Appendix 8 Natural Conditions Survey Results - Topographic/Geotechnical

Appendix-8 Natural Conditions Survey Results - Topographic/Geotechnical

1. Topographic Survey

1-1 Topographic Survey Summary

(1) Scope of Work

Number of bridges: 45 (construction 22, procurement 23)

Item	Survey Item	Bridge Type	Survey quantities
	Direction of	Procurement	50m + river width + 50m
	road	Construction	150m + river width + 150m
Plan extent of survey	Direction of	Procurement	Upstream and downstream 25m from road centerline
	river	Construction	Upstream and downstream 500m from road centerline
		Procurement	Total length = $150m \times 23$ bridges = $3,450m$
	Road center		{1 bridge = $50m$ + bridge length ($50m$) + $50m$ = $150m$ }
	line survey	Construction	Total length = $360 \text{m} \times 22 \text{ bridges} = 7.920 \text{m}$
			$\{1 \text{ bridge } = 150\text{m} + \text{bridge length } (60\text{m}) + $
			150m = 360m
		Procurement	Approach roads: each 20m pitch
Survey item and method	Road cross section survey		6 sections/site x width 50m (25m from road centerline)
			Total length = $6 \times 50m \times 23$ sites = $6,900m$
			Total 6 sections/site $x23 = 138$ sections
		Construction	Approach roads each 20m pitch 14 sections/site x width 50m (25m from road centerline)
			Total length = $14 \times 50 \text{m} \times 22 \text{ sites} = 15400 \text{m}$
			Total = 14 sections/site x $22 = 208$ sections
	River	Procurement	50m (upstream and downstream 25m) x 23
	longitudinal		sites = $1,150$ m
	section	Construction	1,000m (upstream and downstream) x 22
			sites = 22,000m
		Procurement	1 cross-section = $25m+50m+25m = 100m$
			3 No. sections/site, total 3 x 23=69 sections
	River cross-		Total length = $100m \times 3$ sections x 23 sites
	section survey	Construction	= 0,900 m 1 cross-section $= 25 \text{m} \pm 60 \text{m} \pm 25 \text{m} = 110 \text{m}$
		Construction	5 No. sections/site, total = $5x22=110$ sections
			Total length = $110m \times 5$ sections x 22 sites
			=12,100m
	Plane table	Range	${(100x23)+(300x22)}x \text{ width } 50m = 44.5ha$
	Leveling	Installation of	Temporary Bench Mark 45

(2) Survey Output

Bridge and Road	Plan Map Scale 1/200
	Longitudinal Profile Scale V: 1/200 H: 1/200
	Cross Section Scale V. H: 1/100
River	Longitudinal Profile Scale V: 1/100 H: 1/500
	Cross section Scale V: 1/100 H: 1/200

2. Geotechnical Investigation

2-1 General

(1) The Purpose and the Scope of the Investigation

Geotechnical investigation was carried out at a total of 27 bridge sites to obtain data for bridge foundation and soft ground treatment design. Of these, 22 bridges are to be constructed on site and 5 are to be prefabricated structures. In this report these are subsequently termed 'construction' and 'procurement' bridges respectively. Machine boring survey were carried out including standard penetration tests, undisturbed sampling, and laboratory soil testing (physical and mechanical properties).

A summary of the extent of the survey is shown in Table 8-2 and on the location map.

(2) Machine boring survey

In order to determine the geological conditions at the 27 bridges, two boreholes were sunk at each site. The survey was carried out by eight drilling teams using XJ-100 type Chinese-made rigs over a one-month period. Details are shown in Table 8-2 and in the table below.

Item	ASTM standard	Bridge Foundation	Laboratory Soil Test	Total	Remarks
Standard Penetration Test	D-1586	576	-	576	
Undisturbed Sampling	D-1587	87	-	87	
Specific Gravity	D-854-58	-	135	135	
Natural Moisture Content	D-2216	-	127	127	
Grading	D-422	-	142	142	
Liquid Limit	D-423	-	87	87	
Plastic Limit	D-424	-	87	87	
Bulk Density	-	-	50	50	Caliper method
Unconfined Compression	D-2166	-	27	27	
Consolidation	D-2435	-	20	20	

Table 8-1 Quantities of ASTM Standards In-situ Tests and Laboratory Soil Tests

Br. No. (5) 11 (11) (11) (22) (22) (11) (22) (22) (22) (22) (22) (22) (22) (22	Br. Name 1 HACH QUANG 1 HACH QUANG 2 UYNH BANG MY SON 1 MY SON 1 LAC THEN PA NHO PA NHO PA NHO PA NHO DAI LOI DAI LOI DAI LOI TRANG TRANG DAI LOI	A B B B B B B C A B	minist * ocure ** * * * * * * * * * * * * * * * * *	Pa N N 19.102.5761 19.102.5761 19.102.5761 19.102.5761 19.102.5761 10.1361	E (((((((((((((((((((lti Log. m) No.	Location Left / Right	Height (m)	Depth	Soft M trata	Hard	kock 3oulder Strata	Depth to Bearing		N Value	Water 6 Level	round
	PATRATE DUNNE HACH DUNH DUTNH BANG MY SON 1 MY SON 1 LAC THEN PA NHO PA NHO HOI PHUOC DAI LOI DAI LOI DAI LOI TRANG	A B	• •	N 00 17:824 10 00:894 19 10:576 19 10:576 19 10:576 19 46:612 10 46:612 10 46:612 10 46:612 10 46:612 10 15 10 16 10 16 10 15 10 10 10 10 1	E (((105 ³² :5341 105 ³² :5341 105 ⁴² :758	Jti No. m) No.	Left / Right	(I	<u>1</u>	Denth S	trata	Strata	0	1. D. 1.	N Value	Tevel	Wataw
	HACH QUANG THACH DINH ZUYNH BANG WY SON TAAT LAC THEN PA NHO PA NHO DAI LOI DAI LOI DAI LOI TRANG TRANG	33 33<	<u> </u>	00 17:824 1 00 09:894 1 19 10:576 1 18 00:308 1 18 29:609 1 17 46:612 1 17 46:612 1 17 46:612 1 16 36:810 1 16 35:826 1 15 59:826 1 5 53:558 1	105 32 534 1 105 38 923				(m	- 	- mdan	Depth	Strata (m)	Name of Soll		()	vater Level
╶┼┝╝┼┼┾┼┼┼┼┼┤┥	HACH DINH WYNH BANG MY SON TAC THEN PA NHO PA NHO HOI PHUOC DAI LOI DAI LOI TRANG	93 90 90 90 90 90 90	<u> </u>	00 09: 894 1 9 10: 576 1 18 29: 609 1 17 46: 612 1 17 46: 612 1 16 36: 810 1 16 36: 810 1 16 35: 810 1 15 59: 826 1 15 53: 538 1 5 53: 538 1 16 55 88 1 17 55 88 1 18 55 88 1 19 55 88 1 19 55 88 1 10 55 88 1	105 38'.923	2.4 DIL-1	L/S	34.11	30.0		21.4	8.6	21.4	Limestone	Rock	(mm) 27 50	(m) -6.60
	JUTNH BANG MY SON TLAC THEN LAC THEN PA NHO DAI LOI DAI LOI TRANG	81 93 90 90 63 63	* * * * * * * * *	9° 10° 576 1 18° 00° 308 1 17° 46.612 1 1	105 42'.758	3.1 BH-1	R/S	29.50	30.0	16.0		14.0	16.0	Siltstone	Rock	20.50	-8.90
┦┼┼┼┼┼┼┌┼┤	MY SON 1 MY SON 1 CUA TRAI LACTHIEN PA NHO HOI PHUOC DAI LOI DAI LOI TRANG	33 30 33 30 33 30 30		10.0.01 (10.000) 11.00000000000000000000000000000000000	801.24 001	BH-2	L/S	30.10	42.0	12.0	30.0	•	25.0	Clay with gravel	22-25		-9.60
┽┼┽┽┽┽┲┾┥	MY SON 1 CUA TRAI LAC THEN PA NHO FA NHO HOI PHUOC DAI LOI DAI LOI DAI LOI TRANG	223 205 205 205 205 205 205 205 205	* * * * * * * * * *	8' 00'.308 1 7' 46'.612 1 6' 36'.810 1 6' 15'.401 1 5' 59'.826 1 5' 53'.558 1		1.1 BH-1	SS:	14.60	35.0	7.0	19.0	9.0	24.0	Sandstone	>50	13.38	-1.20
┽┿┽┽┽╇╤┾┥	TRAN DATES THEN CUA TRAN LAC THEN PA NHO PA NHO PA NHO PHUOC DAI LOI DAI LOI DAI LOI TRANG TRANG TRANG	30 66 42 53 53 90 63 63 42 53 53		6 00.308 [1] [8] 29:609 [1] [6] 36:810 [1] [6] 15:401 [1] [5] 59:826 [1] [5] 53:558 [1]	01.01.006.2	2 HBH-2	S.	14.80	45.0	8.4	17.1	19.5	25.0	Sandstone	Rock		-1.40
┼┼┼┼┟┼┤	CUA TRAI LACTHIEN PA NHO PA NHO PA NHO HOI PHUOC DAILOI DAILOI TRANG	30 66 90 63 63	***	8° 29' 609 7° 46' 612 6° 36' 810 6° 15' 401 5° 59' 828 5° 53' 558	5 C68.01 001	0.0 BH-I	S	60.00	25.0		7.5	17.5	7.5	Granite	Rock	47.00	-13.00
┼┼┼┼┮┼┥	PA NHO PA NHO PA NHO HOI PHUONG DAI LOI DAI LOI TRANG	63 63 73 90 63 63 72	* * * * * * * * *	. 8 29.009 1 7 46.612 1 6 36.810 1 6 15.401 1 5 59.826 1 5 53.558 1		<u>. BH-2</u>	RS S	50.60	25.0	•	4.6	20.4	3.0	Granite	Rock		-3.60
┼┼┼┲┼┤	PA NHO PA NHO HOI PHUOC DAI LOI DAI LOI TRANG	90 63 42 90	* * * * * * * *	7 40.0121 6 36.8101 6 15.401 15 59.8261 5 53.5581	105 42.784 1	0.1 BH-1	R/S	8.00	30.0	7.5	9.5	13.0	17.0	Clay with gravel	>50	3.45	-4.50
++F+	PA NHO KHE DUONG HOI PHUOC DAI LOI DAI LOI TRANG	30 63 63 90	* * * * * *	6°36'8101 16°15'4011 15°59'8261 5°53'5881	100 00.00	/1 BH-1	KS5	37.20	21.0	9.6	2.9	8.5	12.5	Limestone	Rock	30.36	-6.80
┼┮┼┤	PA NHU HOI PHUOC DAI LOI DA DUNG TRANG	30 63 63 90	* * * * * *	6 36.8101 16 15 4011 15 59 8261 5 53 5381		BH-2	L/S	39.50	21.0	-	2.0	19.0	2.0	Limestone	Rock		-9.10
╉	KHE DUONG HOI PHUOC DAI LOI DAI LOI TRANG	42 63 90	* * * * *	6° 15'.401 1 15° 59'.826 1 5° 53'.558 1	106 44.242	10 BH-1	KVS -	81.00	30.0	-	11.0	19.0	11.0	Clayey Sand - Sandstone	>50	75.70	-5.20
	HOI PHUOC DAILOI DA DUNG TRANG	2 E E E	* * * * *	<u>5 53'5581</u>	1 1/2 20,02,1	3 2 BU 1	r/S	02.61	30.0	3.5	9.0	17.5	6.7	Clayey Sand - Sandstone	>50		-4.00
	HOI PHUOC DAILOI DADUNG TRANG	63 90 91 92	* * * * *	15° 59'.826 1 5° 53'.558 1	1 +10.60 101	0.4 BH_7	C/T D/C	05 011	30.0	0.0	11.4	8.6	22.0	Coarse Sand with Gravel	32~71	19.00	-0.50
_	DAILOI DADUNG TRANG	63 90	* * * *	5° 53'.5581	08, 04, 442	1 BH-1	D/G	06.611	0.020	0.0	13.0	13.0	13.0	Coarse Sand with Gravel	0^	10 50	-0.50
	DAILOI DA DUNG TRANG	90	* * *	5°53'.5581		BH-2	T/S	46.20	25.0	+	14.2	10.8	14.7	Weathered Granite	Dock	00.04	02.0-
	DA DUNG TRANG	8	* *		08, 06, 100 1	3.8 BH-1	R/S	50.00	45.0	19.5	53	20.2	24.8	Weathered Granite	Rock	46.00	4 00
	DA DUNG TRANG	90	* *			BH-2	L/S	49.20	45.0	23.0		22.0	23.0	Gravel-Granit	-50	00.01	-3 20
	TRANG		*	0 40 923 1	07 45 945 1	8.0 BH-1	L/S	13.50	22.3		4.6	17.7	4.6	Rhvolite	Rock	5.97	-7.50
	TRANG	-	*			BH-2	R/S	11.25	22.8		7.4	15.4	7.4	Rhvolite	Rock		-5.20
		33		1 01:3211	08 09.605 2	2.5 BH-1	T/S	59.09	24.6	-	6.6	18.0	6.6	Granite	Rock	55.86	-3.20
+						BH-2	R/S	58.70	24.0		7.2	16.8	7.2	Granite	Rock		-2.80
	TUAN TU	63	*	1 31 847 1	09 00 032	7.6 BH-1	L/S	10.30	54.5	36.6	10.7	7.2	47.3	Granite	Rock	7.70	-2.60
	IAM NGAN	02 02	*	1 20.395 1	08 43.731	66 BH-1	L/S	126.79	27.6	,	7.0	20.6	7.0	Granite	Rock	25.05	-1.70
	TAM VAN	78	*	1 642 174 1	0 202 171 00	An DIT	KVS I	129.80	21.8	•	2.0	19.8	2.0	Granite	Rock		-4.70
+		2		74.00 /4 1	3 100. 11 00.	DH-1 DH-7	D/C	10.04/	× 00		<u></u>	20.4	0.0	Khyolite	Kock	(45.49	-2.60
	FA SOUP	1	*	1 07.501	17, 53, 607	01 BU 1	22	17 50	147		, c	24.1	3./	Khyolite	Kock		-1.00
+	1000117	5			1 120. 00 10	- ng	5/J	02.71	14./		7.0	17./	2.0	Claystone	Rock	10.42	-6.80
×	RONG KMAR	69	*	2 30' 736 1	08, 20, 837 4	38 RH-1	1/6	00.01	20.0	0.0	14.0	14.0	0.0	Coarse Gravel	02.4		-5.08
╞		}	-	1 001.00 7	- 100.07 00.	1-HI OC	D/C	0.00	0.00	0.0	13.0	10.0	6 31	Granite	Kock Kock	5.33	-3.20
	DAK PO TO	60	*	3 37 672 1	08 24 386	97 RH-1	R/S	6.50	46.0	<u>6.0</u>	<u>;</u>	30.4	6.61	Granite Sandriano Granito	Rock	200	CU.2-
	IA DRANG	55	*	3 44.524 1	07 51 347 4	38 BH-1	S/T	9.72	10.5	2 2 2 3	8	87	8	Basalt	Dock	01.6	06.1-
\square						BH-2	R/S	9.82	10.2		12	0.6	12	Basalt	Rock	2	-2.70
	NGOC TU	60	*	4 43.359 1	07'46'418 6	33 BH-1	L/S	5.42	25.0		4.8	20.2	4.8	Weathered Schists-Granite	>50	3 45	06 -
+		-				BH-2	R/S	7.40	25.0		5.1	19.9	5.1	Weathered Schists-Granite	>50		-3.90
	XA CAI	80		5°01'.161 1	08° 49'.196	1.5 BH-1	T/S	60.00	19.0	2.9	10.6	5.5	13.6	Granite	Rock	58.20	-1.80
-		-				BH-2	R/S	60.20	32.5	3.5	13.4	15.6	16.9	Granite	Rock		-1.80
	00	020	*	5 15 618 1	08 30 014 5	1.4 BH-1	L/S	58.95	25.3	•	9.8	15.5	9.8	Mica schist	Rock	57.54	-1.40
+	1110 01100	_				BH-2	R/S	63.57	22.5		2.0	20.5	2.0	Mica schist	Rock		-6.00
	SUNG SAU	63	**	5 15.847 1	08 39.739 1	6.8 BH-1	L/S	40.00	13.2	7.7	•	5.5	7.7	Granite	Rock	37.40	-2.60
	BALE	42	*	4 04.301 1	08° 59'.984 3	5.3 BH-1	L/S	10.50	11.0	4.0	1.5	5.5	5.5	Granite	Rock	8.53	-1.97
+						BH-2	R/S	10.50	11.0	6.6		4.4	6.6	Granite	Rock		-1.90
	TRA 0	33	*	3 26.037 1	09 04 522 2	6.3 BH-I	L/S	11.15	30.7	•	12.6	18.1	11.0	Granite	Rock	9.09	-2.06
+				_		BH-2	R/S	11.31	28.7	•	4.0	24.7	4.0	Granite	Rock		-2.20
	TRA BUONG	63	*	3 18.400 1	09 03 418 2	3.7 BH-I	L/S	8.52	16.5	- 	8.8	7.7	7.7	Granite	Rock	7.30	-1.20
ſ						BH-2	R/S	8.03	15.1		5.0	10.1	5.0	Granite	Rock		-0.70
	NGOI NGAN	48	*	2 45.493 1	09° 17'.991	1.5 BH-1	L/S	9.69	43.2	4.8	23.2	15.2	13.0	Granite	Rock	7.93	-1.70
+		-				BH-2	R/S	8.50	44.0	5.6	27.5	10.9	15.0	Granite	Rock		-0.57
-		5	22+5)	_		(44+5)			49								
-		-	27			49			1,348.4	227.3	397.7	723.4					

Table 8-2 Boring Results

A - 8 - 3

2-2 Survey Area Geology

(1) Outline of Survey Area Geology

The geological strata of the Central Area are composed of granite of all ages, crystalline schists, basalt of the Pliocene Epoch, sedimentary rocks of the Mesozoic Era mainly consisting of shale, slate and limestone, all overlain by Quaternary formations, which consist of Alluvial and Diluvial formations.

Geol	ogical Age	Formation	Description
	Holocene	Alluvium	- Soft to firm cohesive soil
0			- Loose sandy soil
Quaternary			- Stiff to hard cohesive soil
	Pleistocene	Diluvium	- Medium dense to dense sand and
			gravel
Tertiary	Pliocene	Igneous rock	- Basalt
Cretaceous		Igneous rock	- Granite, Basalt
Triassic		Igneous rock	- Dacites, Rhyolites
		Sedimentary rock	- Shale, Slate, Limestone

Geological Formations in the Central Area

1) Alluvial Deposits

Alluviul deposits are extensively distributed in North and South Central Coastal Area, and are mainly composed of dark, yellowish, brownish and blackish gray very soft clay, sandy clay to organic clay(Ac), and loose fine to medium sand (As). The thickness of the clayey deposit is about 4.9 to 8.0 m with SPT blow counts of 0 to 4 recorded.

Sandy soil is interbedded with clayey soil or with lenses and consists of yellowish, brownish, blackish and whitish grey fine to coarse sand. The thickness of sandy soil is about 3.5 70 8.9 m with SPT blow counts of 2 to 10 recorded. Maximum depth of alluvial deposit from ground surface is 30.3 m of bridge NO. 42B.

2) Diluvial Deposits

The Diluvium is composed of cohesive soil (Dc) and sandy soil (Ds). The top of stratum at coastal plain is located at a depth from 3.5 to 8.9 meters from ground surface.

i) Cohesive Soil (Dc-stratum)

Cohesive soil (Dc) is distributed throughout the project area and is composed of brown to yellowish-brown, yellowish to greenish grey clay to clayey silt. The Dc soil top of stratum is located 5.8 to 30.0 meters from ground surface.

Confirmed thickness of the Dc-stratum is from 4.5 to 29.2 meters and the stratum is formed of stiff to hard clay, silty clay and sandy clay with sand lenses. SPT blowcount is 9 to 38.

ii) Sandy Soil (Ds-stratum)

The Sandy Soil is composed of yellowish brown to greenish gray silty fine sand to coarse sand with gravel. The Ds soil top of stratum is located 0 to 23.5 meters from ground surface.

Confirmed thickness of the Ds-stratum ranges from 4.0 to 27.6 meters with SPT blowcounts of 11 to 50.

Total depth of the alluvium and diluvium deposit from ground surface is 15.3 to 42.0 meters and maximum depth is 47.3 meters of bridge NO.42B. And base rock is overlain above-mentioned strata.

3) Base Rock

Base rock of central area is composed of granite, crystalline schists (gneiss, micaschiste, amphibolites, cipoline, chlorite-schist, phyllite etc.) of all ages, basalt of the Pliocene Epoch, igneous rock (dacite, rhyolite etc.) of the middle Triassic period and sedimentary rock of the Mesozoic Era, which consists mainly of shale, sandstone and limestone.

North part of the foot of the Truong Son (Annam) range of the north central area, limestone of the Mesozoic Era, is widely distributed and is used as factory of cement production.

Plaku of north part to Buon Ma Thuot in the Mountain and highland region of south central area, basalt flow of the Pliocene Epoch, is widely distributed in this area, its extension is north to south about 100 km, east to west about 80 km in north part and is north to south about 90 km, east to west 70 km in south part.

(2) Geology of the Bridge Sites

1) Founding Strata for Bridge Design

The load bearing capacity of strata is assessed depending on the importance of the structure and the lateral loads imposed by the structure.

In general, the required bearing capacity for spread or piled foundations of bridge abutment and piers is defined by the following N-values:

Sandy and cohesive soil	.N > 50
Weathered rock	N > 50
And for the case of small and lightly-loaded	bridges
Sandy soil	.N > 30
Cohesive soil	.N > 20

2) Bearing Strata of Bridges

Boreholes were drilled at both abutments at all bridge sites except B Type Bridge.

Soil suitable as a founding material for bridge abutment loads is found in the diluvial deposits and base rock. These are cohesive soil, fine to coarse sand and base rock that is described last section.

Top of strata of the diluvium in coastal area are located at a depth from 11.0 to 25.0 meters from ground surface, and has SPT blowcounts ranging from 22 to 50.

Base rock that is described last section, is located 1.2 to 25.0 meters from ground surface.

The results of the borehole investigation are shown as Table 8-2, and based on the findings, recommended design soil parameters for use in the Central Area are shown as Table 8-3.

Stratum	Average SPT Blowcount	Wet Density γt (t/m ³)	Cohesion of Initial Condition C (t/m ²)	Internal Angle of Friction Φ (degree)	Unconfined Test, Modulus of Deformation E50 (Kg/cm ²)
Ac	0	1.70	1.00		5.75 (Note 1)
As	11	1.70		Fig.10-2-11a	28N
Ag	25	1.90	-	Fig 10-2-11a	28N
Dc	31	1.80	19.0	-	28N
Ds	41	1.90		Fig. 10-2-11a	28N

 Table 8-3 Design Soil Parameters

Note 1: Eo= E50 = 24.202 qu +0.907 for Ac soil

2-3 Soil Test Results

(1) General

The soils analyzed for embankment and foundation design are Alluvial and Diluvial deposits of which a total of 135 samples were taken by undisturbed and disturbed sampling. The following samples were analyzed:

Undisturbed Samples	Alluvium (Ac)42 Samples
۲۲	Diluvium (Dc)8 Samples Sub Total 50
Disturbed Samples	Alluvium (Ac)42 Samples
"	(As)28 Samples
"	(Ag)27 Samples
"	Diluvium (Dc)13 Samples
۲۲	(Ds)12 Samples Sub Total 85
Total	

The type and quantity of tests and applicable standards are shown in Table 8-1. Based on the results of these soil tests, physical and mechanical properties of the Ac, As, Ag, Dc and Ds soils were determined and suitable bearing strata for bridge foundations decided.

(2) Laboratory Soil Test Results

1) Physical Properties

a) Particle Size Grading

The gradings of three soil categories are shown in the following Table 8-4.

Cohesive deposits (Ac and Dc) contain fines fraction, silt ($60.1 \sim 48.5\%$) and clay ($17.5 \sim 19.1\%$) total 67.6 ~ 77.6% by weight.

The Ds soil contains coarse sand and gravel over 82.3 % by weight.

Soil	Gravel	Sand	Silt	Clay	No.10	No.40	No.200
Fraction					(2.00)	(0.425)	(0.075)
	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	Average						
Stratum	Range of recorded values						
Ac-cohesive	0.8	21.6	60.1	17.5	99.2	94.8	77.6
Soil	0-3.4	1.0 ~12.4	46.5~73.6	10.0~25.6	96.6-100	86.5~100.0	61.7~93.4
As-Sandy	5.6	74.3	16.8	3.7	94.5	54.3	20.2
Soil	0-12.8	56.5~92.2	3.0~30.5	0~8.9	87.4~100	28.7~79.9	3.7~36.6
Ag-Gravelly	56.2	37.4	5.8	0.6	43.8	13.8	6.5
Soil	36.6~75.7	19.3~55.4	2.0~13.3	0~2.5	24.3~63.4	1.5~26.2	0.2~15.4
Dc-Cohesive	4.2	28.2	48.5	19.1	95.8	87.0	67.6
Soil	0~11.5	13.2~43.2	36.4~60.7	10.6~27.6	88.5~100	75.6~98.5	52.3~83.0
Ds-Sandy	33.9	48.4	14.0	3.7	66.1	38.0	17.8
Soil	8.4~59.3	29.1~67.6	0.7~28.3	0~9.5	40.7~91.6	6.1~69.8	0.7~37.4

Table 8-4 Soil Grading Results

b) Consistency Test Results

The moisture content and index test results are summarized in Table 8-5.

Ac Soil

- Ac soil: No variation in strength, moisture content or plasticity with depth was observed.
- According to the classification chart, Ac-soil is classified as CL-ML: 80.6 % CH: 11.1% MH-OH: 5.6% ML-OL: 2.8%
- Colloidal activity

Ac-soil is classified as follows:

- Non-active clay (mainly Kaolinite) A< 0.75.....16.7 %
- Ordinary clay (mainly Illite) A=0.75~1.25...... 55.6%
- Active-clay (including organic colloid) A= 1.25~ 2.00......27.8 %

A - 8 - 8

Ac soil is classified as being in an unstable condition since Wn=<Wl,

Ic= $-0.2 \sim 0.9$ and average Ic= 0.3

Dc Soil

Dc soil: No variation in strength, moisture content or plasticity with depth was observed.

- According to the classification chart, Dc soil is classified as CL: 76.2% CH: 23.8 %
- Colloidal activity

Dc soil is classified as follows:

- Non active clay (mainly Kaolinite) A<0.75......26.7%
- Ordinary clay (mainly Illite) A=0.75~1.25......46.7%

 $\cdot\,$ Dc soil is classified as being in a stable condition with Wn< Wl, Ic=0.91~1.21 and average Ic=1.06

Test/ Index	Wn (%)	Wl (%)	Ip	If	It	Ic	Activity Ratio
	Average						
Stratum	Range of recorded values						
Ac-	34.3	40.5	17.7	11.8	1.6	0.3	1.1
Cohesive Soil	19.7~48.9	28.7~52.3	10.6~24.8	8.5~15.1	0.9~2.2	- 0.2~0.9	0.7~1.6
Dc-	19.5	41.4	20.7	15.5	1.4	1.06	2.2
Cohesive Soil	16.2~22.7	33.4~49.5	14.9~26.5	12.4~18.6	1.0~1.8	0.91~1.21	0.6~5.2

<u>Note</u>

ML: Inorganic silt, very fine sand, rock flour, silty or clayey fine sand

CL: Inorganic clay of low to medium plasticity, gravely clay, sandy clay, silty clay, low cohesive clay

OL: Organic silt and organic silty-clay of low plasticity

MH: Inorganic silt, micaceous or diatomaceous fine sand or silt and plastic silt

CH: Inorganic clay of high plasticity, high cohesive clay

OH: Organic clay of medium to high plasticity

Wn: Natural water content

Wl: Liquid limit

Ip: Plasticity index

If: Flow index

If: Toughness index (It = Ip/If)

Degree of shear strength at plastic limit

Ic: Consistency index (toughness and stability of cohesive soil)

Ic = (Wl-Wn)/Ip

Ic \geq 1 Stable condition

Ic = 0 Unstable condition (liquefies when disturbed)

Colloidal activity: Colloidal activity has deep ties with clay mineral and geological condition of sediment, and is defined by Skempton.

Clay is classified into four groups from non-active clay to high-activity clay (activity >2). It is shown as the following formula.

Colloidal activity = $\frac{\text{Plasticity index Ip}}{\text{Soil particle (\%) of less than 2 } \mu m}$

Activity Ratio	Description	Main Clay Mineral	Deposition Conditions
			• Fresh water sediments
A < 0.75	Non-active clay	Kaolinite	• Marine deposits which have been leached
A=0.75 - 1.25	Ordinary clay	Illite	Marine and estuarine deposits
A > 1.25	Active clay	•Including organic colloid	
		• A ≥ 2 includes Montmorillonite	

Table 8-6 Classification by Colloidal Activity

c) Specific Gravity, Bulk Density and Voids Ratio

Measured values of specific gravity, bulk density and voids ratio are summarized in Table 8-7 and shown on graphs in Figure 8-2 and Figure 8-3.

• Specific Gravity (Gs)

The test results yield consistent values with a standard deviation of 0.023~0.036

• Wet Density (γt)

The tests show consistent values. The relationship between γt and other parameters is shown by the following formula:

$$\mathbf{g} = \frac{1 + \frac{Wn}{100}}{\frac{1}{Gs} + \frac{\frac{Wn}{100}}{\frac{Sr}{100}}} * \mathbf{g} w$$

Where:

 γt : Bulk density of soil (t/m³)

Wn : Natural moisture content (%)

Sr : Degree of saturation (%)

Gs : Specific gravity

A - 8 - 11

If the soil samples are fully saturated by high ground water at the project site, Sr=100% is applied to the above formula. The formula becomes the function of natural moisture content (Gs= constant).

$$gt = \frac{1 + \frac{Wn}{100}}{\frac{1}{Gs} + \frac{Wn}{100}}$$

Table 8-7	'Results	of Gs,	γt and e
-----------	----------	--------	------------------

Soil	Specific Gravity	Wet Density	Voids Ratio	
Properties	Gs	γt	e	
	Average	Average	Average	
Stratum	Range of recorded values	Range of recorded values	Range of recorded values	
Ac- Cohesive Soil	2.691	1.698	1.400	
	2.666~ 2.716	1.570~1.770	1.160~1.640	
As-Sandy Soil	2.674	-	-	
	2.651~ 2.694	-	-	
Ag-Gravelly Soil	2.672	-	-	
	2.637~ 2.708	-	-	
Dc-Cohesive Soil	2.685	1.865	0.634	
	2.653~2.717	1.568~2.163	0.575~0.693	
Ds-Sandy Soil	2.720			
	2.684~2.756			

The values of Gs and Wn are plotted in Appendix- .The values of wet density adopted for design are as follows:

Ac
$$\gamma t = 1.700 t / m^3$$

As
$$\gamma t = 1.700 t / m^3$$

Ag
$$\gamma t = 1.900 t / m^3$$

Dc
$$\gamma t = 1.800 t / m^3$$

Ds
$$\gamma t = 1.900 t / m^3$$

A - 8 - 12

• Voids Ratio (e)

The voids ratio of the Ac and Dc soils has a strong correlation with natural moisture content with follows:

Ac- soil e = 0.025Wn + 0.114 Variance = 4.959 Correlation coefficient = 0.993

2) Mechanical Properties

Mechanical tests (Unconfined compression and consolidation tests) were carried out on undisturbed samples of Ac and Dc soils from each bridge site.

a) Unconfined Compression Test

Unconfined compressive test results are shown in Table 8-8 and Figure 8-4 and Figure 8-5. The relationships between qu (kg/cm²) and E_{50} (kg/cm²) for the Ac soils are shown by the following:

Ac soil

$$\begin{split} E_{50} &= 24.202 qu + 0.907\\ Variance &= 27.885\\ Correlation \ coefficient &= 0.878 \end{split}$$

Again, the relationships between qu (kg/cm²) and the natural moisture content (Wn) for the Ac soils are shown by the following:

Ac soil

qu = - 0.078Wn + 3.381 Variance = -10.871 Correlation coefficient = -0.849

b) Consolidation Test

Consolidation test results are shown in Table 8-8 and in the following figures.

Figure 8-6 e-logP Design Curve (Ac and Dc soils)

Figure 8-7 log Cv - logP Design Curve (Ac and Dc soils)

According to the test results, the Ac soil is in a state of incomplete consolidation.

	Unconfi	ned Triaxial Co	mpression	Consoli	dation	
Test	qu	, E50 and		Pc	Pc Cc	
	qu	E50		Pc	Cc	
	(kg/cm ²)	(kg/cm^2)	(%)	(kg/cm^2)		
	Average	Average	Average	Average	Average	
	Range of recorded	Range of recorded	Range of recorded	Range of recorded	Range of recorded	
Stratum	values	values	values	values	values	
Ac-Soft	0.250	37.2	4.90	0.46	0.466	
Cohesive Soil	0.140	9.60	3.50	0.32	0.323	
	~0.360	~64.7	~6.20	~0.60	~ 0.608	

Table 8-8 Mechanical Test Results

2-4 Design Soil Parameter

For design purposes, the behavior of the very soft alluvial (N=0) clay when acting as a foundation for high approach embankments must be considered. The stiff clay (ave. N=31 and sandy soil (ave. N=34) of the Diluvial deposits must be considered as a bearing stratum for bridge foundations.

Since the soils have formed in a sedimentary environment, the disposition of soil and its character at each bridge must be examined according to the following procedure, and design soil parameters selected.

- Determine soil profile
- Consider soil test results and select representative values
- Select design soil parameters and cross section

(1) Classification of Soil Strata

Geological longitudinal profiles were produced based on the borehole logs and laboratory soil test results. In the Ac stratum, the possible presence of intermediate and lower sand strata is significant for its effect on rate of consolidation of the clay. Based on the findings of the borehole logs an appropriate drainage condition, either one or two-directional, may be chosen for design. The ground water level was taken from the geological longitudinal profile.

The soil classification considered for the design is as follow:

Alluvial soil (very soft clay).....Ac Diluvial soil (stiff to very stiff clay).....Dc " (medium dense to dense sand)...Ds

(2) Soil parameters for Ac soil

1) Wet Density

The average values adopted for design are

Soil	Wet Density	t (t/m ³⁾	Number of Tests
Ac	1.70	00	31

2) Cohesion of initial condition: Co (t/m^2)

Angle of internal friction (ϕ uu) and shear strength (Cuu) under undrained unconsolidated conditions are as follows:

Sin
$$uu = \frac{\frac{s_1}{2}}{\frac{s_1}{2} + Cuu \times \cot fuu}$$

$$\therefore Cuu = \frac{S1}{2 \times \tan(45^\circ + \frac{fuu}{2})}$$

Generally $uu = 0^{\circ}$ for soft clay thus Cuu becomes:

$$Cuu = \frac{s1}{2} = \frac{qu}{2}$$

The unconfined compressive strength of the Ac soil is adopted as in sub-section (2)-2) - a)

Soil	Undrained Shear Strength	Co (tf/m ²)	No. of Tests
Ac	1.00		9

3) The Rate of Increase in Strength by consolidation pressure

There are three methods to determine the strength / consolidation pressure relationship:

- By the variation with depth of the undrained shear strength
- Based on the plasticity index
- By triaxial compressive strength testing under undrained unconsolidated conditions or by simple shear box testing.

In this case, the plasticity index method is used, since it is recognized that the strength of the soft soil does not increase with depth.

The strength / consolidation pressure relationship can be calculated according to the A. W. Skempton formula:

$$m = Co/Po=0.11+0.0037*Ip$$

Where

m: The ratio of shear strength to consolidation pressure

Ip: Plasticity index

Co: Triaxial compressive strength obtained under undrained unconsolidated (UU) conditions.

Po: Vertical Effective Stress

The strength / consolidation pressure relationship calculated using this formula is shown in Table 8-9.

Table 8-9 The Rate of Increase in Strength by the Plasticity Index

Soil	Plastic Index Ip	The Ratio of Increase in Strength by Consolidation Pressure (m)	No. of Sample N	Calculation Method of Ip
Ac	33.4	0.188	25	Average of accumulated values

Available data on the ratio of Increase in strength by consolidation pressure is shown in Tables 8-10 and 8-11.

Table 8-10 The Rate of Increase in Strength (1)

(Standard of Japan Highway Corporation)

Soil	Soil Class	Ratio of Strength to Consolidation Pressure m
Clay	CH, CL, VH	0.30 ~ 0.44
Silt	MH, ML	$0.25 \sim 0.40$
Humid Soil or Black mud	OH, OL, OV, MH	0.20 ~ 0.35
Peat	Pt	0.35 ~ 0.50

Table 8-11The Rate of Increase in Strength (2)

	The Rate of Increase in Strength by Consolidation Pressure		
Natural Water Content	(m)		
(Wn %)	Soil Depth < 10 m	Soil Depth > 10 m	
> 200	0.25 ~ 0.40		
< 200	0.45 ~ 50	0.25 ~ 0.30	

(Standard of Japan Highway Corporation)

The ratio of strength to consolidation pressure of the alluvial deposit Ac is estimated (following Table 3.9) as $m= 0.25 \sim 0.40$ based on the following available test results.

Ac Soil

Soil classification	CL-ML CH, MH-OH
Natural water content, Wn (%)	19.7.~70.8 %
Stratum thickness (m)	6.8 ~ 23.0 (from ground
	Level

The Rate of Increase in Strength by Consolidation Pressure $0.20 \sim 0.40$

Table 8-12 Comparison of the Rate of Increase in Strength by ConsolidationPressure Obtained by Various Methods.

Method	Soil	Ratio of Strength to Consolidation Pressure, m	
		Range	Representative Value
Plastic Index		0.160 ~ 0.245	0.20
Based on Table 10-2-10	Ac	0.250 ~ 0.400	

As result the following value is proposed:

Ac soil, m = 0.25

4) Design e-logP and log Cv-logP Curves

The design curves for the above were obtained after omitting unrepresentative values from the respective tests, and are shown in the following figures:

Figure 8-6 e-logP Design Curve (Ac)

Figure 8-7 logCv-logP Design Curve (Ac)

5) Consolidation Yield Stress Pc (kg/cm²)

The consolidation yield stress of cohesive soil is theoretically the maximum consolidation stress borne in the past and can be estimated by the following three methods: based on consolidation test results, using Pc= 4.Co and using Pc= Po= Co/m.

- Using consolidation test results:

This method estimates the Pc / depth relationship using the least squares method, but is not suitable this case, since an increase in strength with depth was not observed.

- Using Pc= 4.Co:

This formula is empirical based on extensive data obtained for soft ground from which a good correlation between Pc and Co is obtained.

(Source: Standard of Japan Highway Corporation)

$$qu= 2.0 \text{ t/m}^2 \dots > Co= 1.00 \text{ tf/m}^2 (\phi=0)$$

 $Pc = 2qu= 4.Co = 4.00 \text{ tf/m}^2$

- Using Pc = Po = Co/m

This formula is applicable when the yield stress is equal to the highest consolidation pressure experienced under historic periods of higher ground levels. In this case it is not applicable.

6) Summary of Design Soil Parameters

The soil parameters for the soft ground Ac soil selected for design are summarized in Table 8-13 and the respective design curves are shown in Figures 8-9 to 8-10.

The soil strata boundaries, ground water level and presence or otherwise of sand strata that can assist with drainage are obtained from the geological longitudinal profile.

Soil	Wet Density γt (t/m³)	Cohesion of Initial Condition Co (tf/m ²)	Angle of Internal Friction Ø	e-log p Curve	log –Cv log p Curve	The Rate of Increase in Strength by Consolidatio n Pressure m	Consolida tion Yield Stress Pc (tf/m ²)
Ac	1.700	1.00	-	Fig 10-2-9	Fig. 10-2-10	0.25	4.00

Table 8-13 Design Soil Parameters

3. Earthwork and Foundation Design

In this section treatment of soft ground and examination of strata as formations for carrying bridge foundation loads are investigated based on the analysis of borehole logs, geological longitudinal profiles and laboratory soil tests.

3-1 Soft Ground Treatment

(1) General

Areas of soft ground (Ac-deposit) are extensively distributed in the Mekong Delta Area extending up to 19~25 meters below ground level. In order to construct high embankments for approach roads to bridges, improvement of the soft ground is required.

Analysis for improvement of soft ground is carried out as follows:

- Select design soil parameters and Stratigraphy.
- Determine design embankment profile and material.
- Select representative analysis section.
- Decide soft ground design method.
- Decide analysis method.
- Carry out analysis.
- (2) Design soil parameters and Stratigraphy

These are discussed in section 2 of this report and the parameters and Stratigraphy used for analysis of the soft ground.

1) Embankment Profile and Material

Embankment profile and fill parameters are as follows:

- Embankment profile: width of road: 8.50m

slope gradient: embankment height less than 6m 1: 1.5

embankment height over 6m 1: 1.75

- Embankment height: see Table 8-2.
- Design soil parameters for embankment fill

- Wet Density...... $\gamma t = 1.80$ t / m³
- Cohesion..... C = 2.0 tf / m^2
- Rate of Filling......5 cm / day

2) Representative Sections for Analysis

Sections for analysis will be made for each bridge at detailed design stage. In this report analysis is based on typical sections from BNO.18A, 26A and 35A. The soft ground at these locations extends to about $10 \sim 20$ meters below ground level.

- (3) Soft Ground Design Method
- 1) Design Method

Soft ground design methods for high approach road embankments to bridges can be summarized as follows:

EPS method: Reduction of embankment weight

Soft ground treatment method: Increase strength of soft ground

Piled slab method: Embankment is supported by RC piles

Methods and are very expensive, therefore method is adopted. There are many possible options included in method

The method adopted depends upon various factors such as the nature of the soil (bearing capacity and depth of individual strata), availability of soils, embankment height, and the construction period and cost.

These methods can be classified according to their main purpose, which may be either to prevent embankment slope failure, to accelerate settlement, or both.

Eight methods are summarized in Table 8-14 and 8-15.

	Method	Description		
1.	Ground surface treatment	 Use of sand, sheet, mat, etc. Functions as upper discharge layer for consolidation Prevents upward flowing ground water entering the embankment Ensures access for construction plant Cakar Ayam System EPS method 		
2.	Replacement of soft ground	 Protects against slope failure and reduces settlement Replacement depth is limited 		
	Berm (additional	- Increases resistance to slip circle failure		
3.	embankment)	- May be used for environmental reasons.		
4.	Slow speed embankment construction	- To increase shear forces over a long period		
5.	Surcharge	- To accelerate settlement prior to completion of the embankment and structure.		
6.	Vertical drain	 To accelerate consolidation and strength increase Sand drain, PVD drain (Card board drain) etc 		
7.	Compaction pile	 To increase strength and stability Use of compacted sand and crushed stone 		
8.	Chemical soil stabilization	 To increase bearing strength and stability Use of lime pile and cement grout, mortar injection 		

Table 8-14 Soft ground treatment method

Table 8-15 Countermeasure for Soft Ground Treatment

		MET	THOD	
ITEM	SAND DRAIN	PBD	SAND COMPACTION	PRE-CAST RC PILE
Diameter (mm)	400	65	700	400 × 400
Increase in Strength Sub Soil (kg/cm ²)	C=0.3 1.0	C=0.3 0.5	C=0.3 3.0	
Characteristic	This method is most popular	Construction Speed is Fast	Range of application is widely	No Settlement
Depth for practical application	30m	15m	35m	30m
Minimum Spacing	1.2m	0.9m	1.2m	1.0m
Construction Capacity	300m/day	2500m/day	150m/day	120m/day
Ratio of Cost	1.0	0.2	2.4	11.0
Other	Many Satisfactory Result	Low depth for practical application		

2) Institution of Soil Criteria

General characteristics of the Soft Ground are as in the followings:

(a) Definitions of Soft Ground

General criteria of soft ground are as in following table.

 Table 8-16 General Characteristics of Soft Ground

Soils	Peat or C	Sandy Soil		
Stratum Thickness	Less than 10 m	More than 10 m		
SPT Blowcount	Less than 4	Less than 6	Less than 10	
Unconfined Compressive Strength: qu (kgf/cm ²)	Less than 0.6	Less than 1		
Cone Resistance Dutch Cone Test: qc (kgf/cm ²)	Less than 8	Less than 12	Less than 40	

(b) Classification by thickness of soft ground

The soft ground in the Mekong Delta can be classified in terms of its thickness as follows:

- Very Shallow	:	soft ground depth	:	D < 2.5 m
- Shallow	:	soft ground depth	:	2.5 m < D < 5.0 m
- Deep	:	soft ground depth	:	D > 5.0 m

(c) Selection of treatment method

For the selection of treatment methods the following criteria are applied:

- Stable and permanent foundations are required.

- Priority is given to a slow construction rate due to the substantial available time period, and due to the high cost of remedial works in the event of embankment failure.

octilia an

<u>560000</u> A4 NO.4080

- Sufficient program time to be allocated for settlement to occur.
- Replacement of soft ground to be limited to 2.5 m for economic reasons but to 5.0m for technical reasons
- Special attention to be paid to prevent heave of the surrounding ground

A number of alternatives have been considered, including vertical sand drains and drainage blanket as set out below.

3) Method of Analysis

The embankment is analyzed for stability and for settlement. Improvement is calculated by reference to the case of no treatment. Formulae for analysis are as follows:

(a) Ultimate settlement

$$Sc = \frac{eo - e1}{1 + eo}H$$

Where

Sc: Ultimate settlement (cm)

eo: Initial voids ratio

e1: Voids ratio after consolidation

H: Thickness of soil layer to be consolidated (cm)

(b) Consolidation Time

- No Treatment Case

$$t = \frac{d^2 \times T}{Cv}$$

Where

- t: Consolidation time (days)
- D: Drainage path length (cm)
- Cv: Consolidation coefficient (cm^2/day)
- T: Time factor

- Sand Drain Case

$$\mathbf{t} = -\frac{De^2 \times T}{Cv}$$

Where

De: Effective drain radius (m) in square arrangement of sand pile, =1.13Dc

Dc: Centre to centre spacing of sand pile (m)

T: Time factor (obtained by n = De/Dw)

Dw: Diameter of sand pile (m)

4) Stability

$$Fs = \frac{\Sigma \{Cl + \tan f(W \cos q - ul - KW \sin q)\}}{\Sigma (W \sin q - KW \cos q)}$$

Where

- C: Cohesion
- φ: Angle of internal friction
- 1: Length of base of slice (embankment and existing ground layers)
- W: Weight of soil slice
- θ : Angle of base of slice to horizontal
- u: Pore water pressure
- k: Seismic coefficient
- 5) Analysis Condition
- The stress distribution in the soil beneath the embankment is obtained from Figures 8-9 and 8-10. The intensity of the distributed embankment load is calculated at points in Figure 8-9.
- The sand pile grid size determined was that where 30 days after completion of the embankment the degree of settlement remaining will be less than 10 cm.
- 0

- Condition for sand pile.

Diameter of pile: Dw = 40 cm

Centre to centre spacing of piles: 1.2 < Dc < 3.0 meters

- Sliding check of existing ground treated by sand pile is carried out for two cases, immediately upon completion of the embankment and at a time thirty days after completion.
- 6) Target for Settlement and Stability
- 30 days after completion of the embankment remaining settlement is not to exceed 10cm.
- Factor of safety against slip circle failure
 - a) Upon completion of the embankment: Fs > 1.10
 - b) 30 days after completion of the embankment: Fs > 1.20
 - c) when traffic open: Fs > 1.25
- 7) Degree of Consolidation

Graphs of degree of consolidation and time factors are shown in Figure 8-11.

(Source: Standard of Japan Highway Corporation)

 $A \cdot 8 \cdot 38$

3-2 Result of Soft Ground Analysis

For a representative case of soft ground in the Central Area in Vietnam, analysis of soft ground by the Plastic Board Drain (PBD) method is given below.

(1) Condition of Soft Ground

- 1) Extent of soft ground, and ground water level: refer to Table 8-2
- 2) Design parameters of soft ground

 $t = 1.700 \text{ tf/m}^3$ $qu = 2.00 \text{ tf/m}^2$ $Co = 1.00 \text{ tf/m}^2$ $Py = 4.00 \text{ tf/m}^2$ Ratio of strength to consolidation pressure m = 0.25 Figure 8-6 e-logP Design Curve Figure 8-7 log Cv-logP Design Curve

3) Embankment Details

Embankment profile and fill parameters are summarized as follows:

- Embankment profile Width of road: 8.50m

Slope gradient: embankment height less than 6m 1: 1.5

embankment height over 6m 1: 1.75

- Embankment height: refer to Table 8-17

- Fill parameters

- Wet Density...... $\gamma t = 1.80$ t / m³
- Undrained Shear Strength..... C = 2.0 tf / m²
- Angle of Internal Friction $\dots \phi = 10$ (degree)
- Rate of Filling.....5 cm / day

(2) Results of Analysis

Representative Embankment Height of approach Road for Bridges, its Safety Factor and when Fs=1.2, Limited Embankment Height are shown as below.

The Bridge to be required soft ground treatment by PBD method are three bridges of BNO.18A, 26A and 35A.

And Limited Embankment Height													
Bridge NO.	Safety Factor (Fs)	Embankment Height (m)	When Fs=1.2, Limited Embankment Height (m)	Thickness of Soft Soil (m)	Note								
BNO.6A BH-1	1.510	2.20	-	7.0									
BH-2	1.703	2.00	-	5.8									
BNO.18A BH-1	0.755	4.85	2.75	8.9	Need treatment								
BNO.26A BH-1	1.031	3.00	2.40	9.8	"								
" BH-2	0.935	3.80	"	8.8	"								
BNO.35A BH-1	1.003	4.60	3.50	21.8	"								
" BH-2	1.047	4.40	"	23.5	"								

 Table 8-17 Safety Factor of Embankment on soft ground

 And Limited Embankment Unight

Results of Analysis for Soft ground treatment by Plastic Board Drain method are shown Table 8-18

Table 8-18 Results of Analysis for Soft ground treatment by PBD method

Bridge	Planning	Necessary	Settle.	S.Factor	S.Factor	Remain	PBD
NO.	Embank-	Embank-	Value	(Fs)	(Fs)	ing	Interval
	ment	ment	Sc	imm.after	After	Settle.	x Length
	Height	Height		completion	com.30	Value	
					days	Sr	
18A	4.85 m	5.45 m	57.2	1.276	1.346	12.9	1.3m x 10m
BH-1			cm			cm	
26A	3.00 m	3.40 m	35.6	1.278	1.345	6.9	1.5m x 10m
BH-1			cm			cm	
26A	3.80 m	4.30 m	47.7	1.159	1.222	6.1	1.3m x 10m
BH-2			cm			cm	
35A	4.60 m	5.20 m	62.1	1.261	1.331	12.3	1.3m x 21m
BH-1			cm			cm	

Note: 1) Soft ground (soft clayey soil), which is extensively distributed about Bridge NO.35A is interbedded loose sandy soil with lenses of thickness 8.7m

Appendix 9 Natural Conditions Survey Results - Hydrological

APPENDIX - ANALISIS ON DESIGN HIGH WATER LEVEL FOR BRIDGE

1. Policy for Determining Design High Water Level for Bridge

The policy and procedure for determining the design high water level at each bridge are shown in the flowchart below. Since the discharge and water level data for the bridges are hardly available, the design high water level for bridges should be determined on the basis of the previous high water level interviewed to local residents near the bridge site. Its appropriateness as a design high water level for the bridges can be justified by checking the high water level at each return period estimated by rainfall data or relevant data such as outflow of dam. Hydrological gauging stations, which are the source of rainfall data, are shown Table A.

Flowchart for determining design high water level at each bridge site

2. Hydrological Analysis Method

2.1 Discharge Estimation

(1) Discharge Calculation from High Water Level Interviewed

The discharge can be calculated with the following Manning Formula by using a river cross-section and water level date interviewed.

$$Qp = V x A$$

 $V = 1/n x R^{2/3} x I^{1/2}$

Where,

Qp	: Maximum Flood Discharge (m ³ /s)
v	: Flow velocity (m/s)
Α	:River section area (m2)
R	: Hydrological mean depth
Ι	: River slope (obtained from topographical survey data)
Ν	: Roughness coefficient of the river
	The following N value can be applied at:
	Mountain area : 0.05 or 0.04
	Plain area : 0.03
	Coastal area : 0.025
	Area where many tree exists in the river: 0.09.

(2) Discharge Calculation from Rainfall Data

The probable daily rainfall is estimated by the maximum daily rainfall data of each year at the neighboring station of the bridge. The discharge will be calculated with both Rational Formula and a formula applied in Vietnam and the average result from two methods will be regarded as a discharge from rainfall data. The Rational Formula for calculating the maximum flood discharge is described as follows:

Qp = 1 / 3.6 * f * R * A

Where

Qp : Maximum Flood Discharge (m^3/s)

f : Runoff coefficient =0.75

R : Hourly rainfall intensity for duration equal to the concentration time(mm/h) A : Catchment area (km^2)

The hourly rainfall intensity and flood concentration time can be calculated with Monobe Formula and a formula proposed by Japanese Public Works Research Institute respectively. Both formulas are shown below.

(Monobe Formula)

R = Rt / T (mm/h) $Rt = R_{24} (T / 24)^{K}$

Where :

Rt : Rainfall intensity for time period corresponding to "T"

R₂₄: daily rainfall in average basin (mm)

T : Flood concentration time (h)

K : Coefficient =0.33

(Public Works Research Institute Formula)

T = 1.67 * 10⁻³ { L /
$$\sqrt{S}$$
 }^{0.7} + t

Where:

T: Flood concentration time (h)

- L: Channel length (km)
- S : Average slope (h / L)

H: Difference in elevation (m)

T : Inflow time (h) [=0.5]

(3) Discharge Calculation from Water Level Data near Bridge Site.

For the No.4 and 5 bridges, since the water level data near the bridge is available, it can be utilized to calculate discharge at both bridge sites. The results are shown in Table 2.1.

 Table 2.1
 Discharge at No.4 &5 Bridge Calculated by Water Level Data

Br.	Br. Name	St. Name	Calculated Discharge (m ³ /s)									
No.			1/100	1/50	1/25	1/2						
4	THACH	THACH	3000	2,600	2,300	900						
5	THACH DINH	KIM TAN	4100	4000	3900	2300						

(4) Discharge Estimated from Outflow of Dam Reservoir

For No.37 and 38 bridges, the outflow from a dam reservoir determines the high water level at the bridge sites. There is a Song Quao Dam at approximately16km upstream of No.37 bridge, which was completed in 1997. Although the maximum outflow from dam is recorded 300 m³/s in 1998, its probability can not be estimated due to limited number of data. Accordingly, the discharge at the bridge site can be calculated by rainfall data.

On the one hand, a Dan Nhin Dam is located at approximately 25km upper-stream of No.48 bridge. Although the maximum outflow of the dam is estimated 4500m³/s at 200 year return period, the past maximum discharge recorded only 1600 m³/s at 30 year return period in 1993. The estimation results of the outflow at each probability are shown in Table 2.2.

Br.No.	Br. Name	1/100	1/50	1/25	1/2	Remarks
48	NONG TRUNG	3000	2000	1300	200	21 years
	BO SUA					data

Table 2.2Outflow of Dan Ninh Dam at Each Probability (m³/s)

(5) Results of Discharge Estimation

The discharge estimation from hydrological data mentioned above is shown in Table 3.1.

2.2 Water Level Estimation at Each Bridge Site

(1) Estimation Method of High Water Level from Discharge Results

The high water level at each bridge site can be calculated on the basis of discharge obtained from relevant hydrological data such as rainfall, water level and outflow from dam mentioned above. For component A type bridge, since the river cross-section data at both upstream and downstream sides of the bridge are available, the high water level and flow velocity at each return period can be estimated with the uniform flow calculation. On the other hand, for Component B type bridge, the average longitudinal slope can be estimated from site investigation results and the water level and velocity at each return period can be calculated with the uniform flow calculation.

The estimation results of the high water level and velocity at each return period are shown in Table 3.1.

3. Justification of High Water Level Interviewed as Design High Water Level

The high water level interviewed is justified its appropriateness as a design high water level for bridges by comparing the high water level estimated by relevant hydrological data. As a result of the comparison, the return period of the high water level interviewed is confirmed ranging from 1/25 to 1/100 of probability. Consequently, it can be justified the appropriateness of the high water level interviewed as a design high water level in consideration with the scale and importance of bridges for this project.

The comparison results are shown in Table 3-1.

Br.	Br. Name	Returen	Q	v	H.W.L.	Com-	M.H.W.L.
No		Period	(m3)	(m/s)	Calculated	parison	Interveiwee
2	CHIH DAI	1/100	190	1.59	12.04	>	Í
		1/50	170	1.53	11.79	>	11.6
Ŀ		1/25	150	1.46	11.53	<	
4	THACH	1/100	3630	3.57	38.00	>	
1	QUANG	1/50	3300	3.57	37.95	>	37.5
		1/25	3000	3.45	37.23	<	
5	THACH	1/100	3500	4.53	30.50		20.5
]	DINH	1/30	3200	4.50	30.32	-	29.5
6	OUVNH	1/100	250	1.57	15 72	-	
ľ	BANG	1/50	320	1.53	15.55	=	15.5
		1/25	290	1.49	15.38	<	
7	KE	1/100	320	2.38	79.70	<	
	CHIENG	1/50	290	2.31	79.40	<	80.1
	L	1/25	260	2.23	79.09	<	
9	BAN	1/100	1470	4.41	100,57	<u> </u>	
	KHOANG	1/50	1340	4.25	100.33	<	100.4
$ _{11}$	MY SON	11/25	1210	4.09	100.09	< >	
111	INT SOM	1/50	1240	3 32	60.54	=	60.6
		1/25	1130	3.23	59.92	<	00.0
12	CUA TRAI	1/100	470	2.39	8.58	>	
		1/50	430	2.31	8.38	Ξ	8.4
		1/25	390	2.23	8.17	<	
15	PHU VINH	1/100	630	2.76	21.50	>	
-		1/50	570	2.70	21.29	<u> </u>	21.0
10	LACTION	1/20	320	2.01	21.03	~	
10		1/50	1300	3.70	40.52	=	40.5
		1/25	1180	3.59	40.14	<	
20	BEN DA	1/100	470	1.85	50.35	>	
		1/50	430	1.80	50.07	>	49.8
		1/25	390	1.75	49.77	=	
22	PA NHO	1/100	490	2.54	81.62	<u>></u>	014
		1/25	440	2.43	81.37	-	01.4
24	NA MAY	1/100	2420	3.62	80.50		~~~~~~
<u> </u>		1/50	2200	3.57	80.33	>	79.9
		1/25	2000	3.45	79.92	=	
26	HHE	1/100	440	3.12	121.46	>	
	DUONG	1/50	400	3.04	121.26	=	121.2
		1/25	360	2.90	121.05	<	
27	HOLPHOC	1/100	1110	4.97	51.00	<u> </u>	50.0
1		1/30	1010	4.97	50.96	-	50.7
34	SONG	1/20	300	2 34	80.76		
1	OUAN	1/50	270	2.54	80.55	Ξ	80.6
		1/25	240	2.16	80.34	<	
35	dai loi	1/100	740	1.87	52.53	>	
		1/50	670	1.81	52.15	<	52.3
		1/25	600	1.74	. 51.76	<	
30	DA DUNG	1/100	2240	2.80	15.00		14.7
		1/30	1850	2.60	13.00	=	14.7
37	TRNG	1/100	570	2.28	61.93	>	
i I		1/50	470	2.12	61.51	>	61.4
		1/25	430	2.05	61.33	<	
38	SUOI CAT	1/100	350	5.06	70.46	>	
		1/50	320	4.90	70.32	>	70.2
42	TUANT	1/25	290	4.73	- 70.17		
42	TUAN TU	1/100	320	1.03	11.26		10.0
		1/25	290	1.50	10.87	=	10.7
43	ТАМ	1/100	270	1.80	127.95	>	
	NGAN	1/50	240	1.74	127.78	>	127.7
		1/25	220	1.69	127.66	<	
45	CAU GAY	1/100	820	3.70	120.64	>	
		1/50	730	3.54	120.39	>	120.2
		1/25	650	3.39	120.15	=	

Table 3.1	Instification	of HWL	Interviewed
Table 3.1	Justification	UITIVL	interviewed

Br.	Br. Name	Returen	Q	v	H.W.L.	Com-	M.H.W.L.
No		Period	(m3)	(m/s)	Calculated	parison	Interveiwed
46	TAN VAN	17100	930	2.91	749.09	- >	
1~		1/50	850	2.91	748.86	>	748 7
	ĺ	1/25	770	2.01	748.63	<	7 46.17
47	LOC NGAI	1/100	700	3.43	751.55	>	
		1/50	640	3.33	751.26	>	751.1
		1/25	580	3.26	750.89	<	
48	NONG	1/100	3300	6.74	900.00	>	
	TRUONG	1/50	2300	6.55	899.75	>	898.8
	BO SUA	1/25	1600	5.73	898.74	<	
52	EA SOUP	1/100	1830	3.44	20.30	>	
	-	1/50	1660	3.33	19.72	_ <	20.0
		1/25	1500	3.22	19.15	<	
55	ROXY	1/100	590	5.44	11.50	>	
1		1/50	540	5.29	11.30	>	11.0
-		1/25	490	5,11	11.07	=	
50	KRONGK	1/100	1330	3.13	12.31		
	мак	1/30	1100	3.02	11.99	-	12.0
58	DAK PO	1/25	850	4.08	11.75	>	
1.0	TO	1/50	770	3 95	9,00	>	93
	10	1/25	700	3.83	9 32	=	1.5
59	IA DRANG	1/100	500	2.96	12.33	>	
1		1/50	450	2.87	12.06	~	11.8
		1/25	400	2.77	11.77	=	
62	NGOC REO	1/100	280	3.22	9.35	>	
		1/50	250	3.08	9.21	>	9.1
		1/25	230	2.99	9.11	=	
64	DAK TO	1/100	280	2.32	6.17	>	
	KAN	1/50	250	2.22	6.02	=	6.0
L		1/25	230	2.16	5.92	<	
66	NGOC TU	1/100	320	2.25	8.34		
		1/50	290	2.17	8.22	=	8.2
107	XA CAL	1/25	260	2.08	8.09	<	
°′		1/100	930	1.70	62.00	-	67.9
		1/25	770	1.07	61.62		02.8
70	DO	1/20	1530	3 30	67.78	~	
10	50	1/50	1390	3.27	62.16	>	62.3
		1/25	1260	3.16	62.14	<	
72	SONG	1/100	1550	5.45	42.00	>	
	SAU	1/50	1400	5.35	41.84	>	41.7
		1/25	1280	5.16	41.55	<	
74	BA LE	1/100	390	2.93	11.77	>	
		1/50	350	2.82	11.55	=	11.5
		1/25	320	2.74	11.37	<	
76	DAO LONG	1/100	570	2.58	99,91	>	
		1/50	520	2.50	99.72	>	99.4
	TRUONC	1/25	470	2.41	99.46	-	
''		1/100	490	3.69	8.05		84
	DUNH	1/25	440	3 42	0.4/ g 21	~	0.4
78	TRAO	1/100	510	4 25	13.94		
1		1/50	460	4.10	13.72	=	13.7
		1/25	420	3.97	13.51	<	
79	TRA	1/100	1060	3.42	11.50	>	
	BUONG	1/50	960	3.36	11.39	>	11.2
		1/25	870	3.25	11.21	=	
82	DA LOC	1/100	240	1.93	9.64	=	
		1/50	220	1.87	9.44	<	9.6
		1/25	200	1.80	9.24	<	
83	NGOI	1/100	110	1.15	10.01	>	
	NGAN	1/50	100	1.11	9.90	>	9.8
		1/25	90	1.06	9.77	=	
86	TIEN DU	1/100	150	1.52	11.00	>	10.0
		1/50	130	1.49	10.90		10.8
		1/25	120	1.46	10.72	<	

	Note			Water Level	Water Level		Rainfall	Rainfall	Rainfall			Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall		Rainfall,Dam	Rainfall	Rainfall	Rainfall	Rainfall	Discharge, Rain	Rainfall
	Latitude					-	18°58'	19 ⁰ 17'	$18^{0}6.6'$			17 ⁰ 39'	16 ⁰ 50'	16 ⁰ 50'	$16^{0}24'$	16 ⁰ 05'	15 ⁰ 45'	15 ⁰ 20'	15 ⁰ 45'	1	$11^{0}12'$	$10^{0}41'$		$11^{0}30'$	$11^{0}30'$		$11^{0}34'$
	Longitude			1			105 ⁰ 18'	$104^{0}17'$	106 ⁰⁷ 7.8'			$106^{0}16'$	$107^{0}05'$	$107^{0}05^{\circ}$	$107^{0}41^{\circ}$	107 ⁰ 14'	$108^{0}03'$	$108^{0}20'$	108 ⁰ 03'		108 ⁰ 20'	107 ⁰ 45'		18 ⁰ 33'	18 ⁰ 33'		$108^{0}04'$
	Ob.St-2.	Name				I	Do Luong	Cua Rao	Ky Giang			Trooc	Dong Ha	Dong Ha	Hue	Aluoi	Nong Son	Hoi An	Nong Son		Song Luy	Ham Tan	1	CaNa	CaNa		Di Linh
	Op.	Year		24	24		39	38	39			39	22	25	23	23	53	21	24		39	24		22	22		21
S	Latitude			$20^{0}18'$	$20^{0}06^{\circ}$		19 ⁰ 33'	$19^{0}17'$	18 ⁰ 05'			17 ⁰ 47'	16 ⁰ 45'	16 ⁰ 38'	16 ⁰ 32'	$16^{0}09^{\circ}$	$16^{0}02^{\circ}$	15 ⁰ 33'	15 ⁰ 53'	I	$10^{0}56'$	11 ⁰ 08'	1	$11^{0}41^{\circ}$	$11^{0}41'$		11 ⁰ 57'
Bridge Site	Longitude		1	$105^{0}32$	$105^{0}41$	}	$105^{0}07$	$105^{0}07$	$106^{0}17$			$106^{0}02^{1}$	$107^{0}14'$	$106^{0}50'$	$107^{0}28^{1}$	$107^{0}43^{1}$	$108^{0}11^{1}$	$108^{0}30'$	$108^{0}07^{1}$		$108^{0}06'$	$107^{0}43^{1}$	_	$108^{0}48'$	$108^{0}48'$		$108^{0}26'$
Station near	Ob.St1	Name		Thach Quang	Kim Tan	1	Quy Hop	Quy Chau	Kú Anh	1		Minh Hoa	Thach Han	Khe Sanh	Phuoc	Nam Dong	Da Nang	Tam Ky	Ai Nghia		Phan Thiei	Ta Pao		Tan My	Tan My		Da Lat
Gauging	Latitude			$20^{0}17'8$	20 ⁰ 09'9	$19^{0}10^{\circ}6$	$19^{0}07^{2}$	19 ⁰ 35'	$18^{0}00^{\circ}$	18 ⁰ 29'6		17 ⁰ 55'	16 ⁰ 45'	$16^{0}37$	$16^{0}31^{\circ}0$	$16^{0}15^{4}$	15 ⁰ 59'8	15 ⁰ 22'3	15 ⁰ 53'6	$10^{0}40^{9}$	11 ⁰ 01'8	11 ⁰ 04'9	$11^{0}31'8$	$11^{0}50'4$	$11^{0}47'3$	$11^{0}47'3$	$11^{0}37^{\prime}0$
Observatory	Longitude			105 ⁰ 32'5	$105^{0}38'9$	$105^{0}42^{8}$	$105^{0}07^{\circ}$	$104^{0}15'$	$106^{0}11'$	$105^{0}42'8$		$106^{0}00'$	$107^{0}17^{1}$	$106^{0}44'$	$107^{0}16^{7}$	107 ⁰ 59'0	$108^{0}04^{4}$	$108^{0}33'3$	$108^{0}06^{1}$	107 ⁰ 45'9	$108^{0}09'0$	$107^{0}41^{3}$	$109^{0}00^{\circ}$	$108^{0} 43'7$	$108^{0}47^{0}$	$108^{0}14'3$	107 ⁰ 52'3
A-1: List of	Bridge	Name	CHINH DAI	THACH QUANG	THACH DINH	QUYNH BANG	KE CHIENG	BAN KHOANG	MY SON	CUA TRAI	HNIV UH4	LAC THIEN	BEN DA	PA NHO	NA MAY	KHE DUONG	HOI PHUOC	SONG QUAN	DAI LOI	DA DUNG	TRANG	SUOI CAT	TUAN TU	TAM NGAN	CAUGAY	TAN VAN	LOC NGAI
Table	No	•	5	4	Ś	9	7	6	11	12	15	18	20	22	24	26	27	34	35	36	37	38	42	43	45	46	47

	ie Note		' Rainfall, Dam	, Rainfall	' Rainfall	.' Rainfall		' Rainfall	' Rainfall	' Rainfall	' Rainfall	, Rainfall		' Rainfall	Rainfall	Rainfall		' Rainfall	' Rainfall	, Rainfall	, Rainfall			
	Latitud		$11^{0}47$	12 ⁰ 57	12 ⁰ 55	$12^{0}18$		13 ⁰ 22	$13^{0}34$	14 ⁰ 53	$14^{0}53$	$14^{0}26$		15 ⁰ 08	15 ⁰ 22	$14^{0}32$	1	$13^{0}46$	$13^{0}04$	$13^{0}05$	$13^{0}05$			
	Longitude		$108^{0}18'$	107 ⁰ 56'	$108^{0}16'$	$108^{0}12'$		$108^{0}36'$	$107^{0}32'$	107 ⁰ 52'	$107^{0}52'$	107 ⁰ 50'		$108^{0}47'$	$108^{0}34'$	$109^{0}01'$		109 ⁰ 13'	$109^{0}00^{\circ}$	$109^{0}18'$	109 ⁰ 18'			
	Ob.St2	Name	Than h Binh	Cau 14	Buon Ho	Krong Ma	I	Phu Tuc	Chu Pra	Trung Nghia	Trung Nghia	Sa Thay		Quang Ngai	Son Giang	Hoai Nhon		Quy Nhon	Cung Son	Tuy Hoa	Tuy Hoa			
	Op.	Year	39	21	23	22		38	23	24	23	22	1	23	23	24		24	24	24	23			
es	Latitude		$11^{0}45^{1}$	$13^{0}06'$	$12^{0}46'$		12 ⁰ 32'	13 ⁰ 22'	13 ⁰ 45'	14 ⁰ 21'	$14^{0}40'$	$15^{0}05'$		15 ⁰ 15'	15 ⁰ 08'	15 ⁰ 05'		13 ⁰ 56'	13 ⁰ 13'	$13^{0}21$	$13^{0}40'$			
r Bridge Sit	Longitude		$108^{0}23'$	107052	108 ⁰ 22'		108 ⁰ 25'	108 ⁰ 25'	107 ⁰ 56'	$108^{0}01^{\circ}$	107 ⁰ 52'	$107^{0}44$		108 ⁰ 32'	$108^{0}47^{1}$	$107^{0}44^{\circ}$	1	108 ⁰ 52'	$109^{0}13^{\circ}$	$109^{0}07$	$109^{0}11^{\circ}$			
Station near	Ob.St1	Name	LienKhuong	Ea Soup	KRong BuK		KRong Bong	Cheo Reo	Chu Pron	Kon Tum	Dac To	Dac Lay		Tra Bong	Tra Khuc	Phu My		Binh Tuong	SongCau	Ha Bang	Cu Mong			
y Gauging	Latitude		$11^{0}44'6$	13 ⁰ 04'6	12 ⁰ 55'6		12 ⁰ 30'7	13 ⁰ 37'7	13 ⁰ 44'5	14 ⁰ 29'4	14 ⁰ 50'7	$14^{0}43'4$	$15^{0}01^{2}$	15 ⁰ 15'6	15 ⁰ 15'8	$14^{0}04^{1}3$	$14^{0}07'9$	13 ⁰ 55'8	$13^{0}26'0$	13 ⁰ 18'4	13 ⁰ 32'6	12 ⁰ 45'5	$12^{0}28'4$	
Observatory	Longitude		108 ⁰ 25'9	$107^{0}53^{1}6$	$108^{0}172$		$108^{0}20^{1}9$	108 ⁰ 24'4	107 ⁰ 51'3	$108^{0}02^{7}$	107 ⁰ 52'5	$107^{0}46'4$	$108^{0}49'2$	$108^{0}30'1$	$108^{0}397$	$109^{0}00'0$	$109^{0}08'6$	108 ⁰ 58'4	$109^{0}04^{15}$	$109^{0}03'4$	109 ⁰ 04'7	$109^{0}18'0$	$109^{0}10'4$	
A-2: List of	Bridge Name		NT BO SUA	EA SOUP	кохү	KRONG	K'MAR	DAK PO TO	IA DRANG	NGOC REO	DAK TO KAN	NGOC TU	XA CAI	DO	SONG SAU	BA LE	DAO LONG	TRUONG DINH	TRA O	TRA BUONG	DA LOC	NGOI NGAN	TIEN DU	
Table	No.		48	52	55	56		58	59	62	64	66	67	70	72	74	76	77	78	79	82	83	86	Note.

. • č . ζ Table A 2. List of Ob

Note:

Ob.Sta.-1 : data from Climate Center (\sim 2000) Ob.Sta.-2 : data from Standard hydorology book (teddy in Vet Nam)(\sim 1987)

Appendix 10 Traffic Volume Survey Results

(4) (4) <th>C</th> <th>S A</th> <th>omp. or B</th> <th>Existing Bridae</th> <th></th> <th>Truck</th> <th>Bus</th> <th>4WD</th> <th>t of Traffic Vo</th> <th>olume Survey (6</th> <th>:00 ~ 18:00 1</th> <th>2hours)</th> <th>Special Vehicles</th> <th></th> <th></th> <th>Sum Total of</th> <th>Sum Total of</th> <th>prod</th>	C	S A	omp. or B	Existing Bridae		Truck	Bus	4WD	t of Traffic Vo	olume Survey (6	:00 ~ 18:00 1	2hours)	Special Vehicles			Sum Total of	Sum Total of	prod
(u re fweel) (bet of Truc) Section (bet of Truc) (bet of Truc) </td <td>Name of Bridge A or B Bridge</td> <td>A or B Bridge</td> <td>Bridge</td> <td>ا - ا</td> <td></td> <td>Truck</td> <td>Bus</td> <td>4WD</td> <td></td> <td>-</td> <td>i</td> <td></td> <td>Special Vehicles</td> <td></td> <td></td> <td>Sum Total of Vehicle (6:00 ~</td> <td></td> <td>Sum Total of Vehicle</td>	Name of Bridge A or B Bridge	A or B Bridge	Bridge	ا - ا		Truck	Bus	4WD		-	i		Special Vehicles			Sum Total of Vehicle (6:00 ~		Sum Total of Vehicle
0 0 0 10 0 10 0	Trai	Trai	Trai	Trai	lor Truck	(4 or 6 wheels)	(Big or Small) Pi	ick Up Truck	Sedan	Motorcycle	Bicycle	Pedestrian	(Such as construction equipment)	Wheather	Date	18:00) (A)	(24hours) (A) × 1.3*	
0 0	CHINH DAI B 0	В	0	0		0	0	0	0	122	362	84	0		13/10	0	0	
33 6 1	THACH QUANG B × 0	0 × 8	0 ×	0		0	0	0	0	36	41	46	0		17/10	0	0	
30 10 0 20 703 174 0 7.0 <	THACH DINH A 12	A 12	12	12		33	8	13	4	148	175	50	0		15/10	70	91	
0 0 0 0 30 307 405 0 <td>QUYNH BANG A 0</td> <td>A 0</td> <td>0</td> <td>0</td> <td></td> <td>35</td> <td>10</td> <td>0</td> <td>2</td> <td>303</td> <td>788</td> <td>174</td> <td>0</td> <td></td> <td>22/10</td> <td>47</td> <td>61</td> <td></td>	QUYNH BANG A 0	A 0	0	0		35	10	0	2	303	788	174	0		22/10	47	61	
0 0	KE CHIENG B × 0	B ×	0 ×	0		0	0	0	0	38	207	425	0		29/10	0	0	
23 0 530 00 530 00 - 1/11 25 33 0 0 0 0 30 330 111 0 - 1/11 25 33 0 0 0 0 10 10 10 10 0 </td <td>BAN KHOANG B × 0</td> <td>B × 0</td> <td>0 ×</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>24</td> <td>540</td> <td>0</td> <td></td> <td>27/10</td> <td>0</td> <td>0</td> <td></td>	BAN KHOANG B × 0	B × 0	0 ×	0		0	0	0	0	0	24	540	0		27/10	0	0	
0 0	MY SON A 0	A 0	0	0		23	0	2	0	559	600	368	0		1/11	25	33	
0 0 0 10 <td>CUA TRAI B 0</td> <td>B 0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>20</td> <td>23</td> <td>0</td> <td></td> <td>14/10</td> <td>0</td> <td>0</td> <td></td>	CUA TRAI B 0	B 0	0	0		0	0	0	0	3	20	23	0		14/10	0	0	
0 0	PHU VINH B 0	B 0	0	0		0	0	0	0	179	335	111	0	-	20/10	0	0	
0 0	LAC THIEN A 0	A 0	0	0		0	0	0	0	226	1167	166	0		20/10	0	0	
0 0 0 0 0 4 0 511 0<	BEN DA B × 0	B × 0	0 ×	0		0	0	0	0	0	0	0	0	Rainy	13/10	0	0	
1 0 0 0 174 151 0 271 171 2 3 1 0 0 0 0 0 0 0 171 0 0 0 0 4 0 <th< td=""><td>PA NHO A 0</td><td>A 0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>10</td><td>0</td><td>434</td><td>0</td><td>Sunny</td><td>12/10</td><td>0</td><td>0</td><td></td></th<>	PA NHO A 0	A 0	0	0		0	0	0	0	10	0	434	0	Sunny	12/10	0	0	
0 0	NA MAY B × 0	B × 0	0 ×	0		2	0	0	0	0	174	151	0	Sunny	15/10	2	3	
4 0	KHE DUONG A × 0	A × 0	0 ×	0		0	0	0	0	0	6	176	0	Sunny	16/10	0	0	
4 0	HOI PHUOC A × 0	A × 0	0 ×	0		4	0	0	0	95	260	392	0	Sunny+Rainy	17/10	4	5	
0 0 0 166 336 1696 163 336 1696 163 0	SONG QUAN B 0	B 0	0	0		4	0	0	0	26	108	250	0	Rainy+Sunny	21/10	4	5	
(4) (4) <td>DAI LOI A 0</td> <td>A 0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>166</td> <td>335</td> <td>1098</td> <td>0</td> <td>Rainy+Sunny</td> <td>19/10</td> <td>0</td> <td>0</td> <td></td>	DAI LOI A 0	A 0	0	0		0	0	0	0	166	335	1098	0	Rainy+Sunny	19/10	0	0	
	DA DUNG A 204	A 204	204	204		180	47	6	16	5838	2128	144	0		18/10	456	593	
(3) (3) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (3) (4) (3) (4) (3) <td>TRANG A 21</td> <td>A 21</td> <td>21</td> <td>21</td> <td></td> <td>20</td> <td>0</td> <td>7</td> <td>2</td> <td>1345</td> <td>1066</td> <td>11</td> <td>0</td> <td></td> <td>15/10</td> <td>100</td> <td>130</td> <td></td>	TRANG A 21	A 21	21	21		20	0	7	2	1345	1066	11	0		15/10	100	130	
2 2 0 1409 1008 160 0 · 31/10 89 116 0 0 0 0 103 503 503 506 0 · 23/10 9 10 6 43 65 70 323 2177 631 0 54/10 244 317 7 0 0 100 1023 166 279 0 54/10 244 317 7 0 20 10 1023 166 77 61 700 163 170 30 0 20 10 1023 166 71 64 70 241 73 24/10 70 70 30 0 20 23 57 501 470 57 710 714 714 714 30 0 2 71 64 72 56 710 714 714 <	SUOI CAT B 31 4	B 31 4	31 4	31 4	7	Ω	29	34	25	4942	3342	143	0		21/10	162	211	
0 0 0 103 503 506 0 - 22/10 0 0 0 0 0 222 578 50 0 - 23/10 0 0 0 0 0 0 3223 517 513 0 - 24/10 0 9 17 0 0 0 100 5223 517 519 21/10 2	TUAN TU B 13 7	B 13 7	13 7	13 13	7	2	2	2	0	1409	1008	160	0		31/10	89	116	
	TAM NGAN A 0 0	0 V	0	0 0	0	_	0	0	0	103	503	908	0		28/10	0	0	
43 66 70 323 217 61 0 244 0 244 0 244 317 1 0 0 100 500 517 517 0 516 51 51 0 60 516 517 0 516 517 0 516 51 517 0 518 <	CAU GAY B 0 9	B 0 9	0	6 0	6		0	0	0	262	578	50	0		30/10	6	12	
0 0 0 180 50 21 0 3100 52/10 152 193 00 2 14 0 855 557 5710 152 193 00 2 14 0 855 557 501 5710 152 194 00 5 0 853 152 501 710 143 143 00 5 0 853 171 641 710 714 143 01 0 6 473 55 710 714 14 143 01 0 6 473 55 710 710 19 72 01 0 0 451 473 25 7410 710 70 74 01 0 0 473 25 7410 74 75 74 01 0 0 0 5710 741 74 </td <td>TAN VAN A 31 3</td> <td>A 31 3</td> <td>31 3</td> <td>31 3</td> <td></td> <td>35</td> <td>43</td> <td>65</td> <td>70</td> <td>3223</td> <td>2127</td> <td>631</td> <td>0</td> <td>Sunny</td> <td>24/10</td> <td>244</td> <td>317</td> <td></td>	TAN VAN A 31 3	A 31 3	31 3	31 3		35	43	65	70	3223	2127	631	0	Sunny	24/10	244	317	
33 0 9 10 1023 156 273 0 Rainy 26/10 152 138 00 20 144 0 885 957 233 36 20/10 68 88 00 20 144 0 885 957 233 36 27/10 114 148 0 5 0 28 7190 714 714 714 714 1 68 710 267 27 66 - 3/11 30 32 1 0 2 147 23 88 0 56/10 714 71 71 71 71 71 71 74 <td< td=""><td>LOC NGAI B 0</td><td>B 0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>180</td><td>50</td><td>21</td><td>0</td><td>Sunny</td><td>23/10</td><td>0</td><td>0</td><td></td></td<>	LOC NGAI B 0	B 0	0	0		0	0	0	0	180	50	21	0	Sunny	23/10	0	0	
40 2 14 0 835 957 223 364 20/10 68 88 80 0 20 14 2654 252 501 470 27/10 114 148 70 5 6 0 288 1060 432 66 27/10 114 148 7 0 2 6 71 64 0 51/10 71 30 33 7 0 0 2 0 36 467 73 66 31/10 30 33 7 0 0 0 470 67 30 31	NONG TRUONG BO SUA B 0	B 0	0	0		133	0	6	10	1023	156	279	0	Rainy	26/10	152	198	
80 0 20 14 2664 222 501 470 7.10 114 148 70 5 6 0 838 1080 432 66 - 31/10 30 33 7 0 2 0 838 1080 432 66 - 31/10 30 34 7 0 5 0 403 451 472 55/10 190 30 35 8 0 6 5 0 403 451 472 55/10 191 30 34 9 0 0 0 66 5 86 0 56/10 30 35 9 0 0 0 16 53 163 66 5 31/1 30 36 36 9 0 0 0 0 163 163 16 17 10 17 10	EA SOUP A 12	A 12	12	12		40	2	14	0	835	957	223	36		20/10	68	88	
20 5 0 838 1080 432 66 - 31/10 30 33 7 0 2 0 26 71 64 0 51/10 30 39 8 0 5 0 403 451 472 25 Rainy 27/10 19 25 8 0 0 5 0 403 451 472 25 Rainy 27/10 19 25 3 0 0 61 23 451 67 171 0 0 26 0 0 0 61 23 163 710 25 711 3 4 0 0 0 66 153 163 0 211 0 </td <td>ROXY B 0</td> <td>B 0</td> <td>0</td> <td>0</td> <td></td> <td>80</td> <td>0</td> <td>20</td> <td>14</td> <td>2654</td> <td>252</td> <td>501</td> <td>470</td> <td></td> <td>27/10</td> <td>114</td> <td>148</td> <td></td>	ROXY B 0	B 0	0	0		80	0	20	14	2654	252	501	470		27/10	114	148	
	KRONG K'MAR A 0	A 0	0	0		20	5	5	0	838	1080	432	66		31/10	30	39	
8 0 5 0 403 451 472 25 Rainy 25/10 19 25 0 0 0 0 61 23 88 0 5/10 191 0 26 3 0 0 0 61 23 88 0 5/10 1/11 0 0 0 3 0 0 0 61 153 1163 0 5/10 3/11 3 4 0 0 0 0 20 163 163 163 0 5/10 3 4 0 0 0 0 64 153 1163 0 5/10 3 0	DAK PO TO B 0	B 0	0	0		7	0	2	0	26	71	64	0	Sunny	24/10	6	12	
0 0 0 0 61 23 88 0 Suny 1/1 0 0 3 0 0 0 61 23 16 3 1 1 0 0 0 3 0 0 0 62 26 110 0 3/1 3 4 0 0 0 20 163 163 163 0 2/11 0 0 0 0 0 0 0 648 1533 1163 0 5/11 0	IA DRANG A 6	A 6	9	6		8	0	5	0	403	451	472	25	Rainy	25/10	19	25	
	NGOC REO B 0	B 0	0	0		0	0	0	0	61	23	88	0	Sunny	1/11	0	0	
0 0 0 20 16 58 0 - 4/11 0 0 0 0 0 0 0 648 1533 1163 0 5/10 0	DAK TO KAN B 0	0 8	0	0		3	0	0	0	62	26	110	0		3/11	ю	4	
0 0 0 648 1533 1163 0 Sumy 26/10 0 0 0 0 0 0 0 0 648 1533 1163 0 Sumy 26/10 0 <t< td=""><td>NGOC TU A 0</td><td>A 0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>20</td><td>16</td><td>58</td><td>0</td><td></td><td>4/11</td><td>0</td><td>0</td><td></td></t<>	NGOC TU A 0	A 0	0	0		0	0	0	0	20	16	58	0		4/11	0	0	
0 0 0 0 66 273 0 SumvHainy 24/10 0 0 0 0 0 0 255 411 512 0 SumvHainy 24/10 0 0 0 0 0 0 0 18 0 555 411 512 0 SumvHainy 22/10 0 0 0 0 0 0 0 0 12 <	XA CAI A 0	A 0	0	0		0	0	0	0	648	1533	1163	0	Sunny	26/10	0	0	
0 0 0 255 411 512 0 Sumytain 23/10 0 0 0 0 0 18 0 572 513 672 33 15/10 55 72 10 0 0 572 513 672 33 15/10 55 72 15 0 18 798 798 29 21 13/10 0 0 72 15 0 13 22 1340 185 27 17/10 46 60 19 2 0 139 420 229 44 20/10 26 34 10 0 0 171 213 555 0 17/10 16 34 10 0 0 1177 240 95 19/10 0 0 0 0 16 16 </td <td>DO A × 0</td> <td>A × 0</td> <td>0 ×</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>66</td> <td>273</td> <td>0</td> <td>Sunny+Rainy</td> <td>24/10</td> <td>0</td> <td>0</td> <td></td>	DO A × 0	A × 0	0 ×	0		0	0	0	0	0	66	273	0	Sunny+Rainy	24/10	0	0	
0 18 0 572 513 672 33 - 15/10 55 72 0 0 0 0 239 798 29 21 - 13/10 55 72 15 0 13 2 1060 1340 185 27 - 13/10 0 0 0 0 1	SONG SAU B 0	B 0	0	0		0	0	0	0	255	411	512	0	Sunny+Rainy	23/10	0	0	
0 0 0 0 239 738 29 21 - 13/10 0 0 15 0 13 2 1060 1340 185 27 - 17/10 46 60 19 2 0 1 319 420 239 4 - 20/10 26 34 10 0 17 219 229 4 - 20/10 26 34 10 0 171 213 595 0 - 23/10 0 0 34 10 0 0 177 240 365 9 - 5/11 36 0 10 11 0 139 1177 240 0 - 5/11 8 10	BA LE A 37	A 37	37	37		0	0	18	0	572	513	672	33		15/10	55	72	
15 0 13 2 1060 1340 185 27 - 17/10 46 60 19 2 0 1 319 420 229 4 - 20/10 26 34 0 0 0 171 213 595 0 - 23/10 0 0 0 10 0 0 222 280 395 9 - 19/10 0 0 0 8 0 0 139 1177 240 0 - 5/11 8 10 11 0 1 0 81 929 5 0 - 5/11 12 0 0 0 0 0 10	DAO LONG B 0	B 0	0	0		0	0	0	0	239	798	29	21	-	13/10	0	0	
19 2 0 1 319 420 229 4 - 20/10 26 34 0 0 0 171 213 595 0 - 23/10 0 0 0 0 0 0 171 213 595 0 - 23/10 0 0 0 0 10 0 0 213 260 395 9 - 19/10 0 0 0 0 0 10 8 0 0 1177 240 0 - 5/11 8 10 11 0 11 0 55 0 - 2/11 12 16 16	TRUONG DINH B 16	B 16	16	16		15	0	13	2	1060	1340	185	27		17/10	46	60	
0 0 0 171 213 595 0 - 22/10 0 0 0 0 0 222 260 395 9 - 19/10 0 0 0 8 0 0 0 1139 1177 240 0 - 5/11 8 10 11 0 1 0 55 0 - 2/11 12 16	TRAO A 4	A 4	4	4		19	2	0	١	319	420	229	4		20/10	26	34	
0 0 0 22 260 395 9 - 19/10 0 0 0 8 0 0 0 1177 240 0 - 5/11 8 10 11 0 1 0 881 929 55 0 - 2/11 12 16	TRA BUONG A × 0	A × 0	0 ×	0		0	0	0	0	171	213	595	0		23/10	0	0	
8 0 0 0 1139 1177 240 0 - 5/11 8 10 11 0 1 0 881 929 55 0 - 2/11 12 16	DA LOC B 0	B 0	0	0		0	0	0	0	222	260	395	6		19/10	0	0	
11 0 1 0 881 929 55 0 - 2/11 12 16	NGOI NGAN A 0	A 0	0	0	1 1	8	0	0	0	1139	1177	240	0	•	5/11	8	10	
-	TIEN DU B 0	0	0	0	1	1	0	-	0	881	929	55	0		2/11	12	16	
								r	*:本調査8	寺間は夜間を除	ミくものであり	、夜間の交通	量は大幅に減少す	トることが予想	されるため24	4時間交通量を×1	.3として算出した。	

Results
Survey
Volume
Traffic [\]

Appendix 11 Soft Component MINISTRY OF TRANSPORT THE SOCIALIST REPUBLIC OF VIET NAM

BASIC DESIGN STUDY REPORT ON THE PROJECT FOR RECONSTRUCTION OF BRIDGES IN THE CENTRAL AREA OF VIET NAM

SOFT COMPONENT

MARCH 2002

PACIFIC CONSULTANTS INTERNATIONAL IN CONSORTIUM WITH ORIENTAL CONSULTANTS CO., LTD. The Socialist Republic of Vietnam The Project for Reconstruction of Bridges in the Central Area of Vietnam

Soft Component

Table of Contents

1.	Background	1
2.	Target of Soft Component	2
3.	Direct Result of Soft Component	2
4.	Scope of Works	3
5.	Soft Component Activities	4
6.	Soft Component Implementation	4

(Attachment)

- 1. Project Design Matrix of Soft Component
- 2. Schedule of Soft Component

1. Background

1.1 Background of the Project

The Socialist Republic of Vietnam has been working on the recovery of the domestic economy since the end of Vietnam War and soon after Doi-Moi Policy started in 1986 the government started investing in many sectors. For the recovery of domestic economy, importance of rehabilitation of infrastructure such as roads and bridges has been widely acknowledged and the high priority has been given to investment in the transportation.

Development of the road network in the provinces of Central Vietnam is at an early stage. This lack of essential infrastructure and poor maintenance condition of existing structures is an important factor restraining development in the area. Improvements have been made to highway bridges since the end of the Vietnam War. Bridges have been rehabilitated or repaired to cope with damages caused by very powerful flood flows. However, inadequate capital budgets leave many structures at best temporary.

The Socialist Republic of Vietnam has requested Grant Aid for the Reconstruction of Bridges in the Central Area by the Government of Japan.

1.2 Outline of the Project

Observations during the inspections revealed that many structures are visibly damaged and cannot allow large vehicles to pass. At some locations, even bicycles or pedestrians cannot pass, hence there are locations that are effectively cut off during the rainy season. The lack of suitable river crossings has a detrimental impact on economic development, since agricultural products cannot be shipped to markets, and is thus a key factor of rural poverty. The lack of suitable river crossings also has a negative impact on basic human needs, since access to medical, education, and local administrative services is restricted.

In this project, 45 bridges were selected for new construction or replacement in 18 provinces of the central area. After careful investigation, 23 bridges were selected for steel girder procurement scheme as phase-1 and 22 bridges were selected for facility construction scheme as phase-2. The procurement of steel girders and so called Soft Component are executed by the Japan side. The government of Vietnam

will implement the construction of substructure, steel-girder erection, slab concrete and concrete handrails for phase-1.

1.3 Need and Effect of Soft Component

In Phase 1 of this project, 23 steel girders are to be prepared by Japan, but substructure construction and girder erection shall be done by Vietnam. Due to lack of experience in steel girder erection for Vietnam, control of schedule and quality may be problem in this phase.

The Soft Component will provide a manual for steel girder erection, monitor the progress of substructure construction and conduct the transfer of steel bridge construction technology from Japan to Vietnam and finally sustain the quality and progress of this project.

2. Target of Soft Component

In the Soft Component, three target stages are set up as follows:

Overall Goal

- Sustainable development of steel bridge construction in Vietnam

Goal of Soft Component

- Establishing of technology for steel girder erection and level up of substructure construction

3. Direct Result of Soft Component

To achieve the above targets, the following direct result of Soft Component are desired.

- (1) Capability of schedule control in steel girder erection
- (2) Capability of quality control in steel girder erection
- (3) Capability of tolerance control in steel girder erection

- (4) Capability of safety control in steel girder erection
- (5) Capability of maintenance of steel girder erection

In these direct results of the Soft Component, much more importance should be placed on points (1) to (4) from the standpoint of minimum assistance in this Soft Component. Self effort by Vietnam is anticipated for (5), but occasional support shall be given by manual preparation and discussions with the Vietnamese side in this Soft Component scheme. The manuals and others to be prepared in this Soft Component are as follows:

- Monitoring report for substructure construction
- Schedule control manual for steel girder erection
- Quality control manual for steel girder erection
- Tolerance control manual for steel girder erection
- Safety control manual for steel girder erection
- Maintenance manual for steel girder bridge

4. Scope of Works

To achieve the direct results above, the following scope of works are set for each direct result of the Soft Component:

- 4-1 Capability of schedule control in steel girder erection
 - Monitoring of land transportation in Vietnam
 - Schedule control manual and monitoring of steel erection
 - Monitoring of substructure construction
- 4-2 Capability of quality control in steel girder erection
 - Quality control manual and monitoring of steel erection
 - Monitoring of storage for steel girder
- 4-3 Capability of tolerance control in steel girder erection
 - Tolerance control manual in steel girder erection
 - Monitoring of tolerance control in steel girder erection
- 4-4 Capability of safety control in steel girder erection
 - Safety control manual in steel girder erection

A11 - 5

- 4-5 Capability of maintenance of steel girder erection
 - Maintenance manual for steel girder erection

5. Soft Component Activities

The output of the Soft Component is cooperation with counterparts in Vietnam and preparation of manuals for the overall control of schedule, quality, tolerance, safety and maintenance for steel girder erection and the monitoring of substructure construction and steel girder erection, as summarized in Table 1.

6. Soft Component Implementation

This Soft Component shall be carried out for 23 steel bridges in the central area of Vietnam. The Implementation of the Soft Component comprises of the mobilization of Japanese experts, the setting up of seminars for the counterparts, advice on the site, and quality check by manual.

6-1 Schedule of Soft Component

Schedule of Soft Component is summarized in Table 1.

6-2 Allocation of experts and counterparts

Because the location of 23 steel girders erection is widely spread in 18 provinces ranging 1300 km in length, three Japanese experts should be dispatched to the construction sites to cooperate with the Vietnamese counterparts in this Soft Component. The roles of the Japanese experts and their Vietnamese counterparts are as follows:

Japanese experts

- Preparation of manuals for overall control of schedule, quality, tolerance, safety and maintenance regarding steel girder erection and conducting of seminars to explain manuals.
- Monitoring and supervision of substructure construction
- Monitoring and supervising of transportation, storage, erection, and painting at the site for steel girder
- Monitoring and supervision of overall construction schedule

Vietnamese counterparts

- Assisting Japanese experts in manuals preparation
- Monitoring and supervision of substructure construction with the Japanese experts
- Monitoring of transportation, storage, erection, and painting for steel girder by using manual checklist
- Monitoring of construction schedule by using manual checklist

/	/															
	I tem		Month	1	2	3	4	5	9	7	8	6	10	11	12	13
	Preparati	on of Manual			_											
		Design Review				_										
	(sə	Monitoring of Co	onstruction							111		TL		1		
ł	Substructure	e Construction Sa	ifety													
səı/	bri	Schedule and Q	uality							_						
⁄u.	8 ;	Tolerance and M	laintenance													
iəqi	590	Monitoring of Er	ection													
101	Steel Girder	r Erection Safety											_			
l	Erection	Schedule and Q	uality													
	9)	Tolerance and M	laintenance													
	Counterpar	rt (one person each	(mm	<u>nnnn</u>	mm	mm	mm	THIN	min	111111	111111
		Design Review														
	(se	Monitoring of Co	onstruction							1		1				
	Bubstructur	e Construction Sa	ifety													
691	bri	Schedule and Q	uality													
ΑI	8 ;	Tolerance and M	laintenance								_					
61Ĵ	590	Monitoring of Er	ection													
uəŋ	Steel Girder	r Erection Safety														
	Pro Erection	Schedule and Q	uality													
	9)	Tolerance and M	laintenance													
	Counterpar	rt (one person each	(1111111	111111	mm	mm	mm	mm	mm	mm	<u>IIIIII</u>
		Design Review														
	(sə	Monitoring of Co	onstruction													
ŧ	Substructur	e Construction Sa	ifety													
s91/	bri	Schedule and Q	uality													
∕u.	5, ۲	Tolerance and M	laintenance													
i əy i	5901	Monitoring of Er	ection												J L	
nog	Vi Steel Girder	r Erection Safety														
	pro Erection	Schedule and Q	uality													
	ç)	Tolerance and M	laintenance													
	Counterpar	rt (one person each	(1111111	111111	111111	111111	111111	11111	mm	<u>IIIIII</u>	111111

Table.1 Schedule of Soft-Component

note ; Soft Component will be executed in 3 areas divided

Component
Soft
ix for
n Matr
Design
Project
Appendix.1

Project ; Reconstruction of Bridges in the Central Area of Vietnam

Term ; Apr/2002 - Mar/2003

Country ; The Socialist Republic of Vietnam	Group	of target ; PMU18, local engineers	
Item	Objective	Data for Judgment	External conditions
Overall Goal Sustainable development of steel bridge construction in Vietnam	Economic activity in the province Increase of steel girder bridge construction	GDP of each province Bridge construction record	Budget of construction and bridge maintenance
Goal of Soft Component Establishing of advanced technology for steel girder bridges erection and level up of substructure construction technology in Vietnam	Increase of steel girder bridge construction Validity of construction by check sheet	Bridge construction record Final report Evidence of completion	Sustainable usage of manual and check sheets Transfer of monitoring technology
Output Capability of schedule control in steel girder erection Capability of quality control in steel girder erection Capability of tolerance control in steel girder erection Capability of safety control in steel girder erection Capability of maintenance of steel girder erection	Construction on schedule Proper storage and painting on site Proper maintenance	Schedule report Monthly report As-build drawing	On-time substructure schedule Transportation of steel girders Budget of steel girder erection Selection of local contractor
Activity Monitoring of transportation Monitoring of substructures construction Monitoring of steel girder painting	Input (Japan) Procurement of steel girder Steel bridge experts (11month * 3 person)	(Vietnam) Substructures Approach road	Countermeasures for the problems of monitoring Information sharing on site
Schedule control manual Cuality control manual Tolerance control manual Safety control manual Maintenance manual		Training center Counterparts Project management fee Maintenance fee	(Conditions) Proper counterparts Guarantee of higher priority for bridge construction by the provinces

Appendix.2 Schedule of Soft-Component