computer and Graphical Analyses of Variable Discharge Pumping Test of Wells", Inst. Engrs. Australia, Civil Engng. Trans. pp 5-10

This is considered to be the maximum long term safe yield for this bore based on the step test analysis of the data supplied to DP.

3.3 Constant Rate and Recovery Tests

A constant rate test is undertaken to assess the hydraulic parameters of the aquifer and the presence of boundary conditions which may increase or decrease the rate of drawdown. Boundaries may be in the form of a barrier (impermeable) boundary which will increase the rate of drawdown, or recharge boundaries which would reduce the rate of drawdown. The information, together with the hydraulic parameters, allows a more accurate assessment of the long term 'safe' yield of a bore or borefield.

A 24 hour constant rate pumping test was commenced at 0800 hours on 25 August 2000 and was completed at 0800 hours on 26 August 2000. The bore was pumped continuously at a rate of 540 m³/day (6.25 L/s), and at completion of pumping a water level recovery test was undertaken.

The constant rate drawdown and recovery data by Popondetta #2 were analysed using the "Aquifer Test Version 2.0" software package³.

The constant rate drawdown data was analysed using the Cooper-Jacob straight line analysis and curve matching techniques of the Neuman method for an unconfined aquifer. The recovery data was analysed using the Theis recovery method. Details of these analysis methods are outlined in Kruseman and de Ridder (1991)⁴.

Analysis of the drawdown and recovery data provides an estimate of the hydraulic parameter of aquifer transmissivity. Transmissivity is the coefficient of hydraulic conductivity (permeability) multiplied by the aquifer thickness. The drawdown and recovery analysis sheets for Popondetta #2 are given in Appendix C and a summary of the analysis is provided in Table 3.

Table 3: Summary of Analysis of Pumping Test Data

Bore	Pumping Rate 'Q' (m³/day)	SWL (mbgL)	Depth of Screen (mbgL)	Maximum Drawdown (m) During Test	Transmissivity 'T' (m²/day)	Method of Analysis
Popondetta #2	540 (6.25 L/s)	5,55	76-94	7.39	94 87	Cooper/Jacob Neuman
				1	100	Theis Recovery

Note:

mbgL - metres below ground level

³ Waterloo Hydrogeologic 1996, "Aquifer Test Version 2.0".

⁴ Kruseman, G.P., and N.A. de Ridder, 1991. Analysis and Evaluation of Pumping Test Data. Second Edition, ILRI publication 47, Wageningen, The Netherlands.

The constant rate test data and analysis indicate that the aquifer is unconfined and receives delayed yield as a result of the groundwater extraction. The delayed yield is indicated by a slight flattening of the drawdown curve, refer to Theis – Jacobs analysis plot in Appendix C, towards the end of the test

The pumping test data indicates that the aquifer has a transmissivity of about 94 m²/day at the drilling site.

No barrier or impermeable boundaries were reflected in the data recorded during the 24 hour constant rate test for Popondetta #2.

4.0 GROUNDWATER QUALITY

A groundwater sample collected during the pumping test was analysed on-site for water electrical conductivity (EC), salinity, pH and temperature with a standard hand held instrument. The results of the field measurements are summarised in Table 4.

Table 4: Results of Field Water Quality Analysis

	Analysis					
Date	pН	EC	Salinity	Temp		
		(μS/cm)	(ppk)	(⁰ C)		
29/8/2000	8.0	170	0.07	24.3		

Note:

μS/cm - micro siemens per centimetre

ppk - parts per thousand

The water is of a high quality with respect to EC and hence salinity or total dissolved solids. For comparison, the World Health Organisation (WHO) guidelines for total dissolved solids of 1000 mg/L in drinking water is approximately equal to an EC of 1500 μ S/cm. The pH is slightly alkaline but is well within the WHO guidelines range of 6.5 to 8.5.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The groundwater exploratory drilling program was successful in locating a viable groundwater resource at the location of test bore Popondetta #2. The analysis of the pumping tests indicates the bore has intersected an unconfined aquifer with a transmissivity of about 94 m²/day. Field water quality measurements indicated the water to be fresh with a slightly alkaline pH of 8.0.

The pumping test analysis indicates the long term 'safe' yield of Popondetta #2 is up to 1642 m³/day or 19 L/s. A relatively steady state drawdown of about 53 m, about 59 m below ground level, is expected to result from long term pumping at this rate.

It is recommended the pump intake be set at 72 m below ground level to allow for seasonal water level fluctuations, deterioration of bore efficiency and drought conditions. Under no circumstances should the intake of the pump be installed within or close (<2 m) to the slotted screen section (refer composite log in Appendix A) of the bore as this will induce turbulent flow within the bore, thereby decreasing the bore efficiency.

Future pump testing of production bores in this area should be carried out with a pump that is capable of producing 16-20 L/s at least in order to confirm the long term safe (maximum) yields of the bores. Assessing the drawdown with the 'bore equation' (from the step test analysis) for pumping rates 3 times or greater than the test pumping rate (i.e. 6.25 L/s) is difficult and prone to error, especially when the bore efficiency is low.

In order to confirm the potential bore yields from this aquifer, future production bores should be constructed with 200 mm diameter (minimum) casing and 10 m of stainless steel screens in order to take full advantage of the potential bore yields. This should increase the bore's efficiency and allow the housing of a pump capable of pumping up to 25 L/s.

DOUGLAS PARTNERS PTY LTD

Reviewed by:

Carl Deegan

Associate/Hydrogeologist

Adrian Bulcock
Principal/Hydrogeologist

3.2.1 Popondetta #2 Analysis

A step drawdown test on Popondetta #2 comprising four, two hour steps, was undertaken on 22 August 2000. Prior to commencement of the test, the static water level was measured at 5.55 m below ground level (6.35 m below top of casing). The step test analysis sheets are given in Appendix B. The pumping rates were progressively increased as follows:

Step 1 - 172.8 m³/day (2.0 L/s) Step 2 - 259.2 m³/day (3.0 L/s) Step 3 - 345.6 m³/day (4.0 L/s) Step 4 - 540 m³/day (6.25 L/s)

The step drawdown test data is summarised in Table 2.

Table 2: Step Test Analysis

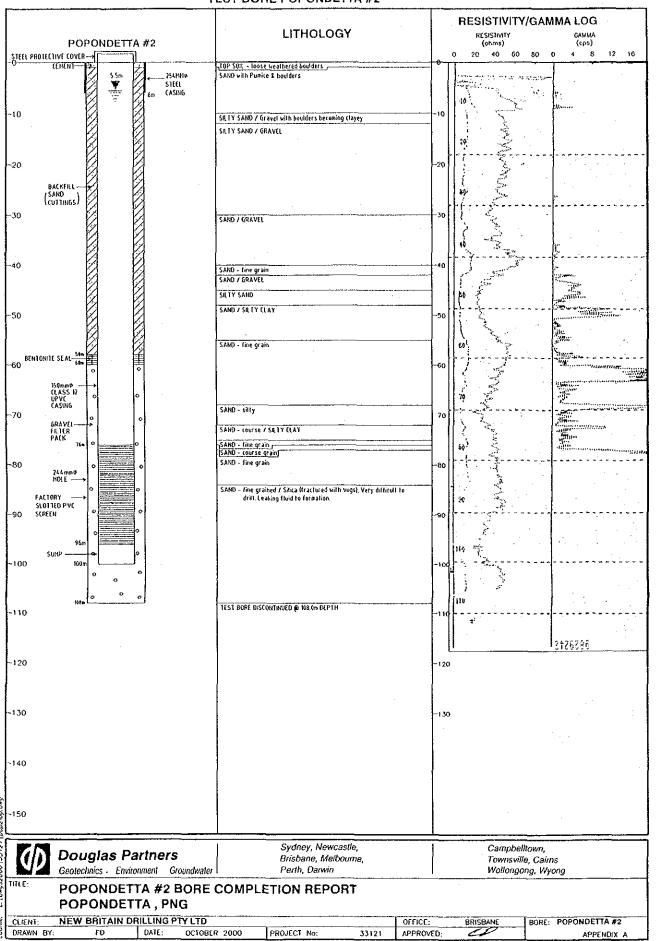
Step	Q (m³/day)	Δs (m)	Δs/Q (m/m³/day)	S _w (1min) (m)	S _w (1min)/Q (m/m³/day)
1	172.8	0.17	9.84 x 10 ⁻⁴	0.91	5.27 x 10 ⁻³
2	259.2	0,33	1.27 x 10 ⁻³	1.91	7.37×10^{-3}
3	345.6	0.41	1.19 x 10 ⁻³	3.14	9.09 x 10 ⁻³
4	540.0	0.65	1.20 x 10 ⁻³	5.53	1.02 x 10 ⁻²

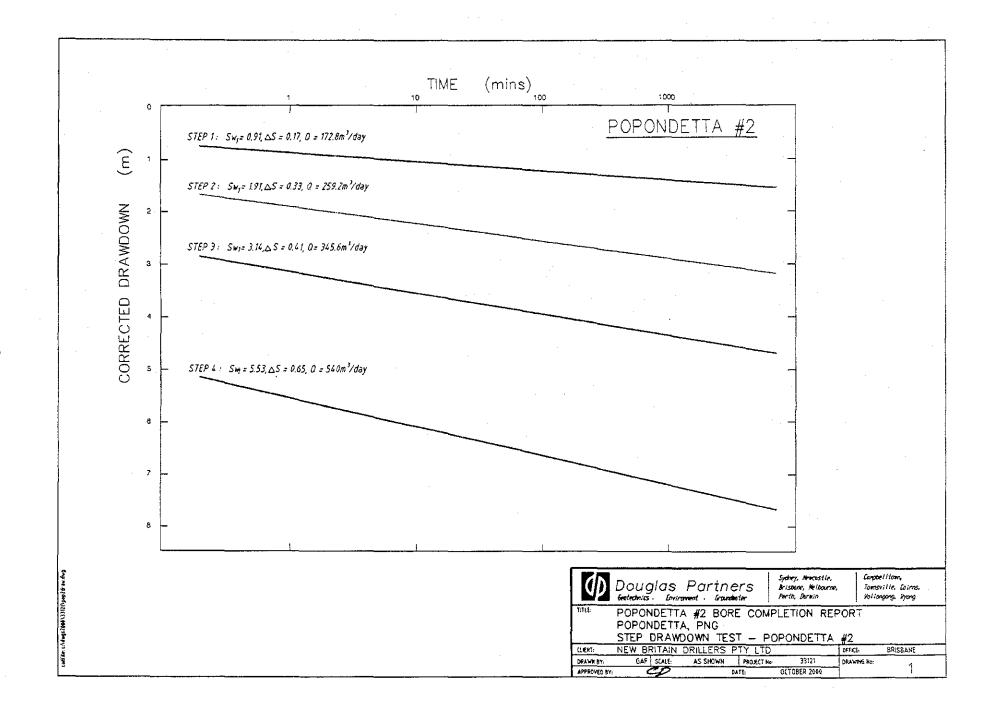
By undertaking graphical analysis as shown in Appendix B, values for the bore constants were obtained as follows:

$$a = 3.5 \times 10^{-3}$$

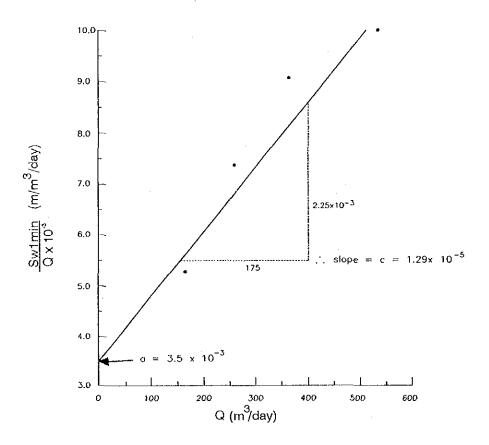
 $b = 1.16 \times 10^{-3}$
 $c = 1.29 \times 10^{-5}$

Based on these, the 'bore equation' for test bore Popondetta #2 is assessed to be:


$$S_{M} = (3.5 \times 10^{-3} + 1.16 \times 10^{-3} \log t) Q + 1.29 \times 10^{-5}$$


This equation predicts a drawdown of 7.63 m after 24 hours pumping at a rate of 540 m³/day (6.25 L/s) which compares favourably with a measured drawdown of 7.39 m during the 24 hour constant rate pumping test, undertaken at the same time.

Using this scenario, the 'bore equation' indicates that Popondetta #2 is about 51% efficient.


The bore equation indicates that pumping the bore at a constant rate of 1642 m³/day (19 L/s) for ten years will give a drawdown of approximately 53 m, about 59 m below ground level (maximum available drawdown is 66.5 m about 72 m below ground level, i.e. recommended pump intake level).

COMPOSITE BORE LOG OF: TEST BORE POPONDETTA #2

POPONDETTA #2

Since b = average $\frac{\Delta S}{Q}$ = 1.16 x 10⁻³ ∴ Bore Equation is : Swt = (3.5 x 10⁻³ + 1.16 x 10⁻³logt) Q + 1.29 x 10⁻⁵Q²

Douglas Partners

Geotechnics Environment

nt Groundwater

Sydney, Newcastle, Brisbane, Melbourne, Perth, Darwin

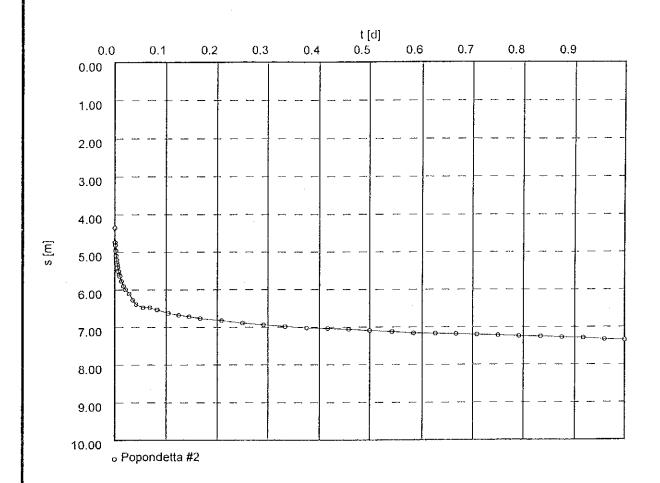
Campbelltown, Townsville, Cairns Woolongong, Wyong

TITLE:

cadfile: c:\dwgs2000\33121\pop2step.dwg

POPONDETTA #2 BORE COMPLETION REPORT POPONDETTA, PNG STEP DRAWDOWN TEST - POPONDETTA #2

CLIENT:	VEW BRI		ILLERS PTY L	TD			OFFICE:		BRISBANE
DRAWN BY:	GAF	1	AS SHOWN	PROJECT	No:	33121	APPENDIX	B:	2
APPROVED BY	:	08		DATE:	остов(ER 2000			<u>.</u> .



Pumping test analysis Time-Drawdown plot Page 1

Project: Popondetta #2 Bore Report

Evaluated by: CMD Date: 3/10/00

Pumping Test No. 1, 24 hour Constant Rate	Test conducted on: 25 August 2000
Popondetta #2	
Discharge 6.25 l/s	

Pumping test analysis Time-Drawdown plot Page 2

Project: Popondetta #1 Bore Report

Evaluated by: CMD

Date: 3/10/00

Pumping Test No. 1, 24 hour Constant Rate

Test conducted on: 25 August 2000

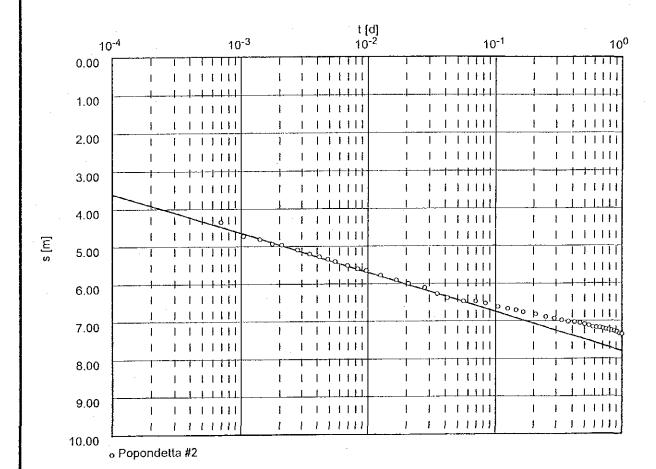
Popondetta #2

Discharge 6.25 l/s

Distance from the pumping well 0.010 m

Static water level: 6,390 m below datum

	Pumping test duration	Water level	Drawdown	
ļ	[d]	(m)	[m]	
	0.00069	10.740	4.350	1
2	0.00104	11.120	4,730	
3	0.00139	11.200	4.810	
4	0.00174	11.320	4.930	
5	0,00208	11.350	4.960	
6	0.00278	11.480	5,090	
7	0.00347	11.590	5.200	
8	0.00417	11,660	5.270	
9	0.00486	11.730	5.340	
10	0.00556	11.790	5.400	
11	0.00694	11.900	5.510	
12	0.00833	11.990	5.600	
13	0.00972	12.030	5.640	
14	0.01250	12.160	5.770	
15	0,01667	12.290	5.900	
16	0.02083	12.380	5,990	
17	0.02778	12.490	6.100	
18	0.03472	12.660	6.270	
19	0.04167	12.770	6.380	
20	0.05556	12.860	6.470	
21	0.06944	12.860	6.470	
22	0.08333	12.920	6.530	
23	0.10417	13,010	6.620	
24	0.12500	13.060	6.670	
25	0.14583	13.100	6.710	
26	0,16667	13.150	6,760	
27	0.20833	13.210	6.820	
28	0.25000	13.280	6.890	
29	0.29167	13.320	6.930	
30	0,33333	13.370	6.980	
31	0.37500	13.410	7.020	
32	0.41667	13.420	7,030	
33	0.45833	13.450	7.060	
34	0.50000	13,480	7.090	
35	0.54167	13.510	7.120	<u>,</u>
36	0.58333	13.550	7.160	
37	0.62500	13,560	7.170	
38	0.66667	13.570	7.180	
39	0.70833	13.590	7.200	
40	0,75000	13,610	7.220	
41	0.79167	13.630	7.240	
42	0.83333	13.640	7.250	
43	0.87500	13.660	7,270	
44	0.91667	13.680	7.290	
45	0.95833	13.720	7.330	
46	1.00000	13.740	7.350	·
ļ		1	j	



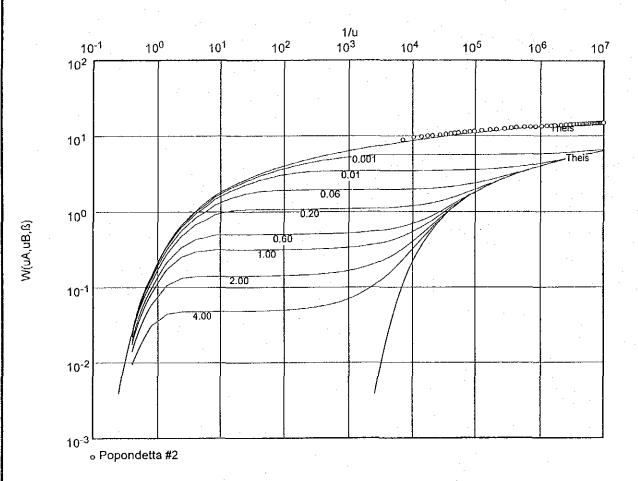
Pumping test analysis
Time-Drawdown-method after
COOPER & JACOB
Confined aquifer

Page 1
Project: Popondetta #2, Bore Report

Evaluated by: CMD Date: 3/10/00

l	Pumping Test No. 1, 24 hour Constant Rate	Test conducted on: 25 August 2000
١	Popondetta #2	
I		
ı	Discharge 6.25 l/s	

Transmissivity [m²/d]: 9.40 x 101

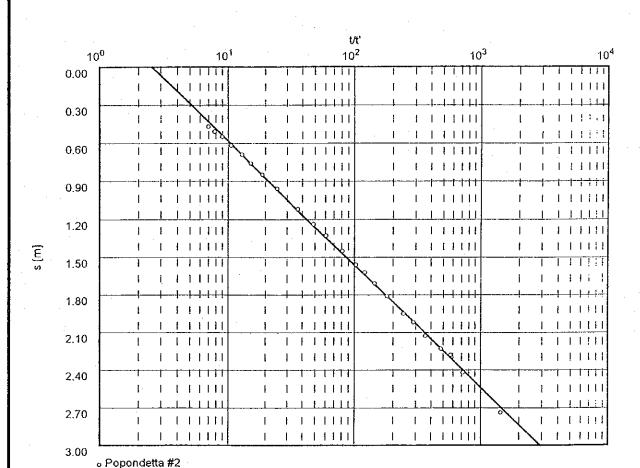

Pumping test analysis NEUMAN's method Unconfined aquifer with delayed watertable response Page 1
Project: Popondetta #2 Bore Report
Evaluated by: CMD Date: 3/10/00

Pumping Test No. 1, 24 hour Constant Rate

Test conducted on: 25 August 2000

Popondetta #2

Discharge 6.25 l/s


Transmissivity [m²/d]: 8.71×10^{1}

Pumping test analysis Recovery method after THEIS & JACOB Confined aquifer Page 1
Project: Popondetta #2 Bore Report
Evaluated by: CMD | Date: 29/9/00

L.,	
Pumping Test No. Recovery Test	Test conducted on: 24 August 2000
Popondetta #2	
Discharge 6,25 l/s	

Pumping test duration: 1.00000 d

Transmissivity [m²/d]: 1.00 x 10²

Pumping test analysis Recovery method after THEIS & JACOB Confined aquifer Page 2
Project: Popondetta #2 Bore Report
Evaluated by: CMD Date: 29/9/00

			L.valuated by, C	IVID Date. 2010/00	
Pumping Test No. Recovery Test			Test conducted on: 24 August 2000		
Popondetta #2			Popondetta #2		
Discha	arge 6.25 l/s				
Static	water level: 6,390 m below datum		Pumping test duration: 1,00000 d		
1	Time from	Water level	Residual		
. 1	end of pumping		drawdown	9	
ĺ	[d]	[m]	(m)		
1	0,00069	9.130	2.740		
	0.00139	8.810	2,420		
3	0.00139	8.670	2.280		
		8.620	2.230		
5	0.00208	8.520	2.130		
- 1	0.00278				
6	0.00347	8.410	2.020		
7	0.00417	8.340	1.950		
8	0.00556	8.200	1.810		
9	0.00694	8.100	1.710	 	
10	0.00833	8.010	1.620	***************************************	
11	0.00972	7.950	1.560	•	
12	0.01250	7.840	1.450		
13	0.01667	7.720	1.330		
14	0.02083	7.630	1.240		
15	0.02778	7.510	1.120		
16	0.04167	7.350	0.960		
17	0,05556	7.240	0.850		
18	0.06944	7.150	0.760		
19	0.08333	7.080	0.690		
20	0.10417	7.010	0.620		
21	0.12500	6.940	0.550		
22	0.14583	6.900	0.510		
23	0.16667	6.860	0.470		
·					
			<u> </u>		
			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
					
		**			
				·	

CD:gk(RD23) Project 33121 October 2000

REPORT ON GROUNDWATER DEVELOPMENT FOR WATER SUPPLY SYSTEMS IN PAPUA NEW GUINEA - FINSCHHAFEN #2

1.0 INTRODUCTION

This report describes the test bore completion details and analysis of pumping test data for Finschhafen #2 that was recently installed in the primary school yard in the Finschhafen district. It is understood the bore was drilled and installed as part of the study on Groundwater Development for Water Supply Systems in Papua New Guinea, which is funded by JICA and being carried out by Japan Techno Co Ltd. Doulgas Partners Pty Ltd (DP) were commissioned by New Britain Drillers Ltd (NBD) to prepare this bore completion report.

The pumping test carried out on the bore by NBD included:

- a step drawdown test;
- a 24 hour constant rate test; and
- a water level recovery test.

The pumping test data, supplied by NBD, was analysed with the objective of assessing the long term 'safe' yield for the bore (i.e. Finschhafen #2).

DP did not supervise the drilling, construction, or pump testing of this test bore on-site. All information (i.e. bore construction, logging and pump test data) contained in this report was obtained by third parties including NBD and sent to DP. Therefore DP cannot be held responsible for the accuracy of the pump test data or the subsequent analysis contained in this report.

2.0 DRILLING AND BORE CONSTRUCTION

The exploratory drilling and bore construction was undertaken by NBD during the month of October 2000 using a Bournedrill THD25 truck-mounted drilling rig.

Test bore Finschhafen #2 was drilled initially with a 310 mm diameter hole to 6 m depth and installing 254 mm diameter steel casing (collar pipe). A 244 mm diameter hole was then drilled to 37 m depth using conventional rotary mud drilling techniques. As circulation loss was encountered whilst drilling, 203 mm (eight inch) diameter steel casing was required to be installed to 34 m in order to stabilise the borehole. Once the test bore had been installed this casing was removed. A biodegradable liquid polymer mud was used as drilling fluid to remove the cuttings from the borehole.

The rock cuttings were logged on-site by Jim Devlin of NBD. At completion of drilling a suite of geophysical logs consisting of natural Gamma and Resistivity were run, but were reported by NBD to be unsuccessful due to equipment failure. A composite bore log showing the lithological log is provided in Appendix A. The geological sequence encountered during the drilling of Finschhafen #2 consisted of brown coronous limestone and tuff to 6 m depth, underlain by grey coronous limestone with some silt to 28 m depth, which in turn is underlain by white coronous gravel and sand to the total depth drilled.

Finschhafen #2 was completed by installing an in-line string of screen and casing into the bore. Steel ultrapipe 152 mm (six inch) diameter nominal bore casing, 6.4 mm wall thickness, supplied by Tubemakers Australia Pty Ltd was used as the casing. A 152 mm diameter stainless steel screen, with 0.8 mm aperture and an open surface area of 20%, was installed from 30 m to 36 m depth. A filter pack consisting of 5-10 mm diameter gravel was placed in the annulus between the hole wall and casing/screen. The bore was developed by jetting, chemical treatment and airlift surging until it produced clean, essentially sand free water. The top section of the annulus between the surface casing and the bore casing was cemented and bentonite sealed to prevent surface contamination from entering the bore.

The construction details provided by NBD for Finschhafen #2 are summarised in Table 1 and are shown on the composite bore log in Appendix A.

Table 1: Bore Construction Details

Bore No.	Total Depth (mbgL)	Casing Diameter (mm)	Screen Interval (mbgL)	Gravel Pack (mbgL)	Static Water Level (29/8/00)
				,	(mbgL)
Finschhafen #2	36.2	152	30-36	10-37	5.90

NBD reported the yield whilst airlifting the bore, at the end of the development process, was about 15 L/s. This is considered to be the limit of the air compressor on the drilling rig airlifting from within a 152 mm (six inch) diameter bore casing, rather than a limit of the bore's yield.

3.0 PUMPING TESTS AND ANALYSIS

Following completion of Finschhafen #2, pumping tests were undertaken to assess the hydraulic parameters of the aquifer and long term yield of the bore. The pumping tests and analysis were carried out in accordance with Australian Standard AS2368-1990¹.

3.1 Pumping Test Set-Up

A Calpeda (4SD15\23, 5.5 kW) multistage, electric submersible pump powered by a 60 kVA generator was used for the step drawdown and constant rate pumping tests. The pump intake was set at 26.5 m below ground level, about 20 m below the standing water level. Flow was controlled by an in-line gate valve and was monitored using a 50 mm PMS in-line flow meter.

Water level drawdown was manually measured in Finschhafen #2 using electric dipmeters.

3.2 Step Drawdown Test

The step test was conducted in order to provide information on bore yield and efficiency in relation to the bore's construction and development. The data was analysed using the Eden and Hazel² method which gives an equation for the bore, enabling drawdown for the chosen flow rate over a given time period to be calculated, viz:

$$S_M = (a + b \log t) Q + cQ^2$$

where:

 S_{wt} = drawdown of the water table at a given time (t)

Q = pumping rate (m³/day)

t = time in minutes

a,b,c = bore constants assessed from the step drawdown data

An assessment of the efficiency of the bore was made using the equation, viz:

bore efficiency =
$$\frac{(a + b \log t) Q}{(a + b \log t) Q + cQ^2 \times 100}$$

Australia, Civil Engng. Trans. Pp 5-10

Standards Australia, 1990. Test Pumping of Water Wells AS2368-1990, Published by Standards Assoc. of Australia.
 Eden, R.N. and Hazel, C.P. (1973) "Computer and Graphical Analyses of Variable Discharge Pumping Test of Wells", Inst. Engrs.

where:

(a + b lot t) $Q = drawdown due to formation loss <math>cQ^2 = drawdown due to bore loss$

3.2.1 Finschhafen #2

A step drawdown test on Finschhafen #2 comprising four, two hour steps, was undertaken on 8 October 2000. Prior to commencement of the test, the static water level was measured at 6.90 m below top of casing which was 5.90 m below ground level. The step test drawdown versus time plot and step test data is given in Appendix B. The pumping rates were progressively increased as follows:

Step 1 -	172.8 m³/day (2.0 L/s)
Step 2 -	259.2 m³/day (3,0 L/s)
Step 3 -	345.6 m ³ /day (4.0 L/s)
Step 4 -	540 m³/day (6.25 L/s)

A step test analysis was not able to be carried out on the data provided due to the lack of drawdown observed whilst pumping at the rates mentioned above. The data shows rising water levels throughout steps 1, 2, 3 and 4 suggesting the variation in water levels was mainly due to tidal variations and ongoing bore development instead of the pumping. The maximum drawdown observed throughout the step drawdown test was 0.06 m during step 2.

3.3 Constant Rate and Recovery Tests

A constant rate test is undertaken to assess the hydraulic parameters of the aquifer and the presence of boundary conditions which may increase or decrease the rate of drawdown. Boundaries may be in the form of a barrier (impermeable) boundary which will increase the rate of drawdown, or recharge boundaries which would reduce the rate of drawdown. The information, together with the hydraulic parameters, allows a more accurate assessment of the long term 'safe' yield of a bore or borefield.

A 24 hour constant rate pumping test was commenced at 0800 hours on 9 October 2000 and was completed at 0800 hours on 10 October 2000. Prior to commencement of the test the static water level was measured at 7.05 m below top of casing or 6.05 m below ground level. The bore was pumped continuously at a rate of 540 m³/day (6.25 L/s), and at completion of pumping a water level recovery test was undertaken.

The constant rate drawdown and recovery data for Finschhafen #2 were attempted to be analysed using the "Aquifer Test Version 2.0" software package³. The data and drawdown versus time plots are given in Appendix C.

³ Waterloo Hydrogeologic 1996, "Aquifer Test Version 2.0".

Pumping the bore at a rate of 540 m³/day (6.25 L/s) caused an insufficient drawdown of the static water level for the data to be analysed with the industry accepted methods. As such, no analysis of the constant rate or the recovery data to obtain the aquifer's hydraulic parameters could be carried out.

The constant rate and recovery test data showed the maximum drawdown throughout the test was 0.19 m indicating the aquifer intersected by the bore has a very high permeability or transmissivity. The water level was observed to rise and fall over a range of 0.23 m, reflecting the tidal variations in the nearby ocean. It is understood the bore is approximately 600 m from the coastline.

The maximum drawdown of 0.19 m was recorded at the end of the test which coincided with low tide. The water level recovered during the recovery test to only 7.19 m or by 0.05 m, suggesting the drawdown due to pumping was only 0.05 m.

In conclusion, no barrier or impermeable boundaries were able to be observed in the data recorded during the 24 hour constant rate test for Finschhafen #2. However, the data indicated the bore is affected by tidal influences.

4.0 GROUNDWATER QUALITY

A groundwater sample collected during the pumping test was analysed on-site for water electrical conductivity (EC), salinity, pH and temperature with a standard hand held instrument. The results of the field measurements are summarised in Table 2.

Table 2: Results of Field Water Quality Analysis

		Analysis			
Date	pН	EC	Salinity	Temp (°C)	
		(µS/cm)	(ppk)		
29/8/00	7.9	190	0.06	24.3	

Note:

µS/cm - micro siemens per centimetre

ppk - parts per thousand

The water is of a high quality with respect to EC and hence salinity or total dissolved solids. For comparison, the World Health Organisation (WHO) guidelines for total dissolved solids of 1000 mg/L in drinking water is approximately equal to an EC of 1500 μ S/cm. The pH is slightly alkaline (at 7.9) due to the carbonate nature of the aquifer matrix but is well within the WHO guidelines range of 6.5 to 8.5.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The groundwater exploratory drilling program was successful in locating a viable groundwater resource at the location of test bore Finschhafen #2. The pumping tests indicate the bore has intersected an aquifer with a very high transmissivity. Field water quality measurements indicated the water to be fresh and slightly alkaline (pH of 7.9).

The pumping test data for Finschhafen #2 was unable to be analysed due to tidal influences and insufficient drawdown achieved by pumping the bore at 540 m³/day or 6.25 L/s. As a result of this it is impossible to recommend a long term 'safe' yield for this test bore without another pumping test being undertaken at a greater extraction rate. Pumping rates of 3500-4320 m³/day or 40-50 L/s may be sustainable but cannot be confirmed without the additional pump testing.

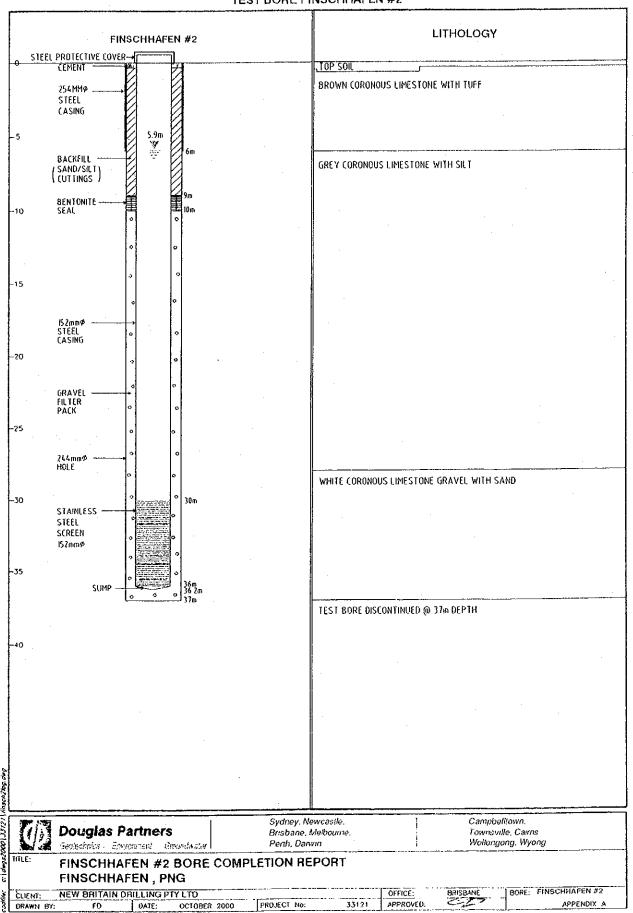
It is recommended the pump intake for this bore be set at 27 m below ground level. Under no circumstances should the intake of the pump be installed within or close (<1 m) to the stainless steel screen section (refer composite log in Appendix A) of the bore as this will induce turbulent flow within the bore, thereby decreasing the bore efficiency.

Future pump testing of this test bore and future production bores in this area should be carried out with a pump that is capable of producing 25-30 L/s at least in order to confirm the long term safe (maximum) yields of the bores.

To confirm the potential bore yields from this aquifer, future production bores should be constructed with 200 mm diameter (minimum) casing and 6 m of stainless steel screens in order to take full advantage of the potential bore yields. This should increase the bore's efficiency and allow the housing of a pump capable of pumping 40-50 L/s. As the test bore Finschhafen #2 is in close proximity to the coast and is affected by tidal fluctuations, it is recommended any future groundwater resource investigation comprises an assessment of the potential for salt water intrusion.

DOUGLAS PARTNERS PTY LTD

Reviewed by:


Carl Deegan

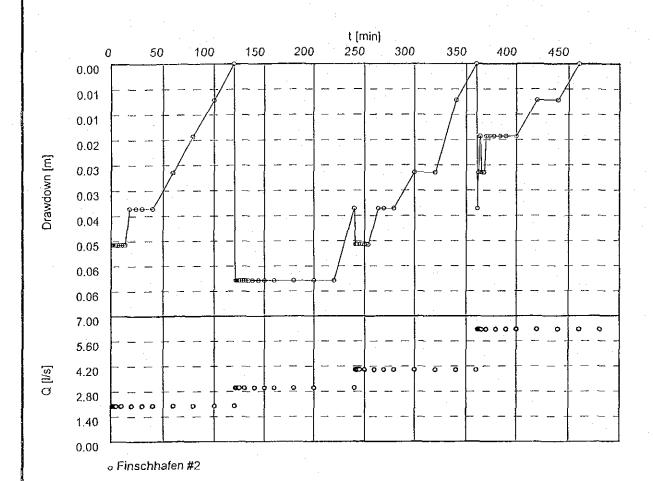
Associate/Hydrogeologist

Adrian Bulcock

Principal/Hydrogeologist

COMPOSITE BORE LOG OF: TEST BORE FINSCHHAFEN #2

Page 1


Project: Finschhafen #2 Bore Report

Evaluated by: CMD Date: 26/10/00

Pumping Test No. Step Drawdown Test

Test conducted on: 8 October 2000

Finschhafen #2

Page 2

Project: Finschhafen #2 Bore Report

Evaluated by: CMD Date: 26/10/00

Pumping Test No. Step Drawdown Test

Test conducted on: 8 October 2000

Finschhafen #2

Finschhafen #2

Static water level: 6,900 m below datum

	water level: 6.900 m below da Pumping test duration	Water level	Drawdown	
	rumping test uvi ation	AACIOLICAGI	DIGANDOANI	
	[min]	[m]	(m)	
1	[min] 1,00	6.950	0.050	
2	1.50	6.950	0.050	
3	2.00	6.950	0.050	
1	2.50	6.950	0.050	
4	3.00	6,950	0.050	
5		6,950	0.050	
6	4.00	6.950	0.050	·
7	5.00	6.950	0.050	·
8	6.00	6.950	0.050	
9	8.00			
10	10.00	6.950	0,050	
11	12.00	6.950	0.050	
12	14.00	6.950	0.050	<u> </u>
13	18.00	6.940	0,040	
14	24.00	6.940	0.040	
15	30.00	6.940	0.040	
16	40.00	6.940	0.040	
17	60.00	6.930	0.030	
18	80.00	6.920	0.020	
19	100.00	6.910	0.010	
20	120.00	6.900	0.000	
21	121.00	6.960	0.060	
- 22	122.00	6.960	0.060	
23	123.00	6.960	0.060	· · · · · · · · · · · · · · · · · · ·
24	124.00	6.960	0.060	
25	125.00	6.960	0.060	
26	126.00	6.960	0.060	
27	128.00	6.960	0.060	
28	130.00	6.960	0,060	
29	132.00	6.960	0.060	
30	134.00	6.960	0.060	
31	138.00	6.960	0.060	
32	144.00	6.960	0,060	
33	150.00	6.960	0.060	
34	160.00	6.960	0.060	
35	180.00	6.960	0.060	
36	200.00	6.960	0.060	
37	220.00	6.960	0.060	
38	240.00	6.940	0.040	
39	241.00	6.950	0.050	
40	242.00	6.950	0.050	
41	243.00	6.950	0.050	
42	245.00	6.950	0.050	
43	246.00	6.950	0.050	
44	248.00	6.950	0.050	
45	250.00	6.950	0.050	
46	252.00	6.950	0.050	
46	252.00	6.950	0.050	
	· · · · · · · · · · · · · · · · · · ·	6.940	0.040	
48	264.00		0.040	
49	270.00	6.940		
50	280.00	6.940	0.040	

Page 3

Project: Finschhafen #2 Bore Report

Evaluated by: CMD Date: 26/10/00

Pumping Test No. Step Drawdown Test

Test conducted on: 8 October 2000

Finschhafen #2

Finschhafen #2

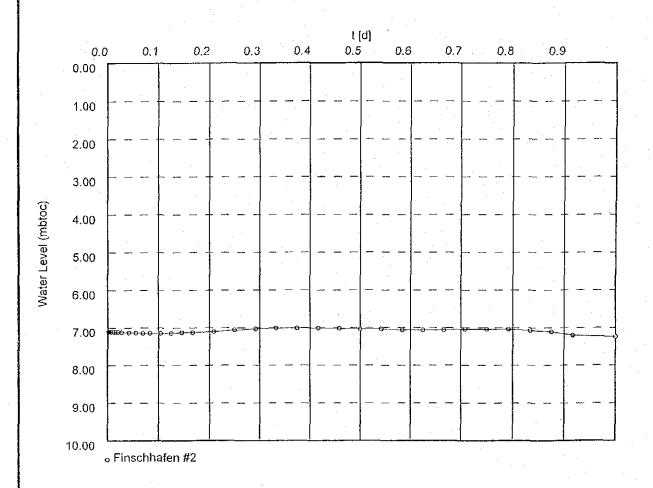
Static water level: 6.900 m below datum

	water level: 6,900 m below da Pumping test duration	Water level	Drawdown	
	Lamping test amation	AAGIGI ICACI	DIGMAGAMII	
	[min]	[m]	[m]	
51	300.00	6.930	0.030	
52	320.00	6.930	0.030	
53	340.00	6.910	0.010	
54	360.00	6.900	0.000	
55	361.00	6.940	0.040	
56	362.00	6,930	0,030	
57	363.00	6.920	0.020	
58	364.00	6,920	0.020	
59	365.00	6.930	0.030	
60	366.00	6.930	0.030	
61	368.00	6.930	0.030	
62	370.00	6,920	0.020	
63	372.00	6,920	0.020	
64	374.00	6.920	0.020	
65	378.00	6.920	0.020	
66	384.00	6.920	0.020	
67	390.00	6,920	0.020	
68	400.00	6,920	0.020	
69	420.00	6.910	0.010	
70	440.00	6.910	0.010	
71	460.00	6,900	0.000	
72	480.00	6.890	-0.010	
			/	
				-71-70
1				
				
- i				
		- 274 -		

Page 4
Project: Finschhafen #2 Bore Report
Evaluated by: CMD Date: 26/10/00

	
Pumping Test No. Step Drawdown Test	Test conducted on: 8 October 2000
Finschhafen #2	

	Pumping test duration	Discharge	
	(min)	[l/s]	
	1,00	2.00	
2	3.00	2.00	
3	4.00	2.00	
4	5.00	2.00	
5	10.00	2.00	
6	20.00	2.00	
7	30.00	2.00	
8	40.00	2.00	
9	60.00	2.00	
10	80.00	2.00	
11	100.00	2.00	
12	120.00	2.00	
13	121.00	3.00	
14	122.00	3.00	
15	124.00	3.00	
16	125.00	3.00	
17	130.00	3.00	
18	140.00	3.00	
19	150.00	3.00	
20	160.00	3.00	
21	180.00	3.00	
22	200.00	3.00	
23	240.00	3.00	
24	241.00	4.00	
25	242.00	4.00	
26	243.00	4.00	
27	245.00	4.00	
28	250.00	4.00	
29	260.00	4.00	
30	270.00	4.00	
31	280.00	4.00	
32	300.00	4.00	
33	320.00	4.00	
34	340.00	4.00	
35	360.00	4.00	
36	361.00	6.25	
37	362.00	6.25	
38	363.00	6.25	
39	365.00	6.25	
40	370.00	6.25	
41	380.00	6.25	
42	390.00	6.25	
43	400.00	6.25	
44	420.00	6.25	
45	440.00	6.25	
46	460.00	6.25	
47	480.00	6.25	


Punping test analysis Time-Drawdown plot Page 1

Project: Finschhafen #2 Bore Report

Evaluated by: CMD Date: 26/10/00

Pumping Test No. 24 Hour Constant Rate Test Test conducted on: 9-10 October 2000

Finschhafen #2

Pumping test analysis Time-Drawdown plot Page 2

Project: Finschhafen #2 Bore Report

Evaluated by: CMD Date: 26/10/00

Pumping Test No. 24 Hour Constant Rate Test

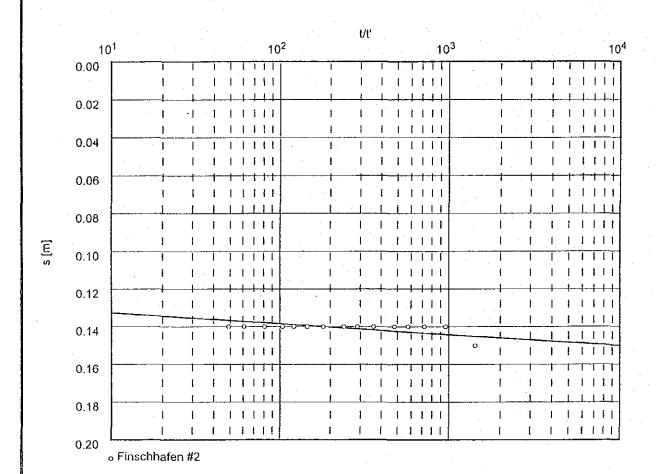
Finschhafen #2

Distance from the pumping well 0.010 m

Static water level; 0,000 m below datum

Pun	nping test duration	Water level	Drawdown	
	,p.,,g , ==, ,,		Dianacini	
	[min]	[m]	[m]	
	1.00	7.100	7.100	
2	2.00	7,100	7.100	
3	3.00	7.110	7,110	
4	4.00	7,110	7,110	
5	5.00	7.110	7.110	
6	6.00	7.110	7.110	
7	7.00	7.110	7.110	
8	8.00	7.110	7.110	
9	10.00	7.110	7.110	
10	12.00	7.110	7.110	
11	· · · · · · · · · · · · · · · · · · ·	7.110	7.110	
	14.00	• ,		
12	18.00	7.110	7.110	
13	24.00	7.110	7.110	
14	30.00	7.110	7.110	
15	40.00	7.120	7.120	
16	60.00	7.130	7.130	
17	80.00	7.130	7.130	
18	100.00	7.140	7.140	
19	120.00	7.140	7.140	·
20	150.00	7.140	7,140	
21	180.00	7.140	7.140	
22	210.00	7.120	7.120	
23	240.00	7.120	7.120	
24	300.00	7.100	7.100	
25	360.00	7.060	7.060	
26	420.00	7.030	7.030	
27	480.00	7.010	7.010	
28	540.00	7.010	7.010	
29	600.00	7.010	7.010	
30	660.00	7.020	7.020	
31	720.00	7.040	7.040	
32	780.00	7.040	7.040	
33	840.00	7.060	7.060	
34	900.00	7.060	7.060	
35	960.00	7.060	7.060	
36	1020.00	7.040	7.040	
37	1080.00	7.040	7.040	
38	1140.00	7.040	7.040	
39	1200.00	7.070	7.070	
40	1260.00	7.110	7.110	
41	1320.00	7.200	7.200	
42	1440.00	7.240	7.240	
·				
-			· · · · · · · · · · · · · · · · · · ·	
				<u> </u>
	<u> </u>	·		<u> </u>

Pumping test analysis Recovery method after THEIS & JACOB Confined aquifer Page 1
Project: Finschhafen #2 Bore Report
Evaluated by: CMD Date: 26/10/00


Pumping Test No. Recovery Test

Test conducted on: 10 October 2000

Finschhafen #2

Discharge 6.25 I/s

Pumping test duration; 1.00000 d

Transmissivity [m²/d]: 1.71 x 104

Pumping test analysis Recovery method after THEIS & JACOB Confined aquifer Page 2
Project: Finschhafen #2 Bore Report

N/:	Geolechnics · Environment · Groundwater	THEIS & JACOB		1 10,0001	moonmarch in 2 toolo 1 toport
Goylatumes . Euryphinam . Greenwees		Confined aquifer		Evaluated by: CMD Date: 26/10/00	
Pumn	ing Test No. Recovery Test	<u> </u>	Test conducted on: 10 October 2000		er 2000
Finschhafen #2			Finschhafen #2		
·			*		
	arge 6.25 l/s		· · · · · · · · · · · · · · · · · · ·	.,	
Static	water level: 7.050 m below datu	ım	Pumping test dura	ition: 1440.	00 min
	Time from	Water level	Residu		
	end of pumping		drawdo	wn	
<u></u>	[min]	[m]	[m]	0.450	
1	1.00 1.50	7,200 7,190		0.150 0.140	<u>.</u>
3	2.00	7,190		0.140	
4	2,50	7.190		0.140	
5	3,00	7.190		0.140	
6	4.00	7.190		0.140	
7	5.00	7.190		0.140	
8	6.00	7.190 7.190		0.140 0.140	
9	8.00 10.00	7.190		0.140	
10 11	12.00	7.190		0.140	
12	14.00	7.190		0.140	
13	18.00	7.190		0.140	
14	24.00	7.190		0.140	
15	30.00	7.190		0.140	
				·	<u> </u>
		· · · · · · · · · · · · · · · · · · ·			
				·	
·····			-		
		·			
			· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·			
				<u> </u>	
			·		<u> </u>