The Study on Water Resources Management in the Hashemite Kingdom of Jordan

FINAL REPORT VOLUME VIII SUPPORTING REPORT FOR

PART-A "WATER RESOURCES MANAGEMENT MASTER PLAN" Chapter 11 Visualization of Water Resources Management Master Plan

Table of Contents

page

Data Visualization System Documentation

1. INTRODUCTION	SA11D-1
2. DVS NAVIGATION	SA11D-2
2.1. NAVIGATION CHART	SA11D-2
2.2. NWMP WINDOW	SA11D-3
2.3. DATABASE CONNECTION DIALOG.	SA11D-3
2.4. DATA TYPE SELECTION DIALOG 2.5. THE CHART TYPE SELECTION DIALOG	SA11D-4 SA11D-5
3. DATA TYPES AND CHART TYPES	SA11D-6
3.1. DATA TYPE MUNICIPAL DEMANDS	SA11D-6
3.1.1 Chart Type: Municipal Demand Projections SA11D-6	
3.1.2 Chart Type: Annual Billed Water SA11D-8	
3.1.3 Chart Type: Quarterly Billed Water SA11D-9	
3.1.4 Chart Type: Demands and Losses in Municipal Network	SA11D-10
3.1.5 Chart Type: Population Data SA11D-11	
3.1.6 Chart Type: Population growth projections SA11D-12	
3.1.7 Chart Type: Per Capita Consumption Projections SA	.11D-13
3.2. DATA TYPE: INDUSTRIAL DEMANDS	SA11D-14
3.2.1 Chart Type: Industrial Demand Projections SA11D-14	
3.2.2 Chart Type: <u>Annual Billed Water</u> SA11D-16	
3.2.3 Chart Type: <u>Quarterly Billed Water</u> SA11D-17	
3.2.4 Chart Type: Industrial Growth Projections SA11D-18	
3.3. DATA TYPE: TOURISTIC DEMANDS	SA11D-19
3.3.1 Chart Type: Touristic Demand Projections SA11D-19	
3.3.2 Chart Type: <u>Annual Billed Water</u> SA11D-21	
3.3.3 Chart Type: <u>Quarterly Billed Water</u> SA11D-22	
3.3.4 Chart Type: Touristic Growth Projections SA11D-23	
3.4. DATA TYPE: IRRIGATION DEMANDS	SA11D-24
3.4.1 Chart Type: Net Irrigation Demand Projections SA	ATTD-24
3.4.2 Chart Type: Farmgate Demand Projections SATTD-25	110.07
3.4.3 Chart Type: Gross Irrigation Demand Projections SA	ATTD-27
3.4.4 Chart Type: On Farm Irrigation Losses SA11D-28	
3.4.5 Chart Type: Distribution System Losses SA11D-29	
3.5. DATA TYPE: GROUND AND SURFACE WATER	SA11D-31
5.5.1 Chart Type: Projections for Groundwater SATID-31	

3.5.2 Chart Type: Projections for Base Flow	SA11D-33	
3.5.3 Chart Type: Projections for Flood Flow	SA11D-35	
3.5.4 Chart Type: Projections for Base Flow and Flo	od Flow	SA11D-36
3.5.5 Chart Type: Projections for Ground Water and	Surface Water	SA11D-37
3.6. DATA TYPE: WASTE WATER		SA11D-39
3.6.1 Chart Type: Projections of Total Treated Effluer	nt SA11D	-39
3.6.2 Chart Type: Projections of Domestic and Touris SA11D-40	stic Treated Effluer	nt
3.6.3 Chart Type: Projections of Industrial Treated Ef	fluent SA11D	-41
3.7. DATA TYPE: WATER TRANSFER		SA11D-43
3.7.1 Chart Type: Imported and Exported Water	SA11D-43	
3.7.2 Chart Type: List of Network Transfers	SA11D-44	
3.8. DATA TYPE: WATER RESOURCES POTENTIAL		SA11D-46
3.8.1 Chart Type: Renewable groundwater Potential	SA11D	-46
3.8.2 Chart Type: Non-Renewable Fresh Groundwar	ter Potential	SA11D-47
3.8.3 Chart Type: Brackish Groundwater Potential	SA11D-48	
3.8.4 Chart Type: Total Groundwater Potential	SA11D-48	
3.8.5 Chart Type: Surface Water Potential SA11D	-49	
3.8.6 Chart Type: Total Natural Water Resources	SA11D-49	
3.9. DATA TYPE: WATER ALLOCATION		SA11D-50
3.9.1 Chart Type: Water Demand Projections	SA11D-50	
3.9.2 Chart Type: Water Resources Projections	SA11D-51	
3.9.3 Chart Type: Projections for Import, Export and SA11D-52	Locally Produced	Water
3.9.4 Chart Type: Projected Transferred Water betw SA11D-53	een Governorates	
3.9.4.1 Chart Type: Projections of Import/Export of Water between Gov	vernorates	SA11D-53
3.9.4.2 Chart Type: Projections of Inter-Governorate Transfer in Major	<u>Pipelines</u>	SA11D-54
ANNEX		SA11D-56
ANNEX A: INSTALLATION AND CONFIGURATION		SA11D-56
A1. INSTALLATION		SA11D-56
A2. ORACLE ACCESS RIGHTS		SA11D-57
ANNEX B. SPATIAL SEL ECTION		SA11D-59
ANNEX C : PROJECTIONS OF IMPORT/EXPORT OF V	VATER BETWEEN (GOVERNORATES –
DETAILED MANUAL		SA11D-66
C1: THE FILTERS PROVIDED FOR THE USER ON THE PIVOT TABLE AND O	N T HE CHART :	SA11D-66
C2. EXAMPLES OF CHARTS THAT CAN BE PRODUCED FOR :		SA11D-72

Resources

3.5. Data Type: Ground and Surface Water

Available	Charts/Tables	
Projections for ground water	ο.	
Projections for base flow	Ο.	
Projections for flood flow	O .	
Projections for base flow and flood flow	<u>o</u> .	
O Projections for ground and surface water	Ο.	
Spatial selection	Close	

5 different chart types are available for the irrigation demands.

3.5.1 Chart Type: Projections for Groundwater

The projections for groundwater are the future resources estimations calculated by the sector managers by using the GW pre-processing modules. These are the results from the rainfall-runoff-infiltration model. This model is based on the USGS Curve Number method. The results for deep infiltration are stored in the Oracle WIS STP table JORDAN.STP_GROUNDWATER per GW_CELL_ID, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to this table. The groundwater cells are equal to the groundwater basins, but the system can deal with any other groundwater balancing unit.

As the groundwater is a resource which is stored for a non-point object (polygon) it happens, that a unit of aggregation (e.g. governorate) intersects the groundwater basins. To assemble the total GW resource for one governorate, different groundwater basins have to be considered with a certain percentage. The groundwater basins are considered to be homogeneous, the resource for that part of the basin, which is located within governorate X is given by the percentage of area, which is part of governorate X. These percentages are fixed as long as the spatial data remains stable. The percentage values of all possible intersections are stored in the Oracle table JORDAN.SPATIAL_INTERSECT_UNITS. This table gets filled by the intersection tool (see

documentation) and this has to be redone, if the spatial data (gw basins, nation, governorates, districts, surface water basins, service zones) has changed. If this table is incomplete or not up to date, the results may give wrong figures!

pro	jections for	detailed reference	aggregated for
• •	15 months 8 planning horizons 3 scenarios	groundwater basin	 nation governorates surface water basins groundwater basins

The Study on Water Resources Management in The Hashemite Kingdom 0f Jordan Final Report/Supporting report Part-A "Master Plan"

The Projections for groundwater parameter dialog offers a set of parameters to choose from. In the spatial selection window you select a spatial unit for aggregation of the projected groundwater. You can draw three scenarios in one chart or the three types of year. You can distinguish between the different salinity classes by selecting the boxes. If you do so, the Excel chart will show you the water volumes for every salinity class in a separate bar.

Restrictions: You can either plot different gw basins or different scenarios or different types of year or different salinity classes in one chart. Due to restrictions in MS Excel it is not possible to chart more than one scenario or more than one type of year or more than one salinity class , if you have already selected more than one polygon in the spatial selection window. Only one of the 4 parameters [objects / scenarios(s) / type(s) of year / salinity class] is allowed to be a multiple selection.

	multiple governorates	multiple scenarios	multiple types of year	multiple salinity classes
governorates	>1	1	1	1
scenarios	1	>1	1	1
type(s) of year	1	1	>1	1
salinity class	1 class or sum	1 class or sum	1 class or sum	> 1 class

Sample results:

Projections for ground water for 4

Projections for ground water for governorate AL MAFRAQ (Hydrological years)

Comparison of the 3 scenarios for governorate Al Mafraq. It seems that the scenario parameters are the same for all three scenarios.

SA11D-32

3.5.2 Chart Type: Projections for Base Flow

The projections for base flow are the future resources estimations calculated by the sector managers by using the GW pre-processing modules. Projecting base flow is in fact a post-balancing procedure, as it is part of water management. Water can be transferred along the wadis, if it was not used upstream. The values for the projected base flow which will be available as a resource along the wadis are stored in the two Oracle WIS STP tables JORDAN.STP_BASEFLOW per SEGMENT_ID, scenario, year and month. The water, which will not be used along the wadis will be available at the so-called wadi endpoints. These values are stored in the table JORDAN.STP_BASEFLOW_END per WADI_ENDPOINT_ID, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to the two tables. The resources volumes of the wadi endpoints and the wadi segments will be summarized by the DVS before presentation.

As the base flow is a resource which is stored not only for non-point objects (lines) it happens, that a unit of aggregation (e.g. governorate) intersects the wadi segments. To assemble the total base flow resource for one governorate, only those parts of the wadi segments have to be considered, which are located within the governorate boundaries. The wadi segments are considered to be homogeneous, so the resource for that part of a segment, which is located within the governorate is given by the

percentage of length, which is within the governorate. These percentages are fixed as long as the spatial data remains stable. The percentage values of all possible intersections are stored in the Oracle table JORDAN.SPATIAL INTERSECT_UNITS. This table gets filled by the intersection tool (see documentation) automatically and this has to be redone, if the spatial data (wadi segments, nation, governorates, districts, surface water basins, service zones) has changed.

If this table is incomplete or not up to date, the results may give wrong figures!

The base flow resource cannot be projected per single base flow system (the two themes "wadi endpoints" and "base flow segments" are drawn in black text color, not in blue). It can be calculated and visualized only per area.

pro	jections for	detailed reference	aggregated for
•	15 months 8 planning horizons 3 scenarios	wadi segment and wadi endpoint in database In the DVS the volumes cannot be charted for single base flow systems	 nation governorates surface water basins groundwater basins

- Select scenario	(s) Sain	ity class(es) —
🔽 Seanaio 1	E (Clazer 1
🗖 Scenerio 2	E (Dan 2
🗖 Scenerio 3	E (Dess 3
	(Nore such d	s selected Maliciasses)
Projected years	Yeartype	First output scieen
itaning year 2005 *	Hydrological	C that
Ending year 2040 -	C Cakndar	C Table

The Projections for base flow parameter dialog offers a set of parameters to choose from. In the spatial selection window you select a spatial unit for aggregation of the projected base flow. You can draw three scenarios in one chart and you can distinguish between the different salinity classes by selecting the boxes. If you do so, the Excel chart will show you the water volumes for every salinity class in a separate bar.

Restrictions: You can either plot different units of aggregation or different scenarios or different salinity classes in one chart. Due to restrictions in MS Excel it is not possible to chart more than one scenario or more than one salinity class, if you have already selected more than one polygon in the spatial selection window. Only one of the 3 parameters [objects / scenarios(s) / salinity class] is allowed to be a multiple selection.

	multiple polygons	multiple scenarios	multiple salinity classes
polygons	>1	1	1
scenarios	1	>1	1
salinity class	1 class or sum	1 class or sum	> 1 class

Sample results:

Projection of the 3 scenarios for governorate Ajloun. There are no values saved for scenario 3 and year > 2005. Projections for base flow for 6 povernorates Scenario 1 (Hydrological years)

Comparison of the 6 governorates. The base flow scenarios are the same for all planning years.

3.5.3 Chart Type: Projections for Flood Flow

Oracle Access Rights for JORDAN.STP_FLOOD_FLOW_OUT

The projections for flood flow are the future resources estimations calculated by the sector managers by using the Runoff/Infiltration pre-processing modules. The values are the results from the rainfall-runoff-infiltration model. This model is based on the USGS Curve Number method. The results for flood flow are stored in the Oracle WIS STP table JORDAN.STP_FLOOD_FLOW_OUT per wadi endpoint, type of year, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to this table. The type of year indicates, whether a planning year is dry, median or wet in the comparison with the hydrological history.

pro	pjections for	detailed reference	aggregated for
•	15 months	wadi endpoint	nation
•	8 planning horizons 3 types of year	In the DVS the volumes cannot be charted for single wadi	 governorates surface water basins groundwater basins
•	3 scenarios	endpoints	ground the baomo

The Projections for flood flow parameter dialog offers a set of parameters to choose from. In the spatial selection window you select a spatial unit for aggregation of the projected base flow. You can draw three scenarios in one chart or the three types of year. You can distinguish between the different salinity classes by selecting the boxes. If you do so, the Excel chart will show you the water volumes for every salinity class in a separate bar.

Restrictions: You can either plot different units of aggregation or different scenarios or different types of year or different salinity classes in one chart. Due to restrictions in MS Excel it is not possible to chart more than one scenario or more than one type of year or more than one salinity class , if you have already selected more than one polygon in the spatial selection window. Only one of the 4 parameters [objects / scenarios(s) / type(s) of year / salinity class] is allowed to be a multiple selection.

	multiple polygons	multiple scenarios	multiple types of year	multiple salinity classes
polygons	>1	1	1	1
scenarios	1	>1	1	1
type(s) of year	1	1	>1	1
salinity class	1 class or sum	1 class or sum	1 class or sum	> 1 class

Sample results:

Projections for flood flow for 3 governorates

Projection of the 3 scenarios for governorate Ajloun. There are no values saved for scenario 3 and year > 2005.

Comparison of the three types of year (dry/median/wet) for basin Wadi Mujib. The dry year was not projected or does not give any base flow resource.

3.5.4 Chart Type: Projections for Base Flow and Flood Flow

The projections for base flow and flood flow are the future resources estimations calculated by the sector managers by using the pre-processing modules. The base flow volumes are coming from the base flow pre-processing module, the flood flow is an output from the rainfall/runoff module. The results are stored in the Oracle WIS STP tables JORDAN.STP_BASEFLOW,

JORDAN.STP_BASEFLOW_END and JORDAN.STP_FLOOD_FLOW_OUT per wadi endpoint or wadi segment, type of year, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to this table. The type of year indicates, whether a planning year is dry, median or wet in the comparison with the hydrological history. The base flow resource, which was distributed along the wadi segments using the pre-processing module, is undergoing certain intersection procedures (see chapter 3.5.2).

The chart allows the comparison of base flow and flood flow, as both values are charted in stacked column bars.

pro	jections for	detailed reference	aggregated for
• • •	15 months 8 planning horizons 3 types of year 3 scenarios	wadi endpoint/base flow segment. In the DVS the volumes cannot be charted for single base flow systems	 nation governorates surface water basins groundwater basins

This parameter dialog offers a set of parameters to choose from. In the spatial selection window you select a spatial unit for aggregation of the projected base flow and flood flow. You can select one of the three scenarios, one of the three types of year. You chart the volumes without water quality consideration or you select one specific salinity class.

Sample results:

Projections for base flow and flood flow for surfacewater basin S.R.S.W Scenario 2, Type of year = Wet (Hydrological years)

The chart shows the surface water resource, divided in flood flow and base flow. For the years greater than 2020 no flood flow was projected.

3.5.5 Chart Type: Projections for Ground Water and Surface Water

The projections for ground water and surface water are the future resources estimations calculated by the sector managers by using the pre-processing modules. The base flow volumes are coming from the base flow pre-processing module, ground water and flood flow figures are an output from the rainfall/runoff module. The results are stored in the Oracle WIS STP tables

JORDAN.STP_GROUNDWATER, JORDAN.STP_BASEFLOW, JORDAN.STP_BASEFLOW_END and JORDAN.STP_FLOOD_FLOW_OUT per wadi type of year, scenario, year and month. Depending from the data type, they are stored per wadi endpoint, wadi segment or groundwater unit (see chapters 3.5.1 – 3.5.3). Additionally, the quality (salinity) parameters of the resource are written to these tables. The type of year indicates, whether a planning year is dry, median or wet in the comparison with the hydrological history. Groundwater and base flow resources, which are assigned to non-point sources, are undergoing certain intersection procedures (see chapter 3.5.1 and 3.5.2).

The chart allows the comparison of all natural resources (groundwater, base flow and flood flow), as the three values are charted in stacked column bars.

projections for	detailed reference	aggregated for
 15 months 8 planning horizons 3 types of year 3 scenarios 	groundwater basin, wadi endpoint and base flow segment.	 nation governorates surface water basins groundwater basins

This parameter dialog offers a set of parameters to choose from. In the spatial selection window you select a spatial unit for aggregation of the projected resources. You can select one of the three scenarios, one of the three types of year. You chart the volumes without water quality consideration or you select one specific salinity class.

Sample results:

Projections for ground and surface water for governorate AL KARAK Scenario 2, Type of year = Wet (Hydrological years)

The chart shows the natural water resources for governorate AI Karak, divided in the three classes groundwater, flood flow and base flow. For the years greater than 2020 no groundwater and flood flow values were projected.

3.6. Data Type: Waste Water

Available C	harts/Tables
Projection of total treated effluent	o
O Projection of domestic and touristic treated effle	o
O Projection of industrial treated effluent	o
0 -	o
0 -	0.
Spatial selection	Close

3 different chart types are available for the wastewater resources.

3.6.1 Chart Type: Projections of Total Treated Effluent

The Projection of total treated effluent are the future waste water resources estimations calculated by the sector managers by using the pre-processing modules. They are based on the estimated demand values (municipal, touristic, industrial). The values are stored in the Oracle WIS STP table JORDAN.STP_WWTP per Facility ID, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to this table. The table JORDAN.FACILITIES stores information about the owner.

projections for		detailed reference	aggregated for
• •	15 months 8 planning horizons 3 scenarios	Facility ID	 nation governorates districts surface water basins service zones

📾 Wastewater - Projection of total treated effluent, 1 Governorate					
Scenario(s)		lwner			
🔽 Scenario 1		WAJ			
🔽 Scenario 2		Private			
Scenario 3	(Nor	ne selected: both)			
Projected years	Type of year	First output screen			
Starting year 2005	C Hydrological	Chart			
Ending year 2040 -	Calendar	C Table			
Proceed		Close			

The "Projection of total treated effluent" parameter dialog offers a set of parameters to choose from. You choose one or more scenarios for plotting the chart, you can distinguish between plants by their owner. You have to indicate the years you are interested in. **Restrictions:** If you want to plot more than one scenario in a chart, or if you want to distinguish by the plant owner you cannot select more than one treatment plant or aggregation unit in the spatial selection window. If you select two or more plants, the parameter dialog will not allow multiple selections in the scenario section.

	multiple governorates	multiple scenarios	considering owner
governorates	>1	1	1
scenarios	1	>1	1
owner	1 class or sum	1 class or sum	> 1 class

Sample results:

Comparison of the three scenarios for Irbid

60, 192 65.774 73908 64 597 As Sama Wind Happon 0,384 0.594 0.774 0,932 Only for 5 of the ten selected

201

1 (138

0.897

0,897

2019

1.619

1,167

1,090

2020

2.249

1,406

1,245

Projection of total treated effluent for 10 wwt

plants Scenario 1 (Calendar years)

50

80 70

ED

50

40 30

20

tū

0 2005

0,000

0,000

0,545

treatment plants data is available.

3.6.2 Chart Type: Projections of Domestic and Touristic Treated Effluent

Data Type Waste Water

> Chart Type Projection of domestic and touristic treated effluent

Oracle Access Rights for JORDAN.STP_WWTP JORDAN.FACILITIES JORDAN.STP_INDUSTRY

The Projection of total treated effluent are part of the future waste water resources estimations calculated by the sector managers by using the pre-processing modules. They are stored in the Oracle WIS STP table JORDAN.STP WWTP per Facility ID, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to this table. To calculate the domestic and touristic waste water, the industrial produced wastewater (JORDAN.STP_INDUSTRY) has to be subtracted from the total.

projections for		detailed reference	aggregated for
• •	15 months 8 planning horizons 3 scenarios	Facility ID	 nation governorates districts surface water basins service zones

😰 Wastewater - Projection of domes	stic and touristic treated	effluent, 1 Governorate	х
Scenario(s)		Owner	
🗹 (Scenario 1		WAJ	
🗖 Scenario 2		Private	
🗖 Scenario 3	(N	one selected: both)	
Projected years	Type of year	First output screen	
Starting year 2005 -	O Hydrological	Chart	
Ending year 2040 -	 Calendar 	C Table	
Proceed		Close	
			//

The "Projection of domestic and touristic treated effluent" parameter dialog offers a set of parameters to choose from. You choose one or more scenarios for plotting the chart and you can distinguish between plants by their owner. You have to indicate the time period you are interested in.

Restrictions: If you want to plot more than one scenario in a chart, or if you want to distinguish by the plant owner you cannot select more than one treatment plant or aggregation unit in the spatial selection window. If you select two or more plants, the parameter dialog will not allow multiple selections in the scenario section.

	multiple governorates	multiple scenarios	considering owner
governorates	>1	1	1
scenarios	1	>1	1
owner	1 class or sum	1 class or sum	> 1 class

Results:

	A	В	С	D	E	F	
1	Projection of a						
2	Scenario 1 (C	alendar years)					
3							
4	Governorate	2005	2010	2015	2020	2025	
5							
6	AMMAN	7,558	10,963	13,472	15,222	18,285	
7	AL AQABAH	4,619	5,567	5,267	4,335	5,652	
8	AL KARAK	0,581	1,403	1,879	2,178	1,378	
9	MADABA	3,679	5,743	6,862	6,592	6,287	
10	MAAN	1,171	1,676	2,038	2,279	2,065	
11	AT TAFILAH	0,324	0,653	0,875	1,080	1,017	
12							
13	Total	17,933	26,005	30,394	31,686	34,684	
14							

table view of the left chart

3.6.3 Chart Type: Projections of Industrial Treated Effluent

Data	Typ	e
W	/ast	e Water
		Chart Type Projection of industrial treated effluent

Oracle Access Rights for JORDAN.FACILITIES JORDAN.STP_INDUSTRY

The Projection of industrial treated effluent are part of the future waste water resources estimations calculated by the sector managers by using the pre-processing modules. They are stored in the Oracle

WIS STP tables JORDAN.STP_WWTP per Facility ID, scenario, year and month. Additionally, the quality (salinity) parameters of the resource is written to this table. The treatment plant master file JORDAN.FACILITIES stores information about owner and type of the plant etc..

projections for		detailed reference	aggregated for
•	15 months8 planning horizons3 scenarios	Facility ID	 nation governorates districts surface water basins service zones

The "Projection of industrial treated effluent" parameter dialog offers a set of parameters to choose from. You choose one or more scenarios for plotting the chart and you can distinguish between plants by their owner. You have to indicate the time period you are interested in.

Restrictions: If you want to plot more than one scenario in a chart, or if you want to distinguish by the plant owner you cannot select more than one treatment plant or aggregation unit in the spatial selection window. If you select two or more plants, the parameter dialog will not allow multiple selections in the scenario section.

	multiple governorates	multiple scenarios	considering owner
governorates	>1	1	1
scenarios	1	>1	1
owner	1 class or sum	1 class or sum	> 1 class

Results:

	A	В	С	D	E		
1	Projection of industrial treated effluent for 12 governorates						
2	Scenario 1 (C	alendar years)					
3							
4	Governorate	2005	2010	2015	2020		
5							
6	AMMAN	0,016	0,020	0,025	0,029		
7	AL AQABAH	0,904	1,123	1,402	1,646		
8	AL BALQA	0,089	0,111	0,138	0,162		
9	IRBID	1,277	1,393	1,594	1,788		
10	JARASH	0,000	0,000	0,000	0,000		
11	MADABA	0,034	0,042	0,053	0,062		
12	AL MAFRAQ	0,048	0,059	0,074	0,087		
13	AZ ZARQA	1,778	2,296	2,891	3,499		
14							
15	Total	4,146	5,045	6,177	7,273		

Projection of industrial treated effluent for the governorates table view of the industrial treated effluent for all Amman and Madaba.

governorates of Jordan.

3.7. Data Type: Water Transfer

Avail	able Charts/Tables	
	_	
 Imported and exported water 	с.	
C List of network transfers	<u>o</u> .	
0 -	<u>o</u> .	
0.	<u>o</u> .	
0.	<u>o</u> .	

2 different chart types are available for the irrigation demands.

3.7.1 Chart Type: Imported and Exported Water

The Projection of imported and exported water are the future water transfer estimations calculated by the sector managers by using the pre-processing modules. They are stored in the Oracle WIS STP table JORDAN.STP_TRANSFER per transfer point, scenario, year and month. Additionally, quality (salinity) parameters of the water volumes is written to this table. The type of the transfer point (IN/OUT) is stored in the table JORDAN.TRANSFER_POINTS. The transfer losses occur as an additional demand at the transfer in point and are stored in the table JORDAN.STP_TRANSFER_LOSSES.

pro	ojections for	detailed reference	aggregated for
• •	15 months 8 planning horizons 3 scenarios	-	nationgovernorates

🖀 Water transfer - Imported and exported water, 1 Governorate 🛛 🔀							
Select scenario(s)	Salinity class(es)						
🔽 Scenario 1	Class 1						
🗖 Scenario 2	Class 2						
🗖 Scenario 3	Class 3						
	(None selected: sum of all classes)						
Projected years Year type	First output screen						
Starting year 2005 - O Hydrologic	al 💿 Chart						
Ending year 2040 - Calendar	C Table						
Proceed	Close						

The "Imported and exported water" parameter dialog offers a set of parameters to choose from. Selection of a scenario is compulsory, the selection of a salinity class optional. The user has to select the years he is interested in.

SA11D-43

Restrictions: The three values water import, water export and transfer losses are drawn in stacked column charts using MS Excel. Due to restrictions under Excel, it is not possible to plot more than one scenario or more than one salinity class in one chart, as there are already several bars drawn for the different planning years. If you do not check any of the salinity check boxes, the program will not consider water quality and therefore summarize the water volumes of the different salinity classes.

Results:

Imported and exported water for governorate Irbid

3.7.2 Chart Type: List of Network Transfers

	A	В	С	D	E	
1	Imported and ex	ported water f	IRBID			
2	Scenario 1 (Hyd	rological year:	з)			
3						
4	Transfer type	2005	2010	2015	2020	
5						
6	Transfer losses	0,000	0,000	0,000	0,000	
7	Exported water	-95,609	-95,609	-95,609	-95,609	
8	Imported water	142,738	142,738	142,738	142,738	
9						
10	Total	47,129	47,129	47,129	47,129	
11						

The table view of the left chart

Oracle Access Rights for JORDAN.MONTHLY_PRODUCTION JORDAN.TRANSFAR_SYSTEMS JORDAN.TRANSFER_POINTS

The list of network transfers gives the water volumes, which were transferred between the governorates in the past. The volumes were recorded and stored in the Oracle table JORDAN.MONTHLY_PRODUCTION. The network topology is implemented in the tables JORDAN. TRANSFER_SYSTEMS, JORDAN.TRANSFER_POINTS and JORDAN.TRANSFER_STATIONS. Every transfer system has a record in the table JORDAN.TRANSFER_SYSTEMS. All the related transfer points can be found in the points table JORDAN.TRANSFER_POINTS with an indicator, whether the point is an input point or an output point. Every point can have several connected stations.

This relation is stored in the JORDAN.TRANSFER_STATI ONS table. And for every station, there are values in the MONTHLY_PRODUCTION table. Refer to the documentation of the transfer pre-processing module for details. This SQL query result comes

as a cross table without an Excel chart. It makes sense to select all governorates of the kingdom using the table selection option in the spatial selection window.

After the selection of the governorates, the DVS program checks the data availability within the historical period of 10 years. The list of years where data is available (was recorded) is given in the following window where the user makes his selection.

Water transfer - List of	network transfers, 12 Gov	ernorate	
	Year		
	1998		
	1995		
	1337 1998		
Proceed	1	Close	
Proceed		Close	

The resulting spread sheet gives the water transfer matrix of all governorates which are linked by the existing transfer system.

historical values for	detailed reference	aggregated for
variable, depends on the transfer system	-	nationgovernorates

Results:

	A	В	С	D	E	F	G	Н		
1	Transferred w	ter between g	jovernorates in	1998						
2										
3	From \ To	AL BALQA	AL MAFRAQ	AMMAN	AZ ZARQA	IRBID	JARASH	MAAN	MADABA	
4	AJLOUN					475703				
5	AL BALQA			489149		95741800	107894760			
6	AL KARAK			218777						
7	AL MAFRAQ				150030					
8	AMMAN	542599			17606301				5202039	
9	AT TAFILAH							523125		
10	AZ ZARQA		13945955							
11	IRBID	105376399	3099203							
12	JARASH		319756		297018	713558				
13	MADABA			5774349						
4.4										

The Excel spreadsheet shows the matrix of the transferred water volumes for 1998.

3.8. Data Type: Water Resources Potential

E Water resources potential Available (Charts/Tables	×	6 different chart types are available for the irrigation
 Renewable groundwater potential Non-renewable fresh ground water potential Brackish groundwater potential Total ground water potential Surface water potential 	Total natural water resources Total natural water resources		demanus.
Spatial selection	Close		

3.8.1 Chart Type: Renewable groundwater Potential

The renewable groundwater potential is the output of the JICA study. The groundwater volumes are aggregated for the 12 governorates of Jordan. It is available as an MS Excel table and an ArcView map for visualization. The DVS loads both the static table and the static map view to the MS Excel environment.

Static values! The values does not come from the Oracle WIS. Data source is an Excel sheet!

3.8.2 Chart Type: Non-Renewable Fresh Groundwater Potential

The non-renewable fresh groundwater potential is the output of the JICA study. These "fossil" groundwater volumes of salinities below a certain value are aggregated for the 12 governorates of Jordan. The values are available as an MS Excel table and an ArcView map for visualization. The DVS loads both the static table and the static map view to the MS Excel environment.

Static values! The values does not come from the Oracle WIS. Data source is an Excel sheet!

3.8.3 Chart Type: Brackish Groundwater Potential

The brackish groundwater potential is the output of the JICA study. These "fossil" groundwater volumes with a salinity above a certain limit are aggregated for the 12 governorates of Jordan. The values are available as an MS Excel table and an ArcView map for visualization. The DVS loads both the static table and the static map view to the MS Excel environment.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet

3.8.4 Chart Type: Total Groundwater Potential

The total groundwater potential is the output of the JICA study. These "fossil" groundwater volumes of all salinities are aggregated for the 12 governorates of Jordan. The values are available as an MS Excel table and an ArcView map for visualization. The DVS loads both the static table and the static map view to the MS Excel environment.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet!

3.8.5 Chart Type: Surface Water Potential

Oracle Access Rights for NONE

Data is coming from EXCEL sheet surface_water.xls

The surface water potential is the output of the JICA study. No subdivision in flood flow and base flow was made. The values are available as an MS Excel table and an ArcView map for visualization. The DVS loads both the static table and the static map view to the MS Excel environment.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet

3.8.6 Chart Type: Total Natural Water Resources

Ground Water Potential per governorate based on percentage of basin area within governorate (I GW/governorate = | Percentage of Basin area within governorate * Total GW potential per basin) Oracle Access Rights for NONE

Data is coming from EXCEL sheet total_resources.xls

The total natural water resources are the sum of the total groundwater resources and the total surface water resources. is the output of the JICA study. No subdivision in flood flow and base flow was made. The values are available as an MS Excel table and an ArcView map for visualization. The DVS loads both the static table and the static map view to the MS Excel environment.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet

3.9. Data Type: Water Allocation

Available C	narts/Tables	available for water allocation
 Water demand projections 	о.	
O Water resources projections	O .	
O Projections for import, export and locally produc	O .	
Projected transfered water between governora	O -	
O -	O .	
Spatial selection	Close	

3.9.1 Chart Type: Water Demand Projections

The estimated and calculated values for the projected water demand (2005-2020) is an output of the JICA studies. The historical year of 1998 was added to the projections as a reference. The values are available on a governorate-level and they are stored in Excel sheets. The DVS allows the spatial selection of one governorate or the whole nation. The program extracts the estimated water volumes from the Excel sheet and arranges them in standardized charts under MS Excel.

pro	jections for	detailed reference	aggregated for
•	1 historical year 4 planning horizons	-	nationone governorate

Demand projections for governorate Madaba

Restrictions: You can select only one governorate in the spatial selection window. As the demand is classified in 5 demand types which are plotted in Stacked Column charts, the restrictions of MS Excel do not allow to plot several governorates in one chart.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet

3.9.2 Chart Type: Water Resources Projections

The estimated and calculated values for the projected water resources (2005-2020) is an output of the JICA studies. The historical year of 1998 was added to the projections as a reference. The values are available on a governorate-level and they are stored in Excel sheets. The DVS allows the spatial selection of one governorate or the whole nation. The program extracts the estimated water volumes from the Excel sheet and arranges them in standardized charts under MS Excel.

pro	jections for	detailed reference	aggregated for
•	1 historical year	-	nation
•	4 planning horizons		governorates

Water resources projections in governorate Ma'an

Restrictions: You can select only one governorate in the spatial selection window. As the resources are classified in 5 resource types which are plotted in Stacked Column charts, the restrictions of MS Excel do not allow to plot several governorates in one chart.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet

3.9.3 Chart Type: Projections for Import, Export and Locally Produced Water

The estimated and calculated values for the projected water import, export and production (2005-2020) is an output of the JICA studies. The historical year of 1998 was added to the projections as a reference. The values are available on a governorate-level and they are stored in Excel sheets. The DVS allows the spatial selection of one governorate or the whole nation. The program extracts the estimated water volumes from the Excel sheet and arranges them in standardized charts under MS Excel.

pro	pjections for	detailed reference	aggregated for
•	1 historical year	-	nation
•	4 planning horizons		 governorates

Local water production, import and export in governorate Amman

Restrictions: You can select only one governorate in the spatial selection window. As the values are classified in 3 types (export, import, locally produced), which are plotted in Stacked Column charts, the restrictions of MS Excel do not allow to plot several governorates in one chart.

Static values!

The values does not come from the Oracle WIS. Data source is an Excel sheet

3.9.4 Chart Type: Projected Transferred Water between Governorates

3.9.4.1 Chart Type: Projections of Import/Export of Water between Governorates

The estimated and calculated values for the projected import and export of water between governorates is an output of the JICA studies. The values are available inseveral Excel sheets. One of them is a complex pivot table which allows user interaction and which links the base data from the other two spread sheets. Due to the complexity of the data which is involved in each graph, this system was implemented different than all the other systems in the DVS.

The graphs can show all the following parameters:

- Projected years
- Importing Governorate
- Exporting Governorate
- Type of water imported
- Purpose of water use
- Quantity of water imported.

The visualization is done again under EXCEL but using a pivot table that contains all the data that needs to be visualized linked to a charting system that changes according to changes made in the pivot table. A detailed description of the Excel application is given in Annex A2.

The number of charts that can be generated is only dependent on the imagination of the user, it depends on what the user wants from the chart.

SA11D-53

3.9.4.2 Chart Type: Projections of Inter-Governorate Transfer in Major Pipelines

The estimated and calculated values for the projected inter-governorate transfer (2005-2020) is an output of the JICA studies. The values are available in an ArcView project. For every planning horizon, a Screenshot of a map showing the transfer volumes was prepared and stored on Excel sheets. The DVS asks for the year of interest and shows the map and its base table in MS Excel.

projections for	detailed reference	aggregated for		
4 planning horizons	-	 nation, showing details on the transfer lines 		

Pipe- line	Year	Proposed/	Pipe Dia.	From	То	Transfer Volume	Transfer Volume	Transfer Volume Consumed
No.		Existing	(mm)			Total	to Other Gov.	Locally
						(MCM/year)	(MCM/year)	(MCM/year)
1	2005	Existing	600	Abu-Alanda reservoii	Khaw pump station	0	0	0
2	2005	Existing	600	Zataray pump station	Khaw pump station	11	11	0
3	2005	Existing	600	KM124 pump station	Zatary pump station	11	11	0
4	2005	Existing	600	Houfa pump station	Zatary pump station	0	0	0
5	2005	Existing	200/400	Houfa pump station	Ajloun/Jerash	1	1	0
6	2005			Qastal PS	Madaba PS			
7	2005			Branch PS	Ma'an reservoir			
8	2005	Proposed	1200	Wehda Dam WTP	Zabda reservoir	22	0	22
9	2005	Existing	1200/1200 x 2 lines	Deir Alla PS	Dabouq reservoir	43	36	7
10	2005	Proposed	1200	Mujib reservoir	Zara/Ma'in reservoir	32	31	1
11	2005	Proposed	1200	Zara/Ma'in DS	Sweima PS	36	25	11
12	2005	Proposed	1200	Sweima PS	Muntazah (National Park) PS	32	31	1
13	2005			Disi Transmission PS	Abu Alanda reservoir			

The attributes behind the Maps are as shown below: