Table 6.1-1 Summary of Test Borehole Data

		Пещр. С	25.0	25.8	30.0	21.9	20.3	14,4	£ 62	8.65	303	31.1	8.62	38.9	27.8	27.0	29.1
		Hq	7.62	7.78	6.34	71.7	(J.S)	8,41	8.58	7.47	8.89	8.27	60.6	8.54		7.44	9.08
		TDS (mg/lit.)	523	585	592	2,145	117	3,089	1,476	2,119	650	904	15,015	1,216	0	670	2,743
		EC (mS/m)	\$\$	06	61	330	115	461	227	545 2	<u>16</u>	139.5	2,310	188		103	431
og Data	Snarifin	yield (m///m)	0.741	0.089	0.085	0.143	4.428	I	0.018	0.965	0.213	0.017	0.145	0.166		0.761	0.005
Pumpi	nin	uyaamu water level (mbgl)	68.29	54.94	£9.ET	29.84	20.26	-	50.71	79.54	65.31	26.46	122.7	128.29		19.44	88.33
		Yield (m ¹ /h)	8.00	3.40	2.90	1.50	19.88	0.15	0.10	19.70	11.80	0.80	3.00	3.96		7.15	0:30
	svel	Date	2000/5/6	2000/3/7	2000/2/7	2000/10/7	2000/4/7	2000/7/9	01/2/0002	2000/8/9	2000/10/7	21/8/2000	2000/5/8	31/7/2000	Oct-00	21/8/2000	2000/5/8
	tatîc water le	(masl)	1274.22	1258.32	1235.88	1188.7	1189.23	1229	1212.95	1197.26	1246.38	1188.33	1000.69	90.866	1119.18	1133.96	1121.55
	ø	(jîlquu)	57.49	16.94	39.72	19.35	15.77	-24	45.1	£1.92	10	-20	101.98	104.41	-16	10.04	22.45
		Thick- ness (m)	30.55	26,41	23,40	17.52	32.15	14.60	20.30	56.05	23-35	20.46	17.50	26.10	23.40	23.40	14.50
Structure	Screen Pipe	to (mbgl)	180.55	127.51	204.47	76.90	247.74	363,40	06.02	175.97	351.35	179.23	165.00	264.00	373.58	51.00	241.33
Borehole (from (mbgl)	84 ,D0	95.05	181.07	44.23	121.34	336.80	30.00	59.60	328.00	158.00	108.50	237.90	350.18	09 ⁻ LZ	226.83
		Depth drilled (m)	256.00	130.51	209.00	102.00	253.00	409.00	53.20	204.00	356.00	187.00	168.50	273.00	385.00	55.00	250.00
		Elevation (masl)	12.1661	1275.26	1275.60	1208.05	1205	1205	1258.05	1256.39	1256.38	1168.33	1102.67	1102.47	81.6011	1144	1144
	oordination	Longitude (d:m:s) Longitude (decimal)	18°59'12.0" 18.98668	18°23'19.4° 18.38873	18°23'19.4" 18.38871	18°47'36.2" 18.7934	18°47'35.2" 18.79312	18°47'46.1" 18.79614	19°37'29.6" 19.62489	19°37'32.8" 19.62577	19-37'34.4" 19.62621	18°23°52.6" 18.39794	19°20'05.4" 19.33483	19°20'06.7" 19.3352	19-20'04.5" 19.33457	18°25'00.4" 18.41678	18°24`59.4 [~] 18.4165
EO	O	Latitude (dimis) Latitude (decimal)	23°15°14.9° 23.25415	23¢38`50.9" 23.64747	23-38°53.1" 23.64808	24°02'45.3" 24.04592	24°02'52.5" 24.04792	24-02°54.9" 24.04858	23~24°03.5" 23.40098	23°24°01,8° 23,40049	23~24*03.8" 23.40105	24°19°41.7 24.32824	24°48°00.3" 24.80009	24°448°02.1" 24.80059	24°47'58.7" 24.79963	25°17'29.9" 25.29163	25°17'28.2" 25.29117
ty Informat	umber	M M N	39839	39840	39841	39842	39843	39844	39845	39846	39847	39848	39849	39850	39851	39852	39853
Local	Borehole N	JICA Ref. No.	JIA	J2A	12N	J3K	J3A	13N	J4K	J4A	I4N	NSI	J6K	Vŷſ	Ngi	Ж	NLſ
	Location	Farm Name	Christiana	Olifantswater	M CER		Steynsnus			Okanyama (Aminuis)	<u> </u>	Maritzville		Cobra	<u> </u>		100 MG 100
		No.	11		1		EL 13			14		J5		J6		1	

	Loca	dity Inform	tation.				Borehole S	Structure						Pampi	1g Data				
Location	Bomhole l	Number		Coordination			-	Screen Pipe		St	ttic water le	vel		Dvaamie	Snecific				
;	ЛСА	MM	Latitude (d:m:s)	Longitude (d:m:s)	Elevation	Depth drilled (m)	from	ą	Thick-		 		Yield (m ³ /h)	water level	yield	EC (mS/m)	TDS (mg/lit.)	Hq	ပ် မျာ
rarm Name	Ref. No.	No.	Latitude (decimal)	Longitude (decimal)	(masl)		(lgdm)	(mbgl)	aess (m)	(fSqm)	(masi)	Date	i L	([8qm)	(u/t/,m)	~	5 		
	101	12405	25227*40.4"	19~25'57.6"	104136		UY PO		2 2	15.03	040.04		200	C 3E	0.016	361	Lar c	71.0	010
	401	+0040	25.46122	19.43266	C7 1701	MTK71	00.40	m+11	04-07	1000	t cons	0002/1/17	t7-0	7.0		100	7977	ţ	217
Turnelién	T&A	10855	25°27'42.3"	19~26'01.4"	1031.12	350.00	01 PG	747 BU	UL 8	171 23	19 573	8 1 0				1 (120	k 754	01.01	78.0
			25.46174	19.43373	61-1707	3	01.7.7	-1400	2	70771	Torous	no-ton	1			1000 ¹	10172		2 2 2 2
L	IéN	10856		19~25'59.7"	YC 1001	00 YF	320.15	127 <5	17.40	71.00	100040	8				24 000 A	23 500	8 KA	9 I.C.
	tor		25.46148	19.43324	1041401		01:070	10-100	AP-17	11.00	-								21
Klein	TQA	10857	24°00'06. <i>S</i> °	18°12'55.0"	91.01.61	141 50	2F 3Y	13531	00.00	2 23	- <i>2</i> 2	0000000	45.00	s ns	15 057	Đ	V2V	2 60	28.6
Swart Modder			24.00182	18.21529				-		Ì	 		2212	2					2.22

.

Locality Information Location Borehole Number Elev. Drilling Unit Kalabari Basati Dole	Decality Information Decality Information Borchole Number Elev. Drilling JICA WW Interval	Number Elev. Drilling Unit Kalabari Basati Dole	u Elev. Drilling Armel) Depth Unit Kalahari Basati Dole	Drilling Depth Unit Kalahari Basali Dole	Unit Kalahari Basati Dole	Kalahari Basatt Dole	Kalkrand Basaft Basaft	Dole	it it	Rietm	ond	Geolog	ical Foi	Auob Auob			Mukor	do t	dossoN	Dwyka	kasement Rock
<u>,</u>	гапи Name	Ref. No.	No.	(mast)	(lgdm)		ľ	Desat		Upper	Lower	8	ŧ	2	2	7	Upper	Lower			RUCK
	Christiana	JIA	39839	1331.71	256	Dep.(mbgl)		I	,	4	21	83.5	117	123.5	145	171	•	198	,	236	253
						$\frac{1 \text{hick.}(m)}{7}$	40	·	'	17	62.5	33.5	6.5	21.5	26	27	L T	88		17	÷.
	Olifants-	J2A	39840	1275.26	131	Lep.(mbgl)	5		'		3 (Р, Ч					••••		
-	water					<u>I hick.(m)</u>	T	'	,	67	2:			្ខ			10+				
	West	J2N	39841	1275.60	209	Lep.(mbgl)		ı	ı	2	3 i			3				142	181	204	C/07
T						Thick.(m)	12	'	·	E S	47			1.7			25	39	53	3.5	1.5+
		I3K	39842	1208.05	102	Lep.(mogl)		,	•	2										• • •	•
						Thick.(m)	23	•	·	49+		10,	ļ	1				• - • •			
3	Steynsrus	J3A	39843	1208.05	253	Dep.(mbgl)				4 (•	171	6 <u>1</u>			C.022	740	•••			
						1 hick.(m)	4 8	ı	'	2	'	24	5	50	49.5	<u>C.41</u>	+	-			
		13N	30844	1208.05	404	Dep.(mbgl)	0			20	,	118	143	149	176	226.5	246.5	275	336	366	
		a tra				Thick.(m)	50	I	I	68	I	25	6	27	50.5	20	28.5	61	30	43+	
		71417	20045	1760.05	54	Dep.(mbgl)	0	ı	14.5							•••			•••		
		4	C+04C	cn:0c71		Thick.(m)	14.5	1	38.5+		•••					•••				• • •	
-	Okanyama	74.4	20045	1166 30	t c c	Dep.(mbgl)	0		15.5	,		53.5	87.5	95.5	130	155	177.5		••••	•••	
4	(Aminuis)	74A	04066	65.0071	704	Thick.(m)	15.5		38	'		38	œ	34.5	25	22.5	26.5+		••••	•••	
		INVI	2000	1756 30	756	Dep.(mbgl)	0		16			57.5	93	96	130	154.5	183	270	329	351	
		7412	14060	00-0071	000	Thick.(m)	16	ı	41.5	,		35.5	e	34	24.5	28.5	87	59	22	5+	
y	Maitmilla	IGNI	10040	1160 32	107	Dep.(mbgl)		,	,	0	43			53			96	105	158	183	
2	Mariizviile	NICE	0+060	CC-0011	10/	Thick.(m)	•		,	43	10			43			6	53	25	+ +	
		161	20040	1100 67	160	Dep.(mbgl)	0	1	,	158	•••										
		Vor	54060	10.2011	100	Thick.(m)	158	,	,	10+	•••										
Ч	a theo	16 A	10050	1100 47	572	Dep.(mbgl)	0	•	1	158	168	177	209	222	232	236	264			••••	
0	CUUIA	Vor	00040	14.2011	C17	Thick.(m)	158	,	,	10	6	32	13	10	4	28	4				
		ICNI	10061	01 0011	205	Dep.(mbgl)	0	ı	ı	158	168	177	209	222	232	236	264	285	352	380	
		NOC	10040	OT.CULL	coc	Thick.(m)	158			10	6	32	13	10	4	28	21	67	28	5+	
		771	10057	114810	55	Dep.(mbgl)	0	I	I	48								••••	•••		
ŗ	To also lo denos		70020	21.0411	2	Thick.(m)	48	•	1	7+	•••								•••		
-	Jackaisul aal	INTI	20053	114014	150	Dep.(mbgl)	0	I	I	49	1	68.5	89	127	154.5	155	166	175	228	245	
			CC04C	1140.14	007	Thick.(m)	49			19.5	•	20.5	38	27.5	0.5	11	6	53	17	\$	
		101	20054	1071 75	100	Dep.(mbgl)	0											•••	• • •	-	
		Nor	+0000	C7.1701	177	Thick.(m)	129+				•••					••••		•••	•••		
0	Turneritier	16 V	20055	1031 12	750	Dep.(mbgl)	0	-	I	1	1	141	183	209	221	233	241	•••	•		
0	I weelivier	Hor	10040	CT-170T	007	Thick.(m)	141	•	•	•	,	42	26	12	12	8	9+	•••			
		ION	10056	36 1001	346	Dep.(mbgl)	0	-	•	•	•	141	183	209	221	233	241	266	319	337	
		NIOL	00040	107.1201	040	Thick.(m)	141	ı	ı	1	1	42	26	12	12	80	25	53	18	94	
10	Klein	VOI	10257	121016	141.5	Dep.(mbgl)	•	0		,	,			65.5			,	,	ı	ı	140
2	Swart Modder	UCC	10000	יידיטידי ו	C'141	Thick.(m)	•	65.5	-	-	-			74.5			-	,		•	1.5+
	Note:	"Dep.(mb	igl)" mea	nns the D	epth(mbg	gl) of top of th	ве Form	ation													

	Chemical	C Analysis		•					>	>	<u> </u>	>			>			•	>			>	~				>	<u> </u>	>	>		>		_
H I		4	>		>		>	`	>		>		>	>		>	>	-		>	>		>	>	>		`	>			>		>	
taken fo	1	N		•		•	•		•	•	•	ı	>	>	Ð	1	1	•	1		1	I	>		•	•		>	•		•	•		
Sample		Нę		>		>	>		•	>	•	>	>	>	>	>	•	•	1		1	•	•		•	•	>	•	•	•	-		E	
		2 H	>	>		>	>	>	>	>	>	>	>	>	>	>	>	>	>		>	>	>		>	>		>	>	>	>		>	
		0%1	>	>	>	>	>	>	>	>	>	>	~	>	>	>	<u>^</u>		>	~	1	>	>	>	>	>	>	~	>	>	>	>	>	
		Nossob					•				•					•	•						•		•						•			
		Ν				t,96m)	4												▲ (158m)		🔴 (Al culy)					(3+A1, 163m)		(Al culy)			* * * * *	3+AI, 263m)		
	Ацор	A3	•		•	per part of Auo			•			▲(159m)		•				7zn)			-					₹						▼	•	
		AS		▲ (96m)		رت ال				A (122m)					▲(¹⁹ m)			<u>د</u>				▲(208m)												
		Upper Rietmond			:																	-								(K+A5, 155m)				
	Kalahari	Basalt / Dorelite						(K+R)					(Dorelite)							(K+R)				● (K+R)										
		Kalahari												i													•	 	▲(137m)					
	Number	WW No.	0.000	40040	01000	- 0 1 840	39841	39842		59845	T DOOL	11060	39845	21001	0+065	39847		39848	•	39849	20050	00060	39851	39852	10053		39854		39855		10050	00066		
formation	Borehole I	JJCA Ref. No.	4 11	VIL	-	A2U	J2N	J3K		Act	INCL	Ntcr	J4K	× 1 1	14A	J4N		J5N		J6K	14.4	Var	J6N	J7K	INLI		J8K		J8A	-	TONT	NIGL		
Locality In	Location	Farm Name	ξ	CITISHADA		Olifantswater				Steynsrus	•			Okanyama	(Aminuis)			Maritzville				CODIA			Jackalsdraai			1		L weerivier				
		No.	2	Ţ		12				J 3				1	1	_		J5			14	ç			17		T		04	Ŷ			F	

Table 6.1-3 The Aquifers which Water Samples are Taken, and the Items Analysed

	A T-LOUIDA				2																						Γ
						Isot	ope Anal	ysis			Samples							U	aemic	al Co	ntent	\$					
	Location	Borehole	Number																ł								
No.	Farm Name	JICÁ Ref. No.	WW No.	Laboratory Number	(00\0) O ⁸¹	(00/0) H ₂	н ^г (UT)	O ^{kr} ()	N _{sī}	Sample Number	Date Sample taken	Date Sample analysed	Hq	m/Sm yiivitoubnoO	Total Dissolved Solids	so an	Potassium as K	Sulphate as SO4	N SE OFFIN	Silicate as SiO2	Fluoride as F	Chloride as Cl	Total Alkalinity as	Phenolphthalein Phenolphthalein Alkalinity as CaCO3	Total Hatdness as CaCO3	Calcium as CaCO3	CoCO3 Magnesium as
31	Christiana	JIA	39839	G4972	-7,03	-51	0.0 ± 0.2	14.6±0.3	5.9	DS6838	14-Jun-00	2-Oct-00	8.2	84.1	563	92	11	12)> 8'i	1 2	/ 0.2	30	356		256	011	146
1	Alfantantas Wa	J2A	39840	G4977	-6.65	-50	0.0 ± 0.2	3.0 ± 0.2	13.8	DS6836	20-Iun-00	2-Oct-00	8.1	90.3	6 05	140	11	35 1	3.8 0	1 2:	0.6	63	300		155	55	001
1		12N	39841	G4976	-6.72	-50	0.0 ± 0.2	4.0 ± 0.2		DS6835	11-Jun-00	2-0ct-00	8.3	92.0	616	190	s	56	8.0	1		39	274		39	8	17
		J3K	39842	G4992	-6.27	47	0.0 ± 0.2	55.2 ± 0.6	10.6	DS6832	29-Jun-00	2-Oct-00	7.7	322.0	2,157	300	19	65 1	76.0 0	1 33	0.0	465	288		912	345	567
13	Steynsmus	J3A	39843	G4993	-6.99	-50	0.0 ± 0.2	25.5 ± 0.3		DS6833	8-Jul-00	2-0d-D0	8.1	115.6	775	145	6	5 1	3.1	<u>ب</u> ع بع	17	41	426		269	140	129
		NEL	39844	G5044	-7.41	-52	1	1.4		DS7503	9-04-00	25-Oct-00	1.6	493.0	3,303	1,020	4	160	0.5 <	11	3.2	006	460	26.0	53	33	ត
		J4K	39845	G4975	-7.21	-50	0.0 ± 0.2	44.1 ± 0.4	,	DS6837	4-Jun-00	2-Oct-00	7.8	221.0	1,481	545		510	33	33	0.7	184	748		115	28	33
J4	Okanyama (Aminuis)	J4A	39846	G4973	-7.19	-52	0.0±0.2	60.1 ± 0.5	9.3	DS6834	23-May-00	2-0d-00	8.0	311.0	2,084	465	81	290 1	7.5	.1	0.3	600	482		589	273	317
	,	J4N	39847	G4974	-7.85	-54	0.0 ± 0.2	0.25 ± 0.2	-	DS6839	31-May-00	2-Oct-00	8.5	99.2	665	230	4	31 <	0.5	11	0.7	29	448	10.0	7	3	4
JS	Maritzville	J5N	39848	G5037	-6.96	-52	•	1.7	-	DS7176	24-Aug-00	5-04-00	8.3	135.7	906	365	4	105 <	0.5	1	2.4	45	592		9	5	4
		J6K	39849	G4994	-5.03	7	0.0±0.2	6.2 ± 0.2	14.7	DS7177	27-Aug-00	5-0ct-00	9.2	2220.0	14,874	7,400	39 1	.850 6	0.0)E	.61	0 4,10	0 6,52	0 1,034	7	3	4
J6	Соћга	J6A	39850	G4995	-7.07	-52	0.0 ± 0.2	0.9 ± 0.2	, ,	DS7174	4-Aug-00	5-Oct-00	8.4	186.3	1.248	495	5	125 <	0.5	1	1.2	220	592		7	3	4
		N9ľ	39851																								
1	Traim Induct	J7K	39852	G5038	-6,47	-48	0.0 ± 0.2	50.7	5.6	DS7171	25-Aug-00	5-Oct-00	7.7	97.8	655	121	5	82 1	4.0	1	0.7	63	316		268	118	150
<i>.</i> .	Jackalsuraal	N7L	39853	G5039	-6.81	-50	1	10.8	-	DS7173	1-Sep-00	5-Oct-00	8.7	395.0	2,647	1,020	5 18	340 <	0.5	8	4.5	590	460	16.0	28	20	80
		J8K	39854	G4996	-5.86	-47	0.0 ± 0.2	54.9 ± 0.2	13.0	D7175	15-Aug-00	5-Oct-00	8.7	328.0	2,198	880	12	320 1	5.0	ň	3.7	295	1.06	8 52.0	13	5	8
J8	Tweenvier	J8A	39855	G5041	-3.56	-36	I	99.3	8.9	DS7501	16-Sep-00	25-Oct-00	11.8	1,026.0	6,874	1,800	~ 8	80	.4	23	5	1,12	0 1.63	0 1,36(17	13	4
		J8N	39856	G5042	4.52	-41	-	26.5	I	DS7502	16-Sep-00	25-Oct-00	9.0	5,890.0	39,463	17,000	32 8	500 <	0.5 <(1 1	0.8	20,50	0 118	24.0	406	160	246
6ſ	Klein Swart Modder	A9L	39857	G5040	-6.76	-51	ı	47.5	7.5	DS7172	2-Sep-00	5-Oct-00	7.8	97.3	652	152	5	105	3.3	5	0.9	64	286		184	105	79

Table 6.1-4 Results of Water Ouality and Isotope Analysis of IICA Test Boreholes

Table 6.1-5 Results of Water Quality and Isotope Analysis of Specified Aquifer in JICA Test Boreholes

	Conductivity mS/m Bre Sample Date Sample	, ,	8-Jul-00 8.6 90.1			8-Jul-00 8.5 116	5-Jul-00 8.5 88.1		8-Jul-00 8.1 355					-0ct-00 9.5 231					-Oct-00 9.1 672	-04-00 9 536	-04-00 9 596		
	Γαροιαιοιλ.		NW DS6660 1			1 1999SQ WN	NW DS6662 1		NW DS6663 1					NW DS6906 4					NW DS6907 4	NW DS6908 4	NW D56910 4		
	J⁴C (DMG)		ı			,	•		•										ł	I	•		
alysis	H ^t (UT)	0.1 ± 0.2	0.3 ± 0.2			0.3 ± 0.2	0.0 ± 0.2		0.3 ± 0.2										-	,	-		
ope An	(00/0) H _z	-49.4	-46.3			-51.3	-42.8		-49.2					-21.1						,	•		
Isotc	(00/0) O ⁸¹	-6.96	-5.81			-7.41	-5.93		-6.96					-1.25					I	•	•		
	[*] vrotatory	TS	SL			sL	SL		SL					SL									
	Γαροιαίοιλ	NAM 52	NAM 53			NAM 54	NAM 55		NAM 56					NAM 74									
Data	Date Sample Taken	15-Apr-00	20-May-00			15-Jun-00	27-May-00		23-Apr-00		7-Aug-00	9-Aug-00					1-Aug-00		22-Jul-00	22-Jul-00	tS-Jul-00	13-Aug-00	14-Aug-00
ple D	Depth	36	8			122	159 2		62		57	158		208			163		137	155	263	43	115
Sam	Januphe	5	r part uob			د 	<u>1</u>		5		qoi	l doi		יי א			1		ahari 1	A5 1	+A1 2	salt	aalt Juob J
Įž	> . *dimA	V 61	0 ^{Uppe}	1	2	3	A P	S	V 9:	17	av s	ΠV O	6	4 0	1	5	(3 V3+	14	Kala	×	6 A3+	, Ba	₩ +Au
tion te Numb	No.	3983	3984	3984	3984	3984.	3984	3984.	3984	3984	10845	1020	3984	3985	3985	3985	3985	3985	2065	1040	3985	2085	3040
Drm al Borehol	JICA Ref. No.	JIA	J2A	J2N	J3K	J3A	J3N	J4K	J4A	J4N	ISN	•177	J6K	J6A	J6N	J7K	N7U	J8K	10 V	Vor	N%I	toA	5
<u></u>	DC	12	vater	-		STU			ama uis)		-tite	VIIC		ę		dmai						. <u>e</u> ț	der
cality In cation	arm Nau	Christia	lifantsv	West		Steyns			Okany Amin	,	And the			Cob		्य				laow 1		N K	Mod

Chapter 6 Test Borehole

6 - 31

6.2 Pumping Test

6.2.1 Outline of the Test

The pumping test was carried out by using a submersible pump, except at very low yielding and artesian boreholes. At the boreholes with very low yield, which could not be pumped with the submersible pump, a slug test was applied. The table below shows a summary of the tests carried out. There are three boreholes of J3N, J5N and J6N that are confirmed to yield artesian flow. The tests using a pressure probe were applied at these boreholes. On the borehole at J5N, since the borehole has enough yield for pumping, two tests, using a pressure probe and a submersible pump were carried out.

At the other low yielding boreholes, such as J4K, J6N, J7N, J8K, J8A and J8N, a slug test was applied. On the boreholes at J7N and J8K, both a pumping test and a slug test were carried out. Since these boreholes have slightly better yields, two tests were carried out to prove the reliability of the tests.

BH No.		Test		Remarks
	Method	Pumping	Test item carried out	
J1A	Pumping Test	Submersible pump	SDT, CDT, RT	
J2A	Pumping Test	Submersible pump	SDT, CDT, RT	
J2N	Pumping Test	Submersible pump	SDT, CDT, RT	
J3K	Pumping Test	Submersible pump	SDT, CDT, RT	
J3A	Pumping Test	Submersible pump	SDT, CDT, RT	
J3N	Pumping Test	Pressure Probe	SDT, CDT, RT	Artesian
	Pumping Test	Submersible pump	CDT, RT	Vory low viold
J4K -	Slug Test	Slug Body	Slug in, Slug out	very low yield
J4A	Pumping Test	Submersible pump	SDT, CDT, RT	
J4N	Pumping Test	Submersible pump	SDT, CDT, RT	
I5N	Pumping Test	Submersible pump	SDT, CDT, RT	Artesian
5510	Pumping Test	Pressure Probe	SDT, CDT, RT	7 d testan
J6K	Pumping Test	Submersible pump	SDT, CDT, RT	
J6A	Pumping Test	Submersible pump	SDT, CDT, RT	
J6N	Slug Test	Pressure Probe	Slug in, Slug out	Artesian Very low yield
J7K	Pumping Test	Submersible pump	SDT, CDT, RT	
171	Pumping Test	Submersible pump	SDT, CDT, RT	Vary low viald
J/IN -	Slug Test	Submersible pump	SDT, CDT, RT	very low yield
101/	Pumping Test	Submersible pump	SDT, CDT, RT	Very low yield
J8K -	Slug Test	Slug Body	Slug in, Slug out	very iow yrena
J8A	Slug Test	Slug Body	Slug in, Slug out	Very low yield
J8N	Slug Test	Slug Body	Slug in, Slug out	Very low yield
J9A	Pumping Test	Submersible pump	SDT, CDT, RT	

Remarks: SDT (Step Drawdown Test), CDT (Constant Discharge Test), RT (Recovery Test)

6.2.2 Measurement

1) Tests Carried Out

The following phases were applied to the pumping tests:

Phase 1:Provisional test

A short provisional test was normally done before the commencement of the pumping test. The purpose of the test was to measure the approximate pumping rate and to decide on the number of steps necessary for the step drawdown test, and to adjust the valve-opening rate to achieve the prescribed pumping rate. The discharge and the duration of each test and the number of steps were determined by the results of the provisional test.

Phase 2:Step drawdown test

Normally at least five steps (sometimes more or less) were performed with each step measuring 120 minutes or occasionally shorter in duration.

Phase 3: Constant discharge test

The test was done in most cases 72 hours or occasionally longer or shorter in duration. The test was performed as soon as the water in the borehole had recovered to its static water level after completion of the step drawdown test.

Phase 4: Time recovery test

The test commenced immediately on completion of the constant discharge test and continued until the water level returned to its static water level or occasionally over a shorter period.

2) Method of Measurement

The original static water level in the borehole was always measured before any test pumping commenced. Throughout the duration of each test, the water level in the borehole was measured and recorded following the observation time schedule listed below:

Time from	n start of pump	ing or pumping	Time interval between
ra	ate increase (mi	inutes)	observations (minutes)
0	-	5	0.5
5	-	10	1
10	-	20	2
20	-	30	3
30	-	60	5
60	-	120	10
120	-	240	20
240	-	360	40
360	-	720	60
720	-	2880	120
	2880 and lon	ger	240

The flow of all water pumped from the borehole during the pumping test was measured by an approved method using mainly a triangular weir. Discharge rates were recorded during the pumping test at intervals corresponding to those for water level measurements.

Existing boreholes were used for observation boreholes during the test pumping, if they were located near the test borehole and were suitable for that purpose. In addition, where the sites, two or three test boreholes were drilled, namely J-2, J-3, J-4, J-6, J-7 and J-8, boreholes other than test borehole were also used as observation boreholes during the test pumping. The way of water level measurement in the observation boreholes was similar as that of the test borehole.

6.2.3 Method of Analysis

1) Aquifer Constants

The aquifer constants necessary for the hydrogeological evaluation are transmissibility, storage coefficient and permeability. These aquifer constants were analyzed by using the results of constant discharge and recovery tests. The methods used for analysis of the aquifer constants are shown in below.

i) The Theis Method

Theis (1935) solved the non-equilibrium flow equations in radial coordinates. For the specific definition of u given, the integral is known as the well function W(u), and can be represented by an infinite Taylor series. Using this function, the equation becomes:

$$s = \frac{Q}{4\mathbf{p}T}W(u)$$

A log/log scale plot of the relationship W(u) along the y-axis versus 1/u along the x-axis is commonly called the Theis curve. The field measurements are similarly plotted on a log-log plot with t along the x-axis and s along the y-axis. The data analysis is done by matching the observed data to the type curve.

ii) The Cooper & Jacob Method

This solution is valid for greater time and smaller separation distance from the pumping well (smaller u values, i.e. u<0.01). The resulting equation is:

$$T = \frac{2.3Q}{4\mathbf{p}\Delta s}$$
$$S = \frac{2.25Tt_0}{r^2}$$

where s is drawdown, Q is the well discharge rate, t is time, r is the radial distance, and S and T are the storativity and transmissivity respectively.

The above equation plots as a straight line on semi-logarithmic plot if the limiting conditions are met. Thus, straight-line plots of drawdown versus time can be produced after sufficient time has elapsed. In pumping tests with multiple observation wells, the closer wells will meet the conditions before the more distant ones. Time is plotted along the logarithmic x-axis and drawdown is plotted along the linear y-axis.

iii) Theis and Jacob Recovery Test Method

The recovery / rebound of the water level in a pumping well can also be used to estimate aquifer transmissivity. Analysis of the recovery can be used to confirm data values obtained using the pumping test data, or it may be the only data available in the case where only a production well is available. In cases where observation well data are not available and it is necessary to estimate aquifer properties with only a production well, water level data during the pumping test cannot be used because they are subject to well losses which cause the drawdown in the well to be significantly greater than the drawdown in the aquifer just outside the well. This can be overcome by measuring the recovery of the water level in the well after the pump has been shut down.

According to Theis (1935), the residual drawdown after pumping has ceased is:

$$s' = \frac{Q}{4\mathbf{p}T}W(u) - W(u')$$

where,

$$u = \frac{r^2 S}{4Tt}$$
$$u' = \frac{r^2 S'}{4Tt'}$$

and, Q is the constant discharge rate, T is the transmissivity, r is the distance to the observation well, s' is the residual drawdown, S and S' are the storativity values during pumping and recovery respectively, and t and t' are the time elapsed since the start and ending of pumping respectively.

iv) Hantush Method

Most confined aquifers are not totally isolated from sources of vertical recharge. Less permeable layers, either above or below the aquifer, can leak water into the aquifer under pumping conditions.

The Hantush and Jacob (1955) solution to the above equation is given by:

$$S = \frac{Q}{4pT} W\left(u, \frac{r}{L}\right)$$

$$u = \frac{r^2 S}{4\mathbf{p}T}$$

A log/log plot of the relationship W(u,r/L) along the y-axis versus 1/u along the x-axis is used as the type curve as with the Theis method. The field measurements are plotted as t or t/r2 along the x-axis and s along the y-axis. The data analysis is done by curve matching.

v) Bouwer-Rice Slug Test Method

The Bouwer and Rice (1976) slug test analysis method is designed to more accurately estimate the hydraulic conductivity of the aquifer material by better accounting for the piezometer geometry. In a slug/bail test, a solid "slug" is lowered into/removed from the piezometer instantaneously raising/lowering the water level in the piezometer. The Bouwer and Rice (1976) equation for hydraulic conductivity is:

$$K = \frac{r^2 \ln(R_{cont} / R)}{2L} \frac{l}{t} \ln\left(\frac{h_0}{h_t}\right)$$

where,

r = piezometer radius

 \mathbf{R} = radius measured from center of well to undisturbed aquifer material

Rcont = contributing radial distance over which the difference in head, h0, is dissipated in the aquifer

L = the length of the screen

h0 = head in well at t0 = 0

ht = head in well at t > t0

Since the contributing radius of aquifer is seldom known a priori, Bouwer and Rice developed some empirical curves to account for this radius by three coefficients (A,B,C) which are all functions of the ratio of L/R. Coefficients A and B are used for partially penetrating wells whereas coefficient C is used only for fully penetrating wells.

The data are plotted with time on a logarithmic x-axis and ht/ho on a linear y-axis.

- 2) Borehole Hydraulics
 - i) Well Efficiency

Well efficiency is given by the following formula; Well Efficiency (%) $E_w=BQ/(BQ+CQ^2)$ Where

- B = aquifer loss
- C = well loss
- Q = discharge rate (l/s)

ii) Radius of Influence

The Radius of Influence is given by the following formula after the Theis Equation;

Radius of	of Influer	ce (m) $R = (4Ttu/S)0.5$
		s=(Q/4 T)W(u)
Where	Q	=Discharge rate (m ³ /h)
	Т	=Transmissivity (m ² /h)
	S	=drawdown(m)(0.001)
	S	=Effective porosity (0.3)
	W(u)	=Well function of Theis
	t	=Time of pumping operation (h)

6.2.4 Borehole Hydraulics

Borehole hydraulics were evaluated by the results of the step drawdown test data. These include well efficiency, aquifer boundary type and area of influence. At the low yielding boreholes of J4K, J6N, J8A and J8N, however, no step drawdown test was performed.

The evaluation sheets for all boreholes are listed in Appendix A-2, and a summary of results are shown in Table 6.2-1.

1) Well Efficiency

Well efficiency calculated by aquifer loss and well loss, was analyzed using the Jacob method for step drawdown test data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test. The well efficiencies at the range of flow rates used during the step drawdown test was calculated.

2) Aquifer Boundary Type

In the most of the step drawdown tests, reverse tests were conducted to evaluate the aquifer boundary. Two types of aquifer boundary, namely a "non-flow boundary type" and a "constant head boundary type" could be presumed by the relation between the discharge rate and the drawdown of both forward and reverse tests. None flow boundary types are defined as "the aquifer has a none flow boundary or a barrier, due to 1) a geological structure such as fault, buried valley, etc., 2) an impermeable barrier, 3) the formation of a conspicuous permeability".

defined as "the aquifer is characterized as 1) a relatively high permeability, 2) a relatively high storage, 3) associated with recharge by surface water and 4) receives induced recharge from the upper formation".

3) Area of Influence

The area of influence at the rates of well efficiency within the following ranges were calculated: 1) less than 50%, 2) 50% to 70%, 3) 70% to 80% and 4) more than 80%. The area of influence is estimated, under the condition that the influenced drawdown is 0.01m within the pumping time from one hour to 8,760 hours.

4) Evaluation of Borehole hydraulics

The table below shows is a summary of the results of the step drawdown tests. The table shows the well efficiency rate (%) at a discharge rate of 5.0 m³/h with the presumed aquifer boundary type of each borehole.

Aquifer	Borehole	Well efficiency rate (%) at a	Presumed aquifer
	No.	discharge rate of 5.0 m ³ /h	boundary type
	J3K	64	-
Valahari	J6K	70	Constant Head Type
Kalallall	J7K	93	Constant Head Type
	J8K	Less than 10	None Flow Type
	J1A	80	None Flow Type
	J2A	63	None Flow Type
Auch	J3A	95	Constant Head Type
Auoo	J4A	65	Constant Head Type
	J6A	93	None Flow Type
	J9A	86	Constant Head Type
	J2N	87	None Flow Type
	J3N	15	-
Nossob	J4N	95	None Flow Type
	J5N	Less than 4	None Flow Type
	J7N	16	-

The factors of well efficiency contributing to excess drawdown in the boreholes can be grouped into two classes. One class comprises those factors related primarily to choices made in the design of borehole and the other class includes factors related to construction. The evaluation of the aquifer, therefore, can not be done by the well efficiency alone. The results however suggest, that the Auob Aquifer shows a relatively high well efficiency overall. On the other hand, the boreholes with extremely low well efficiency are concentrated in the Nossob Aquifer and one in the Kalahari Aquifer. The boreholes drilled into the Nossob Aquifer are also very low yielding.

Most of the boreholes within the Kalahari and Auob are characterized by a "constant head type" aquifer boundary, whereas all Nossob boreholes are "none flow type aquifer boundary". The results suggest that the Nossob Aquifer is characterized as extremely low permeability and an extremely low recharged.

6.2.5 Aquifer Constants

Aquifer constants necessary for the hydrogeological evaluation are transmissibility, storage coefficient and permeability. These aquifer constants were analyzed by using the results of constant discharge and recovery tests.

The evaluation sheets of aquifer constants for all boreholes are listed in Appendix A-2. A summary of results are shown in Table 6.2-2.

1) Specific Yield

The quantity of water that a unit volume of unconfined aquifer gives up by gravity is called its specific yield. Specific yield was calculated by the drawdown and pumping rate at the constant discharge test.

2) Transmissibility

Transmissibility is the rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient. The value is given in cubic meters per day through a vertical section of an aquifer one meter wide and extending through the full saturated height of an aquifer under a hydraulic gradient of 1. Both of the constant discharge and recovery tests were used for the analysis.

3) Permeability

Permeability is the property or capacity of an aquifer to transmitting a fluid. It is a measure of the relative ease of fluid flow under unequal pressure. Both the constant discharge and recovery tests were used for the analysis.

4) Storage Coefficient

The storage coefficient is the volume of water that an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head. In this project, however, no observation borehole were drilled. Both the constant discharge test and recovery tests were used for the analysis. The presented value of the storage coefficient in this report is therefore an estimated value.

5) Evaluation of Aquifers

The table below shown is a summary of the results of analyses of the aquifer constants. Specific yield, transmissibility, permeability and storage coefficient for the each borehole is shown. Figure 6.2-1 shows the distribution of aquifer constants within the aquifers.

Aquifer	Borehole	Specific Capacity	Transmissibility	Permeability	Storage
	No.	$(m^{3}/h/m)$	(m ³ /day/m)	(cm/sec)	coefficient
	J3K	0.143	6.42	1.50E-04	1.00E-06
	J4K	0.018	0.135	7.74E-06	-
Kalahari	J6K	0.145	6.23	1.40E-04	1.00E-05
	J7K	0.763	30	1.20E-03	2.00E-04
	J8K	0.016	0.132	5.10E-06	5.00E-03
	J1A	0.74	25.2	3.90E-04	1.00E-05
	J2A	0.089	3.42	1.60E-04	1.00E-05
	J3A	4.409	194	6.60E-03	1.00E-05
Auob	J4A	0.923	87.6	2.00E-03	1.00E-05
	J6A	0.165	8.44	3.30E-04	3.00E-09
	J8A		0.006	2.30E-07	1.00E-10
	J9A	15.94	1,240	1.90E-02	3.00E-03
	J2N	0.085	2.94	1.40E-04	5.00E-06
	J3N	0.00082	1.3	1.03E-04	2.00E-05
	J4N	0.21	7.01	1.60E-04	5.00E-05
Nossob	J5N	0.016	1.2	5.50E-05	3.00E-05
	J6N	-	1.487	6.10E-05	1.00E-05
	J5N	0.0043	0.01	2.10E-06	1.00E-10
	J7N	-	0.02	8.80E-07	1.80E-06

The Auob Aquifer shows the highest range in specific capacity, transmissibility and permeability. Specific Capacity is generally low, being less than $0.1 \text{ m}^3/\text{h/m}$ in the Nossob, and less than $1 \text{ m}^3/\text{h/m}$ in Kalahari, while the Auob Aquifer has a range from $0.1 \text{ to } 10 \text{ m}^3/\text{h/m}$.

Transmissibility shows a similar trend with specific capacity, being generally low. It is approximately less than 10 m³/day/m in both the Kalahari and Nossob. The Auob Aquifer shows relatively high range of 1 to $100 \text{ m}^3/\text{day/m}$.

Permeability of the Nossob and Kalahari Aquifers also low. It is generally less than 1 $\times 10^{-4}$ cm/sec in Nossob, and less than 1×10^{-4} cm/sec for the Kalahari. The Auob Aquifer shows a range from 1×10^{-4} cm/sec to 1×10^{-2} cm/sec. As illustrated by the following figure, the permeability calculated in the Nossob and Kalahari can be categorized as a low-permeable silt to clay. A range of 1×10^{-4} cm/sec to 1×10^{-2} cm/sec to 1×10^{-4} cm/sec to 1×10^{-2} cm/sec to 1×10^{-4} cm/sec to 1×10^{-2} cm/sec to 1

Interrelationship between permeability and grain size. (After Linsely et al. 1958)

Considering such a permeability range and a relatively high transmissibility and specific capacity, it is suggested that the Auob Aquifer represents the promising aquifer in the area. The Kalahari Aquifer has locally alow potential, and the, Nossob Aquifer is generally a non-productive aquifer from an aquifer constant point of view.

6.2.6 Interaction Between the Aquifers

During the measurement of water levels within the production borehole, if other drilled boreholes or existing boreholes were near the production borehole, water levels in these boreholes were done in a similar way. Such was the case at locations J-2, J-3, J-4, J-6, J-7 and J-8. Only at location of J-3 was a small interaction between the Kalahari and Auob Aquifers observed.

1) Location J-2 (See Fig. 6.2-2)

A total of two boreholes, J2A and J2N, were drilled at this location. No interaction between the aquifers was observed.

2) Location J-3 (See Fig. 6.2-3)

A total of two boreholes, J3A and J3K, were drilled at this location. A small interaction between the Kalahari and Auob Aquifers was observed. A remarkable variation of drawdown was observed prior to the commencement of the recovery test.

3) Location J-4 (See Fig. 6.2-4)

A total of three boreholes, J4K, J4A and J4N, were drilled at this location. No interaction between the aquifers was observed.

4) Location J-6 (See Fig. 6.2-5)

A total of three boreholes, J6K, J6A and J6N, were drilled at this location. No interaction between the aquifers was observed.

5) Location J-7 (See Fig. 6.2-6)

A total of two boreholes, J7K and J7N, were drilled at this location. Two farmer's boreholes named House and Wind pump were was used as observation boreholes. In these boreholes, a variation of drawdown was observed during pumping of J7K borehole. No interaction, however between the Kalahari and Nossob Aquifers was observed.

6) Location J-8 (See Fig. 6.2-7)

A total of three boreholes, J8K, J8A and J8N, were drilled at this location. No interaction between the aquifers was observed.

6.2.7 Pumping Test Analysis of Existing Boreholes

During the series of survey, the pumping test data of the existing boreholes were collected to analysis the aquifer constants. The available data, however, is very limited, only six analyzable data was found. Table 6.2-3 shows the result of analysis. The borehole number of WW24604 at Garton has 3 result. This is not three boreholes, three different pumping test was done in the same borehole.

4

Table 6.2	2-1 St	immary of	Borehole l	Hydraulics				(1/3)
Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m3/h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	60	3.70	61.96	5.43	84.56	Rate at Ew≧ 80%	
	2	60	6.23	64.70	8.17	76.48	5.00 (m ³ /h)	
	3	60	9.00	67.94	11.41	69.24	Pumping Operation	
J1A	4	60	12.90	70.87	14,34	61.09	by 1 hour	None Flow
WW39839	5	60	15.00	73.10	16.57	57.45	1,025 m	Boundary Type
	6	60	12.30	70,60	14.07	62.22	by 12 hours	
	7	60	8.20	67.26	10.73	71.18	3,550 m	
	8	60	6.20	65,69	9,16	76.57	by 24 hours	
	9	60	2.90	61.79	5.26	87.48	5,020 m	

Table 6 2 1 c e n 15

	•	~	2.00	01.10	5.20	01.40	5,520 11	
				·				
Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	90	2.00	33.54	17.78	81.24	Rate at Ew≧ 80%	
	2	90	3.00	44.13	28.37	74.27	2.00 (m ³ /h)	
	3	90	4.00	53.82	38.06	68.40	Pumping Operation	
J2A	4	90	5.00	64.53	48.77	63.39	by 1 hour	None Flow
WW39840	5	90	6.00	75.26	59.50	59.07	434 m	Boundary Type
	6	90	5.00	66.88	51.12	63.39	by 12 hours	
	7	90	4.00	57.65	41.89	68.4D	1,502 m	
	8	90	3.00	48.13	32.37	74.27	by 24 hours	
	9	90	2.00	38.31	22.55	81.24	2,125 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	90	1,00	49.27	9.74	97.08	Rate at Ew≧ 80%	
	2	90	2.00	59.76	20.23	94.32	7.00 (m ³ /h)	
	3	90	3.00	71.14	31.61	91.71	Pumping Operation	
J2N	4	90	4.00	82.76	43.23	89.25	by 1 hour	None Flow
WW39841	5	90	5.00	94.49	54.96	86.91	664 m	Boundary Type
	6	90	4.00	85.70	46.17	89.25	by 12 hours	
	7	90	3.00	74.96	35.43	91.71	2,300 m	
	8	90	2.00	63.56	24.03	94.32	by 24 hours	
	9	90	1.00	52.38	12.85	97.08	3.253 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No,	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	90	0.99	24.81	5.47	90.07	Rate at Ew≧ 80%	
	2	90	1.44	28.15	8.81	86.18	2.00 (m ³ /h)	
	3	90	1.93	33.56	14.22	82.31	Pumping Operation	
J3K	4	90	2.53	51,20	31.86	78.02	by 1 hour	
WW39842	5				1		1,746 m	N.A.
	6		1				by 12 hours	
	7						6,049 m	
	8						by 24 hours	
	9		}				8,555 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	10.44	18.64	4.02	89.90	Rate at Ew≧ 80%	
	2	120	15.06	19.72	5,10	86.05	15.00 (m ³ /h)	
	3	120	20.05	20.84	6.22	82.25	Pumping Operation	
J3A	4	120	25.09	22.42	7.80	78.74	by 1 hour	Constant Head
WW39843	5	120	30.00	23.17	8.55	75,59	2,379 m	Boundary Type
	6	120	25.00	22.46	7.84	78.80	by 12 hours	
	7	120	20.00	20.91	6.29	82.29	8,240 m	
	8	120	15,00	19.78	5.16	86,10	by 24 hours	
	9	120	10.00	18.71	4.09	90.28	11,653 m	

6 - 49

								(2/3)
Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	0.06	6.86	31.86	93.80	Rate at Ew≧ 80%	
	2	120	0.08	8.22	33.22	91.90	0.10 (m ³ /h)	
	3	120	0.15	22.68	47.68	85.82	Pumping Operation	
J3N	4						by 1 hour	
WW39844	5						127 m	N.A.
	6						by 12 hours	
	7						442 m	
	8						by 24 hours	
	9						624 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	5,15	66.89	13.06	64.27	Rate at Ew≧ 80%	
	2	120	10.21	70.21	16.38	47.57	2.00 (m ³ /h)	
	3	120	15.01	75.27	21.44	38.17	Pumping Operation	
J4A	4	120	19.30	79.25	25.42	32.43	by 1 hour	Constant Head
WW39846	5	120	25.10	85.46	32.63	26.96	88 m	Boundary Type
	6	120	19,96	80.79	26.96	31,70	by 12 hours	
	7	120	15.00	74.12	20.29	38.18	303 m	
	8	120	10.00	68.46	14.63	48.09	by 24 hours	
	9	120	5.00	68.28	14.45	64.95	429 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No,	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	90	5.00	25.95	16.36	94.59	Rate at Ew≧ 80%	
	2	90	10.00	45.51	35.92	89.74	15.00 (m ³ /h)	
	3	90	15.00	66.65	57.06	85.36	Pumping Operation	
J4N	4	90	20.00	86.71	77.12	81.39	by 1 hour	None Flow
WW39847	5	90	15.00	71.67	62.08	85.36	319 m	Boundary Type
	6	90	10.00	53.08	43.49	89.74	by 12 hours	
	7	90	5,00	31.87	22.28	94.59	1,104 m	
	8						by 24 hours	
	9						1,562 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	0.60	12.17	32.17	13.93	Rate at Ew≧ 80%	
	2	120	0.90	24.54	44.54	9.74	0.02 (m ³ /h)	
	3	120	1.20	40.04	60.04	7.49	Pumping Operation	
J5N	4	120	t.40	53.03	73.03	6.49	by 1 hour	None Flow
WW39848	5	120	1.20	51.31	71.31	7.49	73 m	Boundary Type
	6	120	0.90	39.81	59.81	9.74	by 12 hours	
	7	120	0.60	23.35	43.35	13.93	253 m	
	8						by 24 hours	
	9						358 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	1.00	107.83	5.85	92.98	Rate at Ew≧ 80%	
	2	120	2.00	114.82	12.84	86.88	2.00 (m ³ /h)	
	3	120	3.00	121.49	19.51	81.53	Pumping Operation	
J6K	4	120	4.00	128.48	26.50	76.80	by 1 hour	Constant Head
WW39849	5	120	5,00	137.72	35.74	72.59	243 m	Boundary Type
	6	120	3.80	126.30	24.32	77.70	by 12 hours	
	7	120	2.90	119.94	17.96	82.03	843 m	
	8	120	1,90	111,72	9.74	87.45	by 24 hour s	
	9	120	1.00	108.75	6.77	92.98	1,192 m	

.

						_ .		(3/3)
Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	2.21	114.52	11.47	96.65	Rate at Ew≧ 80%	
	2	120	3.01	119.35	16.30	95.50	10.00 (m ³ /h)	
	3	120	4.19	125.14	22.09	93,84	Pumping Operation	
J6A	4	120	5.11	130.32	27.27	92.59	by 1 hour	None Flow
WW39850	5	120	6,20	135.30	32.25	91.15	42,488 m	Boundary Type
	6	120	4.82	130.78	27.73	92.98	by 12 hours	
	7	120	3,90	125,95	22.90	94.24	147,182 m	
	8	120	2.89	120.96	17.91	95.67	by 24 hours	
	9	120	1,99	116.05	13.00	96.98	208,147 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	3.10	13.89	4.00	95.45	Rate at Ew≧ 80%	
	2	120	6.13	17.94	8,05	91.40	10.00 (m ³ /h)	
	3	120	9.00	21.55	11.66	87.86	Pumping Operation	
J7K	4	120	12.10	26.85	16.96	84.33	by 1 hour	Constant Head
WW39852	5	120	9.03	21.83	11.94	87.82	269 m	Soundary Type
	6	120	6.30	18.33	8.44	91.1B	by 12 hours	
	7	120	3.03	13,87	3,98	95,56	933 m	
	8						by 24 hours	
	9						1.319 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	. 1	120	0.30	44.10	19.60	78.17	Rate at Ew≧ 80%	
•	2	120	0.60	72.19	47.69	64.16	0.25 (m ³ /h)	
	3						Pumping Operation	
J7N	4						by 1 hour	
WW39853	5						4 m	N.A.
	6						by 12 hours	
•	7						13 m	
•	8						by 24 hours	
	9						18 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Weil	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	0.10	62.84	2,98	50.65	Rate at Ew≧ 80%	
	2	120	0.20	65.73	5.87	33.91	0.02 (m ³ /h)	
	3	120	0,30	71,40	11.54	25,49	Pumping Operation	
J8K	4	120	0.40	79.51	19.65	20.42	by 1 hour	None Flow
WW39854	5	120	0,50	91.65	31.79	17.03	3 m	Boundary Type
	6	120	0.40	91.95	32.09	20.42	by 12 hours	
	7	120	0,30	87.96	28.10	25.49	11 m	
	8	120	0.20	80.87	21.01	33.91	by 24 hours	
	9	120	0,10	75.01	15.15	50.65	16 m	

Borehole	Step	Time	Discharge	Water	Drawdown	Well	Area of Influence	Presumed
No.	No.	Interval (min)	Rate Q (m ³ /h)	Level (m.bgl)	Sw (m)	Efficiency (%)	of 0.01m Sw	aquifer boundary
	1	120	15.00	2.83	0,59	67.84	Rate at Ew≧ 80%	
	2	120	24.00	3.37	1.13	56.87	7.00 (m ³ /h)	
	3	120	34.00	4.12	1.88	48.20	Pumping Operation	
J9A	4	120	46.00	5.23	2.99	40.75	by 1 hour	Constant Head
WW39857	5	120	34.00	4.13	1.89	48.20	447 m	Boundary Type
	6	120	25.00	3.41	1.17	55,86	by 12 hours	
	7	120	15,00	2.93	0.69	67.84	1,548 m	
	8	o	0.00	0.00	0.00	0.00	by 24 hours	
	9	0	0.00	0.00	0.00	0.00	2,190 m	

		rks			BH 2318BD-35	BH J2N	BH J2A	bs. BH J3A	bs. BH J3K				H J4K and J4N	H J4K and J4A			BH J6A and J6N	3H J6K and J6A		n used	3H J7K and Others		H J8A and J8N				neen used	
		Remai			no interaction with obs.	no interaction with obs.	no interaction with obs.	small interraction with o	small interraction with o	Artesian		very low yleid	no interaction wit obs. B	no interaction wit obs. B		Artesian	no interaction with obs.]	no interaction with obs.]	Artesian	obs. BH J7 Huis has been	no interaction with obs. I	very low yield	no interaction with obs. I	very low yield	very low yield	very low yield	obs. BH WW31759 has t	
		Accepted method	of numbers	cic(Imm IO	Hantush draw-down	Hantush draw-down	Hantush draw-down	Hantush draw-down	Hantush draw-down	Theis recovery	Jacob draw-down	Bouwer - Rice	Theis draw-down	Hantush draw-down	Theis draw-down	Theis draw-down	Hantush draw-down	Theis draw-down	Cooper / Bouwer	Hantush draw-down	Theis recovery	Cooper / Bouwer	Theis draw-down	Cooper / Bouwer	Cooper / Bouwer	Cooper / Bouwer	Theis draw-down	evel spth
	tants	Storage	Coefficient	S	1.00E-05	1.00E-05	5.00E-06	1.00E-06	1.00E-05	2.00E-05		4	1.00E-05	5.00E-05	3.00E-05	2.00E-07	1.00E-05	3.00E-09	1.00E-05	2.00E-04	8.00E-04	1.00E-10	5.00E-03	1.60E-10	1.00E-10	1.80E-06	3.00E-03	Static water l
	Aquifer Cons	Permeability	K	(cm/sec)	3.90E-04	1.60E-04	1.40E-04	1.50E-04	6.60E-03	1.03E-04	7.74E-06	2.10E-06	2.00E-03	1.60E-04	5.50E-05	7.50E-05	1.40E-04	3.30E-04	6.10E-05	1.20E-03	6.80E-07	2.10E-06	5.10E-06	7.10E-06	2.30E-07	8.80E-07	1.90E-02	S.W.L.
		Transmissibility	Ŧ	(m ³ /day/m)	25.2	3.42	2.94	6.42	194	1.3	0.135	1	87.6	7.01	1.2	1.62	6.23	8.44	1.487	30	0.01	0.06	0.132	0.27	0.006	0.02	1,240	dum
		Specific	yield	(m/n/rm)	0.74	0.089	0.085	0.143	4.409	0.00082	0.018	۴	0.923	0.21	0.016	-	0.145	0.165		0.763	0.0043	-	0.016	•	1	,	15.94	ubracrsible P ressure Probe lug Body
eholes		P.LD	(mhal)		82.98	6'86	101.55	68.85	101.55	N.A.	5	1	108.5		001	201	148	148	•	46	100	•	101	1	•	I	62.82	t Test by S Test by P Test by S
est Bor	ndition	S.W.L	(mhal)		57.49	16.94	39.72	19.35	15.77	-24	45.1	1	59.13	10	00	A4-	101.98	104.41	-16	10.04	77 45	CE-44	60.31	59.75	172.03	20.76	2.23	Pumping Pumping Pumping
nts of T	ng Test Co	uifer	thicknes	Î	30.55	20.55	23.4	17.52	32.15	14.6	20.3	C-07	56.05	23.35	20.46	01-07	17.5	26.1	23.4	23.4	14.5	}	23.4		8,7	17.4	6.69	
Consta	Pumpi	Aqi	formation		Auob	Auob	Nossob	Calcrete Rietmond	Auob	Nossob	Kazoo Dolerite	Kalkrand Barah	Auob	Nossob	Nocoth	anesari	Kalahari	Auch Al only	Nossob	Kalahari	Noscoh		Kalahari		Auob Al only	Nossob	Auob	ET PT
Aquifer		Test	applied		ΡŢ	ΡŢ	ΡŢ	PT	ΡT	ΡP	PT	ST	ΡŢ	ΡŢ	ΡŢ	ЪР	ΡŢ	ΡŢ	Ъ	PT	PT	ST	PT	ST	ST	ST	ΡT	
lary of	Ion	Ground	elevation	(masl)	1331.71	1275.26	1275.60	1208.05	1208.05	1208.05	1258.05		1256.39	1256.38	1168 33		1102.67	1102.47	1103.18	1148.19	1148,14		1021.25		1021.13	1021.26	1210.16	
Sumn	/ Informat	nber	Ŵ	ġ	39839	39840	39841	39842	39843	39844	39845	2	39846	39847	30248		39849	39850	39851	39852	39853		39854		39855	39856	39857	
le 6.2-2	Locality	ehole Nur	JICA	Ref. No.	ЧI	J2A	J2N	J3K	J3A	N£ſ	I4K		J4A	J4N	NSI		J6K	J6A	N9ľ	JTK	NLI		18K		J8A	N8ſ	79A	
Tat		Bo	No.		F,	2	;		ñ			Z	;		15	;		J6			71			ŝ	2		9ľ	

Chapter 6 Test Borehole

;

							η			
		Applied		Method	Theis drawdown	Theis drawdown	obs. BH	Jacob drawdown (obs. BH)	Jacob drawdown (obs. BH)	Theis drawdown
		Storage	Coefficient	S	3.80E-03	2.00E-03	2.70E-05	1.57E-04	1.94E-05	1.85E-05
	S	Permeability	К	(cm/sec)	2.66E-03	1.62E-02	1.52E-03	ŀ	-	I
	quifer Constant:	Transmissibility	Т	(m ³ /day/m)	13.8	42	6.6	84.5	21.47	20.91
	Α	Specific	yield	(m ³ /hr/m	0.03	0.06	2.91	0.15	0.24	0.13
		Draw	цомп	(m)	28	15.5	3.9	41	35.9	33.9
		Pumping	rate	(m ³ /h)	0.72	1.00	11.33	6.16	8.62	4.37
		S.W.L	(mhal)	(wurder)	14.3	14.27	19.18	11.57	0	0
	mping Test Condition		thickness	(m)	6	3	5	-	I	,
3oreholes		Aquifer	frametican	TOTIE	Rietmond	Kalahari	Auob	Rietmond	Rietmand +Auob (AS)	Fre-Karoo + Auob (A5) + Pre-Kaloo
Existing I	ηd		Borehole	Depth (m)	55	27	136	6 3	92	134
stants of]		T	Elevation	(masl)	1,264	1,264	1,266	1,239	1,239	1,239
ifer Cons	ation	Coordination	Longitute	(d:m:s)	18.46970	18.46970	18.47230	18.73350	18.73350	18.73350
vzed Aqu	dity Inform.)	Latitude	(d:m:s)	23.68510	23.68540	23.68510	23.28350	23.28350	23.28350
Analy	Loc		мм	No.	21814	21815	22545	24604-1	24604-2	24604-3
Table 6.2-3		Location	Eomn Nomo	SUITE LATIN		Olifants-Water			Garton	

Borehole
is of Existing]
r Constant
zed Aquife
.2-3 Analy
ible 6.

Fig. 6.2-1 Distribution of Aquifer Constants in Each Aquifer

6 - 54

Chart Ia The chart showing the variation of drawdown of pumped BH (J2A) and observation BH (J2N).

Chart 1a The chart showing the variation of drawdown of pumped BH (J2N) and observation BH (J2A).

Fig. 6.2-2 Interaction Between the Aquifers, in Location J2.

Chart 1a The chart showing the variation of drawdown of pumped BH (J3A) and observation BH (J3K).

Chart 1a The chart showing the variation of drawdown of pumped BH (J3K) and observation BH (J3A).

Fig. 6.2-3 Interaction Between the Aquifers, in Location J3.

Chart Ia The chart showing the variation of drawdown of pumped BH (J4A) and observation BH (J4K and J4N).

Chart 1a The chart showing the variation of drawdown of pumped BH (J4N) and observation BH (J4K and J4A).

Fig. 6.2-4 Interaction Between the Aquifers, in Location J4.

Chart 1a The chart showing the variation of drawdown of pumped BH (J6K) and observation BH (J6A and J6N).

Fig. 6.2-5 Interaction Between the Aquifers, in Location J6.

Chart 1a The chart showing the variation of drawdown of pumped BII (J7N) and observation BH (J7K, BH House and BH Wind).

Fig. 6.2-6 Interaction Between the Aquifers, in Location J7.

Chart 1a The chart showing the variation of drawdown of pumped BH (J8K) and observation BH (J8A and J8N).

Fig. 6.2-7 Interaction Between the Aquifers, in Location J8.

6.3 Installation of Water Level Recorder

6.3.1 Recorders, Installed

Water level recorders were installed in all of 19 JICA test boreholes as well as on eight existing boreholes. The existing boreholes were selected based on discussions with DWA. The location of these boreholes are shown on Fig.6.3-1. Two types of recorders namely, the floater type and pressure probe type were installed. The pressure probe was fitted to only for four artesian boreholes ie. J3N, J5N, J6N and JO-5N(an existing borehole).

All information in connection with water levels and data-loggers for the JICA boreholes is summarized in Table 6.3-1 and in Table 6.3-2 as for existing boreholes.

In the columns of "Data Logger", information of the data-logger installed is described. "Serial Number" shows the identification of each data logger. "Date Installed" corresponds to the first date on which water level monitoring commenced. "Cut-off A" and "Cut-off B" shows the length of cable from plug to clamp, and from clamp to data probe respectively. Only the float type recorder has such information.

6.3.2 Specification of Water Level Recorder

(1) Float Type (See Fig. 6.3-2 (1) and 6.3-2(2))

The main specification features are summarized as follows:

- memory: 32KByte for at least 32x484 = 15,488 measuring values
 - (without time marks)
- communication: via M-Bus with communication interface at RS232 with 2400Baud
 - increase read data by up to 4800 Baud values
- clock: real time clock ± 15 ppm
- operating temperature: -20 to +70 (exception: glaciation)
- power supply conditions: average tempereature <25

: max. pluses 500/day

- : measuring cycle times 15min
- : max. interface operation 5min/month

- operating life: 15 years

- expected runtime: 20 years

The float type recorder consists mainly of a plug, cable, clamp, data logger, ball chain, floater and weight. The data logger connects the plug by clamp and cable.

As described above, the manufacturer guarantees the battery life for 15 years. Therefore, the data logger must be sent to the manufacturer to change the battery.

The memory capacity of the data logger is only 15,488 measuring values. The time interval for data recording was set every 1 hour for monitoring purposes. If data capturing is carried out once a year, the number of data becomes 8,760 measuring values. The data logger can be left for about 1.5 years, with out down-loading the data.

(2) Pressure Probe Type (See Fig. 6.3-3)

The main specification features are summarized as follows;

- memory: 32KByte for at least 32x484 = 15,488 measuring values
- communication: via M-Bus with communication interface at RS232 with 2400baud
 increase to 4800 baud by read out possible
 - . Increase to 4800 baud by read out p
- clock: real time clock ± 15 ppm
- operating temperature: -20 to +70 (exception: freezing)
- battery life time: average tempereature <25
 - : measuring cycle times 15min
 - : with max. 5min interface operation per month
 - :>10 years guaranteed

The pressure probe type recorder consists mainly of a plug, cable and data logger with pressure sensor. The data logger connects to the plug by the cable only.

As described above, the manufacturer guarantees 10 years for battery life, whereafter the data logger must be sent to the manufacturer to change the battery.

The memory capacity of the data logger is only 15,488 measuring values. The time interval for data recording was set at every 1 hour for monitoring purposes. If data capturing is carried out once a year, number of measuring values becomes 8,760. The data logger can be left for about 1.5 years, without down-loading the data.

6.3.3 Technical Transfer on Operation and Maintenance of the Recorder

Technical transfer to the DWA officials relating to the operation and maintenance of the recorder was carried out during November 2000. The items transferred and confirmed are summarized as follows:

- i) Reading actual value of water level and total memorized number in the data logger
- ii) Checking the function of data logger by laptop computer

iii) Data capturing by laptop computer

6.3.4 Recommendation on Operation and Maintenance

As mentioned above, on both types of recorder, the maximum number of the data that can be memorized is only 15,488 measuring values. If this number is exceeded, new data will overwrite the old automatically. In order to avoid such losses, it is recommended that data capturing should be executed at least once a year. The borehole head facility consists of not only of the recorder, but also of other devices is installed to maintain the proper function of the recorder. Inspection of these devices is also required. From this point of view, it is considered that a visit to the boreholes for data capturing at least once a year is appropriate.

A washer was fixed between the nut and fixing device in the cap in order to prevent the recorder falling down. It must however, be handled with care, water sampling or pumping, and the recorder must be held securely.

When the settings of data-logger are going to be changed, such as interval time, the memory of the data-logger will be initialised automatically. To avoid data losses in the logger, memorized data should first be saved before such settings are changed.

Table 6.3-1 Data Related to Water Level Recorder for Test Borehole

		*Cut-off B	Î		10.20		13.11	36 11	11.65	11 01	11'01		9.11		N/a		42.11		11.40		4.11	N/a
	-ogger	*Cut-off A	(u)	40	66.0		16.0	10 0	16.0	10.0	16.0		16.0		N/a		16.0	100	16.0	100	16.0	N/a
, , ,	Lata I	Date	installed		00-unr-/ 1	10.0	nn-dae-ei	20 cm 00	no-dae-nz	6 Can 00	no-doc-n		0-2ep-00		18-Oct-00		18-Sep-00	10 5 - 00	10	10 5 00	no-dae-or	11-Nov-00
		Serial	Number	4560		1100	7644	4556		4554			4491	T 20222	F 20223		4490	1521	1004	1403	6444	F20268
-		Distance	logger to RWL (m)	103	16.0	Ľ, r	2:47	OF F	4.79	5 0	CT.2		4.98	N/a		i t	1/./	36.3	ניבינ	2.48		N/a
	nauon	Rest Water	Level (masl)	1 171 006	666.612,1	1,260.250		1 336 160	NC1.0C7.1	1 100 070	0/2:001'1	200 101 1	1,194.45	1 110 050	1,236.900	1 200 / 65	CC0.007*1	1 107 746	C+7.161,1	1 260 160	001.003.1	1,197.900
T area for the		Rest Water	i Levei (mbgl)	312 23	CI.10	16.010	ntnici	10 450	004.40		000.01	217 61	C10.61	010.05	טוליטנ-			59.145		6 J2N	007.0	-29.57
Winter	walci	Stick up	(H)	106	C01.1	1 460	1.400	1 240	· 0+c-1	1 450	oct.1	1 2/6	C011	1 640	0 + C.1	3151		1 004	ron.1	1 350	DC7-1	1.230
		Rest Water	Level (mbsu)	58.90		16.47		02 UV	61,04	20.53)) 4	80 7 1	14.98	NIA	B/N	15.03	11.00	10 UX	C7-00	7 46	01.7	N/a
	_	Elevation (masl)		1331 71	1//1001	76 361	N7.6771	1375 KD	00.6121	1208.05	CO-5071	100005	CU.&U21	20 9061	CU.00121	90 8361	(1).0/7 1	1756 30	<1.0121	95 X20	90.0021	1168.33
	Coordination	Longitude (d:m:s)	Longitude (decimal)	18°59'12.0"	18.98668	18°23'19.4"	18.38873	18°23'19.4"	18.38871	18°47`36.2"	18.7934	18°47'35.2"	18.79312	18°47'46.1"	18.79614	.9°67,26°61	19.62489	19°37'32.8"	19.62577	19°37'34.4"	19.62621	18°23'52.6" 18.39794
ormation		Latitude (d:m:s)	Latitude (decimal)	23°15'14.9"	23.25415	23°38`50.9"	23.64747	23°38'53.1"	23,64808	24°02'45.3"	24.04592	24°02'52.5"	24.04792	24°02`54.9"	24.04858	23°24'03.5"	23.40098	23°24'01.8"	23.40049	23°24'03.8"	23.40105	24°19'41.7" 24.32824
ality Info	Number	WW	No.	20230	20020	20640	04020	308.41	1+0/0	67802	110/0	CYOUL	C+07C	20044	++0/0	21000	C+07C	20246	0+020	70847	1-0/0	39848
Loc	Borchole	JICA	Ref. No.	V II		V 61	076	NCI	N171	13K		Y 61	VCL	131		AV1	2	1 A A	C+f	IAN	N146	15N
	Location	;	rarm Name	Christians	CILISITER		Olifantswater	West				Ctonner	oleylist us					Okanyama	(Aminuis)			Maritzville
			No.	F	1,		2	1				2	r r					Σ	5			J5

		Loca	ulity Info	ormation				Water	. I aval Infam	notion			Deter		
	Location	Borchole	Number		oordination					וומחמו			ד סוסת	UBBU	
	Eoren Mouro	ЛСА	MM	Latitude (d:m:s)	Longitude (d:m:s)	Elevation	Rest Water	Stick up	Rest Water	Rest Water	Distance	Serial	Date	*Cut-off A	*Cut-off B
- DXI	Family Mane	Ref. No.	No.	Latitude (decimal)	Longitude (decimal)	(masl)	(mbsu)	(H)	Level (mbgl)	Levei (masl)	logger to RWL (m)	Number	installcd	(m)	(II)
		ועא	10840	24°48'00.3"	19°20'05.4"	1100 67	103 5	1 160		1 000 530	y k	1640	00 500	10.0	1 00
		Yor	2+02C	24.80009	19.33483	10.2011	C.CU1	006.1	061.201	חכריתהתיו	Ĵ.	0+0+	nn-dae-nz	16.0	70.11
Ч	Cohra	TK A	10250	24°48'02.1"	19°20'06.7"	1103 47	104.35	1 435	103 015	222.000	36 2	1400	00 50 00	100	11 00
2	11000	Vor	00000	24.80059	19.3352	11.7011		CCF.1	¢10.701		 1 1	6644	nn-dae-nz	16.0	11.76
		TCM	10061	24°47'58.7"	19°20'04.5"	1102 10	, MV	1 135	10.24	040 641 1		r 2020		-114	-MA
		NIGO	10040	24.79963	19.33457		14/1	C77'I	+0.41-	1,122.520	R/N	r 20230	00-100-0	Ivia	IN/a
		761	20057	25°17'29.9"	18°25'00.4"	01 07 11	-	1 100	002.0	027 021 1	1.3	1547		100	11.3
ţ	Inchatant	4	70020	25.29163	18.41678	1140.13	J • 1 J	000.1	071.6	0/+/001/1	1.0	7404	00-100-5	14.0	11.0
5	JACKAISUIAAI	NEI	30062	25°17'28.2"	18°24'59.4"	1140 14	13 01	335.1	11 646	1 176 405	10.7	1554		100	11 21
				25.29117	18.4165	1140,14	10,62	COC'1	640.17	C64.071,1	10.0	2004	00-100-6	14.0	11./1
		101	13005	25°27'40.4"	19°25'57.6"	36 1001	7U 17	1 210	035 QX	061 500	202	1640		10 0	
		Yor	+0060	25.46122	19,43266	C7.1301	00'10	0101	NC1.8C	006.106	00.0	4048	4-UCI-00	16.0	11.40
01	Tumonitor	10 4	20055	25°27'42.3"	19°26'01.4"	1001	10515	1 345	10101	F0.310/	, in the second s	9460	0 M 00	<	4
ĥ		tor		25.46174	19.43373	c1.1201	01.001		70.001	16.000	E MI	4044	M1-A0N-7	>	>
		ION	20056	25°27'41.3"	19°25'59.7"	26 1 601	2016	1 270	U97 UC	1 000 000	0	1550	1 Oct 00	10 0	
		NTOP	00020	25.46148	19.43324	07-1701	CO.12	0/6-1	004-07	1,000.000	C0.0	0004	4-Oct-00	16.0	11.21
2	Klein	TOA	20957	24°00°06.5"	18°12'55.0"	121015	, T	1 460	1 JAN	000 200 1	۲. ۲	4600	30 g.m. 00	10.0	
-	Swart Modder		10000	24.00182	18.21529	01.0121	71.0	001-1	007.7	006.107	77.1	0) 7	nn-fac-nz	ten	1
	Note:	"Cut off A "Cut off B	V" mean.	s length fron s length from	1 top plug to 1 connection	connection clamp to I	ı clamp Data Logger								

Table 6.3-2 Data Related to Water Level Recorder for Exisiting Borchole

		*Cut-ofi B (m) B (m) 14.11 5.11 5.11 0.31 0.31 0.31 N/A	150	1		26.11		N/A		34.11		71.11		104.11					
	a Logger	*Cut-off A (m)	16.0	0.91		10.0	17:0			16.0		N/A		0.91		16.0		16.0	
	Data I	Date installed	16-Nov-00	16-Nov-00		00-wow-71	00-1017-01		0-0ct-00		00-von-/		5-Oct-00	50 X X	00-40N-01		6-Oct-00		
		Serial Number	4555	4503		4551	Inch	1573	4303		¢ 9707		4262		404/		4500		
		Distance logger to RWL (m)	5.22	4.56		0.69			0.44		NA		/ (.0	306	G9./		5.79	-	
	nation	Rcst Water Level (masl)	1269.44	1284.98		1277 58		C8 C21 F	78.6711	0,0011	80.6011		1000.34		1142.08	1005.52			
	Level Inform	Rest Water Level (mbgl)	18.82	9.08		-1 105		31 tc	01.26	уша ст	0//.71-		40.28	ic ac	17.07		109.59		
	Water	Stick up (m)	1.400	1.480		2.295			0.97.1	334 1	C0 1 .1		667.1	1 145	C++-1		1.205		
		Rest Water Level (mbsu)	20.22	10.56		1.19		33.44		M	B/N	5	/C.14	37 01	C0 .67		110.79		
		Aquifer	qossaN	Auob		Auob		Nossob		Nassab		, Terry	CIOSSON	4211.6	MMA		Auob	on clamp Data Logg	
	1	Elevation (masl)	1288.26	1294.06		1276.47		90 20L1	96°CN71	1002 00	06.0601	1100.1	10.0011	96 0211	07.0/11		1115.10	o connection n clamp to	
oordination		Longitude (d:m:s). Longitude (decimal)	18°18`59.1" 18.31642	18°17'32.9"	18.29247	18°20'44.6"	18.34572	18°15'13.3"	18.25369	18°48'21.0"	18.80583	18°15'47.5"	18.26319	18°06'30.3"	18,10842	19°19'29.0"	19.32472	n top plug t n connectio	
ormation		Latitude (d:m:s) Latitude (decimal)	23°33`37.4" 23.56039	23°31'44.1"	23.52892	23°35'56.3"	23.59897	24°49'14.5"	24.82069	24°51'31.0"	24.85861	25°26'45.6"	25.446	25°04'21.3"	25.07258	24°45`30.0''	24.75833	s length fron s length fron	
cality Int	Number	WW No.	39872	39873		39874		75966	1 6022	7005	((()	10125	+6110	37175	(77)(6166	A" mean B" mean	
<u>د</u>	Borehole	JJCA Ref. No.	NI-Of	JO-2A		JO-3A		NY OI			NIC-OF		Na-Dr	₹ <u>0</u>	¥-01		JO-8A	Cut off	
	Location	Farm Name	Neu Simmern	Gumuchab Ost		Neu Mark		Tucela	nugua	Gorbae	Andres	Dorbrook	Dagurce	on contraction of the second se	CITICUC		Cobra	Note:	
		°N .	1	3		ŝ			+	Y	ν.		•	٢]	

Chapter 6 Test Borehole

