Annex to 3.4.1 Description Of Proposed Measures For Wastewater **Collection, Treatment And Disposal**

Contents

EXISTING TREATMENT PLANTS

2. AQABA			
3. AS SAMRA	1.	ABU NUSEIR	SA3-156
4. BAQA	2.	AQABA	SA3-161
5. FUHIS	3.	AS SAMRA	SA3-167
6. IRBID CENTRAL	4.	ВАОА	SA3-178
7. JERASH EAST	5.	FUHIS	SA3-183
8. KARAKSA3-1 9. KUFRANJASA3-2 10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	6.	IRBID CENTRAL	SA3-187
9. KUFRANJASA3-2 10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	7.	JERASH EAST	SA3-194
10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	8.	KARAK	-SA3-199
10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	9.	KUFRANJA	SA3-205
12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	10.		
13. RAMTHA SA3-22 14. SALT SA3-22 15. TAFIELAH SA3-22 16. WADI ARAB SA3-22	11.	MADABA	SA3-216
13. RAMTHA SA3-22 14. SALT SA3-22 15. TAFIELAH SA3-22 16. WADI ARAB SA3-22	12.	MAFRAO	SA3-222
15. TAFIELAHSA3-2 16. WADI ARABSA3-2	13.	e e e e e e e e e e e e e e e e e e e	
15. TAFIELAHSA3-2 16. WADI ARABSA3-2	14.	SALT	-SA3-234
16. WADI ARAB SA3-2-	15.		
	16.		

TREATMENT PLANTS UNDER CONSTRUCTION

18.	WADI HASSAN	SA3-253
19.	WADI MOUSA	SA3-258

PLANNED TREATMENT PLANTS

20.	AL JEEZA	SA3-265
21.	AL MAZAR AL SHAMALI	SA3-272
22.	DAIR ABI SAID	SA3-276
23.	DAIR ALLA	SA3-281
24.	JERASH WEST	SA3-286
25.	KOFUR ASAD	SA3-290
26.	AQABA SOUTH COAST	SA3-295
27.	NAUR	SA3-299
28.	NORTH QUEEN ALIA AIRPORT	SA3-304
29.	NORTH JORDAN VALLEY	SA3-311
30.	SHUNA SOUTH	SA3-319
31.	TORRA	SA3-324
32.	UM AL BASATEEN	SA3-329
33.	WADI SHALLALA	SA3-330
34.	WADI ZARQA	SA3-339
35.	MAZAR, MUTA, ADNANIYA	SA3-344
36.	DEAD SEA EAST COAST	SA3-348

Page

28. NORTH QUEEN ALIA AIRPORT TREATMENT PLANT

1. Long term development in South Amman Area

According to the Consultants Study Report the long-term strategy for the South Amman Area foresees two independent sewerage schemes and two wastewater treatment plants:

- *North Queen Alia Airport Treatment Plant (eastern drainage area)* This treatment plant will receive the wastewater of the eastern drainage area.
- *Al Jeeza Treatment Plant (western drainage area)* This treatment plant will receive the wastewater of the western drainage area.

Details of proposed Al Jeeza system are given under Section 20.

2. Proposed North Queen Alia Airport Treatment Plant

Figure 28.1 shows the layout of the proposed sewerage system, which will be implemented in 3 Phases.

The project foresees the construction of the North Queen Alia Airport Treatment Plant designed for the wastewater production in 2020. It will be based on an extended aeration process including maturation ponds for tertiary treatment. Produced sludge will be treated by sludge holding tanks and drying beds. Figure 28.2 shows the proposed treatment system. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will be implemented in two phases, whereby the final capacity will be reached

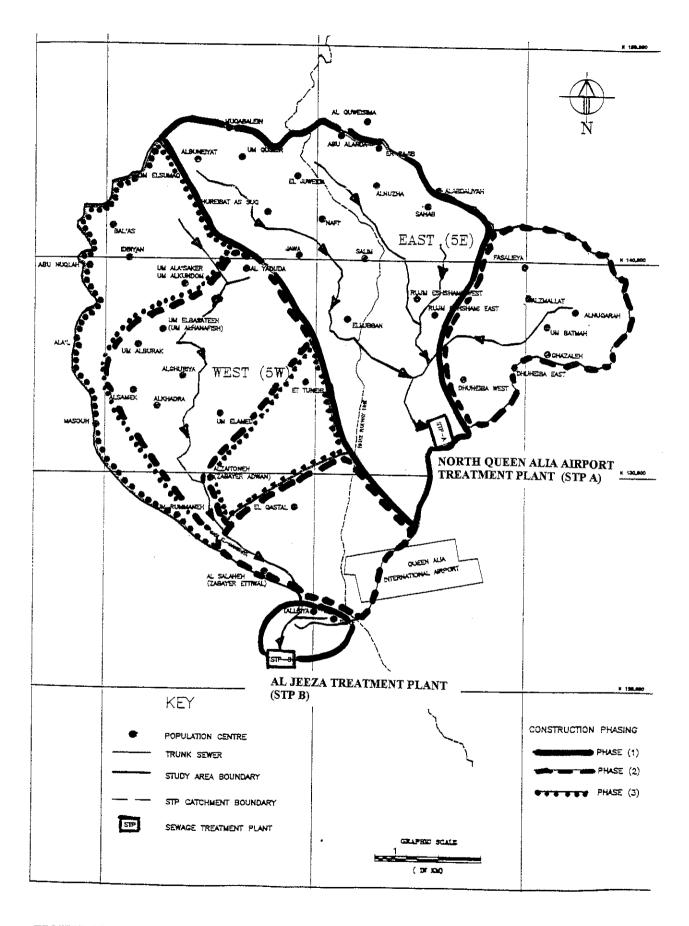
in 2020: 28,500 m³/d (283,000 connected inhabitants)

The effluents could supply irrigation water for an area of about 460 ha in 2020 taking into account the demand for alfalfa, barley and sudan grass as summer crops and barley and ryegrass as winter crop (see following table). Suitable land for irrigation was identified northwest of the treatment plant. A 1.5 km long transmission main to areas will be constructed to discharge treated effluent by gravity to the land. Proposed wastewater reuse areas are presented in the Figure 28.3.

The investment costs (Phase 1, 2 and 3) excluding engineering and contingencies (based on 1994 prices) are:

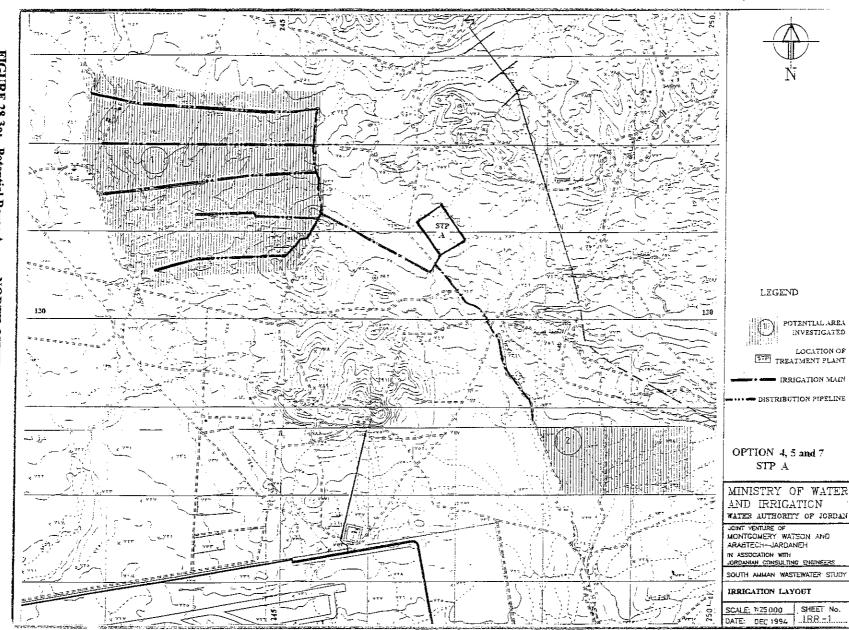
Treatment plant	8.44 million JD
Local sewerage	22.46 million JD
Collector sewerage	5.71 million JD
Trunk sewerage	4.78 million JD
Irrigation facilities	2.83 million JD
Total capital costs	44.22 million JD

Investment costs subdivided in Phases 1 (2002/11), 2 (2012/20) and 3 (2021/26) are as follows:


(price basis 2000, in mio. JD)

	Phase 1	Phase 2	Phase 3
Treatment plant	18.04	3.99	4.77
Local sewerage	5.45	0.68	0.68
Collector sewerage	5.42	0.29	0
Trunk sewerage	8.06	0	2.01
Subtotal capital costs	36.98	4.96	7.47
Engineering +Contingencies (30%)	11.09	1.49	2.24
Total	48.07	6.45	9.71

Consultant's Study Report:


Montgomery Watson: "Technical and economic Feasibility Study and detailed Final Design of the collection, treatment and reuse of wastewater from communities South of Amman. Feasibility Study", June 1995

Volume I: Main Report Volume II: Drawings

FIGURE 28.1: General Layout of Proposed Sewerage System - NORTH QUEEN ALIA AIRPORT

FIGURE 28.2: SRS EQ L5 PF SB INFLUENT FBP OFF A A A A Layout of Proposed Wastewater Treatment Plant - NORTH QUEEN ALIA AIRPORT (ALTERNATIVE) 5 50 <u>6</u> 50 650 <u>6</u>50 SH LEGEND MAIN SDB SDB SDB DC DIVERSION CHAMBER М1 Μ1 М1 М1 LS LIFTING STATION ELEC SDB SDB SDB SC SCREEN SRS SEPTAGE RECEIVING STATION GR GRIT CHAMBER SDB SDB SDB М2 М2 М2 М2 EO EQUALIZATION TANK SDB SDB SDB PF PARSHALL FLUME _____ A AERATION TANK М3 M3 MЗ М3 SD SEDIMENTATION TANK SDB SDB SDB М MATURATION TANK _____ ----CH CHLORINE CONTACT CHAMBER SDB SDB SDB CLB CHLORINE BUILDING М4 М4 М4 Μ4 ST STORAGE TANK SB SPLITTER BOX SH SLUDGE HOLDING TANK SDB SLUDGE DRYING BEDS FBP FILTER BELT PRESS ST ŞŢ E **EFFLUEN1** OFF CONTROL BUILDING /OFFICES/LAB cue MAIN MAINTENANCE & STORE BUILDING ELEC HV/TRANSFORMER BUILDING SLUDGE RETURN PUMP STP4.5 & R48 & 78 STP 7D STP 7E+7C STP 4C STP 5B W L W D Ð L £ LWD L W D L D LIFTING STATION 6 12 8 8 3 б 3 3 ---15 6.2 MINISTRY OF WATER 30 30 AND IRRIGATION EQUALIZATION TANK 2.7 85 85 27 6.5 2 14 6.5 2.7 2 11 2.8 16.5 WATER AUTHORITY OF JORDAN AERATION TANK 4 112 44 3.5 30 10 3.5 28 14 3.5 7.5 58 26 3.5 67 29 3.5 15 JOINT VENTURE OF MONTGOMERY WATSON AND SEDIMENTATION TANK 45 11 4 13 3.2 4.2 134 4542 6 4.2 19 6.3 4.2 22 7.5 4.2 ARABTECH-JARDANEH MATURATION TANK 16 120 61 33 6.5 40 20 59/31 1 62 32.4 1 1 2 IN ASSOCIATION WITH JORDANIAN CONSULTING ENGINEERS CHLORINE CONTACT 40 3.05 1. 14 6.5 .5 3.2 16.5 19 8.5 1.2 14 6 8 1 2 1.2 CHAMBER SOUTH AMMAN WASTEWATER STUDY 33 17 3 13 13 EXTENDED AERATION STORAGE TANK 2 82 82 3 20 20 42 42 48 3 3 - 3 LAYOUT MECHANICAL SLUDGE DRY DRYING DRYING MECHANICAL MECHANICAL NOTE N.T.S SHEET No. BEDS BEDS SCALE: (FBP) EDS TREATMENT (FBP) (FBP) ALL DIMENSIONS SHOWN ARE IN METRES EA-- 1 DATE:

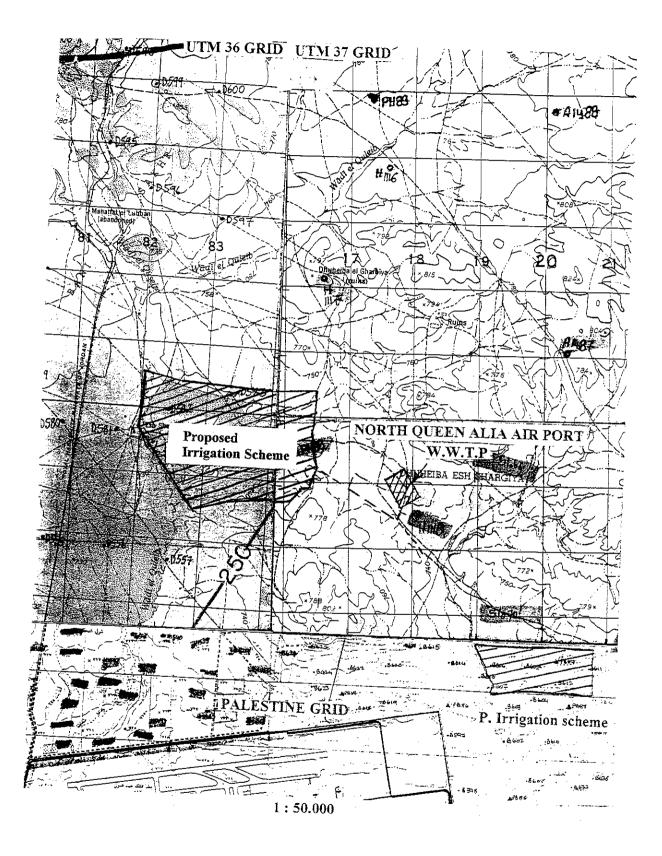


FIGURE 28.3b: Potential Reuse Areas - NORTH QUEEN ALIA AIRPORT (acc. to Min.of Agriculture)

(acc. to Consultant's Study Report of Montgomery Watson 1995)

PROJECTION OF WASTEWATER PRODUCTION OF TREATMENT PLANT: 28 NORTH QUEEN ALIA AIRPORT

SCENARIO 0 "Consultants' Study"

SCENARIO U "Consultante	Sindy	(acc. to Consult	•	Dption 5: Sewa		•	4)
Basic data:					ge Headhent		<u>ر</u>
Population in 1994:	135.300)					
Growth rate (previous period) Spec.water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d m³/d	1994 76	2000 2,82 89	2005 2,90 97	2010 2,90 105	2015 2,90 113	2020 2,90 121
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD₅/c/d	0 0,85 0 65	0 0,85 0 65	100 0,85 0 65	100 0,84 0 65	100 0,84 0 65	100 0,83 0 65
	Unit	1 99 4	2000	2005	2010	2015	2020
Population Connected (sewerage) Not connected (sewerage)	с с	135.300 0 135.300	159.869 0 159.869	184.434 184.434 0	212.773 212.773 0	245.468 245.468 0	283.185 283.185 0
Water demand Domestic demand Commercial demand Small industrial demand	l/c/d m³/d m³/d m³/d	76 10.283	89 14.228	97 17.890	105 22.341	113 27.738	121 34.265
Pastoral demand	m³/d m³/d	10.283	14.228	17.890	22.341	27.738	34.265
Wastewater production Return flow (w.demand) Losses/inflow	m³/d m³/d	0 0	0 0	15.207 0	18.767 0	23.300 0	28.440 0
Total	m³/d m³/month m³/a	0 0 0	0 0 0	15.207 456.197 5.550.394	18.767 562.998 6.849.811	23.300 698.993 8.504.418	28.440 853.209 10.380.714
Pollutional load Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD₅/d kgBOD₅/d kgBOD₅/d kgBOD₅/d	0	· 0	11.988	13.830	15.955	18.407
Total load	kgBOD₅/d	0	0	11.988	13.830	15.955	18.407
Reuse of wastwater Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap Effluent of treatment plant Net water demand per ha Irrigable reuse area	%	0 0 0 0	0 0 0 55 0	5.550.394 10 555.039 4.995.354 55 249	6.849.811 10 684.981 6.164.830 55 307	8.504.418 10 850.442 7.653.976 55 381	10.380.714 10 1.038.071 9.342.642 55 465

Water demand for irrigation MOA's proposal:

Alfalfa, barley, ryegrass Summer crops: Winter crops: 55 m³/d/ha Alfalfa, sudan grass barley, ryegrass

29. NORTH JORDAN VALLEY TREATMENT PLANT

The proposed North Jordan Valley Scheme (Shuna North Scheme) area is located in the northern part of Jordan Valley extending from Adasiyyah in the north to Sleikhat in the south. Presently, there exists no sewerage system. The following communities will be connected to the proposed scheme:

Phase 1 (2001/03):	North Shuna, Sheikh Hussein, Zemalia, Tabquat Fahl, Masharie, Wadi El Yabis				
Phase 2 (2008/10): Manshiya, Waqqas, Merrazeh, Abu Habeil, El Qarn					
Phase 3 (2018/20):	Adasiya, Sakneh, Fadin, Sleikhat				

Figure 29.1 shows the layout of the proposed sewerage system (Study Report of Metcalf & Eddy). Without any alternative project proposals and studies the design considers an almost 40 km long main collector with 9 pump stations in the final phase.

This long trunk main will lead to enormous odor (among other) problems, because the flow time will be up to one day and the long term average monthly temperatures are rather high (between 14 and 30 $^{\circ}$ C).

The project foresees the construction of the North Jordan Valley Treatment Plant designed for the wastewater production in 2020. It will be based on an extended aeration process (modified Ludzak-Ettinger process) including nitrogen removal. Rapid sand filtration is proposed as tertiary treatment. Produced sludge will be treated by gravity thickeners and drying beds. Figure 29.2 shows the proposed treatment system.

The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The projection of collected wastewater considers continuously 24 l/c/d for infiltration/inflow allowance, which seems unrealistic because the groundwater table is generally 10 m below ground level. The plant will be implemented in two phases, whereby the final capacity will be reached

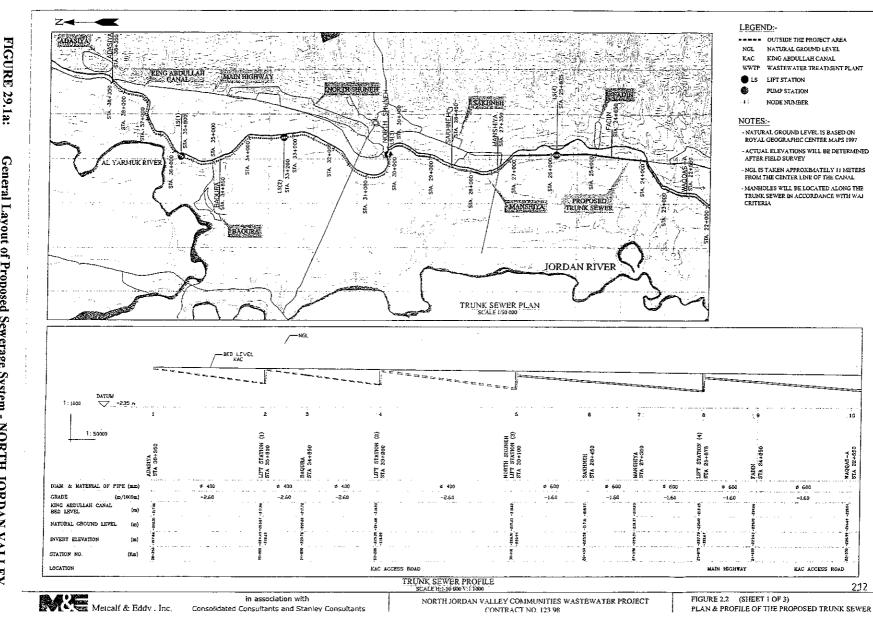
in 2025: 10,700 m³/d (112,000 connected inhabitants) and in 2015: 7,700 m³/d (86,000 connected inhabitants)

The effluents could supply irrigation water for an area of about 500 ha in 2020 taking into account the demand for mixed crop pattern (see following table). Irrigable land is available south and west of the site. Treated effluent will be pumped to a elevated reservoir and from there discharged by gravity (1.1 km long pipeline) to the proposed land. Proposed wastewater reuse areas are presented in the Figure 29.3.

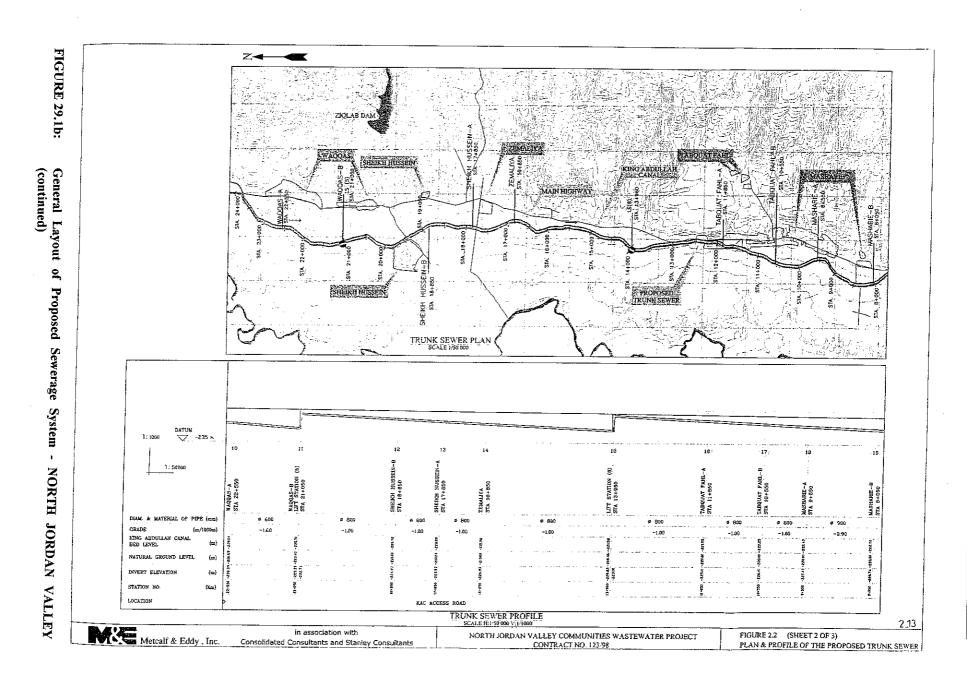
The investment costs based on 1999 prices are (Phase 1 measures only):

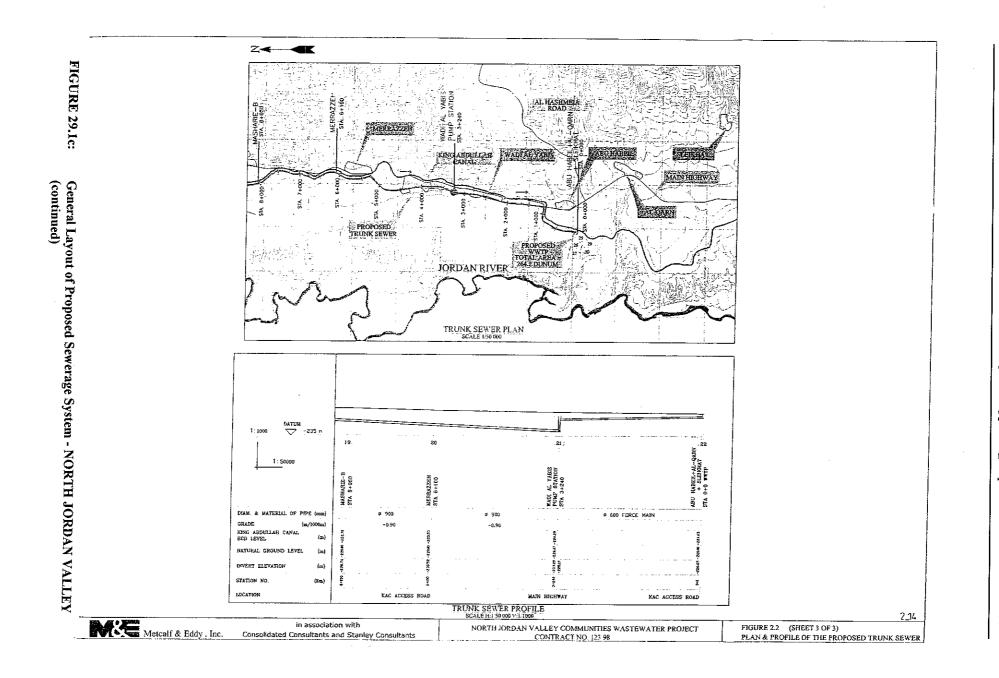
Treatment plant (primary and secondary treatment)	10.36 million JD
Networks	12.72 million JD
Reuse system	0.78 million JD

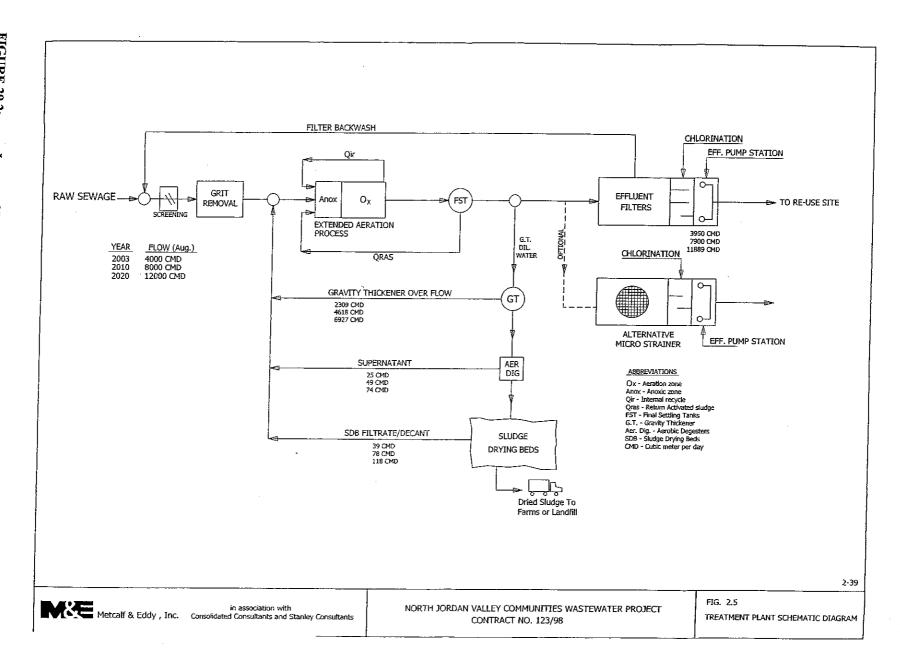
Misc. equipment	0.75 million JD
Total base costs Physical contingencies Engineering	24.61 million JD 3.69 million JD 2.92 million JD
Total investment costs	31.21 million JD

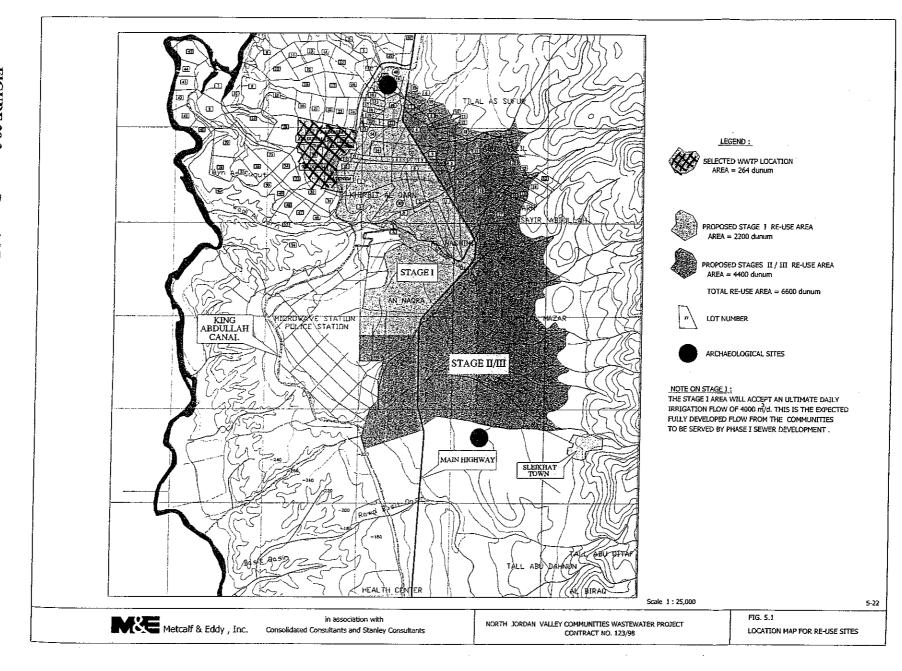

According to the Consultant's Study Report implementation of proposed construction measures is foreseen during the years 2001 to 2003 (Phase I).

Consultant's Study Report:


Metcalf & Eddy: "North Jordan Valley communities wastewater collection, transportation, treatment and reuse system. Project 1 – Phase I. Final Engineering Review Report", December 1999


Metcalf & Eddy: "North Jordan Valley communities wastewater collection, transportation, treatment and reuse system. Project 1 – Phase I. Final Preliminary Design Report", April 2000




The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

SA3-316

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

FIGURE 29.3: Potential Reuse Areas Ł NORTH JORDAN VALLEY

PROJECTION OF WASTEWATER PRODUCTION OF TREATMENT PLANT: 29 NORTH JORDAN VALLEY

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report of Metcalf & Eddy)

Basic data:

Basic uata:							
Population in 1994:	57.105						
Growth rate (previous period) Spec.water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d m³/d	1994 - -	2000 3,21 90	2005 3,09 97	2010 2,97 105	2015 2,84 112	2020 2,70 120
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD₅/c/d	0 0,8 0 65	0 0,8 33 65	74 0,8 31 65	80 0,8 29 65	80 0,8 27 65	80 0,8 25 65
	Unit	1994	2000	2005	2010	2015	2020
Population Connected (sewerage) Not connected (sewerage)	с с с	57.105 0 57.105	69.025 0 69.025	80.369 59.473 20.896	93.011 74.409 18.602	106.965 85.572 21.393	122.224 97.779 24.445
Water demand Domestic demand Commercial demand Small industrial demand Pastoral demand	l/c/d - m³/d m³/d m³/d m³/d	0	90 6.212	97 7.796	105 9.766	112 11.980	120 14.667
Total	m³/d	o	6.212	7.796	9.766	11.980	14.667
Wastewater production Return flow (w.demand) Losses/inflow Total	m³/d m³/d m³/d m³/month m³/a	0 0 0 0	0 0 0 0	4.615 1.431 6.046 181.373 2.206.709	6.250 1.813 8.063 241.889 2.942.981	7.667 2.070 9.737 292.121 3.554.144	9.387 2.347 11.733 352.005 4.282.724
Pollutional load Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD₅/d kgBOD₅/d kgBOD₅/d kgBOD₅/d	0	0	3.866	4.837	5.562	6.356
Total load	kgBOD ₅ /d	0	0	3.866	4,837	5.562	6.356
Reuse of wastwater							
Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap.) Effluent of treatment plant	m³/a % m³/a m³/a	0 0 0 0	0 5 0 0	2.206.709 5 110.335 2.096.374	2.942.981 5 147.149 2.795.832	3.554.144 5 177.707 3.376.436	4.282.724 5 214.136 4.068.588

Water demand for irrigation

Net water demand per ha

Irrigable reuse area

Mixed crop pattern

m³/d/ha

ha

22 m³/d/ha

22

261

22

348

22

420

22

0

22

507

0

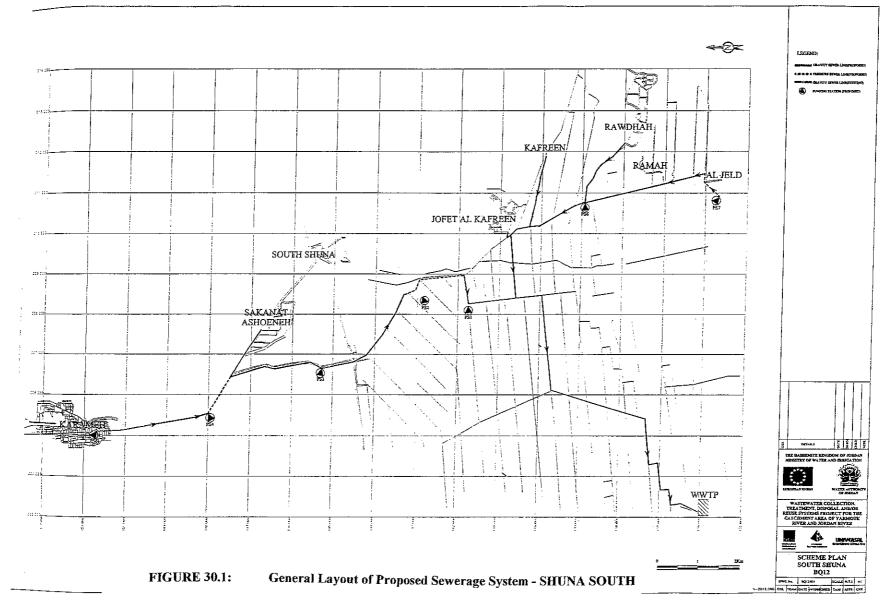
30. SHUNA SOUTH TREATMENT PLANT

The proposed Shuna South Scheme area is located in the south of Jordan Valley extending from Karamah in the north to Al Jeld in the south. Presently, there exists no sewerage system. The following communities will be connected to the proposed scheme: Karamah Rawdhah, Jofet Al Kafrein, Sakanat Ashoeneh, South Shuna, Ramah, Kafreen Al Jeld and Hamred&Jarga. Figure 30.1 shows the layout of the proposed sewerage system.

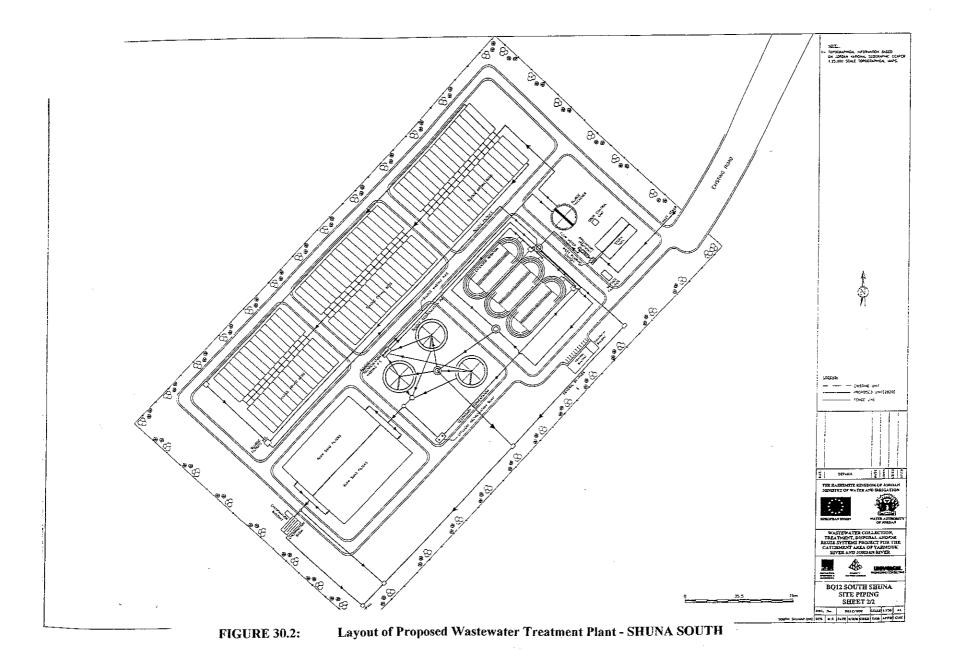
The project foresees the construction of the Shuna South Treatment Plant designed for the wastewater production in 2020. It will be based on an extended aeration process including slow sand filtration as tertiary treatment. Produced sludge will be treated by gravity thickeners and drying beds. Figure 30.2 shows the proposed treatment system. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will be implemented in two phases, whereby the final capacity will be reached

in 2020: $6,500 \text{ m}^3/\text{d}$ (58,900 connected inhabitants)

The effluents could supply irrigation water for an area of about 100 ha in 2020 taking into account the demand for alfalfa and sudan grass (see following table). Downstream of the treatment plant is no land suitable for irrigation. Irrigable land is available north and west of the site. A pump station together with a 3 km long rising main will be constructed to discharge treated effluent to the land. Proposed wastewater reuse areas are presented in the Figure 30.3.

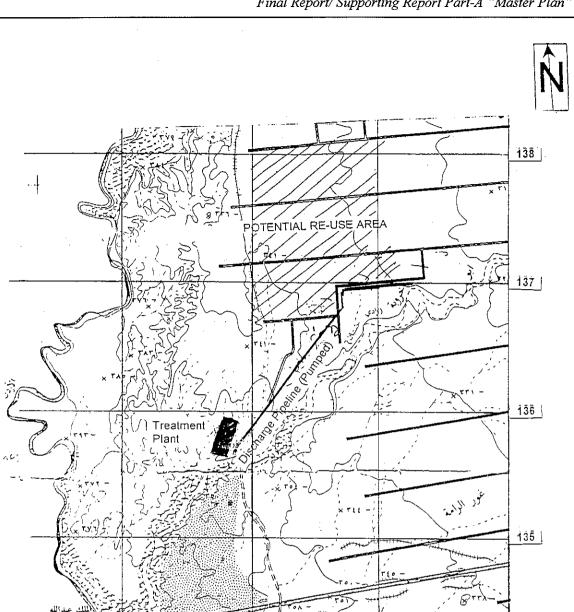

The investment costs based on 1998 prices are:

Treatment plant (primary and secondary treatment)	4.92 million JD
Networks	13.79 million JD
Tertiary treatment and pump station (reuse system)	1.72 million JD
Total base costs	20.42 million JD
Physical contingencies	2.04 million JD
Engineering	2.25 million JD
Total investment costs	24.71 million JD


According to the Consultant's Study Report implementation of proposed construction measures is foreseen during the years 2001 to 2003 (Phase I).

Consultant's Study Report:

TYPSA, Symonds Travers Morgan and Universal Engineering Consulting: "Wastewater collection, treatment, disposal and/or reuse systems project for the catchment area of Yarmouk River and Jordan River. Final Report", December 1998



SA3-320

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

SA3-321

POTENTIAL RE-USE AREA

202

SCHEME E

× TVT


203

BQ12 SOUTH SHUNA

x?

134

<u>502</u>

Potential Reuse Areas - SHUNA SOUTH

J.

204

PROJECTION OF WASTEWATER PRODUCTION OF TREATMENT PLANT:

30 SHUNA SOUTH

SCENARIO 0 "Consultants' Study" (acc. to Consultant's Study Report)							
Basic data:							
Population in 1994:	31.970						
Growth rate (previous period) Spec.water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d m³/d	1994 - -	2000 3,02 138	2005 3,02 138	2010 3,02 138	2015 3,02 138	2020 3,02 138
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD₅/c/d	0 0,8 0 65	0 0,8 0 65	85 0,8 0 65	85 0,8 0 6 5	85 0,8 0 65	85 0,8 0 65
	Unit	1994	2000	2005	2010	2015	2020
Population Connected (sewerage) Not connected (sewerage)	c c c	31.970 0 31.970	38.218 0 38.218	44.349 37.696 6.652	51.462 43.743 7.719	59.717 50.759 8.957	69.295 58.901 10.394
Water demand Domestic demand Commercial demand Small industrial demand Pastoral demand	I/c/d · m³/d m³/d m³/d m³/d	- 0	138 5.274	138 6.120	138 7.102	138 8.241	138 9.563
Total	m³/d	0	5.274	6.120	7.102	8.241	9.563
Wastewater production Return flow (w.demand) Losses/inflow Total	m³/d m³/d m³/d m³/month m³/a		0 0 0 0	4.162 0 4.162 124.850 1.519.010	4.829 0 4.829 144.876 1.762.659	5.604 0 5.604 168.114 2.045.389	6.503 0 6.503 195.080 2.373.470
Pollutional load							
Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD₅/d kgBOD₅/d kgBOD₅/d kgBOD₅/d	0	0	2.450	2.843	3.299	3.829
Total load	kgBOD ₅ /d	0	0	2.450	2.843	3.299	3.829
Reuse of wastwater Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap.) Effluent of treatment plant Net water demand per ha Irrigable reuse area	m³/a % m³/a m³/d/ha ha	0 0 0 0	0 5 0 0 6 0 0	1.519.010 5 75.950 1.443.059 60 66	1.762.659 5 88.133 1.674.526 60 76	2.045.389 5 102.269 1.943.120 60 89	2.373.470 5 118.673 2.254.796 60 103

Water demand for irrigation

Alfalfa, barley

60 m³/d/ha

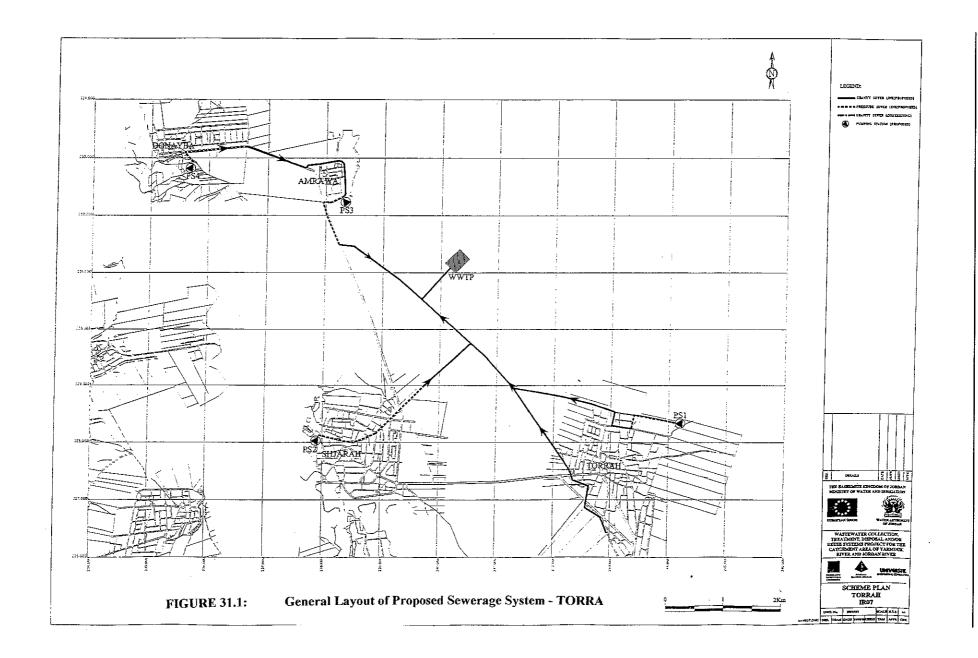
31. TORRA TREATMENT PLANT

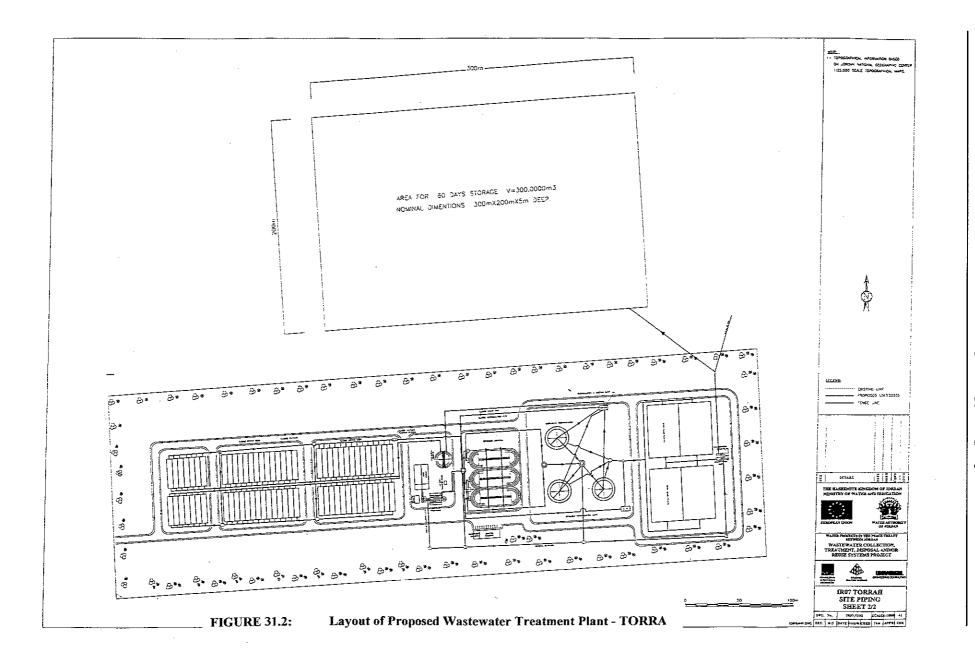
The proposed Torra Scheme area is located some 15 km northeast of Irbid extending from Torra in the southeast to Donaya in the northwest. Presently, there exists no sewerage system. The following communities will be connected to the proposed scheme: Torra, Shjara, Amrawa and Donaya. Figure 31.1 shows the layout of the proposed sewerage system.

The project foresees the construction of the Torra Treatment Plant designed for the wastewater production in 2020. It will be based on an extended aeration process including slow sand filtration as tertiary treatment. Figure 31.2 shows the proposed treatment system. Produced sludge will be treated by gravity thickeners and drying beds. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will be implemented in 2010, whereby the design capacity will correspond to the wastewater production

in 2020: $5,600 \text{ m}^3/\text{d}$ (48,100 connected inhabitants)

The effluents could supply irrigation water for an area of about 90 ha in 2020 taking into account the demand alfalfa and sudan grass (see following table). As the treatment plant is located at the edge of the wadi it will be about 1km to a suitable elevation to allow distribution by gravity for irrigation. A pump station together with a 1 km long rising main will be constructed to discharge treated effluent to the land. Proposed wastewater reuse areas are presented in the Figure 31.3.


The investment costs based on 1998 prices are:


Treatment plant (primary and secondary treatment)	4.47 million JD
Networks	8.44 million JD
Tertiary treatment and pump station (reuse system)	0.99 million JD
Dam/storage (pond for reuse)	1.86 million JD
Total base costs	15.76 million JD
Physical contingencies	1.58 million JD
Engineering	1.73 million JD
Total investment costs	19.07 million JD

According to the Consultant's Study Report implementation of proposed construction measures is foreseen during the years 2010 to 2012.

Consultant's Study Report:

TYPSA, Symonds Travers Morgan and Universal Engineering Consulting: "Wastewater collection, treatment, disposal and/or reuse systems project for the catchment area of Yarmouk River and Jordan River. Final Report", December 1998

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

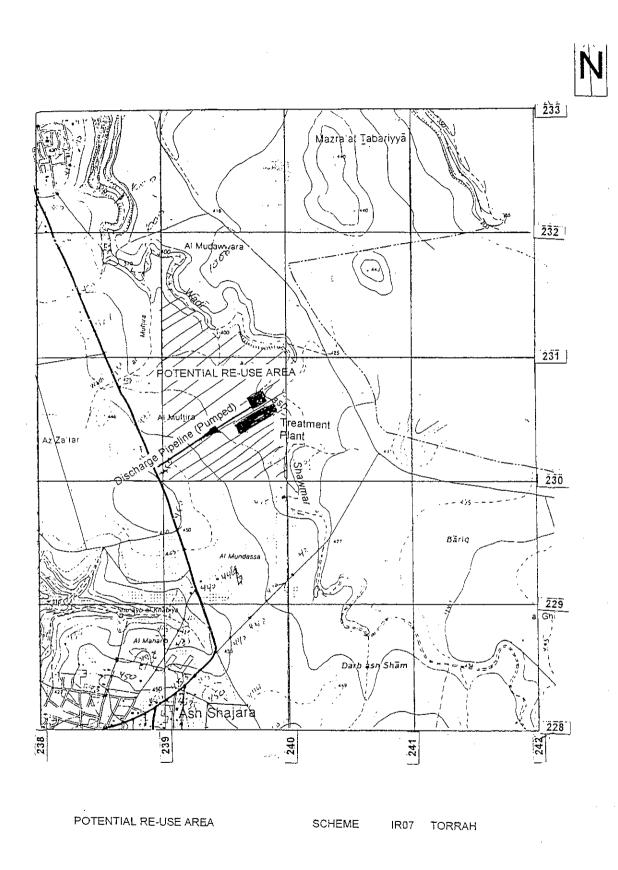


FIGURE 31.3: Potential Reuse Areas - TORRA

PROJECTION OF WASTEWATER PRODUCTION OF TREATMENT PLANT:

31 TORRA

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Basic data:

Population in 1994:	25.465						
Growth rate (previous period) Spec.water demand Commercial demand	Unit % I/c/d m³/d	1994 - -	2000 3,12 146	2005 3,12 146	2010 3,12 146	2015 3,12 146	2020 3,12 146
Small industrial demand Pastoral demand	m³/d m³/d						
Coverage	%	0	0	0	0	85	85
Return factor	-	0,8	0,8	0,8	0,8	0,8	0,8
Losses/inflow	.%	0	0	0	0	0	0
Specific pollutional load	gBOD ₅ /c/d	65	65	65	65	65	65

	Unit	1994	2000	2005	2010	2015	2020
Population	с	25.465	30.620	35.704	41.632	48.545	56.606
Connected (sewerage)	С	0	0	0	0	41.263	48.115
Not connected (sewerage)	С	25.465	30.620	35.704	41.632	7.282	8.491
Water demand							
Domestic demand	l/c/d -		146	146	146	146	146
	m³/d	0	4.470	5.213	6.078	7.088	8.264
Commercial demand	m³/d						
Small industrial demand	m³/d						
Pastoral demand	m³/d						
Total	m³/d	0	4.470	5.213	6.078	7.088	8.264
Wastewater production							
Return flow (w.demand)	m³/d	0	0	0	0	4.820	5.620
Losses/inflow	m³/d	0	0	0	0	0	0
Total	m³/d	0	0	0	0	4.820	5.620
	m³/month	0	0	0	0	144.586	168.594
	m³/a	0	0	0	0	1,759.136	2.051.227
Pollutional load							
Poll. load (dom.demand)	kgBOD₅/d	0	0	0	0	2.682	3.127
Poll. load (com.demand)	kgBOD₅/d						
Poll. load (small ind.)	kgBOD₅/d						
Others	kgBOD₅/d						
Total load	kgBOD₅/d	0	0	0	0	2.682	3.127
Reuse of wastwater							
Inflow to the treatment plant	m³/a	0	0	0	0	1,759,136	2.051.227
Losses in treatment plant	%	õ	Ö	õ	õ	5	5
(due to infiltr./evap.)	m³/a	0 0	õ	0	ō	87.957	102.561
Effluent of treatment plant	m³/a	õ	ō	0	ō	1.671.179	1,948,666
Net water demand per ha	m³/d/ha	0	60	60	60	60	60
Irrigable reuse area	ha	0	0	0	0	76	89
		-	-				

Water demand for irrigation

Alfalfa, barley

60 m³/d/ha

32. UM AL BASATEEN TREATMENT PLANT

Included in Al Jeeza Treatment Plant

33. WADI SHALLALA TREATMENT PLANT

Wadi Shallala Treatment Plant is part of the sewerage system considered by the long-term development in Greater Irbid Area (compare description of the Treatment Plant Irbid Central under No. 6).

The Wadi Shallala drainage area is part of the Yarmouk catchment area. The confluence of Wadi Shallala and the Yarmouk River are upstream of the planned Wahdah Dam, which is proposed to serve as a reservoir for water supply. Therefore, any discharge of untreated sewage into Wadi Shallala could cause severe health risks in the future.

In the sewerage sector, all infrastructure works have to be newly constructed including the collection system, the interceptors and the wastewater treatment to protect the water sources and to enable its reuse for the irrigation of crops, etc..

The interceptors SH to SH3 will be constructed with pipes of diameter DN 300 to DN 900 with a total length of 47 km. The sewer network for the following communities (see Figure 33.1) will be constructed from concrete pipes of diameter DN 200 to DN 400.

Irbid South- East	46 km
Aydun	54 km
Al Husn	69 km
As Sarih	69 km
Bushra	35 km
Huwwara	59 km
Mukh. Al Husn	45 km
Sal	32 km

The connection of Al Hasan Industrial Estate to the Wadi Shallala Plant cannot be recommended due to economic reasons.

The proposed project foresees the construction of the Wadi Shallala Treatment Plant designed for the capacity in 2015 with extension up to 2025. It will be based on extended aeration process including nutrient removal (nitrification, denitrification) and sand filtration. Figure 33.2 shows the proposed treatment system. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The capacity of the plant will be

In 2015:	15,000 m ³ /d (172,000 inhabitants)
In 2025:	22,000 m ³ /d (240,000 inhabitants)

The proposed reuse facilities should be developed east of Sal. Reuse at the Yarmouk University of Science and Technology and in the Jordan Valley would be less economical and less environmentally sound.

According to the Consultant's proposal the treated wastewater will be pumped through a pipeline 2,300 m long to the reuse area east of Sal. A storage pond/dam will provide storage facilities for 2 or 20 days retention time. A concrete reservoir (14,000 m³) shall be

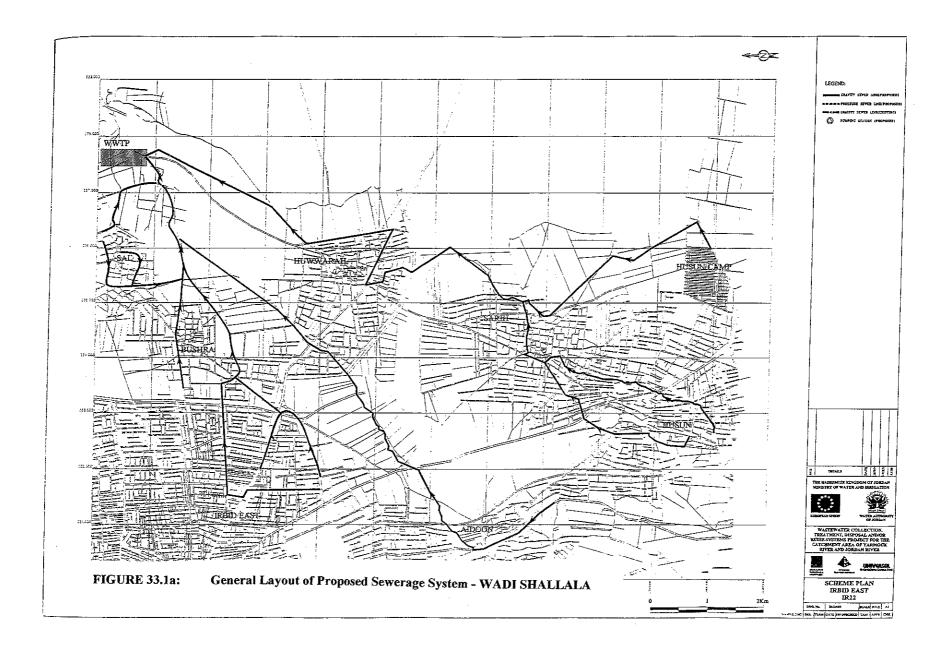
constructed at the highest Section of the irrigation area, as well as a service main 6 km long. Proposed wastewater reuse areas are presented in the Figure 33.3.

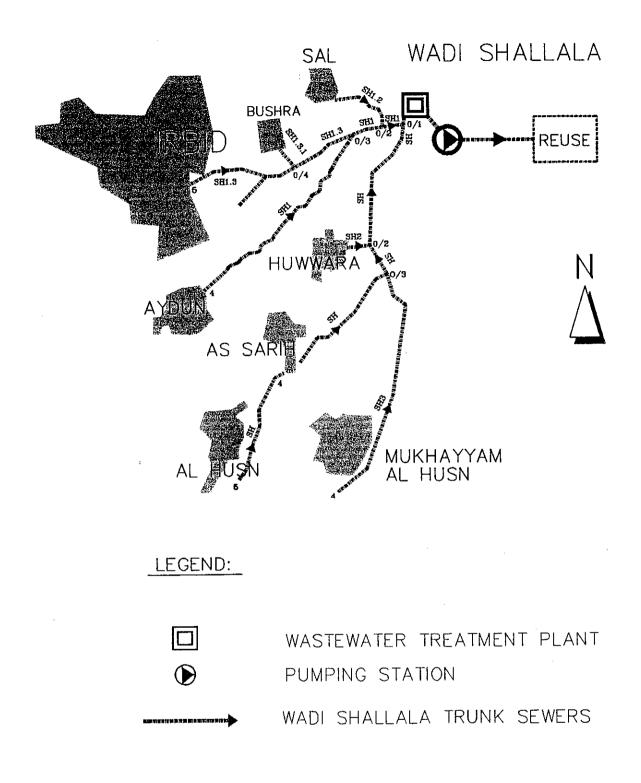
The reuse of treated wastewater for irrigation purposes implicates the construction of:

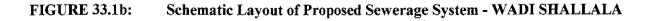
- a storage pond or dam (30,000 m³ storage capacity) for the treated wastewater (considered in the costs WWTP).
- two pumping stations
- a double pipeline DN 600 with a length of about 2,300 m
- a concrete reservoir with a storage capacity of 8,000 m³

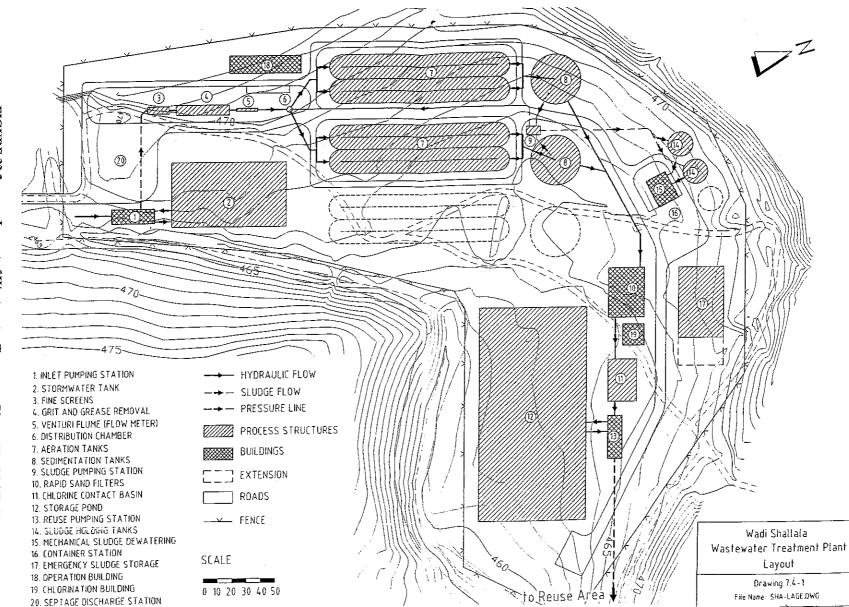
The effluents could supply irrigation water for an area of about 360 ha in 2020 taking into account the demand for sudan grass as summer crop and barley and ryegrass as winter crop (see following table).

The investment costs based on 1998 prices are:

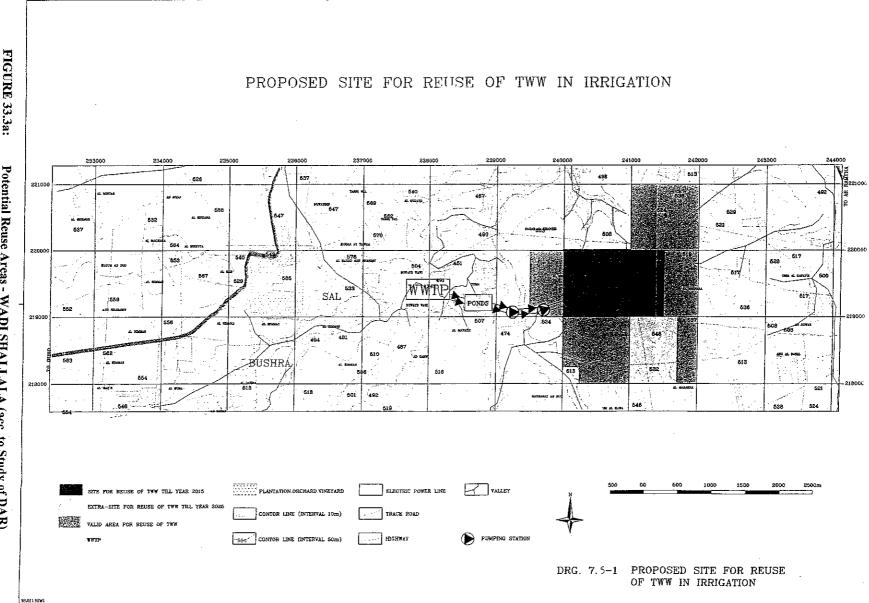

According to the Consultant's Study Report implementation of proposed construction measures were foreseen until end of 2002. However, this implementation schedule is not anymore valid. It is more realistic that the measures will be completed end of 2004.

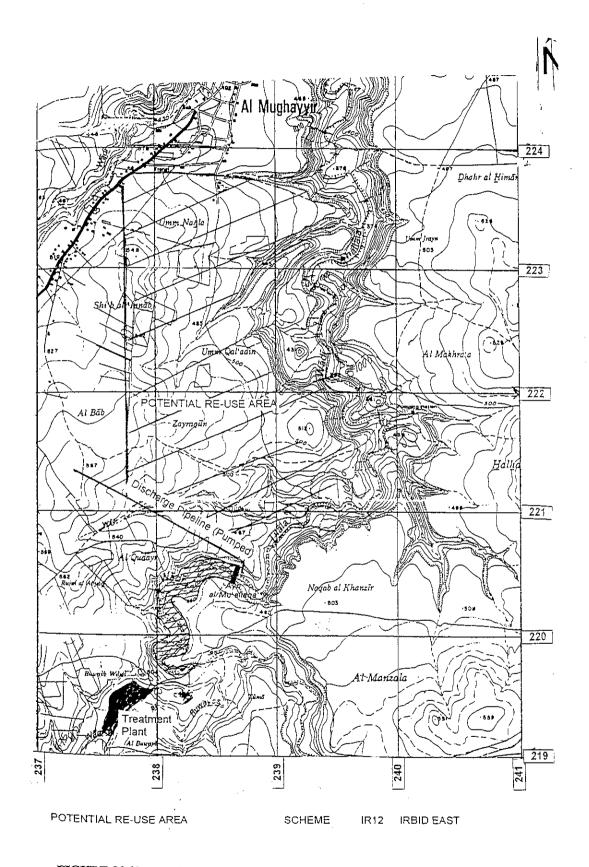

In July 2000 the Ministry of Water and Irrigation prepared Terms of Reference for a study for reuse of treated wastewater for the Greater Irbid Area. It is proposed that the German Development Bank (Kreditanstalt fuer Wiederaufbau, KfW) will finance this study.

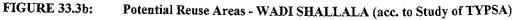

Consultant's Study Report:


RRI, DAR and Sigma: "Technical, economical and financial Feasibility Study. Phase B. Feasibility study of preferred alternatives for wastewater collection and treatment systems in the Greater Irbid area.", March 1992

DAR: "Update of the feasibility study. Wastewater collection and treatment systems in the Greater Irbid area. Stage 2. Wadi Shallala." November 1998.






FIGURE 33.2: Layout of Wastewater **Treatment Plant -**WADI SHALLALA

Potential Reuse Areas - WADI SHALLALA (acc. to Study of DAR)

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

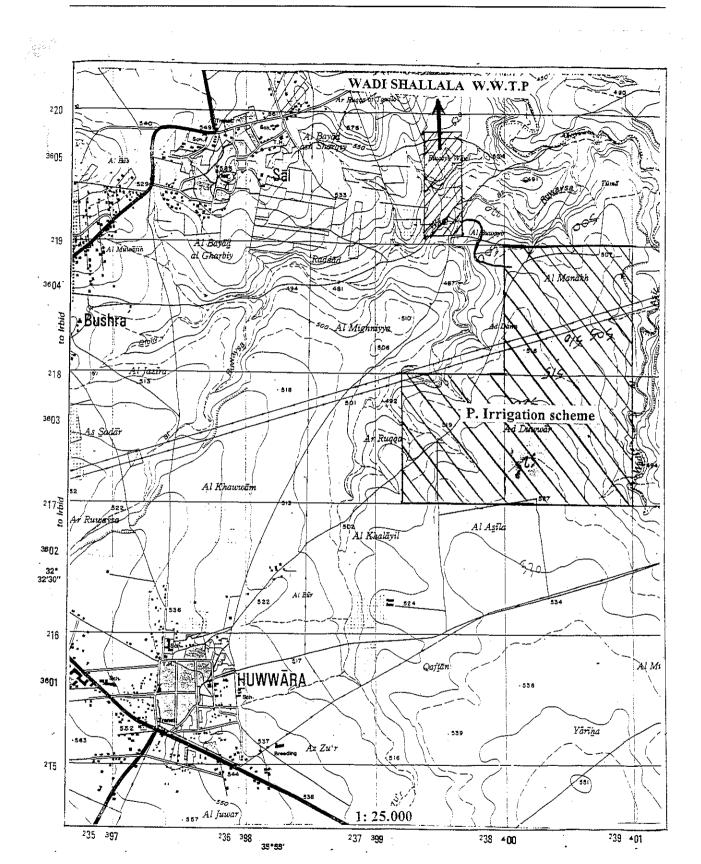


FIGURE 33.3c:

PROJECTION OF WASTEWATER PRODUCTION OF TREATMENT PLANT:

33 WADI SHALLALA

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Basic data:

Population in 1994	96.809						
	Unit	1994	2000	2005	2010	2015	2020
Growth rate (previous period)	%	-	3,76	3,48	3,40	3,29	3,34
Spec.water demand	l/c/d	93	98	103	106	109	112
Commercial demand	m³/d						
Small industrial demand	m³/d						
Pastoral demand	m³/d						
Coverage	%	0	0	86	86	86	86
Return factor	-	0,8	0,8	0,8	0,8	8,0	0,8
Losses/inflow	%	0	0	0	0	0	0
Specific pollutional load	gBOD ₅ /c/d	65	65	65	65	65	65
	Unit	1994	2000	2005	2010	2015	2020
Population	с	96,809	120.806	143.341	169.399	199.111	234.614
Connected (sewerage)	c	0	0	123.058	145.598	171.335	202.120
Not connected (sewerage)	c	96.809	120.806	20.283	23.801	27.776	32.494
Water demand							
Domestic demand	l/c/d	92,6	98	103,4	106	109	112
	m³/d	8.965	11.839	14.821	17.956	21.703	26.277
Commercial demand	m³/d						
Small industrial demand	m³/d						
Pastoral demand	m³/d						
Total	m³/d	8.965	11.839	14.821	17.956	21.703	26.277
Wastewater production							
Return flow (w.demand)	m³/d	0	0	10.179	12.347	14.940	18.110
Losses/inflow	m³/d	0	0	0	0	0	0
Total	m³/d	0	0	10.179	12.347	14,940	18.110
	m³/month	0	Ō	305.381	370.402	448.213	543.299
	m³/a	0	0	3.715.470	4,506,552	5,453,261	6.610,136
Pollutional load							
Poll. load (dom.demand)	kgBOD ₅ /d	0	0	7,999	9.464	11.137	13.138
Poll, load (com.demand)	kgBOD₅/d						
Poll. load (small ind.)	kgBOD₅/d						
Others	kgBOD₅/d						
Others	KgDOD5/G						
Total load	kgBOD₅/d	0	0	7,999	9.464	11.137	13.138
Reuse of wastwater							
Inflow to the treatment plant	m³/a	0	0	3.715.470	4.506.552	5.453.261	6.610.136
Losses in treatment plant	%	0	10	10	10	10	10
(due to infiltr./evap.)	m³/a	0	0	371.547	450.655	545.326	661.014
Effluent of treatment plant	m³/a	0	0	3.343.923	4.055.897	4.907.935	5.949.123
Net water demand per ha	m³/d/ha ha	0	45 0	45 204	45 247	45 299	45 362
Irrigable reuse area	na	U	U	204	241	233	502

Water demand for irrigation MOA's proposal:

Barley, alfalfa Summer crops: Winter crops: 45 m³/d/ha Alfalfa barley, ryegrass