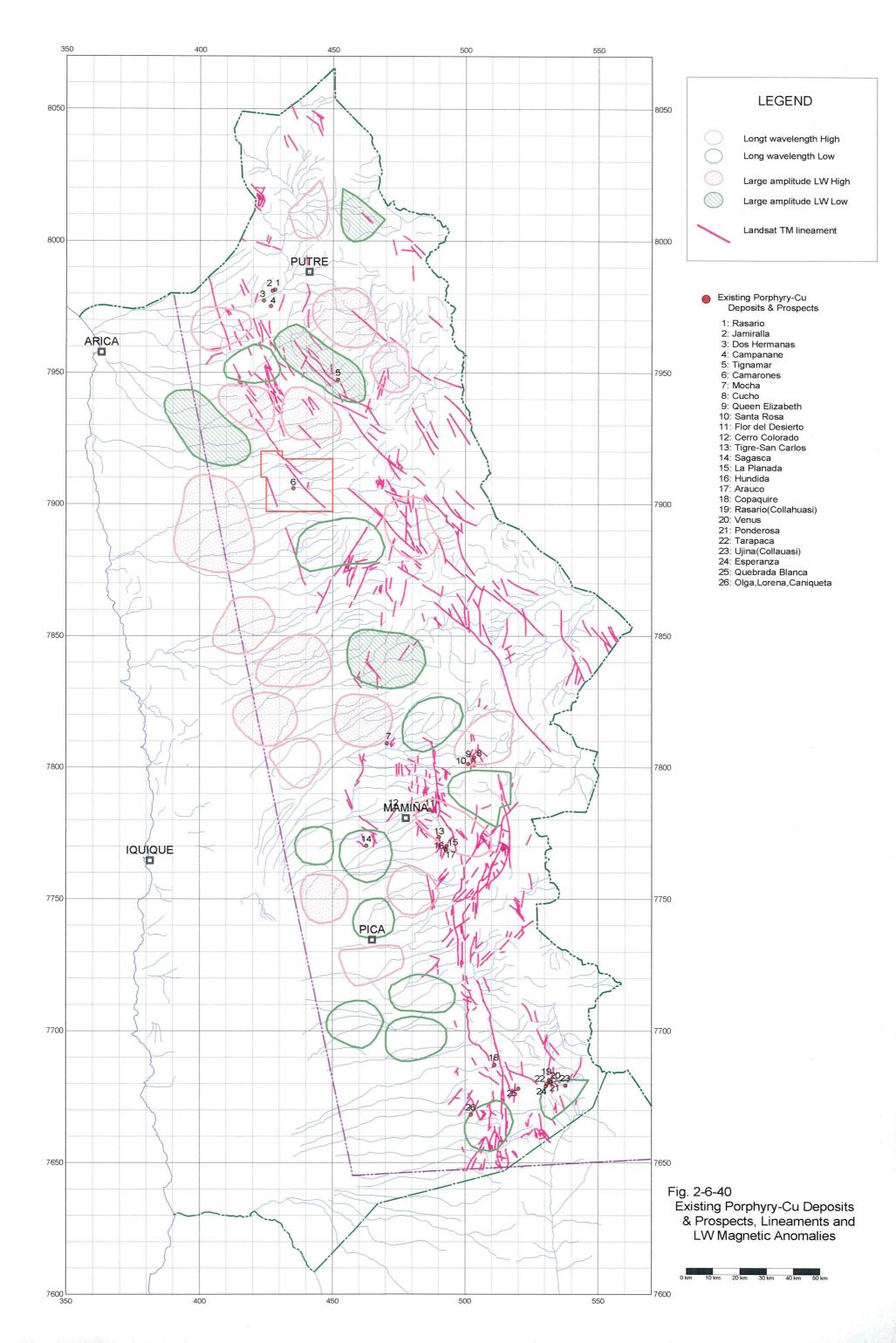
7600 L 350 350


400

400

450

550

500

 $-647 \sim 648$ -

Table 2-6-5 Characteristic Relations between Porphyry-Cu Deposits and Magnetic Anomalies

		Coordii	nate(km)		Medium wa	velength a	anomaly				Short	waveleng	th Anomaly				
No.	Name	Northing	Easting	Neighboring anomaly (No.)	Position/Distance(km) from Prospect/Deposit	Paleo- magnetism	Geology of anomaly area	Suscep. of Anomaly area	Neighboring anomaly (No.)	Position/Distance(km) from Prospect/Deposit	Relation with MW anomaly	Paleo- magnetism	Geology of anomaly area	Suscep. of Anomaly area	Correlation with topography	Correlation with volcano	24,475 - 24,525 nT RTP zone
1	Rosario	7981.434	428.160	-	Far (8.0km)	-	Tig,Qv	Low	L(23)	Mo (1.0km)	F (0 Flue)	-	Tig,Qv	Low			С
2	Jamiralla	7981.042	427.199	-	Far (8.0km)	-	Tig,Qv	-	L(23)	Мо	Far (2.5km)	-	Tig,Qv	Low	No	No	С
3	Dos Hermanas	7977.300	423.900		Far (5.0km)	-	Tig,Kv(i)	-	H(37)	Mo (1.0km)	Far (3.5km)	-	Kgd,Tig	High	No	No	М
4	Campanane	7975.231	426.572	L(9)	Far (3.0km)	-	Tig,Kv(i),Kdg	-	L(32)	M	Far (1.5km)		Tig,Qv	Low	No		М
5	Tignamar	7947.289	451.872	H(11)	Mi (1.0km)		K (a) Ov Ovr		H(42)	Far (3.0km)	M	-	Kv(i),Tig	-	No	No	
6	Camarones	7905.880	435.120	L(25)	M M		,K v (s),Qv,Qvr Qvc,Tig,Kv(i)	Low	L(55)	Mo	M	-	Kv(s),Qvr	Low	No	No	M
7	Mocha	7809.106	470.379	L(49)	Mo (1.0km)		Tig,Kv(i),Jm(s),Kdg	Low	H(96)	Mo (1.5km)	Mo (1.0km)	-	Tig	Low	No	No	M
	Cucho,	7000.100	410.070	L(48)	Mo (1.5km)	-	Qv,Jm(s),Qvr	Low	L(142)	Mo (0.5km)	M	-	Tig,Qvc,Kv(i)	High	No	No	M
8,9, 10	Queen Elizabeth, Santa rosa	7803.670	504.211	H(44)	M (1.5km)	-	Kgd,Qv	Low High	H(204)	М	М	-	Jm(s),Tig,Qvc,Qv	High	No	No	М
11	Flor del Desierto	7702 040	100 500	1.(5.4)		11(0.0)			L(171)	M	М	_	Kv(i),Kgd	_			
	Flor del Desierto	7783.848	486.599	L(54)	M	N(3.0)	Kv(i),Tig,	Low	H(224)	M (0.5km)	М		Kv(i),Kgd	-	No	No	М
12	Cerro Colorado	7783.799	473.117	H(49)	М	N	Kv(i),Qvc,Kgd,Tig	High	L(168)	Far (2.0 km)	М	-	Kv(i),Tig,Qvc	-	No	No	М
13	Tigre-San Carlos	7773.463	490.112		М	-	Kv(i),Tig,Kgd,Qvc	Low		Far (4.0km)		-	Kv(i),Kgd	-			M
15	La Planada	7770.086	492.991	1 (50)	Mi (1.5km)	-	Kv(i),Tig,Kgd,Qvc	Low		Mo (1.0km)			Kv(i),Kgd	Low			M
16	Hundida	7769.089	492.444	L(59)	Mi (2.0km)	-	Kv(i),Tig,Kgd,Qvc	Low	H(245)	Mi (0.5km)	! [Kv(i),Kgd	Low	No	No	М
17	Arauco	7768.622	492.700		Mi (1.5km)	-	Kv(i),Tig,Kgd,Qvc	Low		Mi (1.0km)			Kv(i),Kgd	Low			M
18	Copaquire	7687.116	511.023	L(73)	M	-	Jm(s),Kv(m),Kv(i)	Low	H(294)	M	М		Kv(i),Qcp	Low	No	No	М
19	Rosario(Collahuasi	7681.321	531.544		Mo (0.5km)	R	Jm(s),K v (i),Kv(m)	Low		Far (2.5km)			Kv(i),Kv(m),Kgd	Low			M
20	Venus	7680.891	532.121	1 (75)	M	R	Jm(s),K v (i),Kv(m)	Low		Far (3.0km)		-	Kv(i),Kv(m),Kgd	Low			M
21	Ponderosa	7680.448	532.225	L(75)	Mo (0.5km)	R	Jm(s),K v (i),Kv(m)	Low	H(306)	F(2.0)	M		Kv(i),Kv(m),Kgd	Low	No	No	Mo (0.5km)
22	Tarapaca	7680.008	530.768		Mi (0.5km)	R	Jm(s),K v (i),Kv(m)	Low	'	Far (1.5km)			Kv(i),Kv(m),Kgd	Low			Far (1.0km)
23	Ujina(Collahuasi)	7679.299	537.701	L(76)	С	_	Kgd,Kv(i),Tig,Qcp	Low	H(303)	Mo(0.5)	1		Tig,Qvc	Low	No		Far (2.5km)
24	Esperanza	7679.012	530.455	1 (75)	М	R	Jm(s),K v (i),Kv(m)	Low	H(306)	Mo(0.5)	М	-	Kv(i),Kv(m),Kgd	Low			Mo (0.5km)
25	Quebrada Blanca	7678.106	520.079	L(75)	Mo (2.5km)	R	Jm(s),K v (i),Kv(m)	Low	11/05=:		М						
	Queblada Blatica	7070.100	520.078	H(71)	Mi (0.5km)	R	Pzg,Kv(m),Kv(i),Kgd	High	H(305)	Mo(1.5)	Mo (0.5km)	R	Kv(m)Kv(i)	Low	No	No	М
26	Olga,Lorena, Caniqueta	7668.305	502.181	L(78)	M	-	Jm(s),Pzg,Pc,Kgd	-	-			-		-	No	No	M

N:Normal

R:Reverse

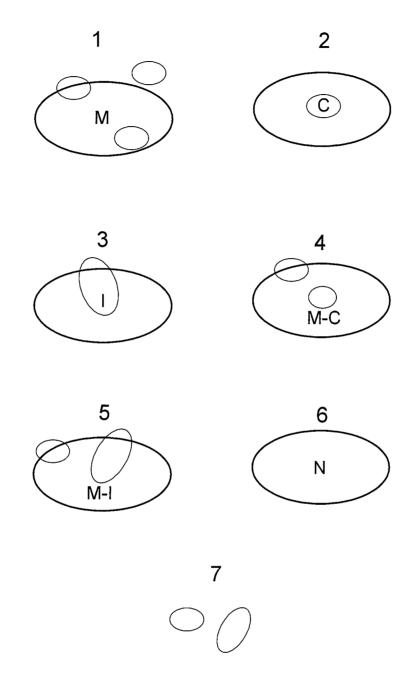


Fig. 2-6-41 Schematic relations between SW and MW Magnetic Anomalies

350

400

450

500

550

PART III CONCLUSIONS AND RECOMMENDATIONS

PART III CONCLUSIONS AND RECOMMENDATIONS

CHAPTER 1 CONCLUSIONS

During the course of the three year period of fiscal 1999 to 2001 of the Region I area mineral exploration, analysis of existing data, analysis of satellite images, geological survey, geochemical exploration, gravity survey, airborne magnetic survey, re-analysis of the airborne magnetic survey results and drilling were carried out with the following conclusions.

- 1. Many alteration zones were extracted in Paleogene and older formation and vicinity and in Miocene-Quaternary volcanic rocks by TM image analysis. These alteration zones are aligned in the NW-SE~NNW-SSE direction in the northern part, and in N-S~NNW-SSE direction in the central to the southern parts of the survey area. The above direction of alteration zone alignment is harmonious with the prominent direction of the lineaments developed in the alteration zones.
- 2. Analysis of images of visible near infrared-short-wave infrared region, short-wave infrared region, and thermal infrared region was carried out and the following results were obtained. Detailed geologic structure was clarified; alteration zones consisting of sericite, kaolin, alunite, and silica were extracted at Tignamar, Palca, Queen Elizabeth, Cerro Colorado, Copaquiri, and Collahuasi areas; and sericitized zone was extracted at Mocha area.
- 3. Mineralization of the known deposits and mineral prospects of the survey area was classified from the analysis of existing data on geology and ore deposits. And porphyry copper-type mineralized zones and possibly closely related prospects (Mo veins, irregular Cu, Cu veins, unknown-shaped Cu, Au veins, unknown-shaped Au) were selected.
- 4. Many mineral prospects closely related to porphyry copper-type mineralized zones are distributed in Paleocene-early Eocene porphyry copper belt in the northern part, and in Paleocene-early Eocene and late Eocene-early Oligocene porphyry copper belts in the central to southern parts of the survey area. Epithermal mineralized zones related to Miocene-Quaternary igneous activity occur in the northern to central parts of the area and some of it is believed to overlap with the porphyry copper mineralized zones.

- 5. Porphyry copper mineralized zones and possibly closely related prospects occur in and near Cretaceous-Tertiary intrusive bodies (plutonic and hypabyssal rocks).
- 6. Porphyry copper mineralized zones occur; in the northern and central parts in Cretaceous-Tertiary intrusive bodies or in Cretaceous volcanic rocks, and in the southern part in Paleozoic sedimentary and volcanic rocks, Cretaceous volcanic rocks, Paleozoic granitic rocks, or in Cretaceous-Tertiary intrusive bodies.
- 7. Faults on geological maps and fractures expressed as lineaments extracted from TM images are fractures which are generally closely related to the occurrence of ore deposits and prospects. The direction of the lineaments near the deposits and prospects is diverse. The porphyry copper mineralized zones occur either in the peripheries of the zones where lineaments are developed (Cerro Colorado, Collahuassi, etc.,) or near the center of lineament concentration (Quebrada Blanca, Copaquire, etc.).
- 8. In the central and southern parts many mineral prospects including porphyry copper mineralized zones occur in the alteration zones or vicinity, while in the northern part many of them occur in localities where alteration zones have not been extracted.
- 9. Assuming that hydrothermal activity related to mineralization is effective within a range of 4km from the alteration zones and ore deposits and prospects, hydrothermal zones are generally elongated in the NNW-SSE direction, but existence of those elongated in the E-W direction intersecting the major NNW-SSE direction is inferred. The known porphyry copper mineralized zones occur in this E-W hydrothermal system. The hydrothermal zones coincide with lineament concentration in the central and southern parts, but the correlation between the two is relatively poor in the northern part, with better coincidence with the distribution of Miocene Quaternary volcanoes.
- 10. The following localities were selected as promising for porphyry copper occurrence by analysis of existing data and satellite images.

Porphyry copper-type mineral prospects and within 4km range.

Mineral prospects possibly related to porphyry copper mineralization in Oligocene and older formations (Mo veins, irregular Cu, Cu veins, unknown-shaped Cu, Au veins, unknown-shaped Au) and alteration zones (acidic alteration zones and sericitized zones extracted by GEOSCAN image analysis and alteration zones extracted by TM image

analysis), and within 4km of the above.

11. Reconnaissance surveys were carried out at eight localities. These localities were extracted as promising for locating mineral deposit by analyses of existing data, satellite images, and other relevant information. These surveys confirmed that the localities with geologic characteristics of porphyry copper mineralization and mineral potential are; Mocha-Soledad district, La Planada district, Queen Elizabeth district, Tignamar district, Camarones district, and Diana district. Drilling in parts of the Mocha-Soledad, Tignamar, and Camarones district discovered porphyry copper-type secondary enrichment zones. Of these districts, most potential localities, from the intensity of Cu-Mo mineralization, are concluded to be the Queen Elizabeth and La Planada districts.

In the Mocha-Soledad district, there is a possibility of porphyry copper deposit occurrence at northeastern Mocha and between eastern Mocha and Soledad aside from the deposits confirmed in the Mocha district.

In the Tignamar district, there are alteration zones at two locations, namely in the northern and southern parts. The occurrence of porphyry-type mineralization has already been confirmed on the northern side of the northern part of the district. And although there are room for further exploration outside the drilled zones, there are negative factors regarding the further development of porphyry-type-mineralized zone such as propylitic alteration and the possibility of dominant epithermal-type mineralization. In the southern side of the northern part, there are wide occurrences of altered zones, which could not be surveyed this year, and there are rooms for further exploratory work, but the topography is rugged and the access is difficult.

In the Camarones district, a regional hydrothermal alteration zone was confirmed between the Quebrada Camarones and the southernmost part of the survey area. This regional alteration zone is believed to have been formed by a series of hydrothermal activity from porphyry copper-type to epithermal-type activity. The location of the center of this activity, namely the porphyry copper zone, was inferred from the study of annular structure, distribution of intrusive bodies, fluid inclusion data, geochemical anomalies, high magnetic anomalies, gravity anomalies, and other relevant data. The known copper mineralization in quartz porphyry host rock could possibly be a peripheral phase of this porphyry copper mineralization.

In the Diana district, the alteration zone is similar to the Au-rich mineralization • alteration zone formed above porphyry copper deposits. Thus there is a possibility of porphyry copper deposit occurrence in subsurface zones.

- 12. A total of 14 areas were surveyed with the purpose of verifying promising areas extracted from the results of airborne magnetic survey analysis, and also for geological reconnaissance. Two areas, namely Chusmisa and Camiña, were extracted as having high mineral potential. These two areas show geological features characteristic to porphyry copper type mineralization. Namely; the laterally extensive occurrence of phyllic alteration, the existence of porphyry or granitic rocks associated with mineralization, and the occurrence of intrusive igneous bodies with age (65~48 Ma) similar to the porphyry copper deposits in northern Chile~Peru. But quartz vein network and Cu, Mo rock geochemical anomalies were not observed. The pyrite dissemination zone in quartz porphyry in the western alteration zone of Camiña area is similar to the "pyrite shell" of the San Manuel Kalamazoo model of Lowell & Guilbert (1970).
- 13. South of Chusmisa, Paleocene-Early Eocene (65·48Ma) porphyry copper belt and Late Eocene-Early Oligocene (43·31Ma) porphyry copper belt occur parallel with border extending almost in the N·S direction, to the north of Chusmisa, however, Paleocene-Early Eocene porphyry copper belt is developed and the Late Eocene-Early Oligocene belt is intersected by Neogene-Quaternary volcanic rocks. In the area between northeast of Chusmisa and Tignamar, there is a possibility of Late Eocene-Early Oligocene porphyry copper belt hidden below Neogene-Quaternary volcanic rocks, and possibly not existing.
- 14. High gravity anomaly occurs in the following localities; extensive area from the eastern to southeastern and southern part of the Camarones district, western margin of the survey area, and from middle stream of Quebrada Camarones to the west of Pachica. On the other hand, low gravity anomaly occurs in; wide area from the middle stream of Quebrada Vitor to the middle stream of Quebrada Sucuna in the northern part of the survey area, southern bank of the Quebrada Camarones in the southwest, and upstream Quebrada Sucuna in the northeastern margin.

The drainage zone of the Quebrada Camarones is in high gravity zone with the exception

of a part of the southwest. The low gravity anomaly zone at the middle stream of Quebrada Vitor to Quebrada Sucuna has relatively high gravity at its eastern, southern, and western border and has a clear outline.

Basement complex in the Camarones district is closely related to high gravity anomaly. This is evidenced by the high density, 2.50~2.80g/cm³, of the rock samples. The high gravity anomalies indicate either surface exposure of the basement complex or its occurrence in shallow subsurface zones, namely either the lack or thin ignimbrite cover. On the other hand, the low gravity anomalies indicate deep basement complex and thick overlying ignimbrite. Three-dimensional two-layer modeling results show that the thickness of the ignimbrite cover is more than 500m at the extensive zone from the middle stream of Quebrada Sucuna to middle to upstream of Quebrada Vitor, and a belt on the southern bank of the upstream to middle reaches of Quebrada Camarones. It is estimated that the thickness would attain more than 1,000m in the high elevation zone in the northern to northeastern part and in the southeastern part of the survey area.

Extensive subsurface occurrence of intrusive bodies is inferred form the distribution of the high gravity anomalies and magnetic anomalies at; southern part of the survey area, near Esquiña in the central part, and east of Pachica. Parts of the intrusive bodies are exposed on the surface, and the overlying volcanic rocks are estimated to be less than 200~300m thick. These zones should be considered for future exploration. Results of analysis indicate that the basement complex occurs in shallow subsurface zones at; near Saguara in the east, downstream zone of the Quebrada Sucuna in the west, and downstream zone of the Quebrada Camarones. Notable magnetic anomalies, however, were not detected in these localities.

- 15. Subsurface geologic structure of the whole survey area was clarified by airborne magnetic analysis, and the northern continuity of the fault system related to mineralization was confirmed. An example would be the Domeyko Fault.
- 16. Magnetic susceptibility was measured for the whole area, and the results were provided for the re-analysis of the airborne magnetic survey which was carried out during the year 2000. The relation between the magnetic susceptibility and the rock species and alteration was clarified. The intrusive rocks have the highest magnetic susceptibility. The susceptibility decreases by phyllic and acidic alteration, but is not affected by propylitic alteration.

- 17. The remanent magnetism and magnetic susceptibility of samples mainly collected from outcrops of the vicinity of medium wavelength airborne magnetic low anomalies were measured. The polarity of the remanent magnetism of 6 localities out of 14 is estimated to be reverse. Also as low airborne magnetic anomalies occur in areas of high surface magnetic susceptibility, it is inferred that many airborne low magnetic anomaly zones with reverse magnetic polarity exist in the survey area. Reverse magnetic polarity and high magnetic susceptibility zones with low airborne magnetic anomaly possibly indicate blind igneous intrusion or solidified magma. This naturally is the case with high airborne magnetic anomaly areas.
- 18. Phyllic or acidic alteration zones were confirmed in 9 areas out of the 14 surveyed. These alteration or mineralized zones occur in; the periphery or vicinity of medium wavelength airborne magnetic anomaly zones, within or vicinity of intermediate magnetic intensity zones, and the periphery or vicinity of short wavelength anomaly zones. In these cases, about half of the medium wavelength anomalies are high anomalies and the other half low anomalies, but about 70% of the short wavelength anomalies are high anomalies. It can be said that magnetic anomalies occur near alteration zones, mineralized zones, and intrusive bodies, but the reverse is not necessarily true. And magnetic anomalies (overlap of the periphery of medium wavelength magnetic anomaly and intermediate magnetic intensity zones) do not necessarily indicate the existence of alteration zones, mineralized zones, or intrusive bodies in the shallow part.
- 19. A total of 12 holes were drilled in the overlapping zones or their vicinity of intermediate airborne magnetic intensity zones and medium wavelength magnetic anomalies. Of these, 3 holes (MJC-1, 11, 12) in the Camarones area reached the pre-Early Oligocene formations which is the porphyry copper bearing horizon. MJC-1 and MJC-11 both confirmed quartz porphyritic brecciated intrusive rocks and quartz porphyry intrusive bodies, and strong pyrite mineralization. Quartz porphyry is the host rock of the Camarones Porphyry Copper Prospect. It is highly possible that these two drill holes located porphyry copper type mineralization and alteration. MJC-12 confirmed the occurrence of quartz diorite which is believed to be the product of Early Eocene activity, and also confirmed weak pyritization.

On the other hand, the 9 holes drilled in other areas penetrated Oligocene-Miocene

conglomerate or through younger units. MJC-10 in area northeast of Camiña confirmed the occurrence of pyritization and epithermal type mineralization and acidic alteration zone in Tertiary-Quaternary volcanic rocks.

- 20. The relation between the basement depth and medium wavelength airborne magnetic anomalies or short wavelength magnetic anomalies cannot be determined from the geology of the drill holes and the changes of magnetic susceptibility of cuttings. The distance from the surface distribution of the pre-Oligocene area to the drilling site is less than 1km and this short distance is believed to be the reason for engaging the pre-Oligocene Series in Camarones area.
- 21. The general trend of the magnetic susceptibility changes of the cuttings corresponds to the changes of the geology of the drill holes. Namely the susceptibility of the mafic igneous rocks are high, and the Tertiary System and Neogene-Quaternary conglomerates are higher than that of pyroclastic rocks and shallow gravel layers. Also the magnetic susceptibility of phyllic alteration zones, acidic alteration zones, and oxidized zones are relatively low and that of the propylitic alteration zones is high.
- 22. Frequency analysis of the airborne magnetic survey data revealed magnetic anomaly patterns characteristic to porphyry copper mineralized zones. This pattern consists of a relatively large medium wavelength magnetic anomaly, small short wavelength magnetic anomalies, and intermediate magnetic intensity zones.

The genesis of this magnetic anomaly pattern is considered as follows. Medium wavelength magnetic anomaly was formed by batholithic complex body, which is a product of activity precursory to porphyry copper type mineralization. While short wavelength magnetic anomalies were formed by the plutonic and hypabyssal rocks including the ore deposits, and the intermediate magnetic intensity zones expresses the hydrothermal alteration zones associated with igneous intrusive activity.

23. During the process of delineating promising areas using these magnetic anomaly patterns, it is necessary to consider the following. Namely, similar magnetic anomaly patterns may appear in volcanic areas; intrusive igneous bodies may lose magnetism in large-scale alteration zones and may not be extracted as short wavelength magnetic anomalies; medium wavelength magnetic anomalies may not occur because of the interaction and mutual elimination by induction magnetism and remanent magnetism.

and medium wavelength magnetic anomalies may be formed by topography and conglomerate formations.

CHAPTER 2 RECOMMENDATIONS FOR THE FUTURE EXPLORATION

Cooperative mineral exploration carried out in the Region I Area during the past three years resulted in the acquisition airborne magnetic data, geological and geochemical data, and other information which are very relevant for mineral exploration of the area. As this area is considered to be highly prospective regarding porphyry copper deposits, it is recommended that future prospecting be carried out fully utilizing these data.

It would be desirable to take note of the following points in the future work.

1. Survey Methods

In this area, thick young volcanic rocks cover the surface and it is difficult to detect the mineral deposits lying under these rocks. Airborne magnetic survey and gravity survey were implemented in order to clarify many of the problems concerning the geology of the area. The potential and problems of these methods are as follows.

(1) Airborne magnetic survey

CODELCO has shown that high macroscopic correlation exists between the major porphyry copper deposits of northern Chile and transverse magnetic anomalies. This fully applies to the major porphyry copper deposits in the central to southern parts of Region I. But transverse magnetic anomalies are not clear in the northern part, and thus in the present survey investigation was not limited to transverse magnetic anomalies, but all magnetic anomalies were analyzed and examined. Frequency analysis was adopted in order to consider the relation between porphyry copper deposits and magnetic anomalies in the level of individual anomalies. The existence of magnetic anomaly patterns each consisting of a set of medium wavelength magnetic anomaly, short wavelength magnetic anomalies, and intermediate magnetic intensity zones was discovered characteristic to known porphyry copper mineralized zones. Pattern analysis was carried out for these magnetic anomaly sets, and the results were applied to the survey area and promising zones for mineral prospecting were extracted on this basis.

Regarding the extracted promising zones, confirmation of alteration zones, mineralized zones,

and of related igneous bodies will be the next step. Two-dimensional or 3-dimensional detailed modeling using airborne magnetic data is believed to be effective for determining the existence and scale of such igneous bodies. Modeling will not necessarily provide accurate information regarding the depth of these bodies and thus application of other methods (drilling, gravity, electromagnetic methods and others) is recommended.

(2) Gravity survey

The results of gravity survey carried out during the second year are believed to be effective for understanding the geologic structure such as the thickness of ignimbrite, but since the method is expensive in terms of areal coverage, it would be necessary to limit the area of survey. Also the usefulness of magnetic data will increase significantly by carrying out joint analysis with gravity data. In the future, if gravity survey - airborne or land - can be used to cover wide area economically, this would indeed be a very effective method to apply in this area.

2. Porphyry Copper Belts

Regarding the porphyry copper belt in Region I, its continuity north of Queen Elizabeth Prospect was not clear because of insufficient radiometric age data. The age determination carried out during the present survey clarified the metallogenic province of this area, and it is anticipated that the newly acquired data would contribute to the delineation of promising areas.

3. Promising Areas

It is recommended that the following survey be carried out in the future in order to clarify the geology and mineral deposits of the promising areas extracted by the present survey.

- (1) Magnetic anomaly zones extracted by re-analysis of airborne magnetic survey.

 Extract surface manifestations by satellite image analysis in the magnetic anomaly zones delineated by pattern analysis.
- (2) Mineralized and altered zones extracted by geological survey

 Carry out further detailed geological and other relevant surveys in the seven areas
 extracted by geological survey, namely Mocha-Soleda, La Planada, Queen Elizabeth,
 Tignamar, Diana, Chusmisa, and Camiña areas.
- (3) Promising areas extracted by drilling survey

Carry out further drilling for blind buried porphyry copper mineralized zones inferred to occur in the Camarones area.

Reference

(GEOLOGY)

- Atkinson, W. W., Jr., and Einaudi, M. T., 1978. Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah. Econ. Geol., Vol.73, p.1326-1365.
- Behn, G., Camus, F., Carrasco, P., and Ware, H., 2001, Aeromagnetic signature of porphyry copper systems in northern Chile and its geologic implications, Econ. Geol., 96, p.239-248.
- Clark, A. H., Archibald, D. A., Lee, A. W., Farrar, E., and Hodgson, C. J., 1998. Laser Probe ⁴⁰Ar/³⁹Ar Ages of Early and Late stage Alteration assemblages, Rosario Porphyry Copper-Molybdenum deposit, Collahuasi District, I Region, Chile, Econ. Geol., 93, p.326-337.
- Davidson, J., and Mpodozis, C., 1991. Regional Geologic Setting of Epithermal Gold Deposits, Chile, Econ. Geol., 86, p.1174-1186.
- JICA and MMAJ, 2000. Report on the Cooperative Mineral Exploration in the region I Area, the Republic of Chile, Phase 1
- Kahle, A. B., and Goetz, A. F. H., 1983. Mineralogic Information from a New Airborne Thermal Infrared Multispectral Scanner, Science, vol. 222, p.24-27.
- Mpodozis, C., and Ramos, V., 1989. The Andes of Chile and Argentina, Geology of the Andes and its relation to hydrocarbon and mineral resources: Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, vol. 11, p.59-89.
- Metal Mining Agency of Japan, 1978. Overseas Geologic Structure Survey Report: Northern Chile
- Metal Mining Agency of Japan, 2000. Research and Development on Satellite Data Analysis
- Olivier, C. G., and Dingman, R. J., 1962. Carta Geologica de Chile, Cuadrangulos Pica, Alca, Matilla y Chacarilla, Provincia de Tarapaca, Escala 1:50,000, Institute de Investigaciones Geologicas, Chile, vol. II No.2, 3, 4 y 5.
- Olivier, C. G., 1968. Carta Geologica de Chile, Cuadrangulo Juan de Morales, Provincia de Tarapaca, Escala 1:50,000, Institute de Investigaciones Geologicas, Chile, Carta No.18.
- Ramirez, C.,F.,R., and Huete, C. L.,1981. Carta Geologica de Chile, Escala 1:250,000, Hoja Ollague Region de Antofagasta, Institute de Investigaciones Geologicas, Chile, Carta No.40.
- Salas, R. O., Kast, R. F., Montecinos, F. P. and Salas, I. Y., 1966. Geologia y recursos minerales del departamento de Arica, Provincia de Tarapaca, Institute de Investigaciones Geologicas, Chile, Boletin No.21.
- Sillitoe, R. H., 1991. Gold Metallogeny of Chile –an Introduction, Econ. Geol., 36, p.1187-1205.

- Sillitoe, R. H., 1992. Gold and Copper Metallogeny of the Central Andes-Past, Present, and Future Exploration Objectives, Econ. Geol., 87, p.2205-2216.
- Skarmeta, J. M., and Marinobic, N. S., 1981. Carta Geologica de Chile, Escala 1:250,000, Hoja Quillagua Region de Antofagasta, Institute de Investigaciones Geologicas, Chile, Carta No.51.
- Takahashi, M., 1986. Anatomy of a middle Miocene Valles-type caldera cluster: Geology of the Okueyama volcano-plutonic complex, southwest Japan. J. Volcanol. Geotherm. Res., 29, p.33-70.
- Thomas, A. N., 1967. Carta Geologica de Chile, Cuadrangulo Mamiña, Provincia de Tarapaca, Escala 1:50,000, Institute de Investigaciones Geologicas, Chile, Carta No.17.
- Vergara, H. L., and Thomas A.N., 1984. Carta Geologica de Chile, Escala 1:250,000, Hoja Collacagua, Region de Antofagasta, Servicio Nacional de Geologia y Mineria, Chile, Carta No.59.
- Yamaguchi, Y., Urai, M., Honey, F. A., 1989. Distinguishing Lithology by Spectral Characteristics An example in Australia by Geoscan AMSS MkI Jour. JPN Remote Sensing Society, vol.9, no.3, p.19-29.

(GRAVITY)

- Behn, G.,1994. Determinacion gravimetrica de densidades gravas y rocas en yacimiento Radomiro Tomic, Nota interna, CODELCO CHILE.
- Talwani, M., Worzel, J.L. and Landisman, M., 1995. Rapid gravity computation for two-dimensional bodies with application to the Mendocino Submarine fracture zones, Jour. Geophys. Res., vol.64, p.49-59.

(REMANENT MAGNETIZATION)

- Nagata T., 1961. Rock Magnetism, Maruzen, Tokyo.
- Ueno, H. and Tonouchi S., 1987. Paleomagnetic evidence for the timing of formation of the Chichibu pyrometasomatic deposits, Japan, Econ. Geol., vol. 82, p.1723-1231.
- Matsumoto, T. and Ueno, H., 1997. Experimental test on the stable end points and least-squares methods to find the direction of remanent magnetization, Rep. of Faculty of Sci., Kagoshima Univ., No. 30, p.63-69.
- Taylor, G., 2000. Palaeomagnetism applied to magnetic anomaly interpretation: a new twist to the search for mineralization in northern Chile, Mineralium Deposita, 35, p-377-384.

APPENDICES

AP-1 Results of Radiometric Age Determination (Phase 1, 2, 3)

Phase 1	Results of Radi	ometric Age De	termination (P	nase 1, 2 , 3)					
Sample		Coc	ordinate		Sample	Potassium	Rad. ⁴⁰ Ar	K-Ar Age	Air
No.	Location	N	E	Rock Type	Type	(K wt%)	(10 ⁻⁶ cc/g)		Cont.
D-003	Soledad	7807829	472110	Quartz porphyry, moderately altered	Biotite	4.192	8.611	52.1 ± 2	38
A-020	Queen Elizabeth-	7803750	504118	Andesite, highly altered	Biotite	6.444	9.614	38 ± 1.4	34
A-043	La Planada	7769958	492768	Diorite, highly altered	Biotite	6.934	10.375	38.1 ± 0.9	13
A-050	La Planada	7770040	493719	Quartz porphyry,	(chloritized) Conc.Biotite and	4.923	7.587	39.2 ± 1,7	44
C-063	La Planada	7770045	492817	highly altered Meta-dacite,	chlorite Biotite / mica	7.037	10.680	38.6 ± 1.3	39
Phase 2	:			highly altered	Diocito / Illiou	7.507	10.000	30.0 1.3	35
F-073	West Queen Elizabeth-SE	7800708	495609	Granodiorite, fresh	Biotite	6.927	11.249	41.3 ± 1	20
E-098	Camarones~ QCFE	7906528	443991	Diorite porphyry, slightly altered, primary biotite remain	Whole rock	1.122	2.269	51.3 ± 1.7	25
G-070	Camarones- QCFE	7905141	443789	Rhyolitic tuff, fresh	Biotite	6.632	5.325	20.5 ± 0.5	26
Phase 3					- l	L		<u> </u>	Ł
K-118	Putre N	8016753	430195	Andesite porphyry	Amphibole	0.956	0.428	11.5 ± 1.1	74
K-119	Putre N	8015730	430733	Andesite porphyry	Whole rock	1.773	0.854	12.3 ± 0.4	27
T-093	Putre W	7982502	423433	altered rock	Sericite / Musc.	4.003	6.997	44.4 ± 2	51
T-093*	Putre W	7982502	423433	altered rock	Whole rock	2.027	3.577	44.8 ± 2.7	65
T-095	Putre W	7982313	423556	Granodiorite	Biotite altered	7.338	14.474	50 ± 1.2	11
Q-164	Putre W	7981434	428160	altered rock	Sericite / Biot.	1.445	2.874	50.4 ± 2	33
Q-164	Putre W	7981434	428160	altered rock	Whole rock	2.226	4.731	53.9 ± 2.4	56
Q-165	Putre W	7981332	428151	Granodiorite	Biotite /Chlorite	6.584	13.971	53.8 ± 1.4	18
K-155	Putre W	7981042	427199	altered Granodiorite	Musc. / Ox.	6.723	13.993	52.8 ± 1.4	29
K-156	Putre W	7981042	427199	altered rock	Musc / Ser.	7.984	17.670	56 ± 1.5	21
K-138	Putre W	7975913	426340	Granodiorite	Biotite altered	7.134	15.136	53.8 ± 1.3	18
K-143	Putre W	7975231	426572	altered Granodiorite	Whole rock	4.804	10.446	55.1 ± 1.9	17
S-051	Arica NE	7974192	413054	Granodiorite	Biotite	7.244	18.205	64 ± 2	20
T-074	Putre S	7973028	445135	Diorite porphyry	Biotite	7.336	4.892	17.1 ± 0.5	29
T-068	Putre S	7972202	443451	altered Qz-porphyry	Whole rock	3.634	1.936	13.7 ± 0.7	67
T-085	Putre S	7972020	440982	Diorite porphyry	Whole rock	0.716	0.394	14.1 ± 0.6	46
T-086	Putre S	7971473	440029	altered Microdiorite	Whole rock	2.115	1.132	13.7 ± 0.5	43
S-049	Putre SW	7960308	420224	Granodiorite	Biotite	7.462	19.289	65 ± 2	16
K-113	Putre SW	7960219	419684	Granite	Biotite altered	7.106	18.137	65 ± 2	9
K-114	Arica E	7958910	416101	Granite porphyry	Biotite	6.843	18.033	67 ± 2	19
K-146	Arica E	7958405	417090	altered Granodiorite	Whole rock	1.101	2.497	57.4 ± 2.1	31
K-150	Arica E	7958379	417000	Granodiorite	Biotite / Act.	6.013	15.774	66 ± 2	41
K-148	Arica E	7958275	417102	altered Aplite	Whole rock	3.674	9.561	66 ± 2	24
K-152	Arica E	7957416	415702	Granodiorite	Biotite	7.353	19.679	68 ± 2	21
T-062	Tignamar N	7946924	451586	altered Qz-porphyry	Whole rock	2.604	1.778	17.5 ± 0.7	43
T-055	Camiña NE	7889845	467650	Andesite	Whole rock	2.613	1.057	10.4 ± 0.4	50
Q-068	Camiña	7866600	459341	Diorite porphyry	Whole rock	1.342	3.009	56.8 ± 1.9	21
S-033	Camiña	7862279	447949	Qz-porphyry, highly altered	Whole rock	3.561	8.889	63 ± 2	37
K-084	Camiña	7862141	449474	meta-diorite porphyry	Whole rock	0.797	1.829	58.1 ± 1.9	16
S-032	Camiña	7861990	448095	Qz-porphyry, weakly altered	Whole rock	3.172	7.126	56.9 ± 2	43
S-045	Camiña	7861611	448377	Diorite	Whole rock	1.041	2.421	58.8 ± 2	19
T-034	Chusmisa NE	7831898	502577	Dacite	Biotite	7.006	0.817	3 ± 0.2	74
S-019	Chusmisa	7831530	479094	Granodiorite	Biotite, Chlorite	5.353	10.116	48 ± 1.4	26
T-008	Tarapaca	7801031	452097	Granodiorite	Biotite, Chlorite	5.965	16.551	70 ± 2	19
K-016	Guavina	7790396	488986	Granodiorite	Biotite	7.324	12.851	44.6 ± 1.1	15
S-013	Mamiña SE	7779368	481013	Granite	Biotite	7.185	13.343	47.1 ± 1.3	32
S-013 K-011	Mamiña SE Copaquiri	7779368 7679948	481013 520917	Granite Diorite	Biotite / Act.	7.185		47.1 ± 1.3	32 7

AP-2 (1) Results of Microscopic Observation of Thin Sections (Phase 1)

		Intrusive	1	Texture	L		neno	cryst	t or fi	ragm	ent				Gr	round	mass	or ma	itrix			M	letam	orph	ic or a	altera	ıtion
B-001					MP	срх	hb	qz	pl	kf	ор	others	MP	hb	qz	pi	kf	gl op	others	ер	chl	amn	Car	tit	carb	bio	others
C-008	Mocha	K1	dacite	porphyritic	(A)			0	0			bio(O)	(0)		Ιò		Δ	S F	apa(-)-	100	0	amp	(O)		O	DIO	rutile(△)
C-008 II	Pl partry into sericite. Ma	afic phenocryst	s into chlorite and carbon	nate. Biotite locally	into ci	hlorite	/								1-	├ .=-	1=1				1 –		+=.		\vdash		rutile(ZZ)
		K1	meta-volcanics										1 -			0	0		apa(-)	+	+-	+-	0	╆~	0		
	Mocha	K1	rhyodacite	porphyritic	(A)			0				bio(O)	(A)		10	ő	Δ	٠.	apa(-)	╁	6	 	18	Δ	Δ	-	rut(△)
[F	Biotite partly decomposed	l into chl. Plp	artly into sericite. Mafic	minerals totally into	chlorit	te.	i –	11			_			 - -	† <u> </u>	<u> </u>	+=+		apat /	-	1	-	+2	4	Δ.		
D-008	Mocha	Tgd	dacite porphyry	porphyritic	(0)	T		0	0		0	bio(O)	\vdash	_	0	0	Δ			0	0	-	+-		<u> </u>		
F	PI replaced by sericite. I	pidote occurs	along fractures. Mafic m	inerals into chlorite	and er	idote.		\vdash		\vdash		2.500/		 -	 	-	121		 	+Ω	-9	-	+4	Δ.			
D-002	Soledad	Tgd	granodiorite porphyry	porphyritic	T(0)				0		Δ		_	 	10	0	 			╁	┼	-	┼	-			
D 002	PI strongly saussuritized	. Epidote vein	Mafic minerals by clay r	ninerals.	1.0	1	 	 		 	-		 		10		\vdash		 	10	<u> </u>						tou(O), clay(O
D-003	Soledad	Tgd	quartz porphyry	porphyritic	(Δ)	 		0	0		0		- -			_	╁	_	11.40	╂—	<u> </u>		 _	<u>Ļ</u> .			
D-003	Mafic minerals replaced in	to sericite, ona		1 porpriyrido	100/	· · · –	+	191							0	0	┦	_	bio(O)	↓_	Δ	<u> </u>	0	<u> : </u>			
	Soledad	Kg	quartz diorite	sub-ophytic	+-	┼	-	-	$\overline{}$				├		<u> </u>	_	-			ـــــ				<u> </u>			
	Soledad	K1	meta-andesite		-		0		0	Δ	0				0	0	0	Δ	1.27		Δ		Δ		L.		$tou(\Delta)$
	Weakly metamorphosed pr			porphyritic	+	┼—			_0_				L		0	0		Δ		Δ		Δ	0	Δ	0		$rutile(\Delta)$
lc	Soledad				∔—	<u> </u>		\sqcup		Щ														T-1			
(i=0)14 ⊢-	Strongly replaced by tour	K1	meta-volcanics	breccia?											0	0		-		1							tou(©)
						<u>L</u>														1	i		_				
	Soledad	Tgd	dacite porphyry	porphyritic				0	0	.	0	bio(O)		(O)	0	0	Δ		bio(O), apa(-)	$\overline{}$	0		\vdash	۲. ا			
E	Biotite phenocryst partly		to chl. Mafic minerals in	matrix totally into cl	hlorite.													_	Total Control	-	-		 	\vdash			
	Queen Elizabeth		andesite	porphyritic	T				0		Δ	$bio(\Delta)$			0	0	Δ	+-	 	╁	Δ		╫┯╵	-			
F	Pl is mostly dusty, replace	d by sericite a	nd biotite. Biotite phenoc	cryst decomposed in	ito fine	-grain	ned bio	otite r	nad cl	blorit	- I		-		_	_				-	ΙΔ.	_	<u> </u>			0	
A-017	Queen Elizabeth	K1	volcanic breccia	clastic	(0)			1				apa(△)	-		0	0	0	 	********	⊢			╨				
7-017 F	Pl partry into sericite. Fine	e-grained tourn	naline occurs among the	volcanie blocks	1,0,	 -		-		-	\sim	aha(TZ)				<u> </u>		_ 4	ļ	 	Δ		<u> </u>		Δ		tou(©)
A-025 G	Queen Elizabeth		granodiorite porphyry	porphyritic	(0)	+			(O)	-	_				_	<u> </u>	-			<u> </u>			<u> </u>				
A-025 F	ol strongly deomposed inc	dusty aggrega	te Riotite into oblerito	porpriyritic	10	-		Δ	(O)	1	Δ	zr(•)			0	0	0	0		<u> </u>			0				$goe(\Delta)$,clay (\bigcirc)
le le	Queen Elizabeth		rhyodacite porphyry	manufat .	╄	-			<u> </u>		-				Ļ												
	I is totally saussuritized,		myodacite porpnyry	porphyritic				0	(0)						0	(0)		0		0	Δ	·	0				goe(Δ)
lo.	Queen Elizabeth				 	Ш																					
D-020 I-		K1	meta-siltstone?	clastic?	↓								_		0	0	•	Δ					0	Δ		1	tou(Δ)
	Pl partry into sericite.																									- 1	
	Diana	Kg/Ti	granodiorite porphyry	porphyritic			0		0	П	0	$bio(\Delta)$			O	0	0	T -		$\overline{}$	0		Δ				
P	I partly into sericite. Biot		e. Dark green hornblende	locally into chlorite							Ť				-		-	_		-	\vdash	-	-			-	
	Diana	Kg/Ti	dacite porphyry	porphyritic			Δ	0	0		$\neg +$	bio(△)		Δ		0	, 	Δ		 			\vdash	_		\rightarrow	- (1)
В.	Biotite phenocryst totally	into opaque an	d clay minerals.								\dashv	J.0(<u>_</u> ,		-	\sim			$+\Delta$		H			\vdash			O I	$goe(\Delta)$,clay (O)
	Diana		meta-basalt	porphyritic	(0)	1		-	0	\dashv	\rightarrow		-			0	-	+-	ļ	-			-				
2-031 M	lafic phenocryst into amp	hibole, Glassy	matrix into biotite and an	nnhihole	1,0,			\vdash	-	-+								0		Δ				Δ		<u> </u>	
ln.	Diana		fine-grained granite	equigranular	 	Δ	0			${\sim}$	$\overline{}$	bio(O)						-		<u> </u>			$oldsymbol{\sqcup}$				
	Clinopyroxene is strongly r		phihole. Pl locally replace	ad by serioits	 -		-	9	9	쒸	니	DIO(())					-	-	apa(•), zir(•)		Δ		∸				
lu.	Diana		quartzite	o by Sericite.	-						_		ļ				\perp							I			
Z-UU3 I—	Sericite occurs among qua		quai tzitti		 			0		\dashv	Δ	zr(•)]		0	T		E	goe(△)
11.	a Planada				-			 -																1			
		Тр	granodiorite porphyry	porphyritic	<u> </u>				0			$bio(\Delta)$	(O)		0	0	0	0	apa(•)	Δ	0		Δ		Ö	0	
	Pl partry into sericite. Mai				1	لــــــــــــــــــــــــــــــــــــــ						T	T					1					\vdash			- +	
A-042 I-	a Planada	Tg	diorite	equigranular]	0	0	0	Δ	Δ	apa(·)						\neg		Δ	0	\neg	Δ	-+		+	goe(Δ)
	iotite altered into chl.						\neg			\neg								+-		_	 		-	-		- 8	بحدرهم
4-14/ H	a Planada		quartz porphyry	porphyritic				Δ	0	Δ		bio(△)	(0)		0	0	0	Δ	bio(O)		0			_			
PI	I partry into sericite. Mat	ic minerals in a	matrix into chlorite.					1		_	\neg				-	$\overline{}$	- +		DIO(O)				Δ			0	
	a Planada		dacite	porphyritic	(Δ)		_	0	<u></u>	+		bio(O)	-	\neg	0	0	Δ	+			$\overline{}$			_			
bi	iotite strongly decompose	d into chlorite.	Including volcanic block	s.	`			<u> </u>	<u> </u>		+	5,0(0)		\dashv	9		4	-	apa(•)		0		0	Δ		t	ou(O)
li a	a Planada		meta-porphyry	porphyritic	\vdash	-	\dashv	\dashv	, 	-	-	L:-/ A \	+		_			-									
	trongly replaced by biotit		Riotite partly decompany	d into oblavito	-				Δ			bio(△)			0	0		Δ	apa(+)		Δ		0			⊚ t	ou(Δ)

ابي

AP-2 (1) Results of Microscopic Observation of Thin Sections (Phase 1)

Sample No.	Locality	Formation / Intrusive	Rock type	Texture		Pł	nenoc	cryst	or fi	ragme	ent				Gr	ound	mass	s or	mati	rix				 Vletai	mor	phic or	alter	ation
					MP	срх	hb	qz	pl	kf	ор	others	MP	hb	qz	pl	kf	gl	op	others	en	chi	am	o se	r t	it cart	hio	others
C:-U63	La Planada		meta-dacite	porphyritic					0		0	bio(△)			0	Ö	Δ	Ť	Ó	apa(-), zir(-)	1	1	1 2	0				tou(Δ)
	All the minerals except for	or qz are strong	ly replaced by biotite and	sericite.										 -	1.9		-	H	-4	apat 3, 211()			-	4-9	1 4	·	10	tou(ZZ)
C-065	La Planada		meta-volcanics							\vdash	\dashv				0	$\overline{}$	-	H	_	/ \		├ ─	₩-	+-			+	
0-003	All the minerals except for	or qz are strong	ly replaced by biotite and	sericite.											19	0			4	apa(*)		 	┼	-10	1	<u> </u>	_	tou(△)
C-067	La Planada	Tg	diorite	equigranular	(Δ)			0	0	Δ	Δ	bio(O)			1			\vdash		apa(•)	Δ	0	₩	0	+	+	+	
	Biotite partly altered into	chlorite and op	aque minerals. Pl locally	by sericite.	1					-+	== †									apa(-)	- 23	0		10	4	`-	+-	
C-077	La Planada	Тр	quartz porphyry	porphyritic	1		(A)	o	0	-	_				0	0		\vdash		(-)	_		₩	+	+	+	—	
	Hb totally replaced chlori	te and tourmali	ne. Biotite by chlorite an	d sericite.	1		`	<u> </u>	<u>-</u>	_	_				\vdash		121			apa(•)		10	₩	0	┿.		-	$tou(\Delta)$, $goe(\Delta)$
C-079	La Planada	Тр	quartz porphyry	porphyritic	+	\vdash	(Δ)	0	0	\vdash	\dashv	bio(O)		(Δ)		0		\vdash	, 	h:-(A)(A)		<u> </u>	↓ —	+-	+		-	<u> </u>
0 0/3	Mafic mineral, probably h	ornblende, is to	ally replaced by chlorite.		 -	\vdash	/	-			\dashv	<u>Dio(O)</u>		(44)	9		43		4	bio(△), apa(•)		0	 	10	十.			

abbrev. MP=psudomorph of mafic mineral, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=homblende, kf=k-feldspar @abundant, Ocommon, Δsmall, •rare, (): totally

AP-2 (2) Results of Microscopic Observation of Thin Sections (Phase 2)

No.	Locality	/1-4	Rock type	Texture			Phene	ocryst	t or fra	gmer	ıt		l		Grou	ndmas	ss or	matrix			1			Me	tamon	hic or	altera	tion
	, iii =	/Intrusive		ļ	MP	срх	hb	qz	pl	kf	ор	other	MP			pl			ор	other	ер	chl	amp			carb		other
G-012	Chacarilla-E	Kg/Ti	diorite	ophitic	L	Δ	0	Δ	0	1_	Δ								T -			0	1	0	Δ	Curp		smec(O) goe(△)
	Clinopyroxene and H	omblende are	strongly replaced b	y smectite and goe	thite.						Γ								Τ-		T				ļ 			, good ,
F-010	Chacarilla-W	Kg/Ti	granodiorite porphyry	porphyritic	(O)				0		0				0	0		0				Δ		0		0		
	Mafic phenocryst is	decomposed i	into chlorite. Amygdı	ule is replaced by c	arbonate	e and c	uartz.	Plagi	oclase	is re	place	d by seric	te.				_		1-		\vdash							
E-021	West Queen Elizabeth-S	Kg/Tg	andesite	porphyritic			0		0	Τ	Δ	Ī		(A)		0		(©)	Δ	-	0				Δ			apa(-)
	Hornblende is almost	tatally decor	mposed. Plagioclase	partly into epidote				<u> </u>		十									\vdash	 	\vdash				\vdash			
	West Queen Elizabeth-S		granodiorite	granular			0	0	0	0	Δ	bio(O)							+	apa(*)	\vdash	Δ		Δ	Δ	-		
	Plagioclase is locally	replaced by	sericite. Biotite is lo	cally replaced by ch	lorite.								_										 					
E-028	Tignamar-N	К	volcaniclastics	clastic			(A)	Δ	0	0			(A)		Δ	0	Δ	(©)	╁.		0	Δ					0	h(A)
	Hornblende is totally	decomposed	into green biotite. M	latrix is also replace	ed by gr	een bio	tite			†				<u> </u>				(0)	1		1			\dashv				tou(△)
F-076		kg/Kp/Tgd		granular			0	0	0	0	0	<u> </u>							-		0	Δ						
. 0,0	Hornblende is highly	replaced by g	reen biotite. Plagioc	lase is replaced by	epidote.	1		-		╁	Ť	 							-		15	Δ			Δ		0	
G-043	Tignamar~S	Ti	andesite	porphyritic	<u> </u>	†	0	-		+-	Δ	 		0		0			-									
G-043	Fresh andesite, but h	omblende is	highly oxytized.	1						-	_							<u></u>	Δ		-							
	Camarones-QCFW		volcaniclastics	clastic	(O)		_		0	+	Δ	 	Δ		-				<u>_</u>									
E-083	Mafic minerals replace	ced by clay m	ninerals . Matrix is re			1	_			-	-					0	-	_0	0		0	0	<u> </u>			0		clay(O) goe(O)
	Camarones-QCFW	Α	andesite	porphyritic			(O)		0	-	0				0	0		(O)	0		0			$\overline{}$				
E-067	Mafic minerals are to	tally replaced	by carbonate and s	ericite. Plagioclase	strongly	decor		into		e and		lote				$\overline{}$		(0)	-	_				0		0		
i	Camarones-QCFW	D	carbonatized dacite		(O)				(©)		0			•	0	0	\dashv	(©)								0	Δ	clay(©)
	Mafic minerals and pl	agioclase are	totally replaced by	carbonate and clay	minerals	S.				_	-				+										-			
	Camarones-QCW			porphyritic	(O)			0	0	Δ	Δ	$mus(\Delta)$				0						-		_				
	Mafic mineral is totall	y decompose		1						1-	-	mus(22)				-			-		Δ	Δ		0	\rightarrow			
10	Camarones-QCW			porphyritic	(©)			-	0	┢	Δ				-+	_		(0)			_							
E-078	Mafic minerals into ep			<u> </u>			- -	-		-	Δ					0	_	(©)	Δ		0	0	_	0	Δ			
			quartz porphyry	ay decomposed int	o sericit	te and	cniont	e.		<u> </u>					_		_											
F-125	Camarones-QCW	Фро	breccia pipe	clastic			<u></u>	0	<u> </u>	0	Δ				0	0	0	0	Δ		0			0	Δ			
	Plagioclase is highly r			r																								
F-181 L	Camarones-QCW	(dbn	quartz porphyry breccia pipe	clastic	0			0	0	0	0	bio(△)	i		0	0	0	(©)	0	zr (•)				0	Δ			
	Biotite is totally deco	mposed into	sericite. Plagioclase	is usually dusty, re	olaced b	y seric	ite.																	\dashv	\dashv		-+	
G-058 ⊢	Camarones-QCW			granophyric				0	0	0	0	bio(△)								apa(•)			$\neg +$	Δ	-+	-+		goe(*)
P	C-feldspar is usually of	dusty. Plagioc	lace is locally replac	ed by sericite.					_						_				-					\dashv	-			300(/
G−100 ⊢	Camarones-QC WC			granophyric			Δ	0	0	0	0	tou(△)				-	\dashv		- 1		0	0		Δ	Δ		\dashv	
F	lornblende is highly	decomposed	into chlorite, epidote	and titanite											\dashv						<u> </u>	<u> </u>		$\overline{-}$	-	-		
G-205	Camarones-QC WC	Gd	granodiorite	granophyric			0	0	0	0	Δ	bio(O)			\dashv	\dashv	-+					$\overline{\Delta}$	\dashv	Δ	Δ			t(A)
- 200 F	lornblende and biotite	e are partly s	keletal, replaced by	chlorite.											\dashv		-		\dashv		-		+		4			tou(△)
	Camarones-QCC			ophitic			0	0	0	0	$\overline{\Delta}$	bio(O)			\dashv					tou(△)	Δ	0	\dashv	Δ		Δ		
	Biotite is replaced by	chlorite. Plag	ioclase is replaced b	y sericite.									- +		\dashv	\dashv	-					- 	\dashv	 +	\rightarrow			

Sample	Locality	Formation	Rock type	Texture			Pheno	cryst	or fra	gmen	nt -				Grav	ndma	SS OF	matrix			ī	-		14		- luli	-14 -	
No.	ļ	/Intrusive	TOOK Lype	rexture	MP	срх		qz		<u> </u>	Ор	other	MP	hb	qz		kf		ОР	other	ер	chl	amp		tit	carb		
E-119	Camarones-QCC	KT	volcaniclastics	clastic	L		(O)	0	0						O	Ö	<u> </u>	(©)		apa(△)	Δ	Δ	amp	Δ	Δ	Caro	DIO	other
	Homblende phenocr	yst is replace:	d by chlorite and sm	ectite.						1									Ē		-			├-	 		┼	 -
E-126	Camarones-QCC	Di	diorite	ophitic			0	Δ	0	t	Δ	apa(-)					\vdash		0	<u> </u>	Δ	-	0	 			-	ļ
	Hornblende is totally	decomposed	into fibrous amphib	ole.						 	╁┈		-	 -			-	 	-		 ^		1 5			Δ	 	ļ
E-128	Camarones-QCC	Qpb	quartz porphyry breccia pipe	clastic				0	0	0	Δ				0	0			0			0						goe(△)
														[<u> </u>		
F-107	Camarones-QCC	Qd	quartz diorite	granular	(A)			0	0	0	0	tou(O)									Δ			Δ	Δ	Δ		
	Plagioclase is usuall	y dusty and is	replaced by sericite	and carbonate.							Τ-						-	-	-		Η=-	-					 	
F-110	Camarones-QCC	Qdb	quartz diorite breccia pipe	clastic				0	0	0	0				0	0	0	(0)				Δ		0				tou(△) goe(○)
	Plagioclase is usuall	y dusty and is	partly replaced by s	sericite.				!		†											\vdash		-	<u> </u>				
F-196	Camarones-QCC	Dp	diorite porphyry	porphyritic to granoophyric		Δ	0		0		Δ			0	0	0	0		0	bio(△)	Δ	0		Δ	Δ			
	Clinopyroxene is stre	ongly replaced	by green amphibole	. Hornblende is dec	ompose	d into	chlorite	and	green	ampl	nibole						-				-		-		-		-	l
	Camarones-QC CE		andesite	porphyritic	(O)				0	T ·	_	bio			0	0		(©)			0	Δ	0					ļ — — — — — — — — — — — — — — — — — — —
' '''	Mafic minerals are re	placed by fibr	ous amphibole. Gras	ss is devitrified and	altered.	_				-	<u> </u>				\dashv			(6)					0	0			<u> </u>	
	Camarones-QCE		diorite	ophitic	(0)	0		\vdash	0		0			-							_		_		 			
H-002	Olivine is totally repl	aced by smec	tite. Clonopyroxene	is nartly replaced b			holo O	L													L		0	0				smec(⊚)
	Camarones-QCE		andesite	porphyritic	(Δ)	I	ooie. O	Т	©	le is :	O	giy replace	a by sm	ectite.		_		(0)							<u> </u>			
H-008	Mafic minerals are re					-				<u> </u>	-				0	0		(©)	Δ		0	0				0		smec(△)
	Camarones-QCFE			trachytic	Oolv	0			_	_	_	(A)																
E-069	Olivine partly replace			la activac	Colv				<u> </u>	\vdash	Δ.	bio(△)	_								4				1			smec(O) zeo?(C
	Camarones-QCFE	кт	dacite	porphyritic				0	0		-				_	_	_											
E-071	Clinopyroxene is crys			po.phyricio				9		<u> </u>	-		Осрх		0	0	0		\triangle	bio(Δ)								smec(△)
	Camarones-QCFE		quartz diorite	ophitic	(O)						-				4				_						\sqcup			<u></u>
E-072 I	Mafic minerals are to				(0)	-		0	0	0	Δ	bio(△)									0	0	0	0	Δ			
	Camarones-QCFE				(0)	-																						
E-094 F				trachytic	(0)	0			0	Δ	0	bio(O)	(O)		0	0	Δ		Δ	apa(△)		0	0					
	Mafic mineral is repla			r															ľ	., .	\neg							
E-097 F	Camarones-QCFE			ophitic	(0)	0		0	0	Δ		$bio(\Delta)$			0	0	Δ		0		Δ	0	0		\Box			
	Mafic mineral is deco			nphibole.																							_	
E-099 F	Camarones-QCFE	1	quartz diorite	equigranular		0	0	0	0	0	0	ара(△)										T	0	0				
	Biotite is totally deco	mposed into s	sericite. Mafic mine	ral by green amphib	oole.		T	T							7		_		7				-					
G-073	Camarones-QCFE	Gd į	granodiorite	equigranular	(O)		0	0	0	0	0	apa(△)			\neg				\dashv		Δ	0	0	0	Δ	Δ		
	Mafic phenocryst is o	lecompoed int	o amphibole and chl	orite.													- 1		\dashv		_	<u> </u>	-					
G-078	Camarones-QCFE	Тр	volcaniclastics	clastic				0	Δ	0	Δ	bio(O)			0	Δ	0	0	Δ				\dashv	-	-	-		. (0)
	Including slate.							_		-	_				\dashv		-	-	-					0				clay(O)
- 014	Camarones-QCS	KT	volcaniclastics	clastic	(Δ)			0	0	Δ	0				\rightarrow	$\overline{}$		(6)	$\frac{1}{\sqrt{1}}$	-, \			- +					
E-214 -	Mafic phenocryst is o					and so	ricito	-	-	-	-				이	0		(©)	<u>∆</u> 2	ur(•)	_	0	_	0				
lo	Camarones-QCS			clastic	(O)	and St	i icite.	\rightarrow		_	$\overline{}$				\perp		_		_		_		_					
E-222 -						smect		0	©	Δ	0		- 1	- 1	01	0	-	(©)	Δ	- 1	!			Δ	. 1	T	1	$smec(\Delta)$

AP-2 (2) Results of Microscopic Observation of Thin Sections (Phase 2)

Sample No.	Locality	Formation /Intrusive	Rock type	Texture			Pheno	cryst	or fra	gmen	t		Τ		Grou	ındma	ss or	matrix			T			Me	tamor	ohic or	altera	tion
INO.					MP	срх	hb	qz	pl	kf	ор	other	MP	hb	qz		kf	gl	Ор	other	ер	chl	amp				bio	other
E-231	Camarones-QCS	В	basalt	porphyritic	(O)				0		0					0		(@)	Δ		1	0	, sp	Δ		0	Dic	Other
	Olvine is totally dec	ompoed into	chlorite or carbonate	minerals.				Γ.		Ī											1			 				ļ
H-013	Camarones-QCS	KT	volcaniclastics	clastic	(O)			0		Δ		mus(O)			0	0	1	(©)	Δ		-	<u> </u>	 	0	-		-	smec(O)
	Mafic minerals are r	eplaced by sn	nectite. Biolite is dec	composed into seric	ite and	opaque	miner	als.		<u> </u>			1		لــــــا	L	. L	L1.7.1	Щ.	L		l			I	L	J	sitiec(O)
E-158	Camarones-SM	Qd	quartz diorite	granophyric		Ţ	(0)	0	0	О	0				\Box	Γ	T	Γ -	Т		0	Δ	Υ	г—			Т	h(A) (O)
	Hornblende is totall	decomposed	into chlorite and go	ethite.		1						†	-				 		1	ļ	 	- -	-	 -		<u> </u>	-	tou(△) goe(○)
E-159	Camarones-SM	Qd	quartz diorite	granophyric			(O)	0	0	1	0		 		H	<u> </u>			╁	 -	0		<u> </u>	0			┼	(4)
L 100	Plagioclase is usuall	y dusty. Horn	blende decompoed ir	nto fibrous amphibol	e.			1			F				\vdash		\vdash		┼					۲				goe(△)
E-177	Camarones-SM	Dp	diorite porphyry	granophyric		0	0		0	\vdash	ļ —	<u> </u>		0	0	0	0			bio(O)	├	0	_				<u> </u>	
L 177	Clinopyroxene is sur	rounded by a	mphibole, Hornblende	is decomposed int	o dusty	amphil	oole ag	grega		\vdash	-			<u> </u>	🔠	-			\vdash	DIO(C)	-			Δ.				tou(△),apa(+)
F-148	Camarones-SM		quartz diorite	granophyric	<u>-</u>	ΙΔ	0	0	0	0	0	-			\vdash				+		Δ		-				<u> </u>	
	Hornblende is strong	dy replaced by	y secondary biotite.			 -		-		<u> </u>	ا	 									-				Δ		0	
G-142	Camarones-SM	Qd	quartz diorite	granophyric		0	Δ	0		0		bio(△)							╆-	()								
G-142	Clinopyroxene and h	ornblende is s	strongly replaced by	chlorite and fibrous	amphib				<u> </u>	-	Ĕ	510(22)			-				├	zr(•)	-		Δ	-				goe(△), apa(-)
	Camarones-SM	Qd	quartz diorite	granophyric	•	Δ	0	0	0	0		tou(△)			\vdash		\vdash		-		\vdash						ļ.,	
G-147	Hornblende is highly	replaced by g	geothite. Plagioclase	is partly replaced b	v sericit					-	۳	100(21)			\vdash		\vdash							0				geo(O)
	Camarones-SM		quartz diorite		,						_																	
G-160	Camarones-5M	Qdb	breccia pipe	clastic				0	0	0	Δ				0	0	0	0	Δ	tou(O)				0				$goe(\Delta)$, $clay(\Delta)$
	Mafic minerals are d	ecomposed in	to clay and goethite.																			-						
E-151	Camarones-MIDS	Tw	volcaniclastics	clastic	(Δ)			0	0	0	0	bio(O)			0	0			Δ			_						1- (4)
_ 101	Mafic minerals are re	eplaced by cla	y minerals. Biotite is	highly oxydized											-		\vdash		-							_		clay(∆)
F-155	Camarones-EM	Qi	andesite	porphyritic	0	0			0		Δ	орх				0		0	0				-				-	
	Very fresh andesite.	Orthopyroxer	ne is well preserved.												-				-		\vdash							
E-105	Camarones-NW	Qd	porphyry	granophyric				-+	0		Δ	-			0	0			Δ		0							
	Plagioclase is strong	ly replaced by	smectite and epido	te.		-		-+	<u> </u>		-				\dashv						9			0				smec(△)
	Camarones-NW		quartz diorite	ophitic	(O)	0	0	_	0	\vdash	Δ		-			_												
E-108	Mafic minerals are re	placed by chi	orite. Hornblende rer	I		-	<u> </u>	-							0	0	-		0		Δ	0	0				Δ	
			orph of mafic mineral								i					Ј												

abbrev.:

MP=pseudomorph of mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar

smec=smectite, zeo=zeolite, geo=geothite.epi=epidote, gl=glass or microcrystalline aggregate, mus=muscovite

cb.=carbonate, ser=sericite, tit=titanite, apa=apatite, clay=clay minerals, bio=biotite, tou=tourmaline:

©=abundant, O=common, Δ=small, •=rare

(): totally decomposed or altered

AP-2(3) Results of Microscopic Observation of Thin Sections (Phase 3 Surface survey)

Sample	T	<u> </u>	. F ·		Third occions (Flase 3 Surface survey)
No.	Locality	Formation/Intrusive	ck Facies	Texture	Phenocryst or fragment Groundmass or matrix Metamorphic or alteration
		Formation/Intrusive	Rock name		MP cpx hb qz pl Kf op others MP hb qz pl Kf gl op others ep chl amp ser tit others
T-004	Copaquiri	Kv(m)	meta-andesite	porphyritic	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	 			 	Mafic phenocryst totally by chlorite and secondary amphibole. Feldspar highly by sericite.
T~008	Tarapaca	Kgd	granodiorite	equigranular	- △ ○ ◎ ◎ ○ bio(○) apa(•) △ △ △ zir(•)
					Biotite locally chloritized. K-feldspar is usually dusty.
T-009	Pachica	Kgd	granodiorite	subophitic	(O) O O ⊚ O O bio(O) apa(•) O O △ △ zir(•)
	 			 	Mafic minerals and biotite totally by chlorite. Clinopyroxene is usually dusty.
T-015	Pachica	Kgd	granodiorite	subophitic	O O O ⊚ O O bio(O) apa(•) O • zir(•)
ļ					Hornblende strongly decomposed into dusty amphibole. Biotite locally by chlorite
T-020	Chusmisa	Kv(i)	sandstone	clastic	0 0 0 0 frag(0)
					Volcanic fragments are common.
T-023	Chusmisa	Kv(i)	meta-volc. breccia	fine-cryatalline	
	-				probably contact metamorphosed forming biotite, clinopyroxene and amphibole.
T-034	Chusmisa NE	Qv	dacite	porphyritic	
					fresh dacite, locally smectite.
T-055	Camiña NE	Qv	andesite	porphyritic	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					fresh andesite
T-063	Tignamar N	Tgd	diorite porphyry	porphyritic	
					Hornblende is totally replaced by chlorite and epidote. Brown biotite by secondary green biotite.
T-068	Putre S	Tgd	Qz-porphyry	porphyritic	
					Hornblende by aggregate of opaque minerals. Matrix by sericite and chlorite.
T-074	Putre S	Tgd	diorite porphyry	porphyritic to ophitic	$(\Delta) \triangle \bigcirc \bigcirc \bigcirc \bigcirc \triangle \text{ bio}(\Delta) \bigcirc \bigcirc$
					Orthopyroxene is totally replaced by chlorite.
T-079	Chapiquiña	Pc	serpentinite		O srp(③)
					originally harzburgite. preserving bastite texture.
T-080	Chapiquiña	Tgd	porphyry	porphyritic	
			FF3-3	porpriyitato	Hornblende and clinopyroxene strongly replaced by amphibole, epidote and chlorite. Plagioclase highly albitized.
T-085	Putre S	Tgd	diorite porphyry	porphyritic	(O) O
				porpriyatio	Mafic phenocryst totally by aggregate of opaque minerals and biotite.
T-086	Putre S	Tgd	microdiorite	ophitic	
				оргило	Hornblende by secondary amphibole aggregate and epidote. Clinopyroxene is usually dusty.
T-095	Putre W	Tgd	granodiorite	equigranular	O O O bio(O)
			g. a., o a.o, , co	oquigi arrarar	Hornblende is loccaly fresh, mostly decomposed into biotite and chlorite.
Q-011	Quipisca	Kgd	microdiorite	ophitic	
			THIS GOIGHTE		Clinopyroxene replaced by amphibole. Hornblende is highly by acicular amphibole.
Q-013	Quipisca	Kgd	granoporphyry	porphyritic	(O) \(\times \(\times \) \(\
		T NB U	granoporpriyry	porpriyride	Hornblende by acicular amphibole aggregate. Orthopyroxene by chlorite and amphibole.
Q-033	Chusmisa	Kc(i)	hornfels	microcrystalline	□ Δ O □ O O bio(Δ)
~ 555	Ondomisa	7(0(1)	notifiels	microcrystalline	high-grade, contact metamorphosed.
Q-061	Chusmisa	Tgd	moto-novnh	j.	(O) O O · O tou(©)
4 001	Cilusinisa	ı gu	meta-porphyry	porphyritic, microcrystalline	abundant tourmaline probably formed by hydrothermal event.
Q-068	Camiña	Tad	dianis a amb		
W-000	Camina	Tgd	diorite porphyry	porphyritic	Brown biotite replaced highly by green biotite. Homblende by fibrous amphibole.

Sample	I	Ro	ck Facies	[her	onuct.	0r c	ragment		_		C							_				-		
No.	Locality	Formation/Intrusive		Texture							+						atrix		_						altera	
	<u> </u>		TOOK Harrie		MP cpx	an							qz			gl		othe	rs e	ep	chl	amp	ser	tit		others
Q-072	Camiña	Kv(i)	basalt	porphyritic							<u> </u>		<u> </u>	0	<u> </u>		0	ļ	L_			L	<u> </u>		<u></u>	sm(O)
	-			-	Olivine a	no gi								Т 🙃	_	1				- 1						
Q-096	Camiña	Kv(i)	andesite	porphyritic			`				┷				<u> </u>	(O)				_1		Δ	<u></u>	Ь.		sm(O)
	 		-		Orthopyr	oxen	e repla	ced				and														
Q-149	Putre SE	Qvr	dacite tuff	glassy			<u> </u>			bio(△		Щ	10	<u> 10</u>	L	0	<u> </u>		l_		l					
	<u> </u>				fresh tuf			mu	<u>idstone</u>	fragme	nts.						,									
Q-150	Putre E	Qvr	pumiceous tuff	glassy	ليليا		0			L	Ь_	$\perp \Delta$	0	10		10		bio(∠	7)		i					
		 	 	<u></u> _	including	man	y clast	c re	ocks.				,	,											_	
Q-157	Putre S	Tgd	Qz porphyry	porphyritic			0 (<u> </u>		<u> </u>	0	0		Δ						0			
	 				Homblen	<u>de de</u>	ecompo	sec	l into se	ericite a	nd c	paqu	e mir	erals	s. Fel	ldspa	ırs de	comp	osed	int	o se	ricit	e an	d du	sty mi	inerals.
Q-165	Putre W	Tgd	granodiorite	ophitic		0	$O \mid \emptyset$	<u>) </u>	$\Delta \perp \Delta$	bio(O)				1				apa(·		T	0			Δ		cb(Δ)
					Hornblen						nine	rals.														
S-001	Macaya E	Kgd?	meta-diorite	subophitic					$\triangle \bigcirc$								Ϊ	apa(•) [<u> </u>	01	0		Δ	Ŀ	oio(Δ)
				одооргино	Hornblen	de re	placed	by	acicula	r amphil	bole.	Biot	tite b	y agg	rega	ite o	fgree	n biot	ite.				<u> </u>			
S-003	Mamiña SE	Tgd	meta-microdiorite	brecciated			O.I	- 1	J				0	Ō			Ĭο			ÐΤ		0	Г	Τō		~
			mota morodionec	brecciated	Quartz ve	in.	Epidote	-an	nphibole	pools	are o	comm	ion.			1							L		Ь	
S-013	Mamiña SE	Tgd	porphyry	porphyritic, subophitic	\cup	Δ	- (e		Δ	<u> </u>		T		0	0		0	bio(C)) [$\overline{}$	ΔΤ		Δ	Δ	· ·	zir(•)
	mamma oz	1 gu	porpriyry	porpriyriue, supopnide	contact r	netar	norpho	sed	?							1		D.0(C	<u> </u>			-		1 43	I	ZII (-)
S-014	Mamiña SE	Tgd	anno a di a vita	. 1 121					ΔΙΟ				Т	Г			Г	apa(•	11	Т	Δ	0	Г	Δ		oio(O)
0 014	Manina SL	ıgu	granodiorite	subophitic to equigranular	metamor						v am	nhiho	ole o	hlorit		d bio	tita	apat			<u> </u>			1 4.3		10(0)
S-016	Chusmisa	Tgd		1 '4'		(O)	(C		ĪΔ) <u> </u>			Ιō		_	Δ		\top	Т		0	Δ	T -		io(O)
3 010	Oriusinisa	ı gu	meta-diorite	porphyritic	Hombled					ondany	amn						<u> </u>		!					<u> </u>		10(0)
S-017	Chusmisa	T1	1			$\overline{\Omega}$	Ω	1 6	0 0	hio(())	I	1	T	1 510		Ŧ T		tou(C	21	-				т-	Γ	(0)
3-017	Chusmisa	Tgd	granodiorite	graphic	Homblen	de de	compo	cad	linto en	actite			Ь	1			L	tout	<u> </u>				L	Ц	S	m(O)
C 010	0, .								© 0		1					1					<u>, 1</u>		_			
S-019	Chusmisa	Tgd	granodiorite	equigranular	Clinopyro							-L			11		لــــا				Δ	0	Δ	L		zir(•)
0.000					J.III.ODYI O	VOII O	© C			olende.	T_	Tiasp		O		usty. I	0		1.		\overline{a}					
S-032	Camiña	Tgd	qz porphyry	porphyritic	Hornblend	le or	biotito	<u></u>	الم	ماند مامام			1.0		<u> </u>		[0]		12	7	0		Δ			
2 224					(O) O		0	100	ally by	critorite	, opa	ique i								_	<u> </u>	_		r—		
S-034	Camiña	Tgd	meta-di-porphyry	porphyritic									ŀΩ	0		(O)		apa(•) [_	7	0	\circ	Δ	· ·		
					Orthopyro	Xene	by cn	iorii	te. ciin	opyroxe	ne n	lighly	into	seco	ndar	y am	phibo	le. Ho			le to	tally	y by	amp		
S-038	Camiña	Kv(i)	andesite	porphyritic		0	<u> </u>		10		<u> </u>	(0)	\Box	[@]			0					Q		L	b	io(O)
					Orthopyro	xene	by ch	lorit	te, epide	ote and	biot	ite. r	ıb is	оху-	horn	bleng							s cor	nmor	١.	
S-045	Camiña	Tgd	metadiorite	subophitic			<u>Δ</u> [@				L							apa(•		<u>)</u>		0				
			····		Hornblend							amph	ibole													
S-049	Putre SW	Kgd-Tgd	granodiorite	subophitic								<u> </u>						apa(*				0			7	zir(•)
				·	Hornblend	<u>le de</u>	compo	<u>sed</u>	into fin	e amph	ibole	aggr	egat	e. Op	x pre	eserv	ed o	nly in	feld	spa	r cry	/stal	l			
S-050	Putre SW	Kgd	granite	equigranular	(Δ)	<u> </u>			$bio(\Delta)$]					1	apa(•		7				Δ		
				1.0	Hornblend	e to	tally by	chl	lorite. E	Biotite l	ocall	y by	chlor	ite.	K−fe	ldspa	ır usı	ially di	usty.							
S-051	Arica NE	Tgd	granodiorite	Aquigranular		<u> </u>	0 0	\perp) O C	bio(O)	İ						$\neg \neg$	apa(•	$\overline{}$	\neg						
			8. 4 5 3101110	oquigi ariulai	Pyroxene	hig	nly repl	ace	d by ho	rnblend	e.															
K-011	Copaquiri	Pzg	diorite	subophitic	ОД	οT	0 0	1	101	bio(O)				\neg	-			apa(•)		T	\neg	7	Δ		zir(•), sm(△)
	Opaquiii	1 25	diorite	supopnitic	Orthopyro							e.						apat ,		!_		1			211(/, SII(Δ)
																		-								

.

AP-2(3) Results of Microscopic Observation of Thin Sections (Phase 3 Surface survey)

Sample	Locality	Roo	ck Facies	Texture		Р	hend	cryst	tor	fragme	nt				Gro	undm	ass (or m	atrix		Τ	Me	tam	orphic	ora	Iteration
No.	Coouncy	Formation/Intrusive	Rock name	rexture	MP	срх	hb	qz	pl	Kf o	o oth	ners	MP	hb	az	la	Kf	gl	ор	others	en		_	p ser		others
K-016	Guavina	Tgd	granodiorite	equigranular, subophitic		Δ	0	0	0	0 4	bio	(0)					111	- 	1 -	apa(•)	-	1	1	Δ	-	zir(•)
	and the	. 60	granodionte	equigrandiar, supoprinc	Clin	opyro	xene			nt only			nde.				·			1 -1 ()	<u> </u>	1				2()
K-033	Chusmisa	Kv(i)?	meta-sandstone	clastic									O		0	0	О		ГО	bio(Δ)	T	Т	Т	T		
		1000	mote sandstone	Clastic	Amo	ng m	afic	miner	als,	orthop	roxer	ne is	pred	lomi	nant	Cli	1007	oxe	ne is	small in	amo	ount.	•			
K-038	Chusmisa	Kv(i)?	meta-siltstone	fine-grained equigranular							T			Δ	0		Ó			bio(O)						
			mota sinstone	wie granee equigranuisi	cont	tact n	eta	morph	nism	. Orth	pyrox	xene	is co	mm	on a			ined	crys	tal.		•	-1			
K-040	Chusmisa	Kv(i)?	meta-volc. breccia	1					\circ		-		- 1		0	0	0	(O)	Δ	kao(△)) -		\Box		• 1	tou(O)
			70.0. 51 00014	Clastic	Glas	s is d	evit	rified.	_To	urmarir	ne is r	adial	crys	tal a	ggre	egate						.1,				100(07
K-055	Chusmisa	Tgd	granite	equigranular	Δ	Δ	Δ	0	0	(O) Z	bio	(0)				Ť				apa(•)	1	Π		ТТ		sm(•),zir(•)
				oquigi ariaiai	Orth	opyro	xen	e is s	tron	gly alte	red in	nto si	mecti	ite a	nd g	oeth	ite.	Cline	pvro	xene lo	cally	by h	ornb	lende.		
K-056	Chusmisa	Kv(i)?	meta-basalt	porphyritic					<u> </u>			l	Οl			0				$bio(\Delta)$		Ī	T	T		goe(△)
			mote basait	porpriyride	Cline	opyro:	kene	is fin	ne-g	rained	and fo	orms	pool	of a	ggre	gate				<u> </u>						800(
K-059	Chusmisa	Tgd?	meta-granite	porphyritic microcrystallina		<u>(</u>	O)		<u> </u>		Ш_				0	0	0		Δ	bio(O)	Г		T .	1.1	•	sm(O)
			moto granico		cont	act m	etar	norph	ism'	? Hom	blend	e is t	totally	y alt	erec	linto	sme	ctite).							5,11,07
K-061	Chusmisa	Kv(i)?	granulite	microcrystalline		0			0		bio(П	Δ	
			B. 4.14.1.C	mior our ystainine	high	grade	zor	ne of	cont	tact me	tamo	rphis	m?								·	1				
K-080	Camiña	Tgd	meta-diorite	subophitic, equigranular			O)	0	0	C											ΓΔ	ΤΔ	Γō		Δ	cb(△)
		. 80	moter diorite	occopinaci, equiprandial	Horr	blend	e de	comp	ose	d into f	ine-g	riane	d sec	conc	lary	ampł	ibole	. Pl	agioc	lase is	dust	v.		1. 1		02(/
K-084	Camiña	Tgd	meta-diorite porphyry	porphyritic		0			©	Δ						0			Δ			î ·	O		-1	bio(△)
				porpriyrido	Seco	ondan	/ fin	e-gra	ined	clinop	roxe	ne is	com	mon	aro	und d	рх р	hend	ocrys	t and in	grou	ındm	ass.			
K-113	Putre SW	Kgd	granite	equigranular			0	0	0	\(\rightarrow \)	bio((A)		Ĭ		, i				zir(•)	Ī	Δ	Δ		•	bio(△)
			Bc	oquigi di ididi	Horn	blend	e de	comp	ose	d, form	ing ag	greg	ate o	f an	phib	ole.	Gree	n bi	otite	forms a	poo	l.		, ,		
K-114	Arica E	Kgd	granite porphyry	porphyritic, equigranular		Δ	0	0	0		bio((A)					Ţ			apa(•)			Γ	1 · T	• 1	zir(*), sm(△
			grained porphyry	perprojection, equipment	Pyro	xenes	are	total	lly sı	uround	ed by	horn	blend	de.								1	L	<u> </u>		
K-118	Northern Putre	Tgđ	andesite	porphyritic			0		<u></u>	C				0		0		0	0	bio(•)]	Γ	П	Т	
				Porphyrido	Olivi	ne oc	curs	only	in c	linopyr	oxene	crot	t. Ho	mbl	ende	is u	suall	y oxy	y-hor	mblende	÷.			·		
K-119	Northern Putre	Tgd	andesite	nombyritic	Δ		<u> </u>	(0				Δ	0		Ö		0	0							
				- porpriyrido	Horn	blend	e is	stron	gly o	oxytize	d. Ort	thopy	yroxe	ne i	s we	ll pre	serv	ed.						<u>'</u>		
K-128	Putre S	Tgd	meta-diorite	subophitic		(<u>(O</u>	0 (0	00									Ĩ		0	0	0	Δ	•	
			mota diorito	Sabopina	Horn	blend	e is	totally	y re	placed	by ser	ricite	, gre	en a	mph	ibole	and	chlo	rite.	Feldspar	ris o	lustv				
K-135	Putre W	Kv(i)?	meta-andesite	porphyritic		Δ (0)		0	Δ						ठा		(@)			Δ		0		οТ	cb(△)
			mota andesite	porpriyride	Clino	pyrox	ene	occu	rs a	s a reli	ct pha	ase s	urrou	ınde	by a	amph	ibole	. Ma	atrix i	int osec	onda	ırv m		als.	<u> </u>	05(21)
K-138	Putre W	Tgd	granodiorite	porphyritic, equigranular			\circ	0 (<u>o</u> [00	bio((O)								apa(•)			0		- [bio(O)
		.5~	8. unoutorité	parameter and a second and a	Horn	blend	e de	comp	ose	d mostl	y into	sec	ondar	ry ar	nphi	bole.	Bio	tite i	s usi	ually for	mine	aggr	egat	e. pro	bably	secondary.
K-150	Arica E	Kgd	granodiorite	subophitic	T	0 (0)	O	ΘĪ	00	bio((O)	\top				T	Ť		apa(•)	8	Δ	O	<u> </u>	•	zir(•)
., ,,,,	. W 100 L	Ngu	Pi attornoting		Horn					replace			darv	acio	cular	amn	hibol	—	1					<u> </u>		411()
K-152	Arica E	Kgd	granodiorite	subophitic	(A)			0 (9	Δ	bio(0)				Ī	1			apa(•)				ГТ	$\overline{\Lambda}$	zir(•), sm(△
02	A I I Ga L	/\gu	granioulonice	supopnitic	Orth	opyro	xene			ctite a			d in h	norn	blen	de.				upa(/				<u> </u>	احد	∠π(-), Sm(Δ
bbrev.	MD- mofic mir		nonvroxene nl=nlar																							

MP= mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar epi=epidote, tou=tourmaline gl=glass or microcrystalline aggregate, cb.=carbonate, ser=sericite, tit=titanite, apa=apatite, sm=smectite including clay mienrals. goe=goethite, zir=zircon, kao=kaolline @abundant, Ocommon, Δsmall, *rare () brancket shows totally decomposed.

AP-2(4) Results of Microscopic Observation of Thin Sections (Drilling)

Drilling	Samuela		1	Т					_																
Name	Sample No.	Rock Name	Texture	<u></u>				~~~	_	gment		ļ.,	T			lmass				<u> </u>	· · · · · ·	_			alteration
Name	INO.		 	MP	срх	h		pl	K	f op	others	MF	hb	1	—		gl	_	others	ер	chi	amp	ser	tit	others
	TS1-136	meta-dacite or sandstone	porphyritic, clastic	 	<u>. </u>	Ļ.	_ ⊚_	با	<u> </u>		L	<u> </u>		ΤŌ			<u>i </u>	$\perp \triangle$	<u> </u>	<u> </u>		<u>L</u>	<u> </u>	<u> </u>	$goe(\Delta)$
			ļ	Mat	rix is	hig	ghly re		ed b		cite and	cal	lcedni							,	,		,		
1	TS1-154	meta-andesite	porphyritic	<u></u>	<u> </u>	<u> </u>	<u> </u>		L	<u> 10</u>		<u></u>		LΟ			(<u>@</u>)	Δ		<u> </u>	0		<u> 10</u>	Δ	
	-			Seri	cite	anc	i chior		re \		read, re	plac	ing fe							,					
MJC-1	TS1-270	meta-andesite	porphyritic	L-	<u> </u>	Ļ		0	<u> </u>	10	<u> </u>			0		<u> </u>	[(©)	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0	<u> </u>	
İ				Mat	rix is	hig	thly re		d b		cite and	chi	orite.						·						
1	TS1-324	meta-volc. breccia	clastic	<u></u>	L	پا		0	L	10		<u>L</u>	<u> </u>	0		22	<u>L</u>		<u> </u>		0	<u> </u>	0	Δ	
1				incl	uding	dic	orite b		. F		lase is ı	usua	ally du												
	TS1-344	meta-andesite	porphyritic	<u> </u>	L			Q						<u>LQ</u>			(©)	L			0		0	Δ	
	 			Mat	rix ar	<u>ıd r</u>			ocn	ysts a	e altere	ed in	to se	ricit	e ai	nd chlo	orite.								
MJC-2	TS2-436	pumiceous tuff	clastic		L_,		10										0		$bio(\Delta)$	Δ		Ī	Δ		goe(△)
	ļ			inclu	ıding	mι			d sa	andsto	ne blocl	KS.	Epido	te is	s pr	esent	only	in a	ragment						
MJC-3	TS3-240	volc. breccia	brecciated	<u> </u>				0			$bio(\Delta)$	L		Δ	1	4	0	•	[$cb(\Delta)$, $goe(\Delta)$
				Biot	ite hi	ighl		ed in	ito	goethi	te.														
MJC-5	TS5-344	meta-welded tuff	porphyritic				0		C					0				Δ		Δ			Γ		·
			p -																						
	TS6-394	andesite	porphyritic	Δ	0			0		-		Δ			To		0	Δ					П		·
MJC-6			porpriyritio	Fres	h an	des	ite. P	lagio	cla:	se cor	e is dus	ty.					-						J		
	TS6-400	andesite	porphyritic	0	Δ			0		Δ		Δ			To		0	Δ							
	1.00	undoored	porpriyride	fres	n and	lesi	ite.												L					<u> </u>	
MJC-7	TS7-370	basalt	porphyritic	0	0			0		Tol		Δ			To		0	Δ							$sm(O)$, $cb(\Delta)$
	.0, 0,0	basaic	porpriyride	Olivi	ne is	to	taly alt	tered	l by	/ smec	tite and	car	bonat	te m	ine	rals.							<u> </u>	1	011(O), 00(A)
MJC-8	TS8-432	tuff. sandstone	clastic		Δ	Δ											0			Δ			Δ		$cb(\Delta)$, $sm(\Delta)$
	100 102	turi. Sariustorie	Clastic	Sec	odary	mi	inerals	only	in	fragm	ents. V	olca	inic fr	agm	ent	s are o	comn	ion.				L			ов(Д), SII(Д)
MJC-9	TS9-490	tuff	clastic		Δ	$\overline{\circ}$					$bio(\Delta)$		T	Õ	7 -		0	Δ					Δ		$sm(\Delta)$
	103 430	tun	Clastic	inclu	ding	vol	canic	fragn	nen	nts. Se	condar	v mi	neral	s on										LL	SII(Δ)
	TS10-050	basalt	n ambuuiti -	0			T	<u>⊚</u> 1		О		Δ			Īċ		0	Δ							$sm(\Delta)$
	1310 030	Dasait	porphyritic	Olivi	ne to	tal	ly alte	red b	v s	mectit	e. Orth	opv	roxen	e lo	call	v bv s						L	<u> </u>		SIII(Z)
	TS10-104	basalt		0	ठा		ĺ	0		101		Δ			To		@	Δ		_				Т	$sm(\Delta)$
	1310 104	Dasait	porphyritic	Olivi	ne to	tali	lv alte		v s		e. Orth		roxen	e lo											SIII(\(\Delta\)
MJC-10	TS10-248	h14(2)	1 1	(0)			17	0		ΤΔΤ					Ϊø		(@)								sm(O), cb(O)
MOC-10	1310-240	basalt(?)	trachytic	Mafi	phe	no	crysts	total	llv :	altered	l into sn	nect	tite ar	ad c											sm(O), cb(O)
	TC10 044			O	ÓΙ		T	©	,	Tol	1 11100 311	Δ	T	10 0	C		0	Δ					Δ		(4)
	TS10-344	basalt	porphyritic, trachytic			tall	lv alter		V 6		e. Plag		200.0	250											$sm(\Delta)$, $goe(\Delta)$
	T010 070			(O)	O I	, , ,		@ I	y S	Δ		(O)) E I	C		©		ricite.		-			ı	1/0)
	TS10-372	basalt	porphyritic			era			or		tally into			+			<u> </u>	Δ)							cb(O)
				T		010			$\frac{0}{0}$		$bio(\Delta)$		I Dona	©					. (43						
	TS11-430	gz porphyry	porphyritic	K-fo	ldena					<u> </u>	sericite.		L I	9	IU				tou(△)				0		goe(△)
				10 10	uspa	ıı a					sericite.	-	Γ.	_	т 👝	101			1						
MJC-11	TS11-466	Qz-po. breccia	brecciated	Mofi	<u>_</u>			<u> </u>	_		 -		1 1	0	LΟ			Δ	zir(•)				Δ	L	$sm(\Delta)$, $tou(\Delta)$
}					pne ن T	1100				altered			, -,		_		—,					,			
	TS11-486	porphyry	subophitic	(O)					Δ		bio(O)		لبل		Ļ	لبل	ـــا			•	0		0		$\operatorname{sm}(\Delta)$
	L			Matic	phe	noc	cryst i	nto s	me	ctite a	nd opac	que	miner	als.	Pla	giocla	se hi	ghly	into seri	cite.					

AP-2(4) Results of Microscopic Observation of Thin Sections (Drilling)

Drilling	Sample	Rock Name	Texture	Phenocryst or fragment Groundmass or matrix Metamorphic or alteration
Name	No.		TOXEGRO	MP cpx hb qz pl Kf op others MP hb qz pl Kf gl op others ep chl amp ser tit others
MJC-11	TS11-498	meta-di-porphyry	porphyritic	(O) \bigcirc O O O O O O O O
			F F 7 - 7	Mafic minerals into chlorite. Plagioclase highly replaced by sericite.
1 1	TS12-178	meta-porphyry	porphyritic	$(O) \triangle (O) \bigcirc \bigcirc \bigcirc \triangle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $
			po.pr.yr.co	Mafic minerals into sericite, secondary amphibole, chlorite and opaque minerals.
1	TS12-200	meta-quartzdiorite	subophitic	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
MJC-12				Mafic minerals by secondary acicular amphibole.
	TS12-286	meta-quartzdiorite	subophitic	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
				Hornblende decomposed into secondary amphibole. Plagioclase locally by epidote.
	TS12-298	meta-quartzdiorite	subophitic	
Ll				Homblende replaced by secondary acicular amphibole. Plagioclase locally by sericite.

abbrev.

MP= mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar epi=epidote, tou=tourmaline gl=glass or microcrystalline aggregate, cb.=carbonate, ser=sericite, tit=titanite, apa=apatite, sm=smectite including clay mienrals. goe=goethite, zir=zircon, kao=kaolline

AP-3 (1) Results of Microscopic Observation of Polished Sections (Phase 1)

Sample	Locality			,			e minera	ls		Gangue minerals											
No.		Ру	Ср	At	Cov	Hm	Goe	Gal	others	si	pl	kf	ser	chi	bar	tit	ana	zm	others		
D-007	Mocha		<u></u>	0			Δ			0	0		Δ	0			İ	İΤ			
C-004	Mocha		0	Δ	Δ		0				0	0	Δ	0				<u> </u>			
C-007	Mocha			Δ			Δ			 	0	 	0	Ö			Δ		apa(•)		
A-004	Soledad	Δ					Δ			0	_							-	apa()		
B-006	Soledad	0							CuZn(•)	Δ	0			0				 	opx(△)		
B-007	Soledad	Δ	•					•	Pyr(•)	0	0	 		Δ			Δ		$cpx(\Delta)$, $cal(\Delta)$		
B-008	Soledad	0	•							ō	0			0		Δ	0	-	$epi(\Delta)$, $eai(\Delta)$		
B-009	Soledad	0	•	_				•	Pyr(+)	0	0			Δ		4	Δ	-	$cal(\Delta)$		
A-010	Queen Elizabeth-S					•	Δ		Cry(O)	0			0						cal(O), jar(O)		
A-013	Queen Elizabeth~S					Δ			Cry(O)	ō	0	0					Δ		apa(•)		
C-038	Queen Elizabeth-S	0	0					Δ	$Cry(\Delta)$, $Mal(\Delta)$	ŏ	Ö	0						-	apa(-)		
A-036 I	Diana					Δ	Δ		, , , , , , , , , , , , , , , , , , ,	0	0	ő		Δ		Δ			apa(•)		
Z-002	Diana	•			-		0			0									apa(-)		
Z-003 I	Diana	Δ					Δ		Bar(△)	0		_	Δ								
Z-006 I	Diana				-		Δ		$Bar(\Delta)$	0	0		Δ								
Z-007 [Diana						Δ		Bar(•)	0			Δ					-			
A-048 I	La Planada					0			Ang(•)	ō	0	0	Δ	0					(0) 1: (0)		
	La Planada	0	Δ		Δ	Δ			Pyr(•)	0	0	0		0		_			cal(O), bio(O)		
	_a Planada	0	$\frac{-}{\Delta}$		=				Bor(*)	0	0			0		Δ			cpx(Δ)		
	_a Planada						-		Ger(O)	0				<u> </u>					bio(O)		
	_a Planada		Δ		-														tou(©)		
\bbr. :	_u i idilada								Cer(△)	0	0		0	0			Δ	•	apa(•)		

Py=pyrite, Hm=hematite, Cp=chalcopyrite, Bo=Bornite, Gal=galena, At=atakamite, Goe=goethite, Cov=covellite, Ang=anglesite, Bar=barite Cry=chrysocolla, Pyr=pyrrhotite, CuZN=hydrou CuZn mineral, Mal=malachite, Cer=cerussite, si= SiO₂ polymorphs, pl=plagioclase,

kf=K-feldspar, se=sericite, bio=biotite, bar=barite, ana=anatase, apa=apatite, ZM=zircon and monazite, cpx=clinopyroxene, cal=calcite, jar=jarosite chl=chlorite or clay minerals, opx=orthopyroxene, epi=epidote, tou=tourmaline

⊚=abundant, O=common, Δ=small, -=rare

AP-3 (2) Results of Microscopic Observation of Polished Sections (Phase 2)

Sample	Locality	Ore minerals									Gangue minerals									
No.		Ру	Ср	Mal	Cov	Hm/Mt	Goe	Gal	Bar	others	si	pl	kf	ser	chi	tit	ana	zm	others	
G003	Eastern Chacarilla		Π			0	Δ				0	0	<u> </u>	Δ	0	-		-	apa(△)	
F009	Western Chacarilla	0							Δ	Siderite(©)	Δ			 -	A	 		-	lapa(Δ)	
F013	Western Chacarilla	0								CuZn(•)		0	\vdash		Δ	\vdash		<u> </u>	dol(@)	
E007	West Qween Elizabeth-N	0								Sph(+)	0	-	0		-	-			epi(△)	
E022	West Qween Elizabeth-N	0					i	•		In Tari	-	0	<u> </u>				 		cpx(O)	
F032	West Qween Elizabeth-N	0						i :			0	0	0		Δ				bio(Δ)	
F049	West Qween Elizabeth-SE		1			0	0				Ť				-				DIO(23)	
F074A	West Qween Elizabeth-SE						0			Cry(O)	0	0		Δ	Δ					
F075B	Tignamar-N			Δ			Δ			Cry(©)	ŏ	ŏ	0	Δ		-		Δ		
F078	Tignamar-N	0								Cc(O)	0	_		0	-					
E058	Camarones-QCW	0	0							00(0)	Δ	0		ŏ	0				$epi(\Delta)$, $ilm(\Delta)$	
E061	Camarones-QCW	0					0				0	ŏ	_	0	Δ			<u> </u>	epi(\(\Delta\), iim(\(\Delta\)	
E081	Camarones-QCW	Δ	Δ							Ang(O)	0	<u>ا</u>	-	0			Δ		epi(O)	
E081B	Camarones-QCW	0	Δ							Ang(O)	0			0			_		epi(O)	
E181	Camarones-QCW	Ö	Δ							Arig(O)	0	0		-9		Δ	<u> </u>			
E192	Camarones-QCW	0	Δ						Δ		ŏ	0			0	27	-		epi(O)	
E192B	Camarones-QCW	o	Δ				_			Sph(•)	_	_							cal(△)	
E194	Camarones-QCW	ŏ	Δ					_	$\frac{\Delta}{\Delta}$	Spn(-)	0	0	0	Δ	0				cal(△)	
E194B	Camarones-QCW	0	Δ							AgTe(·)	-						-		apa(•)	
E208	Camarones-QCW	Δ					Δ			Agre(-)	0	_@	0	Δ 0					apa(*)	
E212	Camarones-QCW	0						-			0	0	0	-		-	-	•	1: (4)	
F162	Camarones-QCW	Ō								Sph(·)	0	0	Δ			Δ			bio(△)	
F172	Camarones-QCW	ŏ		1			-+		-	Spri(-)			$\stackrel{\triangle}{-}$				Δ		epi(△)	
F176	Camarones-QCW	6	Δ			Δ					0	0		_	Ó		Δ		bio(O)	
F177	Camarones-QCW	ŏ			Δ							0			Δ	Δ			epi(O)	
F177B	Camarones-QCW	ō	Δ		$\frac{\Delta}{\Delta}$	0					9								$bio(\Delta)$, $ilm(\Delta)$	
F182	Camarones-QCW	ŏ	-	-	-				Δ		0	0	\dashv			-		-	$bio(\Delta),ilm(\Delta)$	
F182B	Camarones-QCW	ŏ			-				-		0	0					Δ	-		
G052	Camarones-QCW	ŏ		- +	+		Δ			Pyr(Δ)	0	9		_	_			•		
G084	Camarones-QCW	-				·(Mt)	-	Δ		Pyr(Δ)	0	의		0	0	_				
G173	Camarones-QCW	0		-	-	(IVIC)					0	0	0	-+			•	_	epi(©)	
G183	Camarones-QCW	0			-				_	 	0	0	0	_		_		-	epi(△)	
F107	Camarones-QCC	0		-+			_			CuZn(+)	0	_	_	0			<u> </u>			
H006	Camarones-QCE	0	-+	-+					Δ		0	0	0		\dashv		•	•		
H009	Camarones-QCE	0	\dashv						_		0	0	0					- 1	apa(∆)	
E233	Camarones-QCS	0		\dashv	+				9	CuZn(△)	4	0	0		0			•		
H019		_									0	_		0	_	•	•			
E171	Camarones-QCS	0								Sph(•)	0			0						
	Camarones-SM					0	Δ					0			0		Δ			
	Camarones-SM					0	Δ						0		I				cpx(O)	
G155	Camarones-SM					O(Mt)		_			0	0	0					•		

Abbr.

Py=pyrite, Hm=hematite, Mt=magnetite, Cp=chalcopyrite, Gal=galena, Mal=Malacite, Goe=goethite, Cov=covellite, Ang=anglesite Cry=chrysocolla, Pyr=pyrrhotite, CuZN=hydrous CuZn mineral, Mal=malachite, Cc=chalcocite, Sph=sphalerite, Bar=barite kf=K-feldspar, se=sericite or muscovite, bio=biotite, bar=barite, ana=anatase, zm=zircon and monazite, cpx=clinopyroxene si=SiO₂ minerals, pl=plagioclase, chl=chlorite or clay minerals, epi=epidote, cal=calcite, dol=dolomite ©=abundant, O=common, Δ=small, *=rare

7

AP-3(3) Results of Microscopic Observation of Polished Sections (Phase 3 Surface survey)

Sample	Locality						Ore m	ineral	s			Gangue minerals												
No.		Ру	Ср	Cry	Aca	Mai	Ang	Cer	Hm/Mt	Bar	others	si	pl	kf	ser	chl	tit	ana	zm	others				
T-005	Queen Elizabeth										$Jar(O),Goe(\Delta)$	0			0	0		Δ	•					
Q-139	Putre SE (Choquelimpie)	0										0								kao(O)				
Q-144	Putre SE (Choquelimpie)	0								0		0			Δ					kao(O)				
Q-145	Putre SE (Choquelimpie)	0			·						Gal(•)	0								kao(O)				
Q-160	Putre S	0										Ō	0	0		0				$bio(\Delta)$				
S-002	Copaquire								0			Ō	0	Ť						$bio(O),apa(\Delta)$				
S-005	Mamiña SE	Δ							0	-		0	Ŏ	0		0				epi(O),cpx(O)				
S-016	Chusmisa	Δ							0			0	0	<u></u>						hb(O)				
S-021	Chusmisa			0				0			Ant(⊚)	0								TIB(C)				
S-029	Camiña	0									, , , , , ,	Ö	0			0		Δ		$hb(O)$,clay (Δ)				
S-033	Camiña	Δ										0	ŏ	0				$\frac{\Delta}{\Delta}$		IID(O),clay(△)				
S-035	Camiña	0									Goe(△)	Ö	0					Δ		clay(O)				
K-124	Putre S	0										0	_							clay(©)				
K-129	Putre S	0									Gal(•)	Ö	0	0				├		$cpx(\Delta)$				
K-133	Putre W (Campanane)		Δ	0							Jar(O)	0	_						-	tou(©)				
K-137	Putre W (Campanane)								0			Δ	0		Δ	0	0			cal(O)				
K-139	Putre W (Campanane)			0							Goe(O)	0			-	$\overline{}$	$\overline{}$							
K-147	Arica E (Halcones)			0		0					$Goe(\bigcirc),Chc(\triangle)$	0								tou(಄)				
K-149	Arica E (Halcones)			0		Δ					Cag(+),Plu(O)	0												
K-151	Arica E (Halcones)	0				•	Δ				$Chc(O),Ant(\Delta)$	0												

abbrev. Py=pyrite,Hm=hematite,Mt-magnetite,Cp=chalcopyrite,Gal=galena, Mal=Malacite, Goe=goethite, Ang=anglesite, Aca=acanthite Cry=chrysocolla, Mal=malachite, Chc=chalcocite, Bar=barite, Cer=cerussite, Cag=chlorargyrite, Plu=plumbojarosite, Ant=antlerite, Jar=jarrosite kf=K-feldspar, se=sericite or muscovite, bio=biotite, bar=barite, ana=anatase, zm=zircon and monazite, cpx=clinopyroxene si=SiO₂ minerals, pl=plagioclase, chl=chlorite, clay=clay minerals, epi=epidote, cal=calcite, kao=kaollinite, hb=hornblende ©=abundant, O=common, Δ=small, *=rare*

AP-4 (1) Resultu of X-ray Diffractive Analysis (Phase 1)

																		
Sample No.	Locality	Qz	PI	Kf	Tre	Drav	Mont	Ser/Mont	Chi/Mont	Chl	Ser	Ka	And	Gyp	Alu	Ja	Hem	Cal
C001	Mocha	Δ		<u> </u>	1		⊚n	Δ	?		Δ	?	Δ?			Δ		
C005	Mocha	0	0	-	<u> </u>	 	Δ			Δ~0		?	Δ:		_	14		
C010	Mocha	0	0				Δ			△~0		?			-		-	
C011	Mocha	0	Δ		 -					Δ	0	?	ļ	Δ		-	-	
C012	Mocha	?	Δ	<u> </u>	l	Δ	0					╀╌						_
C019	Mocha	Δ	Δ		<u> </u>					0	Δ	+		Δ				0
D005	Mocha	0	 				Δ			?	Δ	Δ		10		Δ		
A002	Soledad	0				Δ				?	Δ	Δ				Δ.		\vdash
A006	Soledad	0	Δ		i					Δ	Δ	14					-	· · · · · · · · · · · · · · · · · · ·
B003	Soledad	Δ	0	-				Δ			Δ	 				Δ	 	
B004	Soledad	0	0	i			0	Δ			 -	-						
B005	Soledad	0	Δ	 			0			?	Δ	Δ						
B006	Soledad	0	0	<u> </u>	Δ	-	Δ			· ·		1				_		
C022	Qween Elizabeth-N	0	<u> </u>	<u> </u>								-				_	_	
C025	Qween Elizabeth-N	0		_								0					Δ	
C029	Qween Elizabeth-N	0~0	_					Δ				Δ			Δ			
C031	Qween Elizabeth-N	0						Δ										—
C034	Qween Elizabeth-N	0		?				Δ										
C036	Qween Elizabeth-N	0		· · ·				Δ										
C040	Qween Elizabeth-N	0		Δ			Δ			^	_							
D010	Qween Elizabeth-N	0		_			-				Δ_							
D012	Qween Elizabeth-N	0			-		•	Δ								_		
D016	Qween Elizabeth-N	0										?				Δ		
D020	Qween Elizabeth-N	0		_											$\overline{}$			
D024	Qween Elizabeth-N	0	_	?						?	Δ	Δ			0			-
D029	Qween Elizabeth-N	0		•							△~0		\dashv	_				
D035	Qween Elizabeth-N	0		Δ			Δ	Δ			<u> </u>			<u> </u>				
B011	Qween Elizabeth-C	Δ	Δ				<u> </u>			-	Δ	-	-	-		-		\dashv
B012	Qween Elizabeth-C	Δ	Δ				0				Δ					-		
B016	Qween Elizabeth-C	0	_				_		-		0		-			-		
B017	Qween Elizabeth-C	0		\dashv								0			-		-+	_
B021	Qween Elizabeth-C	0			-+					I		Δ		_				
B022	Qween Elizabeth-C	0									0							
A009	Qween Elizabeth-S	△~?	Δ	Δ			Δ	Δ		Δ		?				-		<u>_</u>
A014	Qween Elizabeth-S	0	0		- †					$\frac{\overline{\Delta}}{\Delta}$	0	?		-+				<u> </u>
A016	Qween Elizabeth-S	0	Δ	Δ			Δ			Δ	ŏ		\dashv			-		-
A019	Qween Elizabeth-S	0		0							ō			-+		Δ		\dashv
A022	Qween Elizabeth-S	0									0							-
	Qween Elizabeth~S	0	Δ	i			Δ			?	Δ	Δ		-		4		\dashv
	Diana	0	0	\dashv	1					0	Δ	- +	\dashv		-+	-	_	\dashv
A033	Diana	0		\dashv					·		0		-+	\dashv		-		
B033	Diana		Δ		_		_				Δ		-+		\dashv			-
B036	Diana		0							?		Δ						
B037	Diana	0	\neg	+	_							$\frac{\Delta}{\Delta}$	- -	-+	\dashv	Δ	\rightarrow	\dashv
B039	Diana	0								?	 ⊚	$\frac{\Delta}{\Delta}$			-	-		\dashv
C049	Diana		0	\dashv	$\neg \dagger$						Δ	-	-		-+	+	-+	\dashv
D041	Diana			Δ	+	_					$\frac{\Delta}{\Delta}$			-+		-	+	\dashv
	La Planada		-		Δ	_				?		Δ	-		-+	+		\dashv
	La Planada		Δ	_	_+	-	-				0	4			+			-
	La Planada	0	_	+	-+						0	_			-	\dashv		\dashv
		n: nontr									U I	Δ						

n: nontronite?

AP-4 (2) Resultu of X-ray Diffractive Analysis (Phase 2)

Sample No	Locality	Qz	Cri	Tri	PI	Kf	Act- Tre	Ері	Stil	Laum	Mord	Mont	Ser/Mon t	Chl/Mon	Chl	Ser	Ka	Pyr	Anh	Gyp	Alu	Ja	Ру	Hem	Cal	Hal
F-010	Chacarilla-W				0										-	Δ	 		 	 -		-	Δ		\vdash	
F-020	Chacarilla-W				0												?	ļ	-	<u> </u>						
F-021	Chacarilla-W	Δ	_	-	0										l	Δ	 '-					_			· 	!
F-024	Chacarilla-W	0		Ī												Ο~Δ	 					Δ			; -	
F-025	Chacarilla-W	0											Δ			Δ	-			$\frac{\Delta}{\Delta}$		Δ				
E-002	West Queen Elizabeth-N	0										Δ				Δ	-								\rightarrow	J
E-004	West Queen Elizabeth-N	0											$\overline{\Delta}$					<u> </u>								
E-011	West Queen Elizabeth-N																-	0								
	West Queen Elizabeth-N	0														Δ	?									
	West Queen Elizabeth-N	0									Δ	Δ			?	?	?	-								
	West Queen Elizabeth-N	0															<u> </u>	-								
F-040	West Queen Elizabeth-N	0										Δ	Δ		Δ		?	-								
F-044	West Queen Elizabeth-N	Δ			Ο~Δ							2			Δ	Δ .	?									
F-048	West Queen Elizabeth-N	0				-						Δ				Δ	- 1		-			Δ		-		{
E-014	West Queen Elizabeth-C	0			Δ				?		-			<u>`</u>		0						Δ	-		\rightarrow	
E-018	West Queen Elizabeth-C	0			Δ							_				$\frac{0}{\Delta}$										
E-023	West Queen Elizabeth-C				0		Δ															Δ				
F-051	West Queen Elizabeth-C		?									Δ			?		_	-								
F-056	West Queen Elizabeth-C						 					2			·		Δ	_				_	_			
	West Queen Elizabeth-C	0	1 -		Δ		Δ								$\stackrel{\Delta}{\longrightarrow}$?								\rightarrow	
F-064	West Queen Elizabeth-C	0			Δ			-+																		
	West Queen Elizabeth-C	0	ļ		Δ		-								_	<u> </u>							_			
E-030	Tignamar-N	0			Δ			-							Δ	Δ	- 1						_		\rightarrow	_
E-032	Tignamar-N	<u>_</u>			0											?	Δ					Δ				
E-034	Tignamar-N	_ <u>ŏ</u>	+		0			-									?					Δ		_		
F-077	Tignamar-N	<u> </u>	1 -						-								Δ									
F-080	Tignamar-N	<u> </u>	_				-									0							Δ			
G-035	Tignamar-N	<u> </u>			0											0	-									
E-037	Tignamar-S	0	-			2		-	-						\rightarrow	Δ										
E-038	Tignamar-S	0	1			?									_											
	Tignamar-S	0		-		?			-																	
	Tignamar~S	<u> </u>				?		-+	-																	
	Tignamar-S	0		-											-											
	Tignamar-S	0					-	\dashv											?							
	Tignamar-S		 					\dashv													Δ					
	Tignamar-S		Δ									_ _+				Δ	Δ					Δ				
	Tignamar-S		-	Δ																						
	Tignamar-S	0	Δ	-											_		Δ				Δ					
	Tignamar-S	Δ	0	Δ				\dashv																		
	Tignamar-S			$\frac{\Delta}{\Delta}$																	Δ	\bot				\neg
	Tignamar~S	0		4				-			$-\bot$										0					
	Tignamar-S			\dashv																	0					
	Fignamar-S		7	-													Δ				?					\neg
	Camarones-QCFW							_	_		_						Δ				Δ					\neg
u-120	Jamai ones-QUFYY								<u> </u>	Δ		Δ														\neg

-

AP-4 (2) Resultu of X-ray Diffractive Analysis (Phase 2)

Sample No	Locality	Qz	Cri	Tri	PI	Kf	Act-	Epi	Stil	Laum	Mord	Mont	Ser/Mon t	Chi/Mon	Chl	Ser	Ka	Pyr	Anh	Gyp	Alu	Ja	Ру	Hem	Cal	Hal
E-062	Camarones-QCW	0							i					<u> </u>	╁──	0	+	├	-	<u> </u>	-				\vdash	1
E-063	Camarones-QCW	0														o_	+				 					
E-066_	Camarones-QCW	0			0	Δ											\leftarrow				 -	-				į
E-076	Camarones-QCW	Ο~Δ			Ο~Δ			·							Δ	Δ	 	 			 				<u> </u>	I
E-190	Camarones-QCW	0			Δ					<u> </u>						0		·			ļ		?		ا۔ا	,
E-199	Camarones-QCW	0			@~O	Δ									Δ	Δ	-				 -		Δ.			, ——-
F-124	Camarones-QCW	0										Ο~Δ			1	$\frac{\Delta}{\Delta}$	 				ļ -					
F-163	Camarones-QCW	0			Δ			_							Δ	Δ	 		 	<u> </u>	ļ. —	Δ			,	
F-173	Camarones-QCW	Δ			Δ									·	Δ		-	<u> </u>					?			
F-183	Camarones-QCW	0			0								· 			Δ	 		-	Δ						Δ
G-054	Camarones-QCW								0			Δ														
G-082	Camarones-QCW	0			Δ			Δ				?										1				
G-085	Camarones-QCW	0				Δ		Δ									?									
G-087	Camarones-QCW	Δ					_	$\frac{\Delta}{\Delta}$						-	Δ		?					 				
	Camarones-QCW				Δ	Δ		_				$-\Delta$			_										0	
	Camarones-QCW	0										·			Δ		?	_								l
G-106	Camarones-QCW	Δ			Δ														Δ	_@_						
G-109	Camarones-QCW	0			0			\dashv				Δ			Δ		?					_			0	
	Camarones-QCW	Δ					 			Δ									_	_						
	Camarones~QCW	0	?				-									_						_			0	
	Camarones-QCW	0					-									<u> </u>										
	Camarones-QCC	0		-			-	-					_		-	<u> </u>										
	Camarones-QCC	0			Δ	Δ		-+																		
	Camarones-QCC	0			$\frac{\Delta}{\Delta}$	Δ																_				
	Camarones-QCC	0		-	0~Δ	$\frac{\Delta}{\Delta}$			-							Δ										
	Camarones-QCC	0		-	0 - 2							?			Δ		_?			?						
	Camarones-QCC	0			0~Δ	Δ	-						Δ			Δ_						Δ				
	Camarones-QCE	0			0 - 4		-								Δ	Δ	?									
	Camarones-QCS	0	-+	-			-	${}$								0										
	Camarones-QCS	0						\triangle									0									
	Camarones-QCS	0						+			+						0									
	Camarones-QCS	?															Δ				Δ					
	Camarones-QCS	©					_	-									0				Δ					
	Camarones-QCS	0		-		<u> </u>		-	-				Δ									Δ		- 1.7		
	Camarones-QCS	0				$-\frac{\Delta}{\Delta}$		-								Δ						_				
	Camarones—QCS			-		Δ														T		Δ				
	Camarones-QCS	0		-	+											0	[
	Camarones-QCS			-	0_			_							Δ	Δ	?								_	\neg
		0	- +						_																	\neg
	Camarones-QCS	0					.										0			1				Δ	$\neg \uparrow$	
	Camarones-QCS	0															Δ				Δ		$\neg \uparrow$		\neg	
	Camarones-QCS	0															0						+	_	-	\dashv
	Camarones-QCS	0															Δ			$\neg \uparrow$	+		_		-	-
	Camarones-QCS	0															Δ					_	_		+	-
G-190 C	Camarones-QCS	<u> </u>			Δ					Т						Δ		- †-			-+		-		-+	-

3

AP-4 (2) Resultu of X-ray Diffractive Analysis (Phase 2)

Hal

Halite

Sample No	Locality	Qz	Cri	Tri	PI	Kf	Act- Tre		Stil	Laum	Mord	Mont	Ser/Mon	Chl/Mon	Chl	Ser	Ka	Pyr	Anh	Gyp	Alu	Ja	Ру	Hem	Cal	Hal
F-199	Camarones-QCS	0			0	Δ	†—-	1	<u> </u>				<u> </u>		_		<u> </u>	-		<u> </u>	_					├
H-104	Camarones-QCS	0	1				 	 					 							ļ						
E-155	Camarones-SM	@~O			0	?	Δ			 		Δ	 			Δ	Δ	-		-						ــــــ
F-146	Camarones-SM	0~Δ	1-		Ö	Δ						2					$\frac{\Delta}{2}$			ļ					ļ. <u></u>	ļ
F-153	Camarones-SM	0			0~Δ	0~Δ	 		-			···· <u>·</u>	ļ				?								ļ	
G-144	Camarones-SM	0			Δ	† -	·					-	 				ļ —							<u> </u>	ļ	
	Camarones-SM	0			0	0	Δ		-				 													
G-151	Camarones-SM	0		· · · ·	0	Δ															- -					
G-156	Camarones-SM	0			Δ											<u> </u>						-	_			<u> </u>
G-162	Camarones-SM	<u> </u>			0	0	_	_				Δ											?			ļ
G~149	Camarones-SMR		Δ	Δ			 	_					Δ										-			↓
G-169	Camarones-CR	Δ	Δ	Δ			-						Δ									_				<u> </u>
	Camarones-NW	0			Δ	0~Δ	_		_		-	 	Δ													<u> </u>
	Camarones-NW	Δ							-								Δ									Δ

narones-NW	<u> </u>		i
Abbreviation		Amount	!
Qz	Quartz	$2\theta = 40-20^{\circ} \text{ (CuK}\alpha)$	
Cri	Cristobalite	© abundant	> 80
Tridy	Tridymite	O common	800-
Pl	Plagioclase	△ small	400
K-fs	K-feldspar	?	400
Act-Tre	Actinolite-Tremolite	•	
Epi	Epidote		
Stil	Stilbite		
Laum	Laumontite	$2\theta = 20-2^{\circ} (CuK\alpha)$	
Mord	Mordenite	O abundant	> 70
Mont	Montmorillonite	Common	700-
Ser/Mont	Sericite/Montmorillonite interstratified mineral	△ small	300
Chl/Mont	Chlorite/Montmorillonite interstratified mineral	?	000
Chl	Chlorite	·	
Ser	Sericite		
Kaol	Kaolinite		
Pyrophy	Pyrophyllite		
Anhyd	Anhydrite		
Gyp	Gypsum		
Alu	Alunite		
Ja	Jarosite		
Ру	Pyrite		
Hem	Hematite		
Cal	Calcite		
Цal	Holita		

800 cps 00-400cps 00 cps >

700 cps 0-300cps 0 cps >

ã

X-ray Diffractive Analysis

Abbreviation		Amo	unt
Qz Pl Kf Tre Drav Mont Ser/Mont Chl/Mont Chl	Quartz Plagioclase K-feldspar Tremolite Dravite Montmorillonite Sericite/Montmorillonite interstratified mineral Chlorite/Montmorillonite interstratified mineral Chlorite	2 θ > 20° © Ο Δ	abundant > 800 cps common 800-400cps
Ser Ka And Gyp Alu Ja Hem Cal	Sericite Kaolinite Andalusite Gypsum Alunite Jarosite Hematite Calcite	2 θ < 20° © Δ ?	(CuKa) abundant > 700 cps common 700-300cps small 300 cps >

AP-4(3) Results of X-ray Diffractive Analysis (Phase 3 Surface survey)

Sample No.	Locality	Qz	Opal-CT	Crist	PI	K-fs	Tre	Clinopt	Stilh	Mont	Ser/Mont	Minn	Chl	Ser	Kaol	And	Gyp	A 1	T 1.			_	
S-022	Chusmisa	0	1			1		Олпорс	Cub	WOITE	Ger/ Wicht	MILLIA	Cill	O	Kaoi	And	Сур	Alun	Ja △	Gai	Goe	Ру	Amor
S-023	Chusmisa NE	0	<u> </u>		?	Δ		-			Δ			 ∨	Δ			<u> </u>	4				
S-027	Chusmisa	0			0					Δ					Δ	 			 				
S-028	Camiña NE								_			 		+-	<u> </u>	-	<u> </u>		 				7
S-031	Camiña	0			0					Δ	· · · · · · · · · · · · · · · · · · ·			 		 	Δ	 	-		-		
S-033	Camiña	0			Ö	Δ-?		-	-								Δ.	 	\vdash				
T-011	Pachica	0			Δ	Δ									-		Δ	 					
T-012	Pachica	0			Δ	Δ			_	?		-		7		1 1	Δ					-	
T-014	Pachica	0			Δ								_	$\dot{\Delta}$					1-				
T-015b	Pachica	Δ												├─						0	Δ		
T-027	Chusmisa NE	0					Δ							├─	Δ	·			H				
T-028	Chusmisa NE	0									-			 				<u> </u>				-	
T-029	Chusmisa NE	0					-				_							Δ					
T-030	Chusmisa NE	Δ			0					Δ				 									
T-031	Chusmisa NE	0												†					Δ				-
T-032	Chusmisa NE	0													-			0	-				$\overline{}$
T-033	Chusmisa NE	0			Δ									-	Δ					\dashv			-
T-035	Chusmisa NE	Δ																	-		-		<u></u>
T-036	Chusmisa NE													-				0	\vdash				
T-038	Chusmisa NE	0			0					Δ				Δ								-	
T~041	Chusmisa NE	0			_		- "						-	+-	0				\vdash				——
T-043	C.Pumiri		©-O				-							_	Δ			Δ	-		-	-	
T-044	C.Pumiri									Ο-Δ									Δ				
T-047	C.Pumiri	Δ	⊚- O								_				0			Δ	4				
T-051	C.Socora	Δ	Ο-Δ		Δ										Δ			2.3					
T-053	C.Pumiri									Ο-Δ					Ο-Δ								
T-058	Minimiñe			0	_					. •					Ο-Δ								
T-059	Tignamar NW									,	· · · · · · · · · · · · · · · · · · ·				<u> </u>			Δ	 				0
T-062	Tignamar N	0												0					\vdash		-+		
T-070	Putre S	0												ŏ		?			\vdash			-	
T-084	Chapiquiña	0			0					Δ				Δ								-	
T-090	Putre S	0			0	Δ								$\overline{\Delta}$					\vdash			\dashv	
T-093	Putre W	0			Δ	Δ				Δ	•			$\overline{\Delta}$	Δ				\vdash				
K-005	Ujina	0			Δ	Δ									$\frac{\Delta}{\Delta}$							\dashv	
K-006	Ujina	0			Δ	Δ								$\frac{1}{\Delta}$	$\frac{\Delta}{\Delta}$					-+		\dashv	——
K-025	Guavina	0							- 1					$\overline{\Delta}$					\vdash	\dashv		-	
K-091	Camiña	0			Δ	Δ						?		Δ			$\overline{\Delta}$						
K-101	Tignamar NW	0								Δ													——
K-106	Tignamar SE	0					$\neg \neg$				Δ				$\frac{\Delta}{\Delta}$					-+			——
K-110	Belen	0	,				ı							Δ	4				\vdash				
K-124	Putre S	0			Δ			·		Δ				$\frac{\Delta}{\Delta}$	$\overline{\Delta}$				\vdash			\dashv	\longrightarrow
	Putre W (Campanane)	0			0									Δ	$\frac{\Delta}{\Delta}$				\vdash				
	Putre W (Campanane)	0												0	- 4				\dashv	4			

AP-4(3) Results of X-ray Diffractive Analysis (Phase 3 Surface survey)

Sample No.	Locality	Qz	Opal-CT	Crist	Pl	K-fs	Tre	Clinopt	Stilb	Mont	Ser/Mont	Minn	Chi	Ser	Kaol	And	Gyp	Alun	Ja	Cal	Caal	D.	Amor
K-143	Putre W (Campanane)	0				0					00.7	17111,111		Ö.	Δ	And	Сур	Alun	Ua	Cai	Goe	Py	Amor
K-145	Arica E (Halcones)	0									Δ			Ă	$\frac{1}{\Delta}$			-	 			-	
K-146	Arica E (Halcones)	0		i		?				Δ				-	Δ				 				
K-148	Arica E (Halcones)	0				Δ				-		_		0									
K-155	Putre W (Jamiralla)	0												0					\vdash				
K-156	Putre W (Jamiralla)	0						-						0					\vdash \dashv	-			
K-201	Cerro Colorado	0							-		-			0				Δ					
Q-019	Pachica	0			Δ					Δ	~			ă									
Q~025	Chusmisa-E	0			Δ					Δ				$\bar{\Delta}$	Δ				\vdash	-			
Q-028	Chusmisa-E	0								Ο-Δ					Ο-Δ								
Q-041	Chusmisa NE	0	, i		Δ	0								Δ	<u> </u>	-		-	├─┤	—-	-	-	
Q-054	Chusmisa	0									-			Δ						Δ			
Q-069	Camiña	Δ								@-O				$\overline{\Delta}$					-				
Q-095	Camiña Camiña	0			Δ					Δ							Ο-Δ		\vdash		i		
Q-126	Tignamar SE	Δ	Ο-Δ		-					-					Δ		0 0	Ο-Δ	$\vdash \vdash$			-+	
Q-137	Putre SE	0												Δ				<u>~ ~</u>				\dashv	
Q-157	Putre S	0			0	Δ								Δ	-				\vdash				
Q-164	Putre W	0												10					-			\dashv	

Abbreviation	1			Amount
Qz	Quartz	Chl	Chlorite	$2\theta > 20^{\circ}$ (CuKa)
Opal-CT	Opal-CT	Ser	Sericite	© abundant (> 800 cps)
Crist	Cristobalite	Kaol	Kaolinite	O common (800-400 cps)
PI	Plagioclase	And	Andalusite	Δ small (400 cps >)
K–fs	K-feldspar	Gyp	Gypsum	?
Tre	Tremolite	Alun	Alunite	
Clinopt	Clinoptilolite	Ja	Jarosite	2 θ < 20° (CuKa)
Stilb	Stilbite	Cal	Calcite	abundant (> 700 cps)
Mont	Montmorillonite	Goe	Goethite	O common (700-300 cps)
Ser/Mont	Sericite/Montmorillonite interstratified mineral	Ру	Pyrite	△ small (300 cps >)
Minn	Minnesotaite	Amor	Amorphous material	?

AP-4(4) Results of X-ray Diffractive Analysis (Drilling)

Drilling Name	Sample No.	Qz	Opal-CT	Crist	Pl	K-fs	Tre	Clinopt	Stilb	Mont	Ser/Mont	Minn	Chl	Ser	Kaol	And	Gyp	Alun	Ja	Cal	Goe	Ру	Amor
	X1-138	0			0					Δ				Δ		7	чур	7 ((4))	100	Oui	100	, y	Allion
	X1-158	0		ì	Δ								0	Δ		r i			1		-	 -	<u> </u>
	X1-226	0			Δ								Ŏ	 								 	
MJC-1	X1-262	Δ			Ο-Δ		Δ						$\overline{\Delta}$										
111100 1	X1-272	Δ			0		"						0	Δ		1					 -		
	X1-292	0			0								Ο-Δ	Δ	-				†		-	 -	
	X1-320	0			0								Ο-Δ	Δ								Δ	
	X1-346	0			0	?							0	Δ					\vdash				
	X5-158	0	0									-						Δ					0
	X6-124	0						,						Δ					Δ				
MJC-7	X7-168	0				?		,						Δ	Δ				 		-		
MJC-9	X9-490	Δ			Δ			0						Δ					H				
	X9-498	Δ			Δ	?	?	Δ						Δ									
	X10-24									0			-		0							\vdash	
	X10-60				Δ				?	Ο-Δ												Δ	
MJC~10	X10-166	0			Δ					0					Δ					-			
	X10-328	Δ			Δ					Ó	Δ				Δ			-	\vdash		-		
	X10-366	0			Δ						Δ		Δ										
	X11-438	0												Δ	Δ				-				
MJC-11	X11-470	0			Δ					Δ				$\overline{\Delta}$									
100 11	X11-484	Δ			0		Δ			Δ			Δ										
	X11-498	0			0					Δ			_=										
	X12-186	Δ			0		Δ						Δ						├─┤				
MJC-12	X12-238	Ο-Δ			0		Δ			Δ				Δ									
WIOC 12	X12~270	Δ			0		Δ		-				Δ			-			\vdash				
	X12-298	Δ			Ö		Δ						Δ	Δ					H		-	\dashv	

Abbreviation				Amount
Qz	Quartz	Chl	Chlorite	$2 \theta > 20^{\circ}$ (CuKa)
Opal-CT	Opal-CT	Ser	Sericite	© abundant (> 800 cps)
Crist	Cristobalite	Kaol	Kaolinite	O common (800-400 cps)
Pl	Plagioclase	And	Andalusite	△ small (400 cps >)
Kfs	K-feldspar	Gyp	Gypsum	?
Tre	Tremolite	Alun	Alunite	
Clinopt	Clinoptilolite	Ja	Jarosite	2 θ < 20° (CuKa)
Stilb	Stilbite	Cal	Calcite	© abundant (> 700 cps)
Mont	Montmorillonite	Goe	Goethite	O common (700-300 cps)
Ser/Mont	Sericite/Montmorillonite interstratified mineral	Ру	Pyrite	Δ small (300 cps >)
Minn	Minnesotaite	Amor	Amorphous material	?

AP-5 (1) Results of Fluid Inclusion Analysis (Phase 1)

Area	Sample No.	Mineral host	Incle.ID	Disappearance	Temperature(*C)	NaC!-wt%	Phase
				Bubble (Th*C)	Nac!		
Mocha	C-006	Quartz	11	272	351	42.1	Polyphase and liqui
	1	Quartz	2	362	ND		vapor inclusions,
		Quartz	3	251	ND		daughter mineral: Na
	Į.	Quartz	4	236	266	35.4	KCI, opaque minera
		Quartz	5	240	271	35.7	almost chalcopyris
		Quartz	6	285	406	47.7	
		Quartz	7	276	404	47.5	<u>,</u>
		Quartz	8	314	ND		
		Quartz	9	290	336	40.7	
		Quartz	10	ND	363	43.2	
		Quartz	11	ND	287	36.8	
		Quartz	12	354	408	48.0	
		Quartz	13	327	ND		
		Quartz	14	334	355	42.4	
		Quartz	15	301	378	44.7	
		Quartz	16	372	ND		
		Quartz	17	393	366	43.5	
			Average	307	349	42.3	
Mocha	C-008	Quartz	1	254	261	35.1	Polyphase and liqu
		Quartz	2	260	297	37.5	vapor inclusions
		Quartz	3	278	321	39.4	daughter mineral: N
	ļ	Quartz	4	282	320	39.3	opaque mineral
	İ	Quartz	5	282	321	39.4	, = 9== 111119141
	İ	Quartz	6	287	327	39.9	
	ļ	Quartz	7	265	316	39.0	
	ļ	Quartz	8	284	ND ND	20,0	
	i	Quartz	9	271	ND ND		
		Quartz	10	275	331	40.3	
		Quartz	11	283	326	39.8	
	Ì	Quartz	12	275	320	39.3	
		Quartz	13	321	345	41.5	
		Quartz	14	335	355	42.4	
	İ	Quartz	15	288	335	40.6	
	1	Quartz	16	349	364	43.3	
		Quartz	17	351	387	45.7	
	ļ	Quartz	18	ND	378	44.7	
	Ì		Average	291	332	40.5	
Mocha	C-020	Quartz	1	391	261	35.1	Liquid-vapor inclus
		Quartz	2	387	240	33.8	(vapor=80%-vol.)
	Ī	Quartz	3	345	315	38.9	polyphase inclusio
	Ì	Quartz	4	415	No NaCl		daughter mineral: Na
		Quartz	5	417	No NaCl		opaque mineral
	1	Quartz	6	403	No NaCl		opaquo mmorar
	ľ	Quartz	7	401	No NaCl		
		Quartz	8	408	No NaCi		
		Quartz	9	411	No NaCl		
	ŀ	Quartz	10	416	No NaCl		
	F		Average	399	272	36.0	
een Elizabeth-S	A-028	Quartz	1	426	No NaCl	50.0	Vapor-rich inclusion
		Quartz	2	419	No NaCl		(vapor≧80%-vol.), p
	F	Quartz	3	423	No NaCi		.,,apoi = 00/ii−v0i./, p
	ŀ	Quartz	4	427	No NaCl		
	}		Average	424	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
La Planada	A-049	Quartz	1	311	345	41.5	Polyphase and liqui
_		Quartz	2	323	332	40.3	vapor inclusions,
	F	Quartz	3	321	339	41.0	daughter mineral: Na
	}	Quartz	4	325	ND ND	71.0	opaque mineral
		Quartz	5	335	ND		Spage Hilleral
	F	Quartz	6	347	ND		
	ŀ	Quartz	7	330	345	41.5	
	 	Quartz	8	310	ND ND	U.17	
	F	Quartz	9	309		40.0	
	}	Quartz	10		328	40.0	
	ŀ	Quartz		ND	315	38.9	
La Planada	C-073	Ouart-	Average	323	334	40.5	D. L. 1
La Fidhaua	0-0/3	Quartz	1	299	372	44.1	Polyphase and liquid
i	 -	Quartz	2	343	400	47.1	vapor inclusions,
1	 	Quartz	3	330	386		daughter mineral: Na
	<u> </u>	Quartz	4	320	285	36.7	opaque mineral
j	<u> </u>	Quartz	5	319	290	37.0	
	<u> </u>	Quartz	6	283	308	38.4	
-	Ļ	Quartz	7	303	292	37.2	
i	į.	Quartz	8	299	293	37.2	
	<u>-</u>	Quartz	Average	312	200	07.2	

ND : not determined

AP-5 (2) Results of Fluid Inclusion Analysis (phase 2)

Area	Sample No.	Mineral host	Incle.ID	Homogenization T(°C)	Ice melting T(°C)	NaCl-wt%	Phase
Tignamar-N	F-082	Quartz	11	283,1	-0.2	0.35	Liquid-vapor inclusion
		Quartz	2	276.4	-0.4	0.70	\rfloor boiling, max. ϕ 10 μ n
		Quartz	3	292.9			_[
		Quartz	4	270.9	-0.1	0.18	_
		Quartz	5 6	305.6	-0.5	0.87	_
		Quartz Quartz	7	292.9	0.1	0.10	_
		Quartz	8	283.1 279.7	-0.1	0.18	4
		Quartz	9	308.8			_
		Quartz	10	300.1			_
		Quartz	11	291.4		· · · · · · · · · · · · · · · · · · ·	4
		Quartz	12	286.9	-0,1	0.18	-
		Quartz	13	284.3		0.10	
		Quartz	14	302.8			
		Quartz	15	302.1	-0.1	0.18	1
		Quartz	16	296.5]
		Quartz	17	289.2	-0.3	0.53	
		Quartz	18	287.3			
	,	Quartz	19	282.0			
	1	Quartz	20	285.6			_
	-	Quartz	21	303.7			
Camarones-QCFW	G-117	Calaita	Average	291	-0.2	0.4	
Camarones GOFW	u-11/	Calcite Calcite	2	274.6	-0.3	0,53	Liquid-vapor and
	ŀ	Calcite	3	268.3 269.0	-0.2	0.35	vapor-rich inclusions,
	}	Calcite	4	272.9		 	poor
	ŀ	Calcite	5	272.9	-0.1	0.18	-
	į	Calcite	6	275.2	0.1	0.16	
	Ī	Calcite	7	274.0			
ļ	Ī	Calcite	8	279.8	-0.4	0.70	
		Calcite	9	287.3			
	ļ	Calcite	10	309.2			
		Calcite	11	277.5			
	L	Calcite	12	264.2	-0.7	1.22	
	}	Calcite	13	301.1		·	
	ŀ	Calcite	14	291.8			
	}	Calcite	15	294.6	-0.2	0.35	
	-	Calcite Calcite	16 17	288.3	-0.6	1.05	
	-	Calcite	18	276.2 281.9			
	-	Calcite	19	283.4			
	}	Calcite	20	277.8			
	Ī	Calcite	21	291.6			
			Average	282	-0.4	0.6	
Camarones-QCW	E-080	Quartz	1	283,8	-0.5	0.87	Liquid-vapor and
		Quartz	2	270.0	-0.3	0.53	vapor-rich inclusions
	_	Quartz	3	287.5			•
	_	Quartz	4	292.6			
	Ļ	Quartz	5	288.4	-0.1	0.18	
		Quartz	6	289.6		0.18	
	-	Quartz	7	291.4			
1	}-	Quartz Quartz	8 9	287.2	-0.2	0.35	
	-	Quartz	10	306,0 278.5			
	<u> </u> -	Quartz	11	305.1			
	-	Quartz	12	304.7	-0.8	1.39	
		Quartz	13	296.4	5.5		
		Quartz	14	297.1			
		Quartz	15	291.3			
		Quartz	16	285.5	-0.4	0.70	
		Quartz	17	303.3			
		Quartz	18	280,2	-0.1	0.18	
		Quartz	19	298.8	-0.2	0.35	
		Quartz	20	307.1			
İ	L	Quartz	21	297.2			
0.000			Average	292	-0.3	0.5	
amarones-QCWC	G-110	Quartz	1	346.9	-0.2	0.35	Liquid-vapor inclusion,
	<u> </u>	Quartz	2	348.8	-0.2	0.35	max. φ5μm
	\vdash	Quartz	3	370.6			
	<u> </u>	Quartz	4	363.5			
	 	Quartz	5	370.7	0.3	0.53	i
	<u> </u>	Quartz	6	358.4			
	<u> </u>	Quartz	7	373.9			
	\vdash	Quartz	8	352.9	-0.4	0.70	
1	}-	Quartz	9	356.7			
	-	Quartz	10	368.1			
	<u> </u>	Quartz	11	362.4	-0.2	0.35	ļ
	-	Quartz	12	364.0		155	
1	<u> </u>	Quartz	13	369.7	-0.7	1.22	
i		Quartz	14	361.4			

AP-5 (2) Results of Fluid Inclusion Analysis (phase 2)

Area	Sample No.	Mineral host	Incle.ID	Homogenization T(°C)	Ice melting T(*C)	NaCl-wt%	Phase
		Quartz	15	372.0			
		Quartz Quartz	16	376,1		0.50	
		Quartz	18	367.0 362.3	-0.3	0.53	_
	i I	Quartz	19	357.3	 		
		Quartz	20	361.4			_
		Quartz	21	371.9			
			Average	364	-0.3	0.6	1
Camarones-QCC	E-129	Quartz	1	364.7	-0.2	0.35	Vapor-rich and
		Quartz	2	368.2			liquid inclusions,
		Quartz	3	355.3	-0.3	0.53	$_{\perp}$ max. ϕ 10 μ m
		Quartz Quartz	5	368.1	-0.2	0.35	
		Quartz	6	363.2 353.8	-1.2	2.06	4
		Quartz	7	361.0	-0.2	0.35	-
		Quartz	8	363.0		0.00	-
	ļ	Quartz	9	358.6	-0.6	1.05	
		Quartz	10	365.1			1
İ	ļ	Quartz	11	356.7			
		Quartz	12	366.3			
		Quartz	13	361.7			
		Quartz	14	364.6			_
	ĺ	Quartz	15	361.9		0.10	4 .
	ŀ	Quartz Quartz	16 17	357.8	-0.1	0.18	4
	}	Quartz	18	366.4 364.2	-0.1	0.18	4
İ		Quartz	19	360.6	0.1	0.18	-
	İ	Quartz	20	365.9			-
		Quartz	21	356.2			1
			Average	362	-0.4	0.6	
Camarones-QCS	E-220	Quartz	1	233.0	-0.1	0.18	Liquid-vapor and
	-	Quartz	2	240.9	-0.1	0.18	polyphase inclusion
	}	Quartz	3 4	242.7	-0.5	0.87	max. ϕ 20 μ m, colorie
	ŀ	Quartz Quartz	5	227.0 230.1			and opaque daughter
	ŀ	Quartz	6	234.8	-0.2	0.35	minerals
	ľ	Quartz	7	226.2	-0.2	0.35	
	[Quartz	8	234.7	-0,3	0.53	-
		Quartz	9	237.6	-0.7	1.22	•
		Quartz	10	234.1]
	1	Quartz		244.8			
	-	Quartz	12	235.1			_
	-	Quartz	13	246.4			-
		Quartz Quartz	14 15	238.3	-0.4	0.70	
	F	Quartz	16	249.0	-0.1	0.18	
	ŀ	Quartz	17	242.7	-0.1	0.18	
		Quartz	18	232.0		<u> </u>	
	Ļ	Quartz	19	237.4			
	-	Quartz	20	239.8			
	-	Quartz	21	229,9			
amarones-QCS	F-134		Average	237	-0.3	0.5	
amarones-QC5	F=134 -	Quartz	1 2	266.7			Liquid-vapor inclusion
	-	Quartz Quartz	3	271.6 258.2			rare, max. φ10 μ m,
		Quartz	4	281.4			too small to measure salinity
	į.	Quartz	5	293.6			Samilty
		Quartz	6	286.3			
		Quartz	7	274.3			
	L	Quartz	8	268,2			
	L	Quartz	9	279.4			
	-	Quartz	10	271.0			
	_	Quartz	11	281.2			
	-	Quartz	12	268.9			
	-	Quartz Quartz	13	277.0			
i	<u> </u>	Quartz	15	278.9 282.4			
	i	Quartz	16	265.9			
	-	Quartz	17	270.3			
	-		Average	275			
amarones-SM	E-170	Quartz	1	308.1	-0.2	0.35	Liquid-vapor inclusion
	<u> </u>	Quartz	2	312.2	V,E	0.00	max. ϕ 50 μ m
		Quartz	3	293.7	-0.7	1.22	αλ. Ψουμ III
		Quartz	4	299.2	~0.1	0.18	
		Quartz	5	297.3		·· -	
		Quartz	6	310.4			
		Quartz	7	294.5			
	L	Quartz	8	295.0			
	L	Quartz	9	289.8			
	,	Quartz	10	303.3	1		

AP-5 (2) Results of Fluid Inclusion Analysis (phase 2)

Area	Sample No.	Mineral host	Incle.ID	Homogenization T(°C)	Ice melting T(°C)	NaCi-wt%	Phase
		Quartz	11	299,3	-0.2	0.35	
		Quartz	12	297.0			
		Quartz	13	300.1	-0.1	0.18	
		Quartz	14	312.1	-0.1	0.18	
		Quartz	15	301.0			_
		Quartz	16	299.9		100	4
		Quartz Quartz	17	291.4	-0.6	1.05	
		Quartz	19	293.5 294.7			-
		Quartz	20	292.9	-0,4	0.70	
		Quartz	21	299.2	-0.2	0.70	-
			Average	299	-0.3	0.55	-
Camarones-SM	F-151	Quartz	1	301.8	-0.2	0.35	Liquid-vapor and
		Quartz	2	308.4			vapor-rich inclusions,
		Quartz	3	311.9	-0.1	0.18	max. φ10 μ m
		Quartz	4	316.4	-0.4	0.70	1
		Quartz	5	314.1			
		Quartz	6	304.1			_
		Quartz	7	298.8	-0.1	0.18	
	}	Quartz	8	312.6			
	}	Quartz	9	307.2	-0.1	0.18	1
ļ	ì	Quartz	10	302.9			-
	}	Quartz	11	297.2	-0.0	1.05	-
	ŀ	Quartz Quartz	12 13	302.4 318.4	-0.6	1.05	-{
	ļ	Quartz	14	318.4			-
		Quartz	15	304.8			1
		Quartz	16	309.2			1
	ļ	Quartz	17	307.3			Í
	ĺ	Quartz	18	304.6	-0.3	0.53	
		Quartz	19	306.6	-0.2	0.35	
	ļ	Quartz	20	313.5	-0.2	0.35	
		Quartz	21	300.6			
0	0.157		Average	308	-0.2	0.4	
Camarones-SM	G-157	Quartz	1	240.6	-0.3	0.53	Liquid-vapor and
	-	Quartz Quartz	3	230.2 245.7	-0.4	0.70	vapor-rich inclusions,
	ŀ	Quartz	4	210.7	-0,3	0.53	rare
	ŀ	Quartz	5	215.8			
		Quartz	6	221.0	-1,0	1.73	
	ſ	Quartz	7	217.2	1.0	1.70	
		Quartz	8	224.6			
		Quartz	9	226.9	-0.1	0.18	
	[Quartz	10	218.2	-0.4	0.70	
		Quartz	11	236.7			
	Ļ	Quartz	12	220.3			
	Ļ	Quartz	13	217.4			
i	-	Quartz	14	230.8			
	}	Quartz	15	224.0	-0.5	0.87	
İ	ŀ	Quartz Quartz	16 17	222.7			
	}-	Quartz	18	225.7 228.4			
ļ	}	Quartz	19	212.5	-0.4	0.70	
	F	Quartz	20	235.7	- J.7	0.70	
		Quartz	21	222.0			
			Average	225	-0.4	0.7	
Camarones-NW	E-112	Quartz	1	318.3	-0.8	1,39	Liquid-vapor,
	<u> </u>	Quartz	2	317.7			vapor phase =40% of
	L	Quartz	3	318.3			inclusion,
	1	Quartz	4	323.1	-0.2	0.35	max. φ10 μ m
	L	Quartz	5	314.2			
	Ĺ	Quartz	6	317.1			
İ	<u> </u>	Quartz	7	314.2	-0.4	0.70	
	-	Quartz	8	315.8	-0.5	0.87	
1	F	Quartz Quartz	10	316.2			,
	-	Quartz	10	324.3	-01	0.10	
		Quartz	12	330.9 333.4	-0.1	0.18	
				330.1	-0.1	0.18	ļ
	F	Quartz	1.3		V.I	0.10	
		Quartz Quartz	13		1		
		Quartz Quartz Quartz	14	333.2	-0.2	0.35	
		Quartz Quartz	14	333.2 333.4	-0.2	0.35	
	1	Quartz	14 15	333.2	-0.2	0.35	
	- - - - -	Quartz Quartz Quartz	14 15 16	333.2 333.4 322.5	-0.2	0,35	
		Quartz Quartz Quartz Quartz	14 15 16 17	333.2 333.4 322.5 324.9	-0.2	0.35	
		Quartz Quartz Quartz Quartz Quartz Quartz	14 15 16 17 18 19	333.2 333.4 322.5 324.9 328.1			
		Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz	14 15 16 17 18 19	333.2 333.4 322.5 324.9 328.1 327.1			

AP-5(3) Results of Fluid Inclusion Analysis (Phase 3 Surface survey)

Sample	Locality	Mineral	Inclusion	Homogenization	Ice melting	NaCl dissolution	Eq. NaCl	<u> </u>	
No.	Locality	host	ID		Temp. (° C)			Description	
		Quartz	1	257.0					
		Quartz	2	259.6				1	
İ		Quartz	3	261.3		330.1	40.6	Polyphase	
		Quartz	4	262.1		•		and vapor- rich liquid-	
İ		Quartz	5	267.1		322.1	39.9	vapor	
		Quartz	6	265.9		315.1	39.4	inclusions.	
T-093	Putre W (Palmanilla)	Quartz	7	271.6		7		Daughter	
		Quartz	8	243.5		309.9	38.9	mineral: NaCl	
Ī		Quartz	9	247.1	-			and	
		Quartz	10	266.8				chalcopyrite.	
		Quartz	11	258.4				Max. φ20	
		Quartz	12	263.9				micron	
		Aver		260.4		319.3	39.7	1	
		Quartz	1	268.9		0.0.0	- 00.7		
		Quartz	2	267.7					
		Quartz	3	260.5					
		Quartz	4	279.2					
		Quartz	5	287.8				Polyphase	
		Quartz	6	294.0				and liquid-	
		Quartz	7	271.9				vapor inclusions.	
		Quartz	8	290.5				Daughter	
K-005	Ujina (Collahuasi)	Quartz	9	284.3			. 17 - 22	mineral: NaCl,	
	ojina (Conanaasi)	Quartz	10	272.6				hematite?,	
		Quartz	11	277.1				and unknown	
		Quartz	12	283.6		-		opaque	
		Quartz	13			314.2	39.3	mineral. Max.	
			Quartz	14			358.0	43.2	ϕ 10 micron
		Quartz	15			324.5	40.1		
		Quartz	16			452.1	53.5	·	
		Aver	age	278.2		362.2	44.0		
		Quartz	1	204.1					
		Quartz	2	211.9			·		
		Quartz	3	233.6					
		Quartz	4	234.3			**	Liquid-vapor	
K-007	Trinidad	Quartz	5	234.3				inclusions.	
Ì		Quartz	6	235.7				Max. φ10 micron	
		Quartz	7	236.0				THEFOIL	
		Quartz	8		-7.0		10.5		
		Avera	age	227.1					
T		Quartz	11	222.2					
İ	Ĺ	Quartz	2	237.9					
		Quartz	3	254.2					
	Ĺ	Quartz	4	270.5				Vapor-rich	
	Ĺ	Quartz	5	271.2				and liquid-	
K-052	Casiri	Quartz	6	351.5				rich liquid-	
502	Cuoni	Quartz	7	359.8				vapor inclusions.	
		Quartz	8		-0.3		0.5	Max. ϕ >100	
		Quartz	9		-0.2		0.4	micron	
		Quartz	10		-0.2		0.4		
		Quartz	11		-0.2		0.4		
		Avera	ige	281.0	-0.2		0.4		

AP-5(3) Results of Fluid Inclusion Analysis (Phase 3 Surface survey)

Sample	Locality	Mineral	Inclusion	Homogenization	Ice melting	NaCl dissolution	Eq. NaCl	T
No.	Locality	host	ID			Temp. (° C)	(wt%)	Description
		Quartz	1	332.4			(11.0)	
		Quartz	2	335.9				
		Quartz	3	342.7				
		Quartz	4	346.1				
		Quartz	5	352.7				
	III	Quartz	6	337.3				Liquid-vapor
K-139	Putre W (Campanane)	Quartz	7		-24.3		>23.2	inclusions.
		Quartz	8		-23.7		>23.2	Max. φ 50
		Quartz	9		-24.1		>23.2	micron
		Quartz	10		-24.7		>23.2	1
		Quartz	11		-24.6		>23.2]
		Quartz	12		-24.1		>23.2]
		Aver	age	341.2	-24.3			
		Quartz	1	302.1				Polyphase and
		Quartz	2	310.1				liquid-vapor
K-140	Putre W (Campanane)	Quartz	3	325.3				inclusions. Daughter
		Quartz	4			398.6	47.3	mineral: NaCl.
		Aver	age	312.5				Max. φ5 micron
		Quartz	1	124.0				
		Quartz	2	126.0	-			Liquid-vapor
K-151	-151 Arica E (Halcones)	Quartz	3	160.1				inclusions. Max. <i>φ</i> <10
		Quartz	4	161.7				micron
		Aver	age	143.0				
		Quartz	1	350.7				Vapor-rich
		Quartz	2	352.1				polyphase
i		Quartz	3	352.7				inclusions.
		Quartz	4	343.8				Daughter
K-158	Putre W (Jamiralla)	Quartz	5	345.4				mineral:
		Quartz	6	349.5				chalcopyrite?
		Quartz	7		-5.5		8.5	and
		Quartz	8		-3.7		6.0	hematite? Max. ϕ 30
		Quartz	9	- 242.2	-3.1		5.1	micron
		Avera		349.0	-4.1		6.6	111101 011
	ļ.	Quartz	1	308.5				
	<u> </u>	Quartz	2	325.8				Polyphase
	<u> </u>	Quartz	3	334.8				and vapor- rich liquid-
	ŀ	Quartz Quartz	<u>4</u> 5	336.6				vapor
	<u> </u>	Quartz	6	350.9				inclusions.
	<u> </u>	Quartz	7	390.4		227.6	40.4	Daughter
K-201	Cerro Colorado	Quartz	8			327.6 337.5	40.4 41.3	mineral: NaCl,
	ŀ	Quartz	9			398.1	47.2	KCI,
	İ	Quartz	10			280.9	36.7	chalcopyrite?
İ	The state of the s	Quartz	11			346.7	42.1	and
	ŀ	Quartz	12		——-	374.5	44.8	hematite? Max. ϕ 30
	ŀ	Quartz	13			379.2	45.2	micron
	ŀ	Avera		341.2		349.2	42.5	moron
		Quartz	1	264.1		070.2	74.0	
İ	ŀ	Quartz	2	272.0				
	ř	Quartz	3	260.5				Liquid-vapor
Q-006	Copaquiri	Quartz	4	266.4				inclusions.
		Quartz	5	270.3				Max. φ2
	 							micron
	i	Quartz	6	258.9			1	

AP-5(3) Results of Fluid Inclusion Analysis (Phase 3 Surface survey)

Sample No.	Locality	Mineral				NaCl dissolution	Eq. NaCl	Description
140.		host	ID		Temp. (°C)	Temp. (°C)	(wt%)	
		Quartz	1	365.1				·
		Quartz	2	365.1				Liquid-vapor
		Quartz	3	365.1				and minor
		Quartz	4	367.1				polyphase
		Quartz	5	367.5				inclusions.
Q-164	Putre W (Rosario)	Quartz	6	369.2				Daughter
	, , , , , , , , , , , , , , , , ,	Quartz	7	369.2				mineral:
		Quartz	8	369.6				unknown
		Quartz	9		-1.9		3.2	fibriform
		Quartz	10		-1.1		1.9	mineral. Max.
		Quartz	11		-1.7		2.9	ϕ 100 micron
		Aver	age	367.2	-1.6		2.7	
		Quartz	1	361.6				
Ì		Quartz	2	361.4	i			
		Quartz	3	367.6				
		Quartz	4	318.8				
		Quartz	5	324.3				
		Quartz	6	377.8				
		Quartz	7	359.7				
		Quartz	8	363.3				Polyphase
		Quartz	9	372.2				and liquid-
		Quartz	10	363.5				vapor
Q-166	Putre W (Rosario)	Quartz	11	385.6				inclusions.
Q 100	rucie W (Nosario)	Quartz	12	386.2				Daughter
		Quartz	13	388.6	-4.9		7.7	mineral:
		Quartz	14	388.7	-5.2		8.1	NaCl? Max.
		Quartz	15	385.3				ϕ 40 micron
		Quartz	16	389.6	-3.2		5.3	
		Quartz	17	387.4				
		Quartz	18	387.9				
	į	Quartz	19	387.4				
		Quartz	20	390.3	-4.7		7.4	
		Quartz	21	402.1	-4.1		6.6	ĺ
		Avera	age	373.8	-4.4		7.0	

AP-6 (1) Results of Ore Assaying (Phase 1)

Locality	Sample	Coord	inate	Geology	Width	Au	Ag	Cu	CuSL	Pb	Zn	Мо	S
Locality	No.	N	E	Geology	(cm)	ppb	ppm	%	%	ppm	ppm	ppm	%
Mocha	C-003	7809346	471820	Tgd	120	9	0.4	0.271	0.091	15	67	41	1.700
Mocha	C-009	7809202	471880	K1	Grab	235	6.8	1.626	0.495	31	110	70	0.018
Soledad	A-003	7807749	471709	Qz vein	90	15	0.5	0.006	0.004	20	31	6	0.163
Queen Elizabeth-S	A-010	7803684	504060	Tg	Grab	79	1.5	1.827	1.493	38	97	200	0.338
Queen Elizabeth~S	A-012	7803750	504118	K1	Grab	6	1.2	1.641	1.224	7	134	6	0.003
Queen Elizabeth-S	A-026	7802870	503518	Qz vein	Grab	17	1.6	0.092	0.023	20	24	43	0.329
Queen Elizabeth-S	B~025	7803886	503269	K1	Grab	< 5	1.1	0.586	0.436	14	54	7	0.010
Queen Elizabeth-S	C-038	7803978	503261	K1	Grab	64	79.4	6.283	2.577	57	121	446	1.755
Queen Elizabeth-S	C-039	7803978	503261	K1	Grab	51	14.4	5.232	3.908	25	172	236	0.051
Queen Elizabeth-S	QE-001	7803657	504396	Tg	Grab	< 5	0.7	0.234	0.125	19	99	8	0.020
Queen Elizabeth-S	QE-002	7803670	504211	Tg	Grab	9	2.5	0.058	0.006	19	20	7.	0.100
Queen Elizabeth~S	QE-003	7803692	504262	Tg	Grab	7	0.6	1.430	1.345	30	186	32	0.099
Diana	A-031	7792317	494590	Js1	Grab	23	0.4	0.044	0.029	122	32	70	0.199
La Planada	A-040	7769958	492768	Kmc	150	17	1.1	0.090	0.037	9	76	47	0.285
La Planada	C-055	7769887	492765	Tourmaline breccia	Grab	17	0.3	0.140	0.053	6	49	10	2.320
La Planada	C-058	7769887	492765	Tourmaline breccia	Grab	21	1.7	0.202	0.030	7	112	49	5.698
La Planada	C-066	7770201	492974	Tg	200	71	2.5	3.291	2.667	< 2	49	29	0.021
La Planada	C-070	7769856	493416	Tg	Grab	21	0.4	6.221	5.719	4	8	32	0.033
La Planada	C-072	7769856	493416	Tg	Grab	33	3.1	5.709	5.412	8	14	171	0.242
La Planada	C-074	7769856	493416	Tg	Grab	18	0.5	0.046	0.027	2	25	1951	4.832
La Planada	C-075	7770085	493768	Qef	Grab	33	0.5	3.868	3.437	10	65	103	0.051

AP-6 (2) Results of Ore Assaying (Phase 2)

Locality	Sample	Coor	dinate		Width	Au	Ag	Cu	CuSL	Pb	Zn	Мо	s
Locality	No.	N	E	Geology	(cm)	ppb	ppm	%	8	ppm	ppm	ppm	, %
West Queen Elizabeth-SE	F-070	7800708	495609	Qz vein	5	161	4.9	3.599	2.831	31	118	36	0.04
									1			"	0.01
Camarones-QCW	E-060	7905855	435317	Qp	200	< 5	0.3	0.440	0.416	30	78	10	2.51
Camarones-QCW	E-082	7905776	434410	Qz vein	Grab	< 5	 	0.043	0.007	4152	1033	4	0.98
Camarones-QCW	E-186	7905889	435315	К	Grab	11			0.009		95	3	
Camarones~QCW	E-189	7905870	435308	Qp	Grab	9			0.005		19	6	
Camarones-QCW	E-191	7905863	435311	Qp	30	12			0.013	1	39	4	1.24
Camarones-QCW	E-195	7905850	435293	Qp	Grab	11		+	0.004	39	34	6	0.63
Camarones-QCW	E-198	7905857	435226	Qp	Grab	< 5	1	0.036	0.018	31	47	6	1.05
Camarones-QCW	E-202	7905845	435200	Qp	Grab	< 5	0.5	0.496	0.07	26	19	7	1.23
Camarones-QCW	E-206	7905836	435153	Qp	Grab	< 5	0.6	0.028	0.018	31	28	3	0.29
Camarones-QCW	E-207	7905831	435135	Qp	100	< 5	1.5	0.234	0.206	51	30	4	0.23
Camarones-QCW	E-211	7905806	435129	К	Grab	13	0.5	0.009	0.005	23	152	5	
Camarones-QCW	F-158	7905858	435246	Qр	Grab	6	0.1	0.014	0.009	11	108		3.33
Camarones-QCW	F-161	7906889	435529	К	Grab	6	0.3	0.073	0.003	47		3	4.12
Camarones-QCW	F-166	7905950	435655	К	Grab	< 5	< 0.1	0.006			156	5	6.25
Camarones-QCW	F-170	7905955	435819	к	Grab	33	1.0	0.448	0.003	12	58	3	5.40
Camarones-QCW	F-171	7905957	435891	К	Grab	< 5			0.354	238	131	11	6.09
Camarones-QCW	F-175	7905962	435723	к	Grab	19	<u> < 0.1</u> 0.6	0.009	0.003	21	40	190	5.230
Camarones-QCW	F-181	7906820	435420	Qp	Grab	< 5	0.6	0.090	0.03	35	91	4	3.412
Camarones-QCW	G-053	7906672	436030	К	Grab	< 5		0.004	< 0.001	11	8	3	0.99
Camarones-QCW	G-086	7905690	435961	K	Grab	< 5	0.1	0.002	< 0.001	5	58	< 2	1.36
Camarones-QCW	G-172	7905881	435376	К	Grab	9	0.1	0.025	0.02	10	78	3	0.078
Camarones-QCW	G-174	7905881	435376	Qp	Grab	20	0.2	0.017	0.005	16	134	< 2	2.639
Camarones-QCW	G-179	7905814	435297	Qр	Grab	6	0.4	0.080	0.03	17	95	3	4.414
Camarones-QCW	G-184	7905811	435273	Qp	Grab	< 5	0.4	0.047	0.033	18	54	6	0.725
			1002/0	up	Grab	\ \	0.3	0.102	0.048	19	15	3	1.747
Camarones-QCC	F-111	7905511	439064	K	Grab	14	1.5	0.763	0.682	40	115	144	0.014
Camarones-QCC	F-193	7905831	438662	Dp	Grab	< 5	< 0.1	0.003	< 0.001	7	115	144	0.211
Camarones-QCC	F-198	7905897	438376	Qd	Grab	< 5	< 0.1	0.005	< 0.001	14	23	8	0.538
Camarones-QCC	F~202	7905885	438330	Qd	Grab	< 5	0.2	0.003	0.001	41	18 91	- 7 6	1.093
			_ ,00000		Grab		0.2	0.011	0.004	41	91	0	0.363
Camarones-QCS	E-219	7903525	440060	KT	50	6	0.6	0.003	0.002	18		-	0.005
Camarones-QCS	E-225	7902950	440622	KT	Grab	< 5	< 0.1	0.002	< 0.002	15	6	4	0.335
Camarones-QCS	E-229	7902795	440900	Qz vein	20	< 5	< 0.1	0.002	< 0.001	8	58	7 5	1.569
Camarones-QCS	E-232	7902686	440870	Qz vein	10	< 5	< 0.1	0.004	< 0.001	157	14		0.042
Camarones-QCS	E-234	7902599	440819	Qz vein	50	< 5	< 0.1	0.001	< 0.001	9	8	9	4.930
Camarones-QCS	E-235	7902414	441078	Qz vein	Grab	< 5	< 0.1	0.001	< 0.001	27	21	< 2	0.074 1.625
Camarones-QCS	G-198	7904493	440355	KT	Grab	< 5	< 0.1	0.001	< 0.001	9	41	< 2	0.766
Camarones-QCS	G-200	7904520	440438	кт	Grab	< 5	0.2	0.002	< 0.001	15	63	4	
Camarones-QCS	G-203	7904596	440540	KT	Grab	< 5	0.1	0.001	< 0.001	5	15	9	0.740 0.887
								2.001	, 0.001		13	3	V.087
Camarones-SM	E-169	7898143	438649	Qz vein	Grab	< 5	< 0.1	0.002	< 0.001	22	46	7	0.010
						`	· 0.1	0.002	(0.001		40		0.019
Camarones-NW	F-210	7918829	426827	Qd	Grab	< 5	< 0.1	0.006	0.002	20	0.0	_	0.010
Camarones-NW	F-211	7918820	426881	Qd	Grab	< 5	0.1	0.002	< 0.002	20	86	4	0.012
Camarones-NW	F-213	7918800	426847	Qd	30	< 5	0.1	0.002	< 0.001	12	11	8	0.012
Camarones-NW	F-214	7918868	426775	Qd	20	< 5	< 0.1	0.003		40	34	7	0.045
				- aru	20	<u> </u>	\ U.1	0.003	< 0.001	11	16	3	0.022

AP-6 (3) Results of Ore Assaying (Phase 3 surface survey)

Locality	Sample No.	Coor	dinate	Cooles	Middle (-c-)	Au	Ag	Cu	CuSL	Pb	Zn	Мо	S
Locality	Sample No.	N	E	Geology	Width (cm)	ppb	ppm	%	%	ppm	ppm .	ppm	%
Chusmisa	S-020	7831208	478252	Qz-Tou v.	Grab	48	26.5	0.02	0.009	10000	284	8	0.04
Chusmisa NE	S-025	7841737	509503	Qcp	Grab	< 5	<0.1	0.001	<0.001	43	41	<2	0.46
Camiña	S-029	7861804	448102	Kv(i)	Grab	< 5	0.2	0.004	0.001	30	108	5	2.62
Camiña	S-033	7862279	447949	Tgd	Grab	< 5	<0.1	0.001	<0.001	35	11	4	0.68
Camiña	S-035	7862550	447884	Tgd	Grab	< 5	<0.1	0.004	0.001	34	75	<2	5.03
Camiña	Q-077	7867125	459305	Kv(i)	Grab	< 5	2.2	3.929	3.899	16	29	<2	0.02
Camiña	Q-078	7867125	459305	Kv(i)	Grab	< 5	<0.1	0.009	0.003	9	25	<2	0.02
Putre S	Q-158	7972642	443065	Kv(s)	Grab	6	0.4	0.002	0.001	4	47	3	0.44
Putre S	Q-160	7972724	443111	Tgd	Grab	12		0.004	0.001	62	66	4	1.55
												- 7	1.00
Putre W (Campanane)	Q-164	7981434	428160	Tgd	Grab	45	17.2	3.702	3.689	378	2005	13	0.02
Putre W (Campanane)	K-133	7975781	426630	Qz-tou r.	Grab	56	6.2	3.144	3.085	180	315	14	0.07
Putre W (Campanane)	K-139	7975642	426587	Qz-tou r.	Grab	16	1.8	1.22	1.187	5	22	3	0.03
Putre W (Jamiralla)	K−157	7981042	427199	Qz-tou r.	Grab	10	12.5	4.117	3.921	34	30	28	0.04
Putre W (Jamiralla)	K-158	7981042	427199	Qz-tou r.	Grab	< 5	1.1	3.361	3.129	74	17	18	0.12
Arica E	K-144	7958405	417090	Qz-ox.Cu v.	Grab	902	21.8	4.955	4.879	223	197	73	
Arica E	K-147	7958405	417090	Qz-ox.Cu v.	Grab	795	27.9	1,714	1.509	80	27	18	0.02
Arica E	K-151	7958379	417000	Qz-ox.Cu v.	Grab	6445	102.5	5.895	0.881	2265	55	21	0.02 2.85
										LLGO			2.00
Choquelimpie	Q-138	7973938	470705	Kv(s)?	Grab	954	17	0.003	0.001	806	21	4	0.71
Choquelimpie	Q-142	7973938	470705	Kv(s)?	Grab	11400	152.6	0.192	0.013	2039	188	3	6.19
Choquelimpie	Q-143	7973938	470705	Kv(s)?	Grab	626	105.2	0.013	0.006	220	34	6	0.11
Choquelimpie	Q-145	7973938	470705	Kv(s)?	Grab	612	45.2	0.004	0.002	282	7	<2	0.89
Poroma	K-021	7803463	482145	Kv(i)	Grab	26	9.9	1.221	0.855	22	152	4	0.27
Mosquito de Oro	T-005	7804337	496482	Kgd	Grab	401	8.8	0.01	0.001	276	6	3	0.26
							0.5	0.01	0.001	270		3	U.20

AP-6 (4) Results of Ore Assaying (Phase 3 drilling) (1)

	7 .			T a = :				γ
Sample No. Hole No. Depth (m)	Au (ppb)	Ag (ppm)	(%)	Cu Sol	Pb	Zn	Mo	S
Hole No. Depth (m) MJC-1 136-138	(ppb)			<0.001	(ppm) 44	(ppm) 59	(ppm)	0.10
MJC-1 138-140	₹5			<0.001	16	31	8 6	
MJC-1 140-142	₹5			0.001	14	37	4	
MJC-1 142-144	<5	0.5		<0.001	<2	16	4	
MJC-1 144-146	<5	0.1	0.003	<0.001	<2	18	5	
MJC-1 146-148	<5	0.2		<0.001	<2	18	5	
MJC-1 148-150	<5	0.3		<0.001	<2	16	6	4.73
MJC-1 150-152	<5	0.3		0.001	<2	16	5	5.27
MJC-1 152-154	<5	0.1		<0.001	<2	18	3	4.65
MJC-1 154-156	7	0.2		0.001	5	69	4	4.38
MJC-1 156-158 MJC-1 158-160	9	0.1		0.001	<2	46	5	3.80
MJC-1 160-162	5	0.2	0.003	<0.001 <0.001	14 <2	48 64	6	5.54 3.54
MJC-1 162-164	<5	0.7	0.003	<0.001	⟨2	64	5	4.35
MJC-1 164-166	<5	0.4		<0.001	5	42	5	5.30
MJC-1 166-168	<5	0.4		<0.001	⟨2	45	5	5.19
MJC-1 168-170	<5	0.9		<0.001	<2	32	6	5.60
MJC-1 170-172	<5	0.4	0.004	<0.001	<2	58	6	3.55
MJC-1 172-174	<5	0.1	0.006	<0.001	<2	56	4	3.08
MJC-1 174-176	<5	0.2	0.001	<0.001	<2	80	12	6.08
MJC-1 176-178	<5	0.3	0.003	<0.001	<2	62	7	4.41
MJC-1 178-180	<5	0.2	0.002	<0.001	<2	75	7	2.35
MJC-1 180-182 MJC-1 182-184	<5 5	0.8	0.002	<0.001	<2	58	5	3.46
MJC-1 182-184 MJC-1 184-186	<5	0.5	0.002	<0.001	<2 <2	51 48	6	5.89
MJC-1 186-188	<5	0.3	0.001	<0.001	<2	63	5 5	5.41 2.43
MJC-1 188-190	₹5	0.2	0.001	<0.001	⟨2	55	5	1.96
MJC-1 190-192	<5	0.6	0.001	0.001	⟨2	67	6	3.49
MJC-1 192-194	<5	0.3	0.001	<0.001	<2	308	6	4.16
MJC-1 194-196	17	<0.1	0.001	<0.001	<2	79	7	4.04
MJC-1 196-198	<5	0.8	0.001	<0.001	<2	52	7	5.25
MJC-1 198-200	<5	0.3	0.002	<0.001	<2	87	10	4.11
MJC-1 200-202 MJC-1 202-204	<5	0.6	0.002	<0.001	5	65	7	4.61
MJC-1 202-204 MJC-1 204-206	<5 <5	0.4	0.003	<0.001 <0.001	21 15	166 84	3	4.25
MJC-1 206-208	<5	0.2	0.002	<0.001	5	91	2	3.81 2.79
MJC-1 208-210	₹5	<0.1	0.002	<0.001	8	54	2	5.64
MJC-1 210-212	<5	0.6	0.003	<0.001	8	81	5	3.30
MJC-1 212-214	9	0.9	0.001	<0.001	17	180	4	4.36
MJC-1 214-216	<5	0.7	0.006	<0.001	8	80	3	4.10
MJC-1 216-218	- 6	0.6	0.026	0.001	12	100	4	2.49
MJC-1 218-220 MJC-1 220-222	<5 <5	0.1	0.002	<0.001	44	275	4	6.24
MJC-1 222-224	<5	<0.1 <0.1	0.003	<0.001 <0.001	9	89 101	2 5	3.27 2.99
MJC-1 224-226	<5	0.1	0.002	<0.001	9	118	6	4.54
MJC-1 226-228	<5	0.1	0.002	<0.001	4	84	3	2.19
MJC-1 228-230	6	0.3	0.002	<0.001	5	121	3	2.24
MJC-1 230-232	<5	0.2	0.002	<0.001	5	67	3	3.49
MJC-1 232-234	<5	0.7	0.002	<0.001	5	82	5	3.37
MJC-1 234-236	7	0.1	0.001	<0.001	<2	100	4	2.50
MJC-1 236-238 MJC-1 238-240	< 5	0.2	0.002	<0.001	4	75	3	4.01
MJC-1 238-240 MJC-1 240-242	_ <5 5	0.4	0.002	<0.001 <0.001	6	131	4	2.34
MJC-1 242-244	<5	0.1	0.004	<0.001	5 3	66 77	7 	5.18 3.56
MJC-1 244-246	< 5	0.6	0.003	<0.001	6	70	5	3.84
AJC-1 246-248					01	, 0		2.32
	(5)	<0.1	0.002 1	<0.001	7	85	61	/ /
/JC-1 248-250	<5 <5	0.1	0.002	<0.001 <0.001	7	85 102	6 7	
MJC-1 248-250 MJC-1 250-252	<5 5		0.002 0.002 0.002			85 102 125	6 7 6	2.36
AJC-1 248-250 AJC-1 250-252 AJC-1 252-254	<5 5 <5	0.3 0.4 0.4	0.002 0.002 0.002	<0.001	6	102 125 111	7	2.36 1.87 3.18
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256	<5 5 <5 5	0.3 0.4 0.4 0.5	0.002 0.002 0.002 0.005	<0.001 <0.001 <0.001 0.001	6 9 6 7	102 125 111 114	7	2.36 1.87
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258	<5 5 <5 5 7	0.3 0.4 0.4 0.5 0.5	0.002 0.002 0.002 0.005 0.008	<0.001 <0.001 <0.001 0.001 <0.001	6 9 6 7 8	102 125 111 114 74	7 6 8 6 6	2.36 1.87 3.18 2.35 3.52
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260	<5 5 <5 5 7 <5	0.3 0.4 0.4 0.5 0.5 0.6	0.002 0.002 0.002 0.005 0.008 0.006	<0.001 <0.001 <0.001 0.001 <0.001 <0.001	6 9 6 7 8	102 125 111 114 74 99	7 6 8 6 6 7	2.36 1.87 3.18 2.35 3.52 2.06
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262	<5 5 5 5 7 <5 <5 <5	0.3 0.4 0.4 0.5 0.5 0.6 0.9	0.002 0.002 0.002 0.005 0.005 0.008 0.006	<0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001	6 9 6 7 8 6 7	102 125 111 114 74 99 94	7 6 8 6 6 7	2.36 1.87 3.18 2.35 3.52 2.06 3.86
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262 MJC-1 262-264	<5 5 5 5 5 5 5 5 5 5	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5	0.002 0.002 0.002 0.005 0.008 0.006 0.006	<0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001	6 9 6 7 8 6 7 6	102 125 111 114 74 99 94 109	7 6 8 6 6 7 7	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262 MJC-1 262-264 MJC-1 264-266	<5 5 5 7 <5 <5 <5 <5 <5	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5 0.7	0.002 0.002 0.002 0.005 0.008 0.006 0.006 0.006	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 7 6 3	102 125 111 114 74 99 94 109 73	7 6 8 6 6 7 7 7 6	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262 MJC-1 262-264 MJC-1 264-266 MJC-1 266-268	\$5 \$5 \$5 \$7 \$5 \$5 \$5 \$5 \$14	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5 0.7	0.002 0.002 0.005 0.008 0.006 0.006 0.006 0.002 0.006	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 7 6 6 3 3 3	102 125 111 114 74 99 94 109 73 84	7 6 8 6 6 7 7 6 8	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262 MJC-1 262-264 MJC-1 264-266 MJC-1 266-268 MJC-1 268-270	<5 5 5 7 <5 <5 <5 <5 <5 14 <5	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5 0.7 0.1 0.2	0.002 0.002 0.002 0.005 0.008 0.006 0.006 0.006 0.002 0.006	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 7 6 3 3 6	102 125 111 114 74 99 94 109 73 84 68	7 6 8 6 7 7 7 6 8 6	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262 MJC-1 262-264 MJC-1 264-266 MJC-1 266-268 MJC-1 268-270 MJC-1 270-272	<5 5 5 7 <5 <5 <5 <14 <5 18	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5 0.7 0.1 0.2	0.002 0.002 0.002 0.005 0.008 0.006 0.006 0.006 0.006 0.006 0.002 0.006 0.002 0.001 0.001 0.001	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 7 6 3 3 6 7 7	102 125 111 114 74 99 94 109 73 84 68 55	7 6 8 6 6 7 7 6 8 6 4	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 256-258 MJC-1 258-260 MJC-1 260-262 MJC-1 260-262 MJC-1 262-264 MJC-1 266-268 MJC-1 268-270 MJC-1 270-272 MJC-1 272-274	<5 5 5 5 5 5 5 5 5 5	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5 0.7 0.1 0.2 0.1 Color: blue;	0.002 0.002 0.002 0.005 0.006 0.006 0.006 0.006 0.002 0.006 0.002 0.001 0.001 0.001 0.001 0.001	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 7 6 3 3 6 7 9 9	102 125 111 114 74 99 94 109 73 84 68 55	7 6 8 6 7 7 6 8 6 4 5 6	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31 4.70
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 258-260 MJC-1 260-262 MJC-1 260-262 MJC-1 260-264 MJC-1 260-268 MJC-1 266-268 MJC-1 268-270 MJC-1 270-272 MJC-1 272-274 MJC-1 272-274 MJC-1 274-276	\$5 \$5 \$5 \$7 \$5 \$5 \$5 \$14 \$5 \$5 \$18 \$5 \$5 \$6 \$6 \$6 \$7 \$7 \$8 \$7 \$8 \$	0.3 0.4 0.4 0.5 0.5 0.6 0.9 0.5 0.7 0.1 0.2 0.1 <0.1 <0.1	0.002 0.002 0.002 0.005 0.006 0.006 0.006 0.006 0.002 0.006 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 3 3 3 6 7 9 6 6	102 125 111 114 74 99 94 109 73 84 68 55 59	7 6 8 6 7 7 6 8 8 6 4 5 6	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31 4.70 5.97
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 258-260 MJC-1 260-262 MJC-1 260-262 MJC-1 262-264 MJC-1 264-266 MJC-1 268-270 MJC-1 270-272 MJC-1 270-272 MJC-1 272-274 MJC-1 272-274 MJC-1 274-276 MJC-1 276-278	<5 5 <5 <5 <5 <5 <5 14 <5 18 <5 <5 6	0.3 0.4 0.5 0.5 0.6 0.9 0.5 0.7 0.1 0.1 <0.1 <0.1 <0.1	0.002 0.002 0.002 0.005 0.006 0.006 0.006 0.006 0.002 0.006 0.002 0.001	<pre><0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 3 3 6 7 9 6 8 8	102 125 111 114 74 99 94 109 73 84 68 55 59 46 47	7 6 8 6 7 7 6 8 6 4 5 6 4	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31 4.70 5.97 5.21
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 258-260 MJC-1 260-262 MJC-1 262-264 MJC-1 262-264 MJC-1 268-270 MJC-1 268-270 MJC-1 270-272 MJC-1 270-272 MJC-1 272-274 MJC-1 274-276 MJC-1 274-276 MJC-1 276-278 MJC-1 278-280	\$5 \$5 \$5 \$7 \$5 \$5 \$5 \$14 \$5 \$5 \$6 \$6 \$6 \$5	0.3 0.4 0.5 0.5 0.6 0.9 0.5 0.7 0.1 0.1 <0.1 <0.1 <0.1	0.002 0.002 0.002 0.005 0.008 0.006 0.006 0.006 0.002 0.006 0.002 0.001 0.001 0.001	<pre><0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 8 6 7 9 6 8 8 6	102 125 111 114 74 99 94 109 73 84 68 55 59 46 47 57	7 6 8 6 7 7 6 8 6 4 5 6 4	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31 4.70 5.97 5.21 5.02
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 254-256 MJC-1 258-260 MJC-1 260-262 MJC-1 260-262 MJC-1 262-264 MJC-1 264-266 MJC-1 268-270 MJC-1 270-272 MJC-1 270-272 MJC-1 272-274 MJC-1 272-274 MJC-1 274-276 MJC-1 276-278	<5 5 5 7 <5 <5 <5 <5 14 <5 <5 <6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	0.3 0.4 0.4 0.5 0.6 0.9 0.5 0.7 0.1 0.2 0.1 <0.1 <0.1 <0.1 <0.1	0.002 0.002 0.002 0.005 0.006 0.006 0.006 0.006 0.002 0.006 0.002 0.001	<pre><0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 6 3 3 3 6 7 7 9 6 8 8 6 6 6	102 125 111 114 74 99 94 109 73 84 68 55 59 46 47 57	7 6 8 6 7 7 6 8 6 4 5 6 4 5 6	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31 4.70 5.97 5.21 5.02 4.97
MJC-1 248-250 MJC-1 250-252 MJC-1 252-254 MJC-1 256-258 MJC-1 256-258 MJC-1 260-262 MJC-1 260-264 MJC-1 266-268 MJC-1 266-268 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-272 MJC-1 270-278 MJC-1 278-280 MJC-1 278-280 MJC-1 280-282	\$5 \$5 \$5 \$7 \$5 \$5 \$5 \$14 \$5 \$5 \$6 \$6 \$6 \$5	0.3 0.4 0.4 0.5 0.6 0.9 0.5 0.7 0.1 0.2 0.1 <0.1 <0.1 <0.1 0.7 0.1	0.002 0.002 0.002 0.005 0.008 0.006 0.006 0.006 0.002 0.006 0.002 0.001 0.001 0.001 0.001 0.001	<pre><0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001</pre>	6 9 6 7 8 8 6 7 9 6 8 8 6	102 125 111 114 74 99 94 109 73 84 68 55 59 46 47 57	7 6 8 6 7 7 7 6 8 6 4 4 5 6 6	2.36 1.87 3.18 2.35 3.52 2.06 3.86 1.53 2.80 3.22 4.71 5.31 4.70 5.97 5.21 5.02

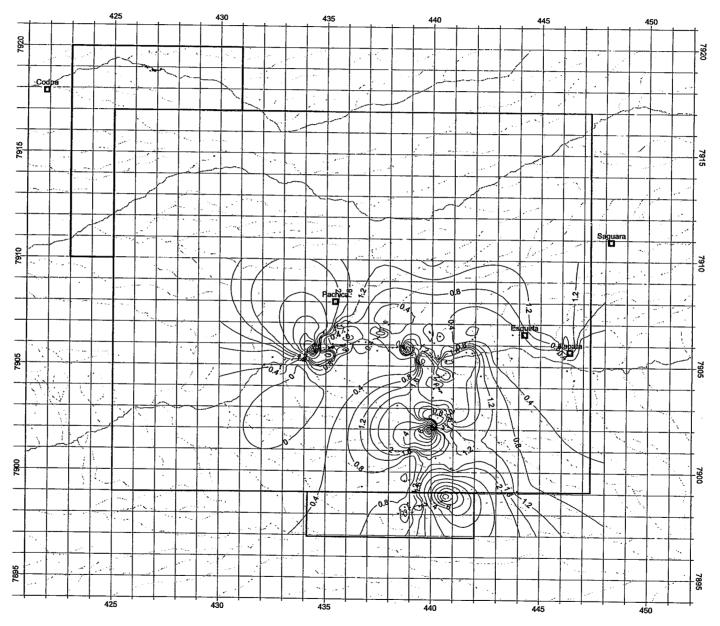
AP-6 (4) Results of Ore Assaying (Phase 3 drilling) (2)

Sample No.	Au	Ag	Cu	Cu Sol	РЬ	Zn	Мо	s
Hole No. Depth (m)	(ppb)	(ppm)	ļ	(%)	(ppm)	(ppm)	мо (ррт)	(%)
MJC-1 288-290	5	⟨0.1		<0.001	5	72	9	3.92
MJC-1 290-292	6	0.8		0.001	13	99	6	4.51
MJC-1 292-294	13	<0.1		0.001	7	110	5	2.53
MJC-1 294-296	<5	⟨0.1		<0.001	6	75	5	4.35
MJC-1 296-298	<5	0.7		0.001	5	90	6	2.75
MJC-1 298-300	<5	<0.1		<0.001	5	$-\frac{30}{77}$	6	3.06
MJC-1 300-302	<5	0.4		<0.001	6	76	5	4.02
MJC-1 302-304	<5	0.5		<0.001	7	114	5	1.92
MJC-1 304-306	<5	0.3		<0.001	5	88	6	1.78
MJC-1 306-308	<5	0.9		0.001	14	102	4	2.61
MJC-1 308-310	<5	0.1	·	<0.001	11	108	5	3.52
MJC-1 310-312	<5	0.5	0.005	<0.001	9	125	5	3.21
MJC-1 312-314	5	0.7		0.001	9	82	7	5.12
MJC-1 314-316	<5	0.3	0.011	0.001	7	78	7	3.34
MJC-1 316-318	<5	0.4	0.004	<0.001	9	65	5	5.59
MJC-1 318-320	6	0.4	0.016	0.001	10	59	10	5.85
MJC-1 320-322	11	0.7	0.093	0.003	18	65	9	6.32
MJC-1 322-324	<5	0.4	0.015	0.001	9	82	5	4.14
MJC-1 324-326	<5	0.4	0.004	0.001	7	60	7	4.53
MJC-1 326-328	<5	0.8	0.004	0.001	7	76	5	1.70
MJC-1 328-330	<5	0.6	0.010	0.001	7	71	5	2.57
MJC-1 330-332	<5	0.8	0.019	0.001	9	38	6	4.69
MJC-1 332-334	<5	0.5	0.024	0.001	10	44	4	6.64
MJC-1 334-336	<5	0.2		0.001	12	45	3	6.22
MJC-1 336-338	6	0.5		0.001	13	49	5	5.82
MJC-1 338-340	<5	0.1	0.003	<0.001	6	50	4	7.11
MJC-1 340-342	<5	0.3		<0.001	6	42	3	7.95
MJC-1 342-344	<5	0.3		0.001	8	52	4	5.94
MJC-1 344-346	11	0.1	0.030	0.002	11	58	4	4.71
MJC-1 346-348	5	<0.1	0.016	0.002	9	66	4	3.62
MJC-10 136-138	<5	0.9	0.007	(0.001	10	70		0.40
MJC-10 138-140	6	0.8	0.007	<0.001 0.002	18 21	76	6	9.48
MOO 10 100 140		0.0	0.011	0.002		96	7	4.67
MJC-11-428-430	7	0.7	0.002	0.001	9	46	4	0.15
MJC-11-430-432	< 5	0.2	0.003	<0.001	34	36	6	0.13
MJC-11-432-434	<5	0.2	0.003	0.001	7	36	7	0.08
MJC-11-434-436	<5	0.2	0.002	<0.001	21	29	6	0.10
MJC-11-436-438	<5	0.8	0.001	<0.001	6	38	4	0.05
MJC-11-438-440	<5	0.8	0.002	0.001	14	37	10	0.10
MJC-11-440-442	<5	0.5	0.002	0.001	79	32	6	0.28
MJC-11-442-444	<5	0.5	0.001	<0.001	18	36	6	0.12
MJC-11-444-446	<5	<0.1	0.002	<0.001	29	32	11	0.08
MJC-11-446-448	<5	0.9	0.007	0.003	81	30	5	1.01
MJC-11-448-450	29	3.4	0.004	0.002	129	27	8	0.96
MJC-11-450-452	<5	1.1	0.001	<0.001	34	28	5	0.33
MJC-11-452-454	<u> </u>	0.9	0.002	0.001	19	31	7	0.28
MJC-11-454-456 MJC-11-456-458	<u> </u>	0.9	0.005	0.003	11	49	5	1.11
MJC-11-458-460	<5 <5	0.4	0.003	0.001	14	114	4	1.06
MJC-11-450-460	<5i	0.4	0.002	0.001	13	278	4	2.16
MJC-11-462-464	<5	0.2	0.002	<0.001	23 6	117 93	7	1.61
MJC-11-464-466	<5	0.4	0.001	0.001	3	59	4	1.76 2.00
MJC-11-466-468	<5	0.5	0.002	0.001	5	58	3	_
MJC-11-468-470	< 5	0.6	0.002	0.001	7	61	5	1.70
MJC-11-470-472	₹5	0.5	0.001	0.001	4	53	4	2.21
MJC-11-472-474	< 5	0.3	0.001	<0.001	10	63	3	1.89
MJC-11-474-476	<5		0.002	<0.001	4	61	13	1.27
MJC-11-476-478	<5	0.9	0.002	<0.001	5	107		2.50
MJC-11-478-480	<5	<0.1	0.003	<0.001	4	58	8	1.34
MJC-11-480-482	<5	<0.1	0.002	<0.001	12	98	11	1.36
MJC-11-482-484	<5	<0.1	0.002	<0.001	10	85	8	1.55
MJC-11-484-486	<5		0.002	<0.001	13	90	5	1.87
MJC-11-486-488	9	<0.1	0.004	0.001	57	241		2.49
MJC-11-488-490	<5		0.005	<0.001	31	178		2.32
MJC-11-490-492	<5		0.002	<0.001	16	92		1.99
MJC-11-492-494	<5		0.001	0.001	25	98		1.87
MJC-11-494-496	<5	<0.1	0.001	<0.001	17	79		1.90
MJC-11-496-498	<5	<0.1	0.001	<0.001	18	70		1.96
MJC-11-498-500	<5∶	<0.1	0.001	0.001	15	88		1.68

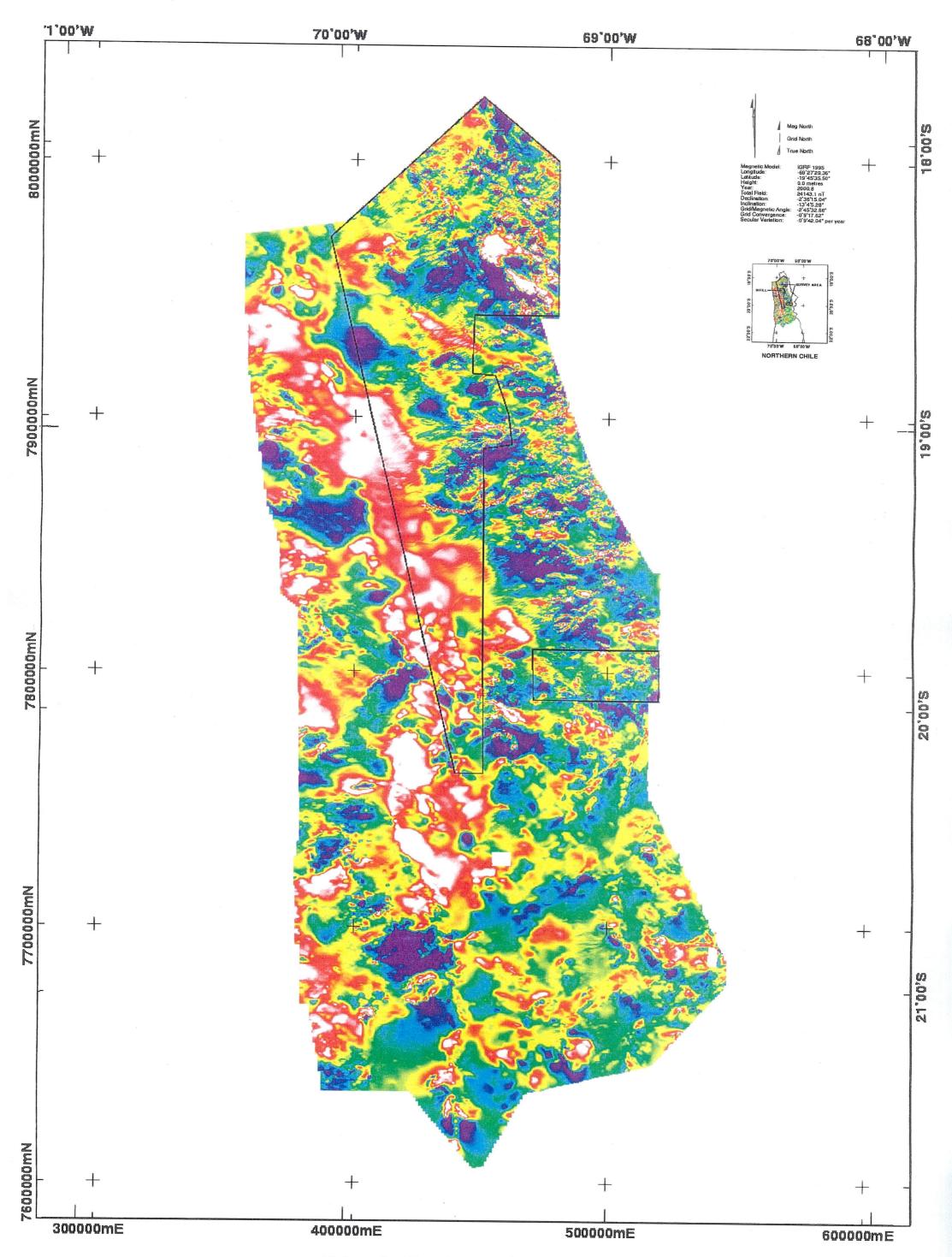
AP-7 Results of Geochemical Analysis of Rock samples (Drilling) (1)

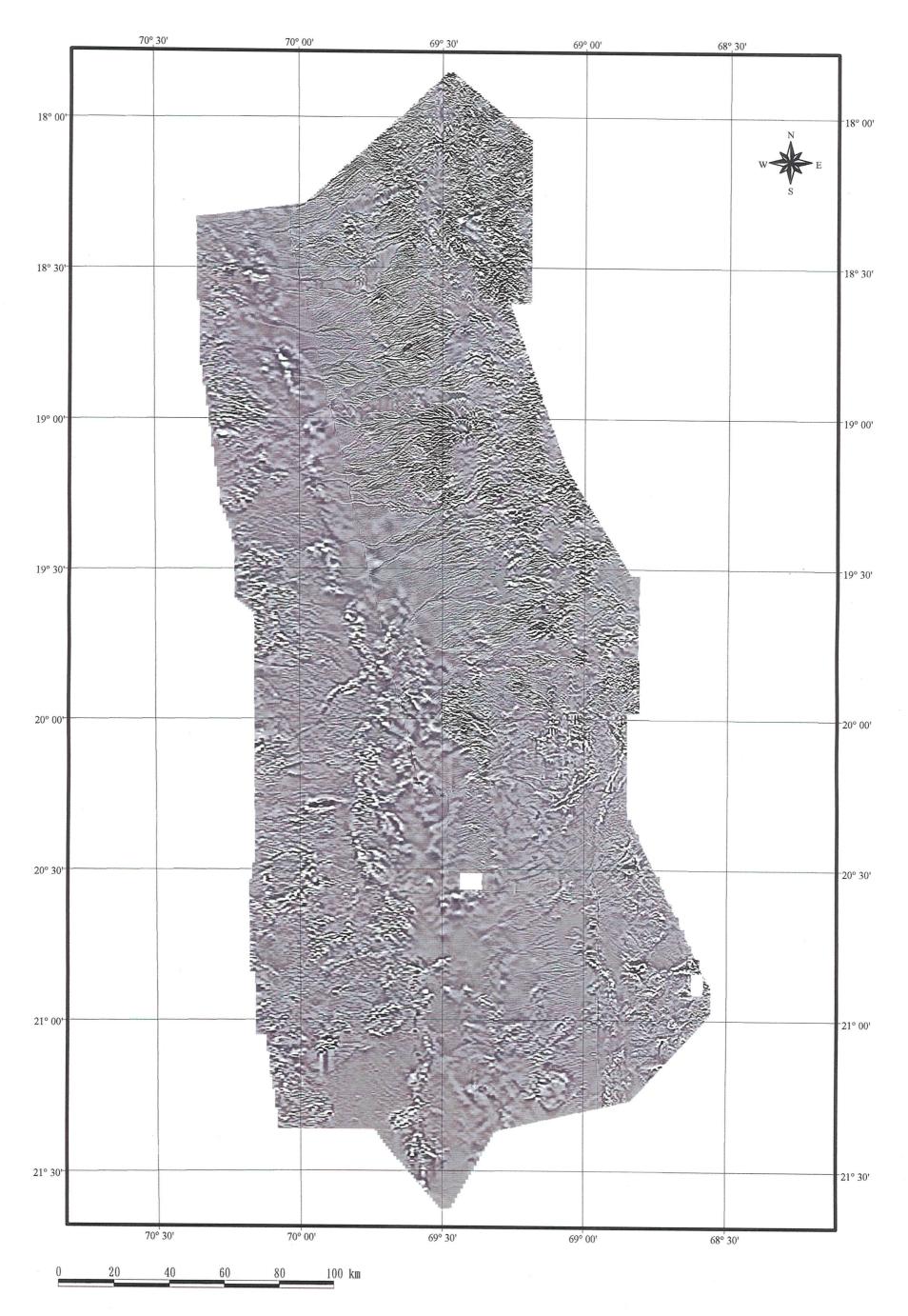
								ou.	
Sample No.	Au	Ag	Си	Pb	Zn	Мо	As	Sb	Hg
Hole No. Depth (m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ррт)	(ppm)	(ppm)	(ppm)
MJC-5 158-160	<5	<0.1	7	40	14	3	427	<2	0.025
MJC-5 178-180	<5	<0.1	8	31	11	5	251	<2	0.026
MJC-5 180-182	<5	<0.1	6	30	7	6	86	<2	0.021
MJC-5 182-184	7	<0.1	9	30	9	5	320	⟨2	0.053
MJC-5 184-186	6	<0.1	7	27	11	4	291	<2	0.013
									- 0.010
MJC-6 90-92	<5	<0.1	8	136	14	10	314	<2	0.025
MJC-6 92-94	7	<0.1	8	136	13	6	416	⟨2	0.038
MJC-6 100-102	6	<0.1	14	43	16	9	634	⟨2	0.035
MJC-6 102-104	7	<0.1	18	83	20	11	537	⟨2	0.035
MJC-6 124-126	7	₹0.1	11	19	17	3	582	<2	0.025
MJC-6 126-128	6	⟨0.1	19	24	32	6	402	<2	
MJC-6 136-138	6	<0.1	18	20	36	7			0.057
MJC-6 138-140	6	<0.1	17				242	<2	0.011
MJC-6 140-142	6	0.7		15	37	3	126	<2	0.011
MJC-6 142-144	6		17	14	38	4	129	<2	<0.01
MJC-6 144-146		0.9	16	17	42	4	135	<2	<0.01
WISC-0 144-140	6	0.7	18	17	39	4	96	_<2	0.012
MJC-7 78-80	-	1.2	- 20	0.1	70				
MJC-7 98-100	6		30	21	70	4	219	<2	0.013
	6	1	19	18	54	5	272	<2	<0.01
MJC-7 132-134	7	0.7	16	204	8	4	20	<2	<0.01
MJC-7 248-250	6	0.4	91	14	124	6	6	<2	0.014
1410 1000									
MJC-10 6-8	<5	<0.1	104	3	156	11	22	4	0.590
MJC-10 8-10	<5	<0.1	108	<2	158	8	55	3	0.321
MJC-10 10-12	<5	0.1	87	7	163	9	71	5	0.800
MJC-10 12-14	<5	0.1	183	9	182	8	5	2	0.659
MJC-10 14-16	<5	0.2	237	6	115	71	59	4	0.582
MJC-10 16-18	11	<0.1	189	5	69	7	340	4	0.063
MJC-10 18-20	8	0.4	216	5	165	7	210	<2	0.405
MJC-10 20-22	24	0.2	205	6	210	7	546	3	3.901
MJC-10 22-24	<5	0.2	115	3	48	8	559	3	4.454
MJC-10 24-26	<5	<0.1	168	<2	107	6	33	3	0.252
MJC-10 26-28	16	<0.1	213	5	151	6	19	4	0.613
MJC-10 28-30	27	0.1	185	5	163	5	63	4	0.512
MJC-10 30-32	<5	<0.1	126	6	152	5	131	2	0.754
MJC-10 32-34	105	0.3	92	4	170	4	34	4	0.841
MJC-10 34-36	8	0.1	145	5	172	4	21	2	0.538
MJC-10 36-38	<5	0.4	84	2	127	6	29	5	0.817
MJC-10 38-40	<5	<0.1	66	4	159	7	131	5	3.273
MJC-10 40-42	<5	<0.1	80	2	127	7	26	2	0.867
MJC-10 42-44	<5	<0.1	70	9	102	7	60	4	0.715
MJC-10 44-46	<5	0.1	87	3	72	4	600	⟨2	1.873
MJC-10 46-48	<5	<0.1	72	2	186	4	42	4	1.092
MJC-10 48-50	14	<0.1	73	3	150	4	15	3	0.258
MJC-10 50-52	<5	<0.1	77	3	153	4	27	<2	0.145
MJC-10 52-54	<5	<0.1	72	9	85	5	67	3	0.191
MJC-10 54-56	10	<0.1	67	3	138	5	158	2	0.186
MJC-10 56-58	<5	<0.1	74	4	63	5	117	2	0.509
MJC-10 58-60	<5	0.3	60	4	72	6	146	<2	
MJC-10 60-62	< 5	0.1	58	4	97	5	94		0.635
MJC-10 62-64	13	<0.1	69	8	111	4	43	2	0.432
MJC-10 64-66	<5	⟨0.1	58	8	89	3	28	<2	1.813
MJC-10 66-68	₹5	0.1	351	8	64		1141	4	0.648
MJC-10 68-70	30	0.2	64	11	22	6	808	<2	17.972
MJC-10 70-72	14	0.2	83	9	17	5	996	3	1.395
MJC-10 72-74	<5	0.3	200	10	23	6		3	0.529
MJC-10 74-76	₹5	<0.1	372	7	29		965	2	2.818
MJC-10 76-78	⟨5	0.1	413	8	33	3	266 160	4	2.125
MJC-10 78-80	<5	0.1	141					2	3.590
MJC-10 80-82	<5	0.1	135	11	24	<2	101	2	2.046
MJC-10 82-84	<5	0.1		9	30	<2	127	3	3.379
MJC-10 84-86			81	10	184	<2	89	<2	1.207
	<u><5</u>	<0.1	73	6	83	<2	38	_ 2;	0.332
MJC-10 86-88	<5	0.1	89	5	87	<2	31	<2	0.525
MJC-10 88-90	<51	0.2	67	7	76	3	27	<2	0.231
MJC-10 90-92	<u> </u>	<0.1	67	5	76	6	21	<2	0.225
MJC-10 92-94	<5	0.1	64	7	80	7	22	2	0.160
MJC-10 94-96	<5	<0.1	67.	8	80	7	31	<2	0.190
MJC-10 96-98	<5	<0.1	64	6	72	6	41	<2:	0.299
MJC-10 98-100	<5	1.0	63	7	79	6	19	<2:	0.159
MJC-10 100-102	<5⊹	<0.1	68	8	74	6	33	<2	0.243
MJC-10 102-104	<5,	0.1	66	13	78	6	13	<2	0.075
MJC-10 104-106	<5	0.1	62	8.	751	6	12	<2	0.043
MJC-10 106-108	< 5!	0.1	65	7	75	61	13	3	0.047
							<u></u>	<u> </u>	5.577

AP-7 Results of Geochemical Analysis of Rock samples (Drilling) (2)


711 / 110501	,	4000		icai 7	Tiraly	313 0		, Cour	Tibles (D
Sample No.	Au	Ag	Cu	₽Ь	Zn	Mo	As	Sb	Hg
Hole No. Depth (m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
MJC-10 108-110 MJC-10 110-112	<5 <5	0.2 <0.1	65 70	9	82 82	5 5	14 11	<2 <2	0.057
MJC-10 112-114	<5	<0.1	69	3	76	5	<5	<2 <2	0.048 0.038
MJC-10 114-116	<u>√5</u>	<0.1	64	6	83	5	8	<2	0.038
MJC-10 116-118	< 5	<0.1	64	4	84	5	15	<2	0.216
MJC-10 118-120	<5	<0.1	63	6	89	5	22	<2	0.317
MJC-10 120-122	<5	<0.1	52	<2	83	4	89	<2	0.568
MJC-10 122-124	<5	0.1	53	3	68	5	224	2	0.286
MJC-10 124-126	<5	<0.1	52	<2	62	3	20	2	0.223
MJC-10 126-128	<5	0.1	56	4	44	6	21	2	0.371
MJC-10 128-130	<5	<0.1	64	7	60	5	8	2	0.330
MJC-10 130-132	<5	0.1	65	7	87	5	18	<2	0.760
MJC-10 132-134	<5	0.1	64	5	65	3	17	<2	0.505
MJC-10 134-136	<5	<0.1	50	2	73	4	58	<2	0.256
MJC-10 136-138	<u><5</u>	<0.1	64	2	74	7	81	2	0.642
MJC-10 138-140	<5 <5	0.2	87	2	84	2	37	3	0.691
MJC-10 140-142 MJC-10 142-144	<5 <5	0.1	46	<2	66	5	45	2	0.677
MJC-10 142-144	<5 <5	0.3	82 42	2 6	77 73	<2 <2	42	3	0.775
MJC-10 144-140	< 5	<0.1	45	2	72	<2	31	<2	0.405
MJC-10 148-150	< 5	⟨0.1	65	<2	73	<2	29 126	3	0.493 0.365
MJC-10 150-152	<5	<0.1	75	<2	89	<2	100	2	0.383
MJC-10 152-154	< 5	0.3	42	⟨2	74	<2	45	4	0.130
MJC-10 154-156	9	0.3	35	⟨2	66	⟨2	50	3	0.160
MJC-10 156-158	<5	0.1	33	<2	64	3	36	<2	0.198
MJC-10 158-160	<5	0.4	38	<2	66	6	326	2	0.178
MJC-10 160-162	<5	<0.1	29	<2	69	3	108	2	0.111
MJC-10 162-164	<5	<0.1	29	2	70	3	169	4	0.089
MJC-10 164-166	<5	0.2	37	2	73	3	_250	3	0.154
MJC-10 166-168	<5	0.1	35	<2	70	3	95	<2	0.170
MJC-10 168-170	<5 <5	0.1	41	<2	70	3	107	2	0.154
MJC-10 170-172 MJC-10 172-174	<5 <5	0.3	46 32	<2	73 73	4	146	3	0.267
MJC-10 172-174	<5 <5	0.4	33	<2 2	70	4	69 125	2	0.228
MJC-10 176-178	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.1	41	4	73	5	163	3	0.359
MJC-10 178-180	< 5	0.5	39	5	77	6	123	\\ \(\)	0.239
MJC-10 180-182	< 5	0.2	39	4	73	5	164	2	0.279
MJC-10 182-184	<5	0.2	21	7	68	7	109	2	0.260
MJC-10 184-186	<5	<0.1	16	6	66	5	100	<2	0.204
MJC-10 186-188	<5	0,1	15	9	65	5	235	<2	0.195
MJC-10 188-190	<5	<0.1	16	4	59	6	280	4	0.223
MJC-10 190-192	<5	<0.1	13	8	65	5	3440	52	0.463
MJC-10 192-194	<5	<0.1	14	7	55	6	63	<2	0.217
MJC-10 194-196	<5	0.2	34	9	72	6	460	6	0.696
MJC-10 196-198 MJC-10 198-200	<u>10</u>	0.1	39	4	66	4	130	3 <2	0.590
MJC-10 200-202	<5	0.3	12	8	72	6	185	3	0.260 0.112
MJC-10 202-204	₹5	0.1	11	4	61	5	439	4	0.096
MJC-10 204-206	< 5	<0.1	14	8	67	3	198	4	0.081
MJC-10 206-208	<5	<0.1	48	9	67	7	994	12	0.334
MJC-10 208-210	<5	0.5	48	7	77	5	482	7	0.331
MJC-10 210-212	<5	0.4	54	7	90	4	1987	24	0.376
MJC-10 212-214	<5	0.5	25	5	80	5	470	8	0.265
MJC-10 214-216	<5	<0.1	41	6	82	5	374	8	0.678
MJC-10 216-218	<5	<0.1	59	5	84	5	1019	16	1.650
MJC-10 218-220	<5	<0.1	27	7	88	4	223	5	0.531
MJC-10 220-222	<5	0.1	38	8	78	6	184	6	0.504
MJC-10 222-224	<5¦	0.1	41	11	82	6	266	5	0.376
MJC-10 224-226	<5	<0.1	55	10	77	5	167		0.391
MJC-10 226-228 MJC-10 228-230	<5	<0.1 <0.1	22	8l 5!	79 73i	7	34	<2	0.089
MJC-10 228-230 MJC-10 230-232	<5 <5	0.4	18	6	78.	5	27	<2	0.071
MJC-10 230-232 MJC-10 232-234	< 5	<0.1	37	7	88:	5	84 41	<2	0.227 0.125
MJC-10 232-234 MJC-10 234-236	<5	<0.1	27	8	82	6	31	3	0.125
MJC-10 236-238	<5	<0.1	22	71	75	5	27	<2	0.059
MJC-10 238-240	⟨5	<0.1	21	7	73	5	22	<2	0.039
MJC-10 240-242	<5	<0.1	34	7	78	5.	28	3.	0.186
MJC-10 242-244	⟨5	0.2	17	5	83	4:	10:	<2	0.180
MJC-10 244-246	<5!	<0.1	20	4	92	4	9	⟨2	0.024
MJC-10 246-248	⟨5	0.3	19:	7	82	4	22:	⟨2	0.024
MJC-10 248-250	< 5	<0.1	22	9:	81	4	22	<2	0.056
MJC-10 250-252	⟨5	⟨0.1	21	6	80	3	18.	<2	0.019
MJC-10 252-254	<5	0.1	15	6	80	3	19	2	0.030
MJC-10 254-256	⟨5	<0.1	15	7	80	4.	16	<2	0.018

AP-7 Results of Geochemical Analysis of Rock samples (Drilling) (3)


Sample No.	Au	Ag	Cu	Pb	Zn	Mo	As	Sb	U~
Hole No. Depth (m)	(ppb)	(ppm)	(ррт)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Hg (ppm)
MJC-10 256-258	<5	<0.1	14	9	79	4	6		0.014
MJC-10 258-260	<5	0.1	17	11	81	3	11	<2	0.020
MJC-10 260-262	<5	0.3	15	9	. 78	3	9	<2	0.018
MJC-10 262-264	<5 <5	0.5	15	9	77	3	8	2	0.032
MJC-10 264-266 MJC-10 266-268	<5 <5	0.2 <0.1	17	6 10	84 70	3	12	3	0.014
MJC-10 268-270	<5 <5	<0.1 <0.1	15	8	80	3	. 9 7	2 <2	0.023
MJC-10 270-272	<5	0.2	20	3	71	5	24	<2	0.030
MJC-10 272-274	<5	<0.1	20	4	74	4	35	<2	0.064
MJC-10 274-276	<5	0.1	22	3	73	3	58	<2	0.098
MJC-10 276-278	<5	0.2	17	3	83	3	11	<2	0.022
MJC-10 278-280 MJC-10 280-282	<u><5</u>	0.5	20	6	85	4	12	<2	0.027
MJC-10 282-284	<5 <5	0.5 0.6	22 21	2 <2	74 74	4 3	21 24	<2 <2	0.081
MJC-10 284-286	<5	0.3	16	3	79	3	13	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.110
MJC-10 286-288	<5	<0.1	20	7	88	5	16	⟨2	0.049
MJC-10 288-290	<5	<0.1	24	3	78	3	26	<2	0.130
MJC-10 290-292	<5	1.1	15	<2	79	4	6	<2	0.050
MJC-10 292-294	<5	0.5	15	<2	79	3	8	<2	0.024
MJC-10 294-296 MJC-10 296-298	<5 <5	0.7 <0.1	15 16	3	75 80	<2	9	<2	0.064
MJC-10 298-300	<5	0.1	14	4	75	<u>4</u> <2	11	<2 <2	0.038
MJC-10 300-302	<5	<0.1	15	<2	74	3	16	<u>\2</u>	0.123
MJC-10 302-304	<5	0.2	14	<2	77	<2	9	<2	0.182
MJC-10 304-306	<5	0.5	16	<2	84	4	9	<2	0.080
MJC-10 306-308	<5	0.4	18	4	81	<2	11	<2	0.107
MJC-10 308-310 MJC-10 310-312	<5 <5	<0.1 0.2	16 17	5	81 67	3 <2	9 8	3	0.059
MJC-10 312-314	< 5	0.2	17	5	74	<2	11	2	0.188 0.178
MJC-10 314-316	<5	0.1	16	7	74	₹2	12	3	0.170
MJC-10 316-318	<5	<0.1	17	6	75	<2	16	3	0.143
MJC-10 318-320	<5	<0.1	15	5	76	<2	18	2	0.191
MJC-10 320-322 MJC-10 322-324	<5	0.2	14	7	70	<2	24	<2	0.157
MJC-10 322-324 MJC-10 324-326	- 6 <5	0.2	16 16	7 5	82 77	3 <2	18 21	<2 3	0.252 0.254
MJC-10 326-328	⟨5	0.3	16	9	73	<2	18	3	0.193
MJC-10 328-330	<5	0.3	15	6	71	<2	20	2	0.134
MJC-10 330-332	<5	0.2	17	5	79	4	19	2	0.142
MJC-10 332-334 MJC-10 334-336	<5	<0.1	22	8	69	3	49	3	0.097
MJC-10 334-338	<5 <5	<0.1 0.5	32	4	62 72	3	49	<2 <2	0.070
MJC-10 338-340	< 5	0.9	41	2	81	<2	48 38	<u>\2</u>	0.126
MJC-10 340-342	<5	1.3	47	6	83	<2	31	<2	0.140
MJC-10 342-344	<5	0.4	45	2	80	3	25	<2	0.082
MJC-10 344-346	<5	0.1	49	<2	80	3	18	<2	0.064
MJC-10 346-348 MJC-10 348-350	<5	<0.1	47	<2	86	3	11	<2	0.016
MJC-10 348-350 MJC-10 350-352	<5 <5	0.3	44	<2 2	78 74	<2 <2	39 25	<2 <2	0.130
MJC-10 352-354	< 5	0.4	51	5	71	<2	28	<2 <2	0.233
MJC-10 354-356	<5	0.1	51	6	65	<u> </u>	28	⟨2	0.152
MJC-10 356-358	<5	0.3	50	4	75	3	27	<2	0.162
MJC-10 358-360	<5	0.1	53	5	67	<2	29	<2	0.115
MJC-10 360-362 MJC-10 362-364	<u><5 </u>	0.2	51	8	69	3	26	<2	0.155
MJC-10 362-364 MJC-10 364-366	<5 <5	0.3	53	14 5	75 54	<2 <2	18 31	<2 <2	0.237
MJC-10 366-368	<5!	0.7	52	9	80	4	18	<2	0.607
MJC-10 368-370	<5	0.2	51	6:	72	6	16	<u>{2</u>	0.250
MJC-10 370-372	<5	0.2	58	5	71	<2	23	<2	0.569
MJC-10 372-374	<5	<0.1	57	9	88	11	30	<2	0.180
MJC-10 374-376	6	0.2	58	11	111	4	44	5	0.472
MJC-10 376-378 MJC-10 378-380	<5 <5	0.2	55 61	11	104 83	4 <2	34	3	0.269
MJC-10 378-380	<5 <u> </u>	1	61	9	74	4	86 286	7	0.135
MJC-10 382-384	<5	0.5	771	10	75:	5:	150	10	0.503
MJC-10 384-386	< 5	<0.1	50	9	78	<2	155	3	0.112
MJC-10 386-388	<5	0.2	57	9	81	<2	132	5	0.065
MJC-10 388-390	<5	<0.1	50	12	76	<2	163	4;	0.074
MJC-10 390-392	<5;	<0.1	48:	11	90;	<2	229	7	0.198
MJC-10 392-394	<5	0.5	53	111	87	4:	205	3	0.160
MJC-12 164-166	7	1.1	77	7	100	-			70.04
MJC-12 166-168	<u>/</u> ∔	1:	69.	4	106	5! 4		<2 <2	0.019
MJC-12 168-170	7	1	81	7	88	6.	<5;	(2)	<0.019
MJC-12 170-172	8	0.8	80;	6	73	5	9;	3	<0.01
		<u>-</u> -	:					<u> </u>	


AP-7 Results of Geochemical Analysis of Rock samples (Drilling) (4)

Sample No.	Au	Ag	Cu	Pb	Zn	Мо	As	Sb	Hg
Hole No. Depth (m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
MJC-12 172-174	<5I	1	72	10	96	4	< 5	<2	<0.01
MJC-12 174-176	₹5	0.1	87	7	88	5	< 5	⟨2	⟨0.01
MJC-12 176-178	< 5	0.6	139	11	92	4	7	2	<0.01
MJC-12 178-180	<5	0.9	146	11	90	4	6	<2	<0.01
MJC-12 180-182	<5	1.2	109	11	95	4	7	<2	<0.01
MJC-12 182-184	<5	1.1	39	9	102	4	<5	<2	<0.01
MJC-12 184-186	<5	1.1	111	11	99	4	9	<2	<0.01
MJC-12 186-188	<5	0.9	79	8	96	5	7	2	<0.01
MJC-12 188-190	<5	1	113	8	91	5	<5	<2	<0.01
MJC-12 190-192	< 5	0.5	63	8	115	4	<5	<2	<0.01
MJC-12 192-194	<5	0.1	103	7	98	5	<u><5</u>	<2	<0.01
MJC-12 194-196	< 5	<0.1 <0.1	107	9	99	5	<u> </u>	<2	<0.01
MJC-12 196-198 MJC-12 198-200	<5 <5	0.5	134 96	10	117 90	5 5	<5 <5	<2 <2	0.014 <0.01
MJC-12 198-200 MJC-12 200-202	<5 <5	0.3	126	12	92	5i	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<2	0.013
MJC-12 202-204	< 5	0.7	109	9	85	6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<2	<0.013
MJC-12 204-206	₹5	0.4	109	8	86	5	<5	<2	0.014
MJC-12 206-208	< 5	0.6	127	10	82	4	₹5	√2	0.010
MJC-12 208-210	<5	0.6	100	10	94	6	<5	<2	0.011
MJC-12 210-212	<5	0.8	97	11	106	6	<5	<2	0.010
MJC-12 212 214	<5	0.7	133	11	98	7	<5	<2	<0.01
MJC-12 214-216	<5	0.9	131	8	83	5	<5	<2	<0.01
MJC-12 216-218	<5	1	118	10	92	7	<5	<2	<0.01
MJC-12 218-220	<5	0.9	110	8	85	4	6	<2	<0.01
MJC-12 220-222	<5	0.8	113	8	86	6	<5	<2	0.010
MJC-12 222-224	<u><5</u>	0.7	120	9	84	6	<5	<2	<0.01
MJC-12 224-226 MJC-12 226-228	<5 <5	0.7	129 107	8	84 84	6	<5 <5	<2 <2	<u> </u>
MJC-12 228-230	<5	0.2	96	10	81	6	7	<2	<0.017
MJC-12 230-232	₹5	0.8	128	10	88	4	< 5	<u> </u>	<0.01
MJC-12 232-234	<5	0.8	128	11	90	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<2	⟨0.01
MJC-12 234-236	<5	0.8	91	9	85	5	<5	<2	<0.01
MJC-12 236-238	<5	0.9	107	9	83	5	<5	<2	<0.01
MJC-12 238-240	<5	0.9	115	7	87	3	<5	<2	<0.01
MJC-12 240-242	<5	1	110	7	87	4	<5	<2	<0.01
MJC-12 242-244	<5	<0.1	120	7	83	5	6	<2	<0.01
MJC-12 244-246	<5	0.1	108	8	89	<2	17	<2	<0.01
MJC-12 246-248 MJC-12 248-250	<5 <5	0.2	109	7 10	108	3	<5	<2 <2	0.013
MJC-12 250-252	<5	0.2	89	10	102	5	7	<2 <2	0.011 <0.01
MJC-12 252-254	₹5	0.2	81	9	94	4	9	<2	<0.01
MJC-12 254-256	< 5	0.2	63	8	84	3	<5	⟨2	<0.01
MJC-12 256-258	<5	0.2	117	7	86	7	<5	<2	<0.01
MJC-12 258-260	<5	0.3	115	7	89	6	< 5	<2	<0.01
MJC-12 260-262	<5	0.8	129	7	90	6	<5	<2	<0.01
MJC-12 262-264	<5	0.9	140	8	87	6	<5	<2	<0.01
MJC-12 264-266	<5	0.9	102	5	84	6	<5	<2	<0.01
MJC-12 266-268	<5	0.8	126	6	81	5	<5 <5	<2	<0.01
MJC-12 268-270 MJC-12 270-272	<5 <5	0.0	134	4	84	6	<5 <5	<2	<0.01
MJC-12 270-272	<u>₹5</u>	0.9	118	3	85 78	7 5	<5 <5	<2 <2	<0.01 <0.01
MJC-12 274-276	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 	0.9	121	4	87	6	<5	<2	<0.01
MJC-12 276-278	< 5	0.3	95	4	79	5	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 	<2	<0.01
MJC-12 278-280	₹5	0.1	123	5	70	4	₹5	⟨2	<0.01
MJC-12 280-282	₹5	0.1	131	8	75	3	10	<2	<0.01
MJC-12 282-284	<5	0.1	106	6	71	3	<5	<2	<0.01
MJC-12 284-286	<5	<0.1	205	10	77	4	13	<2	<0.01
MJC-12 286-288	<5	0.1	133	12	72	3	8.	<2	<0.01
MJC-12 288-290	< 5	0.1	143	_13	76	3	7	<2	<0.01
MJC-12 290-292	<5	0.3	134	11	77	4	<5	₹2	<0.01
MJC-12 292-294	<5	0.2	168	5	77	3	6	<2	<0.01
MJC-12 294-296	<5	0.5	134	6	76	4	<5	<2	<0.01
MJC-12 296-298	<u><5</u>	0.5	88	61	86	6	<5	<2	<0.01
MJC-12 298-3001	<5	0.5	105	6	82	5	< 5	<2!	<0.01

AP-8 Pb/Cu Contours in the Southern Camarones Area

AP-10 First Vertical Derivative of Total Magnetic Intensity