Chapter 11 Conclusions and Recommendations

11-1 Conclusions

This study is a preliminary F/S on mineral exploration and development in Yanqul Area, for its general evaluation in order to lead the project into mining activities. Accordingly, the main objectives of the study are: 1) to increase gold recovery and grade of copper refinement, 2) to increase minable ore reserves through exploration activities, and 3) to estimate minimum investment costs and operation costs.

Exploration and development plan of the mine can be summarized as follows:

11-1-1 Exploration results

The application of an exploration methodology that was established in Batinah Coast area during the geological, geophysical and drilling explorations was also applied in and around the known mineralized zone in Yanqul area.

- (1) Geophysical survey to find new ore bodies within Geotimes and Lasail units in Samail volcanics yielded very promising IP anomalies in Qurom Al-Akbab area. Drilling results within these anomalies revealed that dominant mineralization zone extends about 300m in East-West and about 150m in North-South direction. However, a total copper grade is generally low, and gold mineralization is found quite local. Ore reserve here was roughly determined in 200 million tons with an average grade of 0.71% of Cu and 0.1g/t of Ag.
- (2) Based on this survey, it was concluded that the development of a new deposit of this size would give quite pessimistic results if developed in the future in this area. On the other hand, in the southwestern part of the open pit in Rakah and in the north of the existing gossan in Hail Al Safil area, a small scale with conspicuous IP anomalies were detected in places where the drilling exploration have confirmed stock work mineralization. A slight increase of ore reserves can be expected here.
- (3) The IP Geophysical method in this survey area detected several new mineralized zones including the known ore deposits. The application of the TEM method indicated the shape of the massive sulfide ore body. However, the massive sulfide in this area represents only a small-scale mineralization, and most deposits are in the form of stock work types, which are also found a good target by IP method.

11-1-2 Mining Plan

After compiling existing data, high quality data were collected for each item.

(1) In making ore reserve calculations and taking into consideration the nugget effect, a top cutting method for each deposit were adopted both for copper and gold.
Geological ore reserves at a 0.5%Cu cut off grade are as follows:
Reserves (t) Cu (%) Au (g/t) Contained Cu (t) Contained Au (t)

15,767,000 1.13 0.62 178,738 9,851

- (2) In designing the pit, prior to the detailed designing, pit optimization was made by using the geological model used for ore reserve calculations. For this case and to maintain realistic mine operations, copper price at US ¢ 120/lb and gold price of US\$ 400/oz were assumed.
- (3) Minable ore reserve from the designed pit with a cut-off grade of 0.5% of Cu is as follows:
 Reserves (t) Cu (%) Au (g/t) Contained Cu (t) Contained Au (t)
 8,175,000 1.23 0.68 100,441 5,571
- (4) As a result of metallurgical tests, conventional methods are to be applied for crashing and grinding process, and crashing with a primary ball mill is adopted in order to minimize total construction costs. Estimated metallurgical test results based mainly on a locked cycle test are Cu: 20.0%, Au: 5.13 g/t, and recovery rate resulted in Cu: 85.7% and Au: 39.6%.
- (5) Owing to poor precipitations, water resource in this area is very precious so that contamination of ground water should strictly be avoided. Therefore, a filter Press is to be installed to the refinery plant, and dry-type trailing dam is designed which is able to process from 10 to 20% of the dehydrated drainage.
- (6) Investment costs with a crude ore production rate of 3,000 tons/day totaled US\$29,658,500, in which US\$2,157,500 is an additional investment after start of operation. This amount is mainly for expansion civil work on the trailing dam to be made after four years of operation. The total operation cost resulted in US\$89,864,200 but 30% of this costs goes to mining operation costs because the operation is to be done by subcontracts.
- (7) Investment costs with a crude ore production rate of 2,000 t/d totaled US\$2,278,500, which is little less than 3,000 t/d case, but operation cost of US\$102,068,200 exceeds much from the reduced investment, and therefore the case of 3,000 t/d is clearly economical.
- (8) As a result of financial and economic evaluation, for the case that all required capital is covered by equity and with a copper price of US100 ¢ /lb, the financial IRR to the plan of the project results in 5.92%. Economical evaluation on this results in IRR of 12.47% in case that all required capital is covered by equity and copper price of US100 ¢ /lb.
- (9) It is concluded that under present copper price level (US70 ¢ /lb as of February 2002), mining development of sulfide ore in Yanqul district is negative, but the possibility of development still remains if copper price increases over 100 ¢ /lb.
- (10) If gold production is added at Bishara, IRR could be increased about 1%, and in case of copper price of 100 ¢ /lb, IRR would be 19.22%, and even in case of copper price of 90 ¢ /lb, it would be 8.83%. Furthermore, it is estimated that IRR could be raised up to 10% depending on smelting cost,

even under a copper price of 90 ϕ /lb.

11-2 Recommendations

Cyprus type massive sulfide exploration scheme that was established in Batinah Coast can also be successfully adapted to exploration in Yanqul area. Therefore, this exploration methodology can be adapted to other type of mineralization in Oman for more efficient exploration.

Under this economical situation, it would be difficult for a private company to enter into sulfide mineral development in Yanqul, but it depends on copper price to be increased up to US 100 ϕ /lb.

If the area is developed by a governmental firm, even US 90 ¢ /lb would be feasible. Figures III -11-1 and III-11-2 indicate copper and gold price change in the past 17 years which suggest that above-mentioned price is yet realistic.

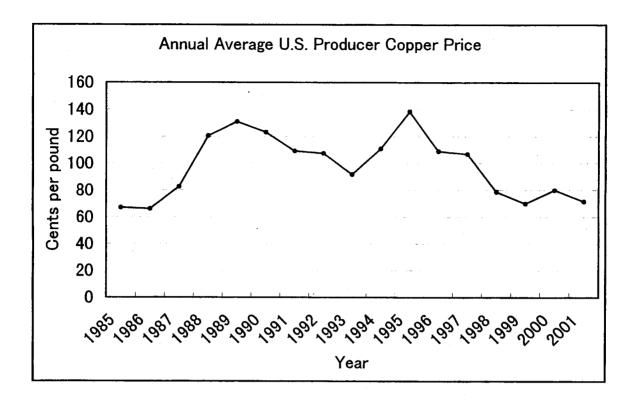


Fig. III-11-1 Historical copper price chart

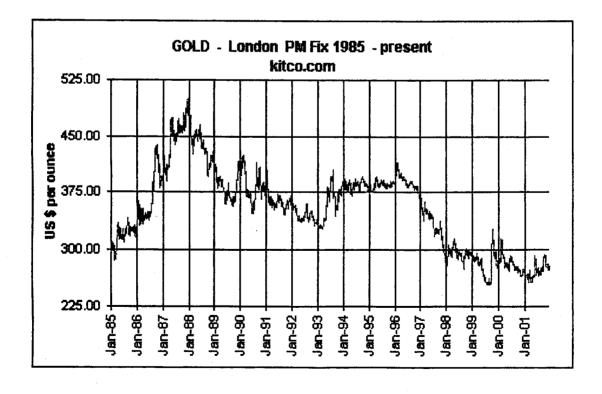


Fig. III-11-2 Historical gold price chart

LIST OF FIGURES, TABLES AND APPENDICES

List of Figures

Fig. III-1-1	Flow of the ore resources evaluations	1
Fig. Ⅲ- 1-2	Topographic data	2
Fig.Ⅲ-1-3	Topographic surface in perspective view looking NE	3
Fig. Ⅲ-1- 4	Locations of each ore deposit and drill-hole collars	5
Fig.Ⅲ-1-5	Rakah – Drillhole collar locations	6
Fig. Ⅲ-1-6	Al Asghar – Drillhole collar locations	7
Fig. Ⅲ-1- 7	Al Bishara – Drillhole collar locations	8
Fig.III-1-8	Al Jadeed – Drillhole collar locations	9
Fig. Ⅲ-1-9	Hayl As Safil – Drillhole collar locations	10
Fig.Ⅲ-1-10	Rakah – Wire-frames looking down towards west	17
Fig.III-1-11	Al Asghar - Wire-frames looking down towards north west	19
Fig.III-1-12	Al Bishara - Wire-frames looking down towards north	19
Fig.III-1-13	Al Jadeed - Wire-frames looking down towards west	21
Fig.III-1-14	Hayl As Safil - Wire-frames looking slightly down towards north	21
Fig.III-1-15	Block Grade Section - Rakah 457290E (%Cu)	33
Fig.Ⅲ-1-16	Block Grade Section - Rakah 457290E(g/tAu)	33
Fig.III-1-17	Block Grade Section - Rakah 457350E(%Cu)	35
Fig. III-1-18	Block Grade Section - Rakah 457350E(g/tAu)	35
Fig.Ⅲ-1-19	Block Grade Section - Rakah 457410E(%Cu)	37
Fig.Ⅲ-1-20	Block Grade Section - Rakah 457410E(g/tAu)	37
Fig.Ⅲ-1-21	Block Grade Section - Rakah 457470E(%Cu)	39
Fig.Ⅲ-1-22	Block Grade Section - Rakah 457470E(g/tAu)	39
Fig.III-1-23	Block Grade Plan - Rakah 550L(%Cu)	41
Fig. III-1-24	Block Grade Plan - Rakah 550L(g/tAu)	41
Fig.Ⅲ-1-25	Block Grade Plan - Rakah 600L(%Cu)	43
Fig. Ⅲ- 1-26	Block Grade Plan - Rakah 600L(g/tAu)	43
Fig. Ⅲ- 1-27	Block Grade Plan - Rakah 650L(%Cu)	45
Fig. III-1-28	Block Grade Plan - Rakah 650L(g/tAu)	45
Fig. III-1-29	Block Grade Section – Al Asghar 452900E(%Cu)	47
Fig.Ⅲ-1-30	Block Grade Section – Al Asghar 452900E(g/tAu)	47
Fig.III-1-31	Block Grade Section – Al Asghar 453000E(%Cu)	49
Fig.Ⅲ-1-32	Block Grade Section – Al Asghar 453000E(g/tAu)	49

Fig. Ⅲ- 1-33	Block Grade Plan – Al Asghar 640L(%Cu)	- :
Fig. III- 1-34	Block Grade Plan – Al Asghar 640L(g/tAu)	- :
Fig. III- 1-35	Block Grade Section – Hayl as Safil 2618700E(%Cu)	- :
Fig.Ⅲ-1-36	Block Grade Section – Hayl as Safil 2618700E(g/tAu)	- :
Fig. Ⅲ- 1-37	Block Grade Section – Hayl as Safil 2618800E(%Cu)	- :
Fig.III-1-38	Block Grade Section – Hayl as Safil 2618800E(g/tAu)	
Fig.Ⅲ-1-39	Block Grade Plan – Hayl as Safil 570L(%Cu)	- :
Fig.Ⅲ-1-40	Block Grade Plan – Hayl as Safil 570L(g/tAu)	
Fig. Ⅲ- 1-41	Block Grade Plan – Hayl as Safil 610L(%Cu)	- :
Fig. Ⅲ- 1-42	Block Grade Plan – Hayl as Safil 610L(g/tAu)	
Fig. Ⅲ-1- 43	Block Grade Plan – Hayl As Safil 650L(%Cu)	
Fig. III- 1-44	Block Grade Plan – Hayl As Safil 650L(g/tAu)	
- Fig.Ⅲ-1-45	Block Grade Section – Al Bishara 2618625E(%Cu)	
- Fig.Ⅲ-1-46	Block Grade Section – Al Bishara 2618625E(g/tAu)	
Fig. Ⅲ- 1-47	Block Grade Section – Al Bishara 2618675E(%Cu)	
Fig. Ⅲ- 1-48	Block Grade Section – Al Bishara 2618675E(g/tAu)	- (
Fig. Ⅲ- 1-49	Block Grade Plan – Al Bishara 600L(%Cu)	- (
Fig. Ⅲ- 1-50	Block Grade Plan – Al Bishara 600L(g/tAu)	-
Fig.Ⅲ-1-51	Block Grade Section – Al Jadeed 2618240N(%Cu)	- (
Fig.III-1-52	Block Grade Plan – Al Jadeed 630L(%Cu)	- 1
Fig.Ⅲ-2-1	Results of pit optimisation	-
Fig.III-2-2	Rakah pit layout from pit optimisation (plan view, Gold=US\$400/oz)	-
Fig. III-2- 3	Rakah pit layout from pit optimisation (section A-A', Gold=US\$400/oz)	-
Fig.Ⅲ-2-4	Al Ashgar pit layout from pit optimisation (plan view, Gold=US\$400/oz)	-
Fig.Ⅲ-2-5	Al Ashgar pit layout from pit optimisation (section B-B', Gold=US\$400/oz)	-
Fig. Ⅲ-2-6	Hayl as Safil pit layout from pit optimisation (plan view, Gold=US\$400/oz)	-
Fig. Ⅲ-2- 7	Hayl as Safil pit layout from pit optimisation (section C-C', Gold=US\$400/oz)	- 4
Fig. Ⅲ-2-8	Al Bishara pit layout from pit optimisation (plan view, Gold=US\$400/oz)	-
Fig. Ⅲ-2- 9	Al Bishara pit layout from pit optimisation (section D-D', Gold=US\$400/oz)	-
Fig. Ⅲ-2- 10	Rakah pit design	- 1
Fig.Ⅲ-2-11	Al Ashgar pit design	- 9
Fig. Ⅲ-2- 12	Hayl as Safil pit design (stage 1)	- 9
Fig. III-2- 13	Hayl as Safil pit design (stage 2)	- 9
Fig. Ⅲ-2- 14	Al Bishara pit design	- !
Fig. III-2- 15	3D view of pit (Rakah)	-

Fig. III -2-17	Dumping area (Rakah)	117
Fig. III- 2-18	Dumping area (Al Ashgar, Hayl as Safil, Al Bishara)	119
Fig. Ⅲ-3- 1	Metallurgocal test program flowsheet	130
Fig.III-3-2	Locked cycle test diagram	133
Fig. Ⅲ- 4-1	Process flow diagram (crushing and grinding)	171
Fig. Ⅲ- 4-2	Process flow diagram (flotation)	173
Fig. Ⅲ- 4-3	Process flow diagram (dewatering)	175
Fig.Ⅲ-4-4	Location of process plant site	177
Fig. Ⅲ- 5-1	Project location	201
Fig.Ⅲ-5-2	Material handling schematic (wet tailings disposal option)	204
Fig.Ⅲ-5-3	Material handling schematic (dry tailings disposal option)	205
Fig. Ⅲ- 5-4	Site investigation works	207
Fig. Ⅲ- 5-5	Borehole logs	209
Fig.Ⅲ-5-6	Trial pit logs	210
Fig. Ⅲ- 5-7	Slope stability analysis results of lower bound material parameters(dry tailings	
	disposal option)	213
Fig. Ⅲ- 5-8	Slope stability analysis results of upper bound material parameters(dry tailings	
	disposal option)	214
Fig. Ⅲ- 5-9	Slope stability analysis results of selected material parameters(wet tailings disposal	
	option)	215
Fig. Ⅲ-6- 1	Proposed organization for mine operation (1)	222
Fig. Ⅲ-6- 2	Proposed organization for mine operation (2)	223
Fig. Ⅲ-6 -3	Proposed organization for mine operation (3)	224
Fig. Ⅲ-6- 4	Proposed organization for mine operation (4)	225
Fig. III-6- 5	Proposed organization for mine operation (5)	226
Fig. Ⅲ- 7-1	Planning map for access road	229
Fig. Ⅲ- 7-2	Standard section of road construction (1)	231
Fig.Ⅲ-7-3	Standard section of road construction (2)	232
Fig.Ⅲ-7-4	Standard section of channel and embankment for wadi diversion	234
Fig. Ⅲ-8- 1	Location of the drill holes	238
Fig. Ⅲ-8- 2	Geological section of drill hole	239
Fig. Ⅲ-8- 3	Classification of Groundwater	242
Fig. Ⅲ-8- 4	Simulation result for air quality	253
Fig. Ⅲ-8 -5	Location of the drill holes for environmental monitoring	263
Fig.III-10-1	Sensitivity analysis on the FIRR(project)(3,000t/d, all equity)	288
Fig. Ⅲ- 11-1	Historical copper price chart	294

List of Tables

Table	Ш-1-1	Coordinate – project area	2
Table	Ш-1-2	Summary of drillhole	3
Table	Ⅲ-1-3	Raw copper statistics	11
Table	Ⅲ-1-4	Raw gold statistics	11
Table	III-1-5	Down-hole model variogram for raw copper	12
Table	Ш-1-6	Down hole model variogram of raw gold	12
Table	Ш-1-7	Coordinate – Rakah	
Table	Ш-1-8	Coordinate – Hayl as Safil	13
Table	Ш-1-9	Coordinate – Al Asghar	13
Table	Ш-1-10	Coordinate - Al Bishara	13
Table	Ш-1-11	Coordinate - Al Jadeed	14
Table	Ш-1-12	Coordinate - Al Jadeed	14
Table	Ш-1-13	Summary of geologic block models and codes(domains)	15
Table	Ⅲ-1-14	Raw copper statistics within domains	15
Table	Ш-1-15	Raw gold statistics within domains	16
Table	III-1-16	Summary of sections produced	16
Table	Ш-1-17	Confidence variable ranges	23
Table	III-1-18	Kriging parameters for copper	24
Table	Ш-1-19	Kriging parameters for gold	24
Table	Ⅲ-1-20	Summary of specific gravity	24
Table	Ш-1-21	Geological ore resources at 0.5%COG	25
Table	Ш-1-22	Geological Ore Resources versus Measured + Indicated Resources by ore	
		deposit at 0.5%CuCOG	26
Table	Ш-1-23	Geological ore resources by ore type in Rakah at various COG	27
Table	III-1-24	Geological Ore Resources by ore type in Hayl As Safil at various COG	28
Table	Ⅲ-1-25	Geological Ore Resources by ore type in Al Asghar at various COG	29
Table	Ш-1-26	Geological Ore Resources by ore type in Al Bishara at various COG	30
Table	Ш-1-27	Geological Ore Resources by ore type in Al Jadeed at various COG	31
Table	Ⅲ-2-1	Pit optimisation parameters	73
Table	Ш-2-2	Result of pit optimisation	74
Table	Ш-2-3	Pit design parameters	92

Table	Ш-2-4	Minable reserve	103
Table	Ш-2-5	Minable reserve by bench level	104
Table	Ш-2-6	Mining schedule -case 3,000t/day	106
Table	Ш-2-7	Mining schedule -case 2,000t/day	107
Table	Ш-2-8	Working hour etc	108
Table	Ш-2-9	Rock property	108
Table	Ш-2-10	Productivity estimate for drilling and blasting	109
Table	Ш-2-11	Productivity estimate for loading	110
Table	Ш-2-12	Specifications of hauling	111
Table	Ш-2-13	Mining support equipments	
Table	Ш-2-14	Specifications of dewatering	112
Table	Ш-2-15	Miscellaneous equipments	112
Table	Ш-2-16	Required working hours for main equipments -case 3,000t/day	113
Table	Ш-2-17	Number of required equipments -case 3,000t/day	113
Table	Ш-2-18	Required working hours for main equipments -case 2,000t/day	114
Table	Ш-2-19	Number of required equipments -case 2,000t/day	114
Table	Ш-2-20	Dumping design parameters	115
Table	Ⅲ-2-21	Dumping schedule -case 3,000t/day	121
Table	Ш-2-22	Dumping schedule -case 2,000t/day	122
Table	Ш-2-23	Number of mining stuff	123
Table	Ш2-24 О	perating cost of drill and lasting	124
Table	Ш-2-25	Operating costs of loading and hauling	124
Table	Ш-2-26	Operating cost of dumping	125
Table	Ш-2-27	Mining labor costs	125
Table	III-2-28	Operating costs of pit services	125
Table	Ш-2-29	Mining operating cost -case 3,000t/day	126
Table	Ш-2-30	Mining operating cost -case 2,000t/day	126
Table	Ⅲ-2-31	Capital costs of equipments	127
Table	Ш-2-32	Mining capital cost -case 3,000t/day	128
Table	III-2-33	Mining capital cost -case 2,000t/day	128
Table	Ⅲ-3-1	Content and amount of the survey	131
Table	Ш-3-2	Content and amount of metallurgical test	131
Table	Ш-3-3	Samples used for metallurgical tests	132
Table	Ш-3-4	Head assays of major elements	134
Table	Ш-3-5	Occurrence of gold minerals	134
Table	Ш-3-6	Ball mill work index	135

Table	Ⅲ-3-7	Grind requirements 135			
Table	Ш-3-8	old mineralogy of Rakah stockwork 138			
Table	Ш-3-9	Gold mineralogy of Rakah massive sulphide ore	141		
Table	Ш-3-10	Tailing mineralogy of Test FL20	141		
Table	Ⅲ-3-11	Comparative results of Test FL14 and 20	142		
Table	Ш-3-12	Summary of best rougher/scavenger flotation tests	144		
Table	Ш-3-13	Flotation of bulk samples	145		
Table	Ⅲ-3-14	Settling tests of copper concentrates (10g/t flocculant)	147		
Table	Ⅲ-3-15	Settling tests of copper tailings (20g/t flocculant)	147		
Table	Ⅲ-3-16	Filtration tests of copper flotation concentrates	148		
Table	Ⅲ-3-17	Roasting of pyrite concentrates	1 49		
Table	Ш-3-18	Cyanide leaching of pyrite concentrates	150		
Table	Ш-3-19	Cyanide leaching of pyrite tailings	151		
Table	Ш-3-20	Flotation test on reground cleaner feed from Yanqul ore type	152		
Table	Ш-3-21	Test result of reground feed cleaning	153		
Table	Ш-3-22	Locked cycle test condition on composite of 40%RS, 40%HASS, 10%BB, and			
		10%RMS	154		
Table	Ш-3-23	Locked cycle test result on composite sample	154		
Table	Ш-3-24	Gold recovery to copper concentrates	155		
Table	Ш-3-25	Overall gold recoveries	155		
Table	Ⅲ-4-1	Summary of comminution data	1 58		
Table	Ш-4-2	Variability sample work index results	15 8		
Table	Ш-4-3	Design criteria	159		
Table	III-4- 4	Locked cycle test result	160		
Table	III-4-5	Concentrate dewatering data	161		
Table	Ш-4-6	Tailings dewatering data	162		
Table	Ⅲ-4- 7	Full scale performance prediction for selected blend	162		
Table	Ш-4-8	Estimated metallurgical performance of each ore type	163		
Table	Ш-4-9	Plant operating costs summary -case 3,000t/day	186		
Table	Ш-4-10	Plant operating costs summary -case 2,000t/day	186		
Table	Ш-4-11	Capital cost summary for tailing dam construction	193		
Table	Ш-4-12	Summary of process plant capital cost -case 3,000t/day	193		
Table	Ш-4-13	Summary of process plant capital cost -case 2,000t/day	1 9 4		
Table	Ш-4-14	Nominal design -case 3,000t/day	195		
Table	Ш-4-15	Nominal design -case 2,000t/day	197		
Table	Ш-5-1	Geotechnical test results	211		

Table III-5-2 Stability analysis results	216
Table III-5-3 Summary of total capital, operating, maintenance and closure costs	216
Table III-6-1 Proposed manpower salary and wage	227
Table III-7-1 Construction cost of access road	228
Table III-7-2 Construction cost of wadi diversion and embankment	233
Table III-7-3 Installed and operating electrical loads	235
Table III-8-1 Result of drilling survey	237
Table III-8-2 Groundwater level in the drill holes and result of pumping test	240
Table III-8-3 Analysis result of water quality	241
Table III-8-4 River condition of the Rakah area	244
Table III-8-5 Populaton in the Rakah area	245
Table III-8-6 Standards of emmition of grid and dust for scheduled works	247
Table III-8-7 Effluent standard of waste water (mg/L)	248
Table III-8-8 Water quality standard for drinking water (mg/L)	249
Table III-8-9 Environmental standard for noise	249
Table III-8-10 Matrix for environmental factors and items	250
Table III-8-11 Results of forecasting and evaluation of environmental impacts	251
Table III-8-12 Simulation Result of Air Quality during Mine operation	252
Table III-8-13 Volume of flow from each mining pit	255
Table III-8-14 Gradient standard of cut and embankment	258
Table III-8-15 Environment management plan	261
Table III-8-16 Environmental monitoring plan	262
Table III-9-1 Summary of construction costs	266
Table III-9-2 Initial and additional investment schedule (3,000t/d)	267
Table III-9-3 Initial and additional investment schedule (2,000t/d)	268
Table III-9-4 Summary of direct operation costs	266
Table III-10-1 Annual production schedule (3,000t/d)	271
Table III-10-2 Mill production schedule (3,000t/d)	272
Table III-10-3 Annual production schedule (2,000t/d)	273
Table III-10-4 (1) Mill production schedule (2,000t/d)	274
Table III-10-4 (2) Mill production schedule (2,000t/d)	275
Table III-10-5 Estimated annual revenue (3,000t/d, Cu:90 ¢)	276
Table III-10-6 Estimated annual revenue (3,000t/d, Cu:100 ¢)	277
Table III-10-7 (1) Annual profit(loss) and cash flow	
(3,000t/d, Cu:90 ¢ , financial, all loan)	278

Table	Ш-10-7 (2)	Annual profit(loss) and cash flow	
		(3,000t/d, Cu:90 ¢, financial, all equity)	279
Table	Ⅲ-10-8(1)	Annual profit(loss) and cash flow	
		(3,000t/d, Cu:100 ¢, financial, all loan)	280
Table	Ⅲ-10-8 (2)	Annual profit(loss) and cash flow	
		(3,000t/d, Cu:100 ¢, financial, all equity)	281
Table	Ⅲ-10-9(1)	Annual profit(loss) and cash flow	
		(2,000t/d, Cu:100 ¢, financial, all loan)	282
Table	Ш-10-9 (2)	Annual profit(loss) and cash flow	
		(2,000t/d, Cu:100 ¢, financial, all equity)	283
Table	Ш-10-10(1)	Annual profit(loss) and cash flow	
		(3,000t/d, Cu:90 ¢ , economic)	285
Table	Ш-10-10(2)	Annual profit(loss) and cash flow	
		(3,000t/d, Cu:100 ¢, economic)	286
Table	Ⅲ-10-11 (1)	Annual profit(loss) and cash flow including	
		Bishara gold mining (3,000t/d, Cu:90 ¢, economic)	289
Table	Ⅲ-10-11 (2)	Annual profit(loss) and cash flow including	
		Bishara gold mining (3,000t/d, Cu:100 ¢, economic)	290

List of Appendices

Appendix 1	Basic data of metallugical tests		
Appendix 1A	Head assayses		
Appendix 1B	Ball mill work index		
Appendix 1C	Batch flotation tests		
Appendix 1D	Mineralogy of flotation products		
Appendix 1E	Assays of flotation concentrates		
Appendix 1F	Cyanidation of pyrite concentrates		
Appendix 1G	Cyanidation of pyrite tailings		
Appendix 1H	X-ray diffraction analyses of samples		
Appendix 1I	Equipments used for metallurgical tests		
Appendix 1J	Effect of regrind		
Appendix 2	Process plant		
Appendix 2A	General arrangements of mill plant		
Appendix 2B	Operating Cost		

Appendix 2C	Capital Cost
Appendix 2D	Equipment List
Appendix 2E	Tailings Dam Capital Cost
Appendix 3	Permeability test for the drill holes
Appendix 4	Drilling equipments and consumed materials
Appendix 5	Generalized drilling results and progress record of drilling
Appendix 6	Geologic core logs
Appendix 6A	Geologic core logs for the drill holes of metallurgical test
Appendix 6B	Geologic core logs for the drill holes of groundwater survey

Appendix

Appendix 1

Basic data of metallugical tests

Appendix 1A

Head assays

HEAD ASSAYS

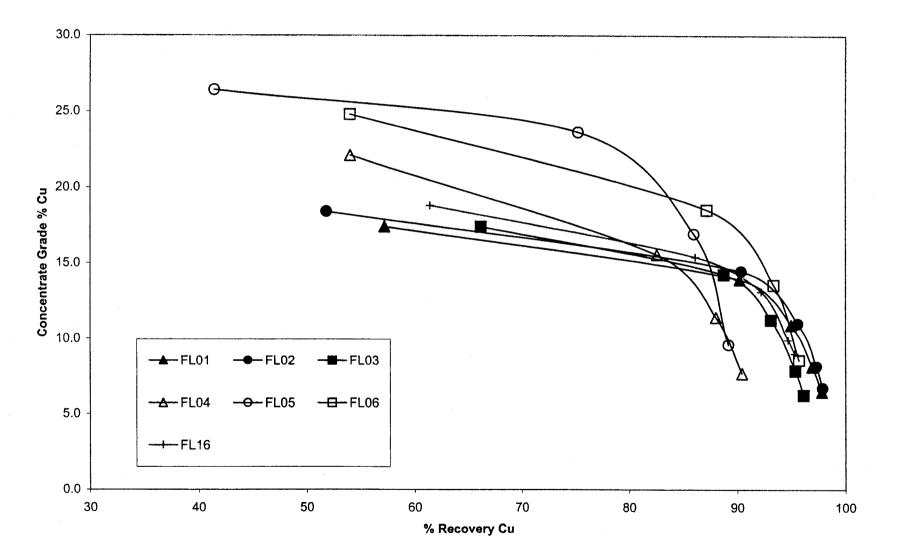
Element	Unit	Rakah S/W	Hayl as Safil S/W	Rakah MS	Bishara Breccia
Au 1	ppm	0.46	0.13	3.74	1.06
Au 2	ppm	0.43	0.19	3.81	
Cu	%	1.15	0.915	1.82	1.45
Ag	ppm	<2	<2	9	3
Pb	%	< 0.005	0.010	0.010	0.020
Zn	%	0.125	0.155	0.055	0.680
Fe	%	16.0	11.1	33.0	29.5
As	ppm	100	<50	1450	300
S	%	3.35	7.40	39.0	28.3
S⁼	%	3.30	7.4	38.8	28.1
Bi	ppm	1.4	0.3	3.9	2.6
Cd	ppm	2.7	3.7	0.8	7.5
Со	ppm	75	84	175	230
Cs	ppm	< 0.1	<0.1	< 0.1	0.5
Ga	ppm	14	8.5	0.5	13
In	ppm	0.6	0.25	0.7	1.00
Мо	ppm	0.7	5	3.8	3.5
Ni	ppm	185	27	125	65
Rb	ppm	0.1	<0.1	0.2	7.0
Se	ppm	25	25	38.5	16.0
Те	ppm	0.8	1.2	18	1.5
Th	ppm	0.03	0.24	3.6	12.0
Tl	ppm	0.4	0.1	3.5	9.5
U	ppm	0.11	0.65	0.25	0.81
Υ	ppm	4.5	3.3	0.3	7.0
Sb	ppm	<50	<4	67	<50

Appendix 1B

Ball mill work index

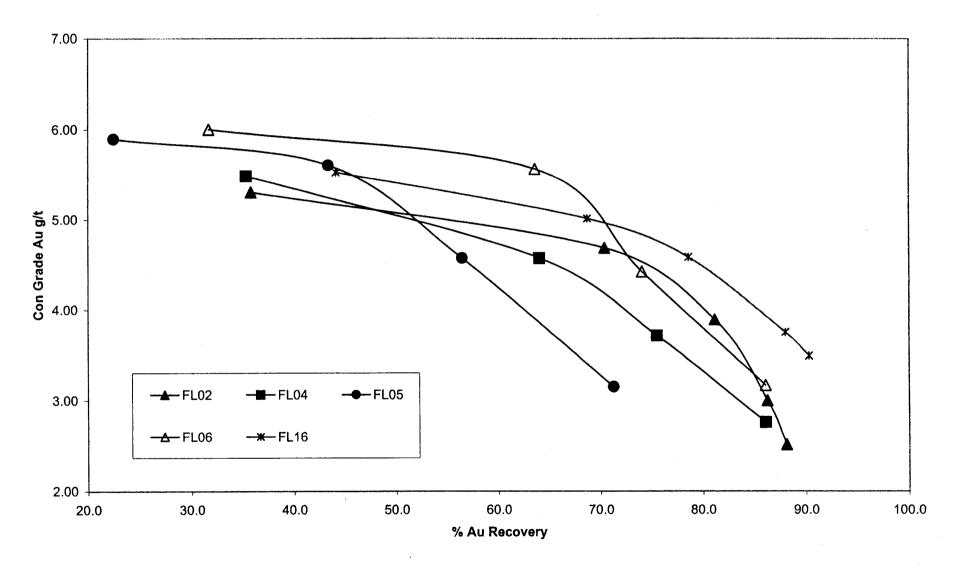
SampleTested		RAKAH STOC	CKWORK				
BOND BALL MILL WORK INDEX							
			19.1	kWh/tonne			
			17.3	kWh/short ton	L		
GRINDABILI	FY REPORT						
Weight of Fee		1208.1		for last 2 grindin			
Volume of Fe	ed in Mill, ml	700	Grindability, g/r		0.97		
			Circulating Loa	d, %	252		
Feed 80% pas		2415			1.0.4		
Product 80%	passing, µm	82	Product Screen	Aperture, μm	106		
GRINDING ST	AGE DATA Mill	Gross	Net	Grindability	Circulating		
Grinding Stage	Revolutions	Product Wt, g	Product, g	g/rev	Load, %		
l	290	343.9	267.3	0.92	251		
2	290 351	343.9	312.4	0.92	261		
3	364	387.9	366.7	1.01	211		
4	318	345.0	320.4	1.01	250		
5	321	334.0	312.1	0.97	262		
6	333	338.7	317.5	0.95	257		
7	340	355.9	334.4	0.98	239		
8	328	342.4	319.8	0.98	253		
9	332	343.8	322.1	0.97	251		
10							
FEED and PRO							
Screen		Wt % Passing	Screen		Wt % Passing		
Aperture, mm		ed	Aperture, mm		duct		
2.800		.3	0.090		1.4		
2.360	77.4		0.075	74.6 66.5			
2.000		5.0	0.063	1			
1.700		5.5	0.053	58.1 53.6			
1.400		5.0	0.045 0.038		5.0		
1.180 0.850).7	0.038	40	0.0		
0.850		0.7		4			
0.300		2.3 5.3					
0.150		.9					
0.125		.9					
0.125		.3		1	,		
		-					
Printed 22/0	02/01		Comments				
	8FLOO						
Technician DS							
Test Date 21.1	1.00						
File ref BN	MW108B						
		Version 5					

SampleTested		HAYL AS SAF	IL STOCKWOR	K	
BOND BALL	MILL WORK	INDEX			
			16.2	kWh/tonne	
			14.7	kWh/short ton	
GRINDABILI	TY REPORT				
Weight of Fe	ed in Mill, g	1339.8		for last 2 grindin	g stages
Volume of Fe	ed in Mill, ml	700	Grindability, g/r		1.23
			Circulating Load	d, %	253
Feed 80% pas	-	2167			
Product 80%	passing, µm	84	Product Screen	Aperture, µm	106
GRINDING ST	TAGE DATA				
Grinding	Mill	Gross	Net	Grindability	Circulating
Stage	Revolutions	Product Wt, g	Product, g	g/rev	Load, %
1	250	432.9	280.6	1.12	209
2	297	403.2	354.0	1.19	232
3	283	329.5	283.7	1.00	307
4.	345	432.7	395.2	1.15	210
5	291	414.2	365.0	1.25	223
6	268	377.7	330.6	1.23	255
7	275	382.0	339.1	1.23	251
8					
9					
10					
FEED and PR	DUCT SIZIN	GS	·····		l <u></u>
Screen	Cumulative V	Wt % Passing	Screen	Cumulative V	Wt % Passing
Aperture, mm	Fe	eed	Aperture, mm	Pro	duct
2.800	94	4.2	0.090		3.5
2.360	84	4.5	0.075		2.1
2.000		4.7	0.063		2.7
1.700		5.8	0.053	4 · ·	3.2
1.400		8.1	0.045		3.5
1 1 9 0	52	2.7	0.038	40).1
1.180					
0.850	4				
0.850 0.600	3:	3.7			
0.850 0.600 0.300	33	3.7 2.5			
0.850 0.600 0.300 0.150	3: 22 14	3.7 2.5 4.3			
0.850 0.600 0.300 0.150 0.125	3: 2: 14 12	3.7 2.5 4.3 2.6			
0.850 0.600 0.300 0.150	3: 2: 14 12	3.7 2.5 4.3			
0.850 0.600 0.300 0.150 0.125 0.106	33 22 14 12 1 202/01	3.7 2.5 4.3 2.6	Comments		
0.850 0.600 0.300 0.150 0.125 0.106 Printed 222 Job No. N1	33 22 14 12 1 702/01 08FLOO	3.7 2.5 4.3 2.6	Comments		. <u></u>
0.850 0.600 0.300 0.150 0.125 0.106 Printed 222 Job No. N1 Technician DS	33 22 14 12 1 702/01 08FLOO	3.7 2.5 4.3 2.6	Comments		
0.850 0.600 0.300 0.150 0.125 0.106 Printed 22/ Job No. N1 Technician DS Test Date 21/	33 22 14 12 12 102/01 08FLOO	3.7 2.5 4.3 2.6	Comments		· ,
0.850 0.600 0.300 0.150 0.125 0.106 Printed 22/ Job No. N1 Technician DS Test Date 21/	33 22 14 12 1 702/01 08FLOO	3.7 2.5 4.3 2.6	Comments		
0.850 0.600 0.300 0.150 0.125 0.106 Printed 22/ Job No. N1 Technician DS Test Date 21/	33 22 14 12 12 102/01 08FLOO	3.7 2.5 4.3 2.6	Comments		

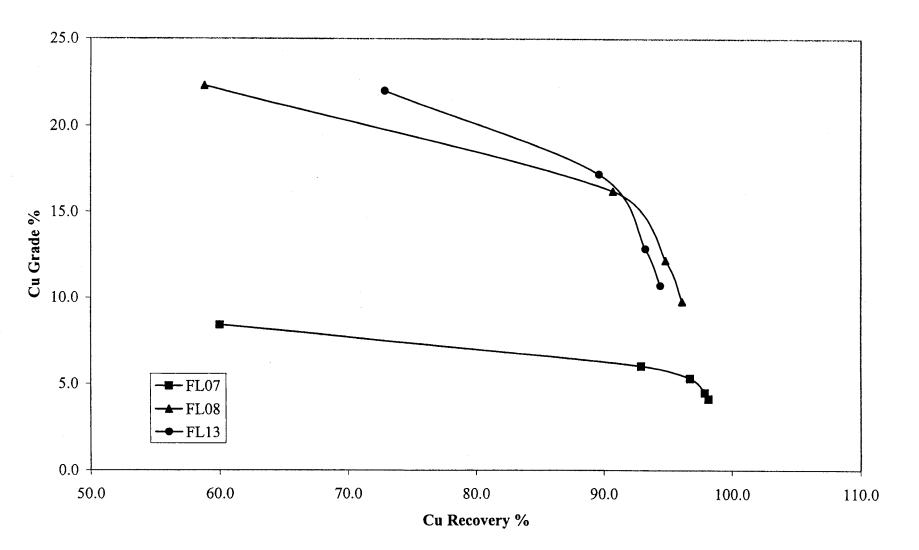

SampleTested	SampleTested RAKAH MASSIVE SULPHIDE				
BOND BALL	MILL WORK	INDEX		<u>, , , , , , , , , , , , , , , , , , , </u>	
			14.2	kWh/tonne	
			12.9	kWh/short ton	
GRINDABILI	TY REPORT				_
Weight of Fee	ed in Mill, g	1587.9	Averages	for last 2 grindin	g stages
Volume of Fe	ed in Mill, ml	700	Grindability, g	/rev	1.44
			Circulating Lo	ad, %	253
Feed 80% pas	ssing, µm	2214			
Product 80%	passing, µm	85	Product Screen	Aperture, μm	106
GRINDING S			· · · · · · · · · · · · · · · · · · ·		
Grinding	Mill	Gross	Net	Grindability	Circulating
Stage	Revolutions	Product Wt, g	Product, g	g/rev	Load, %
1	200	606.7	345.8	1.73	162
2	205	431.2	331.5	1.62	268
3	237	420.1	349.3	1.47	278
4	261	445.8	376.8	1.44	256
5	264	453.8	380.6	1.44	250
6					
7					
8					
9					
10					
FEED and PR	ODUCT SIZIN				
Screen		Wt % Passing	Screen	Cumulative V	Vt % Passing
Aperture, mm	Fe		Aperture, mm		
2.800		.9	0.090	83	
2.360		.3	0.075	71	
2.000		.5	0.063	61	
1.700	66	5.4	0.053	52	.1
1.400	59	0.1	0.045	47	.3
1.180	54	.8	0.038	38	.3
0.850	45	5.8			
0.600	38	3.7		1	
0.300	28	3.1			
0.150	19	9.6			
0.125	17	.6			
0.106	16	5.4			
	<u></u>		· · · · · · · · · · · · · · · · · · ·	<u></u>	
Printed 28/1			Comments		
	8FLOO				
Technician T.E	1/00				
Test Date 23/11 File ref BM	1/00 IW108C				
THE ICI BM					
		1			
		Version 5			

SampleTested		BISHARA BRECCIA			
BOND BALL	MILL WORK	INDEX			
			15.5	kWh/tonne	
			14.1	kWh/short ton	
GRINDABILI'		1481.1	Averages f	or last 2 grindin	n stages
Weight of Fee	ed in Mill, g	700	Grindability, g/r	the second se	1.23
volume of re	eu ni ivini, nn	/00	Circulating Load		247
Feed 80% pas	sing um	2405	011011111111111111111111111111111111111	-, · ·	-
Product 80%		80	Product Screen	Aperture, µm	106
GRINDING ST					
Grinding	Mill	Gross	Net	Grindability	Circulating
Stage	Revolutions	Product Wt, g	Product, g	g/rev	Load, %
1	250	387.9	250.0	1.00	282 231
2	387	447.9	411.8	1.06 1.16	231
3	359	457.3	415.6	1.10	224
4	329	441.1	398.5 388.9	1.21	230
5	316	430.0	382.9	1.23	250
6	312	422.9	362.9	1.25	250
7 8					
8					
9 10					
10					
FEED and PR	ODUCT SIZIN	igs			
Screen		Wt % Passing	Screen		Wt % Passing
Aperture, mm		eed	Aperture, mm		duct
2.800		0.5	0.090		5.5
2.360		8.1	0.075		5.1
2.000		8.4	0.063	1	7.2 3.4
1.700		0.6	0.053	1	5.4 3.7
1.400 1.180		1.3 5.8	0.043		5.3
0.850		5.8	0.056		
0.600		7.9			
0.300		7.7			
0.150		1.4		1	
0.125		0.1			
0.106		.3			
				<u> </u>	
Printed 30/1	1/00		Comments		
Job No. N10	8FL00				
300 140. 1410					
Technician DS			· · · · · · · · · · · · · · · · · · ·		
Technician DS Test Date 27.1					
Technician DS Test Date 27.1	1.00 1W108D				
Technician DS Test Date 27.1		·			
Technician DS Test Date 27.1		Version 5			

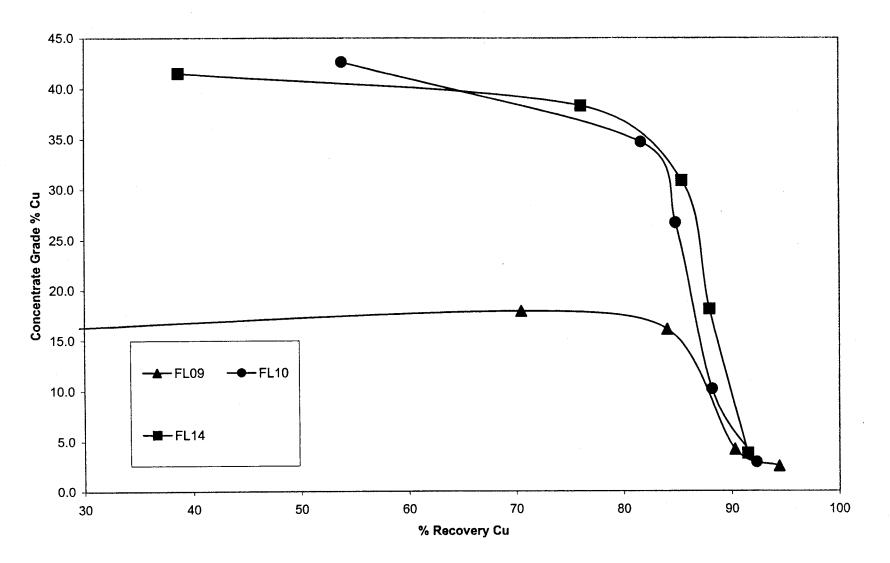
Appendix 1C

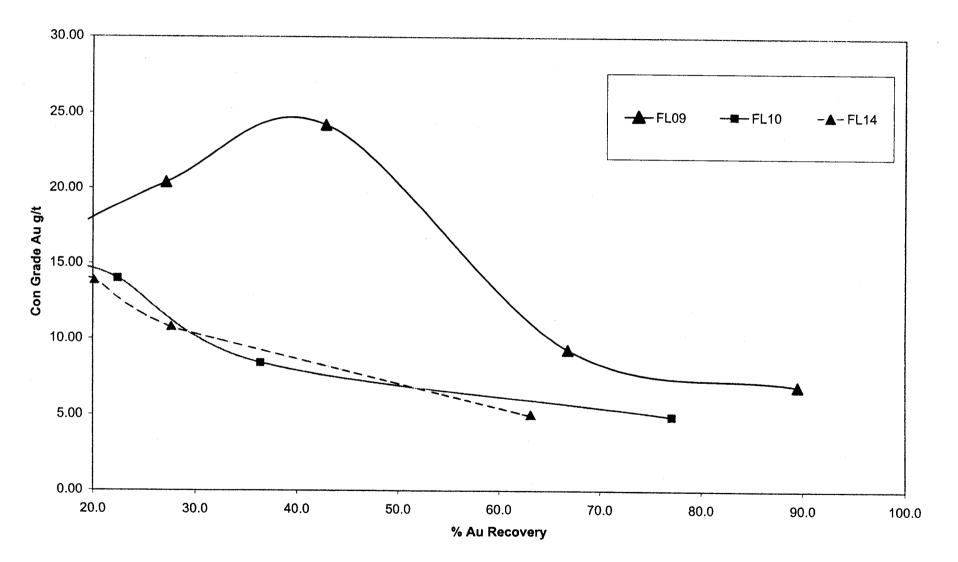

Batch flotation tests

Rakah Stockwork Cu Grade vs Recovery

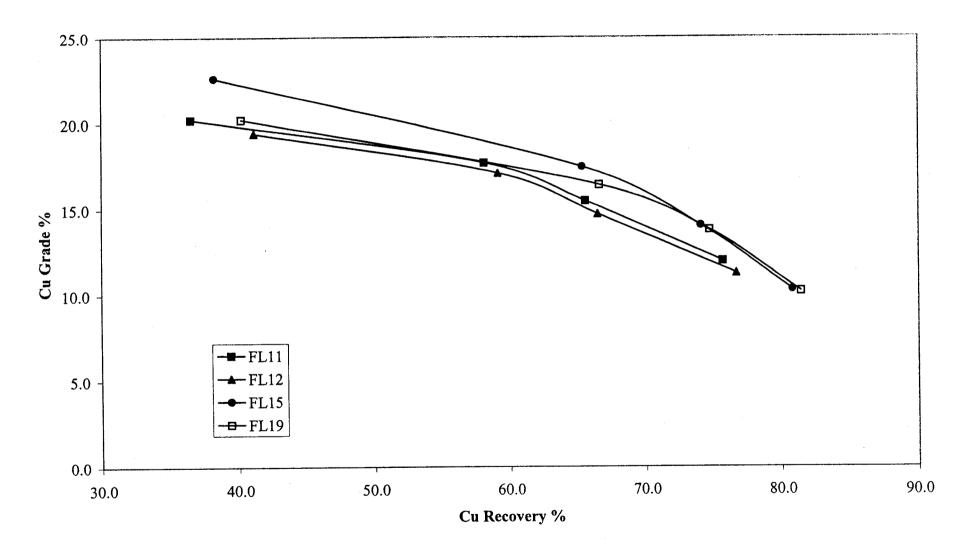


A - 7


Rakah Stockwork Au Grade vs Recovery


A – 9

Rakah Massive Sulphide Cu Grade vs Recovery


A - 10

Rakah Massive Sulphide Au Grade vs Recovery

A – 11

A - 12

Appendix 1D

Mineralogy of flotation products

Test FL:13 Cu Ro Con 1

POLISHED SECTION NO: PS 59575

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite	60	90	Pyrite
Chalcocite	<1		
Covellite	<1		
Bornite	2	50	Pyrite
Pyrite/marcasite	14	30	Chalcopyrite, (bornite)
Sphalerite	1		
Silicates	23 -	20	Chalcopyrite, (bornite), (chalcocite)
	100		

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : 5-30µm Chalcopyrite – silicates : 5-20µm

SAMPLE NO:

Test FL:13 Cu Ro Con 2

PS 59575

POLISHED SECTION NO:

Mineral Approx Approx Main mineral(s) Wt % % Liberation locked with Chalcopyrite Pyrite, silicates 25 40 Chalcocite <1 Covellite <1 Bornite 1 Pyrite/marcasite 35 30 Chalcopyrite, (pyrite) Sphalerite 1 Silicates 38 40 Chalcopyrite 100

Scale of common intergrowths

Chalcopyrite – pyrite/marcasite : 5-30µm

.

Chalcopyrite – silicates : 5-30µm

SAMPLE NO:

•

Test FL:15 Cu Ro Con 2

POLISHED SECTION NO: PS 59577

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite Chalcocite	38 <1	20	Pyrite, (sphalerite)
Covellite Bornite	<1 <1		
Pyrite/marcasite	40	30	Chalcopyrite
Sphalerite Silicates	7 14	20 20	Chalcopyrite Chalcopyrite
	100		• •

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : 5-20µm Chalcopyrite – silicates : 10-30µm

SAMPLE NO:

Test FL:22 Ro Con 1

POLISHED SECTION NO:

PS 59578

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite	58	50	Pyrite
Chalcocite	<1	·	
Covellite	<1		
Bornite		50	
Pyrite/marcasite	23	30	Chalcopyrite
Sphalerite	5		Chalcopyrite
Silicates	14	20	Chalcopyrite
	100		

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : 5-30µm Chalcopyrite – silicates : 1-30µm Test FL:22 Ro Zn Cl Con

POLISHED SECTION NO: PS 59581

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite	31	30	Pyrite
Chalcocite	<1		
Covellite	<1		
Bornite			
Pyrite/marcasite	42	60	Chalcopyrite
Sphalerite	3		Chalcopyrite
Silicates	24	30	Chalcopyrite
	100		

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : 5-30µm Chalcopyrite – silicates : 10-30µm

SAMPLE NO:

Test FL:22 Ro 3 Cl Tail

POLISHED SECTION NO:

PS 59582

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite Chalcocite Covellite	27	90	Pyrite
Bornite Pyrite/marcasite Sphalerite	30	90	Chalcopyrite
Silicates	43	>90	Pyrite
	100	-	

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : 5-30µm Chalcopyrite – silicates : 5-30µm

Note: The particle size of this sample is mainly $<30\mu m$

SAMPLE NO:

Test FL:23 Ro Con 1

POLISHED SECTION NO: PS 59579

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite	55	60	Pyrite, (sphalerite)
Chalcocite	<1		
Covellite	<1		
Bornite			
Pyrite/marcasite	33	40	Chalcopyrite
Sphalerite	7	20	Chalcopyrite
Silicates	6	20	Chalcopyrite, pyrite
	100		

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : 5-30µm Chalcopyrite – silicates : 5-30µm

SAMPLE NO:

Test FL:23 Scav Con

POLISHED SECTION NO:

PS 59580

Mineral	Approx Wt %	Approx % Liberation	Main mineral(s) locked with
Chalcopyrite Chalcocite Covellite	9	<10	Pyrite
Bornite	50	20	
Pyrite/marcasite	59	30	Chalcopyrite
Sphalerite	5	10	Chalcopyrite
Silicates	26	10	Chalcopyrite
	100		

Scale of common intergrowths Chalcopyrite – pyrite/marcasite : Chalcopyrite – silicates :

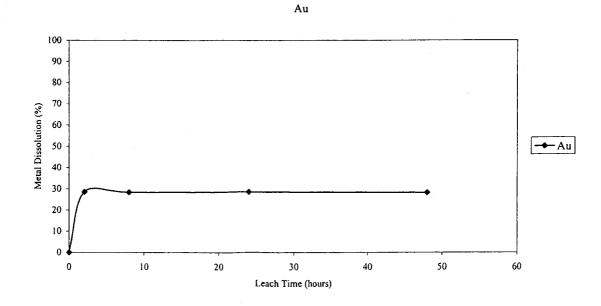
Appendix 1E

Assays of flotation concentrates

ASSAYS OF FLOTATION CONCENTRATES

As Ba Ce	ppm ppm ppm	FL06 Ro Con 1 600 <20	FL08 Ro Con 1 50	FL10 Ro Con 1 6600
Ba Ce	ppm ppm	<20		
Ce	ppm		∠20	
1			<20	<20
	1	<100	<100	<100
Cd	ppm	<20	50	20
Со	ppm	110	<20	<20
La	ppm	<50	<50	<50
Mo	ppm	<50	50	50
Nb	ppm	<50	<50	<50
Sn	ppm	<50	<50	100
Sr	ppm	<20	<20	<20
Та	ppm	<50	<50	<50
V	ppm	30	50	<20
Y	ppm	<10	<10	<10
Zr	ppm	<20	<20	<20
A12O3	%	1.83	2.25	0.02
CaO	%	0.3	0.31	0.10
Fe2O3	%	41.7	35.9	19.2
K2O	%	0.01	<0.01	< 0.01
MgO	%	0.97	1.81	0.02
MnO	%	0.03	0.02	0.01
Ma2O	%	< 0.01	<0.01	< 0.01
P2O5	%	< 0.01	0.02	< 0.01
SiO2	%	6.05	13.4	2.6
TiO2	%	0.08	0.12	0.02
Hg	ppm	0.7	0.2	11.0
F	%	0.02	0.01	0.01

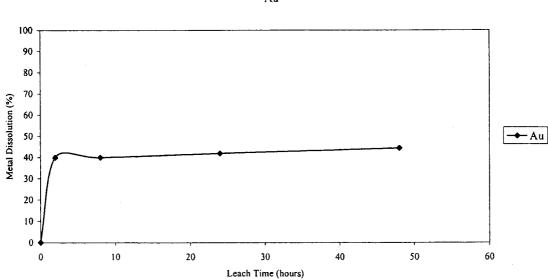
Appendix 1F


Cyanidation of pyrite concentrates

Test No.	CY01					
Sample Tested	RAKAH MS	S, PYRITE	CONCENT	RATE		
Sample Weight (g)	312.7					
Target Parameters						
Grind Size (mm)	P80 70um					
NaCN Concentration (%)	0.150					
рН	11.0					
Leach Time (hours)		0	2	8	24	48
	Calculated					Final
Solids Assays (ppm)	Head	Head				Residue
Au	3.37	3.53				2.42
Solution Assays (mg/L)						
Au			0.40	0.39	0.40	0.43
Metal Dissolution (%)						
Au			29	28	29	28
Leach Conditions	1		1			
Slurry Density (%w/w)		29	29	30	31	33
NaCN conc (pre-adjustment)			0.176	0.166	0.160	0.150
NaCN conc (post-adjustment)		0.287	0.201	0.215	0.225	
NaCN added (kg/t)		6.9	7.5	8.4	9.2	9.2
NaCN [1] consumed (kg/t)			2.68	3.38	4.49	5.85
CaO[2] added (kg/t)		0.78	0.78	0.78	0.78	0.78
pH (pre-adjustment)		3.6	10.9	11.1	11.2	11.2
pH (post-adjustment)		10.9	10.9	11.1	11.2	
Dissolved Oxygen (mg/L)		6.0	6.7	7.2	7.8	8.0
Printed 23/02/01		Commen	its			
Job No. N108FL00		Pyrite co	on from tests	s FL9, 10, 14	ŀ	
Technician KT						
Test Date 7/2/01						
File ref CYN108RMS						
		Ag assa	ys; Leach fe	ed 13ppm, le	each residue	15ppm
	Version 5					

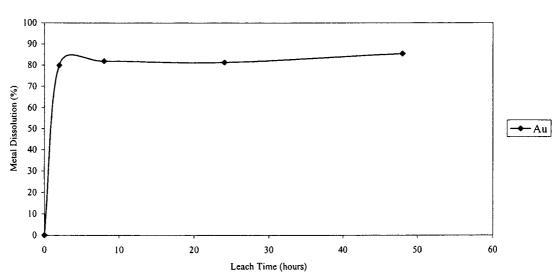
[1] Cumulative NaCN consumed (kg/t): NaCN added - (NaCN in leach solution + NaCN removed in samples)

[2] Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.


Ľ

Test No.	CY02			<u> </u>		
Sample Tested	RAKAH MS	S, PYRITE	CONCENT	RATE, RE-C	GROUND	
Sample Weight (g)	302.9					
Target Parameters						
Grind Size (mm)	P80 34um					
NaCN Concentration (%)	0.150				、	
pH	11.0					
Leach Time (hours)		0	2	8	24	48
	Calculated					Final
Solids Assays (ppm)	Head	Head				Residue
Au	3.61	3.53			1	1.93
Solution Assays (mg/L)				1		
Au			0.61	0.60	0.64	0.72
Metal Dissolution (%)						
Au			40	40	42	44
Leach Conditions	1 · 1					
Slurry Density (%w/w)		30	30	30	31	33
NaCN conc (pre-adjustment)			0.144	0.146	0.156	0.136
NaCN conc (post-adjustment)		0.295	0.203	0.229	0.220	
NaCN added (kg/t)		7.0	8.3	9.9	10.9	10.9
NaCN [1] consumed (kg/t)			3.56	4.77	6.25	7.82
CaO[2] added (kg/t)		1.90	1.90	1.90	1.90	1.90
pH (pre-adjustment)		3.0	10.7	11.0	11.1	11.1
pH (post-adjustment)		10.9	10.7	10.9	11.1	
Dissolved Oxygen (mg/L)		5.0	6.1	7.3	7.0	7.8
Printed 23/02/01		Commen	its			
Job No. N108FL00		Pyrite co	on from test	s FL9, 10, 14	ł	
T e chnician KT			•	nd to P80 34		
Test Date 7/2/01		Air inje	cted to main	tain DO leve	l	
File ref CYN108RMS						
		Ag assa	ys; Leach fe	ed 13ppm, le	each residue	8ppm
·	Version 5					

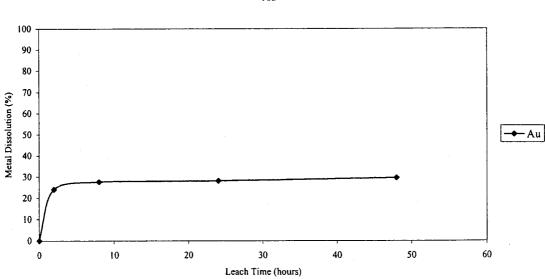
[1] Cumulative NaCN consumed (kg/t) : NaCN added - (NaCN in leach solution + NaCN removed in samples)


[2] Currelative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.

Test No.	CY03					
Sample Tested	RAKAH M	S, PYRITE	CONCENT	RATE, CAL	CINED	
Sample Weight (g)	208.3					
Target Parameters	· · · · · ·					
Grind Size (mm)	P80 70um					
NaCN Concentration (%)	0.150					
рН	11.0					
Leach Time (hours)		0	2	8	24	48
	Calculated					Final
Solids Assays (ppm)	Head	Head				Residue
Au	8.12	5.30				1.18
Solution Assays (mg/L)						
Au			1.00	1.04	1.06	1.09
Metal Dissolution (%)						
Au			80	82	81	85
Leach Conditions						
Slurry Density (%w/w)		13	13	14	14	14
NaCN conc (pre-adjustment)			0.236	0.194	0.168	0.134
NaCN conc (post-adjustment)		0.301	0.244	0.214	0.197	
NaCN added (kg/t)		19.5	19.5	20.2	22.0	22.0
NaCN [1] consumed (kg/t)			4.23	7.07	9.63	13.22
CaO[2] added (kg/t)		0.39	0.39	0.39	0.39	0.39
pH (pre-adjustment)		5.8	10.9	11.0	11.2	11.3
pH (post-adjustment)		10.6	10.9	11.2	11.2	
Dissolved Oxygen (mg/L)		7.2	7.9	7.8	7.7	7.5
Printed 23/02/01		Commen				
Job No. N108FL00				FL9, 10, 14		
Technician KT				with sand a		at 700°C
Test Date 7/2/01		Con we	ight 312.7g,	calcine weig	ht 208.3g	
File ref CYN108RMS						
		Ag assa	ys; Leach fe	ed 19ppm, le	ach residue	20ppm
	Version 5					

[1] Cumulative NaCN consumed (kg/t): NaCN added - (NaCN in leach solution + NaCN removed in samples)

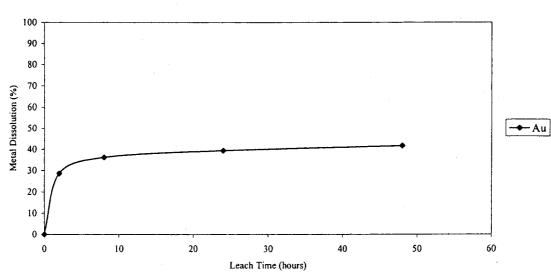
[2] Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.



Test No.	CY05					
Sample Tested	BISHARA B	BRECCIA,	PYRITE CC	NCENTRA	TE ·	
Sample Weight (g)	350.0					
Target Parameters						
Grind Size (mm)	P80 70um					
NaCN Concentration (%)	0.150					
рН	11.0					
Leach Time (hours)		0	2	8	24	48
	Calculated					Final
Solids Assays (ppm)	Head	Head				Residue
Au	1.97	1.84				1.40
Solution Assays (mg/L)						
Au			0.21	0.23	0.24	0.25
Metal Dissolution (%)						
Au			24	28	28	30
Leach Conditions						
Slurry Density (%w/w)		30	31	30	32	32
NaCN conc (pre-adjustment)			0.084	0.116	0.090	0.146
NaCN conc (post-adjustment)		0.309	0.298	0.315	0.320	
NaCN added (kg/t)		6.9	11.9	16.1	20.9	20.9
NaCN [1] consumed (kg/t)			5.05	9.16	13.98	17.62
CaO[2] added (kg/t)		0.53	0.53	0.53	0.53	0.53
pH (pre-adjustment)		7.0	11.6	10.8	10.3	10.3
pH (post-adjustment)		11.3	11.6	10.8	10.6	
Dissolved Oxygen (mg/L)		2.6	7.8	7.8	8.2	8.3
Printed 23/02/01		Commer	nts			
Job No. N108FL00		Pyrite c	on from bull	k sample flot	ation	
Technician KT	С					
Test Date 14/2/01		Air inje	cted to main	tain DO leve	el 🛛	
File ref CYN108BB						
		Ag assa	ys; Leach fe	ed 9ppm, lea	ich residue 8	ppm
	Version 5					

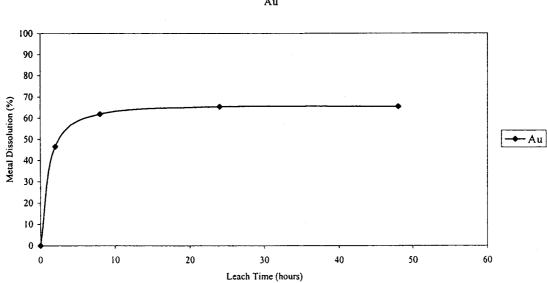
[1] Cumulative NaCN consumed (kg/t): NaCN added - (NaCN in leach solution + NaCN removed in samples)

[2] Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.


E

Test No.	CY06					
Sample Tested	BISHARA B	BRECCIA,	PYRITE CO	ONCENTRA	TE, RE-GR	OUND
Sample Weight (g)	350.0					
Target Parameters						
Grind Size (mm)	P80 18um					
NaCN Concentration (%)	0.150					
рН	11.0					
Leach Time (hours)		0	2	8	24	48
	Calculated					Final
Solids Assays (ppm)	Head	Head				Residue
Au	1.91	1.84				1.13
Solution Assays (mg/L)						
Au			0.24	0.29	0.33	0.35
Metal Dissolution (%)						
Au			29	36	39	42
Leach Conditions						
Slurry Density (%w/w)	Í	30	30	30	32	32
NaCN conc (pre-adjustment)			0.060	0.082	0.020	0.050
NaCN conc (post-adjustment)		0.305	0.297	0.321	0.330	
NaCN added (kg/t)		7.0	12.5	17.6	24.1	24.1
NaCN [1] consumed (kg/t)			5.59	10.55	17.03	22.90
CaO[2] added (kg/t)		0.49	0.49	0.49	0.49	0.49
pH (pre-adjustment)		7.4	12.3	10.9	10.3	9.8
pH (post-adjustment)		11.8	12.3	11.0	10.7	
Dissolved Oxygen (mg/L)		0.6	4.0	4.7	7.5	8.1
Printed 23/02/01		Commen	its			
Job No. N108FL00		Pyrite c	on from bull	k sample flot	ation	
Technician KT		Concent	trate re-grou	nd to P80 18	um	
Test Date 14/2/01	l	Air inje	cted to main	tain DO leve	1	
File ref CYN108BB		-				
		Ag assa	ys; Leach fe	ed 9ppm, lea	ch residue 9	ppm
	Version 5					
	V 81 31011 3					

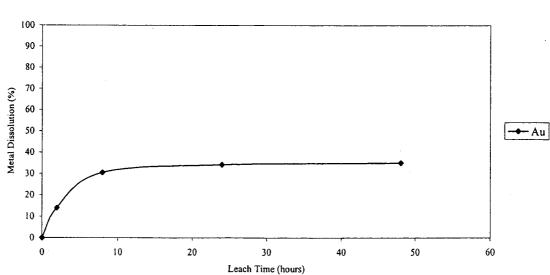
[1] Cumulative NaCN consumed (kg/t) : NaCN added - (NaCN in leach solution + NaCN removed in samples)


(2) Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.

Test No.	CY07								
Sample Tested	BISHARA I	BRECCIA,	PYRITE CC	NCENTRA	TE, CALCI	NED			
Sample Weight (g)	275.0								
Target Parameters									
Grind Size (mm)	P80 70um								
NaCN Concentration (%)	0.150								
рН	11.0								
Leach Time (hours)		0	2	8	24	48			
Solids Assays (ppm)	Calculated Head	Head				Final Residue			
Au	2.16	2.26				0.75			
Solution Assays (mg/L) Au			0.20	0.26	0.28	0.28			
Metal Dissolution (%)	<u> </u>		0.20	0.20	0.20	0.20			
Au	}		47	62	65	66			
Leach Conditions	1 1					1			
Slurry Density (%w/w)		16	17	17	17	18			
NaCN conc (pre-adjustment)			0.042	0.074	0.086	0.084			
NaCN conc (post-adjustment)		0.304	0.300	0.309	0.308	1			
NaCN added (kg/t)		15.3	28.4	39.8	50.4	50.4			
NaCN [1] consumed (kg/t)			13.16	24.60	35.44	46.13			
CaO[2] added (kg/t)		11.02	11.02	15.85	15.85	15.85			
pH (pre-adjustment)		6.3	11.0	9.5	9.8	9.8			
pH (post-adjustment)		11.1	11.0	10.8	10.7				
Dissolved Oxygen (mg/L)		0.1	7.8	7.8	8.2	8.2			
Printed 23/02/01		Commen	its						
Job No. N108FL00		Pyrite co	on from bulk	sample flot	ation				
Technician KT	ľ	Concent	trate blended	with sand a	nd calcined	at 700°C			
Test Date 14/2/01		Con we	ight 348g, ca	lcine weigh	t 284g				
File ref CYN108BB		Air injed	cted to main	ain DO leve	:1				
		Ag assays; Leach feed 11ppm, leach residue 10ppm							
	Version 5								

[1] Cumulative NaCN consumed (kg/t) : NaCN added - (NaCN in leach solution + NaCN removed in samples)

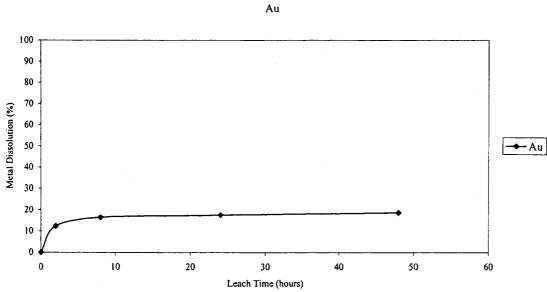
[2] Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.


Appendix 1G

Cyanidation of pyrite tailings

Test No.	CY04	· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>. șe s. 1. 1. 1. 1. 1. 1.</u>		<u></u>
Sample Tested	RAKAH M	S, PYRITE	TAILING			
Sample Weight (g)	500.5	,	÷			
Target Parameters						
Grind Size (mm)	P80 70um					
NaCN Concentration (%)	0.050					
pH	11.0					
Leach Time (hours)		0	2	8	24	48
	Calculated				1	Final
Solids Assays (ppm)	Head	Head				Residue
Au	1.66	1.93				1.09
Solution Assays (mg/L)						
Au			0.10	0.22	0.25	0.26
Metal Dissolution (%)						
Au			14	31	34	35
Leach Conditions						
Slurry Density (%w/w)		30	30	30	31	32
NaCN conc (pre-adjustment)			0.004	0.050	0.150	0.112
NaCN conc (post-adjustment)		0.097	0.110	0.255	0.156	1
NaCN added (kg/t)	1	2.3	4.7	9.2	9.2	9.2
NaCN [1] consumed (kg/t)			2.16	3.53	5.84	6.70
CaO[2] added (kg/t)		0.52	0.65	0.92	0.92	0.92
pH (pre-adjustment)	1	7.7	10.3	10.3	11.0	10.9
pH (post-adjustment)		10.7	10.8	11.1	11.0	
Dissolved Oxygen (mg/L)		7.2	7.2	7.6	7.7	7.9
Printed 23/02/01		Commen	its			
Job No. N108FL00	ł	Pyrite ta	il from tests	FL9, 10, 14		
Technician KT		-				
Test Date 7/2/01						
File ref CYN108RMS						
		Ag assa	ys; Leach fe	ed <2ppm, le	each residue	<2ppm
	Version 5					

[1] Cumulative NaCN consumed (kg/t) : NaCN added - (NaCN in leach solution + NaCN removed in samples)


[2] Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.

Test No.	CY08								
Sample Tested	BISHARA I	BRECCIA,	PYRITE TA	AILING					
Sample Weight (g)	1000.0								
Target Parameters									
Grind Size (mm)	P80 70um								
NaCN Concentration (%)	0.050								
pH	11.0								
Leach Time (hours)		0	2	8	24	48			
Solids Assays (ppm) Au	Calculated Head 0.87	Head 0.92				Final Residue 0.72			
	0.87	0.92			<u> </u>	0.72			
Solution Assays (mg/L) Au			0.07	0.09	0.10	0.11			
Metal Dissolution (%)	<u> </u>		0.07	0.07	0.10	0.11			
Au			12	16	18	19			
Leach Conditions									
Slurry Density (%w/w)		40	39	39	40	41			
NaCN conc (pre-adjustment)			0.014	0.030	0.030	0.042			
NaCN conc (post-adjustment)		0.097	0.095	0.102	0.105				
NaCN added (kg/t)		1.5	2.8	3.8	4.9	4.9			
NaCN [1] consumed (kg/t)			1.27	2.30	3.37	4.26			
CaO[2] added (kg/t)		0.57	0.59	0.94	1.00	1.00			
pH (pre-adjustment)		6.6	10.3	9.4	10.3	10.2			
pH (post-adjustment)		10.6	10.4	10.8	10.7				
Dissolved Oxygen (mg/L)		2.0	7.6	7.0	7.1	8.1			
Printed 23/02/01		Commen	its						
Job No. N108FL00		Pyrite ta	ul from bulk	sample flota	ation				
Technician KT									
Test Date 14/2/01 File ref CYN108BB		Air injed	cted to main	tain DO leve	el				
		Ag assays; Leach feed Sppm, leach residue Sppm							
	Version 5								

[1] Cumulative NaCN consumed (kg/t) : NaCN added - (NaCN in leach solution + NaCN removed in samples)

[2] Cumulative CaO addition relates to a pure reagent and allows for test additions of Lime with an activity/concentration of 57.0 %.

Appendix 1H

X-ray diffraction analyses of samples

X-RAY DIFFRACTION ANALYSES OF TEST SAMPLES

Mineral	Rakah Body	Hayl As Safil	Rakah Body	Bishara Body
	Stockwork Ore	Stockwork Ore	Massive Ore	Breccia Ore
Quartz	D .	D	Α	A
Chlorite	SD	A		A
Plagioclase			, ,, <u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tr
Pyrite	Tr	Tr-A	D	D
Chalcopyrite	Tr-A	Tr	Tr	Α
Marcasite			Tr	Α
Pyrrhotite	Tr	Tr	<u>, 1</u>	
Siderite			Tr	
Hematite				Tr

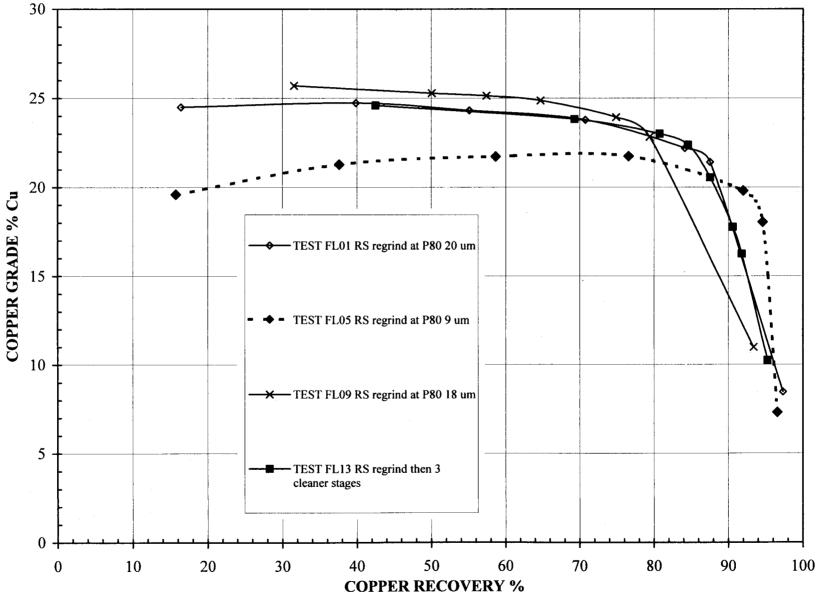
Semiquantitative Abbreviations;

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- CD = Co-dominant. Used for two (or more) predominating components, both or all of which are judged to be present, in roughly equal amounts.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

Appendix 1I

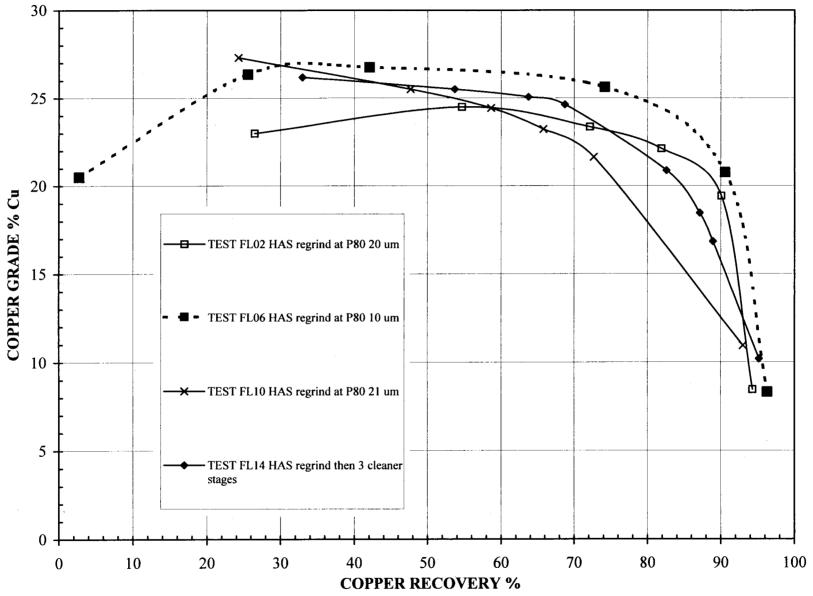
Equipments used for metallurgical tests

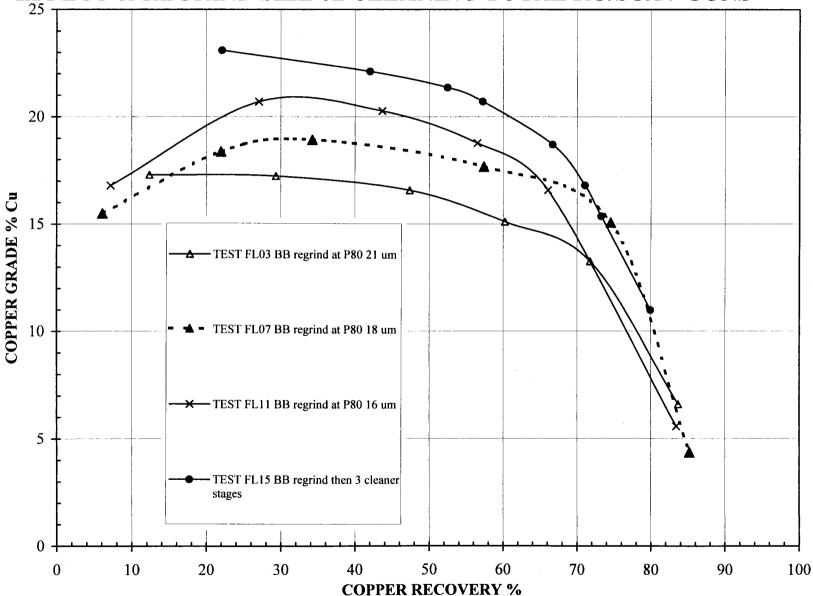
LIST OF MAJOR EQUIPMENT


Crushing of 'as received' samples	Jaques 8 x 5 jaw crusher Laboratory rolls crusher
Sample splitting	Various rotary splitters and riffle splitters
Grind establishment	Batch stainless steel rod mill, 190mm diameter x 220mm, operating at 70rpm Charge 15 x 25mm diameter stainless steel rods, total weight 14.4kg
Ball mill work index	Standard Bond mill, 305mm x 305mm operating at 70rpm Ball charge 20.1kg, 38mm to 12.7mm diameter balls
Flotation tests, laboratory	Agitair flotation machine, LA500
Flotation tests, bulk samples	Agitair, 2 x #8 cells, 7.5L capacity each
Settling tests	600mL graduated cylinders fitted with rake stirrers
Filtration tests	Vacuum filter leaf, 110mm diameter, Neotex 6044 cloth
Cyanide leaching	2L beakers, mechanical agitation, air or oxygen injection optional

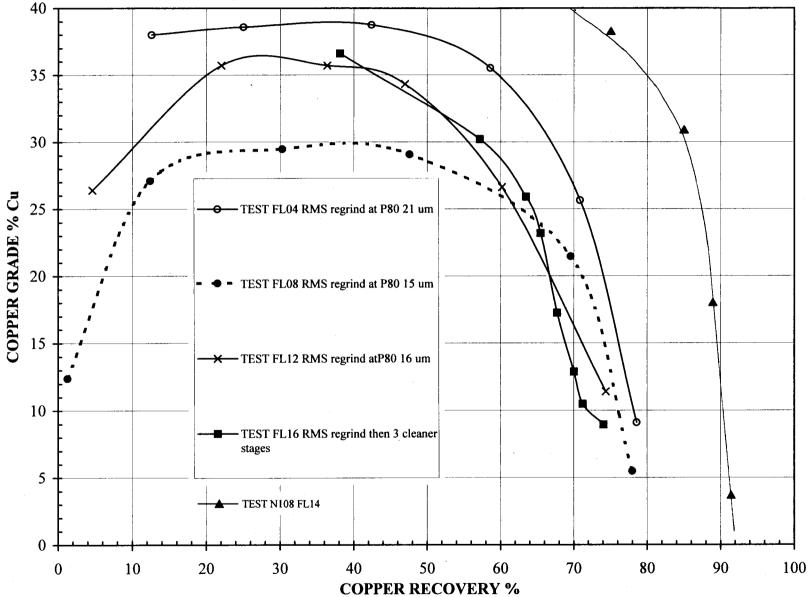
Appendix 1J

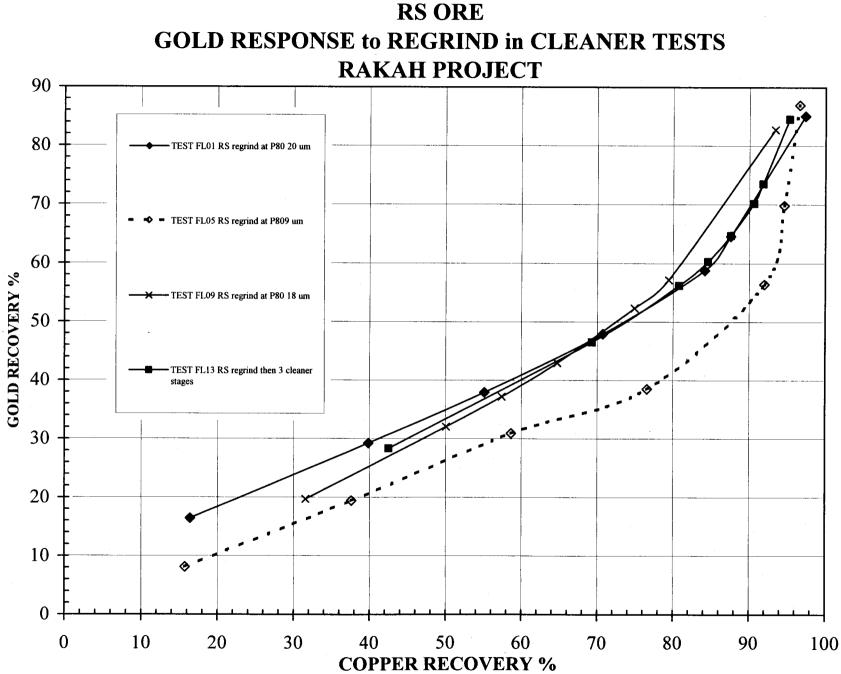
Effect of regrind



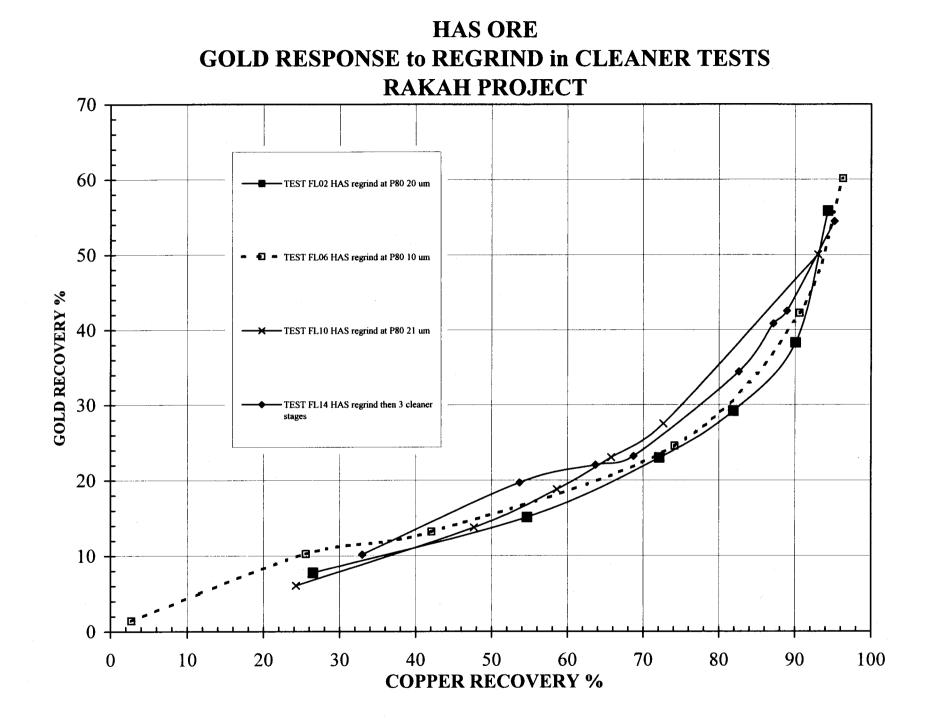

HAS ORE

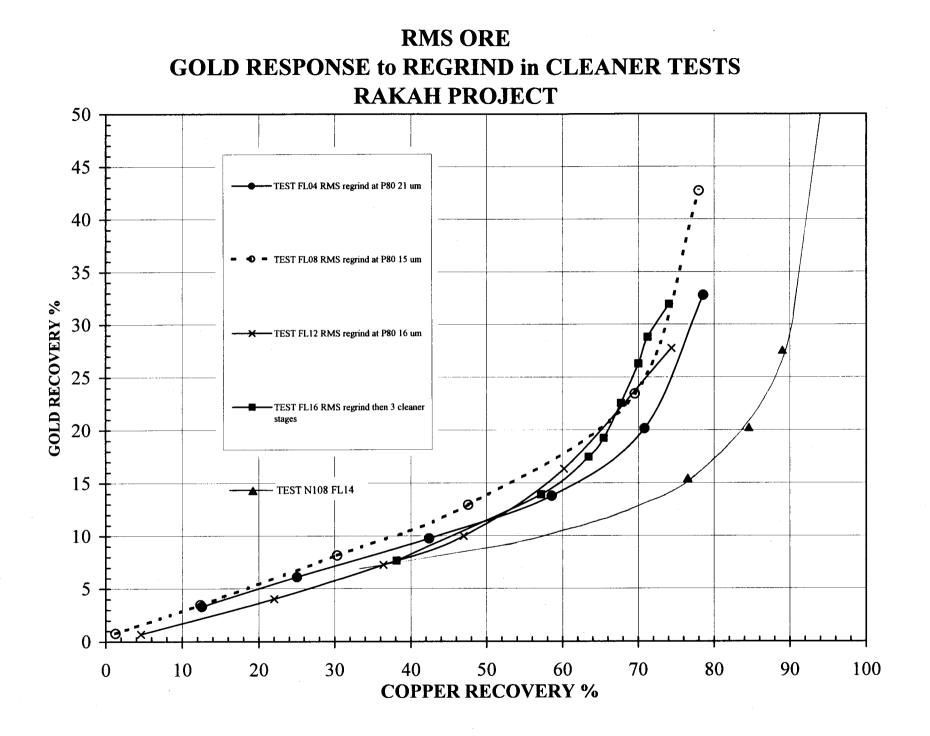
COPPER METALLURGY in CLEANER TESTS - RAKAH PROJECT EFFECT of REGRIND SIZE on CLEANING TOTAL RO/SCAV CONS

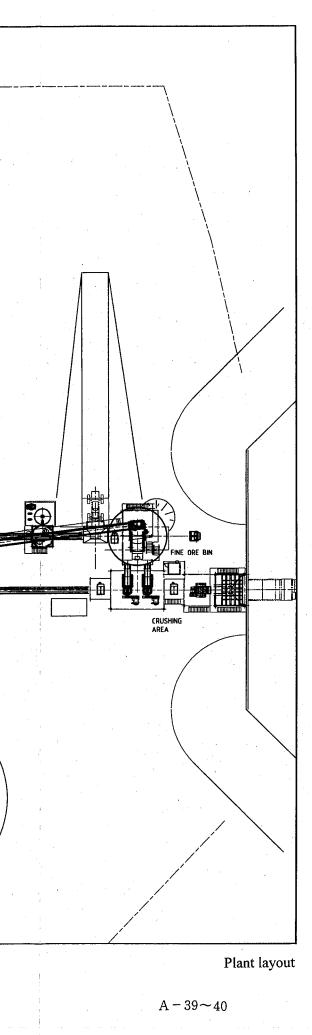

BB ORE

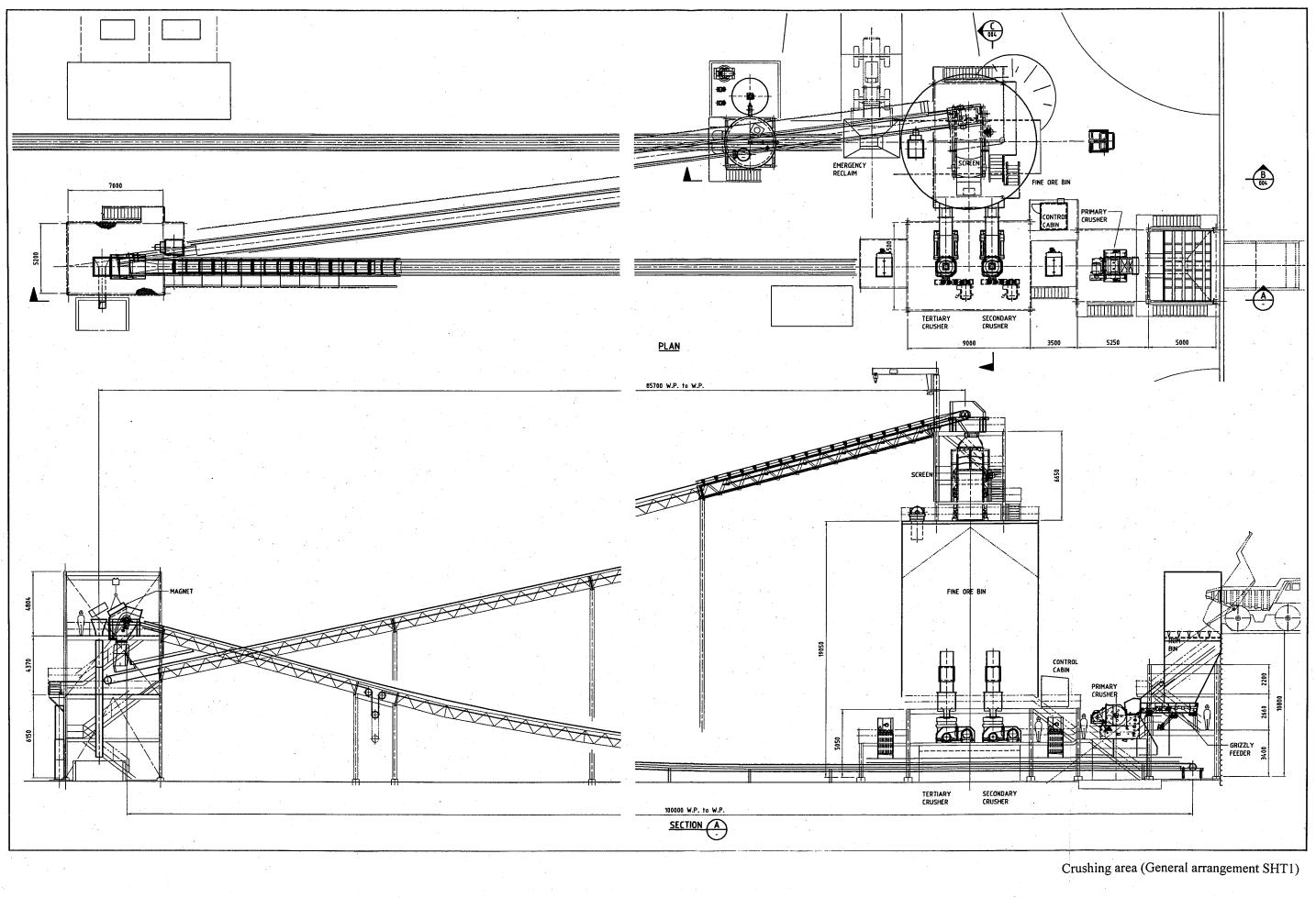


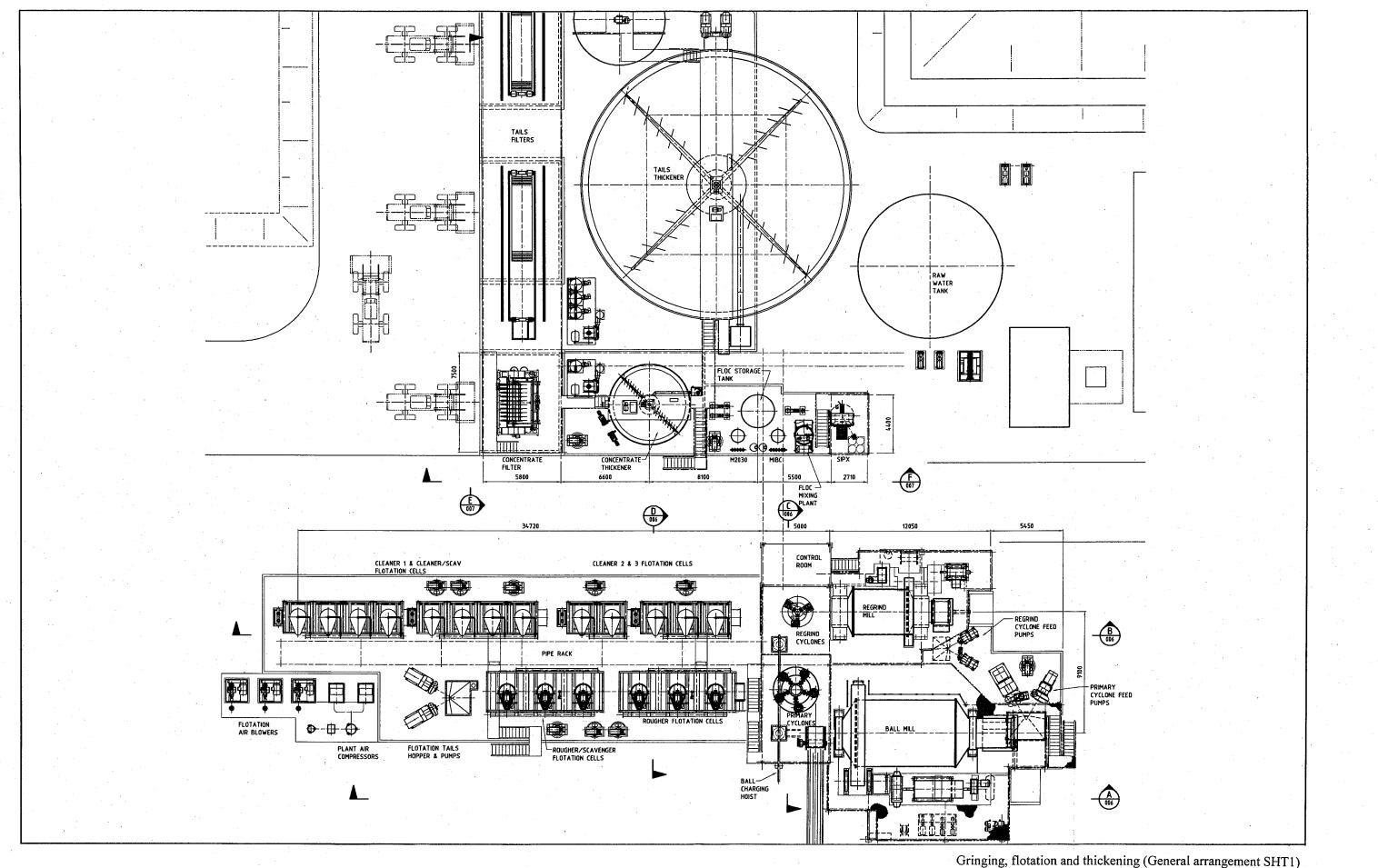
RMS ORE

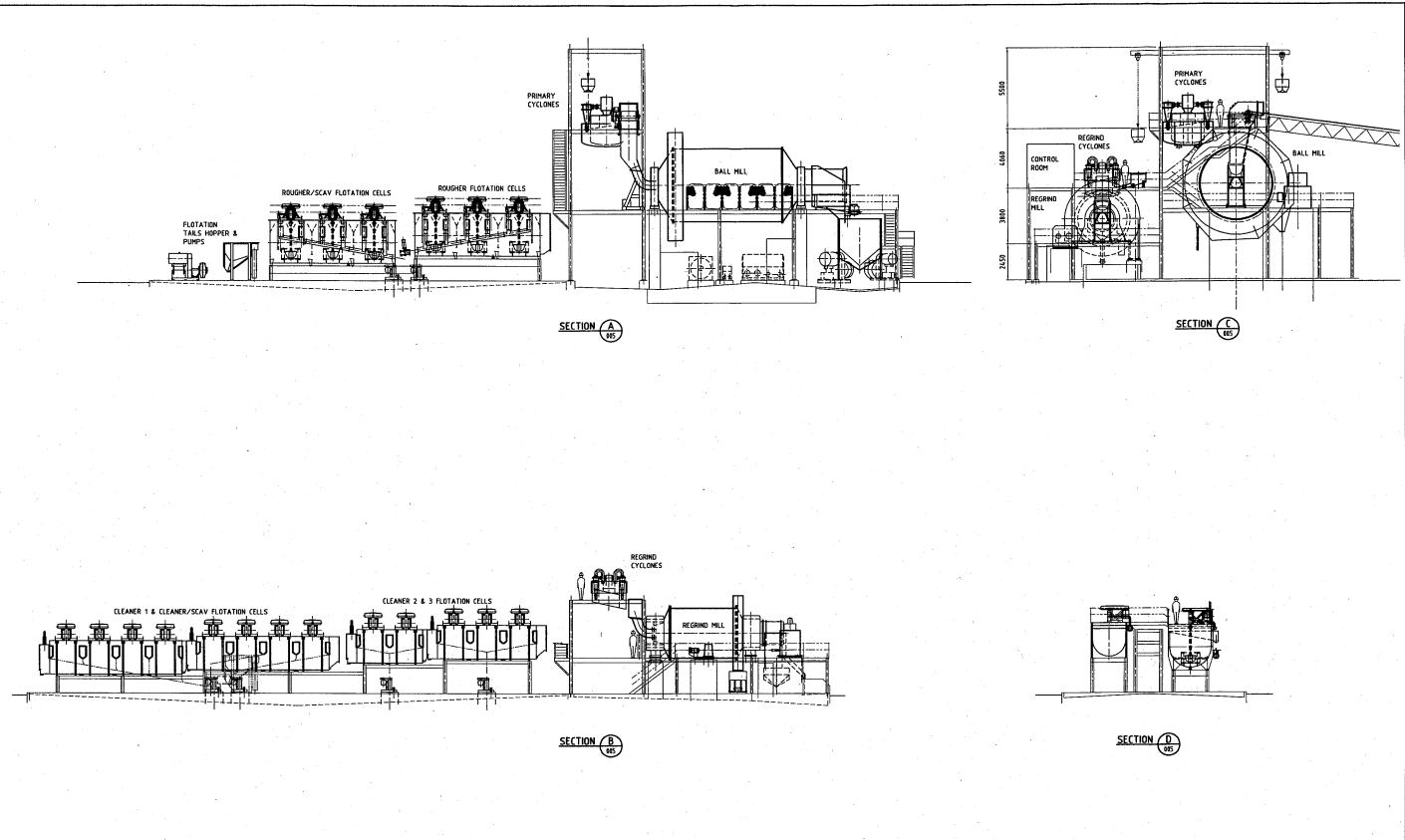



A - 34

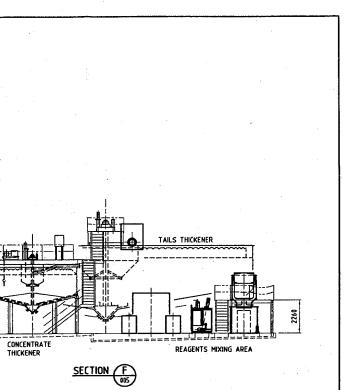

A - 35

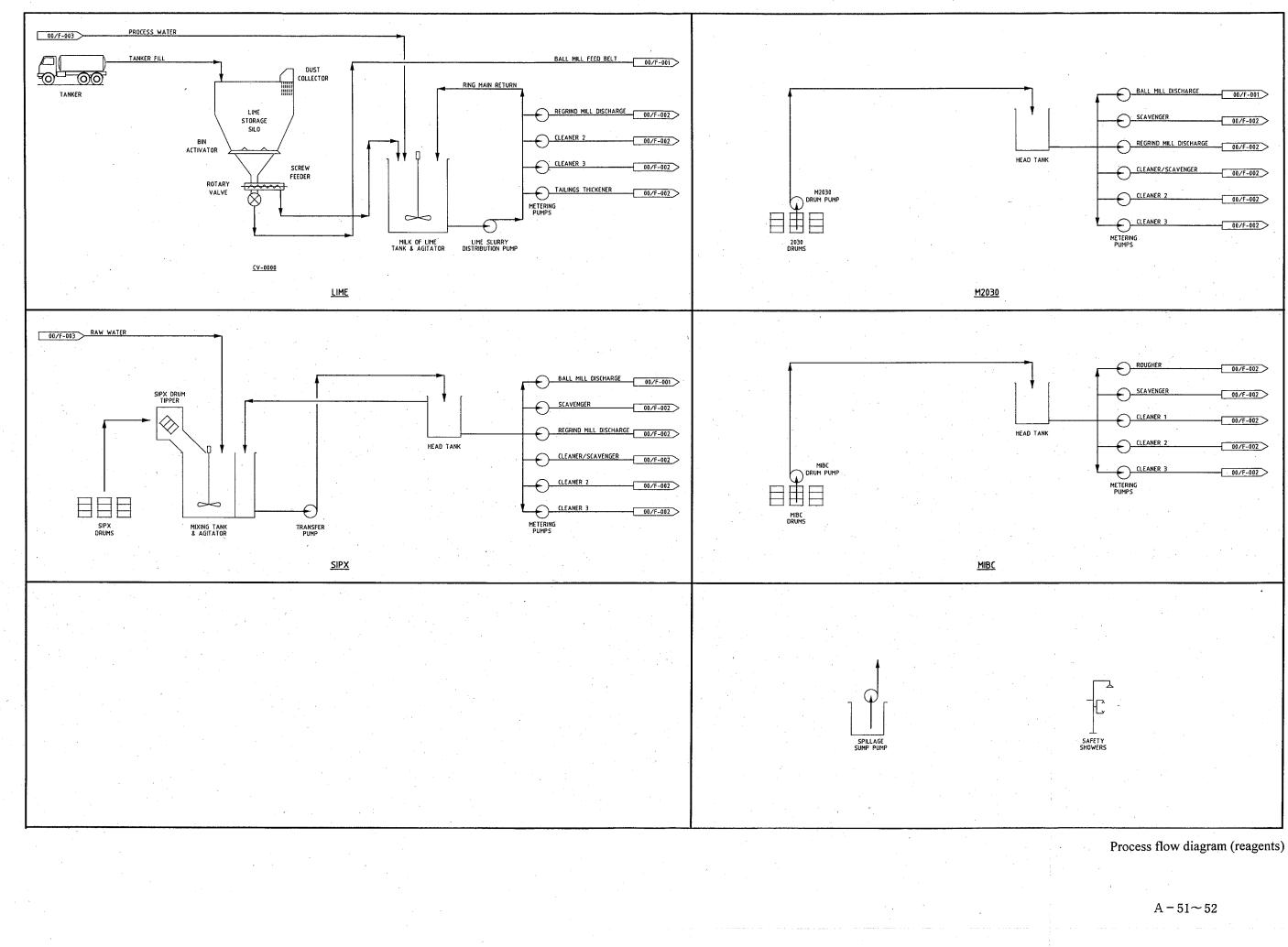


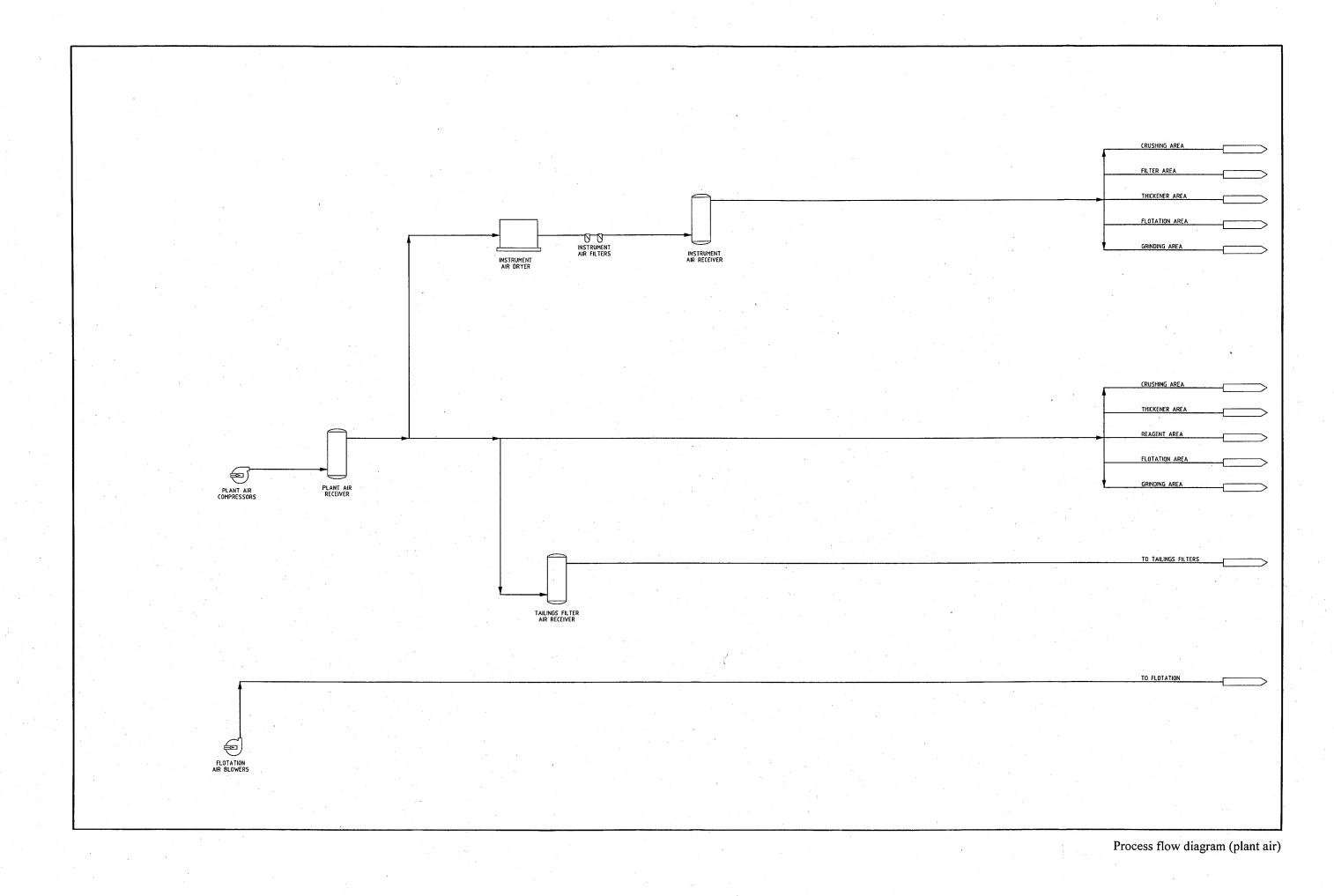

STORES WORKSHOP ADMINISTRATION ABLUTIONS GATEHOUSE 1st AID RAI LABORATORY OFFICE ÷ (REAGENTS STORAGE SHED DEWATERING /REAGENTS MCC PROCESS WATER POND RAW WATER CRUSHING/GRINDI MCC TAIL'S THICKENER ۲ ١. ŧ Ē Ð TRANSFER TOWER Ð FLOTATION AREA CONCENTRATE FILTER -TAILS FILTERS TAILS LOADING CONCENTRATE STORAGE /|



 $A - 41 \sim 42$


A-45~46


Gringing, flotation and thickening (General arrangement SHT2)


A-47~48

Gringing, flotation and thickening (General arrangement SHT3)

A-49~50

A-53~54

Appendix 2

Process plant

Appendix 2A

General arrangement

Appendix 2B

Operating Cost

Operating cost (labour) -case 2,000t/day

						1 AVROUAR	[···			-
						Andreas Income any second and a second s					
Topic:	PROCESS PLAN	T OPEX			· · · · · · · · · · · · · · · · · · ·	ПТЕМ	No.	Salary	On Costs	Total	Total
Project:	Yangul Copper P	roject						Omani Rial	Omani Rial	OR /yr	S/t
Client:	MRC									OK/JI	570
Date:						STAFF			1413 30960 F		
Case:	2000	TPD				Metallurgy Manager	1	10,200	3,060	13,260	0.02
						Production Metallurgist	1	6,000	1,800	7.800	0.01
	INPUT			OUTPUT		Plant Metallurgist	1	6,000	1,800	7,800	0.01
						Production Clerk	1	4,464	1,689	6,153	0.01
Total Feed Rate	730,000	tpa	Labour	OR/t	0.43	Sub Total	4			35,013	0.05
Availability	91.3	%	Power	OR/t	0.76						
Feed Rate	91	tph	Reagents	OR/t	0.36	SUPERVISORS		•••••••••••••••••••••••••••••••••••••••	AND	••••••••••	
Availability	8000	hrs	Consumables	OR/t	0.33	Production Supervisor	1	4,800	2,880	7,680	0.01
Number of Modules	1		Maint Materials	OR/t	0.16	Mechanical Supervisor	1	4,800	2,880	7,680	0.01
Head Grade	1.24	% Cu	Miscellaneous	OR/t	0.26	Electrical Supervisor	1	4,800	2,880	7,680	0.01
Copper Recovery	82.0	%	Total	OR/t	2.29	Shift Supervisors	4	5,040	1,764	27,216	0.04
			OPERATING COST, O	R/a	1,674,827	Shift Chemist	4	3,600	2,160	23,040	0.03
			OPERATING COST, O	R /t ore	2.29	Sub Total	11			73,296	0.10
			OPERATING COST. O	R / Kg Cu	\$0.23			·····			
1			OPERATING COST. O	R/Lb Cu	\$0.11	PRODUCTION			3155-3596131855		
						Process Technicians	12	3,864	1,352	62,597	0.09
						Mobile Plant Ops	4	3,864	1,352	20,866	0.03
						Labourers	2	2,952	1,168	8,240	0.01
						Laboratory Assayer	1	3,480	2,088	5,568	0.01
Staff On Costs	%	30%				Laboratory Assayer	1	5,040	1,764	6,804	0.01
Staff allowances o/t etc	%	60%	· · · · ·		· · · · · · · · · · · · · · · · · · ·	Laboratory Technician	4	3,864	1,352	20,866	0.03
Wages On Costs	%	35%				Leave and Training Coverage	2	3,864	1,352	10,433	0.01
Power, Rial/Kwh		0.02				Sub Total				135,373	0.19
Note: All currency in Rials	Where A\$1 =	0.1984	Omani Rial (OR)						- <u> </u>	100,010	
						MAINTENANCE			60%		
						Electrical Technicians	3	3,480	2,088	16,704	0.02
					· · · ·	Maintenance Technicians	6	3,600	2,160	34,560	0.05
						Instrument Technician	1	3,480	2,088	5,568	0.01
						Trades Assistant	2	3,864	1,352	10.432	0.01
						Sub Total	12			67,264	0.09
						Grand Total	53			310,946	0.43
						CONTINGENCY	0 4	%	++	0	
						TOTAL LABOUR COST, OR/a				310,946	
			· [····] · · · · · · · · · · · · · · · ·			TOTAL LABOUR COST, OR/t orc				0.43	
				-							
			+-+								

Operating cost (power and leagents) -case 2,000t/day

POWAER	5					-		RIFANCIANITZ.	······································						
ПЕМ	Installed Duty kW	Utility Factor	kW Draw	Annual Oper. Hrs	Total kWh	Cost OR/a	Cost OR/t	ПЕМ	Description	Consump	tion	Quantity t/a	Unit Cost OR/ t FIS	Total OR/ a	
RUSHING		1					[THICKENING		1 1			<u> </u>		
rimary Crusher	110	0.7	77	8,000	615,972	12,319	0.02	Flocculant		40 g	/t	29	1091	31,863	0
Rher	397	0.8	318	8,000	2,543,243	50,865	0.07	Sub Total						31,863	.0
Sub Total	507		395		3,159,215	63184	0.09							·	
								FLOTATION							
RINDING								Lime		5.40 k	:g/t	3942	45	177,390	0
111	2000	0.85	1700	8,000	13,599,374	271,987	0.37	MIBC		25 g	/t	18	764	13,940	0
Mher	199	0.8	159	8,000	1,270,342	25,407	0.03	SIPX		40 g	/t	29	546	15,932	0
Sub Tota	2199		1859		14,869,716	297,394	0.41	M2030		40 g	/t	29	694	20,276	
								Sub Total						227,538	0
LOTATION							<u> </u>								
lotation Cells	439	0.8	351	8,000	2,809,471	56,189	0.08	Grand Sub Total						259,401	_
egrind mill	450	0.78	351	8,000	2,807,871	56,157	0.08	CONTINGENCY		00	%			0	
Nher	81	0.8	65	8,000	518,376	10,368	0.01	TOTAL REAGENT COST, OR/a						259,401	
Sub Tota	970		767		6,135,718	122,714	0.17	TOTAL REAGENT COST, OR/1						0.36	
oncentrate Handling		0.8	72	8,000	575,974	0 11,519	0.02								
ailiings Handling	L							· · · · · · · · · · · · · · · · · · ·							+-
ailings Filter	128	0.8	102	8,000	815,962	16,319	0.02		······································						
Other	26	0.8	21	8,000	166,392	3,328	0.00								
Sub Tota	154		123		982,355	19,647	0.03					· [· · · · · · ·		<u></u>	
	L ,,,												···· · · · · · · · · · · · · · · · · ·	··	
IEAGENTS JI	40	0.8	32	8,000	255,988	5,120	0.01	· · · · · · · · · · · · · · · · · · ·							
	40	0.8	32	0,000	233,966	5,120	0.01								
ERVICES	L		1				{					+			
	259	0.8	207	8,000	1,654,964	33,099	0.05								
		- <u></u>	201	0,000	1,0.7,204	33,075	0.05	t							_
		1					+	· [··· ··· · · · · · · · · · · · · · ·							
Grand Tota	4218			-	27,633,929	552,679	0.76						1		
Average kw/h	1210			<u> </u>	3,454	000,019	1					-	1		
ONTINGENCY	()%				0	<u> </u>			· · · ·		+			
	<u>+`</u>					552,679	+						1		
OTAL POWER COST, OR/a	4	1			1	1 332.079	1	1		1 1		1			

Operating cost (consumables, maintenance materials and miscellaneous) -case 2,000t/day

ITEM Consumption Openity <	STERMEAU POL								WHEN AND AND AND AND AND AND AND AND AND AN		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			
$\begin to the constraint of $			•	- ,					ГТЕМ	Crushing	Grinding	I. Flotation	Other	Total	
Mill Liners 0.153 112 258 28,807 0.04 Maintenance % 5 5 2 2.3 4 Sub Total - - 43,687 0.06 Cost per annum 34,763 39,600 10,764 34,382 119,409 RINDING MEDIA - 119,409 -	IG CONSUMABLES					· ·	i	1							1—
Mill Liners 0.153 112 258 28,807 0.04 Mintenance % 5 5 2 3 4 Sub Total - - - 43,687 0.06 Cost per annum 34,763 39,600 10,764 34,282 119,409 iRINDING MEDIA - 10,409 - - - 0 0 0 0 - 0 - - - - - - - - 0 0 0 0	ers	3			4960		14,880	0.02	Direct capital cost	695,251	791,997	538,216	1.142.748	3.168.212	
Sub Total Image: marking the state of the			0.153	112		258	28,807								1
Mill Balls 80 mm 1.18 861 175 150,394 0.21 Crand Sub Total Image: Construction of the state of the stat	Sub Total						43,687	0.06	Cost per annum	34,763	39,600	10,764		119,409	
All Balls 80 mm 1.18 861 175 150,394 0.21 Crand Sub Total Image: Control Sub Total Image: Contr	MEDIA			-											
Sub Total Image: state of the state of t			1.18	861		175	150.394	0.21	Grand Sub Total					119.409	
Image: Normal state in the	Sub Total								Chand Out Total					119,409	
II.TRATIONImage: marked base in the second sec								+	CONTINGENCY	@	0	%		0	\vdash
Filter cloths 3 16,666 49,997 0.07 TOTAL COST, OR/t ore Image: cloth of the cl)N							-		-					1
Image: Section of the section of th	Filter cloths	3			16,666		49,997	0.07							1
Image: sector													I		
Image: Second substant for the second substant second substant second substant second seco									and the start was and and and a second a second a low and an						
Image: Second substant for the second substant second substant second substant second seco									ПЕМ			TOTAL	TOTAL		-
Grand Sub Total Image: Stress of the st									411514				•	· · · · · ·	
CONTINGENCY 0 % 0 Mobile Equipment (lease + fuel) per month 1,157 17,000 0.002 OTAL CONSUMABLES COST, OR/a 0 Mobile Equipment (lease + fuel) per month 3,192 38,299 0.05 OTAL CONSUMABLES COST, OR/a 0 0.33 Freight per month 1,488 17,556 0.02 OTAL COST, OR/t ore 0 0.33 Freight per month 4,400 52,800 0.07 Image: Control of the strength of the strengt of the strength of the strength of the strength of the									·····					·,	-
CONTINGENCY 0 % 0 Mobile Equipment (lease + fuel) per month 3,192 38,299 0.05 OTAL CONSUMABLES COST, OR/a 244,077 Administration per month 2,480 29,760 0.04 OTAL COST, OR/roe 0.33 Freight per month 1,488 17,856 0.02 OTAL COST, OR/roe 0.33 Freight per month 4,400 52,800 0.07 Administration per month 4,400 52,800 0.07 Laboratory Supplies per month 2,976 35,712 0.05 <td>Grand Sub Total</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>244,077</td> <td></td> <td>Office & plant general supplies</td> <td>per month</td> <td>1.157</td> <td>13,888</td> <td>0.02</td> <td></td> <td>+</td>	Grand Sub Total						244,077		Office & plant general supplies	per month	1.157	13,888	0.02		+
IOTAL CONSUMABLES COST, OR/a Image: Cost of the state of the st	ENCY		0	%			0								
Image: TOTAL COST, OR/t ore Image: Cost of the second	NSUMABLES COST, OR/a						244,077								1
	ST, OR/t ore						0.33		Freight						
							·····			per month	4,400				1
Image: Constraint of the second se											2,976				1
									TOTAL COST OF /			100.015	0.06		
Image: Solution of the state of the sta									IOTAL COST, OK 74			188,315	0.26		-
Image: state of the state								<u> </u>	TOTAL COST, OR /t ore				0.26	•	
Image: Second											·				
Image: Section of the section of th								1							
Image: Section of the section of th								1			· · ·				
Image: Second state Image: Second state<													-		1
Image: Section of the section of th															
Image: Second															
															1

j

Operating cost (labour) -case 3,000t/day

(IL AVELONI	19				
			<u>+ </u>	- ++		a which was a support of a star in a star	-				1
Topic:	PROCESS PLAN	T OPEX			<u></u> ,	ПЕМ		lo. Sa	ary On Costs	Total	Total
Project:	Yangul Copper Pi	roject							i Rial Omani Rial	OR /yt	S/t
Client:	MRC	<u> </u>									
Date:						STAFF			2.096		1
Case:	3000	TPD				Metallurgy Manager	[1 10	200 3,060	13,260	0.01
· · · ·						Production Metallurgist		1 6,0	00 1,800	7,800	0.01
	INPUT			OUTPUT		Plant Metallurgist		1 6,	00 1,800	7,800	0.01
						Production Clerk		1 4,4	64 1,689	6,153	0.01
Total Feed Rate	1,095,000	tpa	Labour	ORA	0.28		Sub Total	4		35,013	0.03
Availability	91.3	%	Power	ORA	0.68						
Feed Rate	137	iph	Reagents	OR/t	0.36	SUPERVISORS	L		60%	84	1
Availability	8000	hrs	Consumables	OR/t	0.34	Production Supervisor	Γ	1 4,	00 2,880	7,680	0.01
Number of Modules	1		Maint Materials	OR/t	0.14	Mechanical Supervisor		1 4,	2,880	7,680	0.01
Head Grade	1.24	% Cu	Miscellaneous	OR/t	0.20	Electrical Supervisor		1 4,	2,880	7,680	0.01
Copper Recovery	82.0	%	Total	OR/t	2.00	Shift Supervisors		4 5,	40 1,764	27,216	0.02
· · · · · · · · · · · · · · · · · · ·		· .	OPERATING COST, O	R/a	2,188,943	Shift Chemist	· · · · · · · · · · · · · · · · · · ·	4 3,	2,160	23,040	0.02
			OPERATING COST, O	R /t ore	2.00		Sub Total	11		73,296	0.07
· · ·			OPERATING COST. O	R / Kg Cu	\$0.20						
			OPERATING COST. O	R / Lb Cu	\$0.09	PRODUCTION	<u> </u>		1 35% H		
						Process Technicians	ſ	12 3,	1,352	62,597	0.06
						Mobile Plant Ops		4 3,	1,352	20,866	0.02
						Labourers		2 2,	1,168	8,240	0.01
						Laboratory Assayer		1 3,	180 2,088	5,568	0.01
Staff On Costs	%	30%				Laboratory Assayer		1 5,	40 1,764	6,804	0.01
Staff allowances o/t etc	%	60%				Laboratory Technician		4 3,	364 1,352	20,866	0.02
Wages On Costs	%	35%				Leave and Training Coverage		2 3.	364 1,352	10,433	0.01
Power, Rial/Kwh		0.02					Sub Total	26		135,373	0.12
Note: All currency in Rials	Where A\$1 =	0.1984	Omani Rial (OR)								
						MAINTENANCE			18 Mile 60%		
						Electrical Technicians	Γ	3 3,	180 2,088	16,704	0.02
						Maintenance Technicians		6 3,	500 2,160	34,560	0.03
						Instrument Technician		1 3,	480 2,088	5,568	0.01
					·····	Trades Assistant		2 3,	364 1,352	10,432	0.01
·····							Sub Total	12		67,264	0.06
							Grand Total	53		310,946	0.28
	-					CONTINGENCY		0 %		0	
····					······································	TOTAL LABOUR COST, OR/a				310,946	
						TOTAL LABOUR COST, OR/t or	rc			0.28	
								·			

Operating cost (power and leagents) -case 3,000t/day

ITEM Install Dut kW CRUSHING Primary Crusher Primary Crusher 110 Other 466 Sub Total 576 GRINDING	Uty Factor W		Annual Oper. Hrs 8,000 8,000	Total kWh 615,972 2,979,703 3,595,675	Cost OR/a 12,319 59,594	Cost OR/t 0.01	THEKENING Flocculant	Description	Consun	nption	Quantity 1/a	Unit Cost OR/t FIS	Total OR/ a
Dut kW CRUSHIING Primary Crusher 110 Other 466 Sub Total 576 GRINDING Mill 280 Other 235 Sub Total 303 FLOTATION Flotation Cells 500 Regrind mill 550 Other 112 Sub Total 117	Uty Factor W	r Draw 77 372 449 2520	Oper. Hrs 8,000 8,000 	kWh 615,972 2,979,703	OR/a 12,319 59,594	OR/t	THICKENING	Description	Consun	nption	- ,		
CRUSHING Primary Crusher 110 Other 466 Sub Total 576 GRINDING Mill 280 Other 235 Sub Total 303 FLOTATION Flotation Cells 500 Regrind mill 550 Other 112 Sub Total 117	10 0.7 66 0.8 76 800 0.9 35 0.8	372 449 2520	8,000	2,979,703	59,594				1				
Other 466 Sub Total 576 GRINDING Mill 280 Other 235 Sub Total 303 FLOTATION Flotation Cells 500 Regrind mill 550 Other 112 Sub Total 117	66 0.8 76 300 0.9 35 0.8	372 449 2520	8,000	2,979,703	59,594				1	1	-1	1	<u></u>
Sub Total 576 GRINDING Mill 280 Other 235 Sub Total 303 FLOTATION Flotation Cells 500 Regrind mill 550 Other 112 Sub Total 117	76 300 0.9 35 0.8	449 2520					PIOCCUIANI		40	g/t	44	1091	47,795
GRINDING Mill 280 Other 235 Sub Total 303 FLOTATION Flotation Cells 500 Regrind mill 550 Other 1112 Sub Total 117	300 0.9 35 0.8	2520	0.000	3,595,675		0.05	Sub Total		+				47,795
Mill 280 Other 235 Sub Total 303 FLOTATION Flotation Cells 500 Regrind mill 550 Other 1112 Sub Total 117	35 0.8		0.000		71913	0.07							
Mill 280 Dther 235 Sub Total 303 FLOTATION	35 0.8		0.000	1			FLOTATION						
Dther 235 Sub Total 303 FLOTATION Flotation Cells 506 Regrind mill 550 Other 1112 Sub Total 117	35 0.8		0.000				Lime		5.40	kg/t	5913	45	266,085
Sub Total 303 FLOTATION Flotation Cells 506 Regrind mill 556 Other 1112 Sub Total 117		188	8,000	20,159,073	403,181	0.37	MIBC		25	g/t	27	764	20,910
FLOTATION Flotation Cells 500 Regrind mill 550 Other 112 Sub Total 117)35		8,000	1,500,731	30,015	0.03	SIPX		40	g/t	44	546	23,897
Flotation Cells 508 Regrind mill 550 Other 112 Sub Total 117		2708		21,659,804	433,196	0.40	M2030		40	g/t	44	694	30,415
Flotation Cells 508 Regrind mill 550 Other 112 Sub Total 117					<u>-</u>		Sub Total						341,307
Regrind mill 550 Other 112 Sub Total 117									_				
Other 112 Sub Total 117		406	8,000	3,251,050	65,021	0,06	Grand Sub Total			<u> </u>			389,102
Sub Total 117		462	8,000	3,695,830	73,917	0.07	CONTINGENCY		(0 %			0
		89	8,000	713,567	14,271	0.01	TOTAL REAGENT COST, OR/a						389,102
THICKENING & FILTRATION	170	958	· · · · · · · · · · · · · · · · · · ·	7,660,448	153,209	0.14	TOTAL REAGENT COST, OR/						0.36
Concentrate Handling			1	1	0								
All 115	15 0.8	92	8,000	736,606	14,732	0.01			•			††	
Tailiings Handling													
Tailings Filter 17		136	8,000	1,091,150	21,823	0.02							
Other 35	· · · · · · · · · · · · · · · · · · ·	28	8,000	223,990	4,480	0.00							
Sub Total 206	06	164		1,315,140	26,303	0.02							
				_									
REAGENTS													
<u>^11</u> 50	50 0.8	40	8,000	319,985	6,400	0.01							
SERVICES													
			0.000	1.040.051	20.050	0.01						- 	
All 304	04 0.8	243	8,000	1,942,951	38,859	0.04							
					·····	<u> </u>		·····		+			
Grand Total 545	154			37,230,607	744,612	0.68						+	
Average kw/h	·			4,654	/	0.00	<u> </u>			+		++	
CONTINGENCY	0 %				0		· · · · · · · · · · · · · · · · · · ·					+	
TOTAL POWER COST, OR/a				1	744,612					+		++	
TOTAL POWER COST, OR/t ore					0.68				1	1	1	1 1	

Operating cost (consumables, maintenance materials and miscellaneous) -case 3,000t/day

	the second se		1		···-					-					
·	CCC MAXLAMBALIES	<u> </u>							MLAURAHP.	XCIII MI	MAR	AT-S			
Total	ПЕМ	Consur	Tration	Quantity	Lloi	t Cost	Total	Total	ITEM		Caushian	Crientine	171		
OR/I		Set pa	kg/t ore	v/a	OR/ set	OR/kg	OR/a	OR/t			Crushing	Grinding	Flotation	Other	Total
	OPERATING CONSUMABLES														
	Crusher Liners	4			16,864		67,456	0.06	Direct capital cost		886,800	1,010,200	686,500	1,457,587	4,041,087
0.04	Mill Liners		0.153	168		258	43,211		Maintenance %		5	5	2	3	4
0.04	Sub Total						110,667		Cost per annum		44,340	50,510	13,730	43,728	152,308
	GRINDING MEDIA														
0.24	Mill Balls 80 mm		1.18	1292		149	192,264	0.18		Grand Sub Total					152,308
0.02	Sub Total						192,264	0.18							000,201
0.02									CONTINGENCY		@	0	%		0
0.03	FILTRATION								TOTAL COST, OR/a				<u> </u>		152,308
0.31	Filter cloths	4			16,666		66,662	0.06	TOTAL COST, OR/t ore						0.14
												· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·	
									MINDELICAN	NHOICAN					
										1					
									ITEM			UNIT	TOTAL	TOTAL	
												OR	OR/a	OR/1	
		.,													
	Grand Sub Total						369,594		Office & plant general suppl		per month	1,157	13,888	0.01	
	CONTINGENCY		0	%			0		Mobile Equipment (lease + 1	fuel)	per month	3,192	38,299	0.03	
	TOTAL CONSUMABLES COST, OR/a						369,594		Administration		per month	3,307	39,680	0.04	
	TOTAL COST, OR/t ore						0.34		Freight		per month	2,034	24,403	0.02	
									Raw Water		per month	5,867	70,400	0.06	
	·	<u> </u>							Laboratory Supplies		per month	2,976	35,712	0.03	
														ļ	
,	· · · · · · · · · · · · · · · · · · ·							+	TOTAL CONT OD (· · · · ·			
						·····		+	TOTAL COST, OR /a				222,382	0.20	
	· · · · · · · · · · · · · · · · · · ·					· .			TOTAL COST, OR /t ore				······	0.20	
						· · · · · · · · · · · · · · · · · · ·			TOTAL COST, OK /LOR		· · · ·			0.20	
									· · · · · · · · · · · · · · · · · · ·						
		·····							· · · · · · · · · · · · · · · · · · ·						
								+	<u> </u>						
									· · · · · · · · · · · · · · · · · · ·						
·····				-				<u>+</u>							
						¢									
	1						l						· · · · · · · · · · · · · · · · · · ·		
								1	···		· · ·				
								1	· · · · · · · · · · · · · · · · · · ·						

A - 60

REAGENTS & CONSUMABLES REQUIRED FOR FIRST FILL

REAGENTS

CONSUMABLES

ITEM		Consu	mption	Quantity	Unit Cost	Total	ITEM	Consur	mption	Quantity	Unit Cost	Total
				required	OR/ t	OR	· · · · · ·	Set req'd	kg/t ore	tonnes	OR/ set OR/	t OR
				tonnes	FIS		OPERATING CON	NSUMABLES	5		• · · · · · · · · · · · · · · · · · · ·	
THICKENING						·	Crusher Liners	2			16,864	33,728
Flocculant		40	g/t	7	1091	7,275	Mill Liners		0.153	26	258	6,577
Sub T	Fotal					7,275	Sub Total					40,305
FLOTATION	141 - L						GRINDING MEDI	A				
Lime		5.40	kg/t	900	45	40,500	Mill Balls 80 mm		1.18	197	149	29,264
MIBC		25	g/t	4	764	3,183	Sub Total					29,264
SIPX		40	g/t	7	546	3,637						
M2030		40	g/t	7	694	4,629	FILTRATION					
Sub 1	Fotal					51,949	Filter cloths	1			16,666	16,666
Grand Sub 7	Fotal					59,224	Grand Sub Total					86,235
TOTAL REAGENT	COST	, OR				59,224	TOTAL CONSUM	IABLES CO	ST, OR			86,235
TOTAL REAGENT			<u>.</u>			59,224	TOTAL CONSUM	IABLES CO	ST, OR			86,2

Total Cost for first fill 145,459

Exch. rate Omani R:A \$ 0.1984

Plant throughput tpa 1,000,000

Throughput for first fill 166,667

Salary for labour

LABOUR Unit: Oman Rial

ITEM	No.	Grade	basic salary per Month	allowance per Month	Total basic salary/M	Total basic salary/year	Overtime, Overhead,etc.	Grand total / year
STAFF			• • • • • • •	F - · · · · · · · · · · · · · · · · · ·	j		e remouejoto.	total / your
Metallurgy Manager	1	2G	850		850	10,200	3,060	13,260
Production Metallurgist	1	5G	500		500	6,000	•	7,800
Plant Metallurgist	1	5G	500		500	6,000	•	7,800
Production Clerk	1	80	277	95	372	4,464	•	6,153
Sub Total	4					1,101	1,000	0,100
SUPERVISORS								
Production Supervisor	1	6G	400		400	4,800	2,880	7,680
Mechanical Supervisor	1	6G	400		400	4,800	2,880	7,680
Electrical Supervisor	1	6G	400		400	4,800	2,880	7,680
Shift Supervisors	4	70	300	120	420	5,040	1,764	6,804
Shift Chemist	4	7G	300		300	3,600	2,160	5,760
Sub Total	11							
PRODUCTION								
Process Technicians	12	8O	230	92	322	3,864	1,352	5,216
Mobile Plant Ops	4	80	230	92	322	3,864	1,352	5,216
Labourers	2	100	150	96	246	2,952	1,168	4,120
Laboratory Assayer	1	7G	290		290	3,480	2,088	5,568
Laboratory Assayer	1	70	300	120	420	5,040	1,764	6,804
Laboratory Technician	4	8O	230	92	· 322	3,864	1,352	5,216
Leave and Training Coverage	2	80	230	92	322	3,864	1,352	5,216
Sub Total	26							
MAINTENANCE								
Electrical Technicians	3	7G	290		290	3,480	2,088	5,568
Maintenance Technicians	6	7G	300		300	3,600	2,160	5,760
Instrument Technician	1	7G	290		290	3,480	2,088	5,568
Trades Assistant	2	80	230	92	. 322	3,864	1,352	5,216
Sub Total	12							
Grand Total	53		Regional :21	40%	Omani :32	60%		

Appendix 2C

Capital Cost

Total cost summary -case 3,000t/day process plant

					nate: DFS ± ency: Oman 1				timate Revision mate Revision		ecember 2001
Area		A Earthworks	B Civil Works St	C ructural Steel	D Platework	E Equipment	F Piping	G Electrical	H Buildings M	I	Total
00	Site Preparation & Improvements	41,200		0	0		0	0	0	0	41,200
10	Crushing	53,948	32,818	134,136	170,533	372,213	18,058	109,046	0	0	890,752
20	Grinding	0	42,074	48,910	8,513	615,586	60,216	234,943	0	0	1,010,242
30	Flotation	0	12,159	20,718	8,988	464,742	136,071	43,816	0	0	686,494
40	Concentrate Thickening, Filtration and Storage	0	191	0	293	143,505	42,134	101,947	0	0	288,070
50	Tailings Thickening and Filtration	0	24,180	23,497	15,171	745,856	217,157	26,850	0	0	1,052,711
60	Reagents	C	3,830	5,325	5,088	72,006	21,223	11,419	0	0	118,891
70	Water and Air Services	12,258	2,382	0	23,613	77,478	43,682	9,540	0	0	168,953
80	Process Plant Infrastructure	C) 0	0	7,561	105,948	15,454	60,341	330,506	0	519,810
90	Power Supply & Process Control System	() 0	0) 0	0	115,290	0	0	115,290
100	First Fill	() 0	0	() 0	0	0	0	168,006	168,006
110	Capital Spares	() 0	0) (126,016	. 0	0	0	0	126,016
120	Ocean Freight	() 0	C) () 0	0	0	0	149,925	149,925
130	Preliminaries	(0 0	C) (0 0	0	0	0	693,625	693,625
	Total	107,400	5 117,634	232,586	239,760	2,723,350	553,995	713,192	330,506	1,011,556	6,029,985
									EPCM		1,064,049
							•		BTL		0

Grand Total

7,094,034

Total cost detail -case 3,000t/day process plant (1/2)

Type of Estimate: DFS ± 10% Job Currency: Oman Riyal Estimate Revision No: A Estimate Revision Date: 5 December 2001

	BareCost	AccuracyPro	ovision	Fa	ee	Total
00 A	32,699	6,540	20.00 %	1,962	5.00%	41,200
00 Totals	32,699	6,540		1,962		41,200
10 A	42,816	8,563	20.00 %	2,569	5.00%	53,948
В	29,075	2,181	7.50%	1,563	5.00%	32,818
С	118,836	8,913	7.50%	6,387	5.00%	134,136
D	151,081	11,331	7.50%	8,121	5.00%	170,533
Ε	337,608	16,880	5.00%	17,724	5.00%	372,213
F	15,635	1,564	10.00	860	5.00%	18,058
G	94,412	9,441	% 10.00 %	5,193	5.00%	109,046
10 Totals	789,462	58,873		42,417		890,752
20 B	37,275	2,796	7.50%	2,004	5.00%	42,074
С	43,331	3,250	7.50%	2,329	5.00%	48,910
D	7,542	566	7.50%	405	5.00%	8,513
E	558,354	27,918	5.00%	29,314	5.00%	615,586
F	52,135	5,214	10.00 %	2,867	5.00%	60,216
G	203,414	20,341	10.00 %	11,188	5.00%	234,943
20 Totals	902,051	60,084		48,107		1,010,242
30 B	10,772	808	7.50%	579	5.00%	12,159
С	18,355	1,377	7.50%	987	5.00%	20,718
D	7,963	597	7.50%	428	5.00%	8,988
E	421,535	21,077	5.00%	22,131	5.00%	464,742
F	117,810	11,781	10.00 %	6,480	5.00%	136,071 43,816
G	37,936	3,794	10.00 %	2,086	5.00%	43,810
30 Totals	614,371	39,433		32,690		686,494
40 A	0	0	0.00%	0	5.00%	0
В	169	13	7.50%	9	5.00%	191
D	259	19	7.50%	14	5.00%	293
Ε	130,163	6,508	5.00%	6,834	5.00%	143,505
F	36,480	3,648	10.00 %	2,006	5.00%	42,134
G	88,266	8,827	10.00 %	4,855	5.00%	101,947
40 Totals	255,338	19,015		13,718		288,071
50 B	21,422	1,607	7.50%	1,151	5.00%	24,180
C	20,817	1,561	7.50%	1,119	5.00%	23,497
D	13,441	1,008	7.50%	722	5.00%	15,171
E	676,513	33,826	5.00%	35,517	5.00%	745,856
F	188,015	18,802	10.00 %	10,341	5.00%	217,157
G	23,247	2,325	10.00 %	1,279	5.00%	26,850
50 Totals	943,454	59,128		50,129		1,052,711

A - 64

Total cost detail -case 3,000t/day process plant (2/2)

	BareCost	AccuracyPro	ovision	F	ee	Total	
60 B	3,393	254	7.50%	182	5.00%	3,830	
C	4,717	354	7.50%	254	5.00%	5,325	
D	4,508	338	7.50%	242	5.00%	5,088	
Ε		65;312	3,266	5.00%	3,429	5.00%	72,006
F	18,375	1,838	10.00 %	1,011	5.00%	21,223	
G	9,887	989	10.00 %	544	5.00%	11,419	
60 Totals	106,192	7,038	70	5,662		118,892	
70 A	9,729	1,946	20.00 %	584	5.00%	12,258	
В	2,110	158	7.50%	113	5.00%	2,382	
D D	20,920	1,569	7.50%	1,124	5.00%	23,613	
Ĕ	70,275	3,514	5.00%	3,689	5.00%	77,478	
\overline{F}	37,820	3,782	10.00 %	2,080	5.00%	43,682	
G	8,260	826	10.00 %	454	5.00%	9,540	
70 Totals	149,113	11,795		8,045		168,953	
80 D	6,699	502	7.50%	360	5.00%	7,561	
Ε	96,098	4,805	5.00%	5,045	5.00%	105,948	
F	13,380	1,338	10.00 %	736	5.00%	15,454	
G	52,243	5,224	10.00 %	2,873	5.00%	60,341	
H	286,153	28,615	10.00 %	15,738	5.00%	330,506	
80 Totals	454,573	40,485		24,753		519,811	
90 G	99,818	9,982	10.00 %	5,490	5.00%	115,290	
90 Totals	99,818	9,982		5,490		115,290	
100 I	145,460	14,546	10.00 %	8,000	5.00%	168,006	
100 Totals	145,460	14,546		8,000		168,006	
110 E	114,300	5,715	5.00%	6,001	5.00%	126,016	
110 Totals	114,300	5,715		6,001		126,016	~
120 I	129,805	12,981	10.00	7,139	5.00%	149,925	
120 Totals	129,805	12,981		7,139		149,925	
130 I	600,541	60,054	10.00 %	33,030	5.00%	693,625	
130 Totals	600,541	60,054		33,030		693,625	
Job Totals:	5,337,178	405,667		287,142		6,029,987	
EPCM Totals:	925,260	92,526	10.00 %	46,263	5.00%	1,064,049	
BTL Totals:						0	
Grand Totals:	6,262,438	498,193		333,405		7,094,03	

					stimate: DFS urrency: Om				imate Revision nate Revision		cember 2001
Area		A Earthworks	B Civil Washer St	C	D	E	F	G	H	I	Total
00	Cita Damantina & Immunut	Earthworks 32,699	Civil Works St			Equipment	Piping	Electrical	Buildings M		33 (00
00	Site Preparation & Improvements	32,099	0	0	0	0	0	0	0	0	32,699
10	Crushing	42,816	29,075	118,836	151,081	337,608	15,635	94,412	0	0	789,463
20	Grinding	0	37,275	43,331	7,542	558,354	52,135	203,414	0	0	902,051
30 -	Flotation	0	10,772	18,355	7,963	421,535	117,810	37,936	0	0	614,371
40	Concentrate Thickening, Filtration and Storage	0	169	0	259	130,163	36,480	88,266	0	0	255,337
50	Tailings Thickening and Filtration	0	21,422	20,817	13,441	676,513	188,015	23,247	0	0	943,455
60	Reagents	0	3,393	4,717	4,508	65,312	18,375	9,887	0	0	106,192
70	Water and Air Services	9,728	2,110	0	20,920	70,275	37,820	8,260	0	0	149,113
80	Process Plant Infrastructure	C	0	0	6,699	96,098	13,380	52,243	286,153	0	454,573
90	Power Supply & Process Control System	C	0	0	C) 0	0	99,818	0	0	99,818
100	First Fill	C) 0	0	C) 0	0	0	0	145,460	145,460
110	Capital Spares	() 0	0	0) 114,300	0	0	0	0	114,300
120	Ocean Freight	() 0	0) 0	0	0	0	129,805	129,805
130	Preliminaries	() 0	0) () 0	. 0	0	0	600,541	600,541
	Total	85,243	3 104,216	206,056	212,413	3 2,470,158	479,650	617,483	286,153	875,806	5,337,178
									EPCM		925,260

Grand Total 6,262,438

Bare cost report -case 3,000t/day process plant (1/26)

			Type of Estimate: DFS ± 10% Job Currency: Oman Riyal Ws Rate Description Quantity UoM Unit Cost Ex T								evision No: vision Date:	A 5 December 2001
	Еq Еq Туре No		Rate Description Code		Quantity UoM		Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Instal Cost	l Freight To Cost	otalCost Price Source
Area 00	reparation & Im , A Earthworks ^{ads}	proveme	ents									
r	203	Al	105 Win, haul and plac e :	selected fill	1820 Cm³	6.1	0	0	0	11,029	0	11,029 Minproc est/Oman rates
R	loads	A	110 Sub-base, supply gra	de and compact	1000 Cm ³	10.7	0	0	0	10,660	0	10,660 Minproc est/Oman
		A	111 Road base, supply gr	rade and compact	760 Cm ³	11.8	0	0	0	8,937	0	rates 8,937 Minproc est/Oman rates
S	ite Preparation	A	002 Strip topsoil and sto	ckpile	1850 Bm³	1.1	0	0	, 0	2,072	0	2,072 Minproc est/Oman rates
							Total	0	0	32,698	0	32,698
						Are	ea 00 Total	0	0	32,698	. 0	32,698
	hing), A Earthworks Emergency Reclaim R	amp	105 Win, haul and place	selected fill	600 Cm ³	6.1	0	0	0	3,636	0	3,636 Minproc est/Oman
F	ROM Retaining Wall	A	212 Reinforced Earth W	all	300 m²	70.0	55	900	16,500	4,500	0	rates 21,000 Reinforced Earth
		A	105 Win, haul and place	selected fill	3000 Cm ³	6.1	0	0	0	18,180	0	18,180 Minproc est/Oman rates
), B Civil Works Bunkers	3					Total	900	16,500	26,316	0	42,816
	BK 01 BK 02		B000 TRAMP BUNKER B000 FINE ORE BIN EM BUNKER - Incl w/	IERGENCY FEED	l Ea l Ea	0.0 0.0		0 0	0 0	0	0 0	0 0

A - 67

Bare cost report -case 3,000t/day process plant (2/26)

Eq H Type N	Eq KW No	/s Rate Cod		Quantity UoM		Cost Ex Works	Total Install Hrs		Total Instal Cost	Freight Cost	TotalCost	Price Source
Conveyors												
		B101	Blinding concrete	4.9 m ³	32.2	0	6	0	158	0	158	
		B002	Minor footings < 5m ³	15.8 m ³	90.9	0	190	0	1,437	0	1,437	
		B003	Major footings >5m ³	32.8 m ³	63.6	0	213	0	2,087	0	2,087	
		B501	HD Bolts (HDG)	330 kg	2.3	0	33	0	769	0	769	
Fine Ore Bin												
		B101	Blinding concrete	1.6 m ³	31.9	0	2	0	51	0	51	
		B002	Minor footings < 5m ³	15.7 m ³	91.0	0	188	0	1,428	- 0	1,428	
		B010	Suspended slabs	2.8 m ³	77.1	0	20	0	216	0	216	
		B401	HDG CS embedded steel	600 kg	1.1	0	18	0	659	0	659	
Primary Crush	er Foundati	ion										
		B101	Blinding concrete	2 m ³	32.0	0	3	0	64	0	64	
		B003	Major footings >5m ³	22 m³	63.6	0	143	0	1,400	0	1,400	
		B006	Walls	15 m ³	98.9	0	225	0	1,484	0	1,484	
		B010	Suspended slabs	12 m ³	77.3	0	84	0	927	0	927	
		B401	HDG CS embedded steel	400 kg	1.1	0	12	0	439	0	439	
		B501	HD Bolts (HDG)	120 kg	2.3	0	12	0	279	0	279	
Primary Crush	ing Structu	re										
		B101	Blinding concrete	1.2 m ³	31.7	0	2	0	38	0	38	
		B002	Minor footings < 5m ³	13.6 m ³	91.0	0	163	0	1,237	0	1,237	
		B005	Ground slabs including kerbs	9 m³	60.6	0	45	0	545	0	545	
		B008	Columns & pedestals	1.8 m³	113.9	0	27	0	205	0	205	
		B501	HD Bolts (HDG)	120 kg	2.3	0	12	0	279	0	279	
Reclaim Area												
		B101	Blinding concrete	1.2 m³	31.7	0	2	0	38	0	38	
		B002	Minor footings < 5m ³	21.7 m ³	90.9	0	260	0	1,973	0	1,973	
		B005	Ground slabs including kerbs	4 m ³	60.5	0	20	0	242	0	242	
		B006	Walls	10.6 m³	98.9	0	159	0	1,048	0	1,048	
		B008	Columns & pedestals	1 m³	113.0	0	15	0	113	0	113	
		B501	HD Bolts (HDG)	40 kg	2.3	0	4	0	93	0	93	
Run-on Slab												
		B005	Ground slabs including kerbs	12.1 m³	60.6		61	0	733	0	733	
		B006	Walls	8 m ³	98.9	0	120	0	791	0	791	
Second/Tert Cr	rusher Area											
		B101	Blinding concrete	0.5 m ³	32.0		1	0	16	0	16	
		B002	Minor footings < 5m ³	6.2 m ³	90.8		74	0	563	0	563	
		B005	÷	9.6 m ³	60.6		48	0	582	0	582	
		B008		1.2 m ³	113.3		18	0	136	0	136	
		B501	HD Bolts (HDG)	90 kg	2.3	0	9	0	209	0	209	

Bare cost report -case 3,000t/day process plant (3/26)

	E T	q] ype]	Eq No	KWs	Rate Code		Quantity I			Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
	Second/T	ert Cr	rusher	r Foundat	ion											
					B101	Blinding concrete	1.6	m³	31.9	0	2	0	51	0	51	
					B003	Major footings >5m ³	19.3	m³	63.6	0	125	0	1,228	0	1,228	
					B006	Walls	24.8	m³	98.9	0	372	0	2,453	0	2,453	
					B010	Suspended slabs	23.4	m³	77.3	0	164	0	1,809	0	1,809	
					B401	HDG CS embedded steel	800	kg	1.1	0	24	0	879	0	879	
					B501	HD Bolts (HDG)	120	kg	2.3	0	12	0	279	0	279	
	Transfer	Statio	n													
						Blinding concrete	2.5		32.0	0	3	0	80	0	80	
						Minor footings < 5m ³	1.5		90.7	0	18	0	136	0	136	
						Major footings >5m ³	17.4		63.6	-	113	0	1,107	0	1,107	
						Ground slabs including kerbs	7	m³	60.6	0	35	0	424	0	424	
						Walls	2.5		98.8	0	38	0	247	0	247	
					B501	HD Bolts (HDG)	50	kg	2.3	0	5	0	116	0	116	
										Total	3,099	0	29,048	0	29,048	
Area	lO, C S Conveyo		ural	Steel												
						Conveyor trestles	12.5	t	682.2		328	6,887	1,640	0	8,527	
						Conveyor trusses	22.1		976.0		774	17,702	3,867	0	21,569	
						Webforge grating F325MPB	170		31.1		208	4,250	1,041	0	5,291	
					C112	Handrailing - horizontal c/w toe plate	225	m	22.9	15	354	3,375	1,771	0	5,146	
	Feeder S	uppor	t Stru	ictures												
						Steelwork, light < 25kg/m - Paint System			1,000.0		4	80	19	1	100	
					C002	Steelwork, medium > 25 up to 75kg/m - Paint System A	3.1	t	721.3	551	98	1,708	488	40	2,236	
	Primary	Crust	hing S	tructure												
						Steelwork, light < 25kg/m - Paint System			1,006.1		89	1,842	442	30	2,314	
					C002	Steelwork, medium > 25 up to 75kg/m - Paint System A	5.2	t	721.5	551	164	2,865	819	68	3,752	
					C003	Steelwork, heavy > 75kg/m - Paint System A	6.1	t	518.0	400	128	2,440	640	80	3,160	
					C101	Webforge grating F325MPB	51	m²	31.5	25	62	1,275	312	. 18	1,605	
					C108	Webforge stair treads - T3 (C255MPB) 285 x 750		ea	8.1		0	400	0	5	405	
					C112	Handrailing - horizontal c/w toe plate	52	m	23.0	15	82	780	409	8	1,197	
						Handrailing - stairway		m	30.6		63	600	315	4	919	
	ROM Bi	n Griz	zzly													
		GZ (-		0 C116	ROM Bin Grizzly	9.3	t	932.2	801	220	7,449	1,098	122	8,669	
x						Motiv 8 Impact Mountings	1	LS	3,500.0	0	0	0	3,500	0	3,500	

Bare cost report -case 3,000t/day process plant (4/26)

	Eq Typ	Eq be No	KWs	Rate Cod		Quantity UoM		Cost Ex Works	Total Install Hrs		Total Instal Cost	l Freight Cost	TotalCost	Price Source
Scree	n Supr	port Sti	ucture											
				C001	Steelwork, light < 25kg/m - Paint System	4.4 t	1,006.4	801	169	3,524	847	57	4,428	
				C002	Steelwork, medium > 25 up to 75kg/m - Paint System A	5.8 t	721.4	551	183	3,195	913	76	4,184	
				C003	Steelwork, heavy > 75kg/m - Paint System A	8.6 t	518.1	400	181	3,440	903	113	4,456	
				C101	Webforge grating F325MPB	62 m²	31.5	25	76	1,550	379	22	1,951	
				C108	•••	35 ea	8.1	8	0	280	0	4	284	
				C114	Ladder c/w cage	20 m	75.2	61	53	1,220	262	21	1,503	
				C118	5	90 m²	48.1	30	315	2,700	1,575	51	4,326	
				C112	Handrailing - horizontal c/w toe plate	80 m	23.0	15	126	1,200	630	13	1,843	
				C113	Handrailing - stairway	21 m	30.6	20	44	420	220	2	642	
Secor	nd/Ter	t Crusl	er Struct	ure							245		1.010	
				C001		1.9 t	1,005.3	801	73	1,521	365	24	1,910	
				C002	Steelwork, medium > 25 up to 75kg/m - Paint System A	5.6 t	721.4	551	176	3,085	882	73	4,040	
				C101	Webforge grating F325MPB	58 m²	31.5	25	71	1,450	355	20	1,825	
				C108	Webforge stair treads - T3 (C255MPB) 285 x 750	14 ea	8.1	8	0	112	0	. 1	113	
				C114	Ladder c/w cage	8 m	75.1	61	21	488	105	8	601	
					Handrailing - horizontal c/w toe plate	68 m	23.0	15	107	1,020	535	11	1,566	
	sfer S			C113	-	9 m	30.6	20	19	180	94	1	275	
i ran	sier S	Lation		C001	Steelwork, light < 25kg/m - Paint System	6.2 t	1,006.5	801	239	4,966	1,193	81	6,240	
				C002		6.3 t	721.4		198	3,471	992	82	4,545	
				C003	Steelwork, heavy > 75kg/m - Paint System A	0.8 t	517.5	400	17	320	84	10	414	
				C101	Webforge grating F325MPB	92 m²	31.5	5 25	113	2,300	563	32	2,895	
					Webforge stair treads - T3 (C255MPB) 285 x 750	58 ea	8.1		0	464	0	6		
				C112	Handrailing - horizontal c/w toe plate	36 m	23.0		57	540	283	6		
				C113		35 m	30.6	5 20	74	700	367	4	1,071	
								Total	4,884	89,799	27,908	1,094	118,801	

Bare cost report -case 3,000t/day process plant (5/26)

	E T		Eq No	KWs	Rate Code		Quantity U			Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
Area	10, D P a) ROM I		work													
		3N	01			Bins, CS flat sided, stiffened - site erected Site installed Q&T 360BHN liners, 20mm thk	13.8 t 21 t		26.1 33.0	501 96	580 147	6,913 2,016	2,898 735	209 43	10,020 2,794	
					D102	Site installed Q&T 360BHN liners, 10mm thk	61 1	m²	70.8	48	267	2,928	1,334	58	4,320	
	b) Emerg	rency	Feed B	Bin												
		3N			D D001	Bins, CS flat sided, stiffened - site erected	4.7 1	t 7	26.0	501	197	2,354	987	71	3,412	
						Site installed Q&T 360BHN liners, 12mm thk		m²	83.5	56	105	1,120	525	24	1,669	
	c) Fine O	re B	in													
		3N		() D002	Bins, CS cylindrical, stiffened - site erected - Fine Ore Bin	79.4	t 8	13.7	501	4,724	39,779	23,621	1,204	64,604	
					D104	Site installed Q&T 360BHN liners, 12mm thk	154	m²	83.5	56	809	8,624	4,042	190	12,856	
	E	ЗN	02	(0 D000	SECONDARY CRUSHER FEED BIN - Part of Fine Ore Bin	1	Ea	0.0	0	0	0	0	0	. 0	
	I	BN	03	(0 D000	TERTIARY CRUSHER FEED BIN - Par of Fine Ore Bin	t 1	Ea	0.0	0	0	0	0	0	0	
					D010	Fine Ore Bin Multi-Plate® Tunnel	1	LS 13,5	541.0	11,560	350	11,560	1,750	231	13,541	Ingal
	Chutes															
		СН	01	1	0 D003	Chutework, CS flanged and stiffened - Paint System A - Primary Crusher Feeder U/S Chute	1.3	t E	305.4	601	46	781	227	39	1,047	
					D103	Shop installed Q&T 360BHN liners, 12mm thk	15	m²	70.0	70	0	1,050	0	0	1,050	
	(СН	02		0 D003	Chutework, CS flanged and stiffened - Paint System A - Primary Crusher Feed Chute	1.5	t 8	305.3	601	53	901	262	45	1,208	
					D105	Shop installed Q&T 360BHN liners, 20mm thk	8	m²	120.0	120	0	960	0	0	960	

Bare cost report -case 3,000t/day process plant (6/26)

Eq Type	Eq No	KWs	Rate Code		Quantity L			Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
СН	03			Chutework, CS flanged and stiffened - Paint System A - Primary Crusher Disch Chute	0.5	t	804.0	601	18	300	87	15	402	
			D103	Shop installed Q&T 360BHN liners, 12mm thk	3 1	m²	70.0	70	0	210	0	0	210	
СН	04			Chutework, CS flanged and stiffened - Paint System A - Crusher Product Conv Disch Chute	1.9	t	805.3	601	67	1,141	332	57	1,530	
				Shop installed Q&T 360BHN liners, 12mm thk	7	m²	70.0	70	0	490	0	0	490	
СН	05			Chutework, CS flanged and stiffened - Paint System A - Tramp Magnet Disch Chute	1.2	t	805.8	601	42	721	210	36	967	
СН	06		0 D003	Chutework, CS flanged and stiffened - Paint System A - Screen Feed Conv Disch	1.4	t	805.7	601	49	841	245	42	1,128	
				Chute Shop installed Q&T 360BHN liners, 12mm thk	2	m²	70.0	70	0	140	0	0	140	
СН	07			Chutework, CS flanged and stiffened - Paint System A - Product Screen Feed	0.5	t	804.0	601	18	300	87	15	402	
				Chute Shop installed Q&T 360BHN liners, 12mm thk	2.7	m²	70.0	70	0	189	0	0	189	
СН	08		0 D003	Chutework, CS flanged and stiffened - Paint System A - Product Screen Secondary Chute	1.5	t	805.3	601	53	901	262	45	1,208	
			D103	Shop installed Q&T 360BHN liners, 12mm thk	5.3	m²	70.0	70	0	371	0	0	371	
СН	09		0 D000	PRODUCT SCREEN TERTIARY CHUTE - Incorporated into CH-08	1	Ea	0.0	0	0	0	0	0	0	
СН	10		0 D003	Chutework, CS flanged and stiffened - Paint System A - Secondary Crusher Feeder Feed Chute	2.5	t	805.6	601	88	1,502	437	75	2,014	
			D103	Shop installed Q&T 360BHN liners, 12mm thk	10	m²	70.0	70	0	700	0	0	700	
СН	11		0 D003	Chutework, CS flanged and stiffened - Paint System A - Tertiary Crusher Feeder Feed Chute	2.5	t	805.6	601	88	1,502	437	75	2,014	
			D103	Shop installed Q&T 360BHN liners, 12mm thk	10	m²	70.0	70	0	700	0	0	700	
СН	12		0 D000	SECONDARY CRUSHER FEED CHUT - Incorporated into CH-10	E 1	Ea	0.0	0	0	0	0	0	0	
СН	13		0 D000	TERTIARY CRUSHER FEED CHUTE - Incorporated into CH-11	. 1	Ea	0.0	0	0	0	0	0	0	

Bare cost report -case 3,000t/day process plant (7/26)

	Еq Гуре	Eq No	KWs	Rate Cod		Quantity UoM		Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Insta Cost	ll Freight Cost	TotalCost	Price Source
I	СН	14		0 D003	Chutework, CS flanged and stiffened - Paint System A - Secondary Crusher	0.4 t	805.0	601	14	240	70	12	322	
				D103	Disch Chute Shop installed Q&T 360BHN liners, 12mm thk	9 m²	70.0	70	0	630	0	0	630	
	СН	15		0 D003	Chutework, CS flanged and stiffened - Paint System A - Tertiary Crusher Disch	0.4 t	805.0	601	14	240	70	12	322	
				D003	Chute Chutework, CS flanged and stiffened - Paint System A	9 t	776.0	601	315	5,409	1,575	0	6,984	
	СН	16		0 D000	FINE ORE BIN OVERFLOW CHUTE - Part of Fine Ore Bin	1 Ea	0.0	0	0	0	0	0	0	
	СН	17/18		0 D003	Chutework, CS flanged and stiffened - Paint System A - Fine Ore Bin Disch Chute	1.2 t	805.8	601	42	721	210	36	967	
				D103	Shop installed Q&T 360BHN liners, 12mm thk	12.2 m²	70.0	70	0	854	0	0	854	
					Shop installed Q&T 360BHN liners, 12mm thk	12.2 m²	70.0	70	0	854	0	0	854	
	СН	19		0 D003	Chutework, CS flanged and stiffened - Paint System A - Mill Feed Conv Disch Chute	1 t	806.0	601	35	601	175	30	806	
				D103	Shop installed Q&T 360BHN liners, 12mm thk	7.4 m²	70.0	70	0	518	0	0	518	
	СН	20		0 D003	Chutework, CS flanged and stiffened - Paint System A - Product Screen Undersize Chute	1.7 t	805.3	601	. 60	1,021	297	51	1,369	
	СН	21/22		0 D003	Chutework, CS flanged and stiffened - Paint System A - Fine Ore Feeder Discharge Chutes	2.2 t	805.9	601	77	1,322	385	66	1,773	
				D103	Shop installed Q&T 360BHN liners, 12mm thk	17 m²	70.0	70	0	1,190	0	0	1,190	
	СН	23/24			Chutework, CS flanged and stiffened - Paint System A - Dust Collector Chutes	1.3 t	805.4	601	46	781	227	39	1,047	
	СН	25		0 D003	3 Chutework, CS flanged and stiffened - Paint System A - Emergency Feeder Discharge Chute	1.1 t	805.5	601	39	661	192	33	886	
				D103	Shop installed Q&T 360BHN liners, 12mm thk	8.5 m²	70.0	70	0	595	0	0	595	
	-	1sher Fo		D106	Site installed Q&T 360BHN liners, 20mm thk	a 5 m²	133.0	96	35	480	175	10	665	
Second	l/Tert	Crushe	r Found		Site installed Q&T 360BHN liners, 20mm thk	n 10 m²	133.0) 96	70	960	350	20	1,330	

	Eq Type	Eq No	KWs	Rate Code	•	Quantity UoM	Unit Rate	Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Install Cost	Freight Cost	TotalCost	Price Source
								Total	8,442	106,071	42,204	2,783	151,058	
Area 10, E	Equi	pment												
Conve													10.000	
	CV				CRUSHER PRODUCT CONVEYOR	1 Ea	19,993.0		718	16,175	3,587	231		Minproc data
	CV				SCREEN FEED CONVEYOR	1 Ea	19,241.0		691	15,554	3,456	231		Minproc data
	CV	03	11	E000	MILL FEED CONVEYOR	1 Ea	20,789.0	16,797	753	16,796	3,762	231	20,789	Minproc data
Cran							2.1.66.0	2 0 7 7	26	2.976	175	115	2166	
	CN	01	6	E000	PRODUCT SCREEN HOIST	1 Ea	3,166.0	2,877	35	2,876	175	115	3,100	Minproc data
Crust						1 5-	52 269 0	50.050	315	50,050	1,575	643	52,268	Matao
	CR				PRIMARY CRUSHER	1 Ea	52,268.0		420	69,300	2,100	321	71,721	
	CR	02			SECONDARY CRUSHER	1 Ea 1 Ea	71,721.0		420	69,300	2,100	321	71,721	
	CR	03			TERTIARY CRUSHER	70 hrs	17.9		420	09,500	1,253	521		Minproc
				EIUI	60t Crane	70 ms	17.5	/ 0	v	0	1,200	U		ssess
Dust	Collect									0.000	a (a)			
	DC	01	6	E000	PRIMARY CRUSHER DUST COLLECTOR	1 Ea	2,859.0) 2,597	53	2,597	262	0		Minproc data
	DC	02	6	E000	FINE ORE BIN DUST COLLECTOR	1 Ea	2,859.0	2,597	53	2,597	262	0	2,859	Minproc data
	DC	03	6	E000	SECONDARY CRUSHER DUST COLLECTOR	l Ea	2,859.() 2,597	53	2,597	262	0	2,859	Minproc data
Fans														
	FA	01	1	E000	SECONDARY CRUSHER OIL COOLER FAN - Incl w/crusher	R I Ea	0.0	0 0	0	0	0	0	0	Metso
	FA	02	1	E000	TERTIARY CRUSHER OIL COOLER FAN - Incl w/crusher	1 Ea	0.0	0 0	0	0	0	0	0	Metso
Feed	ers													
r ccu	FE	01	22	E000	PRIMARY CRUSHER FEEDER	1 Ea	18,322.0	0 17,710	123	17,710	612	0	18,322	Metso
	FE	02	4	E000	SECONDARY CRUSHER FEEDER	1 Ea	3,947.0	0 3,642	61	3,641	306	0	3,947	Schenck
	FE	03	4	E000	TERTIARY CRUSHER FEEDER	1 Ea	3,947.0	0 3,642	61	3,641	306	0	3,947	Schenck
	FE	04/05	2	2 E000	FINE ORE FEEDER	2 Ea	2,940.	5 2,678	105	5,356	525	0	5,881	Schenck
	FE	06	2	2 E000	EMERGENCY RECLAIM FEEDER	1 Ea	2,940.0	0 2,678	53	2,678	262	0	2,940	Schenck
Heat	ers		•											
	HE	01	2	B E000	SECONDARY CRUSHER OIL HEATE	R 1 Ea	0.0	0 0	0	0	0	0	0	Metso
	HE	02		B E000	TERTIARY CRUSHER OIL HEATER - Incl w/crusher	- 1 Ea	0.4	0 0	0	0	0	0	0	Metso
Hvdi	raulic P	ower Pa	cks											
71 y u.		01		E000	SECONDARY CRUSHER HYDRAULI UNIT - Incl w/crusher	C 1 Ea	0.	0 0	0	0	0	0	0	Metso
	ΗU	02	1	i E000	TERTIARY CRUSHER HYDRAULIC UNIT - Incl w/crusher	1 Ea	0.	0 0	0	0	0	0	0	Metso

.

		Eq Type	Eq No	KWs	Rate Cod		Quantity UoM	Unit Rate	Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Instal Cost	l Freight Cost	TotalCost	Price Source
	Lube (Jnits													
		LU	01		4 E000	SECONDARY CRUSHER LUBRICATION UNIT - Incl w/crusher	1 Ea	0.0	0	0	0	0	0	0	Metso
		LU	02		4 E000	TERTIARY CRUSHER LUBRICATION UNIT - Incl w/crusher	1 Ea	0.0	0	0	0	0	0	0	Metso
	Magne	t													
	-	MG			8 E000	TRAMP MAGNET	i Ea	3,667.0	3,317	70	3,317	350	0	3,667	Minproc data
	Metal				•										
		MD	01		0 E000	SCREEN FEED CONVEYOR METAL DETECTOR	1 Ea	1,626.0	1,451	35	1,451	175	0	1,626	Minproc data
	Screen														
			01	1	5 E000	PRODUCT SCREEN	1 Ea	26,285.0	25,410	175	25,410	875	0	26,285	Metso
	Weigh	tomete WT			0 E000	MILL FEED WEIGHTOMETER	1 Ea	2,250.0	1,813	88	1,813	437	0	2 250	Minproc data
					0 2000	MILET LED WEIGHTOMETER	1 1.4	2,230.0	Total		-			-	minproc uata
	Area 10, F	Pinin							LOLAI	4,279	312,859	22,642	2,093	337,594	
	Alta IU, I	1 ipin	'S		F001	Area 10 - Crushing Area	1 LS	15,635.0	9,385	1,250	9,385	6,250	0	15,635	
								,	Total	1,250	9,385	6,250	0	15,635	
	Area 10, G	Elec	trical (& Instr						-,	2,200	0,200	v	10,000	
					G001	Area 10 - Crushing	1 LS	94,412.0	66,922	5,498	66,922	27,490	0	94,412	
									Total	5,498	66,922	27,490	0	94,412	
								Ar	ea 10 Tota	l 28,352	601,536	181,858	5,970	789,364	
Δ	rea 20 Grinding										•				
	Area 20, B Bunke	Civil	Work	KS											
	Bunke	BK	02		0 B000	0 BALL MILL SCATS BUNKER - Inci	1 Ea	0.0	0	0	0	0	0	0	

w/concrete

Еq Еq Туре No		Rate Cod		Quantity UoM	Unit Rate	Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Install Cost	Freight Cost	TotalCost	Price Source
Grinding Area												
		B101	Blinding concrete	12.2 m ³	32.3		16	0	394	0	394	
		B002	Minor footings < 5m ³	12 m ³	90.9		144	0	1,091	0	1,091	
		B003	Major footings >5m ³	179 m³	63.6		1,164	0	11,392	0	11,392	
		B004	Major equipment foundations	187.6 m ³	79.0	-	1,126	0	14,816	0	14,816	
		B007	Plinths	4 m³	63.5		32	0	254	0	254	
		B005	Ground slabs including kerbs	32.9 m ³	60.6		165	0	1,995	0	1,995	
		B010	Suspended slabs	23 m ³	77.3		161	0	1,778	0	1,778	
		B006	Walls	5 m ³	98.8	0	75	0	494	0	494	
		B008	Columns & pedestals	4 m ³	113.8	0	60	0	455	0	455	
		B401	HDG CS embedded steel	1420 kg	1.1	0	43	0	1,561	0	1,561	
		B501	HD Bolts (HDG)	1230 kg	2.3	0	123	0	2,869	0	2,869	
Sump												
SU 03		0 B201	1050 mm Ø 1200mm std precast sump - Grinding area spillage sump	1 No	169.0	0	0	0	169	0	169	
						Total	3,107	0	37,268	0	37,268	
Area 20, C Structur	al Steel											
Grinding Area		C007	Steelwork, light < 25kg/m - Paint System	8.8 t	1,006.5	5 801	339	7,048	1,694	115	8,857	
		C007	Steelwork, medium > 25 up to 75kg/m -	22 t	721.6		693	12,122	3,465	289	15,876	
		C008	Paint System B			,	070	,	-,		,	
		C102	Webforge grating F325MPG	270 m²	35.5	5 29	331	7,830	1,653	95	9,578	
		C109	Webforge stair treads - T3 (C255MPG)	80 ea	9.1	9	0	720	0	9	729	
		0107	285 x 750									
		C112	Handrailing - horizontal c/w toe plate	172 m	23.0) 15	271	2,580	1,354	29	3,963	
		C113	Handrailing - stairway	48 m	30.0	5 20	101	960	504	6	1,470	
		C117	Machinery guards	40 m²	71.:	3 65	49	2,600	245	7	2,852	
			• •	,		Total	1,783	33,860	8,915	550	43,325	

Bare cost report -case 3,000t/day process plant (11/26)

	Eq Ty	Eq pe No		Rate Code		Quantity UoN		Cost Ex Works		Total Cost Ex Works	Total Install Cost	l Freight Cost	TotalCost Price Source
Area 20), D Pla Chutes	atewor	k										
ſ		H 02	4		Chutework, CS flanged and stift Paint System B - Ball Mill Scate		804.3	601	25	420	122	21	563
					Shop installed Q&T 360BHN li 12mm thk	ners, 14 m ²	70.0	70	0	980	0	0	980
	C	H 03			Chutework, CS flanged and stiff Paint System B - Ball Mill Disc Chute		806.0	601	35	601	175	30	806
					Rubber lining 6mm thk	15 m²	37.0	37	. 0	555	0	. 0	555
	C	H 04		0 D004	Chutework, CS flanged and stif Paint System B - Ball Mill Scat	fened - 0.2 t	805.0	601	. 7	120	35	6	161
				D101	Shop installed Q&T 360BHN li 10mm thk	ners, 1.3 m ²	60.0	60	0	78	0	0	78
F	Hopper												
		P 01			Hoppers CS, flat sided, stiffener Mill Discharge Hopper	d-Ball 2.2 t	744.5	601	50	1,322	250	66	1,638
				D113	Rubber lining 6mm thk	32 m²	67.2	. 37	0	1,184	0	967	2,151
I	Kibble K	B 01		0 D000	BALL CHARGING KIBBLE	1 Ea	606.0		18	496	87	23	606 Minproc data
								Total	134	5,756	669	1,113	7,538
Area 20		lnibmo	ent										
1	Ball Mill	IL 01	2 00	0 5000	BALL MILL	l Ea	506,785.0	476,160	6,125	476,160	30,625	0	506,785 outokumpu
		R 01	2,00		BALL MILL TROMMEL - Pa Mill supply		0.0		0	0	0	· 0	0 outokumpu
	Ľ	V 01	3	80 E000	BALL MILL INCHING DRIV Ball Mill supply	E - Part of 1 Ea	0.0	0	0	0	0	0	0 outokumpu
	L	U 01	3	30 E000	BALL MILL TRUNNION BE LUBE UNIT - Part of Ball Mi		0.0) 0	0	0	0	0	0 outokumpu
	L	U 02		8 E000	BALL MILL GEARBOX LUE Part of Ball Mill supply	BEUNIT - 1 Ea	0.0) 0	0	0	0	0	0 outokumpu
	C	H 01		0 E000	BALL MILL FEED SPOUT - Ball Mill supply	Part of 1 Ea	0.0) 0	0	0	0	0	0 outokumpu
				E103	140t Heavy Lift Crane	185 hrs	25.0	0 0	0	. 0	4,625	0	4,625 Minproc assess
		Y 01		0 E000	PRIMARY CYCLONES	1 Ea	21,393.0	20,693	140	20,693	700	0	21,393 Ludowici
		IT 01		3 E000	BALL CHARGING HOIST	1 Ea	2,754.0	0 2,579	35	2,579	175	0	2,754 Minproc data
		P 01/ P 03			PRIMARY CYCLONE FEED GRINDING AREA SPILLAG		9,743. 1,834.		280 44	18,087 1,616	1,400 218	0 0	19,487 KSB Ajax 1,834 Minproc data

.

		Еq Туре	Eq No	KWs	Rate Code		Quantity	UoM		Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Install Cost	Freight Cost	TotalCost	Price Source
	Tech T	aylor V XM		(CYCLONE FEED TECH TAYLOR VALVE]	Ea	1,473.0	1,369	21	1,368	105	0	1,473	Minproc data
A	- 1 0 E	n' '	_							Total	6,645	520,503	37,848	0	558,351	
Area	a 20, F	ripin	g		F002	Area 20 - Grinding Area	1	LS	52,135.0	31,285	4,170	31,285	20,850	. 0	52,135	
										Total	4,170	31,285	20,850	0	52,135	
Are	a 20, G	Elect	rical &	z Instr		Area 20 - Grinding	· •	LS	203,414.0	182,204	4,242	182,204	21,210	0	203,414	
					0002	Artea 20 - Officing			203,414.0	Total	4,242	182,204	21,210	0	203,414	
									٨٣٥	a 20 Total	20,081		·			
Area 30 F	lotation								AI	a 20 10tai	20,001	773,608	126,760	1,663	902,031	
	a 30, B Bunker		Works	5												
•		вК	01	(0 B000	REGRIND MILL SCATS BUNKER - Inc w/concrete	L :	l Ea	0.0	0	0	0	0	0	0	
5	Flotatie	on Are	a													
						Blinding concrete	3.4	4 m³	32.1	0	4	0	109	0	109	
						Minor footings < 5m ³		7 m³	90.9	-	296	0	2,246	0	2,246	
						Plinths		5 m³	63.5		48	0	381	0	381	
						Ground slabs including kerbs		l m³	60.6		346	0	4,190	0	4,190	
						Walls		5 m³	98.8		75	0	494	0	494	
						Columns & pedestals		3 m³	113.9		140	0	1,059	0	1,059	
	S				8501	HD Bolts (HDG)	40	0 kg	2.3	0	40	0	933	0	933	
	Sumps		03	1	0 B201	1050 mm Ø 1200mm std precast sump - Rougher Concentrate sump		1 No	169.0	0	0	0	169	0	169	
		SU	04	i		1050 mm Ø 1200mm std precast sump - Cleaner 1 concentrate sump		1 No	169.0	0	0	0	169	0	169	
		SU	05	i		1050 mm Ø 1200mm std precast sump - Cleaner-Scavenger concentrate sump		1 No	169.0	0	0	0	169	0	169	
		SU	06		0 B201	1050 mm Ø 1200mm std precast sump - Cleaner 2 concentrate sump		1 No	169.0	0	0	0	169	0	169	
		SU	07			1050 mm Ø 1200mm std precast sump - Cleaner 3 concentrate sump		1 No	169.0	0	0	0	169	0	169	
		SU	09			1050 mm Ø 1200mm std precast sump - Cleaner 2 tails sump		1 No	169.0	0	0	0	169	0	169	
		SU	10/11			1050 mm Ø 1200mm std precast sump - Flotation spillage sumps		2 No	169.0	0	0	0	338	0	338	

Bare cost report -case 3,000t/day process plant (12/26)

A - 78

Bare cost report -case 3,000t/day process plant (13/26)

	Eq Type	Eq No	KWs	Rate Code		Quantity UoM	Unit Rate	Cost Ex Works	Total Install Hrs		Total Instal Cost	l Freight Cost	TotalCost	Price Source
Amer 20 C	C 4	-41	C41					Total	949	0	10,764	0	10,764	
Area 30, C Flotatio			Steel											
FIULALI	/II AI	a		C007	Steelwork, light < 25kg/m - Paint System	4.2 t	1,006.4	801	162	3,364	808	55	4,227	
				C008	Steelwork, medium > 25 up to 75kg/m - Paint System B	16.4 t	721.6	551	517	9,036	2,583	215	11,834	
				C102	Webforge grating F325MPG	18 m²	35.4	29	22	522	110	6	638	
				C109	Webforge stair treads - T3 (C255MPG) 285 x 750	30 ea	9.1	9	0	270	0	3	273	
				C112	Handrailing - horizontal c/w toe plate	36 m	23.0	15	57	540	283	6	829	
					Handrailing - stairway	18 m	30.6	20	38	360	189	2	551	
								Total	795	14,092	3,973	287	18,352	
Area 30, D	Plate	ework								,			,	
Chutes														
	СН	01	(Chutework, CS flanged and stiffened - Paint System B - Regrind Mill Feed Chute	0.3 t	803.3	601	11	180	52	9	241	
				D113	Rubber lining 6mm thk	8 m²	37.0	37	0	296	0	0	296	
	СН	03	(Chutework, CS flanged and stiffened - Paint System B - Regrind Mill Discharge Chute	0.9 t	804.4	601	32	540	157	27	724	
				D113	Rubber lining 6mm thk	16 m²	37.0	37	0	592	0	0	592	
	СН	04			Chutework, CS flanged and stiffened - Paint System B - Regrind Mill Scats Chute	0.3 t	803.3	601	11	180	52	9	241	
				D113	Rubber lining 6mm thk	6 m²	37.0	37	0	222	0	0	222	
Hoppe	rs													
	HP	01	1	0 D007	Hoppers CS, cylindrical, stiffened - Regrind Mill Discharge Hopper	0.8 t	738.8	601	18	480	87	24	591	
				D113	Rubber lining 6mm thk	9 m²	37.0	37	0	333	0	0	333	
	HP	08			Hoppers CS, cylindrical, stiffened - Cleaner-Scavenger Tails Hopper	1.2 t	740.0	601	26	721	131	36	888	
				D113	Rubber lining 6mm thk	16 m²	37.0	37	0	592	0	0	592	

	Eq Ty	Ec pe No			Rate Code	Description	Quantity UoM	Unit Rate	Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Instal Cost	l Freight T Cost	otalCost	Price Source
I	Launders LA	01		0		Launders, CS flanged - Rougher Cell Concentrate Launder	0.9 t	770.0	601	25	540	126	27	693	
	L	02		0		Launders, CS flanged - Scavenger Cell Concentrate Launder	0.9 t	770.0	601	25	540	126	27	693	
	LA	A 03		0		Launders, CS flanged - Cleaner 1 Cell Concentrate Launder	0.9 t	770.0	601	25	540	126	27	693	
	L	A 04		0		Launders, CS flanged - Cleaner Scavenger Concentrate Launder	0.9 t	770.0	601	25	540	126	27	693	
	L	A 05		0		Launders, CS flanged - Cleaner 2 Cell Concentrate Launder	0.3 t	770.0	601	8	180	42	9	231	
	L	A 06		0	D008	Launders, CS flanged - Cleaner 3 Cell Concentrate Launder	0.3 t	770.0	601	8	180	42	9	231	
									Total	214	6,656	1,067	231	7,954	
Area 30	0, E Eq	uipm	ient												
(Cyclone			•	E000	PEOPPID CVCI ONES	1 Ea	13,344.0) 12,777	114	12,776	568	0	12 244 1	Ludowici
	C Flotation	Y 01		0	E000	REGRIND CYCLONES	I La	15,544.0) 12,777	114	12,770	508	0	15,544	Ludowici
J	Flotation F		/03	37	E000	ROUGHER FLOTATION CELL	3 Ea	12,641.7	7 12,030	368	36,088	1,837	0	37,925	ConSep
	F				E000	ROUGHER-SCAVENGER FLOTATION CELL	3 Ea	12,641.7		368	36,088	1,837	0	37,925	-
	F	Г 07/	/08	22	E000	CLEANER 1 FLOTATION CELL	2 Ea	8,234.	5 7,797	175	15,594	875	0	16,469	ConSep
	F	Г 09,	/14	22		CLEANER-SCAVENGER FLOTATION CELL	6 Ea	8,234.5	5 7,797	525	46,782	2,625	0	49,407	ConSep
	F	Г 15	/17	22	E000	CLEANER 2 FLOTATION CELL	3 Ea	8,590.3	7 8,154	263	24,460	1,312	0	25,772	ConSep
	F	Г 18.	/19	22	E000	CLEANER 3 FLOTATION CELL	2 Ea	9,310.	5 8,873	175	17,746	875	0	18,621	ConSep
J	Pumps														
	Р		/02			REGRIND CYCLONE FEED PUMP	2 Ea	3,985.0		140	7,270	700	0		KSB Ajax
	P	P 03		-		ROUGHER CONCENTRATE PUMP	1 Ea	1,416.0	,	35	1,241	175	0	,	Minproc data
	Р			-		CLEANER 1 CONCENTRATE PUMP	1 Ea	1,735.0	•	44	1,517	218	0		Minproc data
	· P	P 05		3		CLEANER-SCAVENGER CONCENTRATE PUMP	l Ea	1,416.0	0 1,242	35	1,241	175	0	1,416	Minproc data
	Р	P 06	i	6	E000	CLEANER 2 CONCENTRATE PUMP	1 Ea	1,735.	0 1,518	44	1,517	218	0	1,735	Minproc data
	Р		,	3	E000	CLEANER 3 CONCENTRATE PUMP	1 Ea	1,416.	0 1,242	35	1,241	175	0		Minproc data
	Р	P 08	3	45	E000	CLEANER-SCAVENGER TAILS PUMP	1 Ea	5,304.		79	4,911	393	0		KSB Ajax
	Р	P 10	/11	6	E000	FLOTATION SPILLAGE PUMP	2 Ea	1,736.	0 1,518	88	3,035	437	0	3,472	Minproc data

Bare cost report -case 3,000t/day process plant (15/26)

		Eq Type	Eq No	KWs	Rate Code		Quantity UoM		Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Instal Cost	ll Freight Cost	TotalCost	Price Source
	Regrii	nd Mill													
		ML TR	01 01		E000	REGRIND MILL REGRIND MILL TROMMEL - Part of Regrind Mill supply	l Ea 1 Ea	194,310.0 0.0		3,150 0	178,560 0	15,750 0	0 0		outokumpu outokumpu
		DV	01	11		REGRIND MILL INCHING DRIVE - Part of Regrind Mill supply	1 Ea	0.0	0	0	0	0	0	0	outokumpu
		LU	01	8		REGRIND MILL LUBE UNIT - Part of Regrind Mill supply	1 Ea	0.0	0	0	0	0	0	0	outokumpu
		СН	02	0	E000	REGRIND MILL FEED SPOUT - Part of Regrind Mill supply	1 Ea	0.0	0	0	0	0	0	0	outokumpu
]	E103	140t Heavy Lift Crane	95 hrs	25.0	0	0	0	2,375	0		Minproc assess
	Tech '	Taylor XM		0	E000	REGRIND CYCLONE FEED TECH TAYLOR VALVE	1 Ea	907.0	837	14	837	70	0	907	Minproc data
>									Total	5,649	390,904	30,615	0	421,519	
0	Area 30, F	Pipin	ıg		F003	Area 30 - Flotation	1 LS	117,810.0	70,685	9,425	70,685	47,125	0	117,810	
<u> </u>	_								Total	9,425	70,685	47,125	0	117,810	
	Area 30, G	Elec	trical a		G003	Area 30 - Flotation	1 LS	37,936.0	21,651	3,257	21,651	16,285	0	37,936	
									Total	3,257	21,651	16,285	0	37,936	
								Ar	ea 30 Total	l 20,289	503,988	109,829	518	614,335	
	Area 40 Concent	rate T	hicken	ing, Filt	tratio	n and Storage									
	Area 40, A														
	Open	BD	le Stora 01		A000	CONCENTRATE STORAGE AREA	1 Ea	0.0	0	0	0	0	0	0	
									Total	0	0	0	0	0	
	Area 40, B Sump		l Work	(S											
	Jum	, SU	05	C) B201	1050 mm Ø 1200mm std precast sump - Concentrate area spillage sump	1 No	169.0) 0	0	0	169	0	169	
									Total	0	0	169	0	169	
	Area 40, D Feed		ework												
	recu	BOX BX	01	0) D009	P Feed Boxes, CS flanged c/w inlet/outlet nozzles - Concentrate Thickener Feed	0.2 t	740.0) 601	6	120	28	0	148	
					D113	Box Rubber lining 6mm thk	3 m ²	37.0) 37	0	111	0	0	111	

...

		Eq Туре	Eq No	KWS	Code		Quantity	UOIVI		Works	Install Hrs		Cost	Cost	TotalCost	Source
										Total	6	231	28	0	259	
	Area 40, E Agitat		pment													
	8	AG	01	6		CONCENTRATE FILTER AGITATOR - Part of Filter supply	1	l Ea	0.0	0	0	0	0	. 0	0	
	Filter													_		
			01			CONCENTRATE FILTER			91,380.0	89,280	420	89,280	2,100	0	91,380	Eimco
		FL	01A	4	1 E000	CONCENTRATE FILTER DRIVE - Part of Filter supply		1 Ea	0.0	0	0	0	0	0	0	
		FR	01	() E000	CONCENTRATE FILTER FILTRATE RECEIVER - Part of Filter supply		1 Ea	0.0	0	0	0	0	0	0	
		PP	03	90	E000	CONCENTRATE FILTER VACUUM PUMP - Part of Filter supply		1 Ea	0.0	0	0	0	0	0	0	
		PP	04	-	3 E000	CONCENTRATE FILTER FILTRATE PUMP - Part of Filter supply		1 Ea	0.0	0	0	0	0	0	0	
	Pump	6														
	Tamb	PP	01/02		3 E000	CONCENTRATE THICKENER UNDERFLOW PUMP		2 Ea	2,750.0	2,488	105	4,975	525	0	5,500	Minproc data
		PP	05		6 E000	CONCENTRATE AREA SPILLAGE PUMP		1 Ea	1,735.0	1,518	44	1,517	218	0	1,735	Minproc data
	Thick							. –				0.6 700	2 600	(12	20.026	m :
		TH	01			CONCENTRATE THICKENER 60t Crane		l Ea 90 hrs	29,935.0 17.9		700 0	25,792 0	3,500 1,611	643 0		Minproc ssess
										Total	1,269	121,564	7,954	643	130,161	
	Area 40, F	Pipi	ng		F004	Area 40 - Concentrate Thickening, Filtration Storage		1 LS	36,480.0	21,880	2,920	21,880	14,600	0	36,480	
										Total	2,920	21,880	14,600	0	36,480	
	Area 40, G	Flor	trical	P. Inctr						1 otur	2,5 20	21,000	,	-	,	
	Area 40, G	F Elev		oc misti	G004	Area 40 - Concentrate Thickening & Filitration		1 LS	88,266.0	67,681	4,117	67,681	20,585	0	88,266	
										Total	4,117	67,681	20,585	0	88,266	
									Ar	ea 40 Tota	l 8,311	211,356	43,336	643	255,335	
A 1100	50 Tailings	Thiel	zonina	and Fil	tratio	n										
Area	Area 50, B	Civi														
	Bunk		01		0 B000	TAILINGS FILTER CAKE BUNKER -		1 Ea	0.0) 0	0	0	0	0	0	

Quantity UoM Unit Cost Ex

Total Total Cost Total Install Freight TotalCost

Price

Bare cost report -case 3,000t/day process plant (16/26)

Eq

Eq

KWs Rate Description

A - 82

Incl w/concrete

Bare cost report -case 3,000t/day process plant (17/26)

		Eq Typ	Eq e No	KWs	Rate Code		Quantity UoM		Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
	Sump	SU	05		0 B201	1050 mm Ø 1200mm std precast sump - Tailings area spillage sump	1 No	169.0	0	0	0	169	0	169	
	Thick	ening/	Filtratio	n Area											
						Blinding concrete	4.5 m ³	32.2	0	6	0	145	0	145	
						Minor footings < 5m ³	54.6 m ³	91.0	0	655	0	4,966	0	4,966	
					B003	Major footings >5m ³	33.1 m ³	63.6		215	0	2,106	0	2,106	
					B007		7.2 m ³	63.6		58	0	458	0	458	
						Ground slabs including kerbs	71 m ³	60.6		355	0	4,306	0	4,306	
					B006		58.4 m³ 11.8 m³	98.9 113.9	0	876 177	0 0	5,778 1,344	0 0	5,778 1,344	
						Columns & pedestals HD Bolts (HDG)	920 kg	2.3	0	92	0	2,146	0	2,146	
					B201	HD Bolts (HDG)	920 Kg	2.5	_						
		a .							Total	2,434	0	21,418	0	21,418	
Area	a 50, C			Steel											
	Filtra	tion A	rea		C007	Steelwork, light < 25kg/m - Paint System	2.9 t	1,006.2	801	112	2,322	558	38	2,918	
						Steelwork, nedium > 25 up to 75kg/m - Paint System B	9.8 t	721.4		309	5,399	1,543	128	7,070	
					C102	Webforge grating F325MPG	97 m²	35.5	29	119	2,813	594	34	3,441	
					C109	Webforge stair treads - T3 (C255MPG) 285 x 750	10 ea	9.1	9	0	90	0	1	91	
					C114	Ladder c/w cage	7 m	75.0	61	18	427	91	7	525	
					C112	Handrailing - horizontal c/w toe plate	88 m	23.0	15	139	1,320	693	15	2,028	
					C113	Handrailing - stairway	6 m	30.5	20	13	120	63	0	183	
	Thick	kener 4	Access												
						Steelwork, light < 25kg/m - Paint System	1.7 t	1,005.9		65	1,361	327	22	1,710	
					C008	Steelwork, medium > 25 up to 75kg/m - Paint System B	1.5 t	720.7	551	47	826	236	19	1,081	
					C102	Webforge grating F325MPG	9 m²	35.4		11	261	55	3	319	
					C109	Webforge stair treads - T3 (C255MPG) 285 x 750	38 ea	9.1	9	0	342	0	4	346	
					C112	Handrailing - horizontal c/w toe plate	17 m	22.9) 15	27	255	133	2	390	
						Handrailing - stairway	23 m	30.6	5 20	48	460	241	3	704	
									Total	908	15,996	4,534	276	20,806	
<u>A</u> ro	a 50, D) Pla	teworl	z								,			
AIC	Feed			-											
			C 01		0 D009	9 Feed Boxes, CS flanged c/w inlet/outlet nozzles - Tailings Thickener Feed Box	0.4 t	770.0) 601	11	240	56	12	308	
					D113	Rubber lining 6mm thk	6 m²	37.() 37	0	222	0	0	222	

Eq Ty		Eq No	KWs	Rate Code		Quantity Uc		Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Install Cost	l Freight Cost	TotalCost Price Source
Tailings F P		r Comp 01/02		D000	TAILINGS FILTER COMPRESSOR A RECEIVER	IR 2 Ea	a 350.0	0 0	140	0	700	0	700
Tanks Ti	к	01	C	D000	TAILINGS FILTER SURGE TANK	1 Ea	a 12,210.0	0 6,995	998	6,995	4,987	228	12,210 Minproc est/Oman
								Total	1,149	7,457	5,743	240	rates 13,440
50, E Ec	quij	pment											
Agitator A	G	01	55	5 E000	TAILINGS FILTER SURGE TANK AGITATOR	1 E	a 16,971.	0 16,096	175	16,096	875	0	16,971 Minproc
Hoist H	т	01	ć	5 E000	TAILINGS FILTER MAINTENANCE HOIST	1 E	a 3,214.	0 2,778	88	2,777	437	0	3,214 Minproc
Pumps													
	P	01/02	22	2 E000	TAILINGS THICKENER UNDERFLO PUMP	W 2 E	a 6,511.	5 6,162	140	12,323	700	0	13,023 KSB Aj
	Ρ	03/04 05			TAILINGS FILTER FEED PUMP TAILINGS AREA SPILLAGE PUMP	2 E 1 E			263 44	19,840 1,517	1,312 218	0	21,152 Minproc 1,735 Minproc
Tailings H						0 F	- 174701	5 170 297	1 750	240 772	8,750	0	349,523 outokun
		01/02 01/02A			TAILINGS FILTER TAILINGS FILTER HYDRAULIC POWER PACK - Incl w/filter price	2 E 2 E	-		1,750 0	340,773 0	0	0	0 outokun
F	۶L	01/021	3	0 E000	TAILINGS FILTER WASH CARRIAC LIFT - Incl w/filter price	E 2. E	a 0.	.0 0	0	0	0	0	0 outokun
F	۶L	01/020	2	0 E000	TAILINGS FILTER WASH CARRIAC TRAVEL - Incl w/filter price	E 2 E	ia 0.	.0 0	0	0	0	0	0 outokun
>	КM	02		0 E000	TAILINGS FILTER MEMBRANE PRESSING STATION	1 E	ia 12,249	.0 11,899	70	11,899	350	0	12,249 outokun
P	PP	06	5	5 E000	TAILINGS FILTER CLOTH CLEANI HP PUMP	NG 1 E	a 10,389	9,864	105	9,864	525	0	10,389 outokun
	VВ	01		1 E000	TAILINGS FILTER VIBRATORS - L w/filter price	ncl I E	Ea O	.0 0	0	0	0	0	0 outoku r
x				E101	60t Crane	220 h	nrs 17	.9 0	0	0	3,938	0	3,938 Minpro assess
Tailings	Filte	er Com	pressor								0 (05	-	121 606 6172
	CP FL	01/02 03/04) TAILINGS FILTER AIR COMPRESS) TAILINGS FILTER COMPRESSOR A FILTER		•			128,960 4,999	2,625 700	0	131,585 CAPS A 5,699 CAPS A
Tech Tay	vlor	Valve											
•	XM			0 E000) TAILINGS FILTER FEED TECH TAYLOR VALVE	1 1	Ea 907	7.0 837	14	837	70	0	907 Minpro

Bare cost report -case 3,000t/day process plant (18/26)

A – 84

-

Eq Eq KWs Type No	s Rate Code		Quantity UoM		Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
Thickener											
TH 01		TAILINGS THICKENER	1 Ea	96,147.0	71,424	4,725	71,424	23,625	1,098	96,147]	
	E102	100t Heavy Lift Crane	475 hrs	21.0	0	0	0	9,975	0		Minproc
										as	sess
					Total	8,038	621,309	54,100	1,098	676,507	
Area 50, F Piping											
	F005	Area 50 - Tailings Thickening and	1 LS	188,015.0	112,815	15,040	112,815	75,200	0	188,015	
					Total	15,040	112,815	75,200	0	188,015	
Area 50, G Electrical & Inst	r.					·		,		·····,····	
,		Area 50 - Tailings Thickening &	1 LS	23,247.0	19,022	845	19,022	4,225	0	23,247	
					Total	845	19,022	4,225	0	23,247	
						045	19,022		v	23,247	
				Ar	ea 50 Total	28,413	776,599	165,220	1,614	943,433	
Area 60 Reagents											
Area 60, B Civil Works											
Lime Silo .							-				
		Major equipment foundations	10 m³	78.9		60	0	789	0	789	
	B005	Ground slabs including kerbs	9 m ³	60.6	0	45	0	545	0	545	
Reagents Area	D101		0.51	22.0	0		<u>^</u>				
	B101	Blinding concrete	0.5 m ³	32.0		1	0	16	0	16	
	B002 B007	Minor footings < 5m ³ Plinths	4 m ³ 5.3 m ³	90.8 63.6		48 42	0	363	0	363	
			13.6 m ³	60.6		42 68	0	337 824	0	337 824	
		Columns & pedestals	1.6 m ³	113.8		24	0	182	0	824 182	
		HD Bolts (HDG)	70 kg	2.3		24 7	0	162	0	162	
Sump	DUU		10 18	2.2	0	,	U	105	v	105	
SU 08	0 B201	1050 mm Ø 1200mm std precast sump - Reagents area spillage sump	1 No	169.0	0	0	0	169	0	169	
					Total	295	0	3,388	0	3,388	
Area 60, C Structural Steel Reagents Area											
		Steelwork, light < 25kg/m - Paint System	1.3 t	1,006.2		50	1,041	250	17	1,308	
	C008	Steelwork, medium > 25 up to 75kg/m - Paint System B	1.9 t	720.5	551	60	1,046	299	24	1,369	
	C102	Webforge grating F325MPG	25 m²	35.4	29	31	725	153	8	886	
	C109	Webforge stair treads - T3 (C255MPG) 285 x 750	15 ea	9.1	9	0	135	0	1	136	
	C112	Handrailing - horizontal c/w toe plate	32 m	23.0		50	480	252	5	737	
	C113	Handrailing - stairway	9 m	30.6	20	19	180	94	1	275	
					Total	210	3,607	1,048	56	4,711	

Bare cost report -case 3,000t/day process plant (19/26)

Area 60, D	Eq Type Plate		KWs	Rate Code	Description	Quantity UoM		Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost Price Source
Chute	s CH	01		0 D000 I	LIME DISCHARGE CHUTE	1 Ea	483.0	397	18	396	87	0	483 Minproc assess
Tanks	тк	02		0 D000 N	MILK OF LIME TANK	1 Ea	1,083.0	860	32	860	157	66	1,083 Minproc est/Oman
	тк	03		0 D000 S	SIPX MIX AND STORAGE TANK	1 Ea	514.0	415	16	415	78	21	rates 514 Minproc est/Oman
	тк	04		0 D000 S	SIPX HEAD TANK	l Ea	110.0	65	9	65	43	2	rates 110 Minproc est/Oman rates
	ΤK	06		0 D000 1	M2030 HEAD TANK	l Ea	120.0	65	9	65	43	12	120 Minproc est/Oman rates
	ΤK	08		0 D000 I	MIBC HEAD TANK	l Ea	110.0	65	9	65	43	2	110 Minproc est/Oman rates
	ТК	09		0 D000 I	FLOCCULANT STORAGE TANK	1 Ea	2,080.0	1,645	61	1,645	306	129	2,080 Minproc est/Oman rates
Area 60, E		ipmen	t					Total	152	3,511	757	232	4,500
Agita	AG	02 03		1 E000	MILK OF LIME TANK AGITATOR SIPX MIX AND STORAGE TANK AGITATOR	1 Ea 1 Ea	1,706.0 1,123.0		44 26	1,488 992	218 131	0 0	1,706 Minproc data 1,123 Minproc data
Drum	n Tippe DT	er 01		0 E000	SIPX DRUM TIPPER	1 Ea	483.0	397	18	396	87	0	483 Minproc assess
Floce		Package 01		6 E000	FLOCCULANT SYSTEM	1 Ea	6,836.0	6,487	70	6,486	350	0	6,836 Minproc assess
Lime	BN	ackage 01 01 01		1 E000 1 E000	LIME SILO LIME SILO ACTIVATOR - cost with LIME DISCHARGE ROTARY VALVE cost with silo	1 Ea 1 Ea - 1 Ea	25,332.0 0.0 0.0) 0	595 0 0	21,625 0 0	2,975 0 0	732 0 0	25,332 Minproc data 0 0
	FE	02			LIME BIN DISCHARGE FEEDER - co with silo	st l Ea	0.0) 0	0	0	0	0	0
、	DC	01		2 E000	LIME SILO DUST COLLECTOR - cos with silo	t 1 Ea	0.0) 0	0	0	0	0	0
				E101	60t Crane	50 hrs	17.9	9 0	0	0	895	0	895 Minproc assess

Bare cost report -case 3,000t/day process plant (20/26)

Bare cost report -case 3,000t/day process plant (21/26)

	Eq Type	Eq No	KWs	Rate Code		Quantity UoM		Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
Pump														
	PP	01/02			LIME SLURRY DISTRIBUTION PUMP	2 Ea	1,365.0	•	70	2,380	350	0		Minproc data
	PP	03			SIPX TRANSFER PUMP	1 Ea	627.0		26	496	131	0		Minproc data
	PP	04			M2030 DRUM PUMP	1 Ea	384.0		18	297	87	0		Minproc data
	PP	06			MIBC DRUM PUMP	I Ea	664.0		18	577	87	0		Minproc data
	PP	08			REAGENTS AREA SPILLAGE PUMP	1 Ea	1,735.0	•	44	1,517	218	0		Minproc data
	PP	09/12			LIME DOSING PUMPS	4 Ea	867.3		105	2,944	525	0		Minproc data
	PP	13/18			SIPX METERING PUMPS	6 Ea	867.2		158	4,416	787	0		Minproc data
	PP	19/24			M2030 METERING PUMPS	6 Ea	867.2		158	4,416	787	0		Minproc data
	PP	25/29		J E000	MIBC METERING PUMPS	5 Ea	867.2	736	131	3,680	656	0	4,330	Minproc data
Salety	Show	er/Eyewa 01/10		5000	SAFETY SHOWER	10 Ea	457.5	370	175	3,700	875	0	4 575	Minproc data
	SE	01/10		J E000	SAFETT SHOWER	IU La	437.3							Winpioc data
Area 60, F	Dini	na						Total	1,654	55,410	9,159	732	65,301	
Alea 00, 1	Thu	ng		F006	Area 60 - Reagents	1 LS	18,375.0	11,025	1,470	11,025	7,350	0	18,375	
								Total	1,470	11,025	7,350	0	18,375	
Area 60, G	Elec	trical a	& Instr.									-		
				G006	Area 60 - Reagents	1 LS	9,887.0		1,033	4,722	5,165	0	9,887	
								Totai	1,033	4,722	5,165	0	9,887	
							Ar	ea 60 Tota	l 4,814	78,275	26,867	1,020	106,162	
a 70 Water ai	nd Ai	r Servi	ces											
Area 70, A	Ear	thwork	s											
Dam														
	DA	01	(0 A002	Strip topsoil and stockpile	375 Bm ³	1.1	0	0	0	420	0		Minproc est/Oman
				4 102	Cut to 611	1200 Bm ³	1.7	7 0	0	0	1.002	0		rates
				AIUS	Cut to fill	1200 Bill		7 0	, v	0	1,992	0		Minproc est/Oman rates
				A205	Compacted sand bedding	150 Cm ³	7.4	4 0	0	0	1,111	0		Minproc
														est/Oman
				A210	Geofabric membrane	1950 m²	0.6	5 0	0	0	1,092	0		rates Minproc
											,			est/Oman
				A209	HDPE liner 1.0mm thk	1950 m²	2.4	4 0	0	0	4,699	0		rates Minproc
							2.	•	Ū	0	.,	v	-	est/Oman rates
				A211	Liner trenching & backfill	50 Bm³	8.3	3 0	0	0	413	0	413	Minproc
														est/Oman
								Total	0	0	9,727	0	9,727	rates
								10(4)	v	U	2,141	U	5,121	

A – 87

Area 70

	Еq Тур	Eq e No	KWs	Rate Code		Quantity UoM		Gost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Install Cost	Freight Cost	TotalCost	Price Source
Area 70, B	Civi r Stora		ks											
vv ater	Stora	ge		B002	Minor footings < 5m ³	4.6 m ³	90.9	0	55	0	418	0	418	
					Ground slabs including kerbs	2 m³	60.5	0	10	0	121	0	121	
					Tank ring beams	9.4 m³	98.9	0	113	0	930	0	930	
				B501	HD Bolts (HDG)	120 kg	2.3	0	12	0	279	0	279	
					Ring beam infill	67 Cm ³	4.7	0	38	0	314	0	314	
					Infill topping 75mm thk	57 m²	0.8	0	9	0	45	0	45	
								Total	237	. 0	2,107	0	2,107	
Area 70, D	Plat	ework												
	eceive		•											
	PV	01		0 D000	PLANT AIR RECEIVER	1 Ea	924.0	794	26	793	131	0	924	Minproc data
	PV	02		0 D000	INSTRUMENT AIR RECEIVER	1 Ea	583.0	496	18	496	87	0	583	Minproc data
Tank		01		0 D000	RAW WATER TANK	1 Ea	19,411.0	11,550	1,496	11,550	7,481	380		Minproc
														st/Oman ates
								Total	1,540	12,839	7,699	380	20,918	1105
Area 70, E	Equ	ipmen	ıt											
Blow	er -	-												
	BL	01/03	5	5 E000	FLOTATION AIR BLOWER	3 Ea	13,384.3	12,772	368	38,316	1,837	0	40,153	outokumpu
Comp	pressor		_			0.5	c 400 /		. 100	10.267	(12)	0	10.070	
· _ ·	CP	01/02	3	7 E000	PLANT AIR COMPRESSOR	2 Ea	5,439.5	5,134	123	10,267	612	0	10,879	Atlas Copco
Drye	DR	01		2 E000	INSTRUMENT AIR DRYER	1 Ea	1,414.0	1,239	35	1,239	175	0	1,414	Atlas Copco
Filter		01/02		0 6000	AIR FILTER	2 Ea	277.5	5 190	35	380	175	0	555	Atlas Copco
Fire	Protect			0 1000			2.745					•	000	
		01		0 E000	FIRE PROTECTION EQUIPMENT	1 Ea	3,982.0	3,983	0	3,982	0	0		Minproc ssess
Pum	DS													
-	PP	01/02	. 7	75 E000	PROCESS WATER PUMPS	2 Ea	2,808.		210	4,567	1,050	0		KSB Ajax
	PP	03/04			RAW WATER PUMP	2 Ea	1,415.5		123	2,219	612	0		KSB Ajax
	PP	05		0 E000	DIESEL FIRE WATER PUMP	1 Ea	4,838.() 4,402	88	4,401	437	0	4,838	KSB Ajax
								Total	980	65,371	4,898	0	70,269	
Area 70, F	Pipi	ing												
	-1.	8		F007	Area 70 - Water and Air Services	1 LS	37,820.0) 22,695	3,025	22,695	15,125	0	37,820	
								Total	3,025	22,695	15,125	0	37,820	

Ea KWs Rate Description Quantity UoM Unit Cost Ex Total Cost Total Install Freight TotalCost Eq Total Price Type No Code Rate Works Install Hrs Ex Works Cost Cost Source Area 70, G Electrical & Instr. G007 Area 70 - Water & Air services 1 LS 8.260.0 4,875 677 4,875 3.385 0 8.260 Total 677 4,875 3,385 0 8,260 Area 70 Total 6,459 105,780 42,941 380 149,101 Area 80 Process Plant Infrastructure Area 80. D Platework Tanks TK 01 0 D000 DIESEL STORAGE TANK 1 Ea 6,698.0 6,349 70 6,348 350 0 6,698 DRA Tank Total 70 6,348 350 0 6,698 Area 80, E Equipment Lab Equipment XM 01 31 E000 LABORATORY EQUIPMENT 60,799.0 l Ea 57,124 735 57,124 3.675 0 60,799 Minesite Lab Eng Truck Workshop E001 20t EOT Workshop Cranes 2 ea 17,649.5 15,000 875 30,000 4,375 924 35,299 Total 1,610 87,124 8,050 924 96,098 Area 80, F Piping Area 80 - Process Plant Infrastructure 1 LS 1,920.0 1,145 155 1,145 775 0 1,920 F008 11,460.0 F009 Laboratory 1 LS 6,885 915 6,885 4,575 0 11,460 Total 1,070 8,030 5,350 0 13,380 Area 80, G Electrical & Instr. 52,243.0 36,743 G008 Area 80 - Process Plant Infrastructure 1 LS 3,100 36,743 15,500 0 52,243 Total 3,100 36,743 15,500 0 52,243 Area 80, H Buildings **Plant Buildings** BD 01 0 H001 Administration Building 350 m² 119.7 0 0 0 41,895 0 41,895 Minproc est/Oman rates 98.9 0 0 0 H002 Workshop Building 216 m² 0 21,362 Minproc BD 02 21,362 0 est/Oman rates BD 03 0 H003 Stores Building 216 m² 98.9 0 0 0 21,362 0 21,362 Minproc est/Oman rates

Bare cost report -case 3,000t/day process plant (23/26)

Bare cost report -case 3,000t/day process plant (24/26)

	Eq Typ		Eq No	KWs	Rate Code		Quantity UoM		Cost Ex Works	Total Install Hrs		Total Install Cost	Freight Cost	TotalCost	Price Source
	BD	0)4	C	H004 F	Reagents Building	216 m ²	98.9	0	0	0	21,362	0	21,362	Minproc est/Oman rates
	BD	0)5/06	C	H005 I	Laboratory Building	120 m²	98.9	0	0	0	11,868	0	11,868	Minproc est/Oman rates
	BD	0)7	(H006 1	Mill Control Room	18 m²	111.3	0	0	0	2,003	0	2,003	Minproc est/Oman rates
	BD) (08	(H007 ⁻	Training Room	36 m²	96.3	6 O	0	0	3,466	0	3,460	5 Minproc est/Oman
	BD) (09	(H008 '	Workshop and Stores Office	36 m²	96.3	s 0	0	0	3,466	0	3,460	rates 5 Minproc est/Oman rates
	BE)	10) H009 .	Ablutions	27 m²	164.0) 0	0	0	4,428	0	4,42	8 Minproc est/Oman rates
>	BI)	11	1) H010	First Aid Room	18 m²	82.4	4 0	0	0	1,483	0		3 Minproc est/Oman rates
3	BI)	12) H011	Crusher Control Room	4 m²	168.:	5 0	0	0	674	0	67	4 Minproc est/Oman rates
	BI)	13		0 H012	Process Plant Switch Room	50.4 m²	139.0	0 0	0	0	7,005	0	7,00	5 Minproc est/Oman rates
	BI	D	14		0 H013	Crusher Switch Room	18 m²	107.	0 0	0	0	1,926	0	1,92	est/Oman rates
	ВІ	D	15		0 H014	Gate House	16 m²	82.	4 0	0	0	1,318	0	1,31	8 Minproc est/Oman rates
	B	D	16		8 H015	Truck Workshop	7680 m³	17.	0 0	0	0	130,560	0	130,56	50 Minproc assess
	B	D	17		0 H016	Tyre Shop	100 m²	119.	.7 0	0	0	11,970	0	11,97	70 Minproc est/Oman rates
									Total	0	0	286,148	0	286,14	
						_		Α	rea 80 Tota	al 5,850	138,245	315,398	924	454,50	57
Area	a 90 Power Supp	ly o	& Pro	cess C	ontrol S	System									
	Area 90, G E	lect	trical	& Inst	G009	Area 90 - Power Supply & Process Plan Control System	t 1 LS	99,818	.0 96,048	754	96,048	3,770	C) 99,8	18
									Total	754	96,048	3,770	0	99,8	18

Bare cost report -case 3,000t/day process plant (25/26)

Rate Description Eq Eq KWs Quantity UoM Unit Cost Ex Total Total Cost Total Install Freight TotalCost Price Type No Code Rate Works Install Hrs Ex Works Cost Cost Source Area 90 Total 754 96,048 3,770 0 99,818 Area 100 First Fill Area 100, I Miscellaneous 1901 First Fill - Reagents & Consumables -1 LS 145,460.0 0 0 0 145,460 0 145,460 Total 0 0 145,460 0 145,460 Area 100 Total 0 0 145,460 0 145,460 Area 110 Capital Spares Area 110, E Equipment E901 Capital Spares - 5% 1 LS 114,300.0 114,300 0 114,300 0 0 114,300 Total 114,300 0 0 0 114,300 Area 110 Total 0 114,300 0 0 114,300 Area 120 Ocean Freight Area 120, I Miscellaneous 1914 Ocean Freight - mechanical 1 LS 125,350.0 0 0 0 0 125,350 125,350 UTI I916 Ocean Freight - electrical 1 LS 4,455.0 0 0 0 0 4,455 4,455 UTI Total 0 0 0 129,805 129,805 Area 120 Total 0 0 0 129,805 129,805 Area 130 Preliminaries Area 130, I Miscellaneous Accommodation & Messing I001 Accomodation & Messing - Directs 16350 days 2.7 0 0 0 44,063 0 44,063 ADNH Compass 1002 Accommodation & Messing - Indirects 4905 days 0 5.8 0 0 28,326 0 28,326 ADNH Compass I003 Accommodation & Messing - Camp Staff 1635 days 2.7 0 0 0 4,406 4.406 ADNH 0 Compass Commissioning Commissioning assist I912 1 LS 24,570.0 0 0 0 24,570 0 24,570 I913 Vendors representatives 1 LS 72,530.0 0 0 0 72,530 0 72,530

	Eq Type	Eq No	KWs	Rate Cod	-	Quantity UoM	Unit Rate	Cost Ex Works	Total Install Hrs	Total Cost Ex Works	Total Install Cost	Freight T Cost	`otalCost	Price Source
Mobili	sation	& demo	b											
				1903	Mobilisation/demob earthworks	1 LS	5,505.0	0	0	0	5,505	0	5,505	
				1905	Mobilisation/demob concrete contractor	1 LS	6,605.0	0	0	0	6,605	0	6,605	
				1906	Mobilisation/demob st'wk/mech/piping contractor	1 LS	37,035.0	0	0	0	37,035	0	37,035	
				1907	Mobilisation/demob tankage contractor	1 LS	15,015.0	0	0	0	15,015	0	15,015	
					Mobilisation/demob building contractor	1 LS	6,355.0		0	0	6,355	0	6,355	
				1908		1 LS	5,845.0		Õ	0	5,845	0	5,845	
				1911	Mobilisation/demob heavy cranes	1 120	5,045.0		Ū	Ŭ	0,0.10	· ·	- ,	
Prelin	linaries	5		1909	Construction camp	1 LS	308,950.0) 0	0	0	308,950	0	308,950 (ADNH Compass
				1910	Temporary facilities	1 LS	33,790.0) 0	0	0	33,790	0	•	Minproc assess
				1904	Preliminaries earthworks contractor	1 LS	7,545.0	0 0	0	0	7,545	0	7,545	
								Total	0	0	600,540	0	600,540	
							Are	a 130 Total	0	0	600,540	0	600 , 540	
							C	Grand Total	123,323	3,399,735	1,794,677	142,537	5,336,94	49

Appendix 2D

Equipment List

Equipment list (1/11)

CR			1	0	PRIMARY CRUSHER	Nordberg C100 or equivalent 1000 mm by 760 mm feed opening CSS nominal 100 mm, CSS minimum 75 mm maximum feed 100% passing 800 mm crusher is fed by vibrating grizzly FE-1001 at nominal feed rate from ROM Bin 110 t/h, or 2000 t/day complete lining system	110	A
CR	10	02	1	0	SECONDARY CRUSHER	Nordberg HP300 (standard) or equivalent nominal capacity 220 t/h Maximum feed size 150 mm CSS nominal 25 mm, CSS minimum 20 mm complete package including lubrication systems with lube oil cooling, electric motors, belts, guards, instrumentation, replaceable wear liners, automatic tramp release system, purge air equipment	220	В
FE	10	01	1	0	PRIMARY CRUSHER FEEDER	Nominal capacity 110 t/h Nordberg B10-42-2V or equivalent 1000 mm wide by 4400 mm long, 2200 mm long feed plate area plus split grizzly decks hydraulic drive, variable speed control grizzly openings 75 mm	22	A
FE	10	02	1	0	SECONDARY CRUSHER FEEDER	vibrating pan feeder nominal capacity 220 t/h complete with hinged nose for crusher maintenance, wear liners, safety slings, dust covers	4	В
FE	10	04/ 05	1	1	FINE ORE BIN DISCHARGE FEEDER	Nominally 600 wide x 1500, or equivalent, design capacity 100 t/h for 14 mm maximum lump size, complete with vibrating motors, feed chute, dust covers, wear liners and safety slings	2.2	A
FE	10	06	1	0	EMERGENCY RECLAIM FEEDER	Nominally 600 wide x 1500, or equivalent, design capacity 100 t/h for 14 mm maximum lump size, complete with vibrating motors, dust covers, wear liners and safety slings	2.2	A

Equipment list (2/11)

Editi	04Nc		DIN	Stalay	File	Secondation	Estimated kWs(ca)	REVISION
SC	10	01	1	0	PRODUCT SCREEN	Nordberg TS202, or equivalent 1.5 m by 4.9 m double deck top deck aperture 28 mm, bottom deck aperture 14 mm nominal feed rate 330 t/h	15	B
CY	20	01	1	0	PRIMARY CYCLONES	Cluster of THREE duty and ONE standby 510 mm cyclones complete with distribution box, manual isolation valves to each cyclone, pressure gauges and tappings, overflow and underflow launders, and support steelwork	0	В
ML	20	01	1	0	BALL MILL	4.42 m diameter by 6.24 EGL overflow ball mill complete with lining systems, feed chute, discharge trommel, jacking cradle, all drive components, ancillary items and systems	2000	В
PP	20	01/ 02	1	1	PRIMARY CYCLONE FEED PUMP	Warman 10/8 FAH, or equivalent nominal capacity 378 m3/h, design 450 m3/h @ 30 m TDH; nominal solids flow rate 365 t/h, solids SG 3.2, solids 58 %w/w, slurry density 1.66 t/m3	150	A
CY	30	01	1	0	REGRIND CYCLONES	Cluster of TWO duty and ONE standby 250 mm cyclones complete with distribution box, manual isolation valves to each cyclone, pressure gauges and tappings, overflow and underflow launders, and support steelwork	0	A
FT	30	01/ 03	3	0	ROUGHER FLOTATION CELL	Trough shaped 16 m3 cells compete with double sided launders and double launder for variable rougher-scav partition. Nominal tailings slurry flow rate 189 m3/h.	37	A
FT	30	04/ 06	2	0	ROUGHER-SCAVENGER FLOTATION CELL	Trough shaped 16 m3 cells complete with double sided launder. Nominal tailings slurry flow rate 166 m3/h	37	В

Equipment list (3/11)

		10000
Equip Notes and Duty is staby in the second	Specification	on N
	Specification Favision Wis (rap)	#U\$1
	방법하는 방법에 열등을 받았다는 아무성에서 문화되었다. 이 것이 가지 않는 것은 것은 것이 가지 않는 것은 것이 다. 이 것은 것이 가지 않는 것은 물건을 받았는 것은 것을 하는 것은 것을 못했다.	- R
	가슴 가슴에 걸려서 걸려서 가슴에 가슴에 가슴을 가슴다. 이렇게 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴다. 가슴을	68-E
States and a second	h Land hall a state of the second state	1000

FT	30	07/ 08	2	0	CLEANER 1 FLOTATION CELL	Trough shaped 8 m3 cell complete with double sided launder. First bank with double launder for variable cleaner/cleaner-scavenger partition. Nominal tailings slurry flow rate 81 m3/h. (combined with cleaner-scavenger in a 2+4 configuratin)	22	A
FT	30	09/ 14	4	0	CLEANER-SCAVENGER FLOTATION CELL	Trough shaped 8 m3 cells complete with double sided launder. First bank with double launder for variable cleaner/cleaner-scavenger partition. Nominal tailings slurry flow rate 70 m3/h. (combined with cleaner 1 in a 2+4 configuratin)	22	В
FT	30	15/ 17	2	0	CLEANER 2 FLOTATION CELL	Trough shaped 8 m3 cells complete with double sided launder. Nominal tailings slurry flow rate 40 m3/h. (combined with cleaner 3 in a 2+2 configuratin)	22	В
FT	30	18/ 19	2	0	CLEANER 3 FLOTATION CELL	Trough shaped 8 m3 cells complete with double sided launder. Nominal tailings slurry flow rate 26 m3/h. (combined with cleaner 2 in a 2+2 configuratin)	22	A
ML	30	01	1	0	REGRIND MILL	2.74 m diameter by 3.55 EGL overflow ball mill complete with lining systems, feed chute, discharge trommel, jacking cradle, all drive components, ancillary items and systems	400	В
PP	30	01/ 02	1	1	REGRIND CYCLONE FEED PUMP	Warman 4/3 CAH nominal capacity 63 m3/h, design 80 m3/h @ 30 m TDH - nominal solids flow rate 40 t/h, solids SG 4.3, solids 42 %w/w, slurry density 1.48 t/m3	30	A
PP	30	08	1	0	COMBINED TAILS PUMP	Warman 8/6 EAH nominal capacity 236 m3/h, design 285 m3/h @ 15 m TDH; - nominal solids flow rate 87 t/h, solids SG 3.1, solids 29.4 %w/w, slurry density 1.25 t/m3	45	A

Equipment list (4/11)

Equ			Distry	Silley	TRE	Serective	istinated ikws (ea)	REVISIOR
FL	40	01	1	0	CONCENTRATE FILTER	Vacuum disc filter, filter area 28 m2; nominal slurry feed rate 3.6 m3/h; slurry feed properties - nominal solids flow rate 4.6 t/h, solids SG 4.3, solids 65 %w/w, slurry density 2.0 t/m3, filter cake moisture content 16 %; filter package complete with vacuum pump, filtrate receiver and filtrate pump, instrumentation, electric motors, and other items necessary to complete the package	0	B
TH	40	01	1	0	CONCENTRATE THICKENER	Conventional thickener, diameter 6 m nominal feed rate 13.5 m3/h, solids flow rate 4.6 t/h, solids content 30 %w/w, slurry density 1.3 t/m3 complete package including tank, rake, rake drive and lift mechanism, walkway and bridge structure, bed mass and level instrumentation, and other items necessary to complete the package	4	A
FL	50	01	1	0	TAILINGS FILTER	Pressure filter, filtration area 54 m2; nominal slurry feed rate 75 m3/h; slurry feed properties - nominal solids flow rate 87 t/h, solids SG 3.1, solids 65 %w/w, slurry density 1.8 t/m3, filter cake moisture content 12 %; filter package complete with vacuum pump, filtrate receiver and filtrate pump, belt lift fan, instrumentation, electric motors, and other items necessary to complete the package	22	В
PP	50	01/ 02	1	1	TAILINGS THICKENER UNDERFLOW PUMP	Warman 6/4 DAH; nominal capacity 74 m3/h, design 90 m3/h @ 15 m TDH; slurry properties - nominal solids flow rate 87 t/h, solids SG 3.1, solids 65 %w/w, slurry density 1.8 t/m3	22	A

Equipment list (5/11)

elkWs(ea)	Equip No Duty Steby	Revisiont
-----------	---------------------	-----------

ТК	50	01	1	0	TAILINGS THICKENER	Hi-rate thickener 16 metre diameter; nominal feed rate 271 m3/h, solids flow rate 87 t/h, solids content 26.3 %w/w, slurry density 1.22 t/m3; complete package including tank, rake, hydraulic rake drive and lift mechanism, walkway and bridge structure, bed mass and level instrumentation, and other items necessary to complete the package	7.5	В
FE	60	01	1	0	LIME BIN DISCHARGE FEEDER	Screw feeder capacity 0.5 to 4.0 t/h, length 4 m, handling a maximum of 80 mm quicklime lumps. Vendor to specify feeder diameter and style of screw. Feeder is variable speed control (by others)	2.2	A
BL	70	01/ 02	1	1	FLOTATION AIR BLOWER	Roots or centrifugal blower package complete with pressure relief valving and sound proofing for 85 dBA maximum @ 1 metre capacity 7900 Am3/h @ 30 kPa discharge pressure	90	A
СР	70	01/ 02	1	1	PLANT AIR COMPRESSOR	Rotary screw compressor package capacity FAD 350 m3/h @ 750 kPa	45	A
PP	70	01/ 02	1	1	PROCESS WATER PUMPS	Southern Cross Iso 200x150-400, or equivalent centrifugal 1475 rpm; nominal capacity 243 m3/h, design capacity 300 m3/h @ 45 TDH; complete with 4 pole electric motor and common baseplate	50	A
PP	70	03/ 04	1	1	RAW WATER PUMP	Southern Cross Iso 125x80-400, or equivalent centrifugal 1475 rpm; nominal capacity 60 m3/h @ 50 TDH; complete with 4 pole electric motor and common baseplate	18.5	A
SC	70	05	1	0	DIESEL FIRE WATER PUMP	Southern Cross Iso 80x50-250, or equivalent centrifugal with 2900 rpm diesel engine drive, nominal capacity 50 m3/h @ 50 TDH; complete package required including all controls and instrumentation	0	A

Equipment	list (6/11)
-----------	-------------

Equ 19	ip No		•Duty	Stdby	cliitle.	Specification	Estimatedz KWS (ea)	Revision	Selection Selection
CR	10	01	-1	0	PRIMARY CRUSHER	Nordberg C100 or equivalent 1000 mm by 760 mm feed opening CSS nominal 100 mm, CSS minimum 75 mm maximum feed 100% passing 800 mm crusher is fed by vibrating grizzly FE-1001 at nominal feed rate from ROM Bin 156 t/h, or 3000 t/day complete lining system	110	A	
CR	10	02	1	0	SECONDARY CRUSHER	Nordberg HP200 (standard) or equivalent nominal capacity 140 t/h Maximum feed size 150 mm CSS nominal 25 mm, CSS minimum 20 mm complete package including lubrication systems with lube oil cooling, electric motors, belts, guards, instrumentation, replaceable wear liners, automatic tramp release system, purge air equipment	150	A	
CR	10	03	1	0	TERTIARY CRUSHER	Nordberg HP200 (shorthead) or equivalent nominal capacity 120 t/h Maximum feed size 28 mm CSS nominal 14 mm, CSS minimum 10 mm complete package including lubrication systems with lube oil cooling, electric motors, belts, guards, instrumentation, replaceable wear liners, automatic tramp release, purge air equiment	150	A	
FE	10	01	1	0	PRIMARY CRUSHER FEEDER	Nominal capacity 156 t/h Nordberg B10-42-2V or equivalent 1000 mm wide by 4400 mm long, 2200 mm long feed plate area plus split grizzly decks hydraulic drive, variable speed control grizzly openings 75 mm	22	A	Х
FE	10	02	1	0	SECONDARY CRUSHER FEEDER	Schenck 900 x 2400 BFF, or equivalent nominal capacity 140 t/h complete with hinged nose for crusher maintenance, wear liners, safety slings, dust covers	4	A	

Equipment list (7/11)

Equip No Duty Stdby Estimated: Revision Specification 22 Willea

FE	10	03	1	0	TERTIARY CRUSHER FEEDER	Schenck 900 x 2400 BFF, or equivalent nominal capacity 120 t/h complete with hinged nose for crusher maintenance, wear liners, safety slings, dust covers	4	A	· · · ·
FE		04/ 05	1	1	FINE ORE BIN DISCHARGE FEEDER	Nominally 600 wide x 1500, or equivalent, design capacity 150 t/h for 12 mm maximum lump size, complete with vibrating motors, feed chute, dust covers, wear liners and safety slings	2.2	A	
FE	10	06	1	0	EMERGENCY RECLAIM FEEDER	Nominally 600 wide x 1500, or equivalent, design capacity 150 t/h for 12 mm maximum lump size, complete with vibrating motors, dust covers, wear liners and safety slings	2.2	A	
SC	10	01	1	0	PRODUCT SCREEN	Nordberg TS302, or equivalent 1.8 m by 6.1 m double deck top deck aperture 28 mm, bottom deck aperture 12 mm nominal feed rate 415 t/h	15	A	
CY	20	01	1	0	PRIMARY CYCLONES	Cluster of FOUR duty and ONE standby 510 mm cyclones complete with distribution box, manual isolation valves to each cyclone, pressure gauges and tappings, overflow and underflow launders, and support steelwork	0	A	
ML	20	01	1	0	BALL MILL	5.03 m diameter by 7.20 EGL overflow ball mill complete with lining systems, feed chute, discharge trommel, jacking cradle, all drive components, ancillary items and systems	2800	A	
PP	20	01/ 02	1	1	PRIMARY CYCLONE FEED PUMP	Warman 10/8 FAH, or equivalent nominal capacity 568 m3/h, design 680 m3/h @ 30 m TDH slurry properties - nominal solids flow rate 547 t/h, solids SG 3.2, solids 58 %w/w, slurry density 1.66 t/m3	150	A	

A – 99

Equ	ip No		Duty	Stdby	Title and the second	Specification	(Estimated) (kWs/(ea)-	Revision	Selection (
CY	30	01	1	0	REGRIND CYCLONES	Cluster of TWO duty and ONE standby 250 mm cyclones complete with distribution box, manual isolation valves to each cyclone, pressure gauges and tappings, overflow and underflow launders, and support steelwork	0	A	
FT	30	01/ 03	3	0	ROUGHER FLOTATION CELL	Trough shaped 16 m3 cells compete with double sided launders and double launder for variable rougher-scav partition. Nominal tailings slurry flow rate 284 m3/h.	37	A	
TT	30	04/ 06	3	0	ROUGHER-SCAVENGER FLOTATION CELL	Trough shaped 16 m3 cells complete with double sided launder. Nominal tailings slurry flow rate 249 m3/h	37	A	
FT	30	07/ 08	2	0	CLEANER 1 FLOTATION CELL	Trough shaped 8 m3 cell complete with double sided launder. First bank with double launder for variable cleaner/cleaner-scavenger partition. Nominal tailings slurry flow rate 121 m3/h. (combined with cleaner-scavenger in a 4+4 configuratin)	22	A	
FT	30	09/ 14	6	0	CLEANER-SCAVENGER FLOTATION CELL	Trough shaped 8 m3 cells complete with double sided launder. First bank with double launder for variable cleaner/cleaner-scavenger partition. Nominal tailings slurry flow rate 121 m3/h. (combined with cleaner 1 in a 4+4 configuratin)	22	A	
FT	30	15/ 17	3	0	CLEANER 2 FLOTATION CELL	Trough shaped 8 m3 cells complete with double sided launder. Nominal tailings slurry flow rate 59 m3/h. (combined with cleaner 3 in a 3+2 configuratin)	22	A	
FT	30	18/ 19	2	0	CLEANER 3 FLOTATION CELL	Trough shaped 8 m3 cells complete with double sided launder. Nominal tailings slurry flow rate 39 m3/h. (combined with cleaner 2 in a 3+2 configuratin)	22	A	
ML	30	01	1	0	REGRIND MILL	3.05 m diameter by 4.05 EGL overflow ball mill complete with lining systems, feed chute, discharge trommel, jacking cradle, all drive components, ancillary items and systems	550	A	

Equipment list (9/11)

Equip No.s Duty Stdby St

PP	30	01/ 02	1		PUMP	Warman 4/3 CAH nominal capacity 95 m3/h, design 115 m3/h @ 30 m TDH slurry properties - nominal solids flow rate 59 t/h, solids SG 4.3, solids 42 %w/w, slurry density 1.48 t/m3	30	A	
PP	30	08	1	0	TAILS PUMP	Warman 8/6 EAH nominal capacity 353 m3/h, design 424 m3/h @ 15 m TDH slurry properties - nominal solids flow rate 130 t/h, solids SG 3.1, solids 29.4 %w/w, slurry density 1.25 t/m3	45	A	
FL	40	01	1	0		Vacuum disc filter, filter area 42 m2 nominal slurry feed rate 5.4 m3/h slurry feed properties - nominal solids flow rate 7.0 t/h, solids SG 4.3, solids 65 %w/w, slurry density 2.0 t/m3, filter cake moisture content 16 % filter package complete with vacuum pump, filtrate receiver and filtrate pump, instrumentation, electric motors, and other items necessary to complete the package	0	A	
TH	40	01	1	0	CONCENTRATE THICKENER	Conventional thickener, diameter 6 m nominal feed rate 17.9 m3/h, solids flow rate 7.0 t/h, solids content 30 %w/w, slurry density 1.3 t/m3 complete package including tank, rake, rake drive and lift mechanism, walkway and bridge structure, bed mass and level instrumentation, and other items necessary to complete the package	4	A	
FL	50	01	1	0	TAILINGS FILTER	Pressure filter, nominal slurry feed rate 111 m3/h slurry feed properties - nominal solids flow rate 130 t/h, solids SG 3.1, solids 65 %w/w, slurry density 1.8 t/m3, filter cake moisture content 12 %	22	A	

Equipment list (10/11)

PP	50	01/ 02	1	1	TAILINGS THICKENER UNDERFLOW PUMP	Warman 6/4 DAH nominal capacity 111 m3/h, design 133 m3/h @ 15 m TDH slurry properties - nominal solids flow rate 130 t/h, solids SG 3.1, solids 65 %w/w, slurry density 1.8 t/m3	22	A	
ТК	50	01	1	0	TAILINGS THICKENER	Hi-rate thickener 20 metre diameter nominal feed rate 405 m3/h, solids flow rate 130 t/h, solids content 26.3 %w/w, slurry density 1.22 t/m3 complete package including tank, rake, hydraulic rake drive and lift mechanism, walkway and bridge structure, bed mass and level instrumentation, and other	7.5	A	
FE	60	01	1	0	LIME BIN DISCHARGE FEEDER	Screw feeder capacity 0.5 to 4.0 t/h, length 4 m, handling a maximum of 80 mm quicklime lumps. Vendor to specify feeder diameter and style of screw. Feeder is variable speed control (by others)	2.2	A	
BL	70	01/ 02	1	1	FLOTATION AIR BLOWER	Roots or centrifugal blower package complete with pressure relief valving and sound proofing for 85 dBA maximum @ 1 metre capacity 7900 Am3/h @ 30 kPa discharge pressure	90	A	
CP	70	01/ 02	1	1	PLANT AIR COMPRESSOR	Rotary screw compressor package capacity FAD 350 m3/h @ 750 kPa	45	A	
PP	70	01/ 02	1	1	PROCESS WATER PUMPS	Southern Cross Iso 200x150-400, or equivalent centrifugal 1475 rpm nominal capacity 324 m3/h, design capacity 405 m3/h @ 45 TDH complete with 4 pole electric motor and common baseplate	75	A	
PP	70	03/ 04	1	1	RAW WATER PUMP	Southern Cross Iso 125x80-400, or equivalent centrifugal 1475 rpm nominal capacity 60 m3/h @ 50 TDH complete with 4 pole electric motor and common baseplate	18.5	A	

.

Equipment list (11/11)

Equip No -	Duty Std	by:	Specification	dEstimateds KWs/(ea)	Revision	Selection
SC 70 05	1 0		Southern Cross Iso 80x50-250, or equivalent centrifugal with 2900 rpm diesel engine drive, nominal capacity 50 m3/h @ 50 TDH complete package required including all controls and instrumentation	0	A	

Appendix 2E

Tailings Dam Capital Cost

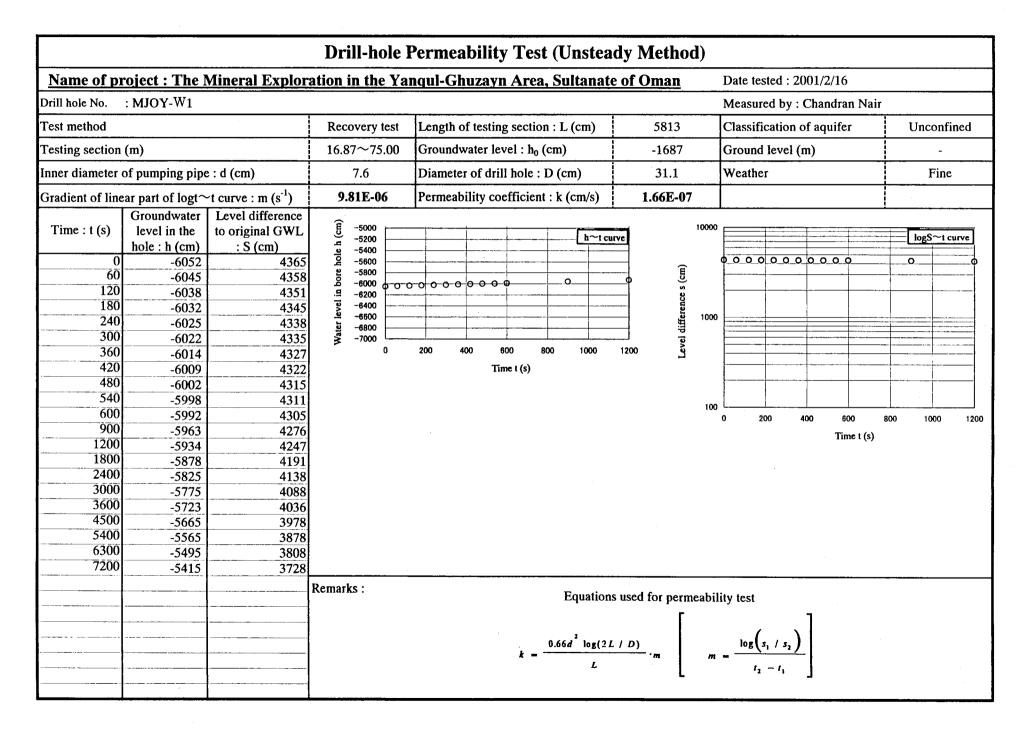
HAYL-AS SAFIL PRE-FEASIBILITY STUDY OPTION B - DRY TAILINGS DISPOSAL, TAILINGS DAM CONSTRUCTION (1/2)

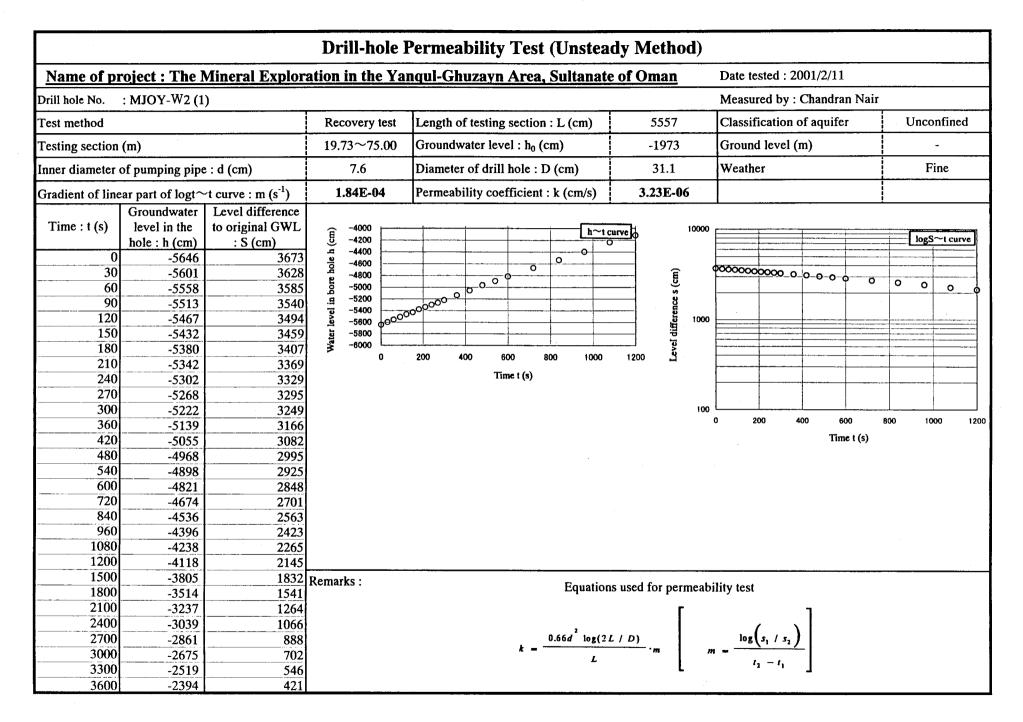
Number	Item Description	Unit	Quantity Phase 1	Quantity Phase 2	Rate (US\$)	Amount (US\$) Phase 1	Amount (US\$) Phase 2
	HAYL-AS SAFIL PRE-FEASIBILITY STUDY						
	OPTION B - DRY TAILINGS DISPOSAL	1					
BILL 1	TAILINGS DAM CONSTRUCTION						
	Site Clearing						
1.1	Clear dam footprint and inundation area of all vegetation	ha	14.5	15.5	2200.00	31,900.00	34,100.00
1.1	including trees and grub up roots, windrow and dispose off site	IIa	14.5	13.5	2200.00	51,900.00	34,100.00
	Topsoil Strip						
1.2	Strip topsoil to a nominal 150 mm depth and stockpile in designated area for reuse	m ³	21750	23250	1.75	38,062.50	40,687.50
	General Excavation						
1.3	Excavate to spoil Class 1 unsuitable material from embankment footprint	m ³	26500	28500	1.50	39,750.00	42,750.00
1.4	Trimming, ripping and preparation of inundation area	ha	13	14	3500.00	45,500.00	49,000.00
1.5	Borrow Area Development Clear, grub and strip unusable material from the borrow	m²	1200	1300	0.22	264.00	286.00
	area						
1.6	Drill, blast, rip Class 2 rockfill material to stockpile	m ³	25000	0	2.00	50,000.00	0.00
1.7	Excavate Class 1 earthfill material to stockpile for embankments and cushion layer	m³	82600	52900	0.58	47,908.00	30,682.00
	Drainage Material						
1.8	Crush and screen blasted rock to provide filter drainage materials	m³	0	0	0.00	0.00	0.00
	Embankment Construction						
1.9	Rip to 300 depth and compact foundation layer	m ²	67100	42850	0.20	13,420.00	8,570.00
	Load, haul, place and compact:						
1.10	Compact Zone 1 Class 1 fill	m ³	29300 0	18700	1.61	47,173.00	30,107.00
1.11 1.12	Zone 2 selected fill Class 2 rockfill	m ³ m ³	15000	0 10000	1.61 1.82	0.00 27,300.00	0.00
1.12	Granular material to embankment foundation drainage	m ³	0	0	5.00	0.00	0.00
	Supply and place:						
1.14	Perforated HDPE pipe (100 diam.)	m	0	0	20.00	0.00	0.00
1.15	Geotextile (500g/m ²)	m ²	0	0	3.50	0.00	0.00
	HDPE Liner Preparation						
	Excavate, trim and grade 6000 wide access bench	m	1600	1100	10.00	16,000.00	11,000.00
1.17	Trim rock which protrudes through cushion layer	m ³	5000	0	20.00	100,000.00	0.00
1.18	Prepare inundation area to a finish suitable to receive liner cushion layer	ha	14	15	2500.00	35,000.00	37,500.00
1.19	Place and compact 300 cushion layer (Class 1)	m ³	42000	45500	1.61	67,620.00	73,255.00
1.20	Supply and Place 1.5 mm HDPE liner including of anchor trench	m²	144600	153600	5.00	723,000.00	768,000.00
1.21	Supply and lay geotextile 500g/m ² to embankment	m²	12800	8200	3.50	44,800.00	28,700.00
1.22	Excavate and backfill 600 x 500 liner anchor trench	m	1600	1100	10	16,000.00	11,000.00
	Overliner Basin Drainage						
1.23	Place Type A gravel surround to collection pipes	m³	0	0	2.50	0.00	0.00
1.24	Supply and place: Perforated HDPE pipe (100 diam.)	m	0	0	20.00	0.00	0.00
	Perforated HDPE pipe (200 diam.)	m	0	0	40.00	0.00	0.00
	Solid HDPE pipes (200 diam.)	m	Ő	0	40.00	0.00	0.00
				1	1		
1.27	Geotextile (500g/m ²)	m ²	0	0	3.50	0.00	0.00

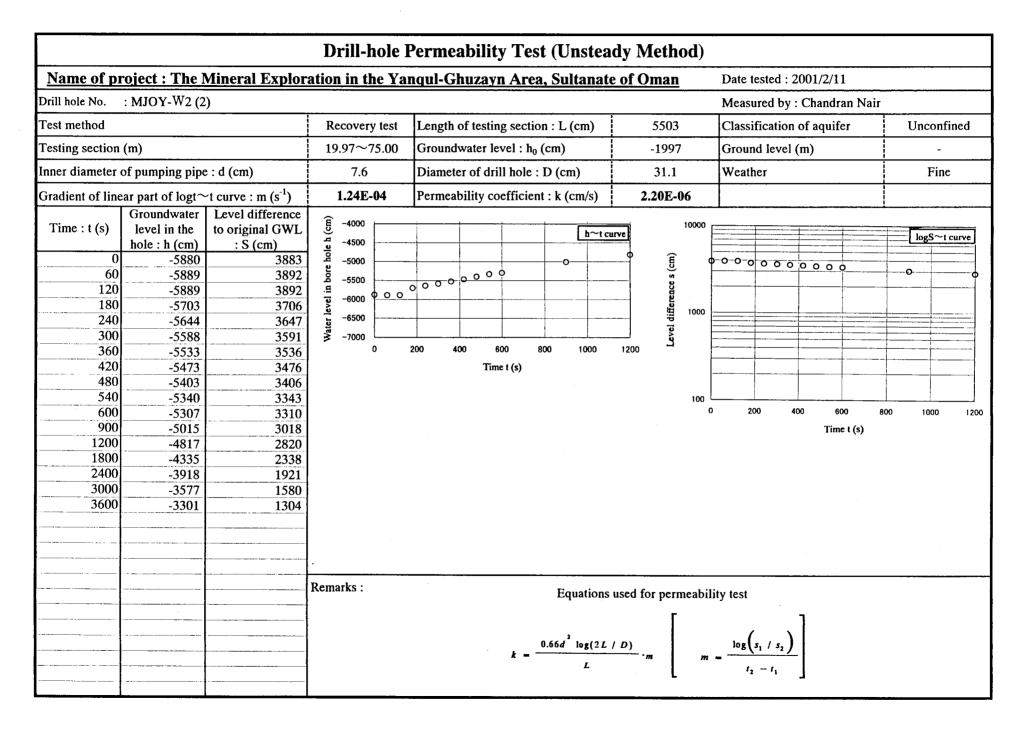
HAYL-AS SAFIL PRE-FEASIBILITY STUDY
OPTION B - DRY TAILINGS DISPOSAL, TAILINGS DAM CONSTRUCTION (2/2)

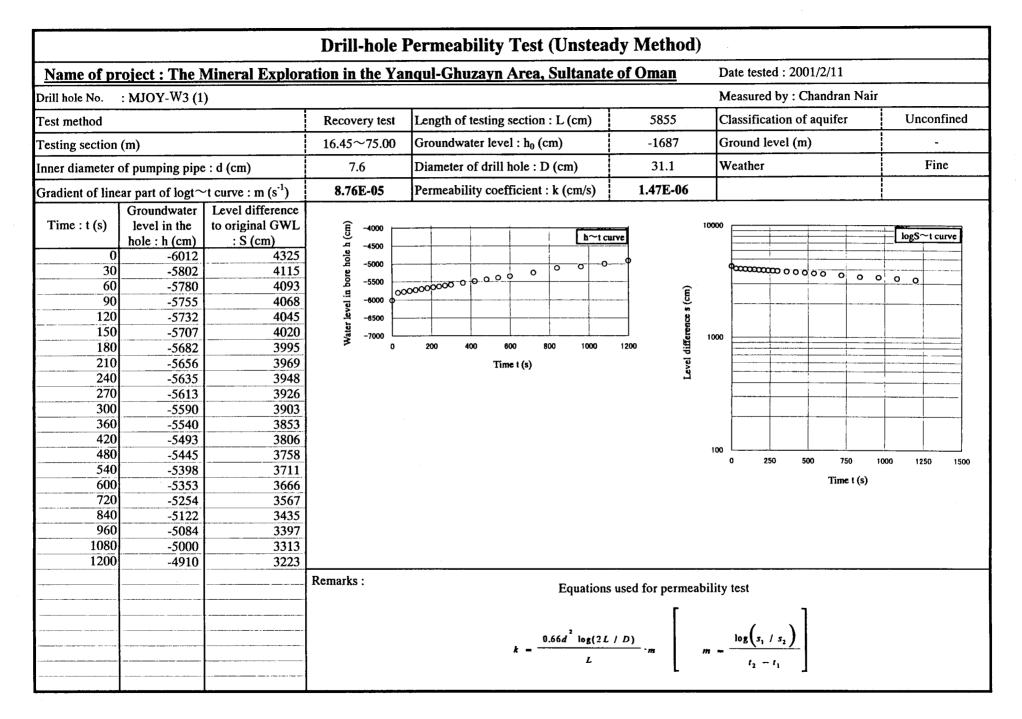
Number	Item Description	Unit	Quantity Phase 1	Quantity Phase 2	Rate (US\$)	Amount (US\$) Phase 1	Amount (US\$) Phase 2
	Underliner Leak Detection System		rnase 1	Fliase 2	(033)	rilase 1	Fliase 2
1.29	Place Type A gravel surround to collection pipes	m ³	0	0	2.50	0.00	0.00
1.47	Supply and place:		Ŭ	, in the second se	2.50	0.00	0.00
1.30			0	0	20.00	0.00	0.00
1.30	Perforated HDPE pipe (100 diam.)	m	0	0	40.00	0.00	0.00
	Solid HDPE pipes (200 diam.)	m			1 1		
1.32	Geotextile (500g/m ²)	m²	0	0	3.50	0.00	0.00
	Tailings Delivery and Distribution System						
	Wet Disposal Option				1		
	Supply and install:			٠			
1.33	110 diam. slotted uPVC pipe	nr	0	0	20.00	0.00	0.00
1.34	250 diam. knife gate valve	nr	0	0	750.00	0.00	0.00
1.35	HDPE pipe (250 OD SDR11)	m	0	0	90.00	0.00	0.00
1.36	80 diam.pinch valves	nr	0	0	600.00	0.00	0.00
1.37	250 to 80 HDPE branch saddles	nr	0	0	40.00	0.00	0.00
1.38	1m Heavy duty water delivery 80 diam. hose	nr	0	0	15.00	0.00	0.00
1.39		nr	0	0	10000.00	0.00	0.00
1.55	Centrifugal tailings delivery pump (at plant site), incl. check valves		Ū	Ì	10000.00	0.00	0.00
	Valves						
	Permanent Installations for Tailings Handling	•					
	Dry Disposal Option						
1.33A	Provide concrete bunkers for temporary storage of tailings	nr					
1.5571	at plant site						
1.34A	Provide 11m diameter filter bed thickener including mechanicals	nr					
1.35A	Provide and install filter press system for dewatering of	nr					
1.36B	tailings Filter press building (240m2)	nr					
1.50D	rner press building (240m2)					٨	
	Decant and Return Water System						
	Wet Disposal Option						
	Supply and install:						
1.40	Return water pump	nr	0	0	10000.00	0.00	0.00
1.41	Floating barge	sum	0	0	50000.00	0.00	0.00
1.42	HDPE pipe (180 OD SDR 17)	m	0	0	80.00	0.00	0.00
	Drainage Collection System	1					
1.43	Excavate Toe drain	m ³	3600	2400	10.00	36,000.00	24,000.00
1.44	Supply and install return water pump	sum	1	1	1000.00	1,000.00	1.000.00
1.45	Excavation of sump	m ³	1600	1600	10.00	16,000.00	16,000.00
1.46	Trimming of excavated surface	m ²	1250	1250	5.00	6,250.00	6,250.00
1.47	Excavate and backfill 600 x 500 liner anchor trench	ł		1	10.00	1,600.00	1,600.00
1.47		m	160	160	10.00	1,000.00	1,000.00
1 40	Supply and place:		4200	3700	500	21 600 00	12 500.00
1.48	1.5 HDPE liner to toe drains	m ²	4300	2700	5.00	21,500.00	13,500.00
1.49	1.0 HDPE liner to drainage collection sumps	m ²	1650	1650	5.00	8,250.00	8,250.00
1.50	Geotextile liner protection (500g/m2)	m ²	1650	1650	3.50	5,775.00	5,775.00
1.51	Solid HDPE pipe (200 diam.)	m	20	20	40.00	800.00	800.00
1.52	Reinforced concrete to form pump sump (incl. all formwork)	m ³	2	2	200.00	400.00	400.00
1.53	Mesh reinforcement	t	1	1	500.00	500.00	500.00
	Instrumentation	-					
1.54	Performance monitoring instrumentation	PC	_1	0	10000.00	10,000.00	0.00
		4					
	TO SUMMARY OF BILL 1	1		1		1,451,772.50	1,261,912.50

HAYL-AS SAFIL PRE-FEASIBILITY STUDY OPTION B - DRY TAILINGS DISPOSAL, ACCESS ROADS

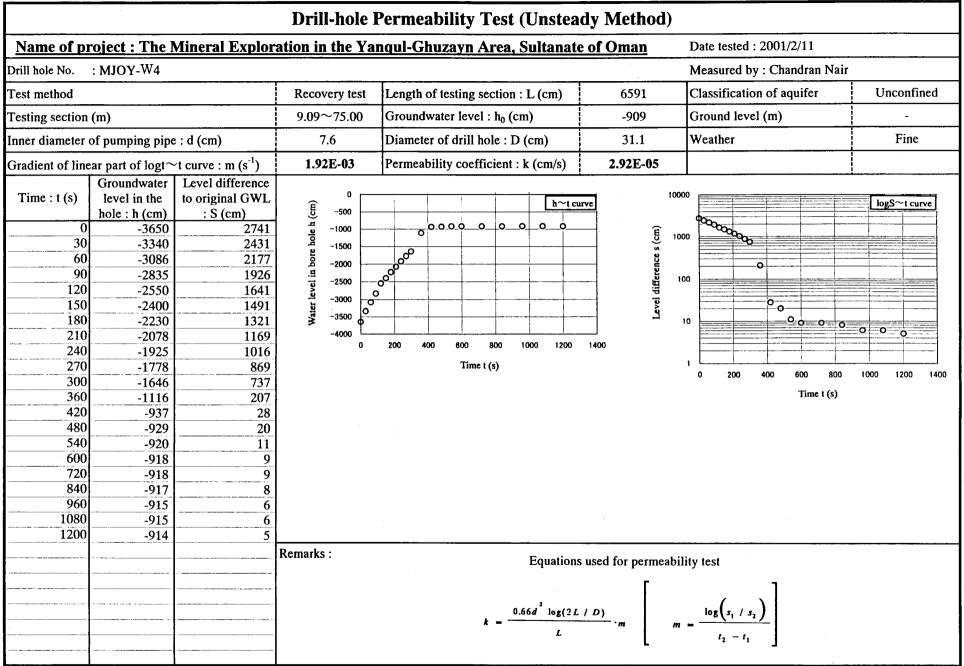

Number	Item Description	Unit	Quantity Phase 1	Quantity Phase 2	Rate (US\$)	Amount (US\$) Phase 1	Amount (US\$) Phase 2
	HAYL-AS SAFIL PRE-FEASIBILITY STUDY						
	OPTION B - DRY TAILINGS DISPOSAL						
BILL 2	ACCESS ROADS						:
	Clearing						
2.1	Clear all vegetation from road alignments including trees and grub up roots, windrow and dispose off site	ha	22.5	0	2,200.00	49,500.00	0.00
2.2	Topsoil Strip Strip topsoil to a nominal 150 depth and stockpile in designated area for reuse	m²	3050	0	1.75	5,337.50	0.00
	General Construction						
2.3	Supply and deliver locally won road construction materials	m ³	58350	0	1.50	87,525.00	0.00
2.3	E/0 for screening and blending	m ³	6200	0	5.00	31,000.00	0.00
2.4	Construct 10m wide road to section as detailed on drawing	m	1500	0	9.50	14,250.00	0.00
2.5	Construct access ramp to depository as detailed on drawing	m ³	52150	0	2.50	130,375.00	0.00
	Supply and Install:						
2.6 2.7	450 Diameter pipe culvert beneath access ramp	m	120	0	125	15,000.00	0.00
2.7		m	192	0	150	28,800.00	0.00
2.8	600 x 1200 multicell, precast box culverts to access road Reinforced concrete head and wingwalls to box culverts including formwork and reinforcement	nr	2	0	1000	2,000.00	0.00
	TO SUMMARY OF BILL 2				-	363,787.50	0.00

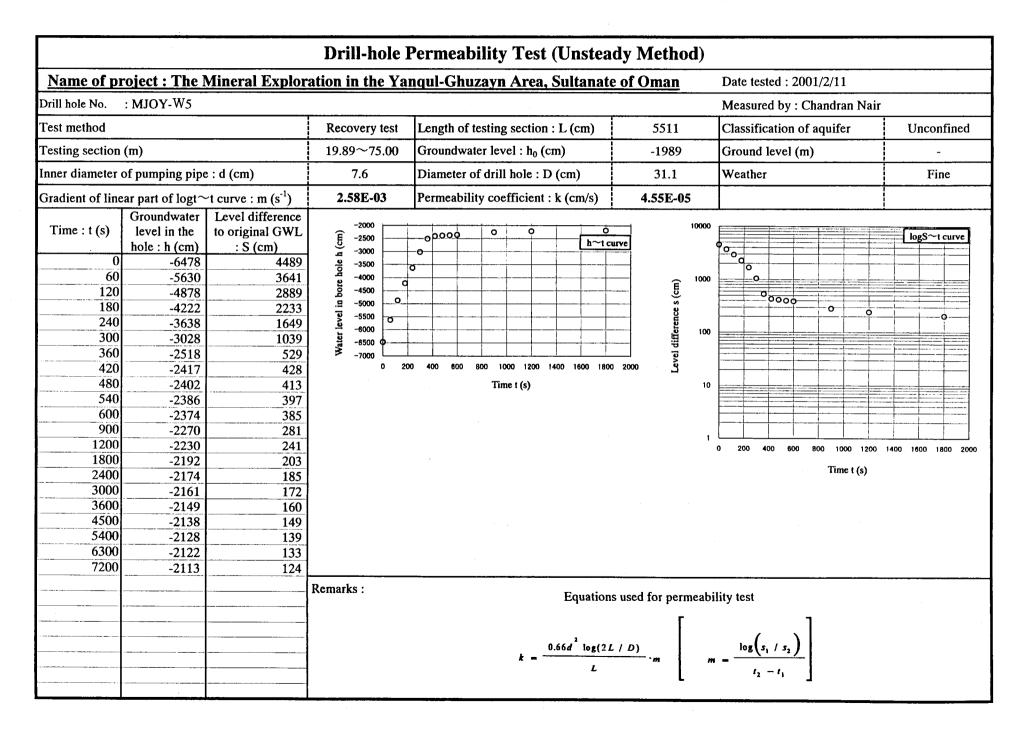

HAYL-AS SAFIL PRE-FEASIBILITY STUDY OPTION B - DRY TAILINGS DISPOSAL, DIVERSION CHANNEL


Number	Item Description	Unit	Quantity Phase 1	Quantity Phase 2	Rate (US\$)	Amount (US\$) Phase 1	Amount (US\$) Phase 2
	HAYL-AS SAFIL PRE-FEASIBILITY STUDY						
	OPTION B - DRY TAILINGS DISPOSAL						
BILL 3	DIVERSION CHANNEL						
	Site Clearing						
3.1	Clear diversion alignment of all vegetation including trees and grub up roots, windrow and dispose off site	ha	0.45	0	2,200.00	990.00	0.00
	Topsoil Strip						
3.2	Strip topsoil to a nominal 150 mm depth and stockpile in designated area for reuse	m²	4500	0	1.75	7,875.00	0.00
	General Excavation						
3.2	Excavate Class 1 material to stockpile for reuse	m³	1700	0	1.50	2,550.00	0.00
3.3	Trimming and preparation	m²	5000	0	2.50	12,500.00	0.00
	Diversion Berm Construction						
3.4	Filling and compacting of Class 1 to berm from general excavation	m3	0	0	10.00	0.00	0.00
					4 4 -		
	TO SUMMARY OF BILL 3	1				23,915.00	0.00


Appendix 3

Permeability test for the drill holes





A – 112

			Drill-hole	Permeability Test (Unstea	dy Method)		
Name of pr	oject : The l	Mineral Explor	ation in the Ya	nqul-Ghuzayn Area, Sultanat	e of Oman	Date tested : 2001/2/11	
Drill hole No.	: MJOY-W3 (2)				Measured by : Chandran Nair	
Test method			Recovery test	Length of testing section : L (cm)	5788	Classification of aquifer	Unconfined
Testing section (m)			17.12~75.00	Groundwater level : h ₀ (cm)	-1712	Ground level (m)	-
Inner diameter o	of pumping pipe	e : d (cm)	7.6	Diameter of drill hole : D (cm)	31.1	Weather	Fine
Gradient of line	ar part of logt ~	-t curve : m (s ⁻¹)	8.94E-05	Permeability coefficient : k (cm/s)	1.51E-06		
Time : t (s) 0 60 120 180 240 300 360 420 480 540 600 900 1200 1800 2400 3000 3600 4500 5400 6300 7200 8400	Groundwater level in the hole : h (cm) -6090 -6012 -5993 -5969 -5837 -5785 -5744 -5702 -5656 -5618 -5570 -5370 -5370 -5170 -4798 -4407 -4043 -3739 -3339 -2998 -2737 -2527	Level difference to original GWL : S (cm) 4378 4300 4281 4257 4125 4073 4032 3990 3944 3906 3858 3658 3458 3086 2695 2331 2027 1627 1286 1025 815	(iii) -5000 -5200 -5400 -5600 -5600 -5600 -6400 -6600 -6000 -6600 -6000 -6600 -6000 -000 -6000 -000 -6000 -000 -6000 -000 -6000 -000 -6000 -000 -6000 -0	200 400 800 1000 Time t (s)			logS~t curve 0
9600	-2328 -2175	616 463	Remarks :	Equations	used for permeabil	ity test	
10800	-2027	315			/ D) -m [m	7	

HEAD ASSAYS

Element	Unit	Rakah S/W	Hayl as Safil S/W	Rakah MS	Bishara Breccia
Au 1	ppm	0.46	0.13	3.74	1.06
Au 2	ppm	0.43	0.19	3.81	
Cu	%	1.15	0.915	1.82	1.45
Ag	ppm	<2	<2	9	3
Pb	%	<0.005	0.010	0.010	0.020
Zn	%	0.125	0.155	0.055	0.680
Fe	%	16.0	11.1	33.0	29.5
As	ppm	100	<50	1450	300
S	%	3.35	7.40	39.0	28.3
S ⁼	%	3.30	7.4	38.8	28.1
Bi	ppm	1.4	0.3	3.9	2.6
Cd	ppm	2.7	3.7	0.8	7.5
Co	ppm	75	84	175	230
Cs	ppm	< 0.1	<0.1	< 0.1	0.5
Ga	ppm	14	8.5	0.5	13
In	ppm	0.6	0.25	0.7	1.00
Мо	ppm	0.7	5	3.8	3.5
Ni	ppm	185	27	125	65
Rb	ppm	0.1	<0.1	0.2	7.0
Se	ppm	25	25	38.5	16.0
Te	ppm	0.8	1.2	18	1.5
Th	ppm	0.03	0.24	3.6	12.0
Tl	ppm	0.4	0.1	3.5	9.5
U	ppm	0.11	0.65	0.25	0.81
Y	ppm	4.5	3.3	0.3	7.0
Sb	ppm	<50	<4	67	<50

Appendix 4

Drilling equipments and consumed materials

Drilling equipment for metallurgical and geothechnical tests

	Rig-1	Rig-2	
Model	RAMROD-II	VOL-180	
Maker	Joy Manufacturing Co. USA	Voltas Ltd. India	
Mounting	Truck mounted 4WD	Truck mounted 4WD	
Drilling capacity with NX size wire line coring	450 m	650 m	
Angle hole drilling capacity	Upto 60 deg.	Vertical only	
Circulation pump	35 GPM 800 PSI	37 GPM 1000 PSI	

Drilling for metallurgical test: Rig-1 Mineral exploration drilling: Rig-1 and Rig-2

Drilling equipment for environmental survey

No.	DESCRIPTION	SPECIFICATION
1	Model - As per manufacturer's	Ingersoll Rand, T4W HP 900
2	Mast Rating / Max.Static Hook Load	31,750 Kgs
3	Draw Weight / Pull Back	17,000 Kgs
4	Pipe Racking System/Capacity	Swing In / Out Carousel ; 76.0 Mtr
5	Power Pack Engine Type / Capacity	GM 12V 71 TA ; 530 HP
6	Foam Injection Pump Type/Capacity/Pressure	Triplex single acting ; 95.0 Ltr/Min ; 3791.7 kPa
7	Rotary table / Type	Top Head Drive ; Hydraulic
8	Max.Torque /RPM	9763 Nm / 80 RPM
9	Table Opening	20 "
10	Levelling Jack	Two at drilling end & One at front
11	Tank volumes - Fuel	600 Litres
12	Working Clearance - below crown	8.2 Metres
13	Compressor for Air/Foam drilling, Type/Output	Screw Type ; 2412.9 kPa / 425 Lps
14	Power Source	Direct drive from Diesel engine
15	Overall Weight - Tonnes	24 T
16	Overall Length - Metres	10.7 M
17	Overall Width - Metres	2.4 M
18	Overall Height When Travelling - Metres	3.9 M
19	Is Rig Carrier or Trailer or Skid Mounted	Carrier Mounted
20	Carrier Engine - Type / Capacity	Cummins L1OC ; 240 HP @2100 RPM
21	No. of Front Axles	One
22	No. of Front Driving Axles	None
23	No. of Rear Axles	Two
24	No. of Rear Driving Axles	Two
25	Transport speed on graded roads	50 Km/Hr
26	Drill pipe	4 1/2" dia Internal up set, 25' long

.

Consumed material-(1) Exploration

Hole No.	MJOY-1	MJOY-2	MJOY-3	MJOY-4	MJOY-5	MJOY-6	MJOY-7	MJOY-8	MJOY-9
Bit: NW	1	1	1	1	1	1	1	1	1
Bit: NX	1	1	1	1	1	1	1	1	1
Bit: BX		-	-	-	_	-	-	_	
Light Oil (l)	30	25	30	30	35	30	35	30	20
Mud (kg)	240	210	260	200	280	260	280	260	160
Cement (kg)	100	100	150	100	150	150	150	150	150
			· · · · · · · · · · · · · · · · · · ·						
Hole No.	MJOY-10	MJOY-11	MJOY-12	MJOY-13	MJOY-14	MJOY-15	MJOY-16	MJOY-17	MJOY-18
Bit: NW	1	1	1	1	1	1	1	1	1
Bit: NX	1	1	1	1	1	1	1	1	1
Bit: BX	-	-	-	-	-	-	-		-
Light Oil (l)	20	20	20	20	20	20	20	20	20
Mud (kg)	110	140	110	110	120	140	120	110	110
Cement (kg)	100	100	100	100	150	200	100	100	200
Hole No.	MIOY-19	MIOY-20	MIOY-21	MIOY-22	MJOY-23	MIOY-24	MIOY-25	MIOY-26	MIOY-27
Bit: NW	1	1	1	1 .	1	1	1	1	1
Bit: NX	1	1	1	1	1	1	1	1	1
Bit: BX	-	-	-	-	-	-	-	-	-
Light Oil (l)	20	20	20	20	20	20	20	20	20
Mud (kg)	140	120	140	110	110	120	160	140	110
Cement (kg)	150	150	150	100	100	100	200	100	100

Consumed material-(1) Metallurgical test

Hole No.	MJOY-P1	MJOY-P2	MJOY-P3	MJOY-P4	MJOY-P5
Bit: NC	1	1	1	1	1
Bit: NW	1	1	1	1	1
Bit: NX	-	-	-	-	-
Light Oil (l)	20	20	20	20	20
Mud (kg)	120	100	150	150	170
Cement (kg)	150	100	160	200	150

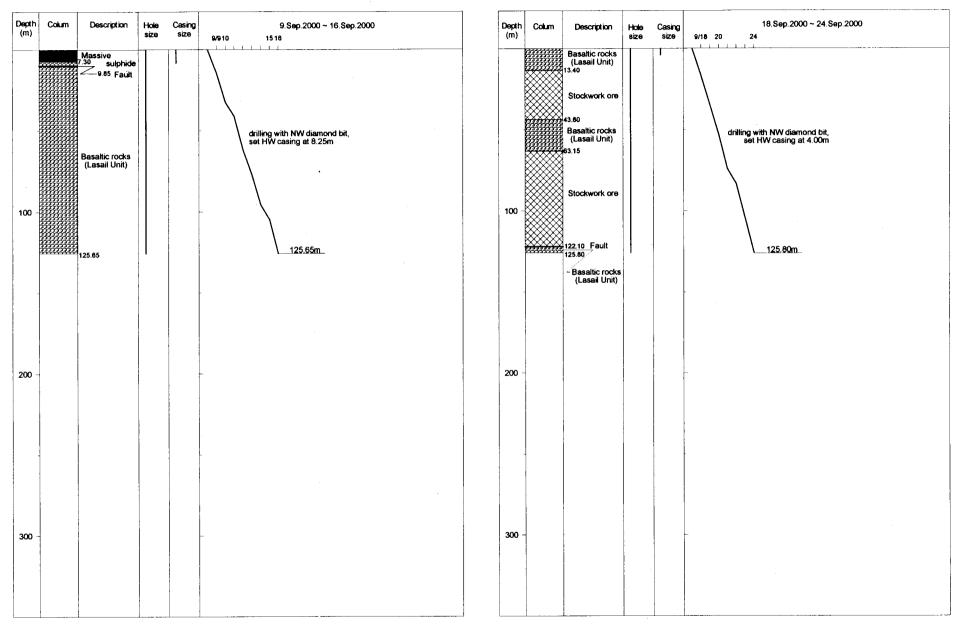
Consumed material-(2) Geotechnical test

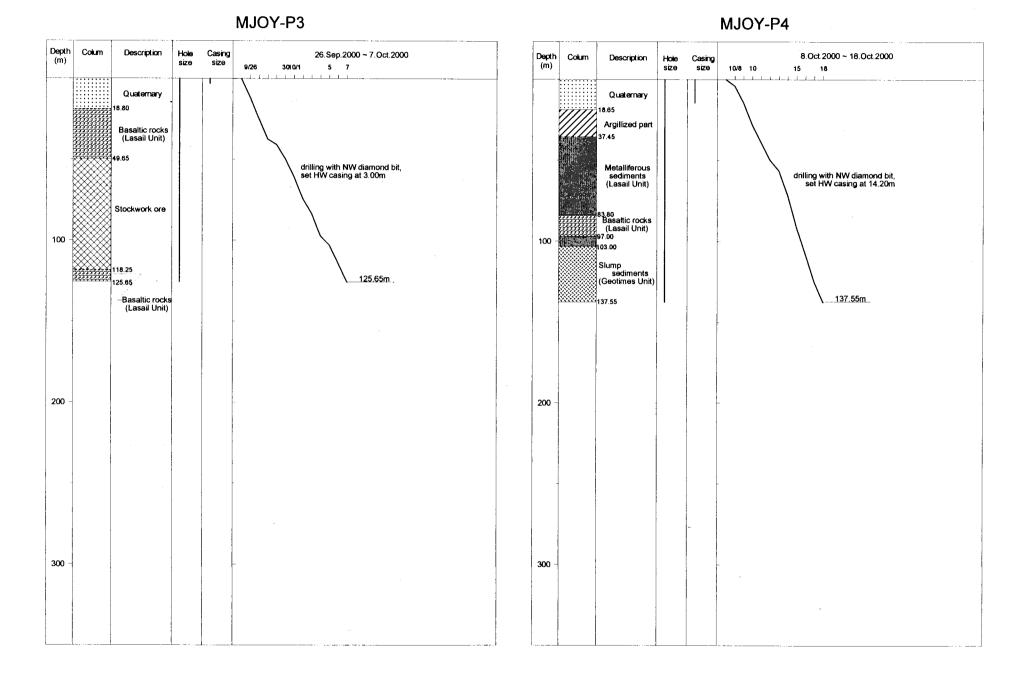
Hole No.	MJOY-T1	MJOY-T2	MJOY-T3	MJOY-T4	MJOY-T5
Bit: NC	1	1	1	1	1
Bit: NW	1	1	1	1	1
Bit: NX	-	-	-	-	· -
Light Oil (l)	10	10	10	10	10
Mud (kg)	60	70	130	70	120
Cement (kg)	100	130	180	130	160

Appendix 5

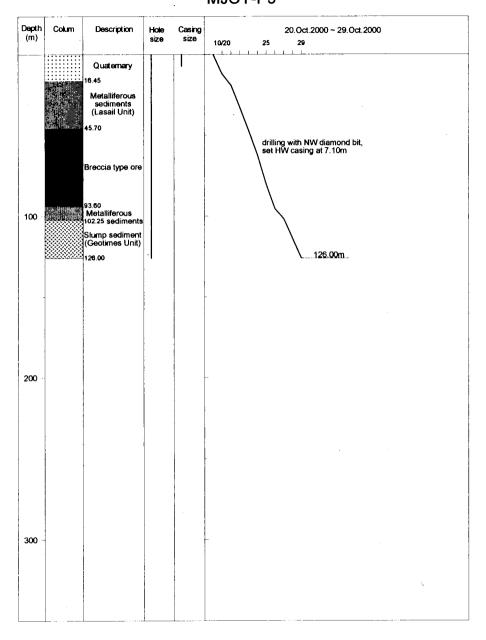
Generalized drilling results and progress record of drilling

Progress record of drilling for metallurgical test


	Hole No.		MJOY-P1	MJOY-P2	MJOY-P3	MJOY-P4	MJOY-P5
	Preparation Days	(A)	00/9/8 1	00/9/17 0.5	00/9/25 0.5	00/10/8 0.5	00/10/19 0.5
Drilling Priod	Drilling Days	(B)	9/9 to 9/16 8	9/18 to 9/24 7	9/26 to 10/7 11.5	10/8 to 10/18 10.5	10/20 to 10/29 10
D P	Removing Days	(C)	9/17 0.5	9/25 0.5	10/7 0.5	10/19 0.5	10/30 0.5
	Total days	(D)	9.5	8	12.5	11.5	11
Depth	Planned depth Drilled depth	(E) (F)	125m 125.65m	125m 125.80m	125m 125.65m	125m 137.55m	125m 126.00m
Recovery	Overburden Core length Recovery	(G) (H) (H/F)	0.00m 116.40m 93%	1.00m 123.95m 99%	1.00m 120.25m 96%	1.00m 125.70m 91%	0.75m 122.90m 98%
Casing	HW casing NW casing NX casing		8.25m - -	4.00m - -	3.00m - -	14.25m - -	7.10m - -
Rate	meter /day meter/ total day	(F/B) (F/D)	15.71m 13.23m	17.97m 15.73m	10.93m 10.05m	13.10m 11.96m	12.60m 11.45m

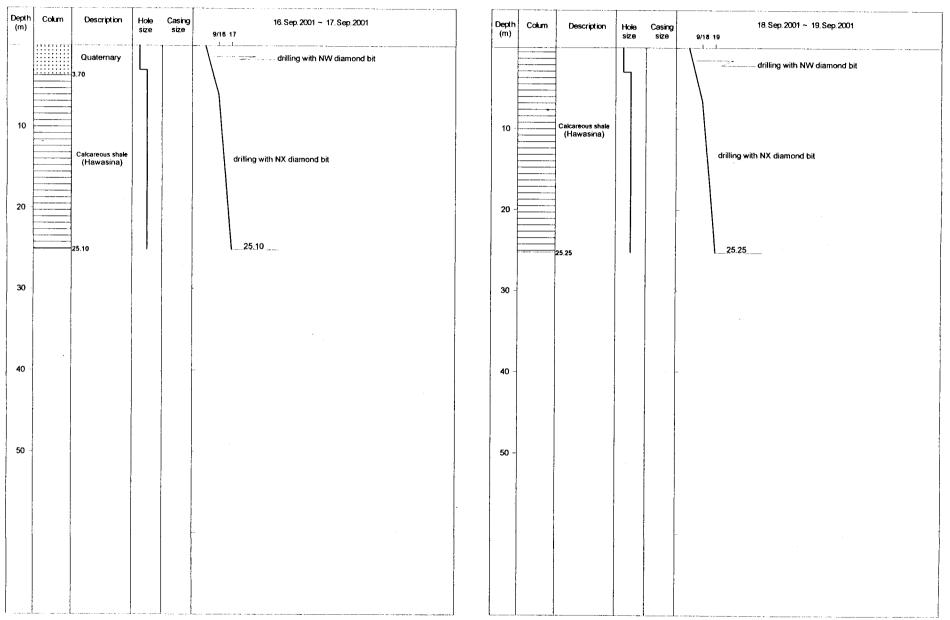

Progress record of drilling for geotechnical test

	Hole No.		MJOY-T1	MJOY-T2	MJOY-T3	MJOY-T4	MJOY-T5
	Preparation Days	(A)	01/9/16 0.5	01/9/18 0.5	01/'9/20 0.5	01/9/23 0.5	01/9/25 0.5
Drilling	Drilling	(B)	9/16 to 9/17	9/18 to 9/19	9/20 to 9/22	9/23 to 9/24	9/25 to 9/27
Priod	Days		1.5	1.5	2	1.5	2
Di	Removing	(C)	9/18	9/20	9/22	9/24	9/27
Di	Days		0.5	0.5	0.5	0.5	0.5
	Total days	(D)	2.5	2.5	3	2.5	3
Depth	Planned depth	(E)	25m	25m	25m	25m	25m
	Drilled depth	(F)	25.10m	25.25m	25.35m	25.15m	25.25m
Recovery	Overburden	(G)	3.70m	0.00m	0.00m	0.00m	3.00m
	Core length	(H)	23.60m	23.70m	25.35m	22.65m	24.25m
	Recovery	(H/F)	94%	94%	100%	90%	96%
Casing	HW casing NW casing NX casing		-	-	- 3.00m -	- 3.00m -	- 3.00m -
Rate	meter /day	(F/B)	16.73m	16.83m	12.68m	16.77m	12.63m
	meter/ total day	(F/D)	10.04m	10.10m	8.45m	10.06m	8.42m


MJOY-P1

MJOY-P2

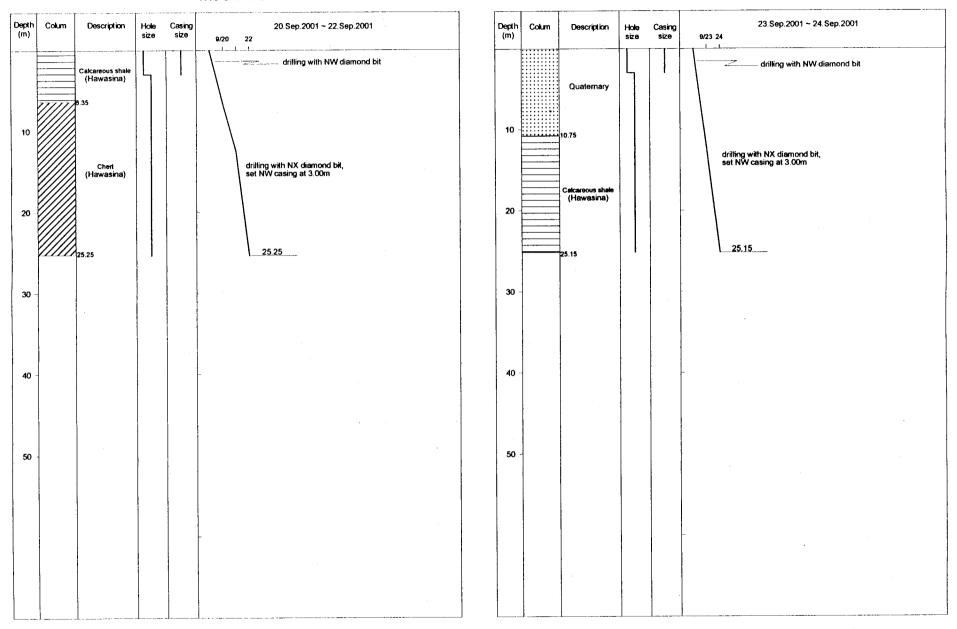
MJOY-P5

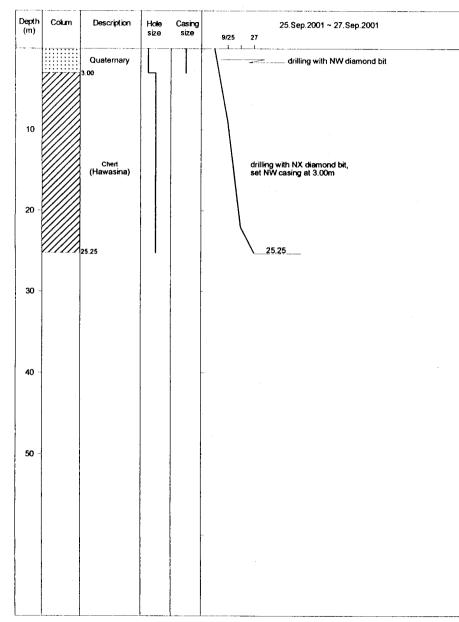


.

.

MJOY-T1


MJOY-T2

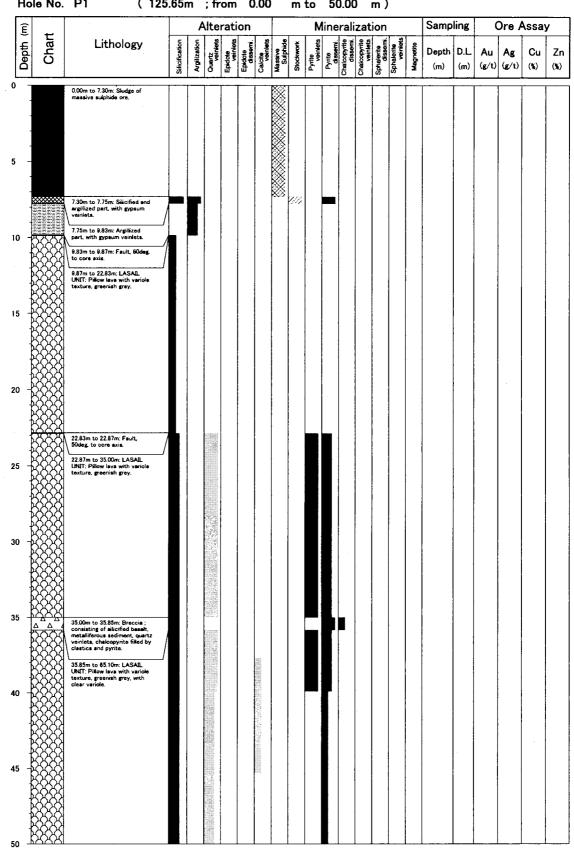


A – 125

MJOY-T3

MJOY-T4

MJOY-T5


A – 127

Appendix 6

Geologic core logs

Appendix 6A

Geologic core logs for the drill holes of metallurgical test

Hole No. P1 (125.65m; from 0.00 m to 50.00 m)

2

Ē				F	\lte	rat	ion				Μ	ine	rali	zat	ion			Samp	ling		Dre A	lssa	У
nepu (Chart	Lithology	Silicification	Argilization	Quartz veinlets	Epidote veinlets	Epidote diasemi	Celcite veinlets	Massive Sulphide	Stockwork	Pyrite veinlets	Pyrite dissemi.	Chalcopyrite dissemi.	Chalcopyrite veinlets	Sphalerite dissemi.	Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zr (%)
		35.85m to 65.10m: LASAIL UNIT: Pillow lave with variole taxture, greenish grey, with clear variole.																				;	
									-			·											
																			-				
-		BS.10m to 88.15m: Measive lava : greenish grey. G.15m to 57.30m: LASALL UHT: Pitow lava with variole tosture, greenish grey(Lasail unit). G7.30m to 69.30m: Messive																					
		lave ; greenish groy. 69.30m to 72.95m: LASAIL UNIT: Pillow lave with variols texture, greenish grey.																					
		72,95m to 78,80m: Massive lava : greenish grey.																					
		78.90m to 116.05m; LASAIL UNIT: Pilow lava with variole texture, greenish gray.																					
• • • •																							
4 - 1 - 1 - 1 - 1 - 1 - 1																-							
1																		6					

Ê		· · · · · · · · · · · · · · · · · · ·	Τ	A	lte	rati	on				M	line	erali	zat	ion			Samp	ling	(Dre /	Assa	v
Depth (m)	Chart	Lithology	Silication					Calcrie veinlets	Massive Sulphide	Stockwork	Pyrite veinlets	Pyrite diesemi	Chalcopyrite diasemi.	Chalcopyrite veinlets		Sphalerite veinlets	Magnetite	Depth (m)		Au (g⁄t)	Ag	Cu (%)	Zr (%)
۲ °	2222	78.00m to 118.05m; LASAIL UNIT: Pillow lave with variole texture, greenish grey.									I												
	3333																						
	<u> </u>																						
i -																							
	<u> </u>				4.0																		
-	<u> </u>																						
	<u> </u>																						
	- <u></u>										E												
	200																						
	~~~~ ~~~~	116.05m to 125.65m; Massive lava ; greenish grey.																					
	$\sim \sim $																						x
	$\langle \langle \rangle \rangle \langle \rangle \rangle$																						
-	v v v v																						
; _																							
-	<u> </u>	End of Hole : 125.85m	┍╼╹╽																				
-																							
-																					Ì		
										1													
-																							
1																							
-																							
-																							
Τ																							

Hole No. P1 (125.65m; from 100.00 m to 125.65 m)

		1	۵	lte	rati	on		<u> </u>		M	ine	rali	zati	ion			Samp	ling	0	Dre A	ssa	/
Chart	Lithology	Silicification	Argilization	Ouartz veiniets			Calcite veinlets	Massive Sutphide	Stockwork				Chałcopyrite veinlets		Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (∉∕t)	Ag (g/t)	Cu (%)	Zn (%)
	0.00m to 1.00m: Sludge.	1	1									r										
	1,00m to 7,85m: LASAIL: UNIT: Weathered pillow leve with mottled Cu oxide.								-													
	7.85m to 10.20m: LASA8_																					
	UNIT: Slightly weathered pillow lave.																					
	10.20m to 13.40m; Sheared zone.								727										-			
K K K K K K	13.40m to 31.35m. Stock ore zone: braccisted pert: breacise consisting of sälicified beset, quertz, chelcopyrite ; pyrite dominant in metrix.																					
	31.35m to 32.90m: LASAIL UNIT: Pittow lava ; light graenish grey, with variole tacture.																					
	32.90m to 43.60m; LASAIL UNIT: Palow lave, light grey, with variob texture, with highly alicified and breccisted part.					1																
	43.60m to 83.15m: LASAIL UNIT: Pillow leve : light greenish prey to greenish grey, with variole texture in places.																					
	UNIT: Pillow leve ; light greenish grey to greenish grey, with variole texture in																					

-1	le No.		125	<u> </u>											)0 				Samp	ling	1	)rc /	1000	
	Chart	Lithology	,	Silicification	Argilization	Ouertz Veinlets		Epidote		Massive Sulphide	Slockwork	Pyrite veinlets	Parite dissent	Chalcopyrite dissemi.	Chalcopyrite veinlets	phalerite dissemi	Sphakerite veinkets	Magnetite	Depth (m)		Au (g/t)	Ag	Assa Cu (%)	y z
5	, 2223	43.60m to 63.15m; LASAIL UNIT: Pillow lava : light				 	<u> </u>		T		L	L	L				 	 			i			L 
	<u>}</u>	UNET: Pillow lava ; light greenish grey to greenish grey, with variole texture is places.	n																					
)	388							:																
P	<u> </u>																							
k	<u> </u>																							
k	<u> </u>																							
Į	<u> </u>																							
ķ	<del>2624</del>																							
B	<u> </u>	63.15m to 122.10m: LASAE UNET: Pillow lava ; light gre	L Iy.																,					
þ	<u> </u>																							
ķ	888																							
P	<u> </u>										ĺ)													
k	<u> </u>																							
k	ŚŚŚ																							
k	<u> </u>										Ø)													
Þ	<u> </u>																							
₿	<u> </u>																							
P	3663																							
þ																								
k																								
ł	<u> </u>																							
Þ	綴																							
P	綴																							
	<u> </u>																							
	<u> </u>																							
k	綴															- 1								
k	<u>888</u>																							
2	<u> </u>																							
PPP	<u> </u>																							
R	<u> </u>																							

		Τ	A	lte	rati	on				М	ine	ali	zati	on			Samp	ling	(	Dre A	Assay	/
Chart	Lithology	Silicification	Argilization				Calcite vehilets	Massive Sulphide	Stockwork	Pyrite veiniets	Pyrite disserri.	Chalcopyrite disserni.	Chalcopyrite veinlets	Sphalerite disserri.	Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zr (%)
	83.15m to 122.10m; LASAL UNT: Pilow lave ; light grey. 122.10m; Fault ; 20deg to core exis.																					
	122.10m to 125.80m: LASAB_ UNIT: Pillow lave ; grey.					-																
	- - -																					
; ; -						-														r		

E)	L.			F	lte						N			izat				Samp	ling	(	Dre /	Assa	у
(m) Indan	Chart	Lithology	Strictication	Argilization	Quartz veinlets	Epidote veintets	Epidote dissemi.	Calcite veinlets	Massive Sulphide	Stockwork	Pyrite veinlets			Chalcopyrite veinlets		Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag	Cu (%)	Zr (%)
1		0.00m to 1.00m: Sludge	·				L					 				 	I		I	۱ ۱			I
	a a	1.00m to 18.80m; Consolidated alluvial deposits;																					
ł	a	calcrete																					
	a a a a																						
-	0.0.0 0.0																						
	a a a a a																	:					
	0 0 0 0 0																						
-	a . a . a																						
	a a a a																						
-	c c c			-																			
-																							
	. a . a																						
	 	18.80m to 19.60m; LASAIL																					
ł	<del>ČČČ</del>	UNIT: Weathered basaltic pillow lava																					
ł	<u> </u>	19.60m to 30.75m: LASAIL UNIT: Autobrecoiated basaltic																					
Ŕ	<del>}}}}</del>	pillow lava ; light grey color breccia with brown matrix.																					
Į	883																						
ľ	<u> </u>												ĺ										
Ł	<u> </u>					Ì																	
ł	1883																						
ł	X83																						
Į	3883																						
ł	266	30.75m to 45.05m: LASAIL																					
ł	888	UNIT: Autobreccisted baseltic pillow lave ; light grey color breccia with brown matrix.													ĺ								
ł	888	Brownish grey with brown matrix.																					
\$	888																						
₿	888																						
\$	883																						
ł	883																						
\$	888																		ĺ				
₿	888																						
₿	888												ĺ										
Ł	888																						
₿	888																						
-		45.05m to 49.85m; Gossanized metalliferous																					
1		constometatic acciment ; with angular gravel of stockwork																					
		ore.																					
Þ	SZ PA	49.65m to 51.85m: Breccia, breccia of stockwork, matrix is							2	22													

#### .... . .

Но	le No.	P3 (125	.65	m	; fr	om	5	0.0	0	m	to	10	00.0	ю	m )								
Ê				A	lter									zat				Samp	ling	(	Dre A	ssay	/
Depth (m)	Chart	Lithology	Silicification	Argilization	Quartz veinlets	Epidote veinlets	Epidote dissemi.	Calcite veinlets	Massive Sulphide	Stockwork	Pyrite veinlets	Pyrite dissemi.	Chalcopyrite dissemi.	Chatcopyrite veiniets	Sphalerite dissemi.	Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)
50 -		49.65m to 51.85m: Braccia, braccia of stockwork, matrix is matalliferous sediment. 51.85m to 89.60m: Stockwork ore ; highly silicified, braccias of beast and filling quartz, quartz voiniets in braccias.																					
55 - - -																							
60 -																							
65 -																							
70 -																					-		
75 -																							
80																							
85																							
90																							
95																							
100	<u>EZE</u>	99,60m to 109.20m: Stockwork ore with jasper brecciss	/			يل	1	1	<u> </u>	<u>IZ</u>	-	Ц.	1					1		1	1	1	1

O         Image: Construction of the second of the sec	Grad         Lithology         Normality and decident           100         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           100         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           100         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           100         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           100         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           101         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           101         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           101         102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           102 down to 102 down character         102 down to 102 down character         102 down to 102 down character           103 down to 102 down character         102 down to 102 down character         102 down to 102 down	ê l		125			 		1		 		 		Samo	ling	-	)re /	1000	
Hilden is 1920m. Blockerk. of with just brockerk. I Stome 1920m. Blockerk. I Stome 1920m. Blo	Norma 102 Dec Stochert of with jugge because USubment of 1975 Bachman to 1985 Bachman t	Chart	Lithology		Silicification			Calcite veinlets	Massive Sulphide	Stockwork				Magnetite	Depth	D.L.	Au	Ag	Cu	z (x)
Biodewerk ore, hiefy weinkes in Naccasa, with british in Receasa, with	Biodewerk ore : hely weindes in Neccisa, with beindes in Neccisa, with		99.60m to 109.20m: Stockw ore with jasper breccias	rork																
End of Hole : 125.65m	End of Hole : 125.65m		Stockwork ore ; highly silicified, breccies of baselt and filling quartz, quartz veinlets in breccies, with bornite in \$10.45m to																	
			zone, 50deg. to core axis. 118.95m to 125.65m: LASAD UNCT: Pillow lava ; greenish	/																
			End of Holo : 125.85m																	

## Hole No. P3 (125.65m ; from 100.00 m to 125.65 m )

Ho	le No.	P4 (137.	55r	n	; fr	om	0	.00		m	to	50	).00	)	m )								
Ê				A	lte	rati	on							zat				Samp	ling	C	Dre A	\ssay	/
Depth (m)	Chart	Lithology	Silicification	Argilization	Ouartz veiniets	Epidote veinlets	Epidote dissemi.	Calcite veiniets	Maserve Sulphide	Stockwork	Pyrtte veinlets	Pyrite dissemi.	Chalcopyrite dissemi.	Chakcopyrite veinlets	Sphalerite dissemi.	Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)
0 -		0.00m to 1.00m: Sludge.		[	· ·						I		Γ										
		1.00m to 18.65m:							ĺ														
		Consolidated alluvial deposits: calcrato.																					
	7 a <b>a</b> .											!		İ.					ĺ				
5 -																							
J	c c c																						
	a a a a a a																ļ						
	a a a a a																						х.
10 ·																							
	6.0.0																					İ	
	a a .						ļ											Ì					
	a a a a						ĺ																
15	0.0.0 0.0																						
	- a a	4																					
		q																					
		18.65m to 21.10m; Gossen.																					
20														1			ŀ						
											İ.					1		ļ					
		21.10m to 25.30m: Argilized part of metalliferous sediments; pinkish white.										Ì											
																			Ì				
25		25,30m to 28.70m: Silicified zone ; oxidized with iron stain.																					
		26.70m to 35.45m; Antillized																	ł				
		part of metalliferous acdiments; pinkish white.																					
													1										
30																							
		20 40 50 50																					
35												Ì											
	- · ·	35.45m to 40.55m: Grey to dark grey metalliferous sediments with small lens of																					
		pyrite, lemination in places(70deg, to core axis).																					
40	-																						
		40.55m to 43.40m; Sludge.	1																				
		43.40m to 48.40m: Grey	-																				
		43.40m to 46.40m Grey metalliferous sediments.																					
45																						1	
	-	48,40m to 48,10m; Mn rich black metalliferous sediments.	1																				
		48.10m to 50.65m: Grey to	-																				
		dark grey laminated metalliferous sediments with																					
50		pyrits thin layer(70deg, to core axis).	$\vdash$	.1_					1				Ĺ		<u> </u>			- I					

#### 50.00 0 00

-			1		\lte	rati	 	1			line	-	izat	lan			Samp	ling		700	Assa	
Chart	Litholo	gy	Silicification	Argilization	Ouartz veinlets		 Calcite veinlets	Massive Sulphide	Stockwork	Pyrite veinlets			Chalcopyrite veinlets		Sphalerite veinlets	Megnetite	Depth (m)		Au (g/t)	Ag	Cu (%)	y Z
	48.10m to 50.65m: Gr. dark grey laminated motaliferous acdimen pyrite thin layer(70de axis). 50.85m to 70.05m: Re brown metaliferous a	ts with g. to core ddiah																				
				- 																		
	70.05m to 70.55m; Gre grey addiment, laminat 70.55m(80deg, to core 70.55m to 74.85m; Rec brown metalliferous ad	ion in axis). Moish																				
	74.85m to 75.05m; Gre gray sediment 75.05m to 77.95m; Rec brown metalliferous se 77.95m to 83.35m; Rec brown metalliferous se	ldish Idiment. Idish																				
	with sandy pyrite-chai thin layer.	copyrite							-												-	
	<ul> <li>83.35m to 83.78m; Mas subplude with metallifo- sodiment lens.</li> <li>83.78m to 83.82m; Fau 60deg, to core axia.</li> <li>83.82m to 86.95m; LAS UNIT: Hyaloclastite with hematile rich matrix(g) shows variote texture).</li> </ul>	it,						<b>%</b> >											-			
	86.95m to 94,15m: LAS UNIT: Hysioclastitic pi with variole texture.	/																				
	94.15m to 97.00m: LAS UNIT: Pillow lava with texture. 97.00m to 102.98m: Re brown motalliferous se	variole ddiah																				
	Commencember our se	un ( ) rupi I lu																				

### Hole No. P4 (137.55m; from 50.00 m to 100.00 m)

			A	Alte	rati	on				Μ	ine	rali	zati	ion			Samp	ling	(	Dre A	ssa	y
Chart	Lithology	Silkchication	Argilization				Celcite veinlets	Massive Sulphide	Stockwork				Chalcopyrite veinlets		Sphalerite veinlets	Megnetite	Depth (m)		Au (g:∕t)	Ag	Cu (%)	Zr (%)
 	97.00m to 102.98m; Reddish brown metalliferous sedimen	t_																				
	102.98m to 103.02m: Fault, 70deg. to cores axis. 103.02m to 137.55m: Skampe																					
	motalificrous sedements, der grey to grey thin layer with reddish brown lens.	ĸ																				
																-						
																					-	
NNN																	-					
	End of Hole : 137,55m																					
-																						
-																					ļ	

#### Hole No. P4 (137.55m; from 100.00 m to 137.55 m)

Ê .				T	F	۱te	rati	on				M	line	rali	izat	ion			Samp	ling	(	Dre A	Assa	v
		Litholog	У	Silicification	Argilization	Quartz veinlets		Epidote dissemi:	Calcite veinlets	Massive Suiphide	Stockwork		Pyrite dissemi.	Chakcopyrite dissemi.	Chałcopyrite veinlets	Sphałerite disserni.	Sphalerite veinlets	Magnette	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	z (X
<u> </u>	 	0.00m to 0.75m; Sludge		1		i	F	[							19. 					I				 ا
		0.75m to 2.75m: Consolid alluvial deposits: calcret	lated	1																				
0.0	;; <b>0</b> ; 	-		_																				
a . a		2.75m to 3.25m: Sludge 3.25m to 16.45m:		1																				
		Consolidated alluvial dep calcrete.	osits:												ļ									
-0.0	: <b>D</b> .																							Į
a a						ĺ																		
0.0																								
- 0																								
	.:: <b>f</b>																							
	0																							
· · ·	: d																							
	d																							
-		16.45m to 20.10m: Reddi brown metalliferous sedi	sh nents:																					
-		alightly weathered.																						
-	-	20.10m to 27.30m																						
1.		Motalliferous sediment; reddish brown with whitis part, gossanised in place	ah 8.																					
	ч. н. 14 г.																							
	с. 1.																							
-																								
		27.30m to 33.60m: Argilli:	ed	1																				
		metalliferous sediments; grey color.	light																					
_																		Ì						
																				1				
												_						1						
		33.60m to 39.35m: Argilliz metalliferous sediments a pyrite layer and gravels li	with																					
		grey color.																						
	-19 -07: -17 -07: -17																							
	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10																							
	-10 -10 -10 -10	39.35m to 43.50m: Reddia																			1			
	<b>T</b>	brown metalliferous sedin with pyrite very thin laye	writs																					
	19 19 19																							
	1000	43.50m to 45.70m: Reddis brown metalliferous sedin	h hents	1																				
		with pyrite gravels.																						
		45.70m to 52.30m: Masaiv sulphide ; breccia type, w	ith	1						×1														
		accidental breccis of Las basalt, jasper, silicified ba	uit i							$\otimes$														
										$\otimes$														
									- 1	$\otimes$									ĺ					

#### Hole No. P5 (126.00m; from 0.00 m to 50.00 m)

.

.

Н	ole No.	P5 (126	.00r					0.0	0	m				)0									
Ê					lte									zat		, e		Samp	ling		Dre A	ssay	/
Depth (m)	Chart	Lithology	Sticification	Argilization	Ouertz veinlets	Epidote veinlets	Epidote dissemi.	Calcite veinlets	Massive Sulphide	Stockwork	Pyrite veinlets	Pyrite dissemi.	Chałcopyrite dissemi	Chalcopyrtte veinlets	Sphalente dissem	Sphalerite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)
50		45.70m to 52.30m; Massive sulphide ; breccie type, with accidental breccie of Lassi baselt, jasper, silicified baselt.																					
55		52:30m to 52:60m: Basalt dyke with cp. veinlets. 52:60m to 68.65m: Massive subplide : braccie type, with socidental braccie of Lessi besalt, jesper, silicified besalt.																					
															-								
60																							
65																							
		68.65m to 69.75m; Hyaloclastite.							ל		ſ	F									1		
70		69.75m to 81.30m; Massive subjide ; braccia type, with eccidental braccia of Lassi basalt, jasper, silicified baselt.																					
75																							
80																							
		81.30m to 93.60m; Reddish brown metaliferous sediment, with angular gravels of pycp.baselt; with synthetic pycp. layers.																					
85																							
90																					,		
95		93.80m to 102.25m: Reddish brown metalliferous sediments.																					
100					1							1								1			

	P5 (12	Т		\lte				<u> </u>			 zat	_			Samp	ling	(	)ro /	Assa	~
Chart	Lithology	Silicification	Argilization	Ouertz veiniets		Epidole dissemi.	Calcite veinlets	Massive Sulphide	Stockwork		Chalcopyrite C		Sphalerite veiniets	Magnetite	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	y Z
	93.60m to 102.25m: Reddish brown metalliferous sediments.																			
	102.25m 114.10m: Slumped mudstone with reddish brown metalliferous sediment lens and baselt breocia.																			
							-													
																7				
	114,10m to 118,80m; Reddish brown metalliferous sediment.						·													
	118.60m to 126.00m: Skamped mudstone with raddish brown metalliferous sediment lens.	-																		
	End of Hole : 126.00m																			
					-															
-																				
								:												

### Hole No. P5 (126.00m; from 100.00 m to 126.00 m)

## Appendix 6B

Geologic core logs for the drill holes of groundwater survey

D.H.No.MJOY-W1

Ele.	Depth (m)		Geology	Description	Groundwater	Remarks
			Wadi sediments	Mainly ultramatic gravels		
	10.00 - 13.00	-				
	-				-16.87m	
	20.00		Chert	Reddish brown, chert with intercalation of grey slate		
					-	
	30.00				-	
			Chert and slate	Reddish brown chert and grey slate	4	
	37.00 - 40.00		Slate	Grey, slate with small amount of reddish brown chert	-	

D.H.No.MJOY-W1

	D.MJUI	<u></u>	······································		· · · · · · · · · · · · · · · · · · ·	
Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
			Slate	Grey, slate with small amount of reddish brown chert		
	63. 00 - - 70. 00- 71. 00		Chert	Reddish brown	-	
			Slate	Dark grey, slate with intercalation of reddish brown chert	-	
	75.00		(End of hole.)	· · · · · · · · · · · · · · · · · · ·		
	-				_	

D. H. No. MJOY-W2

1	1	1	
١.	1	1	

• • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • •       •         • • • <td< th=""><th>Ele.</th><th>Depth (m)</th><th>Colum</th><th>Geology</th><th>Description</th><th>Groundwater</th><th>Remarks</th></td<>	Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
20.00 20.00 Cheri Reddish brown, chert with small amount of light green slate 30.00 Cheri Cheri Cheri Reddish brown, cheri with intercalation of grey slate		10.00-		Wadi sediments	unconsolidated	-	
Chert Reddish brown, Chert with intercalation of grey slate		- 20.00		Chert	Reddish brown, chert with small amount of light green slate	-19. 73m 	
		-				-	

D. H. No. MJOY-W3

(	2	)

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
			Slate	Dark grey		
	42.00-	v v v v v			-	
	-	v v v v	Basalt	Brown		
-	50.00-	v v v			-	
	54.00-	v v v v v				
	-     	v v v v	۰.		-	
	60.00-	v v v v v			_	•
		v v v v	Basalt	Dark grey~grey	-	
	-	v v v v			-	
	70.00-	v v v v v			_	
	75.00	v v v v	(End of hole.)		-	
			(End OI 11016.)		-	
-	-				-	

D.H.No.MJOY-W4

(	1	)	

Ele.	Depth (m)		Geology	Description	Groundwater	Remarks
		。 。。	Wadi sediments	unconsolidated	-9.09m . <del>v</del>	
	14.00 - -	00	Sand	Yellowish brown	-	
	18.00- 20.00- 22.00-		Slate	Grey, slate with quartz veinlets	-	
	30.00-		Basalt	Green, silicified basalt with quartz veinlets	-	
	35.50 -		Chert	Reddish brown, chert withintercalation of green basalt	-	

D. H. No. MJOY-W4

(	2	)	
•	_		

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	50.00-		Chert	Reddish brown, chert with intercalation of green basalt	- - - -	
	54.00 -				-	
	- 60. 00 -		Chert	Reddish brown, chert with intercalation of grey slate	-	
	70.00-					
	-		(End of hole.)		-	

D. H. No. MJOY-W5

(	1	)

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
			Wadi sediments	Gravels consisting of ultramatic rocks, basalts, reddish brown chert	-19. 89m	
		v v v v	Basalt	Reddish brown	-	
		v v v v	Basalt	Reddish brown∼grey	- -	
	30.00 31.00 32.00	v <u>v.∵v</u>	Basalt	Light greenish grey, silicified basalts, pyrite disseminated	-	
	40.00		Basalt	Dark grey~brownish grey		
	10.00-					

D.H.No.MJOY-W5

(	2	)
×	•	/

	<b>D.MJU</b>	<b>n</b> J		(-)	•	
Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	42.00-	v v v	Basalt	Dark grey~brownish grey		
	46.00-	v v v v v v	Basalt	Dark reddish brown	-	
	- 50. 00-	v v v v v	Basalt	Dark grey~brownish grey	-	
	53.00 - - - - - - - - - - - - - - - - - -	v v v v v v	Basal t	Dark grey		
	65.00 70.00-		Basalt	Dark grey~brownish grey	-	
	75.00		(End of hole.)		-	