# Annex to 3.4.1 Description Of Proposed Measures For Wastewater **Collection, Treatment And Disposal**

# Contents

## **EXISTING TREATMENT PLANTS**

| 1.  | ABU NUSEIR    | SA3-156  |
|-----|---------------|----------|
| 2.  | AQABA         | SA3-161  |
| 3.  | AS SAMRA      | SA3-167  |
| 4.  | BAQA          | SA3-178  |
| 5.  | FUHIS         | SA3-183  |
| 6.  | IRBID CENTRAL | SA3-187  |
| 7.  | JERASH EAST   | SA3-194  |
| 8.  | KARAK         | -SA3-199 |
| 9.  | KUFRANJA      | SA3-205  |
| 10. | MA'AN         | SA3-211  |
| 11. | МАДАВА        | SA3-216  |
| 12. | MAFRAO        | SA3-222  |
| 13. | RAMTHA        | SA3-228  |
| 14. | SALT          | SA3-234  |
| 15. | TAFIELAH      | SA3-238  |
| 16. | WADI ARAB     | SA3-243  |
| 17. | WADI ESSIR    | SA3-248  |
|     |               |          |

## TREATMENT PLANTS UNDER CONSTRUCTION

| 18. | WADI HASSAN | SA3-253 |
|-----|-------------|---------|
| 19. | WADI MOUSA  | SA3-258 |

## PLANNED TREATMENT PLANTS

| 20. | AL JEEZA                 | SA3-265 |
|-----|--------------------------|---------|
| 21. | AL MAZAR AL SHAMALI      | SA3-272 |
| 22. | DAIR ABI SAID            | SA3-276 |
| 23. | DAIR ALLA                | SA3-281 |
| 24. | JERASH WEST              | SA3-286 |
| 25. | KOFUR ASAD               | SA3-290 |
| 26. | AQABA SOUTH COAST        | SA3-295 |
| 27. | NAUR                     | SA3-299 |
| 28. | NORTH QUEEN ALIA AIRPORT | SA3-304 |
| 29. | NORTH JORDAN VALLEY      | SA3-311 |
| 30. | SHUNA SOUTH              | SA3-319 |
| 31. | TORRA                    | SA3-324 |
| 32. | UM AL BASATEEN           | SA3-329 |
| 33. | WADI SHALLALA            | SA3-330 |
| 34. | WADI ZARQA               | SA3-339 |
| 35. | MAZAR, MUTA, ADNANIYA    | SA3-344 |
| 36. | DEAD SEA EAST COAST      | SA3-348 |
|     |                          |         |

#### Page

## **17. WADI ESSIR TREATMENT PLANT**

Wadi Essir Treatment Plant receives sewage from the town Wadi Essir only. However, only about 10 % of the town drains to the Wadi Essir Treatment Plant, while the other 90 % discharge their sewage to Amman (As Samra). Figure 17.1 shows the existing sewerage system of Wadi Essir Sewerage System.

The plant was put in operation in 1996 to a capacity of  $4,000 \text{ m}^3/\text{d}$ . Presently only less than a quarter of its capacity is used. For details of the existing system it is referred to Section 17 of Annex 3.1. Primary treatment facilities consist of screens without grit chambers. Biological wastewater treatment is done in two trains of 2 anaerobic ponds (parallel), 2 aerated ponds (parallel) and 4 maturation ponds (2 parallel and 2 in series). Presently, only one anaerobic pond is in operation. Submersible pumps lifting water and jetting it back to the water surface do aeration of the aerobic ponds. Treated wastewater may be chlorinated, if required.

Figure 17.2 shows the existing and future treatment system. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will reach its final capacity not before

2020: 3,700 m<sup>3</sup>/d (32,000 connected inhabitants)

if not additional villages will be connected. Therefore, an extension is not required before 2020.

Receiving water is the Wadi Essir downstream of its confluent with the Wadi El Bakhath discharging finally into the Kafrein Reservoir. From there water will flow to the Jordan Valley for ultimate reuse.

Without chlorination of the plant's effluents the fecal coliform count was found as 1,600 in 100 ml in 1999. Therefore, the effluent could be reused for unrestricted irrigation, if safety chlorination would be provided. However, if other water quality parameters of the effluent would allow unrestricted irrigation, due to the helminthes eggs content the effluent can be reused for restricted irrigation only.

Suitable irrigation areas are identified east of the existing treatment plant (see Figure 17.3). The effluents could supply irrigation water for an area of about 40 ha in 2020 taking into account the demand for plantation of olive and forest trees (see following table). Irrigable land (downstream of the plant) may be supplied by gravity flow.

## **Consultant's Study Report:**

TYPSA, Symonds Travers Morgan and Universal Engineering Consulting: "Wastewater collection, treatment, disposal and/or reuse systems project for the catchment area of Yarmouk River and Jordan River. Interim Report", July 1998

Melyepterv: "Wadi Essir sewage treatment plant. Final Engineering", July 1987



FIGURE 17.1: General Layout of Sewerage System - WADI ESSIR







**FIGURE 17.3:** 

Potential Reuse Areas - WADI ESSIR

#### **17 WADI ESSIR**

#### SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

#### Basic data:

| Popu   | lation in 1994:               | 11.000 (living in service zone of Wadi Essir Treatment Plant) |           |                     |                     |                     |                     |                     |  |
|--------|-------------------------------|---------------------------------------------------------------|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
| Grow   | th rate (previous period)     | Unit<br>%                                                     | 1994<br>- | <b>2000</b><br>3,24 | <b>2005</b><br>3,24 | <b>2010</b><br>3,24 | <b>2015</b><br>3,24 | <b>2020</b><br>3,24 |  |
| Spec.  | water demand                  | l/c/d                                                         | 90        | 110                 | 115                 | 130                 | 143                 | 143                 |  |
| Comr   | nercial demand                | m³/d                                                          |           |                     |                     |                     |                     |                     |  |
| Small  | industrial demand             | m³/d                                                          |           |                     |                     |                     |                     |                     |  |
| Pasto  | ral demand                    | m³/d                                                          |           |                     |                     |                     |                     |                     |  |
| Cover  | age                           | %                                                             | 0         | 80                  | 80                  | 85                  | 85                  | 85                  |  |
| Retur  | n factor                      | -                                                             | 0,8       | 0,8                 | 0,8                 | 0,8                 | 0,8                 | 0,8                 |  |
| Losse  | es/inflow                     | %<br>202 / //                                                 | 0         | 0                   | 0                   | 0                   | 0                   | 0                   |  |
| Speci  | fic pollutional load          | GROD²(c∖α                                                     | 65        | 65                  | 65                  | 65                  | 65                  | 65                  |  |
|        |                               | Unit                                                          | 1994      | 2000                | 2005                | 2010                | 2015                | 2020                |  |
| Popu   | lation                        | C                                                             | 11 000    | 13 319              | 15 621              | 18 321              | 21 488              | 25 202              |  |
| гора   | Connected (sewerage)          | c<br>C                                                        | 0         | 10.655              | 12 497              | 15 573              | 18 265              | 21 422              |  |
|        | Not connected (sewerage)      | c                                                             | 11.000    | 2.664               | 3.124               | 2.748               | 3.223               | 3.780               |  |
| Wate   | r demand                      |                                                               |           | 445                 |                     | (                   | 4.40                | ( 10                |  |
|        | Domestic demand               | l/c/d                                                         | 90        | 110                 | 115                 | 130                 | 143                 | 143                 |  |
|        | Commercial demand             | m*/a                                                          | 990       | 1.400               | 1.790               | 2.382               | 3.073               | 3.604               |  |
|        | Small industrial demand       | m³/d                                                          |           |                     |                     |                     |                     |                     |  |
|        | Pastoral demand               | m³/d                                                          |           |                     |                     |                     |                     |                     |  |
|        | Total                         | m³/d                                                          | 990       | 1.465               | 1.796               | 2.382               | 3.073               | 3.604               |  |
| Waste  | ewater production             |                                                               |           |                     |                     |                     |                     |                     |  |
|        | Return flow (w.demand)        | m³/d                                                          | 0         | 938                 | 1.150               | 1,620               | 2.090               | 2.451               |  |
|        | Losses/inflow                 | m³/d                                                          | 0         | 0                   | 0                   | 0                   | 0                   | 0                   |  |
|        | Total                         | m³/d                                                          | 0         | 938                 | 1.150               | 1.620               | 2.090               | 2.451               |  |
|        |                               | m³/month                                                      | 0         | 28.130              | 34.492              | 48.589              | 62.685              | 73.520              |  |
|        |                               | m³/a                                                          | 0         | 342.252             | 419.654             | 591.161             | 762.673             | 894.496             |  |
| Pollu  | tional load                   |                                                               |           |                     |                     |                     |                     |                     |  |
|        | Poll. load (dom.demand)       | kgBOD₅/d                                                      | 0         | 693                 | 812                 | 1.012               | 1.187               | 1.392               |  |
|        | Poll. load (com.demand)       | kgBOD₅/d                                                      |           |                     |                     |                     |                     |                     |  |
|        | Poll. load (small ind.)       | kgBOD₅/d                                                      |           |                     |                     |                     |                     |                     |  |
|        | Others                        | kgBOD <sub>5</sub> /d                                         |           |                     |                     |                     |                     |                     |  |
|        | Totai load                    | kgBOD₅/d                                                      | 0         | 693                 | 812                 | 1.012               | 1.187               | 1.392               |  |
| Reus   | e of wastwater                |                                                               |           |                     |                     |                     |                     |                     |  |
|        | Inflow to the treatment plant | m³/a                                                          | 0         | 342.252             | 419.654             | 591.161             | 762.673             | 894.496             |  |
|        | Losses in treatment plant     | %                                                             | 10        | 10                  | 10                  | 10                  | 10                  | 10                  |  |
|        | (due to infiltr./evap.)       | m³/a                                                          | 0         | 34.225              | 41.965              | 59.116              | 76.267              | 89.450              |  |
|        | Effluent of treatment plant   | m³/a                                                          | 0         | 308.027             | 377.689             | 532.045             | 686.406             | 805.046             |  |
|        | Net water demand per ha       | m³/d/ha                                                       |           | 60                  | 60                  | 60                  | 60                  | 60                  |  |
|        | Irrigable reuse area          | ha                                                            | 0         | 14                  | 17                  | 24                  | 31                  | 37                  |  |
| 18104  | demand for infration          | Oliver                                                        |           | 60                  | m3/d/ha /-          | ook poried d        | cond)               |                     |  |
| vvaler | aemana ivi intigativii        | Clives                                                        |           | 00                  |                     | vear heunn neu      | na na j             |                     |  |

## 18. WADI HASSAN TREATMENT PLANT (under construction)

Wadi Hassan Treatment Plant is part of the sewerage system considered by the long-term development in Greater Irbid Area (compare description of the Treatment Plant Irbid Central under Section 6). It will receive wastewater from An Nu'ayyma, Kitm and Shatana.

The plant will be completed end of 2000, while the sewage collection network will be put into operation not before 2001 (for details of the existing system refer to Section 18 of Annex 3.1). The projection of the wastewater production shows that the capacity of the plant  $(1,600 \text{ m}^3/\text{d})$  will be reached in about 2010 (acc. to Consultant's Study Report, see following table).

At present there are no specific plans to implement a reuse scheme for the effluents of Wadi Hassan Treatment Plant. However, the Consultant proposes to reuse the treated effluent in agricultural land north of the plant's side (see Figure 18.3). The effluents could supply irrigation water (gravity flow) for an area of about 50 ha in 2020 (see following table) taking into account the irrigation demand for alfalfa and barley.

A further possibility of reuse could be the reuse of the treated wastewater at the Jordan University of Science and Technology (JUST). Wastewater could be discharged by gravity from the Wadi Hassan Plant to JUST.

In July 2000 the Ministry of Water and Irrigation prepared Terms of Reference for a study for reuse of treated wastewater for the Greater Irbid Area. It is proposed that the German Development Bank (Kreditanstalt fuer Wiederaufbau, KfW) will finance this study.

#### **Consultant's Study Report:**

RRI, DAR and Sigma: "Technical, economical and financial Feasibility Study. Phase B. Feasibility study of preferred alternatives for wastewater collection and treatment systems in the Greater Irbid area", March 1992

RRI, DAR and Sigma: "Wastewater collection and treatment systems in the Greater Irbid area. Stage II. Reuse of treated wastewater and utilization of stabilized sludge", March 1995

DAR: "Update of the feasibility study. Wastewater collection and treatment systems in the Greater Irbid area. Stage 2. Wadi Shallala." November 1998.







The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"





**FIGURE 18.3:** 

Potential Reuse Areas – WADI HASSAN (acc. to Min. of Agriculture)

#### **18 WADI HASSAN**

#### SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

| Dasic uata. | Basic | data: |
|-------------|-------|-------|
|-------------|-------|-------|

| Population in 1994:                                                                                                                                                                           | 0                                                 | P                   | opulation in 20                                | 00:                                            | 18.300                                         |                                                |                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Growth rate (previous period)<br>Spec.water demand<br>Commercial demand<br>Small industrial demand<br>Pastoral demand                                                                         | <b>Unit</b><br>%<br>l/c/d<br>m³/d<br>m³/d<br>m³/d | 1994<br>-<br>-      | <b>2000</b><br>- 85                            | <b>2005</b><br>3,50<br>90                      | <b>2010</b><br>3,50<br>95                      | <b>2015</b><br>3,25<br>100                     | <b>2020</b><br>3,25<br>105                     |
| Coverage<br>Return factor<br>Losses/inflow<br>Specific pollutional load                                                                                                                       | %<br>-<br>gBOD₅/c/d                               | 0<br>0,8<br>0<br>65 | 85<br>0,8<br>0<br>65                           | 85<br>0,8<br>0<br>65                           | 85<br>0,8<br>0<br>65                           | 85<br>0,8<br>0<br>65                           | 85<br>0,8<br>0<br>65                           |
|                                                                                                                                                                                               | Unit                                              | 1994                | 2000                                           | 2005                                           | 2010                                           | 2015                                           | 2020                                           |
| Population<br>Connected (sewerage)<br>Not connected (sewerage)                                                                                                                                | с<br>с<br>с                                       | 0<br>0<br>0         | 18.300<br>15.555<br>2.745                      | 21.735<br>18.474<br>3.260                      | 25.814<br>21.942<br>3.872                      | 30.290<br>25.747<br>4.544                      | 35,543<br>30,212<br>5,331                      |
| Water demand<br>Domestic demand<br>Commercial demand<br>Small industrial demand<br>Pastoral demand                                                                                            | l/c/d -<br>m³/d<br>m³/d<br>៣³/d<br>៣³/d           | 0                   | 85<br>1.556                                    | 90<br>1.956                                    | 95<br>2.452                                    | 100<br>3.029                                   | 105<br>3,732                                   |
| Total                                                                                                                                                                                         | m³/d                                              | 0                   | 1.556                                          | 1.956                                          | 2.452                                          | 3.029                                          | 3.732                                          |
| Wastewater production<br>Return flow (w.demand)<br>Losses/inflow                                                                                                                              | m³/d<br>m³/d                                      | 0<br>0              | 1.058<br>0                                     | 1.330<br>0                                     | 1.668<br>0                                     | 2.060<br>0                                     | 2.538<br>0                                     |
| Total                                                                                                                                                                                         | m³/d<br>m³/month<br>m³/a                          | 0<br>0<br>0         | 1.058<br>31.732<br>386.075                     | 1.330<br>39.905<br>485.509                     | 1.668<br>50.027<br>608.667                     | 2.060<br>61.792<br>751.808                     | 2.538<br>76.133<br>926.288                     |
| Pollutional load<br>Poll. load (dom.demand)<br>Poll. load (com.demand)<br>Poll. load (small ind.)<br>Others                                                                                   | kgBOD₅/d<br>kgBOD₅/d<br>kgBOD₅/d<br>kgBOD₅/d      | 0                   | 1.011                                          | 1.201                                          | 1.426                                          | 1.674                                          | 1.964                                          |
| Total load                                                                                                                                                                                    | kgBOD₅/d                                          | 0                   | 1.011                                          | 1.201                                          | 1.426                                          | 1.674                                          | 1.964                                          |
| Reuse of wastwater<br>Inflow to the treatment plant<br>Losses in treatment plant<br>(due to infiltr./evap.)<br>Effluent of treatment plant<br>Net water demand per ha<br>Irrigable reuse area | m³/a<br>%<br>m³/a<br>m³/a/ha<br>ha                | 0<br>0<br>0<br>0    | 386.075<br>10<br>38.608<br>347.468<br>45<br>21 | 485.509<br>10<br>48.551<br>436.958<br>45<br>27 | 608.667<br>10<br>60.867<br>547.801<br>45<br>33 | 751.808<br>10<br>75.181<br>676.627<br>45<br>41 | 926.288<br>10<br>92.629<br>833.660<br>45<br>51 |

Water demand for irrigation

Alfalfa, barley

45 m³/d/ha

## **19. WADI MOUSA TREATMENT PLANT (under construction)**

The sewerage scheme of Wadi Mousa (presently under construction) is located close to the ancient Nabataean city of Petra in the southern part of Jordan. The communities of Wadi Mousa, Taiba, B'doul and Beida will be connected to the proposed scheme. Figure 19.1 shows the layout of the proposed sewerage system.

Due to the vicinity to the ancient Nabataean city of Petra the development of tourism in Wadi Mousa is expected to contribute significantly to the resident population. The contribution will be two-fold, directly through attracting new residents to the town and indirectly by increasing the number of hotel visitors. The projection of the wastewater production takes into account this fact (acc. to Consultant's Study Report, see following table).

The project foresees the construction of a Treatment Plant designed for the wastewater production in 2020. The biological process selected includes nitrogen removal and is a modification of the activated sludge process known as modified Ludzack-Ettinger (MLE). This MLE process differs from conventional activated sludge in the configuration of the reactor sections. The process consists of a biological reactor followed by secondary settling. The activated sludge removed by the secondary settling tank is returned to the biological reactor to maintain process dynamics. The reactor for the proposed process consists of two zones: an "anoxic" zone without aeration, followed by an aerated or "oxic" zone. In addition, some treated effluent known as "mixed liquor" from the end of the aerobic zone is recycled to the head of the anoxic zone. Polishing (maturation) ponds serve for tertiary treatment. Produced sludge will be treated by sludge holding tanks (for thickening and anaerobic stabilization) followed by drying beds. Figure 19.2 shows the proposed treatment system.

The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will be implemented in two phases, whereby the final capacity will be reached

in 2020: 4,900 m<sup>3</sup>/d (24,000 connected resident inhabitants plus peak season tourists: 4,500 hotel guests and 2,700 day visitors)

Construction works of sewerage system and treatment plant will be completed early 2001.

According to the Consultant's proposal a storage basin (6,800 m<sup>3</sup>) is required to equalize seasonal differences in supply and demand for irrigation. Such areas have been identified north of the Sad Um El Hiran plant site shown in Figure 19.3. In 2020 about 80 ha may be irrigated with treated effluent, forest trees and olives as well as about barley as winter crop (see following table).

It is discussed to involve the private sector in a management contract in operation and maintenance the water supply and wastewater system of Wadi Mousa (see ABT Report of 1999). This contract would include 86 km of wastewater collectors, 4 sewage pumping stations and the treatment plant of a present capacity of 3,400 m<sup>3</sup>/d.

## **Consultant's Study Report:**

CDM: "Wadi Mousa water supply and wastewater project. Stage II. Final design report", September 1996.

ABT: "Technical review meeting. Management contract water supply and wastewater system Wadi Mousa", November 1999.



#### FIGURE 19.1: General Layout of Proposed Sewerage System - WADI MOUSA



FIGURE 19.2:

Layout of Proposed Wastewater Treatment Plant - WADI MOUSA



FIGURE 19.3a:

SA3-262

Potential Reuse Areas - WADI MOUSA (acc. to CDM Consultant)





Potential Reuse Areas - WADI MOUSA (acc. to Min. of Agriculture)

#### **19 WADI MOUSA**

#### SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

#### Basic data:

| Population in 1994            | 16.850                 |      |      |      |      |      |      |
|-------------------------------|------------------------|------|------|------|------|------|------|
|                               | Unit                   | 1994 | 2000 | 2005 | 2010 | 2015 | 2020 |
| Growth rate (previous period) | %                      | -    | 3,44 | 3,44 | 3,44 | 2,52 | 2,52 |
| Spec.water demand             | l/c/d                  | -    | 141  | 150  | 159  | 168  | 177  |
| Commercial demand             | m³/d                   |      |      |      |      |      |      |
| Small industrial demand       | m³/d                   |      |      |      |      |      |      |
| Pastoral demand               | m³/d                   |      |      |      |      |      |      |
| Coverage                      | %                      | 0    | 46   | 53   | 60   | 63   | 65   |
| Return factor                 | -                      | 0,8  | 0,8  | 0,8  | 0,8  | 0,8  | 0,8  |
| Losses/inflow                 | %                      | 0    | 0    | 0    | 0    | 0    | 0    |
| Specific pollutional load     | gBOD <sub>5</sub> /c/d | 65   | 65   | 65   | 65   | 65   | 65   |

|                               | Unit                  | 1994   | 2000    | 2005    | 2010      | 2015      | 2020      |
|-------------------------------|-----------------------|--------|---------|---------|-----------|-----------|-----------|
| Population                    | с                     | 16.850 | 20.641  | 24,444  | 28,948    | 32.776    | 37.119    |
| Connected (sewerage)          | c                     | 0      | 9.495   | 12.955  | 17.369    | 20.649    | 24.127    |
| Not connected (sewerage)      | c                     | 16.850 | 11.146  | 11,489  | 11.579    | 12.127    | 12.992    |
| Hotel guests and day visitors | С                     |        | 5.700   |         | 6.250     |           | 7.200     |
| Water demand                  |                       |        |         |         |           |           |           |
| Domestic demand               | l/c/d                 | -      | 141     | 150     | 159       | 168       | 177       |
|                               | m³/d                  | -      | 2.910   | 3.667   | 4.603     | 5.506     | 6.570     |
| Commercial demand             | m³/d                  |        |         |         |           |           |           |
| Small industrial demand       | m³/d                  |        |         |         |           |           |           |
| Pastoral demand               | m³/d                  |        |         |         |           |           |           |
| Tourist demand                | m³/d                  | -      | 2.070   | 2.270   | 2.470     | 2.660     | 2.840     |
| Total                         | m³/d                  | 0      | 4.980   | 5.937   | 7.073     | 8.166     | 9.410     |
| Wastewater production         |                       |        |         |         |           |           |           |
| Return flow (w.demand)        | m³/d                  | 0      | 1.833   | 2.517   | 3.395     | 4.116     | 4.893     |
| Losses/inflow                 | m³/d                  | 0      | 0       | 0       | 0         | 0         | 0         |
| Total                         | m³/d                  | 0      | 1.833   | 2.517   | 3,395     | 4.116     | 4.893     |
|                               | m³/month              | 0      | 54.983  | 75.514  | 101.847   | 123.475   | 146.797   |
|                               | m³/a                  | 0      | 668.965 | 918.750 | 1.239.138 | 1,502.279 | 1.786.030 |
| Pollutional load              |                       |        |         |         |           |           |           |
| Poll. load (dom.demand)       | kgBOD₅/d              | 0      | 617     | 842     | 1.129     | 1.342     | 1.568     |
| Poll, load (com.demand)       | kgBOD₅/d              |        |         |         |           |           |           |
| Poll, load (small ind.)       | kgBOD₅/d              |        |         |         |           |           |           |
| Others                        | kgBOD <sub>5</sub> /d |        |         |         |           |           |           |
| Total load                    | kgBOD₅/d              | 0      | 617     | 842     | 1.129     | 1.342     | 1.568     |
| Pouse of wastwater            |                       |        |         |         |           |           |           |
| Inflow to the treatment plant | m³/a                  | 0      | 668 965 | 918 750 | 1 239 138 | 1 502 279 | 1 786 030 |
| Losses in treatment plant     | %                     | 0      | 10      | 10      | 10        | 10        | 10        |
| (due to infiltr /evap.)       | m³/a                  | ō      | 66.896  | 91.875  | 123.914   | 150,228   | 178.603   |
| Effluent of treatment plant   | m³/a                  | Ō      | 602.068 | 826.875 | 1.115.224 | 1.352.051 | 1.607.427 |
| Net water demand per ha       | m³/d/ha               |        | 53      | 53      | 53        | 53        | 53        |
| Irrigable reuse area          | ha                    | 0      | 31      | 43      | 58        | 70        | 83        |
|                               |                       |        |         |         |           |           |           |

Water demand for irrigation

Forest trees, olives, barley

53 m³/d/ha

## 20. AL JEEZA TREATMENT PLANT

#### 1. Long term development in South Amman Area

According to the Consultants Study Report the long-term strategy for the South Amman Area foresees two independent sewerage schemes and two wastewater treatment plants:

- *North Queen Alia Airport Treatment Plant (eastern drainage area)* This treatment plant will receive the wastewater of the eastern drainage area.
- *Al Jeeza Treatment Plant (western drainage area)* This treatment plant will receive the wastewater of the western drainage area.

Details of proposed North Queen Alia Airport system are given under Section 28.

#### 2. Proposed Al Jeeza Treatment Plant

Figure 20.1 shows the layout of the proposed sewerage system, which will be implemented in 3 Phases.

The project foresees the construction of the Al Jeeza Treatment Plant designed for the wastewater production in 2020. It will be based on an extended aeration process including maturation ponds for tertiary treatment. Produced sludge will be treated by sludge holding tanks and drying beds. Figure 20.2 shows the proposed treatment system. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will be implemented in two phases, whereby the final capacity will be reached

#### in 2020: 8,800 m<sup>3</sup>/d (87,300 connected inhabitants)

The effluents could supply irrigation water for an area of about 60 ha in 2020 taking into account the demand for alfalfa as summer crop, and barley as winter crop (see following table). Suitable land for irrigation was identified in the direct southwestern surroundings of the treatment plant. A pump station together with feeder mains to the irrigation areas will be constructed. Proposed wastewater reuse areas are presented in the Figure 28.3.

The investment costs (Phase 1, 2 and 3) based on 1994 prices are:

| Treatment plant       | 3.91 million JD  |
|-----------------------|------------------|
| Local sewerage        | 7.76 million JD  |
| Collector sewerage    | 2.89 million JD  |
| Trunk sewerage        | 3.30 million JD  |
| Irrigation facilities | 1.02 million JD  |
|                       |                  |
| Total capital costs   | 18.88 million JD |

Investment costs subdivided in Phases 1 (2002/11), 2 (2012/20) and 3 (2021/26) are as follows:

| (price | basis | 2000, | in | mio. | JD) |
|--------|-------|-------|----|------|-----|
|--------|-------|-------|----|------|-----|

|                                   | Phase 1 | Phase 2 | Phase 3 |
|-----------------------------------|---------|---------|---------|
| Treatment plant                   | 3.90    | 3.46    | 1.91    |
| Local sewerage                    | 1.69    | 0.69    | 1.07    |
| Collector sewerage                | 3.58    | 0.35    | 0       |
| Trunk sewerage                    | 2.80    | 1.87    | 0       |
| Subtotal capital costs            | 11.98   | 6.37    | 2.98    |
| Engineering +Contingencies (30 %) | 3.59    | 1.97    | 0.89    |
| Total                             | 15.57   | 8.28    | 3.87    |

## **Consultant's Study Report:**

Montgomery Watson: "Technical and economic Feasibility Study and detailed Final Design of the collection, treatment and reuse of wastewater from communities South of Amman. Feasibility Study", June 1995

Volume I: Main Report Volume II: Drawings



FIGURE 20.1: General Layout of Proposed Sewerage System - AL JEEZA









FIGURE 20.3b: Potential Reuse Areas - AL JEEZA (acc. Min. of Agriculture)

#### 20 AL JEEZA

#### SCENARIO 0 "Consultants' Study"

Basic data:

(acc. to Consultant's Study Report of Montgomery Watson 1995) Option 5: Sewage Treatment Plant B (STP B)

| Population in 1994:          |                                                      | 41.700                                         |              |                     |                      |                      |                      |                     |
|------------------------------|------------------------------------------------------|------------------------------------------------|--------------|---------------------|----------------------|----------------------|----------------------|---------------------|
| Grow                         | /th rate (previous period)                           | Unit<br>%                                      | 1 <b>994</b> | <b>2000</b><br>2,82 | <b>2005</b><br>2,90  | <b>2010</b><br>2,90  | <b>2015</b><br>2,90  | <b>2020</b><br>2,90 |
| Spec<br>Com<br>Smal<br>Pasto | warcial demand<br>I industrial demand<br>oral demand | 1/C/d<br>m³/d<br>m³/d<br>m³/d                  | /6           | 89                  | 97                   | 105                  | 113                  | 121                 |
| Cove                         | rage                                                 | %                                              | 0            | 0                   | 100                  | 100                  | 100                  | 100                 |
| Loss                         | es/inflow                                            | ~                                              | 0,65         | 0,00<br>0           | 0,65                 | 0,84<br>0            | 0,84                 | 0,83                |
| Spec                         | ific pollutional load                                | gBOD <sub>5</sub> /c/d                         | 65           | 65                  | 65                   | 65                   | 65                   | 65                  |
|                              |                                                      | Unit                                           | 1994         | 2000                | 2005                 | 2010                 | 2015                 | 2020                |
| Рори                         | lation                                               | с                                              | 41.700       | 49.272              | 56.843               | 65.578               | 75.654               | 87.279              |
|                              | Connected (sewerage)<br>Not connected (sewerage)     | c<br>c                                         | 0<br>41.700  | 0<br>49.272         | 56.843<br>0          | 65.578<br>0          | 75.654<br>0          | 87.279<br>0         |
| Wate                         | r demand                                             |                                                |              |                     | -                    | -                    | _                    | Ŭ                   |
| TTUIC                        | Domestic demand                                      | l/c/d                                          | 76           | 89                  | 97                   | 105                  | 113                  | 121                 |
|                              | Commercial demand                                    | m²/d<br>m³/d                                   | 3.169        | 4.385               | 5.514                | 6.886                | 8.549                | 10.561              |
|                              | Small industrial demand                              | m³/d                                           |              |                     |                      |                      |                      |                     |
|                              | Pastoral demand                                      | m³/d                                           |              |                     |                      |                      |                      |                     |
|                              | Total                                                | m³/d                                           | 3.169        | 4.385               | 5.514                | 6.886                | 8.549                | 10.561              |
| Wast                         | ewater production                                    |                                                |              |                     |                      |                      |                      |                     |
|                              | Return flow (w.demand)                               | m³/d                                           | 0            | 0                   | 4.687                | 5.784                | 7.181                | 8.765               |
|                              | LOSSES/ITTIOW                                        | ni-7u                                          | U            | 0                   | 0                    | U                    | U                    | U                   |
|                              | Total                                                | m³/d                                           | 0            | 0                   | 4.687                | 5.784                | 7.181                | 8.765               |
|                              |                                                      | m³/month<br>m³/a                               | 0            | 0                   | 140.602<br>1 710 654 | 173.518<br>2 111 139 | 215.433<br>2.621.096 | 262.963             |
|                              |                                                      | in , a                                         | Ũ            | 0                   | 1.110.004            | 2.111.100<br>·       | 2.021.030            | 0.155.011           |
| Pollu                        | tional load                                          | kaROD (d                                       | 0            |                     | 2.005                | 4.000                | 4.545                |                     |
|                              | Poll, load (dom.demand)                              | kgBOD <sub>5</sub> /u<br>kgBOD <sub>-</sub> /d | 0            | Ų                   | 3.695                | 4.263                | 4.918                | 5.673               |
|                              | Polit load (contratand)                              | kgBOD <sub>5</sub> /d                          |              |                     |                      |                      |                      |                     |
|                              | Others                                               | kgBOD₅/d                                       |              |                     |                      |                      |                      |                     |
|                              |                                                      |                                                |              |                     |                      |                      |                      |                     |
|                              | Total load                                           | kgBOD₅/d                                       | 0            | 0                   | 3.695                | 4.263                | 4.918                | 5.673               |
| Reuse                        | e of wastwater                                       |                                                |              |                     |                      |                      |                      |                     |
|                              | Inflow to the treatment plant                        | m³/a                                           | 0            | 0                   | 1.710.654            | 2.111.139            | 2.621.096            | 3.199.377           |
|                              | Losses in treatment plant                            | %                                              | 0            | 0                   | 10                   | 10                   | 10                   | 10                  |
|                              | (due to inflitr./evap.)                              | m³/a                                           | 0            | 0                   | 171.065              | 211.114              | 262.110              | 319.938             |
|                              | Net water demand per ha                              | m³/d/ha                                        | Ū            | 60                  | 60                   | 60                   | 2.330.980            | 2.879.440           |
|                              | Irrigable reuse area                                 | ha                                             | 0            | 0                   | 70                   | 87                   | 108                  | 131                 |
| Water                        | demand for irrigation                                | Alfalfa, barley                                |              | 60                  | m³/d/ha              |                      |                      |                     |
|                              | MOA's proposal:                                      | Summer crops:<br>Winter crops:                 | alfa<br>barl | lfa<br>ey           |                      |                      |                      |                     |

## 21. AL MAZAR AL SHAMALI TREATMENT PLANT TREATMENT PLANT

The proposed Scheme of Al Mazar Al Shamali area is located southeast of Irbid. Presently, there exists no sewerage system. The following communities will be connected to the proposed scheme: Mazar Al Shamali, Dair Yousef, Johfiah, Habka, Hofa El Mazar and Samad. Figure 21.1 shows the layout of the proposed sewerage system.

The project foresees the construction of a Treatment Plant designed for the wastewater production in 2020. It will be based on an extended aeration process including slow sand filtration as tertiary treatment. Gravity thickeners and decanter centrifuge will treat produced sludge. Figure 21.2 shows the proposed treatment system. The projection of the wastewater production is shown in the following table (acc. to Consultant's Study Report). The plant will be implemented in two phases, whereby the final capacity will be reached

in 2020:  $4,500 \text{ m}^3/\text{d}$  (40,100 connected inhabitants)

Due to the very steep flanks of the valley of Wadi Jurum there are no substantial areas of agricultural land available for irrigation without extremely high pumping costs. Therefore, it is recommended to discharge all treated effluent to the Wadi Jurum without any reuse.

The investment costs based on 1998 prices are:

| Treatment plant (primary and secondary treatment) | 3.85 million JD  |
|---------------------------------------------------|------------------|
| Networks                                          | 8.07 million JD  |
| Tertiary treatment and pipeline                   | 0.56 million JD  |
| Dam/storage (pond for reuse)                      | 0 million JD     |
| Total base costs                                  | 12.49 million JD |
| Physical contingencies                            | 1.25 million JD  |
| Engineering                                       | 1.37 million JD  |
| Total investment costs                            | 15.11 million JD |

According to the Consultant's Study Report implementation of proposed construction measures were foreseen during the years 2007 to 2009 (Phase I).

#### **Consultant's Study Report:**

TYPSA, Symonds Travers Morgan and Universal Engineering Consulting: "Wastewater collection, treatment, disposal and/or reuse systems project for the catchment area of Yarmouk River and Jordan River. Final Report", December 1998



The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"



The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

#### 21 AL MAZAR AL SHAMALI

#### SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

#### Basic data:

| Population in 1994:           | 21.228                 |      |      |      |      |      |      |
|-------------------------------|------------------------|------|------|------|------|------|------|
|                               | Unit                   | 1994 | 2000 | 2005 | 2010 | 2015 | 2020 |
| Growth rate (previous period) | %                      | -    | 3,12 | 3,12 | 3,12 | 3,12 | 3,12 |
| Spec.water demand             | l/c/d                  | -    | 141  | 141  | 141  | 141  | 141  |
| Commercial demand             | m³/d                   |      |      |      |      |      |      |
| Small industrial demand       | m³/d                   |      |      |      |      |      |      |
| Pastoral demand               | m³/d                   |      |      |      |      |      |      |
| Coverage                      | %                      | 0    | 0    | 0    | 85   | 85   | 85   |
| Return factor                 | -                      | 0,8  | 0,8  | 0,8  | 0,8  | 0,8  | 0,8  |
| Losses/inflow                 | %                      | 0    | 0    | 0    | 0    | 0    | 0    |
| Specific pollutional load     | gBOD <sub>5</sub> /c/d | 65   | 65   | 65   | 65   | 65   | 65   |

|                               | Unit                  | 1994   | 2000   | 2005   | 2010      | 2015      | 2020      |
|-------------------------------|-----------------------|--------|--------|--------|-----------|-----------|-----------|
| Population                    | с                     | 21.228 | 25.525 | 29.763 | 34.705    | 40.468    | 47.187    |
| Connected (sewerage)          | с                     | 0      | 0      | 0      | 29.499    | 34.398    | 40.109    |
| Not connected (sewerage)      | С                     | 21.228 | 25.525 | 29.763 | 5.206     | 6.070     | 7.078     |
| Water demand                  |                       |        |        |        |           |           |           |
| Domestic demand               | l/c/d -               |        | 141    | 141    | 141       | 141       | 141       |
|                               | m³/d                  | 0      | 3.599  | 4.197  | 4.893     | 5,706     | 6.653     |
| Commercial demand             | m³/d                  |        |        |        |           |           |           |
| Small industrial demand       | m³/d                  |        |        |        |           |           |           |
| Pastoral demand               | m³/d                  |        |        |        |           |           |           |
| Total                         | m³/đ                  | 0      | 3.599  | 4.197  | 4.893     | 5.706     | 6.653     |
| Wastewater production         |                       |        |        |        |           |           |           |
| Return flow (w.demand)        | m³/d                  | 0      | 0      | 0      | 3.328     | 3.880     | 4.524     |
| Losses/inflow                 | m³/d                  | 0      | 0      | 0      | 0         | 0         | 0         |
| Total                         | m³/d                  | 0      | 0      | 0      | 3.328     | 3.880     | 4.524     |
|                               | m³/month              | 0      | 0      | 0      | 99.826    | 116,402   | 135.729   |
|                               | m³/a                  | 0      | 0      | 0      | 1.214.553 | 1.416.221 | 1.651.374 |
| Pollutional load              |                       |        |        |        |           |           |           |
| Poll. load (dom.demand)       | kgBOD₅/d              | 0      | 0      | 0      | 1.917     | 2.236     | 2.607     |
| Poll. load (com.demand)       | kgBOD <sub>5</sub> /d |        |        |        |           |           |           |
| Poll. load (small ind.)       | kgBOD <sub>5</sub> /d |        |        |        |           |           |           |
| Others                        | kgBOD₅/d              |        |        |        |           |           |           |
| Total load                    | kgBOD <sub>5</sub> /d | 0      | 0      | 0      | 1.917     | 2.236     | 2.607     |
| Pause of wastwater            |                       |        |        |        |           |           |           |
| Inflow to the treatment plant | m³/a                  | 0      | 0      | 0      | 1.214.553 | 1.416.221 | 1.651.374 |
| Losses in treatment plant     | %                     | õ      | 5      | 5      | 5         | 5         | 5         |
| (due to infiltr./evap.)       | m³/a                  | 0      | 0      | Ō      | 60.728    | 70.811    | 82.569    |
| Effluent of treatment plant   | m³/a                  | 0      | 0      | 0      | 1.153.825 | 1.345.410 | 1.568.805 |
| Net water demand per ha       | m³/d/ha               | -      | -      | -      | -         | -         | -         |
| Irrigable reuse area          | ha                    | -      | -      | -      | -         | -         | -         |

Water demand for irrigation

no reuse system proposed