Annex to 3.4.1 Description Of Proposed Measures For Wastewater **Collection, Treatment And Disposal**

Contents

EXISTING TREATMENT PLANTS

2. AQABA			
3. AS SAMRA	1.	ABU NUSEIR	SA3-156
4. BAQA	2.	AQABA	SA3-161
5. FUHIS	3.	AS SAMRA	SA3-167
6. IRBID CENTRAL	4.	ВАОА	SA3-178
7. JERASH EAST	5.	FUHIS	SA3-183
8. KARAKSA3-1 9. KUFRANJASA3-2 10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	6.	IRBID CENTRAL	SA3-187
9. KUFRANJASA3-2 10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	7.	JERASH EAST	SA3-194
10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	8.	KARAK	-SA3-199
10. MA'ANSA3-2 11. MADABASA3-2 12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	9.	KUFRANJA	SA3-205
12. MAFRAQSA3-2 13. RAMTHASA3-2 14. SALTSA3-2 15. TAFIELAHSA3-2 16. WADI ARABSA3-2	10.		
13. RAMTHA SA3-22 14. SALT SA3-22 15. TAFIELAH SA3-22 16. WADI ARAB SA3-22	11.	MADABA	SA3-216
13. RAMTHA SA3-22 14. SALT SA3-22 15. TAFIELAH SA3-22 16. WADI ARAB SA3-22	12.	MAFRAO	SA3-222
15. TAFIELAHSA3-2 16. WADI ARABSA3-2	13.	e e e e e e e e e e e e e e e e e e e	
15. TAFIELAHSA3-2 16. WADI ARABSA3-2	14.	SALT	-SA3-234
16. WADI ARAB SA3-2-	15.		
	16.		

TREATMENT PLANTS UNDER CONSTRUCTION

18.	WADI HASSAN	SA3-253
19.	WADI MOUSA	SA3-258

PLANNED TREATMENT PLANTS

20.	AL JEEZA	SA3-265
21.	AL MAZAR AL SHAMALI	SA3-272
22.	DAIR ABI SAID	SA3-276
23.	DAIR ALLA	SA3-281
24.	JERASH WEST	SA3-286
25.	KOFUR ASAD	SA3-290
26.	AQABA SOUTH COAST	SA3-295
27.	NAUR	SA3-299
28.	NORTH QUEEN ALIA AIRPORT	SA3-304
29.	NORTH JORDAN VALLEY	SA3-311
30.	SHUNA SOUTH	SA3-319
31.	TORRA	SA3-324
32.	UM AL BASATEEN	SA3-329
33.	WADI SHALLALA	SA3-330
34.	WADI ZARQA	SA3-339
35.	MAZAR, MUTA, ADNANIYA	SA3-344
36.	DEAD SEA EAST COAST	SA3-348

Page

11. MADABA TREATMENT PLANT

Madaba Treatment Plant receives its wastewater from the town of Madaba only (for details of the existing system refer to Section 11 of Annex 3.1). The sewered area is shown in Figure 11.1

Due to the fact that Madaba's existing Wastewater Treatment Plant is overloaded by 80 % a Feasibility Study was prepared to upgrade and expand the treatment capacity. The Consultant proposes to improve the treatment system by upgrading the plant utilizing an extended aeration process. The treatment facilities will consist of equalization ponds, primary treatment, extended aeration basins, secondary settling tanks, maturation ponds (using existing ponds), filtration and chlorination system. Sludge treatment and disposal includes gravity sludge thickeners, drying beds and disposal to land fill (see Figure 11.2).

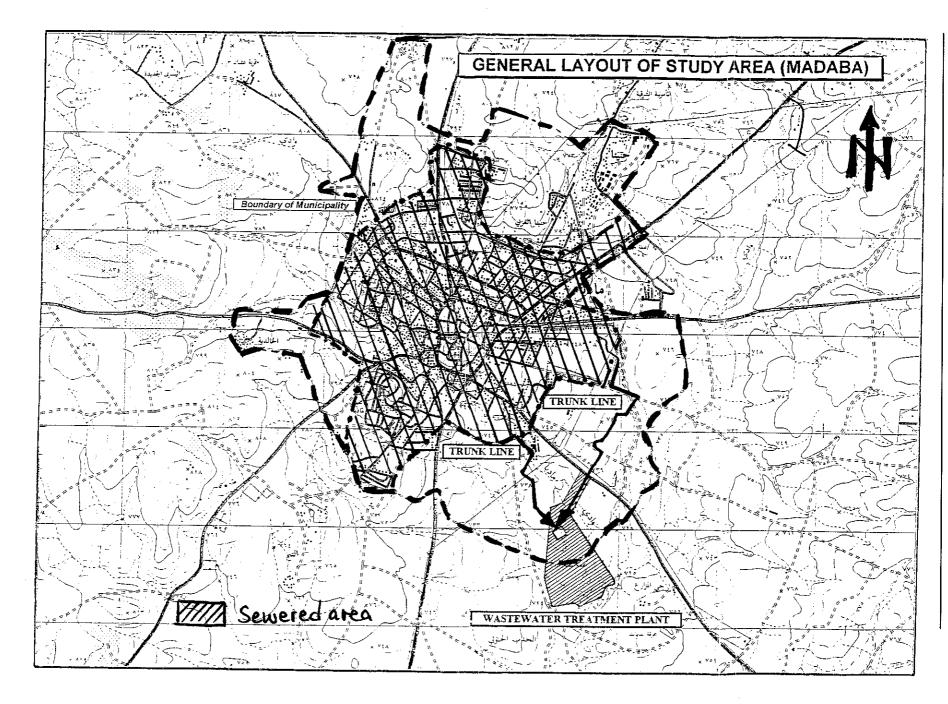
According to the Consultant the existing collection system is in a rather good condition and requires no improvements.

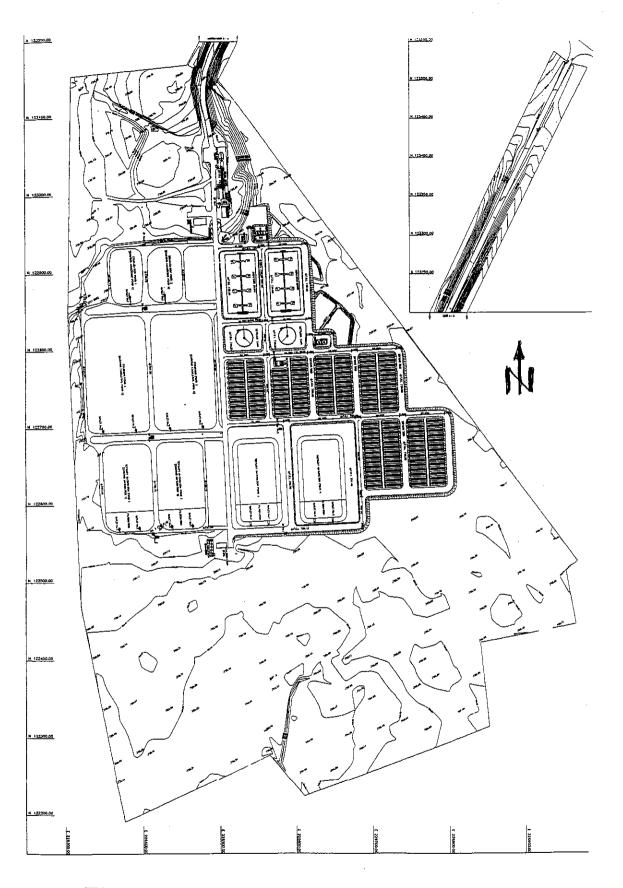
With respect to the projection of the wastewater production the Consultant has chosen a capacity of 7,600 m^3/d for the new plant, which will be reached in about 2010 (see following table).

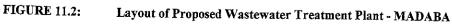
At present about 40 ha are irrigated by the treated wastewater of the existing plant (see schematic layout in Figure 11.3a). One main (Line B) irrigates areas (operated by Corporation Society and Military Retired Corporation) within the treatment plant boundary. The main (Line A) irrigates agricultural land outside of the plant area (Hyasat farm and Fakhry farm). Irrigation is done by flood irrigation.

The existing effluent reuse system shall be improved. Reuse areas are southwest of the existing treatment plant (see Figure 11.3b). The effluents may supply irrigation water for an area of about 300 ha in 2020 taking into account sudan grass and alfalfa as summer crops as well as barley and rye-grass as winter crops (see following table). A pump station is required to pump the effluent of the treatment plant to the about 10 m higher located proposed reservoir.

As the additional area to be irrigated by the effluent from the treatment plant is not yet defined, the extended irrigation area is probably located near the existing irrigated area.


Investment cost for proposed measures for improvement of treatment plant and of reuse system were estimated to 5.65 mio. JD (constant prices of 1996). Costs for operation and maintenance were found to be 196,000 JD per year.


Construction work is tendered in 2000.


Consultant's Study Report:

Hyundai Engineering Co., Ltd.: "Feasibility study and detailed design on the expansion development of the existing wastewater systems of Madaba and Ramtha. Feasibility study report. Madaba", February 1996

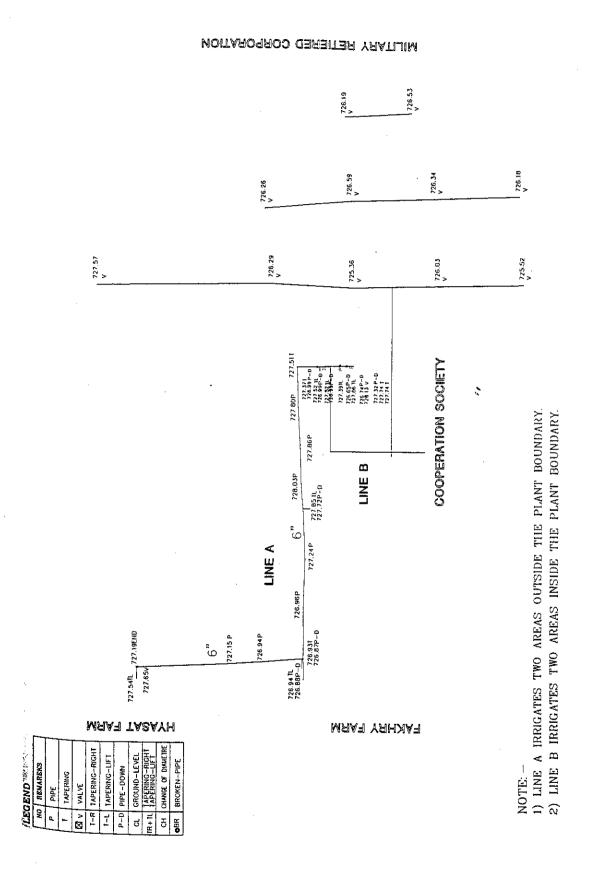


FIGURE 11.3a:

Existing Reuse System - MADABA (Schematic Layout)

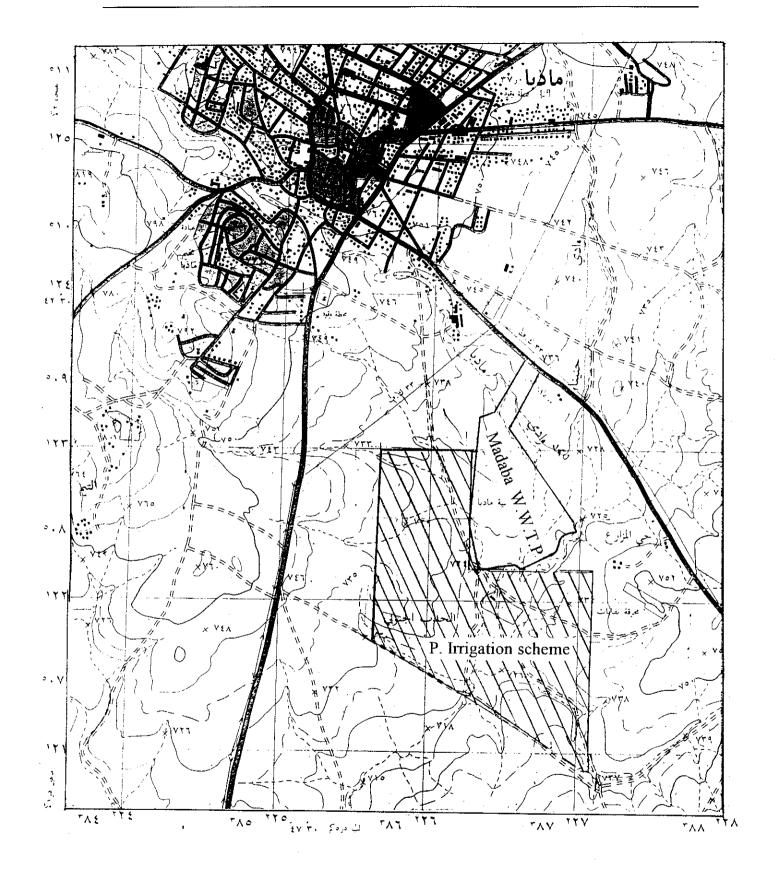


FIGURE 11.3b:

Proposed Reuse Areas - MADABA

11 MADABA

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Basic data:

Population in 1994	51.606						
Growth rate (previous period) Spec.water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d m³/d	1 994 - 85	2000 3,6 100	2005 3,6 105	2010 3,6 120	2015 3,6 125	2020 3,6 125
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD₅/c/d	60 0,8 0 65	75 0,8 0 65	75 0,8 0 65	85 0,8 0 65	88 0,8 0 65	90 0,8 0 65
	Unit	1994	2000	2005	2010	2015	2020
Population Connected (sewerage) Not connected (sewerage)	C C C	51.606 30.964 20.642	63.806 47.854 15.951	76.148 57.111 19.037	90.877 77.246 13.632	108.456 95.442 13.015	129.436 116.492 12.944
Water demand Domestic demand Commercial demand Small industrial demand Pastoral demand	l/c/d m³/d m³/d m³/d m³/d	85 4.387	100 6.381	105 7.996	120 10.905	125 13.557	125 16.179
Total	m³/d	4.387	6.381	7.996	10.905	13.557	16.179
Wastewater production Return flow (w.demand) Losses/inflow	m³/d m³/d	2.106 0	3.828 0	4.797 0	7.416 0	9.544 0	11.649 0
Total	m³/d m³/month m³/a	2.106 63.166 768.517	3.828 114.850 1.397.342	4.797 143.919 1.751.019	7.416 222.468 2.706.695	9.544 286.325 3.483.619	11.649 349.476 4.251.960
Pollutional load Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD₅/d kgBOD₅/d kgBOD₅/d kgBOD₅/d	2.013	3.111	3.712	5.021	6.204	7.572
Total load	kgBOD₅/d	2.013	3.111	3.712	5.021	6.204	7.572
Reuse of wastwater Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap.) Effluent of treatment plant Net water demand per ha Irrigable reuse area	m³/a % m³/a m³/d/ha ha	768.517 25 192.129 576.387 0	1,397,342 25 349,336 1.048.007 35 82	1.751.019 10 175.102 1.575.917 35 123	2.706.695 10 270.669 2.436.025 35 191	3.483.619 10 348.362 3.135.257 35 245	4.251.960 10 425.196 3.826.764 35 300

Barley, rye grass

35 m³/d/ha

12. MAFRAQ TREATMENT PLANT

Mafraq disposes already of a wastewater collection, treatment and disposal system. (for details refer to Section 12 of Annex 3.1). After completion of proposed measures of rehabilitation and extension of the existing Mafraq Scheme the following communities will be connected: Mafraq, Mansoura, Aidoon Bani Hasan, Um Naam Ash Sharqi, Um Naam Al Garbi, Mezzeh, Al Ghadeer Alabyad, Tayeb Esem and Rajem Sabea Ash Shamali. Figure 12.1 shows the layout of the proposed sewerage system (TYPSA Study).

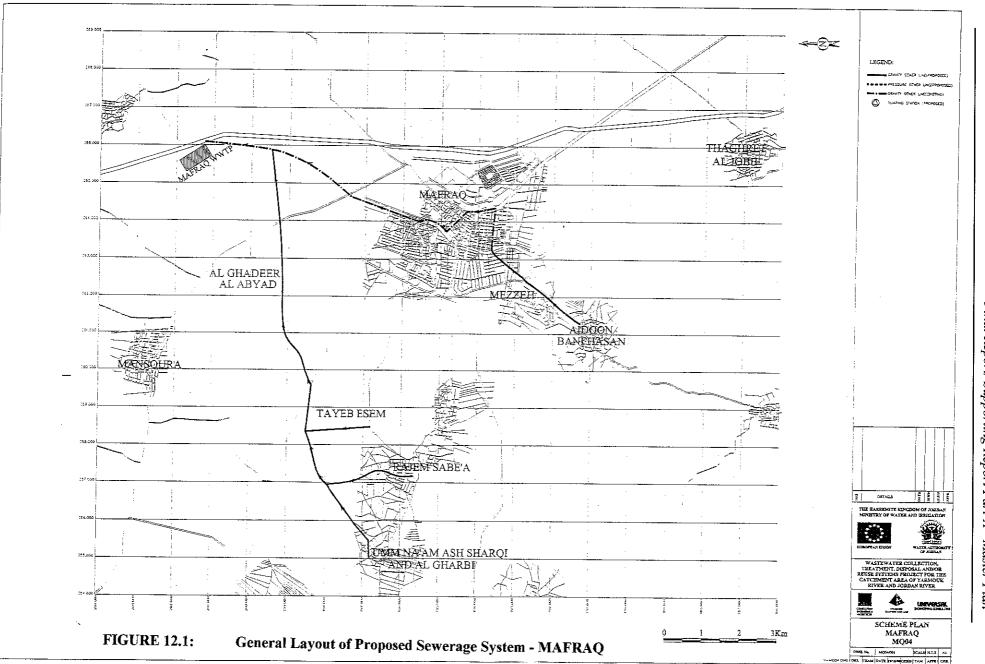
In 1999 an additional report was prepared by J.M.Eller & Associates concerning the rehabilitation and extension of the treatment plant. Primary treatment will be provided by covered anaerobic lagoons, while secondary treatment will be based on sequencing batch reactors (SBRs). The anticipated effluent quality from the SBRs coupled with the additional treatment provided by deep reservoir treatment (DRT) storage for reuse shall eliminate the need of tertiary filtration or other types of polishing. Produced sludge will be digested in the anaerobic ponds and then dried in sludge drying beds. Figure 12.2 shows the proposed treatment system after extension. The projection of the wastewater production is shown in the following table (acc. to Eller Study). Final capacity of the treatment plant will be reached

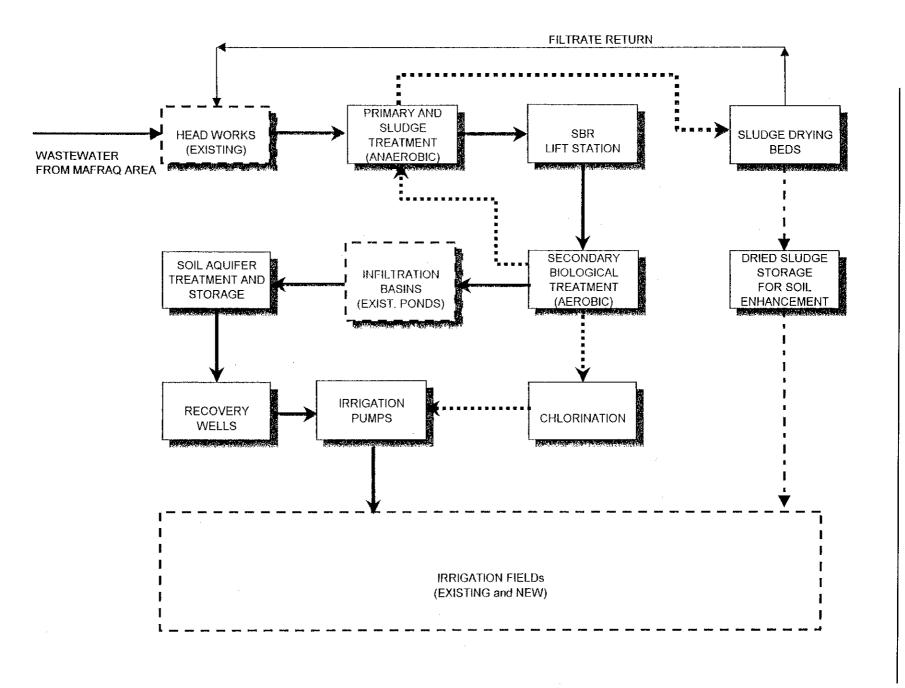
in 2020: $4,500 \text{ m}^3/\text{d} (34,000 \text{ connected inhabitants})$

At present, treated effluent is used for agricultural irrigation for fodder production inside the treatment plant. Future additional reuse area is identified northwest of the existing treatment plant (see Figure 12.3). A small pump station of low pump head is required to overcome the low geodetic height (1 - 5 m) and the pressure losses. Due to increasing effluents about 140 ha of land could be irrigated in 2020 taking into account alfalfa as summer crops and barley as winter crops (see following table)..

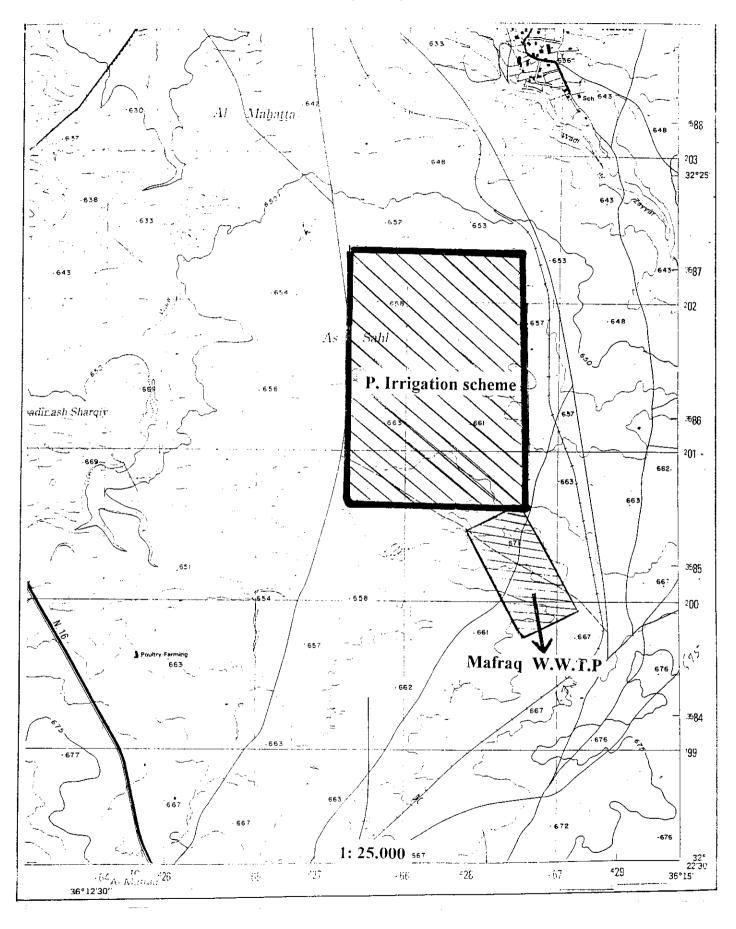
The investment costs (for proposed extension and upgrading measures) based on preliminary design and 1999 prices (Eller Study) are:

Treatment plant	5.00 million JD
Distribution to irrigation	0.57 million JD
Total base costs	5.57 million JD
Physical contingencies (15 %)	0.84 million JD
Engineering (15 %)	0.84 million JD
Total investment costs	7.25 million JD


A Feasibility Study for the sewerage system of Mafraq will be prepared by USAID. Terms of Reference were prepared in 2000.


Consultant's Study Report:

TYPSA, Symonds Travers Morgan and Universal Engineering Consulting: "Wastewater collection, treatment, disposal and/or reuse systems project for the catchment area of Yarmouk River and Jordan River. Final Report", December 1998


DAR: "Report on the rehabilitation and extension of the wastewater treatment plants Karak, Kufranja, Ma'an, Mafraq", July 1999

J.M.Eller & Associates: "Assessment of integrated wastewater treatment/reuse system for three candidate sites: Kufranja, Mafraq and Ma'an", October 1999.

SA3-225

FIGURE 12.3:

Potential Reuse Areas - MAFRAQ

12 MAFRAQ

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Basic data:

Population in 1994	32.193						
Growth rate (previous period) Spec.water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d m³/d	1994 - 80	2000 2,9 130	2005 2,9 145	2010 2,9 150	2015 2,9 157	2020 2,9 165
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD₅/c/d	50 0,8 0 65	50 0,8 0 65	50 0,8 0 65	50 0,8 0 65	50 0,8 0 65	50 0,8 0 65
	Unit	1994	2000	2005	2010	2015	2020
Population Connected (sewerage) Not connected (sewerage)	с с с	32.193 16.097 16.097	38.217 19.108 19.108	44.089 22.045 22.045	50.864 25.432 25.432	58.679 29.340 29.340	67.696 33.848 33.848
Water demand Domestic demand Commercial demand Small industrial demand Pastoral demand	l/c/d m³/d m³/d m³/d	80 2.575	130 4.968	145 6.393	150 7.630	157 9.213	165 11.170
Total	m³/d	2.575	4.968	6.393	7.630	9.213	11.170
Wastewater production Return flow (w.demand) Losses/inflow Total	m³/d m³/d m³/d	1.030 0 1.030	1.987 0 1.987	2.557 0 2.557	3.052 0 3.052	3.685 0 3.685	4.468 0 4.468
	m³/month m³/a	30.905 376.014	59.618 725.354	76.715 933.365	91.555 1.113.914	110.552 1.345.045	134.038 1.630.790
Pollutional load Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD₅/d kgBOD₅/d kgBOD₅/d kgBOD₅/d	1.046	1.242	1.433	1.653	1.907	2.200
Total load	kgBOD₅/d	1.046	1.242	1.433	1.653	1.907	2.200
Reuse of wastwater Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap.) Effluent of treatment plant Net water demand per ha Irrigable reuse area	m³/a % m³/a m³/d/na ha	376.014 25 94.004 282.011 0	725.354 25 181.338 544.015 30 50	933.365 5 46.668 886.697 30 81	1.113.914 5 55.696 1.058.218 30 97	1.345.045 5 67.252 1.277.793 30 117	1.630.790 5 81.539 1.549.250 30 141
							-

Water demand for irrigation

Alfalfa, barley

30 m³/d/ha

13. RAMTHA TREATMENT PLANT

Due to the fact that Ramtha's existing Wastewater Treatment Plant is overloaded a Feasibility Study was prepared to upgrade and expand the treatment capacity (for details of the existing system refer to Section 13 of Annex 3.1). The Consultant proposes to improve the treatment system by upgrading the plant utilizing an extended aeration process. The treatment facilities will consist of equalization ponds, primary treatment, extended aeration basins, secondary settling tanks, maturation ponds (using existing ponds), filtration and chlorination system. Sludge treatment and disposal includes gravity sludge thickeners, drying beds and disposal to land fill (see Figure 13.1).

According to the Consultant the existing collection system is in a rather good condition and requires no improvements.

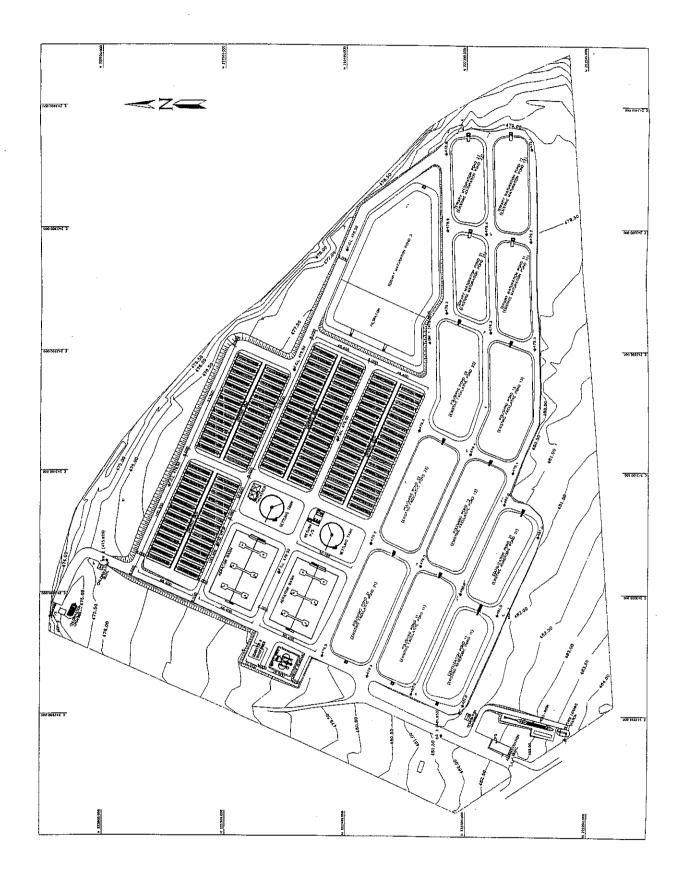
With respect to the projection of the wastewater production the Consultant has chosen a capacity of 5,400 m^3/d for the new plant, which will be reached in about 2010 (see following table).

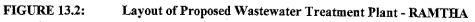
At present about 37 ha are irrigated by the treated wastewater of the existing plant (see schematic layout in Figure 13.3a). One main (Line D) is used to irrigate about 7 ha within the treatment plant boundary. The mains outside of the plant area irrigate about 8 ha (Line C), 7 ha (Line B) and 15 ha (Line C) respectively. Irrigation is done either by drip or flood irrigation. It seems that the current mode of operation of the irrigation system is not as efficient as it could be.

The existing effluent reuse system shall be improved. Presently irrigated area will be kept and supplied in the future. A pump station is required to pump the effluent of the treatment plant to the proposed reservoir. Excess water shall be discharged by a pipeline to the Campus of Science and Technology University for irrigation of irrigation of trees and bushes within the campus. If the treated effluent will not be used at the campus, alternative irrigable area is available north of the wastewater treatment plant (see Figure 13.3b). The effluents could supply irrigation water for an area of about 180 ha in 2020 taking into account alfalfa as summer crops and barley as winter crops (see following table).

Investment cost for proposed measures for improvement of treatment plant and of reuse system were estimated to 4.395 mio. JD (constant prices of 1996). Costs for operation and maintenance were found to be 156,000 JD per year.

Construction work is tendered in 2000.


Consultant's Study Report:


Hyundai Engineering Co., Ltd.: "Feasibility study and detailed design on the expansion development of the existing wastewater systems of Madaba and Ramtha. Feasibility study report. Ramtha", February 1996.

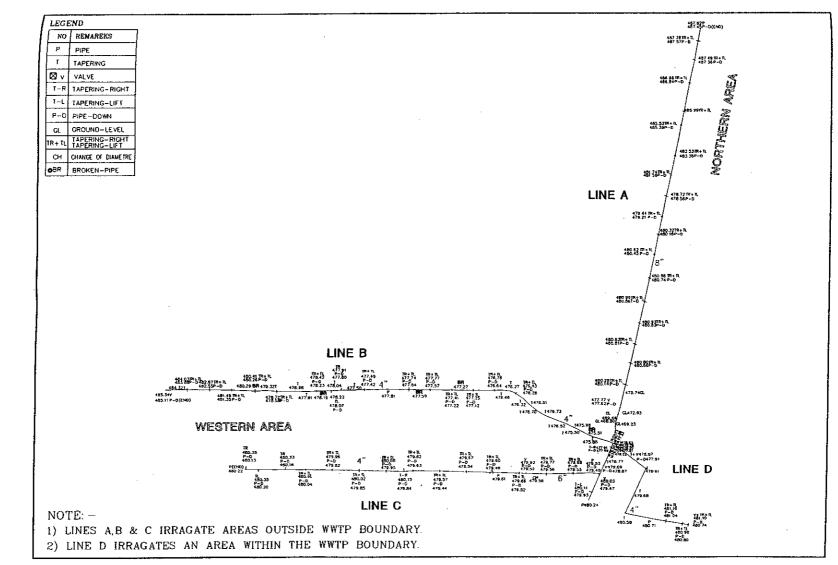
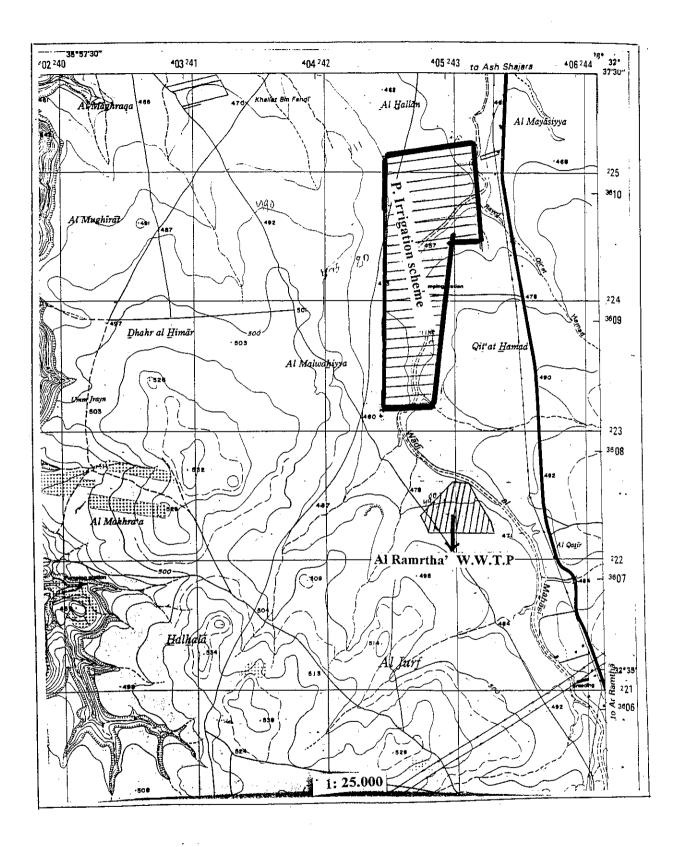


FIGURE 13.1:

General Layout of Proposed Sewerage System - RAMTHA



SA3-231

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan" Final Report/ Supporting Report Part-A

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

13 RAMTHA

Basic data:

Population in 1994	47.488						
Growth rate (previous period) Spec.water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d m³/d	1994 - 65	2000 3,4 75	2005 3,4 90	2010 3,4 100	2015 3,4 105	2020 3,4 110
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD ₅ /c/d	50 0,8 0 65	65 0,8 0 65	70 0,8 0 65	80 0,8 0 65	85 0,8 0 65	90 0,8 0 65
	Unit	1994	2000	2005	2010	2015	2020
Population Connected (sewerage) Not connected (sewerage)	c c c	47.488 23.744 23.744	58.037 37.724 20.313	68.598 48.018 20.579	81.080 64.864 16.216	95.833 81.458 14.375	113.271 101.944 11.327
Water demand Domestic demand Commercial demand Small industrial demand Pastoral demand	l/c/d m³/d m³/d m³/d m³/d	65 3.087	75 4.353	90 6.174	100 8,108	105 10.062	110 12.460
Total	m³/d	3.087	4.353	6.174	8.108	10.062	12.460
Wastewater production Return flow (w.demand) Losses/inflow	m³/d m³/d	1.235 0	2.263 0	3.457 0	5.189 0	6.842 0	8.971 0
Total	m³/d m³/month m³/a	1.235 37.041 450.661	2.263 67.904 826.161	3.457 103.720 1.261.924	5.189 155.673 1.894.023	6.842 205.274 2.497.504	8.971 269.131 3.274.432
Pollutional load Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD₅/d kgBOD₅/d kgBOD₅/d kgBOD₅/d	1.543	2.452	3.121	4.216	5.295	6.626
Total load	kgBOD₅/d	1.543	2.452	3.121	4.216	5.295	6.626
Reuse of wastwater Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap.) Effluent of treatment plant Net water demand per ha Irrigable reuse area	m³/a % m³/a m³/a m³/d/ha ha	450.661 25 112.665 337.996 0	826.161 25 206.540 619.621 45 38	1.261.924 10 126.192 1.135.732 45 69	1.894.023 10 189.402 1.704.621 45 104	2.497.504 10 249.750 2.247.754 45 137	3.274.432 10 327.443 2.946.989 45 179

Water demand for irrigation	Alfalfa, barley	45	m³/d/ha
Water demand for imgation	Anana, baney		in raina

14. SALT TREATMENT PLANT

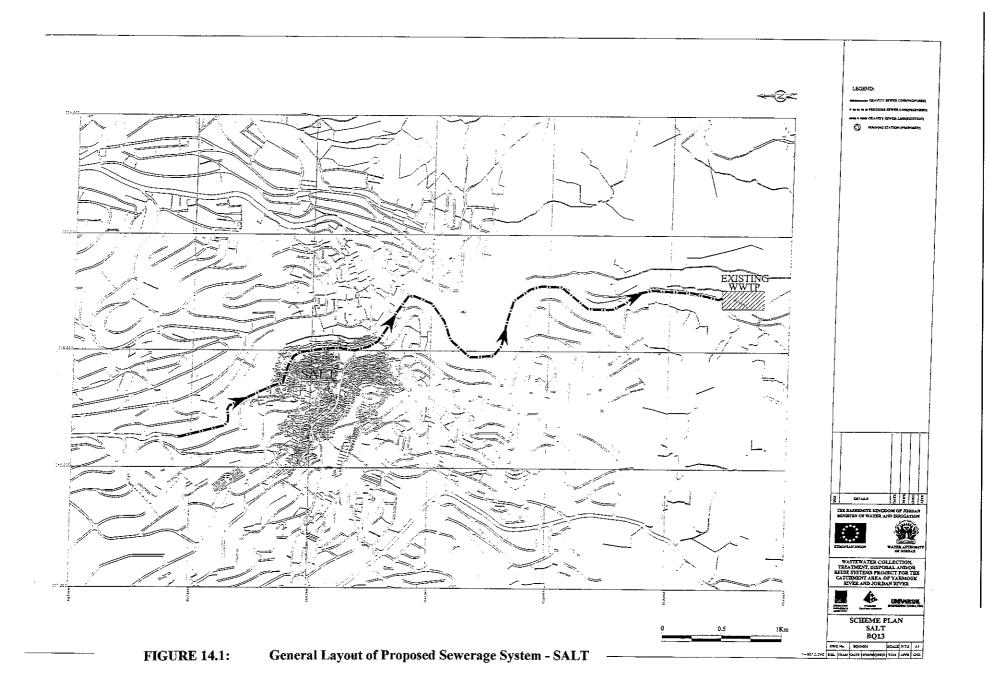
Salt disposes already of a wastewater collection, treatment and disposal system (for details of the existing system refer to Section 14 of Annex 3.1). According to the proposed measures of extension the Salt Scheme will be limited to the town of Salt as it is presently. Figure 14.1 shows the layout of the proposed sewerage system (TYPSA Study).

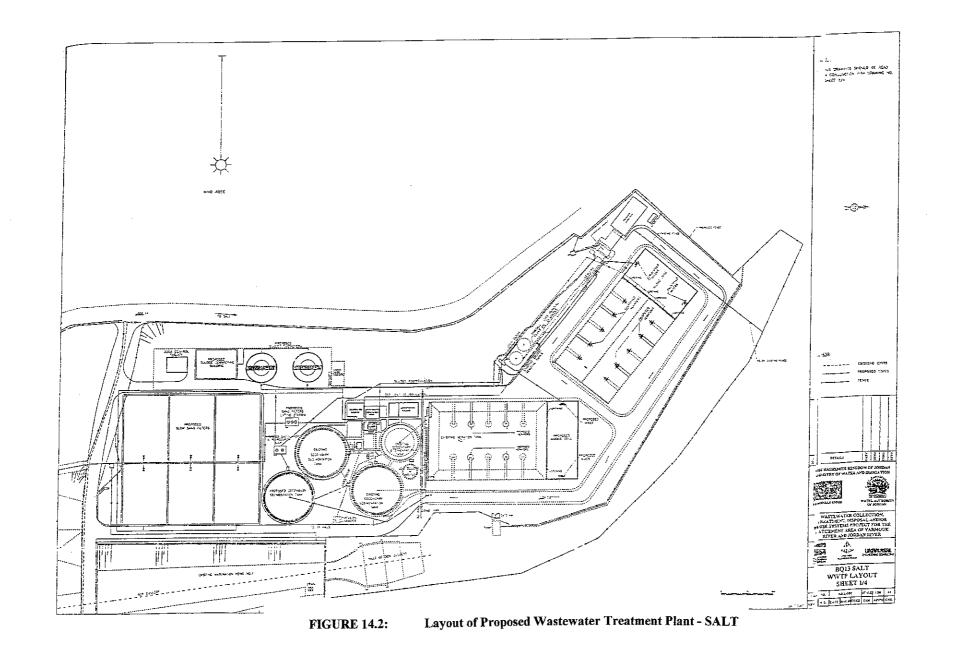
The project (TYPSA Study) foresees the extension of the existing Salt Treatment Plant designed for the wastewater production in 2020. The existing treatment process based on extended aeration will be applied also in future. Slow sand filtration will be added as tertiary treatment. Existing maturation ponds will serve as additional treatment downstream of the slow sand filters. Produced sludge will be treated by gravity thickeners, unheated anaerobic sludge digestion and decanter centrifuges. Figure 14.2 shows the proposed treatment system after extension. The projection of the wastewater production is shown in the following table (acc. to TYPSA Study). Final capacity of the treatment plant will be reached

in 2020: $11,700 \text{ m}^3/\text{d}$ (105,000 connected inhabitants)

The flanks of the Wadi Shua'ab valley are rather steep. Due to missing sufficient areas suitable for agricultural irrigation in the vicinity of the plant it is recommended to discharge the treated effluent into the Wadi Shua'ab mouthing into the Wadi Shua'ab Reservoir. From there water will flow to the Jordan Valley for ultimate reuse.

The investment costs (for future extension measures) based on preliminary design and 1998 prices (TYPSA Study) are:


Treatment plant (primary and secondary treatment)	4.12 million JD
Networks	4.56 million JD
Tertiary treatment and pipeline (reuse system)	1.31 million JD
Dam/storage (pond for reuse)	0 million JD
Total base costs	9.99 million JD
Physical contingencies	1.00 million JD
Engineering	1.10 million JD
Total investment costs	12.10 million JD


According to the TYPSA Study Report proposed extension measures will be implemented between 2004 and 2005.

Consultant's Study Report:

TYPSA, Symonds Travers Morgan and Universal Engineering Consulting: "Wastewater collection, treatment, disposal and/or reuse systems project for the catchment area of Yarmouk River and Jordan River. Final Report", December 1998

GWE: "Expansion and upgrading of the wastewater treatment plant at Salt. Design Report", 1991

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

14 SALT

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Basic data:

Population in 1994:	56.720						
	Unit	1994	2000	2005	2010	2015	2020
Growth rate (previous period)	%	-	3,02	3,02	3,02	3,02	3,02
Spec.water demand	l/c/d	100	100	120	130	140	140
Commercial demand	m³/d						
Small industrial demand	m³/d						
Pastoral demand	m³/d						
Coverage	%	60	60	85	85	85	85
Return factor	-	0,8	0,8	0,8	0,8	0,8	0,8
Losses/inflow	%	0	0	0	0	0	0
Specific pollutional load	gBOD₅/c/d	65	65	65	65	65	65
	Unit	1994	2000	2005	2010	2015	2020
	UNIC	1334	2000	2000	2010	2010	2020
Population	с	56.720	67.806	78.682	91.302	105.947	122.941
·	_	04.000	40.000	66 970	77 007	00.055	104 500

Connected (sewerage)	С	34.032	40.683	66.879	77.607	90.055	104.500
Not connected (sewerage)	C	22.688	27.122	11.802	13.695	15.892	18.441
Water demand	l/c/d	100	100	120	130	140	140
Domestic demand	m³/d	5.672	6.781	9.442	11.869	14.833	17.212
Commercial demand	m³/d	0.072	0.701	J.772	11.000	14.000	17.214
Small industrial demand	m³/d						
Pastoral demand	m³/d						
Total	m³/d	5.672	6.781	9.442	11.869	14.833	17.212
Wastewater production							
Return flow (w.demand)	m³/d	2.723	3.255	6.420	8.071	10.086	11.704
Losses/inflow	m³/d	0	0	0	0	0	0
Total	m³/d	2.723	3.255	6.420	8.071	10.086	11.704
	m³/month	81,677	97.640	192.613	242.133	302.585	351.119
	m³/a	993.734	1.187.954	2.343.453	2.945.955	3.681.446	4.271.951
Pollutional load							
Poll. load (dom.demand)	kgBOD₅/d	2.212	2.644	4.347	5.044	5.854	6.792
Poll. load (com.demand)	kgBOD₅/d						
Poll. load (small ind.)	kgBOD₅/d						
Others	kgBOD₅/d						
Total load	kgBOD₅/d	2.212	2.644	4.347	5.044	5.854	6.792
Reuse of wastwater							
Inflow to the treatment plant	m³/a	993.734	1.187.954	2.343.453	2.945.955	3,681.446	4.271.951
Losses in treatment plant	%	0	10 118.795	10 234.345	10 294,595	10 368.145	10 427,195
(due to infiltr./evap.) m³/a m³/a	0 993.734	118.795	234.345 2.109.108	294.595 2.651,359	368.145	427.195 3,844.756
Effluent of treatment plant Net water demand per ha	m³/d/ha	993.134	-	∠.109.100 -	2.001,009	5.313.302	J.044./JD
Irrigable reuse area	ha	_	-	-	-	-	-
angubic rease area	1104						

Water demand for irrigation

15. TAFIELAH TREATMENT PLANT

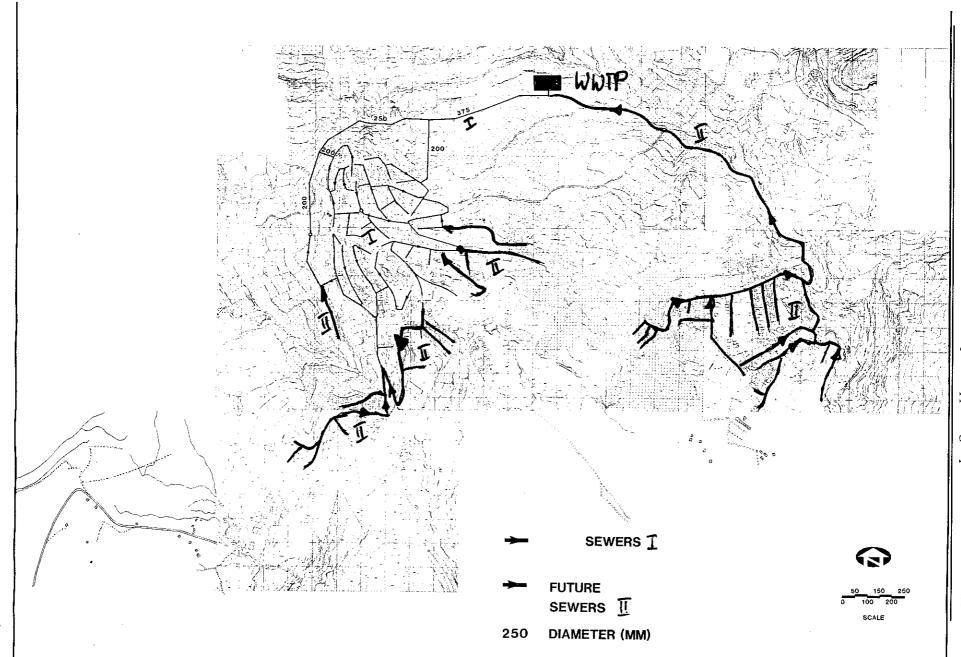
Tafielah disposes already of a wastewater collection, treatment and disposal system (for details refer to Section 15 of Annex 3.1). At present, there are no particular measures of extension of the existing facilities proposed. Figure 15.1 shows the layout of the sewerage system.

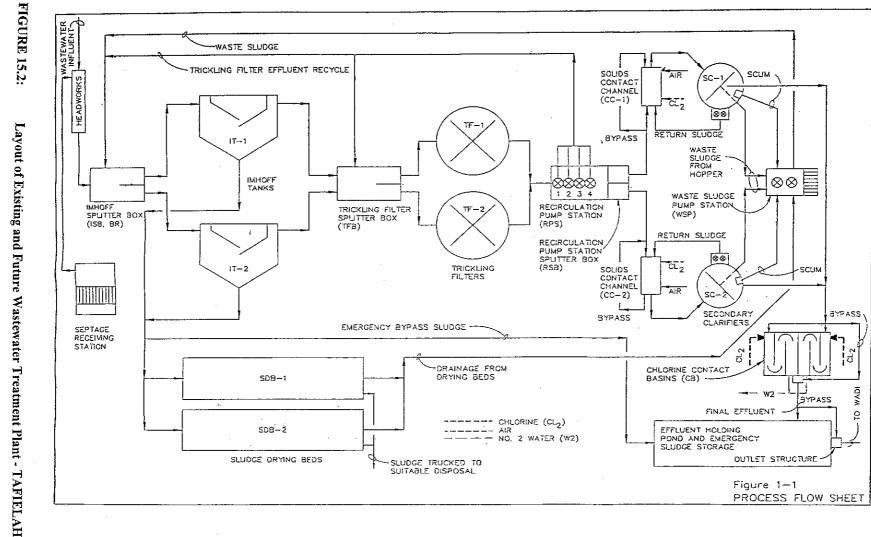
Downstream of the headworks of the treatment plant two parallel trains exist for secondary treatment: Settling of solid matter of sewage takes place in the Imhoff tanks. Trickling filters and solid contact channels followed by secondary settling do biological treatment. Chlorination facilities are located upstream of the maturation pond. Figure 15.2 shows are other resources than treated wastewater are scarce.

It is expected that existing design capacity will be reached after

in 2005: 1,600 m³/d

At that time rehabilitation and extension measures for the existing treatment plant will be required.


The effluents may supply irrigation water for an area of about 50 ha in 2020 taking into account the demand for irrigation of eucalyptus/olives trees (see following table). A pump station is required to pump the effluent of the treatment plant to the about 20 m higher located proposed reservoir. Proposed wastewater reuse areas are presented in the Figure 15.3.


Consultant's Study Report:

J.M.Montgomery: "Municipal water distribution improvements and sewerage and stormwater drainage systems in Tafielah. Feasibility Study Report", March 1983

General Layout of Proposed Sewerage System - TAFIELAH SA3-239

FIGURE 15.1:

SA3-240

The Study on Water Resources Management in The Hashemite Kingdom of Jordan Final Report/Supporting Report Part-A "Master Plan"

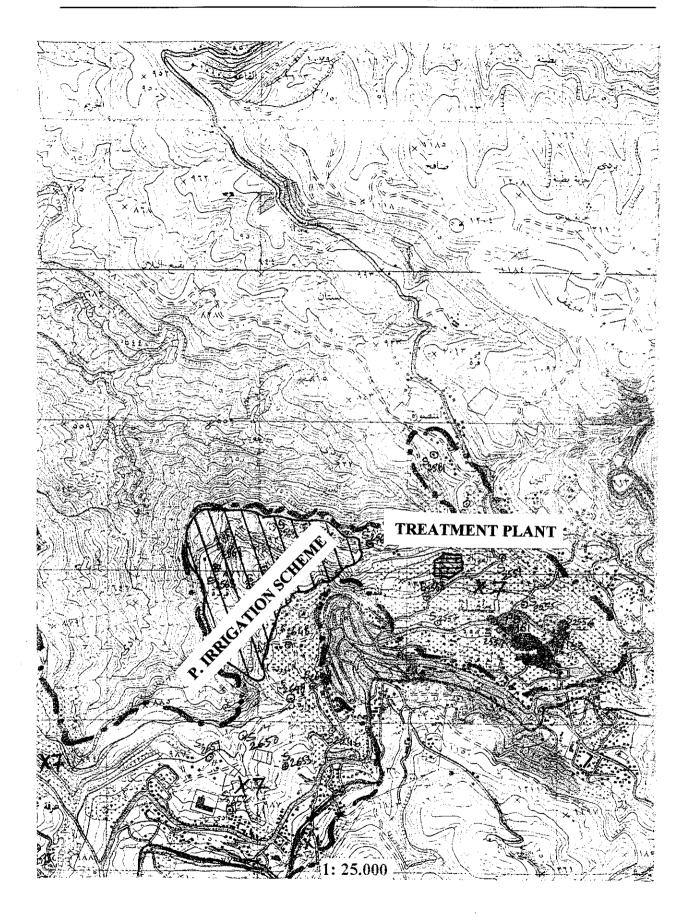


FIGURE 15.3: Potential Reuse Areas - TAFIELAH

15 TAFIELAH

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Population in 1994:	20.850						
	Unit	1994	2000	2005	2010	2015	2020
Growth rate (previous period)	%	-	3,30	3,30	3,30	3,30	3,30
Spec.water demand	l/c/d	100	90	120	130	130	130
Commercial demand	m³/d						
Small industrial demand	m³/d						
Pastoral demand	m³/d						
Coverage	%	50	50	55	70	70	70
Return factor	-	0,8	0,8	0,8	0,8	0,8	0,8
Losses/inflow	%	0	0	0	0	0	0
Specific pollutional load	gBOD ₅ /c/d	65	65	65	65	65	65
	Unit	1994	2000	2005	2010	2015	2020
Den 1-41 m	_	00.050	05 00 4	00.000	25.052	44,000	40 407
Population	c	20.850 10.425	25.334 12.667	29.800 16.390	35.052 24.536	41.230 28.861	48.497 33.948
Connected (sewerage) Not connected (sewerage)	с с	10.425	12.667	13.410	24.556	12.369	33.948 14.549
Not connected (sewerage)	C	10.420	12.007	10.410	10.010	12.003	14.043
Water demand							
Domestic demand	l/c/d	100	90	120	130	130	130
	m³/d	2.085	2.280	3.576	4.557	5.360	6.305
Commercial demand Small industrial demand	m³/d m³/d						
Pastoral demand	m³/d						
r ustoral demand	in / d						
Total	m³/d	2.085	2.280	3.576	4.557	5,360	6.305
Wastewater production							
Return flow (w.demand)	m³/đ	834	912	1.573	2.552	3.002	3.531
Losses/inflow	m³/d	0	0	0	0	. 0	0
Total	m³/d	834	912	1.573	2.552	3.002	3.531
1 otal	m³/month	25.020	27.361	47.202	76,553	90.046	105.917
	m³/a	304.410	332.892	574.297	931.398	1.095.562	1.288.661
Pollutional load	kaBOD /d	678	823	1 065	1,595	1.876	2.207
Poll. load (dom.demand)	kgBOD₅/d	070	023	1.065	1.595	1.070	2.207
Poll. load (com.demand)	kgBOD₅/d						
Poll. load (small ind.)	kgBOD₅/d						
Others	kgBOD ₅ /d						
Total load	kgBOD₅/d	678	823	1,065	1.595	1.876	2.207
Reuse of wastwater							
Inflow to the treatment plant	m³/a	304.410	332.892	574.297	931.398	1.095.562	1.288.661
Losses in treatment plant	%	10	10	10	10	10	10
(due to infiltr./evap.	<i>,</i>	30.441	33.289	57.430	93.140	109.556	128.866
Effluent of treatment plant	m³/a m³/d/ha	273.969	299.603 64	516.867 64	838.258	986.006 64	1.159.795
Net water demand per ha Irrigable reuse area	m-/d/na ha	0	64 13	64 22	64 36	64 42	64 50
ingable reuse area		v	10		50	72	
Water demand for irrigation	Olives		64	m³/d/ha (p	beak period)		

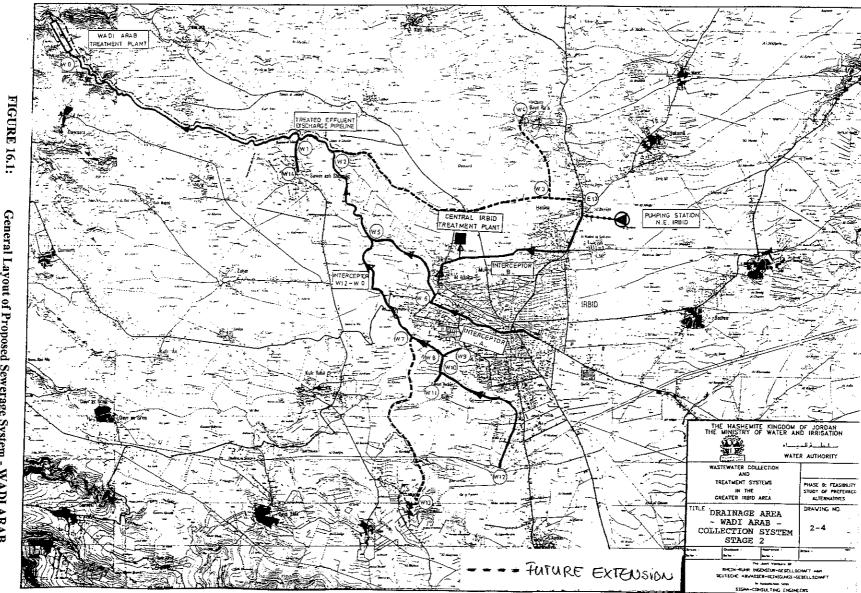
16. WADI ARAB TREATMENT PLANT

Wadi Arab Treatment Plant is part of the sewerage system considered by the long-term development in Greater Irbid Area (compare description of the Treatment Plant Irbid Central under Section 6).

The plant was completed recently (in 1999). Presently the design capacity of the treatment plant is used to about 30 % only (for details of the existing system refer to Section 16 of Annex 3.1)..

The projection of the wastewater production shows that the capacity of the plant (21,000 m^3/d) will be reached in about 2010 (acc. to Consultant's Study Report, see following table).

Presently, the effluent is discharged by a 15 km long pipeline (together with the effluent of Central Treatment Plant of Irbid) to the Jordan Valley for irrigation purposes. This long pipeline was constructed to protect the aquifer and groundwater resources located downstream of the plant, which are exploited for municipal water supply.

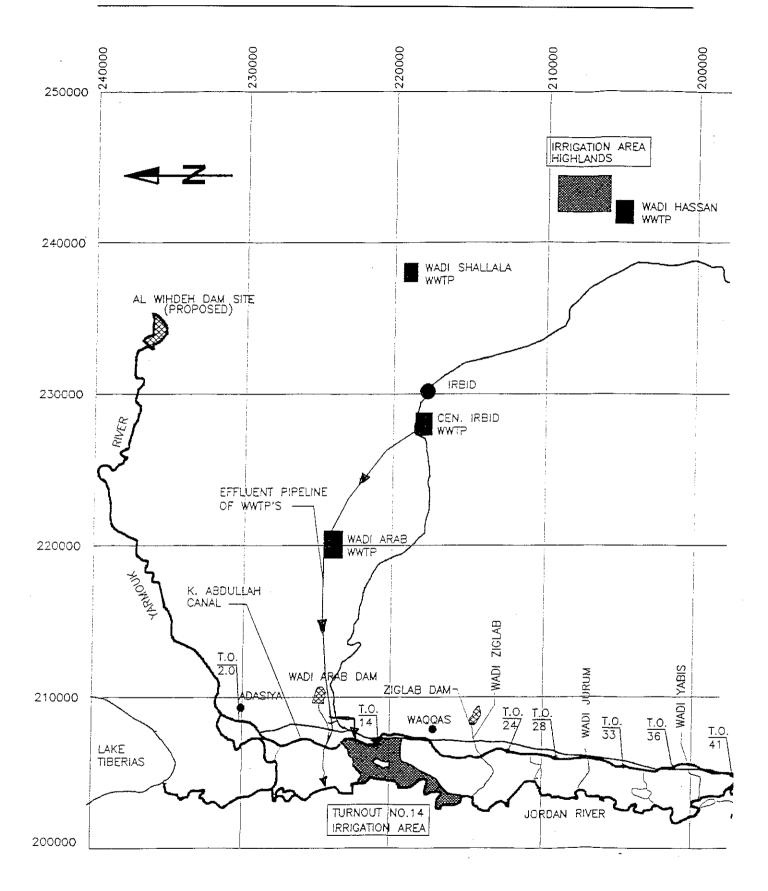

There are no appropriate areas available for agricultural irrigation along the narrow valley of Wadi Arab reusing the quantities of the plant's treated effluent.

It is proposed to reuse the treated effluent of Irbid Central Plant together with Wadi Arab Plant (compare Section 6) in Jordan Valley to produce mixed crops (see Wadi Arab Irrigation Complex, Figure 16.3).

In July 2000 the Ministry of Water and Irrigation prepared Terms of Reference for a study for reuse of treated wastewater for the Greater Irbid Area. It is proposed that the German Development Bank (Kreditanstalt fuer Wiederaufbau, KfW) will finance this study.

Consultant's Study Report:

RRI, DAR and Sigma: "Technical, economical and financial Feasibility Study. Phase B. Feasibility study of preferred alternatives for wastewater collection and treatment systems in the Greater Irbid area.", March 1992



2

Layout of Existing and Future Wastewater Treatment Plant - WADI ARAB

ê

FIGURE 16.3:

Potential Reuse Areas – (WADI ARAB) WADI ARAB IRRIGATION COMPLEX

16 WADI ARAB

SCENARIO 0 "Consultants' Study"

(acc. to Consultant's Study Report)

Basic data:	since 2010 the capacity of TPIrbid Central is reached and add.sewage flows to Wadi Arab									
Population in 1994:	о		Population in 2000:		150.320					
Growth rate (previous period) Spec water demand Commercial demand Small industrial demand Pastoral demand	Unit % I/c/d m³/d m³/d	1994 - -	2000 - 110	2005 4,45 128	2010 3,80 130	2015 4,40 130	2020 4,40 130			
Coverage Return factor Losses/inflow Specific pollutional load	% - % gBOD ₅ /c/d	0 0,8 0 65	50 0,8 0 65	70 0,8 0 65	90 0,8 0 65	90 0,8 0 65	90 0,8 0 65			
	Unit	1994	2000	2005	2010	2015	2020			
Population Connected (sewerage) Not connected (sewerage)	c c c	0 0 0	150.320 75.160 75.160	186.878 130.815 56.064	225.188 202.669 22.519	279.285 251.357 27.929	346.378 311.741 34.638			
Water demand Domestic demand Commercial demand Small industrial demand	1/c/d m³/d m³/d m³/d	- 0	110 16.535	128 23.920	130 29.274	130 36.307	130 45.029			
Pastoral demand Total	m³/d m³/d	0	16.535	23.920	29.274	36.307	45.029			
Wastewater production Return flow (w.demand) Losses/inflow	m³/d m³/d	From Irbid Cent 0 0	rai: 6.614 0	0 13.395 0	0 21.078 0	1.365 26.141 0	3.426 32.421 0			
Total	m³/d m³/month m³/a	0 0 0	6.614 198.422 2.414.139	13.395 401.863 4.889.336	21.078 632.329 7.693.332	27.506 825.169 10.039.562	35.847 1.075.398 13.084.010			
Pollutional load Poll. load (dom.demand) Poll. load (com.demand) Poll. load (small ind.) Others	kgBOD ₅ /d kgBOD ₅ /d kgBOD ₅ /d kgBOD ₅ /d	From Irbid Cent 0	ral: 4.885	0 8.503	0 13.174	853 16.338	2.141 20.263			
Total load	kgBOD₅/d	0	4.885	8.503	13.174	17.191	22.404			
Reuse of wastwater Inflow to the treatment plant Losses in treatment plant (due to infiltr./evap.) Effluent of treatment plant	m³/a % m³/a m³/a	0 0 0	2.414.139 5 120.707 2.293.432	4.889.336 5 244.467 4.644.869 22	7.693.332 5 384.667 7.308.665 22	10.039.562 5 501.978 9.537.584 22	13.084.010 5 654.201 12.429.810 22			
Net water demand per ha Irrigable reuse area Treated effluents discharged togethe	m³/d/ha ha r with the one o	0 of Treatment Pla	22 286 nt Irbid Central	22 578 Linto Jordan Va	22 910 alley and reuse	22 1.188 ed by common	22 1.548 reuse areas			

Water demand for irrigation

Mixed crop pattern

22 m³/d/ha

(demand as for "North Jordan Valley", no.29 reuse areas)